WO2023145907A1 - 熱膨張性耐火材 - Google Patents

熱膨張性耐火材 Download PDF

Info

Publication number
WO2023145907A1
WO2023145907A1 PCT/JP2023/002747 JP2023002747W WO2023145907A1 WO 2023145907 A1 WO2023145907 A1 WO 2023145907A1 JP 2023002747 W JP2023002747 W JP 2023002747W WO 2023145907 A1 WO2023145907 A1 WO 2023145907A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory material
thermally expandable
rubber
resin
phosphate
Prior art date
Application number
PCT/JP2023/002747
Other languages
English (en)
French (fr)
Inventor
泰輝 松本
健一 大月
聡 與口
建彦 牛見
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023145907A1 publication Critical patent/WO2023145907A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials

Definitions

  • the present invention relates to a thermally expandable fireproof material.
  • fireproof materials are used for building materials such as fittings, columns, and wall materials for fire prevention.
  • a thermally expandable refractory material in which thermally expandable graphite is blended with a resin in addition to a flame retardant, an inorganic filler, and the like is used (see, for example, Patent Document 1).
  • Such a thermally expandable refractory material expands when heated, and the combustion residue forms a refractory and heat insulating layer, thereby exhibiting refractory and heat insulating performance.
  • the thermally expandable refractory material containing thermally expandable graphite is provided, for example, in the gap between fittings such as doors and windows provided in openings of buildings and frames such as door frames and window frames surrounding these.
  • the sheet expands in the thickness direction to block the gap between the fitting and the frame material, thereby preventing the spread of the fire.
  • an object of the present invention is to provide a thermally expandable fireproof material that expands sufficiently in the plane direction.
  • the present inventors have found that a matrix component consisting of at least one selected from the group consisting of rubbers and resins (both of which are solid at 23°C), thermally expandable graphite, and a flexibility-imparting agent.
  • a thermally expandable refractory material with a certain or higher closed expansion ratio, the above problems were solved, and the present invention was completed.
  • the present invention provides the following [1] to [7].
  • a thermally expandable refractory material which, when heated, has a closed expansion ratio of 4.0 times or more obtained by dividing the area of the thermally expandable refractory material viewed in the thickness direction by the area before heating.
  • the thermally expandable fireproof material according to [1] which further contains a flame retardant.
  • the plasticizer is a non-phthalate plasticizer.
  • thermally expandable refractory material according to any one of [1] to [5], wherein the thermally expandable refractory material has a Mooney viscosity of 80 or less at 100°C.
  • thermoly expandable fireproof material that expands sufficiently in the plane direction.
  • the thermally expandable refractory material of the present invention (hereinafter sometimes referred to as "refractory material”) has a closed expansion ratio of 4.0 times or more. If the occlusion expansion ratio is less than 4.0 times, the expansion in the surface direction becomes insufficient, and when the refractory material is arranged in a narrow space in the thickness direction, the performance of the refractory material cannot be sufficiently exhibited. . From this point of view, the occlusion expansion ratio is preferably 4.5 times or more, more preferably 5.0 times or more. On the other hand, the upper limit of the occlusion expansion ratio is not particularly limited, but practically it is, for example, 15 times or less, preferably 10 times or less.
  • the closed expansion ratio can be increased by incorporating a matrix component, thermally expandable graphite, and a flexibility imparting agent into the refractory material.
  • a flexibility-imparting agent when contained, the refractory material is likely to thermally expand, and the occlusion expansion ratio is likely to be increased.
  • the occlusion expansion ratio can be obtained by the following method. First, a refractory material is cut into a rectangular parallelepiped of 25 mm ⁇ 25 mm ⁇ 2 mm, and the cut refractory material is arranged in a space of 6 mm in the thickness direction.
  • the thickness of the refractory material is less than 2 mm, two or more refractory materials may be superimposed so as to have a thickness of 2 mm and integrated by press molding or the like to form a measurement sample. More specifically, as shown in FIG. 1, it is preferable to arrange the refractory material 10 in a space 12 having a height h of 6 mm in the jig 11 . After that, when the refractory material 10 is heated at 400° C. for 15 minutes, the area of the refractory material 10 viewed from the thickness direction shown in the right diagram of FIG.
  • the space 12 is formed between the two metal plates 13 by arranging the two metal plates 13 (material: SUS) via a spacer with a thickness of 6 mm and fixing the two metal plates with a fixing member 14. It is a space that
  • the thermally expandable refractory material of the present invention contains a matrix component, thermally expandable graphite, and a flexibility imparting agent. Each component will be described in detail below.
  • the refractory material of the present invention contains a matrix component consisting of at least one selected from rubber and resin. Both rubbers and resins are solids at 23°C.
  • the rubber component is preferably a thermosetting rubber containing no halogen in its molecular structure.
  • a thermosetting rubber is a rubber having a thermosetting property even in a heat-expandable refractory material, and examples thereof include rubbers having a double bond in the main chain, such as conjugated diene rubbers.
  • thermosetting rubbers containing no halogen in the molecular structure include natural rubber, isoprene rubber, butyl rubber (IIR), butadiene rubber (BR), 1,2-polybutadiene rubber, styrene-butadiene rubber (SBR), and acrylonitrile.
  • Conjugated diene rubber such as rubber-butadiene rubber (NBR), ethylene-propylene rubber, ethylene-propylene-diene rubber (EPDM), acrylic rubber, polyvulcanized rubber, unvulcanized rubber, silicone rubber, urethane elastomer and the like.
  • acrylonitrile-butadiene rubber is more preferable from the viewpoint that the area of the thermally expandable refractory material after heating can be easily adjusted to the desired range.
  • the nitrile content of the acrylonitrile-butadiene rubber is preferably 8 to 40% by mass, more preferably 10 to 35% by mass, even more preferably 15 to 25% by mass.
  • Acrylonitrile-butadiene rubber having a nitrile content within the above range can easily increase the expansion pressure of the refractory material and can easily adjust the closed expansion ratio to a certain level or higher.
  • Mooney viscosity ML(1+4) at 100° C. of acrylonitrile-butadiene rubber is preferably 20-90, more preferably 30-80, and even more preferably 40-70.
  • An acrylonitrile-butadiene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material and easily adjust the closed expansion ratio above a certain level.
  • Styrene-butadiene rubber includes random copolymers of styrene and butadiene.
  • the styrene content of the styrene-butadiene rubber is preferably 20 to 60% by mass, more preferably 25 to 50% by mass, even more preferably 30 to 45% by mass.
  • a styrene-butadiene rubber having a styrene content within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the closed expansion ratio to a certain level or more.
  • the Mooney viscosity ML(1+4) at 100° C. of the styrene-butadiene rubber is preferably 20-60, more preferably 30-55, even more preferably 40-50.
  • a styrene-butadiene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material and easily adjust the closed expansion ratio to a certain level or higher.
  • the Mooney viscosity ML(1+4) is measured according to JIS K6300.
  • the resin may be a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include, for example, polypropylene resin, polyethylene resin, poly(1-)butene resin, polyolefin resin such as polypentene resin, polyester resin such as polyethylene terephthalate, polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, Ethylene-vinyl acetate copolymer resin (EVA), polycarbonate resin, polyphenylene ether resin, (meth)acrylic resin such as polymethyl methacrylate resin (PMMA), polyamide resin, polyvinyl chloride resin (PVC), novolak resin , polyurethane resin, polyisobutylene, and the like.
  • thermoplastic resins from the viewpoint of improving the fire resistance of the refractory material, at least one selected from polyvinyl chloride resins, ethylene-vinyl acetate copolymer resins, and (meth)acrylic resins is preferable. Vinyl chloride resins and ethylene-vinyl acetate copolymer resins are more preferred, and polyvinyl chloride resins are even more preferred.
  • Polyvinyl chloride resins include homopolymers of vinyl chloride monomers, copolymers of vinyl chloride monomers and monomers having unsaturated bonds copolymerizable with vinyl chloride monomers, and polymers other than vinyl chloride monomers.
  • a graft copolymer obtained by graft-copolymerizing a vinyl chloride monomer to a copolymer may be mentioned, and these may be used alone or in combination of two or more.
  • chlorinated polyvinyl chloride-based resins which are chlorinated polyvinyl chloride-based resins, are also included in polyvinyl chloride-based resins.
  • the degree of polymerization of the polyvinyl chloride resin is preferably 500-2000, more preferably 800-1500.
  • the ethylene-vinyl acetate copolymer resin may be a non-crosslinked ethylene-vinyl acetate copolymer resin or a high-temperature crosslinked ethylene-vinyl acetate copolymer resin. good too.
  • ethylene-vinyl acetate copolymer resin ethylene-vinyl acetate modified resins such as ethylene-vinyl acetate copolymer saponification products and ethylene-vinyl acetate hydrolysates can also be used.
  • the ethylene-vinyl acetate copolymer resin preferably has a vinyl acetate content of 5 to 90% by mass, more preferably 8 to 50% by mass, as measured according to JIS K 6730 "Ethylene-vinyl acetate resin test method". More preferably, it is 12 to 35% by mass.
  • the melt flow rate (MFR) of the ethylene-vinyl acetate copolymer resin at 190° C. is preferably 0.5 to 15 g/10 min, more preferably 1 to 8 g/10 min.
  • the melt flow rate of the ethylene-vinyl acetate copolymer at 190° C. is a value measured under a load of 2.16 kg, and is measured according to JIS K7210:1999.
  • thermosetting resin is not particularly limited, and examples thereof include epoxy resins, polyurethane resins, phenol resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, and thermosetting polyimides. Epoxy resins are preferred from the viewpoint of improving the properties.
  • Epoxy compounds are compounds having an epoxy group, and specific examples thereof include glycidyl ether type and glycidyl ester type. Glydisyl ether type may be bifunctional or polyfunctional such as trifunctional or more. The same applies to the glycidyl ester type.
  • the epoxy compound may contain a monofunctional one in order to adjust the degree of cross-linking. Among these, a bifunctional glycidyl ether type is preferred.
  • bifunctional glycidyl ether type epoxy compound examples include, for example, polyethylene glycol type, polypropylene glycol type alkylene glycol type, neopentyl glycol type, 1,6-hexanediol type, hydrogenated bisphenol A type aliphatic Epoxy compounds are exemplified. Furthermore, aromatic epoxy compounds containing an aromatic ring such as bisphenol A type, bisphenol F type, bisphenol AD type, ethylene oxide-bisphenol A type, and propylene oxide-bisphenol A type are listed. Among these, aromatic epoxy compounds such as bisphenol A type and bisphenol F type are preferred.
  • Examples of the glycidyl ester type epoxy compounds include hexahydrophthalic anhydride type, tetrahydrophthalic anhydride type, dimer acid type and p-oxybenzoic acid type epoxy compounds.
  • Examples of tri- or more functional glycidyl ether type epoxy compounds include phenol novolak type, ortho-cresol novolak type, DPP novolak type, dicyclopentadiene-phenol type, and the like. These epoxy compounds may be used alone or in combination of two or more.
  • the epoxy resin may be an epoxy resin having an aromatic ring or an epoxy resin not having an aromatic ring, but an epoxy resin having an aromatic ring is preferable from the viewpoint of enhancing nonflammability.
  • a polyaddition type or a catalyst type is used as the curing agent.
  • polyaddition type curing agents include polyamines, acid anhydrides, polyphenols, and polymercaptans.
  • catalytic curing agents include tertiary amines, imidazoles, and Lewis acid complexes. These curing agents may be used alone or in combination of two or more.
  • the content of the curing agent is preferably in the range of 50 to 150 parts by mass with respect to 100 parts by mass of the epoxy resin compound. When the amount is 50 parts by mass or more, the epoxy resin compound is easily cured, and when the amount is 150 parts by mass or less, an effect corresponding to the blending amount of the curing agent can be obtained.
  • the above matrix components may be used singly or in combination of two or more.
  • the matrix component it is preferable to use rubber from the viewpoint of ensuring that the residual strength of the refractory material after thermal expansion is above a certain level and exhibiting excellent fire resistance, and thermosetting rubber that does not contain halogen in its molecular structure. More preferably, NBR is used.
  • the content of the matrix component is preferably 15% by mass or more, more preferably 18% by mass or more, still more preferably 20% by mass or more, and preferably 40% by mass, based on the total amount of the refractory material. Below, more preferably 35% by mass or less, still more preferably 30% by mass or less.
  • the shape retention of the refractory material is improved.
  • the content of the matrix component is at most these upper limits, the content of the thermally expandable graphite described later can be adjusted to a large amount, so the fire resistance is improved.
  • Thermally expandable graphite is a conventionally known substance that expands when heated, and is produced by acid-treating a raw material powder such as natural flake graphite, pyrolytic graphite, or Kish graphite with a strong oxidizing agent to form a graphite intercalation compound.
  • strong oxidizing agents include inorganic acids such as concentrated sulfuric acid, nitric acid and selenic acid, concentrated nitric acid, perchloric acid, perchlorates, permanganates, bichromates, and hydrogen peroxide.
  • Thermally expandable graphite is a crystalline compound that maintains the layered structure of carbon.
  • Thermally expandable graphite may be neutralized. That is, the thermally expandable graphite obtained by treatment with a strong oxidizing agent or the like as described above may be further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.
  • the content of thermally expandable graphite in the refractory material of the present invention is preferably 50 to 500 parts by mass, more preferably 70 to 250 parts by mass, and still more preferably 100 parts by mass with respect to 100 parts by mass of the matrix component. ⁇ 200 parts by mass.
  • the content of the thermally expandable graphite is at least these lower limits, it becomes easier to increase the expansion pressure of the thermally expandable refractory material and to adjust the closing expansion ratio to a certain level or more.
  • the content of the thermally expandable graphite is not more than these upper limits, the shape retainability, workability, etc. are improved.
  • the thermally expandable graphite in the present invention preferably has an average aspect ratio of 15 or more, more preferably 20 or more, and usually 1000 or less.
  • the aspect ratio of thermally expandable graphite is obtained by measuring the maximum dimension (major axis) and the minimum dimension (minor axis) of 10 or more (for example, 50) thermally expandable graphite, and calculating the ratio (maximum dimension / minimum dimension).
  • the average particle size of the thermally expandable graphite is preferably 50 to 500 ⁇ m, more preferably 100 to 400 ⁇ m, from the viewpoint of achieving a desired expansion pressure.
  • the average particle size of the thermally expandable graphite is determined as the average value of the maximum dimensions of 10 or more (for example, 50) thermally expandable graphites.
  • the minimum and maximum dimensions of the thermally expandable graphite described above can be measured using, for example, a field emission scanning electron microscope (FE-SEM).
  • the refractory material of the present invention contains a flexibility imparting agent.
  • flexibility-imparting agent flexibility is imparted to the refractory material, the viscosity of the components of the refractory material is lowered, and the thermally expandable graphite is less likely to be crushed during the production of the refractory material.
  • the closing expansion ratio can be set to a certain value or higher, and expansion according to the shape of the space in which the refractory material is arranged can be achieved.
  • the shape of the refractory material can be stably maintained.
  • the refractory material can be made excellent in workability.
  • the flexibility imparting agent is preferably at least one selected from plasticizers, rubber processing oils, liquid rubbers, and liquid resins, and is preferably selected from plasticizers, rubber processing oils, and liquid rubbers. is preferably at least one.
  • the plasticizer is preferably a non-phthalate plasticizer.
  • Environmental load can be reduced because the plasticizer is a non-phthalate plasticizer.
  • a non-phthalate plasticizer is a plasticizer other than a phthalate plasticizer composed of a derivative of phthalic acid (orthophthalic acid).
  • Non-phthalate plasticizers include trimellitic acid plasticizers, phosphate ester plasticizers, adipic acid plasticizers, sulfonic acid plasticizers, citric acid plasticizers, soybean oil plasticizers, cyclohexanedicarboxy rate-based plasticizers, terephthalic acid-based plasticizers, and the like. These plasticizers are usually liquid at 23°C.
  • Phosphate plasticizers include, for example, triphenyl phosphate, tricresyl phosphate, benzyldiphenyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, propylphenyl diphenyl phosphate, dipropylphenyl phenyl phosphate, ethylphenyl diphenyl phosphate, Triaryl phosphates such as diethyl phenyl phosphate, triethyl phenyl phosphate, tripropyl phenyl phosphate, butyl phenyl diphenyl phosphate, dibutyl phenyl phosphate, tributyl phenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, trihexyl phosphate, tri(2-ethylhexyl) phosphate, tridecyl phosphat
  • adipic acid plasticizers examples include di-2-ethylhexyl adipate, diisononyl adipate, diisodecyl adipate, and adipic acid ether esters such as dibutoxyethoxyethyl adipate.
  • Sulfonic acid-based plasticizers include benzenesulfonbutyramide, o-toluenesulfonamide, p-toluenesulfonamide, N-ethyl-p-toluenesulfonamide, o-tolueneethylsulfonamide, p-tolueneethylsulfonamide, N -cyclohexyl-p-toluenesulfonamide, phenol and cresol alkylsulfonate, sulfonamide-formamide, alkylsulfonate and the like.
  • the rubber processing oil is not particularly limited, but those commonly used as lubricants can be used. By including the rubber processing oil, the fluidity of the matrix component is improved, and the thermally expandable graphite is appropriately dispersed in the composition. Therefore, the thermal expansibility and residue strength of the refractory material are improved, and the fire resistance of the refractory material is improved.
  • the rubber processing oil used in the present invention is not particularly limited, but includes, for example, process oil.
  • the process oil is not particularly limited, and examples thereof include paraffinic process oil, naphthenic process oil, and olefinic process oil. Among these, it is preferable to contain a naphthenic process oil.
  • the kinematic viscosity of the rubber processing oil at 40° C. is preferably 5 to 500 cSt, more preferably 10 to 450 cSt, even more preferably 20 to 400 cSt.
  • the kinematic viscosity can be measured according to JIS K 2283.
  • Liquid rubber is rubber that becomes liquid at 23°C.
  • Liquid rubbers include liquid polyisoprene rubber, carboxy-modified liquid polyisoprene rubber, liquid polybutadiene rubber, carboxy-modified liquid polybutadiene rubber, hydroxyl group-modified liquid polybutadiene rubber, liquid acrylonitrile-butadiene copolymer rubber, liquid styrene-butadiene copolymer rubber, and liquid styrene-isoprene.
  • Copolymer rubber and the like can be mentioned.
  • the number average molecular weight (Mn) of the liquid rubber is preferably 1,000 to 150,000, more preferably 10,000 to 100,000.
  • the number average molecular weight (Mn) of the liquid rubber is a measured value obtained by conversion with standard polystyrene using a gel permeation chromatography measuring device.
  • the viscosity of the liquid rubber at 38° C. is preferably 5 to 1000 Pa ⁇ s, more preferably 50 to 800 Pa ⁇ s, even more preferably 100 to 500 Pa ⁇ s.
  • liquid resin A liquid resin is a resin that becomes liquid at 23°C.
  • Liquid resins include polyvinyl acetate (PVAc) resins, silicone resins, modified silicone (MS) resins, polyisobutylene (PIB) resins, polysulfide resins, modified polysulfide resins, polyurethane resins, and polyacrylic resins. Examples include resins and polyacrylic urethane resins. Among these, polyvinyl acetate resins are preferred.
  • the flexibility-imparting agent may be used alone or in combination of two or more.
  • a plasticizer among those mentioned above.
  • the use of a plasticizer can also inhibit bleeding of the flexibilizer onto the refractory surface.
  • the plasticizers at least one selected from phosphate ester plasticizers, adipic acid plasticizers, and sulfonic acid plasticizers is preferable, and it is more preferable to use sulfonic acid plasticizers. It is even more preferred to use esters.
  • the content of the flexibility imparting agent is preferably 20 to 120 parts by mass, more preferably 25 to 110 parts by mass, still more preferably 30 to 80 parts by mass, and 45 to 80 parts by mass with respect to 100 parts by mass of the matrix component. More preferably, when the content of the flexibility-imparting agent is at least the above lower limit, the occlusion expansion ratio can be kept at a certain level or higher, and the refractory material can easily expand in the event of a fire. Further, when the content of the flexibility-imparting agent is equal to or less than the above upper limit, the residual strength of the refractory material can be increased to a certain level or more, and the refractory material can be formed with excellent shape retention.
  • the refractory material of the present invention preferably contains a flame retardant.
  • a flame retardant By containing a flame retardant, the flame retardancy of the refractory material can be enhanced, and the performance of the refractory material can be exhibited more effectively.
  • the flame retardant used in the present invention is preferably solid at normal temperature (23° C.) and normal pressure (1 atm). Specifically, phosphorus solid flame retardant, red phosphorus flame retardant, boron Including flame retardants, brominated flame retardants, antimony-containing flame retardants, metal hydroxides, low-melting glass, needle-like fillers, and the like.
  • the phosphorus-based solid flame retardant is solid at normal temperature (23° C.) and normal pressure (1 atm), and is other than the red phosphorus-based flame retardant described later.
  • Specific examples include phosphates, phosphazene compounds, phosphate ester compounds, and metal phosphinates.
  • phosphates include monophosphates and polyphosphates.
  • the phosphate referred to here is a concept that includes not only orthophosphate but also phosphite, hypophosphite, and the like. The same is true for polyphosphate.
  • Monophosphates include, for example, ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, monosodium phosphate, disodium phosphate, trisodium phosphate, monosodium phosphite, sodium Sodium salts such as disodium phosphate and sodium hypophosphite, potassium such as monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite and potassium hypophosphite salts, lithium salts such as monolithium phosphate, dilithium phosphate, trilithium phosphate, monolithium phosphite, dilithium phosphite, lithium hypophosphite, barium dihydrogen phosphate, barium hydrogen phosphate, Barium salts such as tribarium phosphate and barium hypophosphite, magnesium monohydrogen
  • Polyphosphates include, for example, ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate, and aluminum polyphosphate, among which ammonium polyphosphate is preferred.
  • Intumescent flame retardants can also be used as phosphates.
  • Intumescent flame retardants include, for example, phosphates containing phosphorus-based components that promote carbonization and nitrogen-based components that promote fire extinguishing and foaming.
  • intumescent flame retardants start burning and heat up, bubbles blow out on the surface of the material, creating a foam-like adiabatic expansion layer that prevents heat from being transferred to the interior of the material and cuts off the supply of oxygen. By suppressing thermal decomposition and oxidation reaction, it can play a role as a flame retardant.
  • Examples of phosphorus-based components that make up intumescent flame retardants include polyphosphoric acids such as pyrophosphoric acid and triphosphoric acid, and monophosphoric acids such as orthophosphoric acid (orthophosphoric acid).
  • Nitrogen-based components constituting intumescent flame retardants include, for example, N,N,N',N'-tetramethyldiaminomethane, ethylenediamine, N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N-dimethylethylenediamine, N,N-diethylethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,2-propanediamine, 1, aliphatic diamines such as 3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane and 1,10-diaminodecane; Piperazine ring-containing amine compounds such as piperaz
  • the phosphorus-based component that constitutes the intumescent flame retardant preferably contains polyphosphoric acid from the viewpoint of obtaining higher flame retardancy.
  • the intumescent flame retardant is at least one compound selected from the group consisting of melamine orthophosphate, melamine pyrophosphate, melamine polyphosphate, piperazine orthophosphate, piperazine pyrophosphate, and piperazine polyphosphate.
  • melamine salts selected from the group consisting of melamine orthophosphate, melamine pyrophosphate, and melamine polyphosphate, and selected from the group consisting of piperazine orthophosphate, piperazine pyrophosphate, and piperazine polyphosphate
  • a mixture with a piperazine salt is more preferred.
  • the melamine salt is more preferably melamine pyrophosphate from the viewpoint of flame retardancy
  • the piperazine salt is more preferably piperazine pyrophosphate from the viewpoint of flame retardancy.
  • a phosphazene compound is an organic compound in which phosphorus atoms and nitrogen atoms are alternately bonded.
  • the phosphazene compound includes, for example, a cyclic phosphazene compound, a chain phosphazene compound, a crosslinked phosphazene compound crosslinked with a crosslinking group, and the like.
  • Specific examples of phosphazene compounds include those containing structural units represented by the following general formula (1).
  • X is each independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. Any of 12 substituted or unsubstituted aryloxy groups, amino groups and halogen atoms.
  • substituents in the aryl group include alkyl groups, amino groups, and halogen atoms.
  • Each X is preferably a phenyl group, a substituted phenyl group, a phenyloxy group, or a substituted phenyl group, more preferably a phenyl group or a phenyloxy group.
  • the phosphate ester compound is not particularly limited as long as it is solid at room temperature (23° C.), and examples thereof include monophosphate esters and condensed phosphate esters. These phosphate ester compounds may be commercially available products. Monophosphates include triphenyl phosphate and tris(tribromoneopentyl) phosphate. Monophosphate esters include commercially available products such as "TPP", "CR-900", and "DAIGUARD-1000" (manufactured by Daihachi Chemical Industry Co., Ltd.). The condensed phosphate may be a halogen-containing condensed phosphate, or may be a halogen-free condensed phosphate.
  • alkyl-substituted aromatic condensed phosphates such as 1,3-phenylenebis(di-2,6-xylenylphosphate).
  • commercially available products can also be used as condensed phosphates.
  • Specific examples include non-halogen condensed phosphate esters such as "DAIGUARD-850" and “PX200” (manufactured by Daihachi Chemical Industry Co., Ltd.).
  • a phosphinate metal salt is a metal salt of an organic phosphinic acid.
  • metal phosphinates include aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, zinc bisdiethylphosphinate, zinc bismethylethylphosphinate, zinc bisdiphenylphosphinate, Titanyl bisdiethylphosphinate, titanium tetrakisdiethylphosphinate, titanyl bismethylethylphosphinate, titanium tetrakismethylethylphosphinate, titanyl bisdiphenylphosphinate, and titanium tetrakisdiphenylphosphinate.
  • the phosphorus concentration in the phosphorus-based solid flame retardant is preferably 10% by mass or more, more preferably 12% by mass or more, based on the total amount of the phosphorus-based solid flame retardant, from the viewpoint of sufficiently improving the flame retardancy of the refractory material. % by mass or more is more preferable.
  • the red phosphorus-based flame retardant may be composed of red phosphorus alone, or may be red phosphorus coated with resin, metal hydroxide, metal oxide, or the like, or may be red phosphorus coated with resin, metal hydroxide, metal A mixture of oxides or the like may also be used.
  • Resins coated with red phosphorus or mixed with red phosphorus are not particularly limited, but include thermosetting resins such as phenol resins, epoxy resins, unsaturated polyester resins, melamine resins, urea resins, aniline resins, and silicone resins. be done. From the viewpoint of flame retardancy, metal hydroxides are preferable as the film or compound to be mixed. It is preferable to appropriately select and use the metal hydroxide described later.
  • Boron-containing flame retardants for use in the present invention include borax, boron oxide, boric acid, borates, and the like.
  • boron oxide include diboron trioxide, boron trioxide, diboron dioxide, tetraboron trioxide, and tetraboron pentoxide.
  • borates include borates of alkali metals, alkaline earth metals, elements of Groups 4, 12 and 13 of the periodic table, and ammonium.
  • alkali metal borate salts such as lithium borate, sodium borate, potassium borate and cesium borate
  • alkaline earth metal borate salts such as magnesium borate, calcium borate and barium borate
  • Zirconium borate, zinc borate, aluminum borate, ammonium borate and the like are examples of alkali metal borate salts such as lithium borate, sodium borate, potassium borate and cesium borate
  • alkaline earth metal borate salts such as magnesium borate, calcium borate and barium borate
  • the brominated flame retardant is not particularly limited as long as it contains bromine in its molecular structure and is solid at normal temperature and pressure.
  • Examples include aromatic compounds containing brominated aromatic rings.
  • Brominated aromatic ring-containing aromatic compounds include hexabromobenzene, pentabromotoluene, hexabromobiphenyl, decabromobiphenyl, decabromodiphenyl ether, octabromodiphenyl ether, hexabromodiphenyl ether, bis(pentabromphenoxy)ethane, ethylenebis( pentabromophenyl), ethylenebis(tetrabromophthalimide), tetrabromobisphenol A and other monomeric organic bromine compounds.
  • the brominated aromatic ring-containing aromatic compound may be a brominated compound polymer.
  • a polycarbonate oligomer produced using brominated bisphenol A as a starting material a brominated polycarbonate such as a copolymer of this polycarbonate oligomer and bisphenol A, and a diepoxy compound produced by reacting brominated bisphenol A with epichlorohydrin. etc.
  • brominated epoxy compounds such as monoepoxy compounds obtained by reacting brominated phenols with epichlorohydrin, poly(brominated benzyl acrylate), brominated phenols of brominated polyphenylene ether, brominated bisphenol A and cyanuric chloride brominated polystyrene such as brominated (polystyrene), poly(brominated styrene), crosslinked brominated polystyrene, crosslinked or non-crosslinked brominated poly(-methylstyrene), and the like.
  • Compounds other than the brominated aromatic ring-containing aromatic compound such as hexabromocyclododecane may also be used.
  • Antimony-containing flame retardants include, for example, antimony oxide, antimonate, pyroantimonate, and the like.
  • antimony oxide include antimony trioxide and antimony pentoxide.
  • antimonates include sodium antimonate and potassium antimonate.
  • pyroantimonate include sodium pyroantimonate and potassium pyroantimonate.
  • metal hydroxide examples include magnesium hydroxide, calcium hydroxide, aluminum hydroxide, iron hydroxide, nickel hydroxide, zirconium hydroxide, titanium hydroxide, zinc hydroxide, copper hydroxide, vanadium hydroxide, tin hydroxide and the like.
  • low-melting-point glass used as a solid flame retardant is softened and becomes a molten state when heated, acts as an inorganic binder, and has the effect of improving the mechanical strength of the refractory material.
  • Low-melting glass specifically means glass that softens or melts at a temperature of 1000° C. or lower. ⁇ 600°C.
  • the softening temperature is, for example, a value measured from the inflection point of DTA.
  • Examples of the low-melting glass include silicon, aluminum, boron, phosphorus, zinc, iron, copper, titanium, vanadium, zirconium, tungsten, molybdenum, thallium, antimony, tin, cadmium, arsenic, lead, alkali metals, and alkaline earth metals. , halogen, chalcogen and at least one element selected from the group consisting of oxygen.
  • the low-melting-point glass is preferably in the form of particles such as glass frit.
  • Nippon Enamel Glaze Co., Ltd. trade name "4020” (aluminum phosphate salt-based low-melting glass, softening temperature: 380 ° C.), Nippon Enamel Glaze Co., Ltd., trade name "4706” (borosilicate low melting point glass, softening temperature: 610° C.), manufactured by Asahi Techno Glass Co., Ltd., trade name "FF209” (lithium borate salt low melting point glass, softening temperature: 450° C.), etc. are commercially available.
  • needle-shaped filler examples include potassium titanate whiskers, aluminum borate whiskers, magnesium-containing whiskers, silicon-containing whiskers, wollastonite, sepiolite, xonolite, elestadite, boehmite, rod-shaped hydroxyapatite, glass fibers, carbon fibers, and graphite fibers. , metal fibers, slag fibers, gypsum fibers, silica fibers, alumina fibers, silica-alumina fibers, zirconia fibers, boron nitride fibers, boron fibers, stainless steel fibers, and the like.
  • the mechanical properties of the refractory material can be effectively improved.
  • One or more of these needle-like fillers can be used.
  • the aspect ratio (length/diameter) of the needle-like filler used in the present invention is preferably in the range of 5-50, more preferably in the range of 10-40.
  • the aspect ratio can be obtained by observing the needle-like filler with a scanning electron microscope and measuring its length and width.
  • These flame retardants may be used alone or in combination of two or more.
  • the flame retardant used in the present invention is preferably a phosphorus-based solid flame retardant, more preferably a phosphate, and even more preferably aluminum phosphite, from the viewpoint of sufficiently effectively imparting flame retardancy to a refractory material.
  • a phosphorus-based solid flame retardant more preferably a phosphate, and even more preferably aluminum phosphite
  • the content of the phosphorus-containing compound is preferably 1 part by mass or less with respect to 100 parts by mass of the matrix component, and more preferably the refractory material does not contain the phosphorus-containing compound.
  • phosphorus-containing compound as used herein is a general term for compounds containing phosphorus, and includes the above-described phosphorus-based solid flame retardants, red phosphorus-based flame retardants, phosphorus-containing low-melting-point glass, and the like.
  • the content of the flame retardant in the present invention is not particularly limited, it is preferably 20 to 100 parts by mass, more preferably 30 to 90 parts by mass, and even more preferably 40 to 80 parts by mass, based on 100 parts by mass of the matrix component.
  • the content of the flame retardant is equal to or higher than the above lower limit, flame retardancy can be effectively imparted to the refractory material.
  • the content of the flame retardant is equal to or less than the above upper limit, the proportion of other components in the refractory material can be kept at a certain level or higher, and the closing expansion ratio can be kept at a certain level or higher.
  • Inorganic fillers other than the solid flame retardants described above may also be used.
  • examples of such inorganic fillers include alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, ferrites, basic Magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawsonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, talc, mica, montmorillonite, bentonite, activated clay, imogolite, sericite, glass beads, Aluminum nitride, boron nitride, silicon nitride, various metal powders, magnesium sulfate, lead zirconate titanate, molybdenum sulfide, silicon carbide, various magnetic powders, fly ash, and the like can be used as appropriate.
  • inorganic fillers may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler it is preferable to use calcium carbonate among those mentioned above.
  • its content is not particularly limited, but it is preferably 1 to 200 parts by mass, more preferably 10 to 100 parts by mass, and further 15 to 60 parts by mass with respect to 100 parts by mass of the matrix component. preferable.
  • the refractory material of the present invention may contain a cross-linking agent. Especially when acrylonitrile-butadiene rubber is used as the rubber component, the combined use of the cross-linking agent can increase the expansion pressure and improve the fire resistance. do. When the refractory material contains a cross-linking agent, it is believed that the heat generated during a fire promotes cross-linking of the matrix component such as the rubber component, increasing the viscosity and increasing the expansion pressure.
  • any known cross-linking agent can be used without limitation, and examples thereof include sulfur-based cross-linking agents, organic peroxides, and azo compounds.
  • the sulfur-based cross-linking agent may be an inorganic cross-linking agent such as sulfur, insoluble sulfur, precipitated sulfur, sulfur chloride, sulfur monochloride, sulfur dichloride, or a sulfur-containing organic cross-linking agent.
  • sulfur-containing organic cross-linking agents examples include morpholine disulfide, alkylphenol disulfide, N,N'-dithio-bis(hexahydro-2H-azepinone-2), thiuram polysulfide, 2-(4'-morpholino-dithio)benzothiazole and the like. be done.
  • organic peroxides examples include 2,5-dimethylhexane, 2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 3-di-t -butyl peroxide, t-dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, dicumyl peroxide, ⁇ , ⁇ '-bis(t-butylperoxyisopropyl ) benzene, n-butyl-4,4-bis(t-butylperoxy)butane, 2,2-bis(t-butylperoxy)butane, 1,1-bis(t-butylperoxy)cyclohexane, 1 ,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, t-butylperoxybenzoate; benzoyl peroxide; t-but
  • cross-linking agents when producing a refractory material, a cross-linking reaction is unlikely to occur at the temperature (for example, 70 ° C. to 150 ° C.) at which each component is kneaded, and acrylonitrile-butadiene rubber etc. It is preferable that the cross-linking reaction of the rubber component easily occurs.
  • a sulfur-based cross-linking agent is preferred, and among these, an inorganic cross-linking agent is preferred from the viewpoint of cross-linkability, and sulfur is more preferred.
  • the content of the cross-linking agent is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, with respect to 100 parts by mass of the matrix component. Yes, more preferably 0.5 to 3 parts by mass.
  • the refractory material of the present invention may contain a cross-linking accelerator in addition to the cross-linking agent.
  • cross-linking accelerators include metal oxides.
  • metal oxides include zinc oxide and magnesium oxide. When using metal oxides in the present invention, it is preferred to use zinc oxide.
  • These metal oxides are more preferably used in combination with a long-chain aliphatic carboxylic acid having 12 to 24 carbon atoms, preferably 16 to 20 carbon atoms, such as stearic acid.
  • the long-chain aliphatic carboxylic acid used in combination with the metal oxide is also referred to as a cross-linking accelerator.
  • cross-linking accelerators examples include, in addition to those described above, thiazole-based compounds, sulfenamide-based compounds, thiuram-based compounds, dithiocarbamate-based compounds, and guanidine-based compounds.
  • Thiazole compounds include bis(benzothiazol-2-ylthio)zinc.
  • a crosslinking accelerator may be used individually by 1 type, and may use 2 or more types together.
  • the cross-linking accelerator at least one selected from metal oxides and thiazole-based compounds is preferable, and a mode in which these are used in combination is also preferable. At this time, the metal oxide may be used in combination with a long-chain aliphatic carboxylic acid having 16 to 20 carbon atoms such as stearic acid.
  • the amount of the cross-linking accelerator when it is used in the refractory material of the present invention is not particularly limited, but is preferably 0.1 to 15 parts by mass, more preferably 100 parts by mass of the matrix component. is 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass.
  • the refractory material of the present invention can contain various additive components as necessary within a range that does not impair the object of the present invention.
  • the type of additive component is not particularly limited, and various additives can be used.
  • Such additives include, for example, shrinkage inhibitors, crystal nucleating agents, coloring agents (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, dispersants, gelation accelerators, fillers, reinforcing agents, agents, flame retardant aids, antistatic agents, surfactants, and surface treatment agents.
  • the amount of the additive to be added can be appropriately selected within a range that does not impair the moldability and the like. Additives may be used alone or in combination of two or more.
  • the refractory material of the present invention preferably has a Mooney viscosity of 80 or less at 100°C.
  • the Mooney viscosity of the refractory material is 80 or less, the expansion ratio of the refractory material to blockage can be kept at a certain level or more, and the refractory material easily expands in the plane direction when a fire occurs. From this point of view, the Mooney viscosity is more preferably 75 or less, and even more preferably 70 or less.
  • the lower limit of the Mooney viscosity is not particularly limited, but is preferably 5 or more, more preferably 20 or more, and 35 or more from the viewpoint of ensuring the shape retention of the refractory material to some extent. is more preferred.
  • the Mooney viscosity of the refractory material is a numerical value measured before the refractory material thermally expands, and the measurement method is based on JIS K6300 in the same manner as rubber.
  • the refractory material of the present invention preferably has a residual strength of 2N or more after thermal expansion, more preferably 5N or more, and even more preferably 7N or more.
  • the residual strength after thermal expansion is 5 N or more, the refractory material can sufficiently exhibit the effect of blocking the flame and preventing the spread of the fire when a fire breaks out.
  • the upper limit of the residual strength after thermal expansion is not particularly limited, but is, for example, 20 N or less, preferably 15 N or less from a practical viewpoint.
  • the refractory material of the present invention is preferably in the form of a sheet, and its thickness is not particularly limited. preferable.
  • the refractory material of the present invention can be produced, for example, as follows. First, a matrix component, thermally expandable graphite, a resin, a plasticizer, a flame retardant to be blended as necessary, a cross-linking agent, and other components are mixed with a mixer such as a kneading roll to form a fire-resistant resin composition. get Next, the resulting refractory resin composition can be formed into a sheet by a known molding method such as press molding, calendar molding, extrusion molding, etc., to obtain a refractory material. Also, the fire-resistant resin composition may be applied to a support substrate such as a release sheet or a resin film to form a sheet.
  • the support substrate may be appropriately peeled off from the refractory material obtained in the form of a sheet.
  • the refractory resin composition may be appropriately heated after being molded into a sheet or while being molded into a sheet, and when a thermosetting resin is used, the refractory resin composition is Let things harden.
  • the temperature for mixing and the temperature for forming into a sheet are preferably lower than the expansion initiation temperature of the thermally expandable graphite. Therefore, the kneading temperature is preferably 70 to 150°C, more preferably 90 to 140°C.
  • the temperature for forming into a sheet is preferably 80 to 130°C, more preferably 90 to 120°C.
  • the refractory material of the present invention may be laminated with another sheet member or adhesive layer to form a laminated sheet.
  • a laminated sheet includes, for example, a base material and a fireproof material laminated on one side or both sides of the base material. Substrates are typically woven or non-woven. Fibers used for woven fabrics or non-woven fabrics are not particularly limited, but nonflammable or quasi-flammable materials are preferred, such as glass fibers, ceramic fibers, cellulose fibers, polyester fibers, carbon fibers, graphite fibers, thermosetting A flexible resin fiber or the like is preferable.
  • the laminated sheet can be obtained, for example, by molding the fire-resistant resin composition into a sheet on a base material.
  • the laminated sheet may include a refractory material and an adhesive layer.
  • the adhesive layer may be laminated on one side or both sides of the refractory material, for example.
  • the laminated sheet may comprise a refractory material, a substrate, and an adhesive layer.
  • Such a laminated sheet may have a refractory material on one side of the substrate and an adhesive layer on the other side, or a refractory material and an adhesive layer on one side of the substrate. They may be provided in order.
  • the pressure-sensitive adhesive layer can be formed, for example, by transferring the pressure-sensitive adhesive applied to the release paper to the laminated sheet.
  • the refractory material of the present invention, and the laminated sheet using the same are specifically used for various fittings such as detached houses, collective housing, high-rise housing, high-rise buildings, commercial facilities, public facilities, automobiles, trains, etc. It can be used for various vehicles, ships, aircraft, etc. Among these, it is preferably used for fittings.
  • fixtures concretely, it can be used for walls, beams, pillars, floors, bricks, roofs, board materials, windows, shoji screens, doors, doors, doors, fusuma, transoms, wiring, piping, and the like.
  • refractory material of the present invention and the laminated sheet using the same are particularly applied to the gaps of fittings such as windows, doors, and doors to prevent flames from penetrating through the gaps in the event of a fire or the like. can be prevented.
  • Table 1 shows the evaluation results for each item.
  • ⁇ Occluded expansion ratio> A rectangular parallelepiped of 25 mm ⁇ 25 mm ⁇ 2 mm was cut from the refractory material produced in each example and comparative example. After that, as shown in FIG. 1, the refractory material 10 was placed in a space 12 with a height h of 6 mm in a jig 11 made of a SUS plate with a vertical dimension of 100 mm ⁇ 100 mm. Then, the refractory material 10 together with the jig 11 was put into an oven preheated to 400° C., and the refractory material 10 was heated for 15 minutes. After the heating, the closed expansion ratio was calculated by the following formula based on the area of the refractory material viewed from the thickness direction.
  • the occlusion expansion ratio was evaluated based on the occlusion expansion ratio calculated by the above method. Evaluation criteria are as follows. AA: 8 times or more A: 4.0 times or more and less than 8 times C: less than 4.0 times
  • the residual strength of the refractory material was measured according to the procedures (1) to (3) below.
  • (1) The refractory material produced in each example and comparative example was cut into rectangular parallelepipeds of 20 mm x 100 mm x 2 mm.
  • Rubber/Rubber A NBR “DN401L” manufactured by Nippon Zeon Co., Ltd. Nitrile content: 18% ⁇ Rubber B: BR JSR “BR-01” ⁇ Rubber C: SBR JSR "SBR1502” ⁇ Rubber D: "BUTYL065" manufactured by IIR JSR ⁇ Rubber E: EPDM “EPT X-4010M” manufactured by Mitsui Chemicals, Inc.
  • Resin/Resin A EVA “EV170” manufactured by Mitsui Dow Polychemicals
  • Resin B PVC "TK1000” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Resin D PMMA "Acrypet VH” manufactured by Mitsubishi Chemical Corporation
  • Lubricant A Naphthenic process oil 1 "Sansen 410” manufactured by Japan Sun Oil Co., Ltd., kinematic viscosity 20.8 cSt
  • Lubricant B Naphthenic process oil 2 “Sansen 4240” manufactured by Japan Sun Oil Co., Ltd., kinematic viscosity 374 cSt
  • Liquid rubber > ⁇ Liquid rubber A: Liquid NBR “Nipol 1312” manufactured by Nippon Zeon Co., Ltd. ⁇ Liquid rubber B: Liquid BR “TD3000” manufactured by Nippon Soda Co., Ltd. ⁇ Liquid resin> ⁇ Liquid resin A: PVAc Kanto Chemical Co., Ltd. “Vinyl acetate (polymer) solution”
  • Examples 1-18, 20-23, Comparative Examples 1-2 A matrix component, thermally expandable graphite, a flame retardant, and a flexibility-imparting agent were put into a roll and kneaded at 120° C. for 5 minutes to obtain a fire-resistant resin composition. The resulting refractory resin composition was press-molded at 100° C. for 3 minutes to obtain a sheet-like refractory material with a thickness of 1.8 mm. The evaluation results are shown in Table 1.
  • Example 19 A matrix component, thermally expandable graphite, a flame retardant, and a flexibility-imparting agent were supplied to a planetary stirrer according to the formulation shown in Table 1, and kneaded at room temperature at 1000 rpm for 1 minute to obtain a refractory resin composition. got stuff After that, the fire-resistant resin composition was applied onto the PET film, and press molding was performed at 20° C. and 10 MPa to obtain a sheet-like molding with a thickness of 500 ⁇ m. After that, the molded product was placed in a constant temperature bath at 90° C. for 10 hours and cured to obtain a sheet-like refractory material. The evaluation results are shown in Table 1.
  • the thermally expandable refractory material satisfying the requirements of the present invention expanded sufficiently in the plane direction even in a narrow space in the thickness direction.
  • the heat-expandable refractory material prepared in the comparative example expanded sufficiently in the plane direction when the refractory material was placed in a narrow space in the thickness direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ゴム及び樹脂からなる群から選択される少なくとも1種のマトリックス成分、熱膨張性黒鉛、並びに可撓性付与剤を含有する熱膨張性耐火材であって、前記ゴム及び樹脂はいずれも23℃において固体であり、前記熱膨張性耐火材を、寸法25mm×25mm×2mmに切り取り、厚み方向に6mmの空間内に配置し、その後、前記熱膨張性耐火材を、前記空間ごと400℃で15分間加熱した場合において、厚み方向から見た前記熱膨張性耐火材の面積を、加熱前の前記面積で除することにより得られる閉塞膨張倍率が4.0倍以上となる、熱膨張性耐火材。

Description

熱膨張性耐火材
 本発明は、熱膨張性耐火材に関する。
 建築分野では、防火のために、建具、柱、壁材等の建築材料に耐火材が用いられる。耐火材としては、樹脂に、難燃剤、無機充填剤などに加えて、熱膨張性黒鉛が配合された熱膨張性耐火材等が用いられている(例えば、特許文献1参照)。このような熱膨張性耐火材は、加熱により膨張して燃焼残渣が耐火断熱層を形成し、耐火断熱性能を発現する。
 熱膨張性黒鉛を含有する熱膨張性耐火材は、例えば、建築物の開口部に設けられるドア、窓などの建具と、これらを包囲するドア枠、窓枠などの枠との隙間に設けられ、火災時には該シートが厚み方向に膨張して、建具と枠材の隙間を閉塞し、延焼を防止することができる。
特開2017-141463号公報
 しかしながら、従来の熱膨張性耐火材は、膨張する方向に強い異方性があり、具体的には、厚み方向によく膨らみ、面方向には膨らみにくい性質を有する。そのため、ドアとドア枠の間の隙間といった、厚み方向に狭い空間においては、本来の膨張能力が発揮できない問題がある。
 そこで、本発明は、面方向に十分膨張する熱膨張性耐火材を提供することを課題とする。
 本発明者らは、鋭意検討の結果、ゴム及び樹脂(いずれも23℃において固体)からなる群から選択される少なくとも1種からなるマトリックス成分、熱膨張性黒鉛、並びに可撓性付与剤を含有し、閉塞膨張倍率を一定以上とする熱膨張性耐火材とすることにより、上記課題の解決を見出し、本発明を完成させた。
 本発明は、以下の[1]~[7]を提供するものである。
[1]ゴム及び樹脂からなる群から選択される少なくとも1種からなるマトリックス成分、熱膨張性黒鉛、並びに可撓性付与剤を含有する熱膨張性耐火材であって、前記ゴム及び樹脂はいずれも23℃において固体であり、前記熱膨張性耐火材を、寸法25mm×25mm×2mmに切り取り、厚み方向に6mmの空間内に配置し、その後、前記熱膨張性耐火材を400℃で15分間加熱した場合において、厚み方向から見た前記熱膨張性耐火材の面積を、加熱前の前記面積で除することにより得られる閉塞膨張倍率が4.0倍以上となる、熱膨張性耐火材。
[2]前記熱膨張性耐火材が、さらに難燃剤を含有する、[1]に記載の熱膨張性耐火材。
[3]前記可撓性付与剤が、可塑剤、ゴム加工油、及び液状ゴムからなる群から選択される少なくとも1種である、[1]又は[2]に記載の熱膨張性耐火材。
[4]前記可塑剤が非フタル酸系可塑剤である、[3]に記載の熱膨張性耐火材。
[5]前記可撓性付与剤の合計含有量が、前記マトリックス成分100質量部に対し、30~80質量部である、[1]~[4]のいずれかに記載の熱膨張性耐火材。
[6]前記熱膨張性耐火材の100℃におけるムーニー粘度が、80以下である、[1]~[5]のいずれかに記載の熱膨張性耐火材。
[7]前記ゴムが、分子構造中にハロゲンを含まない熱硬化性ゴムである、[1]~[6]のいずれかに記載の熱膨張性耐火材。
 本発明によれば、面方向に十分膨張する熱膨張性耐火材を提供することができる。
熱膨張性耐火材を空間に配置した状態を真横から見た場合の概略図である。 加熱前後の熱膨張性耐火材を厚み方向から見た場合の概略図である。 熱膨張性耐火材をコの字型治具に配置した場合の概略図である。 加熱後の熱膨張性耐火材について、3点曲げ試験を実施する場合の概略図である。
[熱膨張性耐火材]
 本発明の熱膨張性耐火材(以下、「耐火材」と表記する場合がある。)は、閉塞膨張倍率が4.0倍以上となるものである。閉塞膨張倍率が4.0倍未満であると、面方向への膨張が不十分なものとなり、厚み方向に狭い空間に耐火材を配置した場合において、耐火材の性能を十分発揮することができない。こうした観点を踏まえると、閉塞膨張倍率は、4.5倍以上であることが好ましく、5.0倍以上であることがより好ましい。他方、閉塞膨張倍率の上限値に関しては、特に限定されないが、実用的には、例えば15倍以下、好ましくは10倍以下である。本発明において、閉塞膨張倍率は、マトリックス成分、熱膨張性黒鉛、及び可撓性付与剤を耐火材中に含有することにより、高くすることができる。特に、可撓性付与剤を含有すると、耐火材が熱膨張しやすくなり、閉塞膨張倍率を高くしやすくなる。
 本発明において、閉塞膨張倍率は、以下の方法により得ることができる。
 まず、耐火材を25mm×25mm×2mmの直方体に切り取り、切り取った耐火材を、厚み方向に6mmの空間内に配置する。ただし、耐火材の厚みが2mmに満たない場合には、厚みが2mmとなるように2枚以上の耐火材を重ね合わせて、プレス成型などにより一体化して測定サンプルとするとよい。
 より具体的には、図1に示すように、治具11の中の、高さhが6mmの空間12に耐火材10を配置するとよい。その後、耐火材10を400℃で15分間加熱した場合において、図2右図に示される、厚み方向から見た耐火材10の面積(以下、「加熱後の面積」と表記する場合がある。)を、図2左図に示される、厚み方向から見た加熱前の耐火材10の面積(以下、「加熱前の面積」と表記する場合がある。)で除することで、閉塞膨張倍率を得ることができる。
 なお、空間12は、厚み6mmのスペーサを介して2つの金属板13(材質:SUS)を配置して、2つの金属板を固定部材14により固定させて、2つの金属板13の間に形成した空間である。
 本発明の熱膨張性耐火材は、マトリックス成分、熱膨張性黒鉛、及び可撓性付与剤を含有する。以下、各成分について詳細に説明する。
<マトリックス成分>
 本発明の耐火材は、ゴム及び樹脂から選択される少なくとも1種からなるマトリックス成分を含有する。ゴム及び樹脂はいずれも、23℃において固体である。
(ゴム)
 ゴム成分としては、分子構造中にハロゲンを含まない熱硬化性ゴムであることが好ましい。熱硬化性ゴムとは、熱膨張性耐火材においても熱硬化性を有するゴムであり、例えば共役ジエン系ゴムなどの主鎖に二重結合を有するゴムが挙げられる。熱硬化性ゴムを使用することで、加熱時に硬化して、熱膨張後の耐火材の残渣強度を一定以上とすることができる。そのため、火炎を塞いで延焼を防止するなど、優れた耐火性を発揮することができる。また、分子構造中にハロゲンを含まないゴムを使用することにより、火災発生時において、ハロゲンに起因する有毒ガスの発生を防止することができる。
 分子構造中にハロゲンを含まない熱硬化性ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブチルゴム(IIR)、ブタジエンゴム(BR)、1,2-ポリブタジエンゴム、スチレン-ブタジエンゴム(SBR)、アクリロニトリルゴム-ブタジエンゴム(NBR)などの共役ジエン系ゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、アクリルゴム、多加硫ゴム、非加硫ゴム、シリコーンゴム、ウレタンエラストマーなどが挙げられる。
 これらの中でも、残渣強度及び膨張圧力を高め、耐火性を向上させる観点から、アクリロニトリル-ブタジエンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、ブチルゴム、エチレン-プロピレン-ジエンゴムからなる群から選択される少なくとも1種であることが好ましい。さらには、アクリロニトリル-ブタジエンゴム、ブタジエンゴム、スチレン-ブタジエンゴムからなる群から選択される少なくとも1種であることがより好ましい。中でも、熱膨張性耐火材の加熱後の面積を所望の範囲に調整しやすい観点から、アクリロニトリル-ブタジエンゴムがさらに好ましい。
 アクリロニトリル-ブタジエンゴムのニトリル量は、8~40質量%が好ましく、10~35質量%がより好ましく、15~25質量%がさらに好ましい。ニトリル量が上記の範囲にあるアクリロニトリル-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、閉塞膨張倍率を一定以上に調整しやすい。
 アクリロニトリル-ブタジエンゴムの100℃におけるムーニー粘度ML(1+4)は、20~90が好ましく、30~80がより好ましく、40~70がさらに好ましい。100℃におけるムーニー粘度ML(1+4)が上記の範囲にあるアクリロニトリル-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、閉塞膨張倍率を一定以上に調整しやすい。
 スチレン-ブタジエンゴム(SBR)としては、スチレンとブタジエンのランダム共重合体が挙げられる。スチレン-ブタジエンゴムのスチレン量は、20~60質量%が好ましく、25~50質量%がより好ましく、30~45質量%がさらに好ましい。スチレン量が上記の範囲にあるスチレン-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、閉塞膨張倍率を一定以上に調整しやすい。
 スチレン-ブタジエンゴムの100℃におけるムーニー粘度ML(1+4)は、20~60が好ましく、30~55がより好ましく、40~50がさらに好ましい。100℃におけるムーニー粘度ML(1+4)が上記の範囲にあるスチレン-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、閉塞膨張倍率を一定以上に調整しやすい。
 なお、本発明において、上記ムーニー粘度ML(1+4)は、JIS K6300に準拠して測定される。
(樹脂)
 樹脂としては、熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。
 上記熱可塑性樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ(1-)ブテン樹脂、ポリペンテン樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、エチレン-酢酸ビニル共重合体樹脂(EVA)、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリメチルメタクリレート系樹脂(PMMA)などの(メタ)アクリル系樹脂、ポリアミド樹脂、ポリ塩化ビニル系樹脂(PVC)、ノボラック樹脂、ポリウレタン樹脂、ポリイソブチレン等が挙げられる。
 熱可塑性樹脂の中でも、耐火材の耐火性を良好とする観点から、ポリ塩化ビニル系樹脂、エチレン-酢酸ビニル共重合体樹脂、(メタ)アクリル系樹脂から選択される少なくとも1種が好ましく、ポリ塩化ビニル樹脂、エチレン-酢酸ビニル共重合体樹脂がより好ましく、ポリ塩化ビニル樹脂がさらに好ましい。
 ポリ塩化ビニル系樹脂(PVC)としては、塩化ビニルモノマーの単独重合体、塩化ビニルモノマーと塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとの共重合体、塩化ビニルモノマー以外の重合体又は共重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体等が挙げられ、これらは単独で使用されてもよく、2種以上が併用されてもよい。
 なお、本発明においては、ポリ塩化ビニル系樹脂の塩素化物である塩素化ポリ塩化ビニル系樹脂も、ポリ塩化ビニル系樹脂に含まれるものとする。
 ポリ塩化ビニル樹脂の重合度は500~2000が好ましく、800~1500がより好ましい。
 エチレン-酢酸ビニル共重合体樹脂(EVA)としては、非架橋型のエチレン-酢酸ビニル共重合体樹脂であってもよいし、また、高温架橋型のエチレン-酢酸ビニル共重合体樹脂であってもよい。また、エチレン-酢酸ビニル共重合体樹脂としては、エチレン-酢酸ビニル共重合体のけん化物、エチレン-酢酸ビニルの加水分解物などのようなエチレン-酢酸ビニル変性体樹脂も用いることができる。
 エチレン-酢酸ビニル共重合体樹脂は、JIS K 6730「エチレン・酢酸ビニル樹脂試験方法」に準拠して測定される酢酸ビニル含量が好ましくは5~90質量%、より好ましくは8~50質量%、さらに好ましくは12~35質量%である。
 エチレン-酢酸ビニル共重合体樹脂の190℃におけるメルトフローレート(MFR)は、好ましくは0.5~15g/10minであり、より好ましくは1~8g/10minである。なお、エチレン-酢酸ビニル共重合体の190℃におけるメルトフローレートは、荷重2.16kgにおける測定値であり、JIS K7210:1999に準拠して測定される。
 上記熱硬化性樹脂としては、特に制限されないが、例えば、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、熱硬化性ポリイミド等が挙げられ、中でも、耐火性を向上させる観点から、エポキシ樹脂が好ましい。
 本発明で用いられるエポキシ樹脂は、特に限定されないが、例えば、エポキシ化合物単独、又は、主剤であるエポキシ化合物と、硬化剤とからなるものが挙げられる。エポキシ化合物は、エポキシ基を有する化合物であり、具体的には、グリシジルエーテル型、グリシジルエステル型が例示される。グリジシルエーテル型は、2官能でもよいし、3官能以上の多官能でもよい。また、グリシジルエステル型も同様である。エポキシ化合物は、架橋度を調整するためなどに1官能のものを含んでもよい。これらの中では、2官能のグリシジルエーテル型が好ましい。
 上記2官能のグリシジルエーテル型のエポキシ化合物としては、例えば、ポリエチレングリコール型、ポリプロピレングリコール型などのアルキレングリコール型、ネオペンチルグリコール型、1、6-ヘキサンジオール型、水添ビスフェノールA型等の脂肪族エポキシ化合物が例示される。さらには、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、エチレンオキサイド-ビスフェノールA型、プロピレンオキサイド-ビスフェノールA型などの芳香族環を含む芳香族エポキシ化合物が挙げられる。これらの中では、ビスフェノールA型、ビスフェノールF型などの芳香族エポキシ化合物が好ましい。
 上記グリシジルエステル型のエポキシ化合物としては、例えば、ヘキサヒドロ無水フタル酸型、テトラヒドロ無水フタル酸型、ダイマー酸型、p-オキシ安息香酸型等のエポキシ化合物が例示される。
 3官能以上のグリシジルエーテル型エポキシ化合物としては、例えば、フェノールノボラック型、オルソクレゾールノボラック型、DPPノボラック型、ジシクロペンタジエン・フェノール型等が例示される。
 これらのエポキシ化合物は、単独で用いられてもよく、2種以上が併用されてもよい。エポキシ樹脂は、芳香環を有するエポキシ樹脂でも、芳香環を有しないエポキシ樹脂でもよいが、不燃性を高める観点から、芳香環を有するエポキシ樹脂が好ましい。
 硬化剤としては、重付加型または触媒型のものが用いられる。重付加型の硬化剤としては、例えば、ポリアミン、酸無水物、ポリフェノール、ポリメルカプタン等が例示される。また、触媒型の硬化剤としては、例えば、3級アミン、イミダゾール類、ルイス酸錯体等が例示される。これら硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。
 硬化剤の含有量は、上記エポキシ樹脂化合物100質量部に対して50~150質量部の範囲内であることが好ましい。50質量部以上であると、エポキシ樹脂化合物が硬化しやすくなり、150質量部以下であると、硬化剤の配合量に応じた効果が得られる。
 以上のマトリックス成分は、1種単独で使用してもよいし、2種以上を併用して使用してもよい。マトリックス成分としては、熱膨張後の耐火材の残渣強度を一定以上とし、優れた耐火性を発揮する観点から、ゴムを使用することが好ましく、分子構造中にハロゲンを含まない熱硬化性ゴムを使用することがより好ましく、NBRを使用することがさらに好ましい。
 また、マトリックス成分の含有量は、耐火材全量基準に対して、好ましくは15質量%以上、より好ましくは18質量%以上であり、さらに好ましくは20質量%以上であり、そして好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。マトリックス成分の含有量がこれら下限値以上であると耐火材の形状保持性が向上する。マトリックス成分の含有量がこれら上限値以下であると、後述する熱膨張性黒鉛の含有量を多く調整できるため、耐火性が向上する。
<熱膨張性黒鉛>
 本発明の耐火材は、熱膨張性黒鉛を含有する。熱膨張性黒鉛は、加熱時に膨張する従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の原料粉末を、強酸化剤で酸処理してグラファイト層間化合物を生成させたものである。強酸化剤としては、濃硫酸、硝酸、セレン酸等の無機酸、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等が挙げられる。熱膨張性黒鉛は炭素の層状構造を維持したままの結晶化合物である。
 熱膨張性黒鉛は中和処理されてもよい。つまり、上記のように強酸化剤などで処理して得られた熱膨張性黒鉛を、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和してもよい。
 本発明の耐火材中の熱膨張性黒鉛の含有量は、マトリックス成分100質量部に対して、好ましくは50~500質量部であり、より好ましくは70~250質量部であり、さらに好ましくは100~200質量部である。熱膨張性黒鉛の含有量がこれら下限値以上であると、熱膨張性耐火材の膨張圧力を高めやすくなり、閉塞膨張倍率を一定以上に調整しやすくなる。他方、熱膨張性黒鉛の含有量がこれら上限値以下であると、形状保持性、加工性などが良好になる。
 本発明における熱膨張性黒鉛は、平均アスペクト比が好ましくは15以上であり、より好ましくは20以上であり、そして通常は1000以下である。熱膨張性黒鉛の平均アスペクト比がこれら下限値以上であると、耐火材の膨張圧力を高めやすくなる。
 熱膨張性黒鉛のアスペクト比は、10個以上(例えば50個)の熱膨張性黒鉛を対象にして、最大寸法(長径)と最小寸法(短径)を測定し、これらの比(最大寸法/最小寸法)の平均値として求める。
 熱膨張性黒鉛の平均粒径は、所望の膨張圧力とする観点から、好ましくは50~500μmであり、より好ましくは100~400μmである。なお、熱膨張性黒鉛の平均粒径は、10個以上(例えば50個)の熱膨張性黒鉛を対象にして、最大寸法の平均値として求める。
 上記した熱膨張性黒鉛の最小寸法及び最大寸法は、例えば、電界放出形走査電子顕微鏡(FE-SEM)を用いて測定することができる。
<可撓性付与剤>
 本発明の耐火材は、可撓性付与剤を含有する。可撓性付与剤を含有することにより、耐火材に可撓性が付与され、耐火材の成分の粘度が低下したり、耐火材の製造時に、熱膨張性黒鉛が破砕されにくくなったりするため、閉塞膨張倍率を一定以上とすることができ、耐火材が配置された空間の形状に応じた膨張ができる。また、耐火材の成形後も、耐火材の収縮が発生しにくいため、耐火材の形状を安定的に維持することができる。さらに粘着性も耐火材に付与されるため、施工性に優れた耐火材とすることができる。可撓性付与剤としては、具体的には、可塑剤、ゴム加工油、液状ゴム、液状樹脂から選択される少なくとも1種であることが好ましく、可塑剤、ゴム加工油、液状ゴムから選択される少なくとも1種であることが好ましい。
(可塑剤)
 可塑剤としては、非フタル酸系可塑剤であることが好ましい。可塑剤が非フタル酸系可塑剤であることで、環境負荷を低減することができる。
 非フタル酸系可塑剤は、フタル酸(オルトフタル酸)の誘導体からなるフタル酸系可塑剤以外の可塑剤である。非フタル酸系可塑剤としては、トリメリット酸系可塑剤、リン酸エステル系可塑剤、アジピン酸系可塑剤、スルホン酸系可塑剤、クエン酸系可塑剤、大豆油系可塑剤、シクロヘキサンジカルボキシレート系可塑剤、テレフタル酸系可塑剤等が挙げられる。
 なお、これらの可塑剤は、通常、23℃において液体である。
 リン酸エステル系可塑剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェート等のトリアリールホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、トリヘキシルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェート等のアルキルホスフェート、エチルジフェニルホスフェート、トリオレイルホスフェート等が挙げられる。
 アジピン酸系可塑剤としては、ジ-2-エチルへキシルアジペート、ジイソノニルアジペート、ジイソデシルアジペート、アジピン酸ジブトキシエトキシエチルなどのアジピン酸エーテルエステルが挙げられる。
 スルホン酸系可塑剤としては、ベンゼンスルホンブチルアミド、o-トルエンスルホンアミド、p-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、o-トルエンエチルスルホンアミド、p-トルエンエチルスルホンアミド、N-シクロヘキシル-p-トルエンスルホンアミド、フェノール及びクレゾールのアルキルスルホン酸エステル、スルホンアミド-ホルムアミド、アルキルスルホン酸エステル等が挙げられる。
(ゴム加工油)
 ゴム加工油としては、特に限定されないが、一般的に滑剤として使用されるものを使用できる。ゴム加工油を含有させることにより、マトリックス成分の流動性が良好になり、熱膨張性黒鉛が組成物中に適切に分散される。そのため、耐火材の熱膨張性や残渣強度が良好となり、耐火材の耐火性が向上する。本発明において用いられるゴム加工油としては、特に限定されないが、例えば、プロセスオイルなどが挙げられる。
 プロセスオイルとしては、特に限定されず、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、オレフィン系プロセスオイル等が挙げられる。これらの中では、ナフテン系プロセスオイルを含有することが好ましい。
 また、ゴム加工油の40℃における動粘度は、5~500cStであることが好ましく、10~450cStであることがより好ましく、20~400cStであることがさらに好ましい。なお、動粘度の測定方法は、JIS K 2283に準拠して測定できる。
(液状ゴム)
 液状ゴムは、23℃において液体となるゴムである。液状ゴムとしては、液状ポリイソプレンゴム、カルボキシ変性液状ポリイソプレンゴム、液状ポリブタジエンゴム、カルボキシ変性液状ポリブタジエンゴム、水酸基変性液状ポリブタジエンゴム、液状アクリロニトリルブタジエン共重合ゴム、液状スチレンブタジエン共重合ゴム、液状スチレンイソプレン共重合ゴム等が挙げられる。
 液状ゴムの数平均分子量(Mn)は、1000~150000が好ましく、10000~100000がより好ましい。
 なお、液状ゴムの数平均分子量(Mn)とは、ゲルパーミエーションクロマトグラフィー測定装置を用いて、標準ポリスチレンで換算することにより得られる測定値である。
 また、液状ゴムの38℃における粘度は、5~1000Pa・sであることが好ましく、50~800Pa・sであることがより好ましく、100~500Pa・sであることがさらに好ましい。
(液状樹脂)
 液状樹脂は、23℃において液体となる樹脂である。液状樹脂としては、ポリ酢酸ビニル系(PVAc)樹脂、シリコーン系樹脂、変性シリコーン(MS)系樹脂、ポリイソブチレン(PIB)系樹脂、ポリサルファイド系樹脂、変性ポリサルファイド系樹脂、ポリウレタン系樹脂、ポリアクリル系樹脂、ポリアクリルウレタン系樹脂などがあげられる。これらの中では、ポリ酢酸ビニル系樹脂が好ましい。
 本発明において、可撓性付与剤は、1種単独で使用してもよいし、2種以上を併用して使用してもよい。可撓性付与剤としては、上記した中では、可塑剤を使用することが好ましい。可塑剤を使用すると、耐火材表面への可撓性付与剤のブリードを抑制することもできる。可塑剤の中でも、リン酸エステル系可塑剤、アジピン酸系可塑剤、及びスルホン酸系可塑剤から選択される少なくとも1種が好ましく、スルホン酸系可塑剤を使用することがより好ましく、アルキルスルホン酸エステルを使用することがさらに好ましい。
 可撓性付与剤の含有量は、マトリックス成分100質量部に対し、20~120質量部が好ましく、25~110質量部がより好ましく、30~80質量部がさらに好ましく、45~80質量部がよりさらに好ましい可撓性付与剤の含有量が上記下限値以上であると、閉塞膨張倍率を一定以上とすることができ、火災発生時において耐火材が膨張しやすくなる。また、可撓性付与剤の含有量が上記上限値以下であると、耐火材の残渣強度を一定以上にでき、形状保持性に優れた耐火材を形成することができる。
<難燃剤>
 本発明の耐火材は、難燃剤を含有することが好ましい。難燃剤を含有することにより、耐火材の難燃性を高めることができ、耐火材の性能をより効果的に発揮することができる。本発明に使用する難燃剤としては、常温(23℃)、常圧(1気圧)において固体のものであることが好ましく、具体的には、リン系固体難燃剤、赤燐系難燃剤、ホウ素含有難燃剤、臭素系難燃剤、アンチモン含有難燃剤、金属水酸化物、低融点ガラス、針状フィラー等が挙げられる。
(リン系固体難燃剤)
 リン系固体難燃剤は、常温(23℃)、常圧(1気圧)にて固体となるものであり、後述する赤燐系難燃剤以外のものである。具体的には、リン酸塩、ホスファゼン化合物、リン酸エステル化合物、ホスフィン酸金属塩等が挙げられる。
 リン酸塩の具体例としては、例えば、モノリン酸塩、ポリリン酸塩等が挙げられる。なお、ここでいうリン酸塩は、正リン酸塩のみならず、亜リン酸塩、次亜リン酸塩なども含む概念である。ポリリン酸塩も同様である。
 モノリン酸塩としては、例えば、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素ニアンモニウム等のアンモニウム塩、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸一ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩、リン酸一リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸一リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩、リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩、リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩、リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩、リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩、第一リン酸アルミニウム、第二リン酸アルミニウム、第三リン酸アルミニウム、次亜リン酸アルミニウム等のアルミニウム塩等が挙げられる。この中では、リン酸アンモニウム、亜リン酸アルミニウムが好ましく、亜リン酸アルミニウムがより好ましい。
 ポリリン酸塩としては、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等が挙げられ、これらの中でもポリリン酸アンモニウムが好ましい。
 リン酸塩としては、イントメッセント系難燃剤も使用できる。イントメッセント系難燃剤としては、例えば、炭化を促進するリン系成分と、消火及び発泡を促進する窒素系成分を含有するリン酸塩が挙げられる。イントメッセント系難燃剤は、燃焼が始まり加熱されると材料表面に泡が吹き出し、泡状の断熱膨張層ができることによって材料表面の熱が内部に伝わらないようにすると共に、酸素の供給を遮断することによって熱分解と酸化反応を抑止することで、難燃剤としての役割を果たすことができる。
 イントメッセント系難燃剤を構成するリン系成分としては、例えばピロリン酸、三リン酸などのポリリン酸や、オルトリン酸(正リン酸)などのモノリン酸が挙げられる。
 イントメッセント系難燃剤を構成する窒素系成分としては、例えば、N,N,N',N'-テトラメチルジアミノメタン、エチレンジアミン、N,N'-ジメチルエチレンジアミン、N,N'-ジエチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N,N',N'-テトラメチルエチレンジアミン、N,N,N',N'-テトラエチルエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7-ジアミノへプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン及び1,10-ジアミノデカンなどの脂肪族ジアミン、ピペラジン、trans-2,5-ジメチルピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジンなどのピペラジン環を含むアミン化合物、メラミン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、2,4-ジアミノ-6-ヒドロキシ-1,3,5-トリアジン、2-アミノ-4,6-ジヒドロキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン及び2-アミノ-4,6-ジメルカプト-1,3,5-トリアジンなどのトリアジン環を含むアミン化合物などが挙げられる。
 イントメッセント系難燃剤を構成するリン系成分としては、より高い難燃性を得られるようにする観点から、ポリリン酸を含むことが好ましい。
 イントメッセント系難燃剤は、オルトリン酸メラミン塩、ピロリン酸メラミン塩、ポリリン酸メラミン塩、オルトリン酸ピペラジン塩、ピロリン酸ピペラジン塩、及びポリリン酸ピペラジン塩からなる群から選択される少なくとも1種の化合物であることが好ましい。
 中でも、オルトリン酸メラミン塩、ピロリン酸メラミン塩、及びポリリン酸メラミン塩からなる群から選択されるメラミン塩と、オルトリン酸ピペラジン塩、ピロリン酸ピペラジン塩、及びポリリン酸ピペラジン塩からなる群から選択されるピペラジン塩との混合物であることがより好ましい。また、上記メラミン塩としては、中でも難燃性の点からピロリン酸メラミンがより好ましく、上記ピペラジン塩としては、中でも難燃性の点から、ピロリン酸ピペラジンがより好ましい。
 ホスファゼン化合物は、リン原子と窒素原子が交互に結合した有機化合物である。ホスファゼン化合物は、例えば、環状ホスファゼン化合物、鎖状ホスファゼン化合物、架橋基で架橋した架橋ホスファゼン化合物等が挙げられる。ホスファゼン化合物としては、具体的には、下記一般式(1)で示す構成単位を含有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001

 上記一般式(1)中、Xは、それぞれ独立に炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12の置換又は無置換のアリール基、炭素数6~12の置換又は無置換のアリールオキシ基、アミノ基、ハロゲン原子のいずれかを示す。
 一般式(1)において、アリール基における置換基としては、アルキル基、アミノ基、ハロゲン原子などが挙げられる。
 Xはそれぞれ独立にフェニル基、置換フェニル基、フェニルオキシ基、又は置換フェニル貴のいずれかであることが好ましく、より好ましくはフェニル基又はフェニルオキシ基のいずれかである。
 リン酸エステル化合物としては、常温(23℃)で固体のものであれば特に限定されず、例えば、モノリン酸エステル、縮合リン酸エステル等が挙げられる。これらのリン酸エステル化合物は、市販品であってもよい。
 モノリン酸エステルとしては、トリフェニルホスフェート、トリス(トリブロモネオペンチル)ホスフェートが挙げられる。また、モノリン酸エステルは、市販品として、「TPP」、「CR-900」、「DAIGUARD-1000」(以上、大八化学工業社製)等が挙げられる。
 縮合リン酸エステルはハロゲンを含有する含ハロゲン縮合リン酸エステルでもよいし、ハロゲンを含有しない非ハロゲン縮合リン酸エステルなどでもよい。より具体的には、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)などのアルキル置換芳香族系縮合リン酸エステルなどが挙げられる。また、縮合リン酸エステル類としては市販品も使用できる。具体的には、「DAIGUARD-850」、「PX200」などの非ハロゲン縮合リン酸エステル(以上、大八化学工業社製)が挙げられる。
 ホスフィン酸金属塩は、有機ホスフィン酸の金属塩である。ホスフィン酸金属塩の具体例としては、例えば、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、テトラキスジエチルホスフィン酸チタン、ビスメチルエチルホスフィン酸チタニル、テトラキスメチルエチルホスフィン酸チタン、ビスジフェニルホスフィン酸チタニル、テトラキスジフェニルホスフィン酸チタンなどが挙げられる。これらの中では、トリスジエチルホスフィン酸アルミニウムを使用することが好ましい。
 また、リン系固体難燃剤中のリン濃度は、耐火材の難燃性を十分高める観点から、リン系固体難燃剤全量基準で、10質量%以上が好ましく、12質量%以上がより好ましく、25質量%以上がさらに好ましい。
(赤燐系難燃剤)
 赤燐系難燃剤は、赤燐単体からなるものでもよいが、赤燐に樹脂、金属水酸化物、金属酸化物等を被膜したものでもよいし、赤燐に樹脂、金属水酸化物、金属酸化物等を混合したものでもよい。赤燐を被膜し、または赤燐と混合する樹脂は、特に限定されないがフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、及びシリコーン樹脂等の熱硬化性樹脂が挙げられる。被膜ないし混合する化合物としては、難燃性の観点から、金属水酸化物が好ましい。金属水酸化物は、後述するものを適宜選択して使用するとよい。
(ホウ素含有難燃剤)
 本発明で使用するホウ素含有難燃剤としては、ホウ砂、酸化ホウ素、ホウ酸、ホウ酸塩等が挙げられる。酸化ホウ素としては、例えば、三酸化二ホウ素、三酸化ホウ素、二酸化二ホウ素、三酸化四ホウ素、五酸化四ホウ素等が挙げられる。
 ホウ酸塩としては、例えば、アルカリ金属、アルカリ土類金属、周期表第4族、第12族、第13族の元素およびアンモニウムのホウ酸塩等が挙げられる。具体的には、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸セシウム等のホウ酸アルカリ金属塩、ホウ酸マグネシウム、ホウ酸カルシウム、ホウ酸バリウム等のホウ酸アルカリ土類金属塩、ホウ酸ジルコニウム、ホウ酸亜鉛、ホウ酸アルミニウム、ホウ酸アンモニウム等が挙げられる。
(臭素系難燃剤)
 臭素系難燃剤としては、分子構造中に臭素を含有し、常温、常圧で固体となる化合物であれば特に限定されないが、例えば、臭素化芳香環含有芳香族化合物等が挙げられる。 臭素化芳香環含有芳香族化合物としては、ヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサブロモビフェニル、デカブロモビフェニル、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサブロモジフェニルエーテル、ビス(ペンタブロモフェノキシ)エタン、エチレンビス(ペンタブロモフェニル)、エチレンビス(テトラブロモフタルイミド)、テトラブロモビスフェノールA等のモノマー系有機臭素化合物が挙げられる。
 また、臭素化芳香環含有芳香族化合物は、臭素化合物ポリマーであってもよい。具体的には、臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマー、このポリカーボネートオリゴマーとビスフェノールAとの共重合物等の臭素化ポリカーボネート、臭素化ビスフェノールAとエピクロルヒドリンとの反応によって製造されるジエポキシ化合物などが挙げられる。さらには、臭素化フェノール類とエピクロルヒドリンとの反応によって得られるモノエポキシ化合物等の臭素化エポキシ化合物、ポリ(臭素化ベンジルアクリレート)、臭素化ポリフェニレンエーテルと臭素化ビスフェノールAと塩化シアヌールとの臭素化フェノールの縮合物、臭素化(ポリスチレン)、ポリ(臭素化スチレン)、架橋臭素化ポリスチレン等の臭素化ポリスチレン、架橋または非架橋臭素化ポリ(-メチルスチレン)等が挙げられる。
 また、ヘキサブロモシクロドデカンなどの臭素化芳香環含有芳香族化合物以外の化合物であってもよい。
(アンチモン含有難燃剤)
 アンチモン含有難燃剤としては、例えば、酸化アンチモン、アンチモン酸塩、ピロアンチモン酸塩等が挙げられる。酸化アンチモンとしては、例えば、三酸化アンチモン、五酸化アンチモン等が挙げられる。アンチモン酸塩としては、例えば、アンチモン酸ナトリウム、アンチモン酸カリウム等が挙げられる。ピロアンチモン酸塩としては、例えば、ピロアンチモン酸ナトリウム、ピロアンチモン酸カリウム等が挙げられる。
(金属水酸化物)
 本発明に使用する金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化鉄、水酸化ニッケル、水酸化ジルコニウム、水酸化チタン、水酸化亜鉛、水酸化銅、水酸化バナジウム、水酸化スズ等が挙げられる。
(低融点ガラス)
 固体難燃剤として使用する低融点ガラスは、加熱されると軟化して溶融状態となり、無機バインダーとして作用し、耐火材の機械的強度を向上させる効果を有する。低融点ガラスは、具体的には1000℃以下の温度で軟化又は溶融するガラスを意味し、低融点ガラスの軟化温度は200~900℃が好ましく、より好ましくは300~800℃、さらに好ましくは300~600℃である。なお、軟化温度は、例えばDTAの変曲点から測定した値である。
 上記低融点ガラスとしては、ケイ素、アルミニウム、ホウ素、リン、亜鉛、鉄、銅、チタン、バナジウム、ジルコニウム、タングステン、モリブデン、タリウム、アンチモン、錫、カドミウム、砒素、鉛、アルカリ金属、アルカリ土類金属、ハロゲン、カルコゲンよりなる群から選ばれた少なくとも1種以上の元素と酸素からなるガラスが挙げられる。低融点ガラスは、ガラスフリットなどの粒子状などであるとよい。
 上記低融点ガラスとしては、日本琺瑯釉薬社製、商品名「4020」(リン酸アルミニウム塩系低融点ガラス、軟化温度:380℃)、日本琺瑯釉薬社製、商品名「4706」(ホウケイ酸塩系低融点ガラス、軟化温度:610℃)、旭テクノグラス社製、商品名「FF209」(ホウ酸リチウム塩系低融点ガラス、軟化温度:450℃)等が市販されている。
(針状フィラー)
 針状フィラーとしては、例えば、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、マグネシウム含有ウィスカー、珪素含有ウィスカー、ウォラストナイト、セピオライト、ゾノライト、エレスタダイト、ベーマイト、棒状ヒドロキシアパタイト、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、スラグ繊維、石膏繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維、ジルコニア繊維、窒化硼素繊維、硼素繊維、ステンレス繊維等が挙げられる。針状フィラーを使用することで耐火材の機械特性などを効果的に向上させることができる。
 これらの針状フィラーは、一種もしくは二種以上を使用することができる。
 本発明に使用する針状フィラーのアスペクト比(長さ/直径)の範囲は、5~50の範囲であることが好ましく、10~40の範囲であればより好ましい。なお、当該アスペクト比は、走査型電子顕微鏡で針状フィラーを観察してその長さと幅を測定して求めることができる。
 これら難燃剤は、単独でも、2種以上を組み合わせて用いてもよい。
 本発明において使用する難燃剤としては、耐火材に対し、難燃性を十分効果的に付与する観点から、リン系固体難燃剤が好ましく、リン酸塩がより好ましく、亜リン酸アルミニウムがさらに好ましい。
 難燃剤として上記の通りリン含有化合物を使用する態様が好ましいが、リン含有化合物の含有量を低くする態様も好ましい。具体的には、耐火材において、リン含有化合物の含有量は、マトリックス成分100質量部に対し、1質量部以下であることが好ましく、耐火材がリン含有化合物を含有しないことがより好ましい。
 なお、ここでいうリン含有化合物とは、リンを含有する化合物の総称であり、上記したリン系固体難燃剤、赤燐系難燃剤、リンを含有する低融点ガラスなどが挙げられる。
 本発明における難燃剤の含有量は、特に限定されないが、マトリックス成分100質量部に対し、20~100質量部が好ましく、30~90質量部がより好ましく、40~80質量部がさらに好ましい。難燃剤の含有量が上記下限値以上であることで、耐火材に対し、難燃性を効果的に付与することができる。また、難燃剤の含有量が上記上限値以下であることで、耐火材中の他の成分の割合を一定以上とすることができ、閉塞膨張倍率を一定以上とすることができる。
 また、上記した固体難燃剤以外の無機充填剤を使用してもよく、そのような無機充填剤としては、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、フェライト類、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、ケイ酸カルシウム、タルク、マイカ、モンモリロナイト、ベントナイト、活性白土、イモゴライト、セリサイト、ガラスビーズ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、各種金属粉、硫酸マグネシウム、チタン酸ジルコン酸鉛、硫化モリブデン、炭化ケイ素、各種磁性粉、フライアッシュ等を適宜使用できる。これら無機充填剤は、1種単独で使用してもよいし、2種以上を併用してもよい。無機充填剤としては、上記した中では、炭酸カルシウムを使用することが好ましい。
 無機充填剤を使用する場合、その含有量は特に限定されないが、マトリックス成分100質量部に対して、1~200質量部が好ましく、10~100質量部がより好ましく、15~60質量部がさらに好ましい。
<架橋剤>
 本発明の耐火材は、架橋剤を含有してもよく、特にゴム成分として、アクリロニトリル-ブタジエンゴムを用いる場合は、架橋剤を併用することで、膨張圧力を高めることができ、耐火性が向上する。耐火材が架橋剤を含む場合は、火災の際の熱により、ゴム成分などのマトリックス成分の架橋が進行して、粘度が高くなり、それに伴い、膨張圧力が高まるものと考えられる。
 架橋剤としては、公知のものが制限なく使用でき、例えば、硫黄系架橋剤、有機過酸化物、アゾ化合物などを挙げることができる。
 硫黄系架橋剤としては、硫黄、不溶性硫黄、沈降硫黄、塩化硫黄、一塩化硫黄、二塩化硫黄等の無機系のものでもよいが、含硫黄有機架橋剤であってもよい。含硫黄有機架橋剤としては、モルホリンジスルフィド、アルキルフェノールジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2)、チウラムポリスルフィド、2-(4’-モルホリノ・ジチオ)ベンゾチアゾール等が挙げられる。
 有機過酸化物としては、例えば、2,5-ジメチルヘキサン、2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、3-ジ-t-ブチルパーオキサイド、t-ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、ジクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシベンゾエート;ベンゾイルパーオキサイド;t-ブチルパーオキシ-2-エチルヘキシルカーボネート等が挙げられる。
 アゾ化合物としては、例えば、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。
 架橋剤は、1種を単独で使用してもよいし、2種以上を併用して使用してもよい。
 また、上記した架橋剤の中でも、耐火材を製造する際に、各成分を混練する温度(例えば70℃~150℃)で架橋反応が生じ難く、かつ、火災時の熱によりアクリロニトリル-ブタジエンゴムなどのゴム成分の架橋反応が生じやすいものが好ましい。具体的には、硫黄系架橋剤が好ましく、これらの中では、架橋性の観点から無機系のものが好ましく、硫黄がより好ましい。
 耐火材が架橋剤を含有する場合は、架橋剤の含有量は、マトリックス成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.2~5質量部であり、さらに好ましくは0.5~3質量部である。
<架橋促進剤>
 本発明の耐火材は、架橋剤に加えて架橋促進剤が配合されてもよい。架橋促進剤としては、例えば、金属酸化物を挙げることができる。
 金属酸化物としては、酸化亜鉛、酸化マグネシウム等が挙げられる。本発明において金属酸化物を使用する場合、酸化亜鉛を使用することが好ましい。これら金属酸化物は、ステアリン酸などの炭素数12~24,好ましくは炭素数16~20の長鎖脂肪族カルボン酸と併用することがより好ましい。なお、このように、金属酸化物と併用される長鎖脂肪族カルボン酸も本明細書では架橋促進剤とする。
 本発明の耐火材で使用できる架橋促進剤としては、上記したもの以外にも、例えば、チアゾール系化合物、スルフェンアミド系化合物、チウラム系化合物、ジチオカルバミン酸塩系化合物、グアニジン系化合物などが挙げられる。チアゾール系化合物としてはビス(ベンゾチアゾール-2-イルチオ)亜鉛が挙げられる。
 架橋促進剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋促進剤としては、金属酸化物及びチアゾール系化合物から選択される少なくとも1種が好ましく、これらを併用する態様も好ましい。この際、金属酸化物は、ステアリン酸などの炭素数16~20の長鎖脂肪族カルボン酸とさらに併用させてもよい。
 本発明の耐火材において架橋促進剤を使用する場合の架橋促進剤の配合量は、特に限定されないが、マトリックス成分100質量部に対して、好ましくは0.1~15質量部であり、より好ましくは0.5~10質量部であり、さらに好ましくは1~8質量部である。
<その他添加剤>
 本発明の耐火材は、本発明の目的が損なわれない範囲で、必要に応じて各種の添加成分を含有させることができる。
 この添加成分の種類は特に限定されず、各種添加剤を用いることができる。このような添加剤として、例えば、収縮防止剤、結晶核剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、分散剤、ゲル化促進剤、充填材、補強剤、難燃助剤、帯電防止剤、界面活性剤、及び表面処理剤等が挙げられる。添加剤の添加量は成形性等を損なわない範囲で適宜選択できる。添加剤は、単独でも、2種以上を組み合わせて用いてもよい。
<耐火材のムーニー粘度>
 本発明の耐火材は、100℃におけるムーニー粘度が80以下であることが好ましい。耐火材の上記ムーニー粘度が80以下であることにより、耐火材の閉塞膨張倍率を一定以上とすることができ、火災発生時において、耐火材が面方向に膨張しやすくなる。こうした観点を踏まえると、上記ムーニー粘度は、75以下であることがより好ましく、70以下であることがさらに好ましい。他方、上記ムーニー粘度の下限値は、特に限定されないが、耐火材の形状保持性をある程度確保する観点から、5以上であることが好ましく、20以上であることがより好ましく、35以上であることがさらに好ましい。
 なお、耐火材の上記ムーニー粘度は、耐火材が熱膨張する前に測定した数値であり、その測定方法は、ゴムと同様に、JIS K6300に準拠して測定される。
<残渣強度>
 本発明の耐火材は、熱膨張後の残渣強度が2N以上であることが好ましく、5N以上であることがより好ましく、7N以上であることがさらに好ましい。熱膨張後の残渣強度が5N以上であることにより、火災発生時において、耐火材が火炎を塞ぎ、延焼を防止する効果を十分発揮することができる。他方、熱膨張後の残渣強度の上限値は、特に限定されないが、実用上の観点から、例えば20N以下、好ましくは15N以下である。
<厚さ>
 本発明の耐火材は、シート状であることが好ましく、その厚さは特に限定されないが、耐火性及び取扱い性の観点から、0.2~10mmが好ましく、0.5~3.0mmがより好ましい。
<耐火材の製造方法>
 本発明の耐火材は例えば下記のようにして製造することができる。
 まず、マトリックス成分、熱膨張性黒鉛、樹脂、可塑剤、必要に応じて配合される難燃剤、架橋剤、及びその他の成分を、混練ロールなどの混合機で混合して、耐火性樹脂組成物を得る。
 次に、得られた耐火性樹脂組成物を、例えば、プレス成形、カレンダー成形、押出成形等、公知の成形方法によりシート状などに成形することで耐火材を得ることができる。また、耐火性樹脂組成物は、剥離シート、樹脂フィルムなどの支持基材に塗布してシート状としてもよい。支持基材は、シート状として得た耐火材から適宜剥がすとよい。
 さらに、耐火性樹脂組成物は、シート状に成形した後、または、シート状に成形しながら、適宜加熱してもよく、熱硬化性樹脂を使用する場合には、該加熱により耐火性樹脂組成物を硬化させればよい。
 混合する際の温度及びシート状に成形する温度は、熱膨張性黒鉛の膨張開始温度未満であることが好ましく、架橋剤を配合する場合は、架橋剤が架橋し難い温度であることが好ましい。そのため、混練する温度は、70~150℃が好ましく、90~140℃がより好ましい。シート状に成形する温度は、80~130℃が好ましく、90~120℃がより好ましい。
<積層シート>
 本発明の耐火材は、他のシート部材や粘着剤層が積層され積層シートを構成してもよい。積層シートは、例えば、基材と、基材の片面又は両面に積層される耐火材とを備える。基材は通常、織布又は不織布である。織布又は不織布に使用される繊維としては、特に限定はされないが、不燃性材料又は準不燃材料が好ましく、例えば、ガラス繊維、セラミック繊維、セルロース繊維、ポリエステル繊維、炭素繊維、グラファイト繊維、熱硬化性樹脂繊維等が好ましい。
 上記積層シートは、例えば、耐火性樹脂組成物を基材の上にシート状に成形して得ることができる。
 また、積層シートは、耐火材と粘着剤層を備えるものであってもよい。粘着剤層は、例えば、耐火材の片面又は両面に積層されてもよい。
 さらに、積層シートは、耐火材と、基材と、粘着剤層とを備えてもよい。そのような積層シートは、基材の一方の面に耐火材、他方の面に粘着剤層が設けられてもよいし、基材の一方の面の上に、耐火材及び粘着剤層がこの順に設けられてもよい。粘着剤層は、例えば、離型紙に塗工した粘着剤を積層シートに転写することで形成できる。
 本発明の耐火材は、及びこれを用いた積層シートは、具体的には、一戸建住宅、集合住宅、高層住宅、高層ビル、商業施設、公共施設等の各種の建具、自動車、電車などの各種車両、船舶、航空機などに使用できるが、これらの中では建具に使用されることが好ましい。建具としては、具体的には、壁、梁、柱、床、レンガ、屋根、板材、窓、障子、扉、ドア、戸、ふすま、欄間、配線、配管などに使用することができるが、これらに限定されない。本発明の耐火材は、及びこれを用いた積層シートは、特に、窓、扉、ドアなどの建具の隙間に適用することで、火災等の際に炎が隙間を通過して侵入するのを防止することができる。
 以下、実施例を用いて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。
[評価方法]
 熱膨張性耐火材の各物性の測定、評価の方法は、以下のとおりである。
 各実施例及び比較例で得られた熱膨張性耐火材を用いて、上記した各評価を実施した。各項目の評価結果を表1に示した。
<100℃におけるムーニー粘度>
 ムーニー粘度ML(1+4)は、JIS K6300に準拠して測定した。
<閉塞膨張倍率>
 各実施例及び比較例で作製した耐火材を、25mm×25mm×2mmの直方体に切り取った。その後、図1に示すように、上下が100mm×100mmのSUS板からなる治具11の、高さhが6mmの空間12の中に、該耐火材10を配置した。そして、耐火材10を治具11ごと、400℃に予め加熱しておいたオーブンに投入し、耐火材10を15分間加熱した。
 上記加熱後、厚み方向から見た耐火材の面積に基づき、以下の式により閉塞膨張倍率を
算出した。
閉塞膨張倍率(倍)=加熱後の面積(mm、図2右図に示す耐火材の面積)/加熱前の面積(mm、図2左図に示す耐火材の面積)
 以上の方法で算出した閉塞膨張倍率に基づき、閉塞膨張倍率の評価を実施した。評価基準は以下の通りである。
AA:8倍以上
A:4.0倍以上8倍未満
C:4.0倍未満
<残渣強度>
 以下(1)~(3)の手順により、耐火材の残渣強度を測定した。
(1)各実施例及び比較例で作製した耐火材を、20mm×100mm×2mmの直方体に切り取った。
(2)図3に示すように、該耐火材10を、高さtが6mmのコの字型治具(材質:スチール)15の中に配置し、耐火材10をコの字型治具15ごと、600℃に予め加熱しておいたオーブンに投入し、耐火材10を20分間加熱した。
(3)上記加熱後の耐火材10のうち、コの字型治具15からはみ出た部分を取り除き、その後、コの字型治具15から耐火材10を取り出した。そして、図4に示すように、耐火材10を、長手方向を図4の横方向に一致させて、互いに25mm離された2つの台17の上に置き、10mm×10mmのSUS板からなる荷重治具16を耐火材10に押し付けることにより、3点曲げ試験を実施した。該試験における最大点荷重を残渣強度とした。
 以上のようにして得られた残渣強度について、評価を行った。評価基準は以下の通りである。
A:5N以上
B:2N以上5N未満
C:2N未満
[使用材料]
 各実施例及び比較例においては、以下の材料を使用した。
<熱膨張性黒鉛>
・熱膨張性黒鉛 ADT社製「ADT351」
<マトリックス成分>
1.ゴム
・ゴムA:NBR 日本ゼオン社製「DN401L」、ニトリル量:18%
・ゴムB:BR JSR社製「BR-01」
・ゴムC:SBR JSR社製「SBR1502」
・ゴムD:IIR JSR社製「BUTYL065」
・ゴムE:EPDM 三井化学社製「EPT X-4010M」
2.樹脂
・樹脂A:EVA 三井ダウポリケミカル社製「EV170」
・樹脂B:PVC 信越化学工業株式会社社製「TK1000」
・樹脂C:エポキシ樹脂 主剤:三菱化学社製「E-807」、硬化剤:三菱化学社製「SA1」、主剤:硬化剤(質量比)=100:60 
・樹脂D:PMMA 三菱化学社製「アクリペット VH」
<難燃剤>
・亜リン酸アルミニウム 太平化学産業株式会社製「NSF」
<無機充填剤>
・炭酸カルシウム
<可塑剤>
・可塑剤A:アルキルスルホン酸エステル ランクセス株式会社製「メザモール」
・可塑剤B:アジピン酸ジブトキシエトキシエチル (株)ADEKA製「アデカサイザーRS-107」
・可塑剤C:トリクレジルホスフェート 大八化学工業株式会社製「TCP」
・可塑剤D:トリアリールホスフェート 味の素ファインテクノ株式会社製「レオフォス65」
<ゴム加工油>
・滑剤A:ナフテン系プロセスオイル1 日本サン石油株式会社製「サンセン410」、動粘度20.8cSt
・滑剤B:ナフテン系プロセスオイル2 日本サン石油株式会社製「サンセン4240」、動粘度374cSt
<液状ゴム>
・液状ゴムA:液状NBR 日本ゼオン株式会社製「Nipоl 1312」
・液状ゴムB:液状BR 日本曹達株式会社製「TD3000」
<液状樹脂>
・液状樹脂A:PVAc 関東化学株式会社社製「酢酸ビニル(ポリマー)溶液」
[実施例1~18、20~23、比較例1~2]
 表1に示す配合にて、マトリックス成分、熱膨張性黒鉛、難燃剤、及び可撓性付与剤をロールに投入して、120℃で5分間混練して、耐火性樹脂組成物を得た。得られた耐火性樹脂組成物を、100℃で3分間プレス成形して、厚さ1.8mmのシート状の耐火材を得た。評価結果を表1に示した。
[実施例19]
 表1に示す配合にて、マトリックス成分、熱膨張性黒鉛、難燃剤、及び可撓性付与剤を遊星式攪拌機に供給し、常温下で1000rpm、1分間の条件で混練し、耐火性樹脂組成物を得た。その後、PETフィルム上に耐火性樹脂組成物を塗布し、20℃にて10MPaでプレス成型を実施し、厚み500μmのシート状の成形体を得た。その後、その成形体を90℃の恒温槽に10時間配置して硬化させ、シート状の耐火材を得た。評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000002
 以上の実施例から明らかなように、本発明の要件を満たす熱膨張性耐火材は、厚み方向に狭い空間においても、面方向に十分膨張したことを確認することができた。
 これに対し、比較例で作製した熱膨張性耐火材は、厚み方向に狭い空間に該耐火材を配置したところ、面方向に十分膨張したことを確認することができなかった。
10 熱膨張性耐火材
11 耐火材配置用治具
12 空間
13 金属板
14 固定部材
15 コの字型治具
16 荷重治具
17 台
h、t 高さ

 

Claims (7)

  1.  ゴム及び樹脂からなる群から選択される少なくとも1種からなるマトリックス成分、熱膨張性黒鉛、並びに可撓性付与剤を含有する熱膨張性耐火材であって、
     前記ゴム及び樹脂はいずれも23℃において固体であり、
     前記熱膨張性耐火材を、寸法25mm×25mm×2mmに切り取り、厚み方向に6mmの空間内に配置し、その後、前記熱膨張性耐火材を400℃で15分間加熱した場合において、厚み方向から見た前記熱膨張性耐火材の面積を、加熱前の前記面積で除することにより得られる閉塞膨張倍率が4.0倍以上となる、熱膨張性耐火材。
  2.  前記熱膨張性耐火材が、さらに難燃剤を含有する、請求項1に記載の熱膨張性耐火材。
  3.  前記可撓性付与剤が、可塑剤、ゴム加工油、及び液状ゴムからなる群から選択される少なくとも1種である、請求項1又は2に記載の熱膨張性耐火材。
  4.  前記可塑剤が非フタル酸系可塑剤である、請求項3に記載の熱膨張性耐火材。
  5.  前記可撓性付与剤の合計含有量が、前記マトリックス成分100質量部に対し、30~80質量部である、請求項1~4のいずれかに記載の熱膨張性耐火材。
  6.  前記熱膨張性耐火材の100℃におけるムーニー粘度が、80以下である、請求項1~5のいずれかに記載の熱膨張性耐火材。
  7.  前記ゴムが、分子構造中にハロゲンを含まない熱硬化性ゴムである、請求項1~6のいずれかに記載の熱膨張性耐火材。

     
PCT/JP2023/002747 2022-01-27 2023-01-27 熱膨張性耐火材 WO2023145907A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011324 2022-01-27
JP2022-011324 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023145907A1 true WO2023145907A1 (ja) 2023-08-03

Family

ID=87471613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002747 WO2023145907A1 (ja) 2022-01-27 2023-01-27 熱膨張性耐火材

Country Status (1)

Country Link
WO (1) WO2023145907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7511041B1 (ja) 2023-02-28 2024-07-04 デンカ株式会社 パテ状耐火組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119926A (ja) * 2001-10-10 2003-04-23 Sekisui Chem Co Ltd 防火換気部構造
JP2007315007A (ja) * 2006-05-25 2007-12-06 Sekisui Chem Co Ltd 防火措置構造
JP2017034824A (ja) * 2015-07-31 2017-02-09 積水化学工業株式会社 電力ケーブル用バスダクト
JP2020006185A (ja) * 2019-08-20 2020-01-16 積水化学工業株式会社 熱膨張性耐火材、開口枠体、および建具
JP2020139058A (ja) * 2019-02-28 2020-09-03 積水化学工業株式会社 耐火材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119926A (ja) * 2001-10-10 2003-04-23 Sekisui Chem Co Ltd 防火換気部構造
JP2007315007A (ja) * 2006-05-25 2007-12-06 Sekisui Chem Co Ltd 防火措置構造
JP2017034824A (ja) * 2015-07-31 2017-02-09 積水化学工業株式会社 電力ケーブル用バスダクト
JP2020139058A (ja) * 2019-02-28 2020-09-03 積水化学工業株式会社 耐火材
JP2020006185A (ja) * 2019-08-20 2020-01-16 積水化学工業株式会社 熱膨張性耐火材、開口枠体、および建具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7511041B1 (ja) 2023-02-28 2024-07-04 デンカ株式会社 パテ状耐火組成物

Similar Documents

Publication Publication Date Title
JP6279610B2 (ja) 熱膨張性耐火樹脂組成物
KR102073448B1 (ko) 열팽창성 수지조성물
JPH11323148A (ja) 耐火性シート状成形体及びシート積層体
JP2011152658A (ja) 積層シート、目地材及び押出製品の製造方法
JP2000001927A (ja) 耐火性シ―ト状成形体
JP2007332715A (ja) 耐火被覆構造体
JP2001090225A (ja) 耐火シート及び耐火被覆材
JP2007198029A (ja) 貫通孔を備えた鉄骨梁の耐火構造の施工方法
JP2002114914A (ja) 耐火性樹脂組成物およびそのシート状成形体
JP2024028274A (ja) 耐火樹脂組成物、耐火材、耐火積層体、区画貫通処理構造及び区画貫通処理方法
WO2023145907A1 (ja) 熱膨張性耐火材
JP4781254B2 (ja) 耐火性樹脂組成物からなるシート
JP2020125395A (ja) 熱可塑性樹脂シート
JP2019189777A (ja) 耐火性樹脂組成物、成形体、巻回体
JP2021181583A (ja) 熱膨張性耐火材
WO2023163133A1 (ja) 積層体
JP7127170B1 (ja) 熱膨張性耐火材
JP2021195461A (ja) 熱膨張性耐火材
JP2021188404A (ja) 熱膨張性耐火シート及び建具
JPH11333989A (ja) 耐火性多層シート
JP7512128B2 (ja) 耐火樹脂組成物、耐火材、耐火積層体、区画貫通処理構造及び区画貫通処理方法
JP2000006289A (ja) 耐火性多層シ―ト
JP7368676B2 (ja) 耐火用硬化性組成物
JP2009197477A (ja) 耐火目地構造およびその施工方法
JPH1150565A (ja) 耐火性建造物構成パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023577048

Country of ref document: JP