JP2012121842A - Fixed bed multitubular reactor and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same - Google Patents

Fixed bed multitubular reactor and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same Download PDF

Info

Publication number
JP2012121842A
JP2012121842A JP2010274175A JP2010274175A JP2012121842A JP 2012121842 A JP2012121842 A JP 2012121842A JP 2010274175 A JP2010274175 A JP 2010274175A JP 2010274175 A JP2010274175 A JP 2010274175A JP 2012121842 A JP2012121842 A JP 2012121842A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
tube
reaction tube
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010274175A
Other languages
Japanese (ja)
Other versions
JP5618800B2 (en
Inventor
Naohiro Fukumoto
直広 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010274175A priority Critical patent/JP5618800B2/en
Publication of JP2012121842A publication Critical patent/JP2012121842A/en
Application granted granted Critical
Publication of JP5618800B2 publication Critical patent/JP5618800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fixed bed multitubular reactor that is designed so that the reaction tube equipped with a temperature measurement apparatus for measuring the temperature of catalyst layer, especially the temperature of hot spot, represents the temperature of the catalyst layer of the whole reaction tubes in a fixed bed multitubular reactor packed with a catalyst.SOLUTION: In the fixed bed multitubular reactor in which each reaction tube has the same tube diameter and at least one reaction tube is equipped with a temperature measurement apparatus, the fixed bed multitubular reactor includes at least one reaction zone packed with a plurality of kinds of catalysts to form layers in each reaction tube, in each catalyst layer except a catalyst layer arranged closest to a reaction gas outlet side relative to at least a gas flow direction of the reaction zone, the reaction tube equipped with the temperature measurement apparatus and the reaction tube not equipped with a temperature measurement apparatus are equipped with substantially the same mass of the catalyst of the same kind and pressure loss of each reaction tube is designed to be substantially the same.

Description

本発明は、温度計測装置が設置されてなる反応管を有する固定床多管式反応器に関する。また、その固定床多管式反応器を用いて不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法に関する。   The present invention relates to a fixed-bed multitubular reactor having a reaction tube provided with a temperature measuring device. The present invention also relates to a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the fixed bed multitubular reactor.

工業規模の接触気相酸化反応の多くは、固体触媒を反応管内に充填した固定床多管式反応器により実施されている。この固定床多管式反応器では、反応温度を調節するために反応器胴内(反応器シェル側)に流動性熱伝導体(以下、「熱媒」と記することがある)が循環されていることが多い。また、接触気相酸化反応は一般的に非常な発熱反応を伴うことから、触媒層に局所的な高温部(以下、「ホットスポット」と記することがある)が発生する。このホットスポット温度が極端に高温になると、目的生成物の収率低下のみならず暴走反応や触媒の早期劣化を引き起こす可能性があることから、触媒層温度、特にホットスポット温度をモニタリングしながら反応温度(熱媒温度)を調節することが一般的である。   Many industrial scale catalytic gas phase oxidation reactions are carried out in a fixed bed multitubular reactor filled with a solid catalyst in a reaction tube. In this fixed bed multitubular reactor, a fluid heat conductor (hereinafter sometimes referred to as “heat medium”) is circulated in the reactor body (reactor shell side) in order to adjust the reaction temperature. There are many. In addition, since the catalytic gas phase oxidation reaction generally involves a very exothermic reaction, a local high temperature portion (hereinafter sometimes referred to as “hot spot”) is generated in the catalyst layer. If this hot spot temperature becomes extremely high, not only the yield of the target product will be reduced, but also a runaway reaction or early deterioration of the catalyst may occur, so the reaction should be performed while monitoring the catalyst layer temperature, especially the hot spot temperature. Generally, the temperature (heat medium temperature) is adjusted.

ホットスポット温度をモニタリングする方法としては、熱電対や抵抗温度計などの温度計装置を触媒層の高温になると予測される部分にそのまま挿入し固定して測定する方法や、反応管内に予め挿管されてなる温度計保護管の内部に熱電対や抵抗温度計などの温度計装置を嵌入された形で設置し反応ガス流れ方向に移動させて温度分布を確認するなどの方法がとられる。これらの温度計測装置は、反応器中の全ての反応管に設置されてもよいが、工業規模の反応器における反応管の本数は数千〜数万本に及ぶことから、一般的にはいくつかの反応管に設置され、全ての反応管を代表することになる。   The hot spot temperature can be monitored by inserting a thermometer device such as a thermocouple or resistance thermometer into the part where the catalyst layer is expected to be hot and fixing it, or by measuring the hot spot temperature in advance. A thermometer, resistance thermometer, or other thermometer device is installed inside the thermometer protective tube, and the temperature distribution is confirmed by moving it in the reaction gas flow direction. These temperature measuring devices may be installed in all the reaction tubes in the reactor, but the number of reaction tubes in an industrial scale reactor ranges from several thousand to several tens of thousands. It is installed in such a reaction tube and represents all the reaction tubes.

しかし、このような温度計測装置が設置されている反応管では温度計測装置もしくは温度計保護管が一定容積を占めるため、温度計測装置が設置されている反応管(以下、「温度計測管」と記することがある)と設置されていない反応管(以下、「一般管」と記することがある)とで触媒等を充填し得る容積が異なるため、充填されている触媒量や圧力損失、ガス流量が異なり、温度計測管が全ての反応管を代表するという本来の機能を果たしていないことになる。   However, in a reaction tube in which such a temperature measuring device is installed, the temperature measuring device or the thermometer protection tube occupies a certain volume, so that the reaction tube in which the temperature measuring device is installed (hereinafter referred to as “temperature measuring tube”). The volume of catalyst that can be filled differs between a reaction tube that is not installed (hereinafter may be referred to as a “general tube”) and the amount of catalyst that is filled, pressure loss, The gas flow rate is different and the temperature measurement tube does not fulfill its original function of representing all reaction tubes.

これらの解決策として、例えば、温度測定ユニットを備えている管形反応器及び温度測定ユニットを備えていないそれぞれの管形反応器の固体粒子質量と自由横断面積との比、及び自由横断面に対し比例的に横方向で導入される不活性ガスにより測定される圧力降下の両者がそれぞれの管形反応器全体にわたり同一になるように管形反応器を設計すること、具体的には一般管に対して温度計測管の管径を温度計測装置の分だけ大きくすることによって、一般管と温度計測管との実質の断面積と圧力損失とを反応管全体にわたり同一になるよう設計する方法が提案されている(特許文献1)。また、温度計測管と一般管とで、実質的に同一の固体粒子を使用し、各反応管内の固体粒子の充填層長が実質的に同一になるように、温度計測管と一般管とで固体粒子の充填時間を変えることによって、各反応管内でのガス供給時の固体粒子層圧力損失が実質的に同一になるように調整する方法が提案されている(特許文献2)。   These solutions include, for example, the ratio of the solid particle mass to the free cross-sectional area of each tubular reactor with a temperature measuring unit and each tubular reactor without a temperature measuring unit, and the free cross section Design the tubular reactors so that both the pressure drop measured by the inert gas introduced laterally proportionally are the same throughout the respective tubular reactors, specifically the general tubes On the other hand, by increasing the diameter of the temperature measurement tube by the amount of the temperature measurement device, it is possible to design so that the actual cross-sectional area and pressure loss of the general tube and the temperature measurement tube are the same throughout the reaction tube. It has been proposed (Patent Document 1). In addition, the temperature measurement tube and the general tube use substantially the same solid particles, and the temperature measurement tube and the general tube have the same packed bed length of the solid particles in each reaction tube. A method has been proposed in which the solid particle layer pressure loss during gas supply in each reaction tube is adjusted to be substantially the same by changing the filling time of the solid particles (Patent Document 2).

特開平10−309457号公報Japanese Patent Laid-Open No. 10-309457 特開2003−1094号公報JP 2003-1094 A

しかしながら、前記特許文献1の方法では、温度計測装置が設置されていない一般管と比べて、温度計測装置が設置される温度計測管とで反応管径が異なるため、管径の大きな反応管の設置位置や反応器の胴径などの複雑な設計が必要となりコストアップに繋がるとともに、温度計測管の場所が固定されてしまうため融通が利かないといった問題が残る。前記特許文献2では、充填時間を変更することによって圧力損失の調整はある程度は可能であるが、同一層長に設定するため、温度計測管に充填される固体粒子の量が一般管に充填される固体粒子の量に比べて少なくなり、その結果、温度計測管と一般管とで異なる反応状態となっている可能性がある。すなわち、圧力損失が調整されているため、温度計測管と一般管とで同程度の反応ガスが流入するにもかかわらず、触媒層長が調整されているため、温度計測管に充填される固体粒子の量が少なく、温度計測管と一般管とで反応条件が異なることとなり、その結果、温度計測管での触媒層温度のモニタリングという温度計測管を設置する目的が充分に果たせず、最適な運転が出来ないといった問題が残る。 However, in the method of Patent Document 1, the reaction tube diameter is different from the temperature measurement tube in which the temperature measurement device is installed as compared with the general tube in which the temperature measurement device is not installed. A complicated design such as the installation position and the diameter of the reactor is required, leading to an increase in cost, and the problem remains that the location of the temperature measurement tube is fixed, so that there is no flexibility. In Patent Document 2, the pressure loss can be adjusted to some extent by changing the filling time. However, in order to set the same layer length, the amount of solid particles filled in the temperature measuring tube is filled in the general tube. As a result, there may be different reaction states between the temperature measuring tube and the general tube. That is, since the pressure loss is adjusted, the catalyst layer length is adjusted even though the same amount of reaction gas flows in the temperature measurement tube and the general tube, so the solid filled in the temperature measurement tube The amount of particles is small, and the reaction conditions differ between the temperature measurement tube and the general tube. As a result, the purpose of installing the temperature measurement tube, which is the monitoring of the catalyst layer temperature in the temperature measurement tube, does not fully fulfill its purpose. The problem of being unable to drive remains.

かくして、本発明の目的は、触媒を充填した固定床多管式反応器において、触媒層の温度、特にホットスポット温度を計測するために温度計測装置を設置した反応管が、全ての反応管の触媒層温度をより正確に代表するように設定された固定床多管式反応器を提供することにある。また、本発明のもう一つの目的は、その固定床多管式反応器を用いて不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法を提供することにある。   Thus, an object of the present invention is to provide a fixed-bed multitubular reactor filled with a catalyst, in which a reaction tube provided with a temperature measuring device for measuring the temperature of the catalyst layer, particularly the hot spot temperature, is used for all reaction tubes. The object is to provide a fixed bed multitubular reactor set to more accurately represent the catalyst bed temperature. Another object of the present invention is to provide a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the fixed bed multitubular reactor.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、各反応管の管径が同一であり、少なくとも1つの反応管に温度計測装置が設置されてなる固定床多管式反応器であって、各反応管内に複数種の触媒が層を成すよう充填された反応帯を少なくとも一つ有し、当該反応帯において、温度計測装置が設置されている温度計測管と温度計測装置が設置されていない一般管とで、少なくとも反応ガス流れ方向に対して最も反応ガス出口側に設置された触媒層以外の触媒層に、同一種の触媒が実質的に同一質量充填され、かつ、各反応管の圧力損失が実質的に同一になるように調整しさえすれば、それら触媒層の層長が異なっていても、温度計測装置が設置されている温度計測管と温度計測装置が設置されていない一般管とでほぼ同じ反応状態が実現され、温度計測管において触媒層温度、特にホットスポット温度をより正確にモニタリングすることができることを見出した。すなわち、かかる温度計測管の触媒層温度、特にホットスポット温度が一般管も含めた全体の反応管を代表しているため、温度計測管での触媒層温度を測定することにより、固定床多管式反応器全体に亘って各反応管の触媒層温度、ひいては、反応状態を知ることができるため、長期に渡り接触気相酸化反応を最適条件で安定して安全に運転できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the diameter of each reaction tube is the same, and a fixed bed multitubular reaction in which a temperature measuring device is installed in at least one reaction tube. Each of the reaction tubes is filled with a plurality of kinds of catalysts so as to form a layer, and in the reaction zone, a temperature measurement tube and a temperature measurement device in which a temperature measurement device is installed A catalyst tube other than the catalyst layer installed on the most reaction gas outlet side with respect to the reaction gas flow direction is filled with substantially the same mass of the same type of catalyst, and As long as the pressure loss of each reaction tube is adjusted to be substantially the same, even if the layer lengths of the catalyst layers are different, the temperature measurement tube and temperature measurement device where the temperature measurement device is installed are installed. Almost the same reaction state with general pipe There is achieved, the catalyst layer temperature in the temperature measuring tube, in particular found that it is possible to more accurately monitor the hot spot temperature. That is, since the catalyst layer temperature of such a temperature measuring tube, particularly the hot spot temperature, represents the entire reaction tube including the general tube, the fixed bed multi-tube can be obtained by measuring the catalyst layer temperature in the temperature measuring tube. Since the catalyst layer temperature of each reaction tube and thus the reaction state can be known throughout the reactor, it has been found that the catalytic gas phase oxidation reaction can be stably and safely operated under optimum conditions over a long period of time. It came to complete.

本発明によれば、温度計測装置が設置されている反応管の触媒層温度をモニタリングすることにより、固定床多管式反応器の全体の反応状態を従来に比べてより正確に把握でき、長期に渡り接触気相酸化反応を最適条件で安定して安全に運転できるようになる。   According to the present invention, by monitoring the catalyst layer temperature of the reaction tube in which the temperature measuring device is installed, the overall reaction state of the fixed bed multitubular reactor can be grasped more accurately than before, and the long-term In this way, the contact gas phase oxidation reaction can be stably and safely operated under the optimum conditions.

以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることは無く、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and modifications other than the following exemplifications can be made as appropriate without departing from the spirit of the present invention. .

本発明は、各反応管の管径が同一であり、少なくとも1つの反応管に温度計測装置(以下、「温度計」と記することがある。)が設置されてなる固定床多管式反応器であって、各反応管内に複数種の触媒が層を成すよう充填された反応帯を少なくとも一つ有し、当該反応帯において、少なくともガス流れ方向に対して最も反応ガス出口側に設置された触媒層以外の各触媒層において、温度計測装置が設置されている温度計測管と温度計測装置が設置されていない一般管とで、同一種の触媒が実質的に同一質量になるように充填され、かつ、各反応管の圧力損失が実質的に同一になるように設定すればよい。   In the present invention, a fixed bed multitubular reaction in which the diameter of each reaction tube is the same, and a temperature measuring device (hereinafter sometimes referred to as “thermometer”) is installed in at least one reaction tube. Each reaction tube having at least one reaction zone filled with a plurality of types of catalyst in a layer, and installed in the reaction zone at least at the reaction gas outlet side in the gas flow direction. In each of the catalyst layers other than the catalyst layer, the same type of catalyst is packed to have substantially the same mass in the temperature measurement tube where the temperature measurement device is installed and the general tube where the temperature measurement device is not installed. The pressure loss of each reaction tube may be set to be substantially the same.

接触気相酸化反応は、工業的に非常に重要な反応であり、例えば、プロピレンを原料としたアクロレインの製造、イソブチレン、ターシャリーブタノール、メチル−t−ブチルエーテルの少なくとも一つを原料としたメタクロレインの製造、アクロレインを原料としたアクリル酸の製造、メタクロレインを原料としたメタクリル酸の製造、プロピレンを原料とした2段酸化によるアクリル酸の製造、イソブチレン、ターシャリーブタノール、メチル−t−ブチルエーテルの少なくとも一つを原料とした2段酸化によるメタクリル酸の製造、および、プロパンを原料としたアクロレインまたはアクリル酸の製造などに利用されている。   The catalytic gas phase oxidation reaction is a very important reaction industrially. For example, production of acrolein using propylene as a raw material, methacrolein using at least one of isobutylene, tertiary butanol, and methyl-t-butyl ether as a raw material. Production of acrylic acid from acrolein, production of methacrylic acid from methacrolein, production of acrylic acid by two-stage oxidation from propylene, isobutylene, tertiary butanol, methyl-t-butyl ether It is used for the production of methacrylic acid by two-stage oxidation using at least one raw material and the production of acrolein or acrylic acid using propane as a raw material.

これら接触気相酸化反応は、非常な発熱反応を伴うことから、単一の触媒種ではホットスポット温度が高くなりすぎ、過熱により触媒性能が劣化するため、所定の転化率で運転できないなどの問題が発生しやすい。そのため、ホットスポットの発生もしくはホットスポット部における蓄熱を抑制する目的から、複数種の触媒をそれぞれ層をなすように充填することが好ましく、種々の方法が提案されている。例えば、特開平9−241209号公報では、異なる占有容積を有する複数の触媒を原料ガス入口側から出口側に向かって占有容積が小さくなるように充填する態様、あるいは特開平7−10802号公報では、担持率の異なる複数の触媒を原料ガス入口側から出口側に向かって担持率が高くなるように充填する態様、あるいは特表2008−528683号公報では、触媒の一部を不活性な担体などで希釈する態様が開示されている。また、これらを組み合わせた態様なども採用することができる。触媒層の数は、反応条件や反応器の規模により適宜決定されるが、触媒層の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため工業的には2〜6程度までが望ましい。   Since these catalytic gas phase oxidation reactions involve a very exothermic reaction, the hot spot temperature becomes too high with a single catalyst type, and the catalyst performance deteriorates due to overheating, so that it cannot be operated at a predetermined conversion rate. Is likely to occur. Therefore, for the purpose of suppressing generation of hot spots or heat storage in the hot spot portion, it is preferable to fill a plurality of types of catalysts so as to form layers, and various methods have been proposed. For example, in Japanese Patent Laid-Open No. 9-241209, a plurality of catalysts having different occupied volumes are filled so that the occupied volume decreases from the raw material gas inlet side to the outlet side, or in Japanese Patent Laid-Open No. 7-10802. A mode in which a plurality of catalysts having different loading rates are filled from the raw material gas inlet side to the outlet side so that the loading rate increases, or in Japanese translations of PCT publication No. 2008-528883, a part of the catalyst is an inert carrier, etc. A mode of diluting with is disclosed. Moreover, the aspect etc. which combined these are also employable. The number of catalyst layers is appropriately determined depending on the reaction conditions and the scale of the reactor. However, if the number of catalyst layers is too large, problems such as complicated packing operation of the catalyst occur. The degree is desirable.

本発明に用いられる固定床多管式反応器としては、各反応管が同一の管径を有すること以外は、特に限定されず、例えば、反応管の管数、配置、長さ、反応媒体側と熱伝導媒体側の両者における注入口領域及び排出口領域の設計、循環する熱伝導媒体の容量、及び熱伝導媒体の流路(例えば、該反応媒体に対して並流または向流)等に関しては、使用目的に応じて適宜決定すればよい。一般的には、反応管数は3000〜30000本、反応管内径15〜50mm、反応管長さ2000〜10000mmである。また、本発明に使用できる固定床多管式反応器は、例えば、シングルリアクター、タンデムリアクターなど、従来公知のものを適宜利用することができる。特に、本発明では、熱の除去または熱供給を制御するために、同時に熱交換器として設計された固定床多管式反応器が有利に使用される。   The fixed bed multitubular reactor used in the present invention is not particularly limited, except that each reaction tube has the same tube diameter. For example, the number of tubes of the reaction tube, arrangement, length, reaction medium side Regarding the design of the inlet region and the outlet region on both the heat transfer medium side, the capacity of the circulating heat transfer medium, the flow path of the heat transfer medium (for example, cocurrent or countercurrent to the reaction medium), etc. May be appropriately determined according to the purpose of use. Generally, the number of reaction tubes is 3000 to 30000, the inner diameter of the reaction tube is 15 to 50 mm, and the length of the reaction tube is 2000 to 10,000 mm. In addition, as the fixed bed multitubular reactor that can be used in the present invention, a conventionally known one such as a single reactor or a tandem reactor can be appropriately used. In particular, the present invention advantageously uses a fixed bed multitubular reactor designed simultaneously as a heat exchanger to control heat removal or heat supply.

該固定床多管式反応器では、触媒が充填された反応管内部には供給ガスが導入され、反応生成物(中間体を含む)が導出され、一方、反応器胴内(反応器シェル側)には、熱媒が貫流するように流され、反応管との間で熱交換しながら反応温度を所定温度に保持するようにして使用される。その際、反応器胴内(反応器シェル側)が遮蔽板で仕切られ、複数のチャンバを形成し、各チャンバがそれぞれ独立して熱媒が循環できるようにしてなるものであってもよい。例えば、プロピレンを接触気相酸化してアクロレインとし、得られたアクロレインを引き続き接触気相酸化してアクリル酸とするプロピレンの2段酸化によるアクリル酸の製造を一つの反応器を用いて行う際に、反応器の各反応管内には、プロピレンからアクロレインへの酸化反応に適した触媒(以下、「前段触媒」と記すことがある。)を充填した反応帯(第1反応帯)とアクロレインからアクリル酸への酸化に適した触媒(以下、「後段触媒」と記すことがある。)を充填した反応帯(第2反応帯)とを形成し、反応器の胴内はそれぞれの反応帯において適した反応温度に制御できるように遮蔽板で上下2つのチャンバに仕切られる。ここで、本発明では、各反応管内の触媒層の圧力損失を実質的に同一になるように設定することができるため、各チャンバごとに種類や温度や流量の異なる熱媒を循環させ、チャンバごとに異なる条件で反応を制御することができる点で有利である。   In the fixed bed multitubular reactor, a feed gas is introduced into a reaction tube filled with a catalyst, and a reaction product (including an intermediate) is led out, while the inside of the reactor (on the reactor shell side) ) Is used such that the heat medium flows through and the reaction temperature is maintained at a predetermined temperature while exchanging heat with the reaction tube. At that time, the inside of the reactor (reactor shell side) may be partitioned by a shielding plate to form a plurality of chambers, and each chamber may independently circulate the heat medium. For example, when a single reactor is used to produce acrylic acid by two-stage oxidation of propylene by catalytic vapor phase oxidation to acrolein, and the resulting acrolein is subsequently catalytic vapor phase oxidized to acrylic acid. In each reaction tube of the reactor, a reaction zone (first reaction zone) filled with a catalyst suitable for an oxidation reaction from propylene to acrolein (hereinafter sometimes referred to as “pre-stage catalyst”) and acrolein to acrylic A reaction zone (second reaction zone) filled with a catalyst suitable for oxidation to an acid (hereinafter sometimes referred to as “second-stage catalyst”) is formed, and the reactor body is suitable for each reaction zone. The upper and lower chambers are partitioned by a shielding plate so that the reaction temperature can be controlled. Here, in the present invention, since the pressure loss of the catalyst layer in each reaction tube can be set to be substantially the same, a heat medium having a different type, temperature or flow rate is circulated for each chamber, This is advantageous in that the reaction can be controlled under different conditions.

本発明の温度計測管で用いることのできる温度計としては、特に制限されるものではなく、使用目的に応じて従来公知のものを適宜利用することができる。温度計として適当なものとしては、反応管内で温度を測定するための温度検出部を有する熱電対、抵抗温度計などが挙げられる。   The thermometer that can be used in the temperature measuring tube of the present invention is not particularly limited, and a conventionally known one can be appropriately used according to the purpose of use. Examples of suitable thermometers include a thermocouple having a temperature detection unit for measuring temperature in a reaction tube, and a resistance thermometer.

温度計は、熱電対や抵抗温度計等の温度計の温度検出部が、反応管の管軸線方向に自在に移動できる、いわば可動式の温度計であっても、熱電対や抵抗温度計等の温度計の温度検出部が、反応管の管軸線方向の所定の位置に固定されてなる、いわば固定式の温度計であってもよく、これらを組み合わせて使用することもできる。触媒層全体の温度をモニタリングできる意味では、可動式のものが好ましい。固定式の場合、1つの設置点のみに固定配置されていてもよいが、複数の温度検出部(温度検出素子)が使用されてなるものが好ましく、これらの温度検出部が、反応管内の管軸線方向すなわち反応ガスの流れ方向に沿った温度分布に関する情報を得ることができるように反応管内の管軸線上の異なる位置に複数配置されていることが好ましい。   Thermometers, such as thermocouples and resistance thermometers, can be moved freely in the direction of the tube axis of the reaction tube. In other words, the temperature detection part of the thermometer may be a fixed thermometer fixed at a predetermined position in the tube axis direction of the reaction tube, or may be used in combination. In the sense that the temperature of the entire catalyst layer can be monitored, a movable type is preferable. In the case of the fixed type, it may be fixedly arranged only at one installation point, but it is preferable that a plurality of temperature detection units (temperature detection elements) are used, and these temperature detection units are connected to the tubes in the reaction tube. In order to obtain information on the temperature distribution along the axial direction, that is, the flow direction of the reaction gas, it is preferable that a plurality of them are arranged at different positions on the tube axis in the reaction tube.

また、上記のいずれのタイプの温度計であっても、必要があれば、反応管内部の温度計の機械的損傷、例えば、固体粒子の充填作業や、定期的な詰め替え作業中、固体粒子の抜取時や充填時に反応管内部の温度計と固体粒子との擦れや衝突により発生する温度計の機械的損傷を防止するための保護管や保護用被覆物などの保護手段が設けられていることが好ましい。保護手段としては、例えば、抵抗温度計等の温度検出部に、セラミックスなどの不活性材料製被覆物を設けてもよいし、反応管内部の温度計全体を保護することができるように保護管を設けてもよい。保護管の場合には、これを反応管内に挿管し、保護管内部に温度計の温度検出部や配線部材を嵌入するような構成にすればよい。   In addition, in any type of thermometer described above, if necessary, mechanical damage to the thermometer inside the reaction tube, for example, solid particle filling work or regular refilling work, Protective means such as protective tubes and protective coatings are provided to prevent mechanical damage to the thermometer caused by friction or collision between the thermometer inside the reaction tube and solid particles during extraction or filling. Is preferred. As a protection means, for example, a temperature detection unit such as a resistance thermometer may be provided with a coating made of an inert material such as ceramics, or a protection tube so that the entire thermometer inside the reaction tube can be protected. May be provided. In the case of a protective tube, the tube may be inserted into the reaction tube, and a temperature detector or a wiring member of a thermometer may be inserted into the protective tube.

温度計あるいは保護管を使用する場合はその保護管の外径としては、反応管の内径(D)に対する温度計あるいは保護管の外径(d)の比が、d/D≦0.4、好ましくは≦0.2となるように設定すればよい。d/Dが0.4を超えると、反応管内径との隙間が小さくなり、触媒を充填する際のブリッジ発生率が高くなるため好ましくない。   When using a thermometer or a protective tube, the outer diameter of the protective tube is such that the ratio of the outer diameter (d) of the thermometer or the protective tube to the inner diameter (D) of the reaction tube is d / D ≦ 0.4, Preferably, it may be set so that ≦ 0.2. When d / D exceeds 0.4, the gap with the inner diameter of the reaction tube becomes small, and the bridge generation rate when the catalyst is filled increases, which is not preferable.

また、上記のいずれのタイプの温度計においても、触媒層温度をより正確にモニタリングするには、これら温度計の温度検出部は反応管内部の断面中央部に位置するように設置することが望ましく、温度計あるいは保護管を使用する場合はその保護管のゆがみや反応管の断面方向の振れを防止する補強手段として、温度計または保護管に振れ止め手段が設けられていることが望ましい。さらに、保護管を使用する場合には、保護管内に嵌入された温度計についても、保護管内の断面中央部に位置するよう温度計に振れ止め手段が設けられていることが望ましい。これにより該温度検出部を管軸線方向に転移することにより反応管または保護管内の管軸線方向の温度分布として、反応管または保護管内の管軸線に垂直な方向の温度分布による影響を排除することができ、より精度の高い測定が可能となる。   Further, in any of the above-mentioned thermometers, in order to monitor the catalyst layer temperature more accurately, it is desirable to install the temperature detectors of these thermometers so as to be located at the center of the cross section inside the reaction tube. When a thermometer or a protective tube is used, it is desirable that the thermometer or the protective tube is provided with a steadying means as a reinforcing means for preventing the distortion of the protective tube or the shake in the cross-sectional direction of the reaction tube. Furthermore, when using a protective tube, it is desirable that the thermometer is provided with a steadying means so that the thermometer fitted in the protective tube is positioned at the center of the cross section in the protective tube. This eliminates the influence of the temperature distribution in the direction perpendicular to the tube axis in the reaction tube or the protective tube as the temperature distribution in the tube axis direction in the reaction tube or the protective tube by transferring the temperature detection unit in the tube axis direction. And more accurate measurement is possible.

本発明において、温度計測管での触媒などの充填仕様として、複数種の触媒を層を成すように充填された反応帯において、少なくとも反応ガス流れ方向に対して最も反応ガス出口側に設置された触媒層以外の触媒層について一般管と同一種の触媒を実質的に同一質量となる様に充填すればよい。   In the present invention, as a filling specification of the catalyst or the like in the temperature measuring tube, in the reaction zone filled with a plurality of types of catalyst in a layered manner, it is installed at the most reaction gas outlet side at least with respect to the reaction gas flow direction. What is necessary is just to fill the catalyst layer other than the catalyst layer with the same type of catalyst as the general tube so as to have substantially the same mass.

ここで、温度計測管と一般管とで同一種の触媒を充填するとは、触媒層毎に温度計測管と一般管とに同じ触媒を充填することをいう。工業的規模で用いられる触媒は、通常、数トンから数十トンという大量の触媒が必要である一方、通常、触媒の製造は多くて1ロット当たり数百kg程度しか製造することができないため、必然的に複数ロットの触媒を製造することになる。しかし、各ロット間では、例えば、外観、成分組成、粒径、真比重、嵩比重、落下強度などの微小な差異が生じることがしばしばある。通常は、このような各ロット間での微小の差異を加味した品質規格が定められ、本発明では、定められた品質規格内であれば同じ触媒とする。   Here, filling the same type of catalyst in the temperature measuring tube and the general tube means filling the same catalyst in the temperature measuring tube and the general tube for each catalyst layer. While a catalyst used on an industrial scale usually requires a large amount of catalyst of several tons to several tens of tons, normally, the catalyst can be produced at most several hundred kg per lot, Inevitably, multiple lots of catalyst will be produced. However, minute differences such as appearance, component composition, particle size, true specific gravity, bulk specific gravity, and drop strength often occur between lots. Normally, a quality standard that takes into account such a small difference between lots is defined. In the present invention, the same catalyst is used if it is within the defined quality standard.

また、実質的に同一質量を充填するとは、充填テストなどにより各反応管に充填される触媒質量を各触媒層で予め設定し、その設定された各触媒層の触媒質量の±15%以内、好ましくは±10%以内、より好ましくは±5%以内のことをいう。   In addition, filling substantially the same mass means that the catalyst mass filled in each reaction tube by a filling test or the like is set in advance in each catalyst layer, within ± 15% of the catalyst mass of each set catalyst layer, Preferably it means within ± 10%, more preferably within ± 5%.

温度計測管の目的は、一般管を含めた各反応管を代表した触媒層温度、特にホットスポット温度のモニタリングであるため、そのモニタリングさえできれば、必ずしも反応管出口における原料転化率等を一般管と一致させる必要はない。言い換えれば、反応ガス流れ方向に対して最も反応ガス出口側に設置された触媒層において、例えホットスポット部がその触媒層に存在したとしてもそのホットスポット部までに一般管と同一種の触媒を実質的に同一質量充填されていればよく、一般管と同一質量充填されていなくてもよい。装置都合などで反応ガス出口部分において充分に触媒層長が確保できなくともホットスポット温度に影響を与えない部分、特に反応ガス出口部に接する部分の触媒量を減らし触媒層長を短くするなどの調節をしてもよい。温度計測管において、ホットスポット温度に影響を与えない部分での触媒量を減らし、触媒層を短くすることで一般管とは反応管出口における原料転化率が異なることになっても、工業規模では、温度計管の本数は通常数千〜数万本にも及ぶ一般管に比べて数本〜数十本程度と少ないことから、その影響はほとんどない。しかしながら、ガス流れ方向に対してホットスポットを有する最もガス出口側に設置された触媒層のそのホットスポット部以降においても、充填する触媒量はできる限り一般管に近づけるようにするのが好ましいことは言うまでもない。   The purpose of the temperature measurement tube is to monitor the catalyst layer temperature, which is representative of each reaction tube including the general tube, especially the hot spot temperature. There is no need to match. In other words, in the catalyst layer installed on the most reaction gas outlet side with respect to the reaction gas flow direction, even if the hot spot portion exists in the catalyst layer, the same type of catalyst as that of the general pipe is placed by the hot spot portion. It is sufficient that the same mass is filled, and the same mass as that of the general pipe may not be filled. Even if the catalyst layer length cannot be sufficiently secured at the reaction gas outlet part due to equipment circumstances, etc., the amount of catalyst at the part that does not affect the hot spot temperature, especially the part in contact with the reaction gas outlet part is reduced, and the catalyst layer length is shortened You may make adjustments. Even if the raw material conversion rate at the outlet of the reaction tube differs from the general tube by reducing the amount of catalyst in the temperature measurement tube that does not affect the hot spot temperature and shortening the catalyst layer, on the industrial scale Since the number of thermometer tubes is usually as small as several to several tens, compared with several thousand to several tens of thousands of general tubes, there is almost no influence. However, even after the hot spot portion of the catalyst layer installed on the most gas outlet side having a hot spot with respect to the gas flow direction, it is preferable that the amount of catalyst to be filled is as close to the general pipe as possible. Needless to say.

本発明においては、圧力損失を各反応管で実質的に同一に設定できればよく、圧力損失の測定方法、圧力損失の調製方法などは特に限定されない。   In the present invention, it is sufficient that the pressure loss can be set to be substantially the same in each reaction tube, and the method for measuring the pressure loss, the method for adjusting the pressure loss, and the like are not particularly limited.

各反応管の圧力損失が実質的に同一とは、その平均値(平均圧力損失)に対して±15%以内、好ましくは10%以内、より好ましくは8%以内のことをいう。平均圧力損失は、固定床多管式反応器の全ての反応管について圧力損失を測定することによって求めることができるが、固定床多管式反応器の全反応管数の5%に相当する数の反応管における圧力損失を測定し、得られた平均値を代表値として使用することもできる。   The fact that the pressure loss of each reaction tube is substantially the same means within ± 15%, preferably within 10%, more preferably within 8% of the average value (average pressure loss). The average pressure loss can be determined by measuring the pressure loss for all reaction tubes of the fixed bed multitubular reactor, but the number is equivalent to 5% of the total number of reaction tubes of the fixed bed multitubular reactor. It is also possible to measure the pressure loss in the reaction tube and use the average value obtained as a representative value.

本発明において、触媒など固体粒状物を反応管に充填後の圧力損失は、反応管下部を開放した状態で空気、窒素等のガスを一定流量で反応管上部から導入したときの反応管上部における圧力と大気圧との差圧である。空気、窒素等のガスの流量として、実際に反応に供されたときの反応管1本当たりの流量を考慮して適宜決定すればよく、好ましくは、実際に反応に供されたときの反応管1本当たりの流量に設定するのがよい。   In the present invention, the pressure loss after filling the reaction tube with solid particulate matter such as a catalyst is the same as that in the upper part of the reaction tube when a gas such as air or nitrogen is introduced from the upper part of the reaction tube at a constant flow rate with the lower part of the reaction tube open. It is the differential pressure between pressure and atmospheric pressure. The flow rate of the gas such as air or nitrogen may be appropriately determined in consideration of the flow rate per reaction tube when actually supplied to the reaction, and preferably the reaction tube when actually supplied to the reaction. It is better to set the flow rate per bottle.

各反応管の圧力損失の調整方法としては、特に限定されるものではないが、例えば、圧力損失調整用の固体粒子や反応ガス出口側に設置された触媒層と同一種の触媒を追加充填する方法、充填した触媒を一部抜き出す方法や充填した触媒を抜き出し再充填する方法、また、充填速度を変更するなどの方法が採用できる。   The method for adjusting the pressure loss of each reaction tube is not particularly limited. For example, the pressure loss adjusting solid particles and the catalyst of the same type as the catalyst layer installed on the reaction gas outlet side are additionally charged. A method such as a method, a method of extracting a part of the packed catalyst, a method of extracting and refilling the packed catalyst, and a method of changing the filling rate can be employed.

各反応管への触媒の充填および圧力損失の測定方法として、例えば、反応管1本あたりに充填される触媒を実質的に同一質量になるよう小分けし、小分けした触媒を各反応管に機械充填ないし手充填により充填する。このとき、温度計測管に触媒を充填する場合は、反応管に温度計を所定の深さにセットした後に触媒を充填するため、一般管に比べてブリッジ等が発生しやすく、一般管は機械充填、温度計測管は手充填する方法が効率的で好ましい。触媒を充填する速度等は予め行う充填テストなどでブリッジ等が発生せず圧力損失が適正範囲に収まるよう適宜決定すればよい。各反応管に触媒を充填したのち、その平均圧力損失に対して圧力損失が低い反応管には、圧力損失調整用の固体粒子や反応ガス出口側に設置された触媒層と同一種の触媒を別途追加充填、あるいは反応ガス出口側に設置された触媒層から少なくとも一部の触媒を抜き出して、充填速度を変更し再充填するか、圧力損失調整用の固体粒子を充填して適正範囲に収まるように調節すればよい。あるいは、初めの充填時からホットスポット部以降のガス出口側触媒の充填速度を一般管より遅くして充填してもよい。圧力損失が高い反応管においては、充填した触媒を一部抜き出す、あるいは、少なくとも一部の触媒を抜き出して再充填する方法が採用できる。なお、その際に、必要であれば充填速度を変更する、もしくは、さらに圧力損失調整用の固体粒子や反応ガス出口側に設置された触媒層と同一種の触媒を追加充填することで適正範囲に収まるように調節すればよい。   As a method of filling the catalyst in each reaction tube and measuring the pressure loss, for example, the catalyst to be filled per reaction tube is subdivided so as to have substantially the same mass, and the subdivided catalyst is mechanically filled into each reaction tube. Or fill by hand filling. At this time, when the catalyst is filled in the temperature measuring tube, since the catalyst is filled after setting the thermometer to a predetermined depth in the reaction tube, a bridge or the like is likely to occur compared to the general tube. A method of manually filling the filling and temperature measuring tube is efficient and preferable. What is necessary is just to determine suitably the speed | rate etc. which are filled with a catalyst so that a bridge | bridging etc. may not generate | occur | produce in the filling test etc. which are performed beforehand, but a pressure loss is settled in an appropriate range. After filling each reaction tube with a catalyst, the reaction tube with a low pressure loss relative to the average pressure loss is filled with solid particles for pressure loss adjustment or the same type of catalyst as the catalyst layer installed on the reaction gas outlet side. Separately, or at least a part of the catalyst is extracted from the catalyst layer installed on the reaction gas outlet side, and is refilled by changing the filling speed, or filled with solid particles for adjusting the pressure loss, and is within the appropriate range. Adjust as follows. Alternatively, the gas outlet side catalyst after the hot spot portion may be filled at a slower rate than the general tube from the time of the initial filling. In a reaction tube having a high pressure loss, a method can be employed in which a part of the packed catalyst is extracted or at least a part of the catalyst is extracted and refilled. At that time, change the filling speed if necessary, or add the same type of catalyst as the catalyst layer installed on the reaction gas outlet side or solid particles for pressure loss adjustment. You just have to adjust it to fit.

本発明の不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための接触気相酸化反応としては、プロピレンからアクロレインおよび/またはアクリル酸の製造、イソブチレン、ターシャリーブタノール、メチル−t−ブチルエーテルの少なくとも一つからメタクロレインおよび/またはメタクリル酸の製造、アクロレインからアクリル酸の製造、メタクロレインからメタクリル酸の製造、プロパンからアクロレインおよび/またはアクリル酸の製造などで利用されている接触気相酸化反応を挙げることができる。以下に、プロピレンからアクロレインの製造およびアクロレインからアクリル酸の製造に用いられる接触気相酸化反応について例示する。   The catalytic gas phase oxidation reaction for producing the unsaturated aldehyde and / or unsaturated carboxylic acid of the present invention includes production of acrolein and / or acrylic acid from propylene, isobutylene, tertiary butanol, and methyl-t-butyl ether. Catalytic gas phase oxidation reaction used in the production of methacrolein and / or methacrylic acid from one, the production of acrylic acid from acrolein, the production of methacrylic acid from methacrolein, the production of acrolein and / or acrylic acid from propane, etc. Can be mentioned. Hereinafter, the catalytic gas phase oxidation reaction used for the production of acrolein from propylene and the production of acrylic acid from acrolein will be exemplified.

プロピレンを接触気相酸化してアクロレインを製造するための触媒としては、下記一般式(1)
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)で表される触媒活性成分が好適である。
As a catalyst for producing acrolein by catalytic vapor phase oxidation of propylene, the following general formula (1)
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc The element, O is oxygen, a, b, c, d, e, f and x represent the atomic ratios of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 < b ≦ 20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a numerical value determined by the oxidation state of each element. In catalytically active component represented are preferred.

アクロレインを接触気相酸化してアクリル酸を製造するための触媒としては、下記一般式(2)
Mo12 (2)
(ここで、Moはモリブデン、Vはバナジウム、Aはニオブおよび/またはタングステン、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、およびビスマスからなる群より選ばれる少なくとも1種の元素、Cはスズ、アンチモン、テルルからなる群より選ばれる少なくとも1種の元素、Dはチタン、アルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種の元素、Oは酸素を表し、またa、b、c、d、eおよびzはそれぞれV、A、B、C、DおよびOの原子比を表し、a=1〜14、b=0〜12、c=0〜10、d=0〜6、e=0〜40であり、zは各元素の酸化状態によって定まる数値である)で表される触媒が好適である。
As a catalyst for producing acrylic acid by catalytic gas phase oxidation of acrolein, the following general formula (2)
Mo 12 V a A b B c C d D e O z (2)
(Where Mo is molybdenum, V is vanadium, A is niobium and / or tungsten, B is at least one element selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, zinc, and bismuth, C represents at least one element selected from the group consisting of tin, antimony and tellurium, D represents at least one element selected from titanium, aluminum, silicon and zirconium, O represents oxygen, and a, b, c, d, e, and z represent atomic ratios of V, A, B, C, D, and O, respectively, a = 1 to 14, b = 0 to 12, c = 0 to 10, d = 0 to 6, e = 0 to 40, and z is a numerical value determined by the oxidation state of each element).

これら触媒の調製には、この種の触媒の調製に一般的に用いられる方法を用いて製造することができ、その形状についても特に限定されず、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。触媒の成形方法についても、押し出し成形法や打錠成形法などにより一定の形状に成形する方法、触媒成分を一定の形状を有する任意の不活性な担体上に担持する担持法など特に限定されない。   These catalysts can be prepared by a method generally used for the preparation of this type of catalyst, and the shape thereof is not particularly limited, and may be spherical, cylindrical, ring-shaped, amorphous, etc. Any shape is acceptable. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape. The method for forming the catalyst is not particularly limited, such as a method for forming the catalyst component into a fixed shape by an extrusion molding method or a tableting method, or a support method for supporting the catalyst component on an arbitrary inert carrier having a fixed shape.

本発明においては、これらの触媒を目的とする反応に応じてそれぞれ複数種用意し、各反応管の管径が同一であり、少なくとも1つの反応管に温度計測装置が設置されてなる固定床多管式反応器の各反応管内にこれら複数種の触媒を層を成すように充填した反応帯において、少なくともガス流れ方向に対して最も反応ガス出口側に設置された触媒層以外の各触媒層において、温度計測装置が設置されている温度計測管と温度計測装置が設置されていない一般管とで、同一種の触媒が実質的に同一質量充填し、かつ、各反応管の圧力損失が実質的に同一になるように設定した固定床多管式反応器を用いて、上記接触気相酸化反応を実施すればよい。   In the present invention, a plurality of these catalysts are prepared in accordance with the intended reaction, the diameter of each reaction tube is the same, and at least one reaction tube is provided with a temperature measuring device. In each of the catalyst layers other than the catalyst layer installed closest to the reaction gas outlet in the gas flow direction in the reaction zone in which each of the plurality of types of catalysts is packed in each reaction tube of the tubular reactor. The temperature measurement tube with the temperature measurement device installed and the general tube without the temperature measurement device are filled with substantially the same mass of the same type of catalyst, and the pressure loss of each reaction tube is substantially The catalytic gas phase oxidation reaction may be carried out using a fixed bed multitubular reactor set to be the same.

本発明における反応条件については、その規模などにより適宜選択されるべきであって、特に限定されるものではなく、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、分子状酸素として0.5〜25容量%、水蒸気として0〜30容量%、残部が窒素などの不活性ガスからなる混合ガス等を200〜500℃の温度範囲で0.1〜1.0MPaの圧力下、300〜5,000h−1(STP)の空間速度で触媒に接触させればよい。 The reaction conditions in the present invention should be appropriately selected depending on the scale and the like, and are not particularly limited. Any conditions generally used for this kind of reaction can be implemented. It is. For example, 1 to 15% by volume as source gas, 0.5 to 25% by volume as molecular oxygen, 0 to 30% by volume as water vapor, and a mixed gas composed of an inert gas such as nitrogen at 200 to 500 ° C. The catalyst may be brought into contact with the catalyst at a space velocity of 300 to 5,000 h −1 (STP) under a pressure of 0.1 to 1.0 MPa in the temperature range.

なお、本発明において、温度計測装置のほかに圧力測定装置を用いる場合においても同様の効果が得られるものである。   In the present invention, the same effect can be obtained when a pressure measuring device is used in addition to the temperature measuring device.

以下、本発明の実施例と比較例を挙げて本発明をさらに具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、本発明の趣旨に適合しうる範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術範囲に含まれる。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。
[性能評価]
転化率、収率は次式によって求めた。
転化率(モル%)
=(反応した出発原料のモル数)/(供給した出発原料のモル数)×100
収率(モル%)
=(生成した目的生成物のモル数)/(供給した出発原料のモル数)×100
[圧力損失の測定]
反応管下部を開放した状態で、反応管上部より、20℃の空気を線速1.4m/sで導入して反応管上部の圧力を測定した。
〔前段触媒の調製〕
蒸留水4000部にパラモリブデン酸アンモニウム1000部および硝酸カリウム2.4部および20質量%シリカゾル326部を溶解した(A液)。別に蒸留水700部に65重量%硝酸45部を添加し、硝酸ビスマス229部、硝酸コバルト508部、硝酸鉄210部および硝酸ニッケル288部を溶解した(B液)。得られたA液にB液を添加し、1時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下170℃で約4時間乾燥し、乾燥物を得た。得られた乾燥物を500μm以下に粉砕し、触媒前駆体の粉体を得た。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention. However, the present invention is not limited by the following examples and is suitable within a range that can meet the gist of the present invention. It is also possible to carry out with modification, and they are all included in the technical scope of the present invention. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”.
[Performance evaluation]
The conversion rate and yield were determined by the following formula.
Conversion rate (mol%)
= (Mole number of reacted starting material) / (Mole number of supplied starting material) × 100
Yield (mol%)
= (Number of moles of target product produced) / (number of moles of starting material fed) x 100
[Measurement of pressure loss]
With the reaction tube lower portion opened, air at 20 ° C. was introduced from the reaction tube upper portion at a linear velocity of 1.4 m / s, and the pressure at the reaction tube upper portion was measured.
(Preparation of the pre-stage catalyst)
In 4000 parts of distilled water, 1000 parts of ammonium paramolybdate, 2.4 parts of potassium nitrate, and 326 parts of 20% by mass silica sol were dissolved (solution A). Separately, 45 parts of 65% by weight nitric acid was added to 700 parts of distilled water, and 229 parts of bismuth nitrate, 508 parts of cobalt nitrate, 210 parts of iron nitrate and 288 parts of nickel nitrate were dissolved (Liquid B). B liquid was added to the obtained A liquid, and it stirred for 1 hour, and obtained the slurry. The obtained slurry was heated and stirred to form a cake-like solid, and the obtained solid was dried at 170 ° C. for about 4 hours in an air atmosphere to obtain a dried product. The obtained dried product was pulverized to 500 μm or less to obtain a catalyst precursor powder.

得られた触媒前駆体の粉体に15質量%の硝酸アンモニウム水溶液を加え、混練りした後、外径6mm、内径2mm、長さ6mmのリング状に押出成型し、空気流通下470℃で8時間焼成して、前段触媒(1)を得た。この前段触媒(1)の酸素を除く金属元素組成は次の通りであった。   A 15% by mass ammonium nitrate aqueous solution was added to the obtained catalyst precursor powder, kneaded, and then extruded into a ring shape having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 6 mm, and at 470 ° C. for 8 hours under air flow. Calcination was performed to obtain a pre-stage catalyst (1). The metal element composition excluding oxygen of the pre-stage catalyst (1) was as follows.

前段触媒(1) Mo12BiFe1.1Co3.7Ni2.1Si2.30.05
同様にして、外径8mm、内径2mm、長さ8mmのリング状に押出成形し、空気流通下460℃で8時間焼成して、前段触媒(2)を得た。
〔後段触媒の調製〕
蒸留水6000部を加熱攪拌しつつ、モリブデン酸アンモニウム1000部、パラタングステン酸アンモニウム191部およびメタバナジン酸アンモニウム232部を溶解させた。別に、蒸留水400部に硝酸銅228部を溶解させた。得られた2つの溶液を混合し、さらに三酸化アンチモン55部および酸化アルミニウム96部を加え、懸濁液を得た。得られた懸濁液に、シリカ−アルミナからなる平均粒径4.5mmの球状担体3500部を加え、攪拌しながら蒸発乾固して担体に付着させた後、空気雰囲気下395℃で6時間焼成して後段触媒(1)を得た。この後段触媒(1)の担持率は約35質量%、酸素を除く金属元素組成は次のとおりであった。この後段触媒(1)の酸素および担体を除く金属元素組成は次の通りであった。
Pre-stage catalyst (1) Mo 12 Bi 1 Fe 1.1 Co 3.7 Ni 2.1 Si 2.3 K 0.05
Similarly, the catalyst was extruded into a ring shape having an outer diameter of 8 mm, an inner diameter of 2 mm, and a length of 8 mm, and calcined at 460 ° C. for 8 hours under air flow to obtain a pre-stage catalyst (2).
(Preparation of latter stage catalyst)
While heating and stirring 6000 parts of distilled water, 1000 parts of ammonium molybdate, 191 parts of ammonium paratungstate, and 232 parts of ammonium metavanadate were dissolved. Separately, 228 parts of copper nitrate was dissolved in 400 parts of distilled water. The obtained two solutions were mixed, and 55 parts of antimony trioxide and 96 parts of aluminum oxide were further added to obtain a suspension. To the obtained suspension, 3500 parts of a spherical carrier made of silica-alumina having an average particle diameter of 4.5 mm was added, evaporated to dryness with stirring, and attached to the carrier, and then at 395 ° C. for 6 hours in an air atmosphere. The latter catalyst (1) was obtained by calcination. The support ratio of the latter catalyst (1) was about 35% by mass, and the metal element composition excluding oxygen was as follows. The metal element composition excluding oxygen and support of the latter catalyst (1) was as follows.

後段触媒(1) Mo124.21.5CuSb0.8Al
なお、担持率は、下記式により求めた。
担持率(質量%)
=(得られた触媒の質量−用いた担体の質量)/用いた担体の質量×100
同様にして、シリカ−アルミナからなる平均粒径7.2mmの球状担体を用いて、後段触媒(2)を得た。
<参考例1>
〔反応器〕
鋼鉄製の反応管(管径25mm、管長6200mm)およびこれを覆う熱媒体を流すためのシェルからなる固定床反応器7本(No.1〜No.7)を用意した。それぞれの反応器は、シェルの下から3000mmの位置にシェルを上下に分割する厚さ50mmの仕切り板を設け、上方および下方の空間部に独立して熱媒体を循環できるようにした。
〔充填テスト〕
前記反応器と同じ管径および管長を有する反応管を用いて、温度計を設置しない状態で、前段触媒(2)、前段触媒(1)、不活性物質、後段触媒(2)、後段触媒(1)の順に反応管上部より落下充填させて、それぞれ層長が800mm、2000mm、550mm、700mm、2000mmとなるように充填し、それぞれに要した触媒、不活性物質の質量を測定した。この充填テストを3回繰り返し行い、各層における充填量の平均を各層の充填量と定義した。
Rear catalyst (1) Mo 12 V 4.2 W 1.5 Cu 2 Sb 0.8 Al 4
The loading rate was determined by the following formula.
Loading rate (mass%)
= (Mass of catalyst obtained-mass of carrier used) / mass of carrier used x 100
Similarly, a rear catalyst (2) was obtained using a spherical carrier made of silica-alumina and having an average particle diameter of 7.2 mm.
<Reference Example 1>
[Reactor]
Seven fixed bed reactors (No. 1 to No. 7) comprising a steel reaction tube (tube diameter: 25 mm, tube length: 6200 mm) and a shell for flowing a heat medium covering the tube were prepared. Each reactor was provided with a partition plate having a thickness of 50 mm for dividing the shell up and down at a position of 3000 mm from the bottom of the shell so that the heat medium could be circulated independently in the upper and lower spaces.
[Filling test]
Using a reaction tube having the same tube diameter and tube length as the reactor, a pre-stage catalyst (2), a pre-stage catalyst (1), an inert substance, a post-stage catalyst (2), a post-stage catalyst ( It was dropped and filled from the upper part of the reaction tube in the order of 1) and filled so that the layer lengths were 800 mm, 2000 mm, 550 mm, 700 mm, and 2000 mm, respectively, and the masses of the catalyst and the inert substance required for each were measured. This filling test was repeated three times, and the average filling amount in each layer was defined as the filling amount in each layer.

不活性物質としては、外径6mm、長さ6mmのSUS製リング形状のものを用いた。
〔充填方法〕
前記充填テストで得られた各層の充填質量で、前段触媒(2)、前段触媒(1)、不活性物質、後段触媒(2)、後段触媒(1)をそれぞれ袋に小分けしたものを反応管7本分用意し、以下の充填に用いた。
(反応器No.1〜3)
温度計を設置せずに、前記充填テストと同様に、前段触媒(2)、前段触媒(1)、不活性物質、後段触媒(2)、後段触媒(1)の順にそれぞれ小分けした全量を充填速度800mm/minで落下充填した。表1に示すように、No.1〜3の反応管とも各層の層長および充填後の圧力損失はほぼ同一であった。
(反応器No.4)
外径4mmの温度計保護管を反応管下部より2800mmまで挿入し、そこに前段触媒(2)、前段触媒(1)、不活性物質、後段触媒(2)、後段触媒(1)の順に反応管上部より落下充填した。このとき、前段触媒層(2)は小分けした全量を1粒ずつ充填し、反応器No.1〜3の平均層長に対して、40mm長くなった。前段触媒層(1)は、仕切り板に架からないよう反応器No.1〜3の平均層高まで(2803mm)、反応器No.1〜3の充填速度の1/3以下の速度で充填した。不活性物質を小分けした全量を充填した後、後段触媒(2)、後段触媒(1)は、反応器No.1〜3の充填速度の1/3以下の速度で、小分けした全量を充填したところ、充填後の圧力損失は、5.14kPaであった。
(反応器No.5)
反応管上部より前段触媒(2)、前段触媒(1)、不活性物質の順に小分けした全量を落下充填したのち、外径4mmの温度計保護管を反応管上部より挿入し、そこに後段触媒(2)を1粒ずつ、後段触媒(1)を反応器No.1〜3の充填速度の1/3以下の速度で順に反応管上部より小分けした全量を落下充填した。このとき、後段触媒層(2)、後段触媒層(1)それぞれの層長は、反応器No.1〜3の平均層長に対して、それぞれ49mm、58mm長くなる結果であった。充填後の圧力損失は、4.51kPaであり、後段触媒(1)を反応管上部より115mm抜き出し、圧力損失調整用の固体粒子としてシリカ−アルミナからなる平均粒径3.0mmの球状担体100mmを充填することにより調節し5.16kPaとした。
(反応器No.6)
反応管上部より、外径4mmの温度計保護管を反応管下部まで挿入し、そこに前段触媒(2)、前段触媒(1)、不活性物質、後段触媒(2)、後段触媒(1)の順に反応管上部より充填した。前段触媒(2)、後段触媒(2)については小分けした全量を1粒ずつ、前段触媒(1)については、仕切り板に架からないよう反応器No.1〜3の平均層高まで(2803mm)反応器No.1〜3の充填速度の1/3以下の速度で、充填した。不活性物質は単に反応ガスの冷却層であるため、反応管No.1〜3の平均層長と同層長となるように、また、後段触媒(1)については、反応管の長さの観点から小分けした全量を充填することができないため、反応管出口から50mmのところまで反応器No.1〜3の充填速度の1/3以下の速度で、充填した。このとき、前段触媒(2)、後段触媒(2)の層長は、反応管No.1〜3の平均層長に対して、それぞれ39mm、48mm長くなる結果であった。充填後の圧力損失は、4.11kPaであり、後段触媒(1)を反応管上部より95mm抜き出し、圧力損失調整用の固体粒子としてシリカ−アルミナからなる平均粒径2.9mmの球状担体180mmを充填することにより調節し5.15kPaとした。
(反応器No.7)
反応管上部より、外径4mmの温度計保護管を反応管下部まで挿入し、そこに前段触媒(2)を1粒ずつ、前段触媒(1)を反応器No.1〜3の充填速度の1/3以下の速度で、不活性物質、後段触媒(2)を1粒ずつ、後段触媒(1)を反応器No.1〜3の充填速度の1/3以下の速度で、順に反応管上部より充填した。このとき、各層においては小分けした全量を充填せず、反応管No.1〜3の平均層長と同じ層長になるように各層を充填した。充填後の圧力損失は、4.30kPaであり、後段触媒(1)を反応管上部より95mm抜き出し、圧力損失調整用の固体粒子としてシリカ−アルミナからなる平均粒径3.0mmの球状担体140mmを充填することにより調節し5.15kPaとした。
〔酸化反応〕
各反応器No.1〜No.7のシェル側に、
前段触媒層の温度(下方空間部の熱媒体入口温度):320℃
後段触媒層の温度(上方空間部の熱媒体入口温度):270℃
となる様に、上部チャンバ、下部チャンバともに下から上へ循環するように熱媒体を流した。
As the inert substance, an SUS ring shape having an outer diameter of 6 mm and a length of 6 mm was used.
[Filling method]
A reaction tube obtained by subdividing the front catalyst (2), the front catalyst (1), the inert material, the rear catalyst (2), and the rear catalyst (1) into bags, based on the packing mass of each layer obtained in the packing test. Seven pieces were prepared and used for the following filling.
(Reactor Nos. 1-3)
Without installing a thermometer, in the same manner as in the above-mentioned filling test, the entire amount divided into the first catalyst (2), the first catalyst (1), the inert substance, the second catalyst (2), and the second catalyst (1) is filled. Drop filling was performed at a speed of 800 mm / min. As shown in Table 1, no. In the reaction tubes 1 to 3, the layer length of each layer and the pressure loss after filling were almost the same.
(Reactor No. 4)
A thermometer protective tube with an outer diameter of 4 mm is inserted up to 2800 mm from the bottom of the reaction tube, where the first catalyst (2), first catalyst (1), inert substance, second catalyst (2), second catalyst (1) are reacted in this order. Drop-filled from the top of the tube. At this time, the pre-stage catalyst layer (2) was filled one by one with the whole amount divided into small portions. It became 40 mm long with respect to the average layer length of 1-3. The pre-catalyst layer (1) should be connected to the reactor no. Up to an average bed height of 1 to 3 (2803 mm), reactor no. It filled with the speed | rate below 1/3 of the filling speed | rate of 1-3. After filling the whole amount of the inert substance, the latter catalyst (2) and the latter catalyst (1) are the reactor No. When the whole portion was filled at a rate of 1/3 or less of the filling rate of 1 to 3, the pressure loss after filling was 5.14 kPa.
(Reactor No. 5)
After dropping and filling the entire amount of the pre-stage catalyst (2), pre-stage catalyst (1), and inert substance from the top of the reaction tube in an order, a thermometer protective tube with an outer diameter of 4 mm was inserted from the top of the reaction tube, and the post-stage catalyst was inserted there. (2) one by one, and the latter catalyst (1) in reactor No. The whole amount subdivided from the upper part of the reaction tube was dropped and filled in order at a rate of 1/3 or less of the filling rate of 1-3. At this time, the respective layer lengths of the rear catalyst layer (2) and the rear catalyst layer (1) are the reactor numbers. The results were 49 mm and 58 mm longer than the average layer length of 1 to 3, respectively. The pressure loss after filling was 4.51 kPa, and the latter stage catalyst (1) was extracted 115 mm from the upper part of the reaction tube, and 100 mm spherical support made of silica-alumina and having an average particle diameter of 3.0 mm was used as solid particles for pressure loss adjustment. It was adjusted to 5.16 kPa by filling.
(Reactor No. 6)
A thermometer protective tube with an outer diameter of 4 mm is inserted from the upper part of the reaction tube to the lower part of the reaction tube, where the front catalyst (2), the front catalyst (1), the inert substance, the rear catalyst (2), and the rear catalyst (1) Were charged from the top of the reaction tube. For the first catalyst (2) and the second catalyst (2), subdivide the entire amount one by one, and for the first catalyst (1), make sure that the reactor no. Up to an average bed height of 1 to 3 (2803 mm). It filled with the speed | rate of 1/3 or less of the filling speed | rate of 1-3. Since the inert substance is merely a cooling layer of the reaction gas, the reaction tube No. As for the latter catalyst (1), the total amount divided from the viewpoint of the length of the reaction tube cannot be filled so that it becomes the same layer length as the average layer length of 1 to 3, and 50 mm from the reaction tube outlet. Reactor no. It filled with the speed | rate of 1/3 or less of the filling speed | rate of 1-3. At this time, the layer lengths of the front catalyst (2) and the rear catalyst (2) are the reaction tube Nos. The results were 39 mm and 48 mm longer than the average layer length of 1 to 3, respectively. The pressure loss after filling was 4.11 kPa. The latter stage catalyst (1) was extracted 95 mm from the upper part of the reaction tube, and a spherical carrier 180 mm having an average particle diameter of 2.9 mm made of silica-alumina was used as solid particles for pressure loss adjustment. It was adjusted to 5.15 kPa by filling.
(Reactor No. 7)
From the upper part of the reaction tube, a thermometer protection tube having an outer diameter of 4 mm was inserted to the lower part of the reaction tube. 1 to 3 of the filling speed of 1 to 3, the inert substance, the latter catalyst (2) one by one, and the latter catalyst (1) to the reactor No. It filled from the reaction tube upper part in order at the speed of 1/3 or less of the filling speed of 1-3. At this time, in each layer, the entire amount was not filled, and reaction tube No. Each layer was filled so as to have the same layer length as the average layer length of 1 to 3. The pressure loss after filling was 4.30 kPa, and the latter stage catalyst (1) was extracted 95 mm from the upper part of the reaction tube, and a spherical carrier 140 mm having an average particle diameter of 3.0 mm made of silica-alumina was used as solid particles for pressure loss adjustment. It was adjusted to 5.15 kPa by filling.
[Oxidation reaction]
Each reactor No. 1-No. 7 on the shell side,
Temperature of the front catalyst layer (heat medium inlet temperature in the lower space): 320 ° C
Temperature of the rear catalyst layer (heat medium inlet temperature in the upper space): 270 ° C.
The heat medium was allowed to flow so that both the upper chamber and the lower chamber circulated from the bottom to the top.

次いで、触媒を充填した各反応管の下部から、プロピレン8.0体積%、酸素15体積%、水蒸気6体積%および残部が窒素等からなる不活性ガスの混合ガスを原料ガスとして、前段触媒に対する空間速度1750h−1(STP)で導入し、接触気相接触酸化を行った。 Then, from the lower part of each reaction tube filled with the catalyst, a mixed gas of 8.0% by volume of propylene, 15% by volume of oxygen, 6% by volume of water vapor, and the balance of nitrogen and the like is used as a raw material gas to the catalyst at the front stage. Introduced at a space velocity of 1750 h −1 (STP), catalytic gas phase catalytic oxidation was performed.

各条件、プロピレン転化率およびアクリル酸収率を表1に示す。   Table 1 shows the conditions, propylene conversion rate, and acrylic acid yield.

Figure 2012121842

No.6の反応器では、後段触媒(1)の量が少ないためプロピレン転化率、アクリル酸収率はNo.1〜3の反応器での結果に比べて低めであるが、No.4および5の反応器とホットスポット温度は同等であることが確認できた。
Figure 2012121842

No. In the reactor of No. 6, since the amount of the latter stage catalyst (1) is small, the propylene conversion rate and the acrylic acid yield are No. Although it is low compared with the result in the reactors 1 to 3, no. It was confirmed that the hot spot temperatures of the reactors 4 and 5 were equivalent.

一方、No.1〜3の一般管に触媒層長を合わせたNo.7の反応器では、プロピレン転化率、アクリル酸収率が低いばかりでなく、ホットスポット温度も他のNo.4〜6の反応器とは大きく異なり、単に触媒層長のみを合わすだけでは反応状態のモニタリングには適さないと言える。
<実施例1>
反応管本数8,500本(反応管径25mm、管長6200mm)およびこれを覆う熱媒体を流すためのシェルからなる固定床多管式反応器を用意した。シェルの下から3000mmの位置にシェルを上下に分割する厚さ50mmの仕切り板を設け、上方および下方のチャンバにそれぞれ独立して熱媒体を循環できるようにした。
On the other hand, no. No. 1 to 3 in which the catalyst layer length is combined with the general pipes 1 to 3. In the reactor of No. 7, not only the propylene conversion rate and the acrylic acid yield were low, but also the hot spot temperature was other No. 7 reactor. Unlike the reactors of 4-6, it can be said that simply combining the catalyst layer length is not suitable for monitoring the reaction state.
<Example 1>
A fixed bed multitubular reactor comprising 8,500 reaction tubes (reaction tube diameter 25 mm, tube length 6200 mm) and a shell for flowing a heat medium covering the reaction tubes was prepared. A partition plate having a thickness of 50 mm that divides the shell vertically was provided at a position of 3000 mm from the bottom of the shell so that the heat medium could be circulated independently in the upper and lower chambers.

前記充填テストで得られた各層における充填質量で、前段触媒(2)、前段触媒(1)、不活性物質、後段触媒(2)、後段触媒(1)をそれぞれ袋に小分けし、反応管本数分用意した。反応管8,500本のうち9本を温度計測管(A〜I)とし、各3本ずつを前記参考例1における反応器No.4(A〜C)、No.5(D〜F)、No.6(G〜I)と同じ仕様で充填し、温度計測管以外の反応管については、前記参考例1における反応器No.1〜3と同じ仕様で充填した。不活性物質は、前記参考例1と同様の外径6mm、長さ6mmのSUS製リング形状のものを用いた。なお、圧力損失については、温度計管以外の任意の500本で測定した値の平均値を代表値として、各反応管の圧力損失を、圧力損失が低い反応管には、反応ガス出口側に設置された触媒層から少なくとも一部の触媒を抜き出して、充填速度を変更し再充填するか、圧力損失調整用の固体粒子を充填して、また、圧力損失が高い反応管においては、最も反応ガス出口側の触媒層に充填した触媒の一部を抜き出すか、全量抜き出して充填し直すかして調節した。調節後の全反応管の平均圧力損失は5.19kPaであった。
〔酸化反応〕
反応器のシェル側に、
前段触媒層の温度(下方空間部の熱媒体入口温度):322℃
後段触媒層の温度(上方空間部の熱媒体入口温度):273℃
となる様に、上部チャンバ、下部チャンバともに下から上へ循環するように熱媒体を流した。
According to the packing mass in each layer obtained in the above-mentioned packing test, the first stage catalyst (2), the first stage catalyst (1), the inert substance, the second stage catalyst (2), and the second stage catalyst (1) are each divided into bags, and the number of reaction tubes I prepared a minute. Nine of the 8,500 reaction tubes are temperature measurement tubes (A to I), and three of each are the reactor No. 1 in Reference Example 1. 4 (A to C), No. 4 5 (DF), No. 5 6 (G to I), and the reaction tubes other than the temperature measurement tube are filled with the same specifications as the reactor No. 1 in Reference Example 1. It filled with the same specification as 1-3. As the inert substance, a SUS ring-shaped member having an outer diameter of 6 mm and a length of 6 mm was used as in Reference Example 1. Regarding the pressure loss, the average value of the values measured with any 500 tubes other than the thermometer tube is used as a representative value, and the pressure loss of each reaction tube is set to the reaction gas outlet side for the reaction tube with low pressure loss. Remove at least a part of the catalyst from the installed catalyst layer, change the filling speed and refill it, or fill it with solid particles for pressure drop adjustment, and in the reaction tube with high pressure loss, the most reaction It was adjusted by extracting a part of the catalyst filled in the catalyst layer on the gas outlet side or by extracting the whole amount and refilling. The average pressure loss of all the reaction tubes after the adjustment was 5.19 kPa.
[Oxidation reaction]
On the shell side of the reactor,
Temperature of the front catalyst layer (heat medium inlet temperature in the lower space): 322 ° C.
Temperature of the rear catalyst layer (heat medium inlet temperature in the upper space): 273 ° C.
The heat medium was allowed to flow so that both the upper chamber and the lower chamber circulated from the bottom to the top.

次いで、触媒を充填した上記反応器の下部から、プロピレン8.5体積%、酸素16体積%、水蒸気6体積%および残部が窒素等からなる不活性ガスの混合ガスを原料ガスとして、前段触媒に対する空間速度1750h−1(STP)で導入し、4000時間連続して気相接触酸化を行った。
各条件、プロピレン転化率、アクリル酸選択率を表2に示す。
Next, from the lower part of the reactor filled with the catalyst, a mixed gas of 8.5% by volume of propylene, 16% by volume of oxygen, 6% by volume of water vapor, and the balance of nitrogen and the like is used as a raw material gas to the catalyst at the front stage. Introduced at a space velocity of 1750 h −1 (STP), gas phase catalytic oxidation was carried out continuously for 4000 hours.
Table 2 shows each condition, propylene conversion rate, and acrylic acid selectivity.

Figure 2012121842
Figure 2012121842

Claims (3)

各反応管の管径が同一であり、少なくとも1つの反応管に温度計測装置が設置されてなる固定床多管式反応器であって、各反応管内に複数種の触媒が層を成すよう充填された反応帯を少なくとも一つ有し、当該反応帯の少なくともガス流れ方向に対して最も反応ガス出口側に設置された触媒層以外の各触媒層において、温度計測装置が設置されている反応管と温度計測装置が設置されていない反応管とで同一種の触媒が実質的に同一質量充填され、かつ、各反応管の圧力損失が実質的に同一になるように設定されていることを特徴とする固定床多管式反応器。   Each reaction tube has the same tube diameter, and is a fixed-bed multitubular reactor in which a temperature measuring device is installed in at least one reaction tube, and a plurality of types of catalysts are packed in each reaction tube in layers. A reaction tube in which a temperature measuring device is installed in each catalyst layer other than the catalyst layer installed on the reaction gas outlet side at least in the gas flow direction of the reaction zone. And a reaction tube not equipped with a temperature measuring device, the same type of catalyst is filled with substantially the same mass, and the pressure loss of each reaction tube is set to be substantially the same. A fixed-bed multitubular reactor. 前記温度計測装置が可動式の温度計測装置である請求項1に記載の反応器。   The reactor according to claim 1, wherein the temperature measuring device is a movable temperature measuring device. 不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための接触気相酸化反応において、請求項1または2に記載の固定床多管式反応器を用いることを特徴とする不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。   In a catalytic gas phase oxidation reaction for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, the unsaturated aldehyde and / or the fixed bed multitubular reactor according to claim 1 or 2 is used. A method for producing an unsaturated carboxylic acid.
JP2010274175A 2010-12-09 2010-12-09 FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR Active JP5618800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274175A JP5618800B2 (en) 2010-12-09 2010-12-09 FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274175A JP5618800B2 (en) 2010-12-09 2010-12-09 FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR

Publications (2)

Publication Number Publication Date
JP2012121842A true JP2012121842A (en) 2012-06-28
JP5618800B2 JP5618800B2 (en) 2014-11-05

Family

ID=46503692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274175A Active JP5618800B2 (en) 2010-12-09 2010-12-09 FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR

Country Status (1)

Country Link
JP (1) JP5618800B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113423A1 (en) * 2020-11-27 2022-06-02 昭和電工株式会社 Fixed bed multi-tubular reactor for producing alkenyl acetate
JP7316482B1 (en) * 2022-02-18 2023-07-27 日本化薬株式会社 Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
WO2023157699A1 (en) * 2022-02-18 2023-08-24 日本化薬株式会社 Method and apparatus for supporting operation of multitubular reactor or preparation action thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309457A (en) * 1997-04-23 1998-11-24 Basf Ag Reactor apparatus and treatment for fluid material
JP2003001094A (en) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd Solid particle-packed reactor and gas-phase catalytic oxidation method using the same
JP2003340267A (en) * 2002-05-30 2003-12-02 Mitsubishi Rayon Co Ltd Method for packing catalyst and multitubular heat exchange type reactor
JP2009148730A (en) * 2007-12-21 2009-07-09 Mitsubishi Rayon Co Ltd Catalyst packing method into reactor and measuring-instrument fixing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309457A (en) * 1997-04-23 1998-11-24 Basf Ag Reactor apparatus and treatment for fluid material
JP2003001094A (en) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd Solid particle-packed reactor and gas-phase catalytic oxidation method using the same
JP2003340267A (en) * 2002-05-30 2003-12-02 Mitsubishi Rayon Co Ltd Method for packing catalyst and multitubular heat exchange type reactor
JP2009148730A (en) * 2007-12-21 2009-07-09 Mitsubishi Rayon Co Ltd Catalyst packing method into reactor and measuring-instrument fixing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113423A1 (en) * 2020-11-27 2022-06-02 昭和電工株式会社 Fixed bed multi-tubular reactor for producing alkenyl acetate
JP7468698B2 (en) 2020-11-27 2024-04-16 株式会社レゾナック Fixed-bed multi-tubular reactor for alkenyl acetate production
JP7316482B1 (en) * 2022-02-18 2023-07-27 日本化薬株式会社 Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
WO2023157699A1 (en) * 2022-02-18 2023-08-24 日本化薬株式会社 Method and apparatus for supporting operation of multitubular reactor or preparation action thereof

Also Published As

Publication number Publication date
JP5618800B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP4092090B2 (en) Solid particle packed reactor and catalytic gas phase oxidation method using the reactor
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
EP1097745B1 (en) Reactor for catalytic gas phase oxidation
RU2479569C2 (en) Method of using partial gas-phase oxidation of acrolein into acrylic acid or methacrolein into methacrylic acid on heterogeneous catalyst
JP2017088606A5 (en)
JP2018140993A5 (en)
KR100661727B1 (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
EP2295136A1 (en) Method of packing solid particulate substance into fixed-bed multitubular reactor
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
JP5618800B2 (en) FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR
JP2010132584A (en) Method for operating vapor-phase oxidation reaction by using multitubular heat exchanger-type reactor
WO2005110591A1 (en) Pilot test method for multitubular reactor
WO2005110960A1 (en) Process for producing (meth)acrolein or (meth)acrylic acid
CN109071393B (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5500775B2 (en) Fixed bed reactor
US20100249455A1 (en) Process for producing acrolein and acrylic acid
JP2003252807A (en) Method for vapor-phase catalytic oxidation
JP2010241700A (en) Method for producing acrylic acid
JP7506031B2 (en) Method for producing unsaturated aldehydes
JP5902374B2 (en) Acrylic acid production method
CN117396457A (en) Method for producing one or both of (meth) acrolein and (meth) acrylic acid
JP2011102249A (en) Method of producing acrylic acid
JP2016106082A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5618800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150