WO2023143368A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023143368A1
WO2023143368A1 PCT/CN2023/073139 CN2023073139W WO2023143368A1 WO 2023143368 A1 WO2023143368 A1 WO 2023143368A1 CN 2023073139 W CN2023073139 W CN 2023073139W WO 2023143368 A1 WO2023143368 A1 WO 2023143368A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
port
air
storage area
exhaust
Prior art date
Application number
PCT/CN2023/073139
Other languages
English (en)
French (fr)
Inventor
王睿龙
刘浩泉
苗建林
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023143368A1 publication Critical patent/WO2023143368A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves

Definitions

  • the invention relates to fresh-keeping equipment, in particular to a refrigerator.
  • an oxygen treatment device can be installed on the refrigerator to use the electrochemical reaction of the oxygen treatment device to consume the oxygen in the storage space of the refrigerator.
  • the inventors realized that the oxygen treatment device also generates oxygen during the electrochemical reaction. If not properly disposed of, the generated oxygen may diffuse to the storage space, resulting in failure of the oxygen removal function of the oxygen treatment device.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigerator.
  • a further object of the present invention is to make the refrigerator reasonably solve the oxygen generated by the oxygen treatment device, and prevent the generated oxygen from destroying the low-oxygen fresh-keeping atmosphere.
  • a further object of the present invention is to make the refrigerator use the oxygen treatment device to simultaneously create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere.
  • Another further object of the present invention is to increase the flexibility of the refrigerator's atmosphere adjustment process.
  • a further object of the present invention is to reduce or avoid environmental pollution caused by oxygen emissions from the refrigerator.
  • the present invention provides a refrigerator, comprising: a box body, a first storage area and a second storage area are formed inside; an oxygen treatment device, at least a part of which is in airflow communication with the first storage area, and used Oxygen in the first storage area is consumed by electrochemical reaction and oxygen is generated; and the oxygen processing device is formed with an exhaust port for discharging the generated oxygen; Two air outlets, wherein the air inlet is used to communicate with the exhaust port, the first air outlet is communicated with the second storage area, and is used to guide the oxygen flowing out of the exhaust port to the second storage area, and the second air outlet is connected to the second storage area. The end is used to communicate with the external environment of the box and to direct the oxygen flowing out of the exhaust port to the external environment.
  • the air guide assembly includes: an air guide switch valve, which has an air guide inlet port, a first air guide valve port and a second air guide valve port, wherein the air guide inlet port is used to connect to the exhaust port , and as an intake end; and a first air outlet conduit and a second air outlet conduit, which communicate with the first air guide valve port and the second air guide valve port respectively, wherein the first air outlet conduit extends from the first air guide valve port to the second storage zone, and its end serves as the first air outlet, and the second air outlet conduit extends from the second air guide valve port to the external environment of the box, and its end serves as the second air outlet.
  • an air guide switch valve which has an air guide inlet port, a first air guide valve port and a second air guide valve port, wherein the air guide inlet port is used to connect to the exhaust port , and as an intake end
  • a first air outlet conduit and a second air outlet conduit which communicate with the first air guide valve port and the second air guide valve port respectively, wherein the first air outlet conduit
  • the gas guiding switch valve is an electromagnetic three-way valve, and is used to open and close the first gas guiding valve port and the second gas guiding valve port in a controlled manner, so as to adjust the flow path of oxygen flowing through it.
  • an air inlet is provided on the second storage area for the insertion of the first air outlet conduit, so that the first air outlet end communicates with the second storage area; and an opening is opened on the box for the second air outlet A conduit is inserted therein so that the second gas outlet port communicates with the external environment.
  • the second storage area is located above the first storage area; and the oxygen treatment device is arranged on the rear side of the first storage area; the rear wall of the enclosure.
  • the refrigerator further includes: an exhaust switching valve, connected to the exhaust port, and configured to be activated or closed in a controlled manner, so as to switch the passage between the exhaust port and the air-guiding inlet interface.
  • an exhaust switching valve connected to the exhaust port, and configured to be activated or closed in a controlled manner, so as to switch the passage between the exhaust port and the air-guiding inlet interface.
  • the exhaust switch valve is an electromagnetic two-way valve, and it has an exhaust intake interface and an exhaust valve port, the exhaust intake interface is connected to the exhaust port, and the exhaust valve port is used to communicate with the air guide intake port Interface, and the exhaust switch valve is used to open and close the exhaust valve port by controlled activation or closing, so as to open and close the passage between the exhaust port and the air intake interface.
  • the refrigerator further includes: a separation chamber, which has an air inlet and an air outlet, wherein the air inlet is connected to the exhaust port, and the inside of the separation chamber forms an arc-shaped airflow channel, which is used to make the oxygen flowing through it It flows along the curved surface, so that the liquid carried by the oxygen is separated; the gas outlet is connected with the air guide inlet port, and is used to discharge the oxygen after the liquid is separated to the air guide inlet port.
  • a separation chamber which has an air inlet and an air outlet, wherein the air inlet is connected to the exhaust port, and the inside of the separation chamber forms an arc-shaped airflow channel, which is used to make the oxygen flowing through it It flows along the curved surface, so that the liquid carried by the oxygen is separated
  • the gas outlet is connected with the air guide inlet port, and is used to discharge the oxygen after the liquid is separated to the air guide inlet port.
  • the separation bin is in the shape of a hollow cylinder or a hollow sphere, so as to define an arc-shaped airflow channel.
  • the oxygen treatment device has a shell, and a reaction chamber for electrochemical reaction is formed inside, the exhaust port is opened on the shell, and a liquid return port communicating with the reaction chamber is also opened on the shell; and the separation chamber There is a liquid outlet at the bottom of the tank, which is connected to the liquid return port, so that the liquid separated by the separation chamber can be returned to the oxygen treatment device.
  • the air guide assembly is configured to not only guide the oxygen generated by the oxygen treatment device to the second storage area, but also guide the oxygen generated by the oxygen treatment device to the cabinet
  • the external environment can make the refrigerator reasonably process the oxygen generated by the oxygen treatment device, so as to prevent the generated oxygen from destroying the low-oxygen fresh-keeping atmosphere due to irregular diffusion.
  • the refrigerator of the present invention since the gas guiding component can convert the oxygen generated by the oxygen processing device into lead to the second storage area, so that the oxygen concentration in the second storage area increases. Therefore, the refrigerator of the present invention can use the oxygen treatment device to create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere at the same time, which is beneficial to simplify the refrigerator. Structure, improve refrigerator performance.
  • the refrigerator of the present invention can adjust the flow path of oxygen by controlling the opening and closing state of the valve port of the gas guide switch valve, so that oxygen can selectively flow into the second storage area or flow to the external environment, which is beneficial to Improve the flexibility of the refrigerator atmosphere adjustment process.
  • the refrigerator of the present invention is provided with a separation chamber, and the interior of the separation chamber forms an arc-shaped airflow channel, the gas flowing through the arc-shaped airflow channel can realize gas-liquid separation by flowing along a curved surface. Therefore, the present invention provides a A refrigerator with a gas-liquid separation function, the separated liquid stays in the separation chamber, thereby reducing or avoiding the environmental pollution caused by the oxygen discharge of the refrigerator.
  • Fig. 1 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an oxygen treatment device and a separation bin of a refrigerator according to an embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of a separation bin 200 according to another embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an oxygen treatment device of a refrigerator according to an embodiment of the present invention.
  • FIG. 5 is a schematic exploded view of the oxygen treatment device of the refrigerator shown in FIG. 4 .
  • FIG. 1 is a schematic structural diagram of a refrigerator 10 according to an embodiment of the present invention.
  • the refrigerator 10 of this embodiment is an electrical device with a low-temperature storage function, including not only a refrigerator in a narrow sense, but also a freezer, a storage cabinet, and other refrigeration and freezing devices.
  • the refrigerator 10 may generally include a box body 500 , an oxygen treatment device 100 and an air guide assembly 400 .
  • the oxygen treatment device 100 generates oxygen while performing an electrochemical reaction to consume the oxygen in the first storage area 510 .
  • the inventors improved the internal structure of the refrigerator 10 .
  • a first storage area 510 and a second storage area 520 are formed inside the box body 500 .
  • Each storage area can be used as an independent storage compartment.
  • other storage areas may be provided inside the box body 500 according to actual needs.
  • At least a part of the oxygen treatment device 100 is in gas flow communication with the first storage area 510, and is used for consuming oxygen in the first storage area 510 and generating oxygen through an electrochemical reaction. And the oxygen treatment device 100 is formed with an exhaust port 112 for exhausting the generated oxygen.
  • the first storage area 510 in this embodiment is used to form a hypoxic fresh-keeping space. The fact that at least a part of the oxygen treatment device 100 is in gas flow communication with the first storage area 510 means that the gas in the first storage area 510 can flow to the oxygen treatment device 100 and contact at least a part of the oxygen treatment device 100, so that the gas Oxygen in can be consumed as a reactant by the electrochemical reaction.
  • the air guide assembly 400 has an air inlet, a first air outlet and a second air outlet, wherein the inlet is used to communicate with the exhaust port 112, and the first air outlet is connected to the second storage area 520, and is used to connect the outflow
  • the oxygen from the exhaust port 112 is guided to the second storage area 520
  • the second gas outlet is used to communicate with the external environment of the box body 500 and is used to guide the oxygen flowing out of the exhaust port 112 to the external environment. That is to say, the air guide assembly 400 is used to guide the oxygen flowing out of the exhaust port 112 so that the oxygen selectively enters the second storage area 520 or flows to the external environment.
  • the second storage area 520 in this embodiment can be used to form a high-oxygen fresh-keeping space.
  • the oxygen concentration in the second storage area 520 can be increased to create a high-oxygen fresh-keeping atmosphere, making the second storage area 520 suitable for storing meat. Items such as vegetables and mushrooms.
  • the second storage area 520 does not need to input oxygen, for example, when the types of articles stored in the second storage area 520 change and there is no need to create a high-oxygen fresh-keeping atmosphere, or when the oxygen in the second storage area 520
  • the concentration reaches the preset requirement, the oxygen discharged from the oxygen treatment device 100 can flow to the second gas outlet and be discharged to the external environment.
  • the air guide assembly 400 is configured to guide the oxygen generated by the oxygen treatment device 100 to the second storage area 520, and to guide the oxygen generated by the oxygen treatment device 100 to the second storage area 520.
  • the oxygen is guided to the external environment of the box body 500, so that the refrigerator 10 can reasonably process the oxygen generated by the oxygen treatment device 100, thereby preventing the generated oxygen from destroying the low-oxygen fresh-keeping atmosphere due to irregular diffusion.
  • the refrigerator 10 of the present invention can guide the oxygen generated by the oxygen processing device 100 to the second storage area 520, so that the oxygen concentration in the second storage area 520 increases, the refrigerator 10 of the present invention can
  • the oxygen treatment device 100 is used to simultaneously create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere, which is beneficial to simplify the structure of the refrigerator 10 and improve the performance of the refrigerator 10 .
  • the air guide assembly 400 includes an air guide switch valve 410 , a first air outlet conduit 420 and a second air outlet conduit 430 .
  • the gas guiding switch valve 410 is used to adjust the flow path of oxygen flowing through it.
  • the air guide switch valve 410 has an air guide inlet port, a first air guide valve port and a second air guide valve port, wherein the air guide inlet port is used to connect to the exhaust port 112 and serves as an intake port.
  • the air-guided air intake interface serves as the air-intake interface of the air-guided switching valve 410 .
  • the first gas guiding valve port and the second gas guiding valve port serve as gas outlet valve ports of the gas guiding switching valve 410 respectively.
  • the first air outlet conduit 420 and the second air outlet conduit 430 communicate with the first air guide valve port and the second air guide valve port respectively, for example, the first air outlet conduit 420 communicates with the first air guide valve port correspondingly, so that the Oxygen at a gas guide valve port can flow through the first gas outlet conduit 420, and the second gas outlet conduit 430 communicates with the second gas guide valve port correspondingly, so that the oxygen flowing through the second gas guide valve port can flow through the second gas outlet conduit 430 .
  • the first air outlet conduit 420 extends from the first air guide valve port to the second storage area 520, and its end serves as the first air outlet end
  • the second air outlet conduit 430 extends from the second air guide valve port to the external environment of the box body 500 , and its end serves as the second gas outlet. That is, the first air outlet conduit 420 guides the oxygen flowing therethrough to the second storage area 520
  • the second air outlet conduit 430 guides the oxygen flowing therethrough to the external environment.
  • the gas guiding switch valve 410 is an electromagnetic three-way valve, and is used to controlly open and close the first gas guiding valve port and the second gas guiding valve port, so as to adjust the flow path of oxygen flowing through it. For example, when the first gas guide valve port is opened and the second gas guide valve port is closed, the gas guide switch valve 410 can guide the oxygen flowing through it to the first gas outlet conduit 420, and when the second gas guide valve port is opened and When the first gas guiding valve port is closed, the gas guiding switch valve 410 can guide the oxygen flowing through it to the second gas outlet conduit 430 .
  • the flow path of oxygen can be adjusted, so that oxygen can selectively flow into the second storage area 520 or flow to the external environment, which is conducive to improving the atmosphere adjustment process of the refrigerator 10. flexibility.
  • the first storage area 510 and the second storage area 520 may be respectively equipped with oxygen concentration sensors, and the refrigerator 10 may determine the opening and closing status of the valve port of the air guiding switch valve 410 according to the detection value of the oxygen concentration sensors.
  • the gas conduction switch valve can To open the first air guide valve port and close the second air guide valve port.
  • the electrochemical reaction progresses, if the oxygen concentration in the first storage area 510 reaches the preset requirement first, but the oxygen concentration in the second storage area 520 has not yet reached the preset requirement, the electrochemical reaction can continue and temporarily The opening and closing status of the valve ports of the gas guiding switch valve 410 is not adjusted, and when the oxygen concentration in the second storage area 520 reaches the preset requirement, the electrochemical reaction is stopped and all valve ports of the gas guiding switching valve 410 are closed. As the electrochemical reaction progresses, if the oxygen concentration in the second storage area 520 reaches the preset requirement first, but the oxygen concentration in the first storage area 510 has not yet reached the preset requirement, the electrochemical reaction can continue and the system will be closed.
  • the first gas guide valve port of the gas guide switch valve 410 is opened and the second gas guide valve port is opened.
  • the electrochemical reaction is stopped and the gas guide switch valve 410 is closed. All valves.
  • the gas guide switch valve can open the second storage area.
  • the second air guide valve port and close the first air guide valve port.
  • the gas guide switch valve can open the second One gas guide valve port and close the second gas guide valve port.
  • the electrochemical reaction is stopped and all valve ports of the gas guiding switch valve 410 are closed.
  • an air inlet hole is opened on the second storage area 520 for inserting the first air outlet conduit 420 , so that the first air outlet end communicates with the second storage area 520 .
  • the box body 500 is provided with an opening for inserting the second air outlet conduit 430 therein so that the second air outlet end communicates with the external environment.
  • the second storage area 520 is located above the first storage area 510 .
  • the oxygen treatment device 100 is arranged at the rear side of the first storage area 510 .
  • the air intake hole may be opened on the rear wall of the second storage area 520 , and the opening may be opened on the rear wall of the box body 500 .
  • the oxygen treatment device and the air guide assembly 400 can be respectively installed at the rear of the box body 500, which can improve the overall aesthetics of the refrigerator 10, reduce or avoid the interference of various components on the process of picking and placing items by the user, and Shorten the flow path of oxygen.
  • the oxygen treatment device 100 may be arranged in the first storage area 510 and at the rear of a storage area 510 .
  • the refrigerator 10 may further include an exhaust switch valve connected to the exhaust port 112 for controlled activation or closure, thereby switching the exhaust port 112 from the air-guiding inlet port. pathway between.
  • the exhaust switch valve is an electromagnetic two-way valve, and it has an exhaust air intake interface and an exhaust valve port,
  • the exhaust air intake interface is connected to the exhaust port 112
  • the exhaust valve port is used to communicate with the air guide air intake port
  • the exhaust switch valve is used to open and close the exhaust valve port by controlled activation or closing, thereby turning on and off The passage between the exhaust port 112 and the air inlet port.
  • the oxygen treatment device 100 of this embodiment has Higher safety can effectively prevent liquid leakage, thereby helping to prolong the service life of the device and enhance the fresh-keeping effect.
  • the exhaust switch valve can completely cut off the passage between the exhaust port 112 and the external space of the oxygen treatment device 100, no matter whether the oxygen treatment device 100 itself is tilted or inverted, or the refrigerator 10 on which the oxygen treatment device 100 is installed Tilting or inversion phenomenon, the electrolyte will not overflow from the exhaust port 112, thereby completely solving the hidden danger of liquid leakage of the device.
  • the refrigerator 10 further includes a separation bin 200 having an air inlet 220 and an air outlet 240 , wherein the air inlet 220 communicates with the exhaust port 112 .
  • the air inlet 220 is used to allow the oxygen flowing out of the exhaust port 112 to flow into the separation chamber 200 .
  • the inside of the separation chamber 200 forms an arc-shaped air flow channel, which is used to make the oxygen flowing through it flow along the curved surface, so as to separate the liquid carried by the oxygen.
  • the gas flowing through the arc-shaped gas flow channel can form a vortex and realize gas-liquid separation by flowing along the curve.
  • This embodiment provides a refrigerator 10 with a gas-liquid separation function, and the separated liquid stays in the separation chamber 200, thereby reducing or avoiding environmental pollution caused by the refrigerator 10 due to oxygen discharge.
  • the gas outlet 240 communicates with the gas guide inlet port, and is used for discharging the oxygen separated from the liquid to the gas guide inlet port.
  • Fig. 2 is a schematic structural diagram of the oxygen treatment device 100 and the separation chamber 200 of the refrigerator 10 according to an embodiment of the present invention, and the direction of the arrow in the figure shows the flow direction of the airflow.
  • the separation bin 200 is in the shape of a hollow cylinder or a hollow sphere, so as to define an arc-shaped airflow channel.
  • the inner wall of the separation chamber 200 forms the above-mentioned arc-shaped airflow channel. After the gas flows into the separation chamber 200, it will be blocked and guided by its own gravity and the inner wall of the separation chamber 200, and will flow in a centrifugal downward, inclined and rotating manner to form a vortex.
  • the inner wall of the separation chamber 200 collides and adheres to the inner wall, or is separated due to the decrease of the flow velocity, continuously enriches and finally slides to the bottom of the separation chamber 200, and the clean gas from which the liquid is removed can be discharged through the gas outlet 240 of the separation chamber 200 , so as to complete the gas-liquid separation.
  • the refrigerator 10 of this embodiment has the advantages of compact structure and low manufacturing cost.
  • the air inlet 220 is located at the top section or the middle section of the separation chamber 200 , and communicates with the exhaust port 112 , for example, it can communicate indirectly through the communication pipe 300 .
  • the gas outlet 240 is spaced apart from the gas inlet 220 and configured to discharge the gas flowing through the separation chamber 200 .
  • the gas outlet 240 can be set at the same height as the gas inlet 220 , or can be set higher than the gas inlet 220 , which can reduce or prevent the gas without gas-liquid separation from being directly discharged from the gas outlet 240 .
  • the air outlet 240 and the air inlet 220 can be arranged oppositely, and are located at the middle and upper part of the separation chamber 200, the air inlet 220 can be arranged near the front end of the separation chamber 200, and the air outlet 240 can be arranged near the rear end of the separation chamber 200.
  • Fig. 3 is a schematic structural diagram of a separation chamber 200 according to another embodiment of the present invention.
  • an air duct 260 may be provided in the separation chamber 200, communicate with the air outlet 240, and extend downward to the bottom section of the separation chamber 200, and between the bottom wall of the separation chamber 200 A gap is formed.
  • the airway 260 may be in an inverted L shape, or may be a straight tube. The gas separated from the liquid can flow through the air duct 260 and flow to the gas outlet 240 under the guidance of the air duct 260 . Arrows in FIG. 3 show the direction of air flow.
  • Utilizing the air guide tube 260 to connect the air outlet 240 with the inner space of the separation chamber 200 can further prevent the liquid adhering to the inner wall of the separation chamber 200 from flowing out with the gas, and because the air guide tube 260 defines a bottom-up airflow discharge path, the guide The gas pipe 260 can also play a certain role in gas-liquid separation, so as to further optimize the gas-liquid separation effect of the separation chamber 200 .
  • the separation chamber 200 may also be provided with a partition, or filled with fillers, so that the gas-liquid separation may be performed using the partitions or fillers.
  • the gas-liquid separation method of the separation chamber 200 can also be changed to a cyclone type.
  • Fig. 4 is a schematic structural diagram of an oxygen treatment device 100 of a refrigerator 10 according to an embodiment of the present invention.
  • the oxygen treatment device 100 has a casing 110 , inside which is formed a reaction chamber 111 for electrochemical reaction, and an exhaust port 112 is opened on the casing 110 .
  • An exhaust pipe 160 may also be connected to the exhaust port 112 .
  • the housing 110 is also provided with a liquid return port 118 communicating with the reaction chamber 111 . Moreover, a liquid outlet 210 is opened at the bottom of the separation chamber 200 , which is connected to the liquid return port 118 , so that the liquid separated by the separation chamber 200 can flow back into the oxygen treatment device 100 .
  • the liquid that is trapped in the separation chamber 200 due to gas-liquid separation can flow through the outlet in sequence.
  • the liquid port 210 and the liquid return port 118 return to the reaction chamber 111 , which enables the refrigerator 10 of this embodiment to have a resource recovery function, which is beneficial to improve the resource utilization rate of the oxygen treatment device 10 .
  • the refrigerator 10 further includes a liquid return switch valve (not shown), disposed at the liquid return port 118 and configured to be activated or closed in a controlled manner, thereby opening or closing the liquid return port 118 . That is to say, by controlling the opening and closing state of the liquid return switch valve, the liquid return port 118 can be opened and closed, and then the liquid flow path between the separation chamber 200 and the reaction chamber 111 can be switched on and off.
  • a liquid return switch valve (not shown), disposed at the liquid return port 118 and configured to be activated or closed in a controlled manner, thereby opening or closing the liquid return port 118 . That is to say, by controlling the opening and closing state of the liquid return switch valve, the liquid return port 118 can be opened and closed, and then the liquid flow path between the separation chamber 200 and the reaction chamber 111 can be switched on and off.
  • the liquid return switch valve can be a two-way solenoid valve, and has a liquid inlet port and a liquid outlet valve port, the liquid inlet port is connected to the liquid outlet port 210, and the liquid outlet valve port is connected to the liquid return port 118, and
  • the liquid return switching valve is configured to be activated or closed in a controlled manner to open and close the liquid outlet valve port.
  • the liquid return switch valve is configured to be activated in a controlled manner before the discharge switch valve closes the discharge port 112 and is configured to close simultaneously with the discharge switch valve.
  • the liquid return switch valve can be started in a controlled manner (interval 1-10min, such as 5min) after the oxygen treatment device 100 finishes the electrochemical reaction, and maintain a set period of time (such as 1-10min), and then the exhaust switch valve Simultaneously with the liquid return switch valve, it is controlled and closed to seal the exhaust port 112 and the liquid return port 118 .
  • Such setting can ensure that all the gas in the reaction chamber 111 is exhausted, and can avoid the liquid recovery process from interfering with the gas-liquid separation process.
  • the exhaust switch valve is also configured to be activated in a controlled manner before the electrochemical reaction of the oxygen treatment device 100 begins. For example, when it is determined that the oxygen in the first storage area 510 or the second storage area 520 needs to be processed, first start the exhaust switch valve, and then make the oxygen treatment device 100 to start the electrochemical reaction.
  • the opening and closing state can be adjusted by controlling its energized state, for example, the solenoid valve is in the closed state when it is not energized, and it is in the activated state when it is energized.
  • the solenoid valve is in the closed state when it is not energized, and it is in the activated state when it is energized.
  • FIG. 5 is a schematic exploded view of the oxygen treatment device 100 of the refrigerator shown in FIG. 4 .
  • the oxygen treatment device 100 may further include an anode part 140 , a cathode part 120 , a separator 130 and a fixing assembly 150 .
  • the housing 110 defines an installation opening 114 .
  • the cathode portion 120 is disposed at the installation opening 114 to define together with the casing 110 a reaction compartment 111 for containing the electrolyte.
  • the housing 110 may be roughly in the shape of a flat cuboid, and one of the side walls of the housing 110 may be opened to form the aforementioned installation opening 114 .
  • the anode part 140 and the cathode part 120 are disposed in the reaction chamber 111 at a distance from each other.
  • the cathode portion 120 When energized, the cathode portion 120 is used to consume oxygen through an electrochemical reaction. For example, oxygen in the air can undergo a reduction reaction at the cathode part 120 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • the OH ⁇ produced by the cathode part 120 can undergo an oxidation reaction at the anode part 140 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • Oxygen may be exhausted through an exhaust port 112 on the housing 110 .
  • the anode part 140 can be an anode electrode, such as nickel mesh or titanium mesh, and the cathode part can be a cathode electrode, such as a catalytic membrane containing silver and manganese dioxide.
  • the separator 130 is disposed in the reaction chamber 111 and between the cathode part 120 and the anode part 140 for separating the cathode part 120 and the anode part 140 to prevent short circuit.
  • a plurality of protrusions 132 are formed on the side of the separator 130 facing the anode portion 140, the protrusions 132 are in contact with the anode portion 140, and the cathode portion 120 is attached to the side of the separator 130 away from the protrusions 132, so that A preset gap is formed between the cathode part 120 and the anode part 140 to further separate the cathode part 120 from the anode part 140 .
  • the fixing assembly 150 may be disposed outside the cathode part 120 and configured to fix the cathode part 120 at the installation opening 114 of the casing 110 .
  • the fixing assembly 150 may further include a metal frame 152 and a support 154 .
  • the metal frame 152 is attached to the outside of the cathode portion 120 .
  • the metal frame 152 is in direct contact with the cathode portion 120 and can act to compress the cathode portion 120 , and the metal frame 152 can also be provided with a cathode power supply terminal 152b of the cathode portion 120 to be connected to an external power source.
  • the supporting member 154 is formed with an insertion slot.
  • the metal frame 152 When the surrounding portion 152 a of the metal frame 152 enters the insertion slot of the support member 154 , the metal frame 152 can be fixed and positioned by the support member 154 , so that the metal frame 152 presses the cathode portion 120 .
  • An anode power supply terminal 142 is formed on the anode portion 140 . to connect to the power supply.
  • the air guide assembly 400 is configured to guide the oxygen generated by the oxygen treatment device 100 to the second storage area 520, and to guide the oxygen generated by the oxygen treatment device 100 to the second storage area 520.
  • the oxygen is guided to the external environment of the box body 500, so that the refrigerator 10 can reasonably process the oxygen generated by the oxygen treatment device 100, thereby preventing the generated oxygen from destroying the low-oxygen fresh-keeping atmosphere due to irregular diffusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱,包括:箱体,其内部形成有第一储物区和第二储物区;氧气处理装置,其至少一部分与第一储物区气流连通,并用于通过电化学反应消耗第一储物区的氧气且生成氧气;且氧气处理装置形成有排气口,用于排出生成的氧气;以及导气组件,其具有进气端、第一出气端和第二出气端,其中,进气端用于与排气口连通,第一出气端与第二储物区连通,并用于将流出排气口的氧气导引至第二储物区,第二出气端用于与箱体的外部环境连通,并用于将流出排气口的氧气导引至外部环境。使用上述方案,冰箱能够合理地处理氧气处理装置生成的氧气,提高气氛调节能力,且具备结构简单、控制灵活的优点。

Description

冰箱 技术领域
本发明涉及保鲜设备,特别是涉及冰箱。
背景技术
对于大部分的果蔬类食材而言,当存放于低氧保鲜环境时,可获得较长的保存期限。为营造低氧保鲜气氛,可在冰箱上安装氧气处理装置,以利用氧气处理装置的电化学反应消耗冰箱储物空间的氧气。
然而,发明人认识到,氧气处理装置在进行电化学反应的同时还会生成氧气,若未进行合理处置,生成的氧气可能会向上述储物空间扩散,导致氧气处理装置的除氧功能失效。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱。
本发明的一个进一步的目的是使冰箱合理地解决氧气处理装置生成的氧气,防止生成的氧气破坏低氧保鲜气氛。
本发明的又一个进一步的目的是要使冰箱利用氧气处理装置同时营造低氧保鲜气氛和高氧保鲜气氛。
本发明的另一个进一步的目的是要提高冰箱的气氛调节过程的灵活性。
本发明的再一个进一步的目的是要减少或避免冰箱因氧气排放而导致环境污染。
特别地,本发明提供了一种冰箱,包括:箱体,其内部形成有第一储物区和第二储物区;氧气处理装置,其至少一部分与第一储物区气流连通,并用于通过电化学反应消耗第一储物区的氧气且生成氧气;且氧气处理装置形成有排气口,用于排出生成的氧气;以及导气组件,其具有进气端、第一出气端和第二出气端,其中,进气端用于与排气口连通,第一出气端与第二储物区连通,并用于将流出排气口的氧气导引至第二储物区,第二出气端用于与箱体的外部环境连通,并用于将流出排气口的氧气导引至外部环境。
可选地,导气组件包括:导气开关阀,其具有导气进气接口、第一导气阀口和第二导气阀口,其中,导气进气接口用于连接至排气口,并作为进气 端;以及第一出气导管和第二出气导管,分别与第一导气阀口和第二导气阀口对应连通,其中,第一出气导管自第一导气阀口延伸至第二储物区,且其末端作为第一出气端,第二出气导管自第二导气阀口延伸至箱体的外部环境,且其末端作为第二出气端。
可选地,导气开关阀为电磁三通阀,并用于受控地开闭第一导气阀口和第二导气阀口,从而调节流经其的氧气的流动路径。
可选地,第二储物区上开设有进气孔,以供第一出气导管***其中,使得第一出气端连通第二储物区;且箱体上开设有开口,以供第二出气导管***其中,使得第二出气端连通外部环境。
可选地,第二储物区位于第一储物区的上方;且氧气处理装置设置在第一储物区的后侧;进气孔开设在第二储物区的后壁,开口开设在箱体的后壁。
可选地,冰箱还包括:排气开关阀,连接至排气口,用于受控地启动或关闭,从而通断排气口与导气进气接口之间的通路。
可选地,排气开关阀为电磁二通阀,且其具有排气进气接口和排气阀口,排气进气接口连接至排气口,排气阀口用于连通导气进气接口,且排气开关阀用于通过受控地启动或关闭来开闭排气阀口,从而通断排气口与导气进气接口之间的通路。
可选地,冰箱还包括:分离仓,其具有进气口和出气口,其中进气口与排气口相连通,且分离仓的内部形成弧状气流通道,用于成使流经其的氧气沿曲面流动,从而使氧气所携带的液体分离;出气口与导气进气接口相连通,用于将分离液体后的氧气排至导气进气接口。
可选地,分离仓为中空筒状或者中空球状,以限定出弧状气流通道。
可选地,氧气处理装置具有壳体,其内部形成用于进行电化学反应的反应仓,排气口开设在壳体上,壳体上还开设有连通反应仓的回液口;且分离仓的底部开设有出液口,连通回液口,以使分离仓分离出的液体回流至氧气处理装置内。
本发明的冰箱,通过增设导气组件,并使导气组件构造成既能将氧气处理装置生成的氧气导引至第二储物区,又能将氧气处理装置生成的氧气导引至箱体的外部环境,可使冰箱合理地处理氧气处理装置生成的氧气,从而防止生成的氧气因无规则扩散而破坏低氧保鲜气氛。
进一步地,本发明的冰箱,由于导气组件能将氧气处理装置生成的氧气 导引至第二储物区,使得第二储物区内的氧气浓度升高,因此,本发明的冰箱能够利用氧气处理装置同时营造低氧保鲜气氛和高氧保鲜气氛,这有利于简化冰箱结构、提升冰箱性能。
进一步地,本发明的冰箱,通过对导气开关阀的阀口开闭状态进行控制,可以调节氧气的流动路径,使得氧气选择性地流入第二储物区或者流至外部环境,这有利于提高冰箱气氛调节过程的灵活性。
更进一步地,本发明的冰箱,由于设置有分离仓,且分离仓的内部形成弧状气流通道,流经弧状气流通道的气体通过沿曲面流动,可以实现气液分离,因此,本发明提供了一种具备气液分离功能的冰箱,被分离出的液体滞留在分离仓内,从而能够减少或避免冰箱因氧气排放而导致环境污染。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的冰箱的氧气处理装置和分离仓的示意性结构图;
图3是根据本发明另一实施例的分离仓200的示意性结构图;
图4是根据本发明一个实施例的冰箱的氧气处理装置的示意性结构图;
图5是图4所示的冰箱的氧气处理装置的示意性分解图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意性结构图。本实施例的冰箱10为具备低温存储功能的电器设备,既包括狭义的冰箱,也包括冷柜、储藏柜以及其他冷藏冷冻装置。
冰箱10一般性地可包括箱体500、氧气处理装置100以及导气组件400。本实施例中,氧气处理装置100在进行电化学反应消耗第一储物区510的氧气的同时,还会生成氧气。为避免生成的氧气进行无规则扩散,充分发挥氧气处理装置100针对氧气的处理能力,实现氧气处理装置100的功能复用, 提高冰箱10的气氛调节效果,发明人针对冰箱10的内部结构进行了改进。
箱体500的内部形成有第一储物区510和第二储物区520。每个储物区可以分别作为独立的储物间室。除了第一储物区510和第二储物区520之外,箱体500的内部还可以根据实际需要设置其他储物区。
氧气处理装置100的至少一部分与第一储物区510气流连通,并用于通过电化学反应消耗第一储物区510的氧气且生成氧气。且氧气处理装置100形成有排气口112,用于排出生成的氧气。本实施例的第一储物区510用于形成低氧保鲜空间。氧气处理装置100的至少一部分与第一储物区510气流连通是指,第一储物区510内的气体可以流动至氧气处理装置100,并与氧气处理装置100的至少一部分接触,从而使得气体中的氧气可以作为反应物被电化学反应所消耗。
导气组件400具有进气端、第一出气端和第二出气端,其中,进气端用于与排气口112连通,第一出气端与第二储物区520连通,并用于将流出排气口112的氧气导引至第二储物区520,第二出气端用于与箱体500的外部环境连通,并用于将流出排气口112的氧气导引至外部环境。也就是说,导气组件400用于对流出排气口112的氧气进行导引,使氧气选择性地进入第二储物区520或者流向外部环境。
本实施例的第二储物区520可以用于形成高氧保鲜空间。当氧气处理装置100排出的氧气进入第二储物区520时,可使第二储物区520内的氧气浓度升高,营造出高氧保鲜气氛,使得第二储物区520适于存储肉类和菌菇类等物品。当第二储物区520不需要输入氧气时,例如,当第二储物区520内存放的物品种类发生变化且不需要营造高氧保鲜气氛时,或者当第二储物区520内的氧气浓度达到预设要求时,可使氧气处理装置100排出的氧气流至第二出气端,并排至外部环境。
本发明的冰箱10,通过增设导气组件400,并使导气组件400构造成既能将氧气处理装置100生成的氧气导引至第二储物区520,又能将氧气处理装置100生成的氧气导引至箱体500的外部环境,可使冰箱10合理地处理氧气处理装置100生成的氧气,从而防止生成的氧气因无规则扩散而破坏低氧保鲜气氛。
由于导气组件400能将氧气处理装置100生成的氧气导引至第二储物区520,使得第二储物区520内的氧气浓度升高,因此,本发明的冰箱10能够 利用氧气处理装置100同时营造低氧保鲜气氛和高氧保鲜气氛,这有利于简化冰箱10结构、提升冰箱10性能。
在一些可选的实施例中,导气组件400包括导气开关阀410、第一出气导管420和第二出气导管430。其中,导气开关阀410用于调节流经其的氧气的流动路径。
导气开关阀410具有导气进气接口、第一导气阀口和第二导气阀口,其中,导气进气接口用于连接至排气口112,并作为进气端。导气进气接口作为导气开关阀410的进气接口。第一导气阀口和第二导气阀口分别作为导气开关阀410的出气阀口。
第一出气导管420和第二出气导管430分别与第一导气阀口和第二导气阀口对应连通,例如,第一出气导管420与第一导气阀口对应连通,使得流经第一导气阀口的氧气可以流经第一出气导管420,第二出气导管430与第二导气阀口对应连通,使得流经第二导气阀口的氧气可以流经第二出气导管430。
第一出气导管420自第一导气阀口延伸至第二储物区520,且其末端作为第一出气端,第二出气导管430自第二导气阀口延伸至箱体500的外部环境,且其末端作为第二出气端。即,第一出气导管420将流经其的氧气导引至第二储物区520,第二出气导管430将流经其的氧气导引至外部环境。
导气开关阀410为电磁三通阀,并用于受控地开闭第一导气阀口和第二导气阀口,从而调节流经其的氧气的流动路径。例如,当打开第一导气阀口且关闭第二导气阀口时,导气开关阀410可将流经其的氧气导引至第一出气导管420,当打开第二导气阀口且关闭第一导气阀口时,导气开关阀410可将流经其的氧气导引至第二出气导管430。
通过对导气开关阀410的阀口开闭状态进行控制,可以调节氧气的流动路径,使得氧气选择性地流入第二储物区520或者流至外部环境,这有利于提高冰箱10气氛调节过程的灵活性。
例如,第一储物区510和第二储物区520可以分别安装有氧气浓度传感器,冰箱10可以根据氧气浓度传感器的检测值确定导气开关阀410的阀口的开闭状态。
例如,当第一储物区510的氧气浓度高于预设要求且第二储物区520的氧气浓度低于预设要求时,氧气处理装置进行电化学反应时,导气开关阀可 以打开第一导气阀口且关闭第二导气阀口。随着电化学反应的进行,若第一储物区510的氧气浓度先达到预设要求,而第二储物区520的氧气浓度暂未达到预设要求,则可以继续进行电化学反应且暂不调整导气开关阀410的阀口的开闭状态,待第二储物区520的氧气浓度达到预设要求时,再停止电化学反应且关闭导气开关阀410的全部阀口。随着电化学反应的进行,若第二储物区520的氧气浓度先达到预设要求,而第一储物区510的氧气浓度暂未达到预设要求,则可以继续进行电化学反应且关闭导气开关阀410的第一导气阀口并打开第二导气阀口,待第一储物区510的氧气浓度达到预设要求时,再停止电化学反应且关闭导气开关阀410的全部阀口。
又如,当第一储物区510的氧气浓度高于预设要求而第二储物区520的氧气浓度达到预设要求时,氧气处理装置进行电化学反应时,导气开关阀可以打开第二导气阀口且关闭第一导气阀口。待第一储物区510的氧气浓度达到预设要求时,再停止电化学反应且关闭导气开关阀410的全部阀口。
再如,当第二储物区520的氧气浓度低于预设要求而第一储物区510的氧气浓度达到预设要求时,氧气处理装置进行电化学反应时,导气开关阀可以打开第一导气阀口且关闭第二导气阀口。待第二储物区520的氧气浓度达到预设要求时,再停止电化学反应且关闭导气开关阀410的全部阀口。
在一些可选的实施例中,第二储物区520上开设有进气孔,以供第一出气导管420***其中,使得第一出气端连通第二储物区520。箱体500上开设有开口,以供第二出气导管430***其中,使得第二出气端连通外部环境。
在一些进一步的实施例中,第二储物区520位于第一储物区510的上方。且氧气处理装置100设置在第一储物区510的后侧。进气孔可以开设在第二储物区520的后壁上,开口可以开设在箱体500的后壁上。如此设置,可使氧气处理装置和导气组件400分别安装在箱体500内的后部,这可以提高冰箱10整体的美观度,减少或避免各个部件对用户的取放物品过程产生干扰,且缩短氧气的流动路径。在另一些可选的实施例中,氧气处理装置100可以设置在第一储物区510内,并位于一储物区510的后部。
在一些可选的实施例中,冰箱10还可以进一步地包括排气开关阀,连接至排气口112,用于受控地启动或关闭,从而通断排气口112与导气进气接口之间的通路。
例如,排气开关阀为电磁二通阀,且其具有排气进气接口和排气阀口, 排气进气接口连接至排气口112,排气阀口用于连通导气进气接口,且排气开关阀用于通过受控地启动或关闭来开闭排气阀口,从而通断排气口112与导气进气接口之间的通路。
通过在排气口112处安装排气开关阀,即便氧气处理装置100发生位移或倾斜,氧气处理装置100内的液体也无法从排气口112溢出,因此,本实施例的氧气处理装置100具备较高的安全性,能有效防止发生漏液问题,从而有利于延长装置的使用寿命,增强保鲜效果。
由于排气开关阀能够彻底地切断排气口112与氧气处理装置100外部空间的通路,因此,无论是氧气处理装置100自身发生倾斜或者倒置现象,或者是安装有氧气处理装置100的冰箱10发生倾斜或者倒置现象,电解液均不会从排气口112溢出,从而彻底解决了装置的漏液隐患。
在一些可选的实施例中,冰箱10还包括分离仓200,其具有进气口220和出气口240,其中进气口220与排气口112相连通。本实施例中,进气口220用于允许流出排气口112的氧气流入分离仓200内。
分离仓200的内部形成弧状气流通道,用于成使流经其的氧气沿曲面流动,从而使氧气所携带的液体分离。流经弧状气流通道的气体通过沿曲线流动,可以形成涡流,并实现气液分离。本实施例提供了一种具备气液分离功能的冰箱10,被分离出的液体滞留在分离仓200内,从而能够减少或避免冰箱10因氧气排放而导致环境污染。
出气口240与导气进气接口相连通,用于将分离液体后的氧气排至导气进气接口。
图2是根据本发明一个实施例的冰箱10的氧气处理装置100和分离仓200的示意性结构图,图中的箭头方向示出气流流动方向。在一些可选的实施例中,分离仓200为中空筒状或者中空球状,以限定出弧状气流通道。分离仓200的内壁形成上述弧状气流通道。在气体流入分离仓200之后,会受到自身重力的作用以及分离仓200内壁的阻挡和引导,以离心向下倾斜旋转的方式流动,形成涡流,在此过程中,氧气所携带的液体会因与分离仓200的内壁碰撞而附着在内壁上,或因流速降低而被分离出来,不断富集并最终滑落至分离仓200的底部,去除液体的清洁气体则可以通过分离仓200的出气口240排出,以此完成气液分离。
由于弧状气流通道可以采用中空筒状或者中空球状的分离仓200限定出 来,仅需要使排气口112连通中空筒状壳体110或者中空球状壳体110,即可进行气液分离,因此,本实施例的冰箱10具备结构精巧、制造成本低的优点。
进气口220位于分离仓200的顶部区段或者中部区段,并与排气口112相连通,例如可以通过连通管300进行间接地连通。出气口240与进气口220间隔设置,配置成排出流经分离仓200的气体。优选地,出气口240可以与进气口220相对设置于同一高度,或者可以高于进气口220设置,这可以减少或避免未经气液分离的气体直接从出气口240排出。例如,出气口240与进气口220可以相对设置,并位于分离仓200的中上部,进气口220可以靠近分离仓200的前端设置,出气口240可以靠近分离仓200的后端设置。
图3是根据本发明另一实施例的分离仓200的示意性结构图。在一些可选的实施例中,分离仓200内可以设置有导气管260,与出气口240相连通,并向下延伸至分离仓200的底部区段,且与分离仓200的底壁之间形成间隙。例如,导气管260可以呈倒L型,或者可以为直管。分离出液体的气体可以流经导气管260,并在导气管260的导引下流向出气口240。图3中箭头示出气流流动方向。
利用导气管260连通出气口240与分离仓200的内部空间,可以进一步防止附着在分离仓200内壁的液体随气体流出,并且由于该导气管260限定出自下而上的气流排放路径,因此该导气管260也能够起到一定的气液分离作用,从而进一步优化分离仓200的气液分离效果。
在一些可选的实施例中,分离仓200内还可以设置有隔板,或者填充有填料,以利用隔板或者填料进行气液分离。在另一些可选的实施例中,分离仓200进行气液分离的方式还可以变换为旋风式。
图4是根据本发明一个实施例的冰箱10的氧气处理装置100的示意性结构图。氧气处理装置100具有壳体110,其内部形成用于进行电化学反应的反应仓111,排气口112开设在壳体110上。排气口112处还可以连接有排气管160。
壳体110上还开设有连通反应仓111的回液口118。且分离仓200的底部开设有出液口210,连通回液口118,以使分离仓200分离出的液体回流至氧气处理装置100内。
也就是说,因气液分离而被滞留在分离仓200内的液体可以依次流经出 液口210以及回液口118,并重新返回反应仓111内,这使得本实施例的冰箱10具备资源回收功能,这有利于提高氧气处理装置10的资源利用率。
在一些进一步的实施例中,冰箱10还包括回液开关阀(未示出),设置于回液口118处,配置成受控地启动或关闭,从而打开或封闭回液口118。也就是说,通过对回液开关阀的启闭状态进行控制,可以开闭回液口118,进而通断分离仓200与反应仓111之间的液体流路。
在一些实施例中,回液开关阀可以为二通电磁阀,且具有进液接口和出液阀口,进液接口连接至出液口210,出液阀口连接至回液口118,且回液开关阀配置成受控地启动或关闭,以开闭出液阀口。
回液开关阀配置成在排气开关阀封闭排气口112之前受控地启动,且配置成与排气开关阀同时关闭。例如,回液开关阀可以在氧气处理装置100结束电化学反应之后(间隔1~10min,例如5min)受控地启动,并维持设定时长(例如1~10min),然后再使排气开关阀和回液开关阀同时地受控关闭,以封闭排气口112和回液口118。如此设置,可以确保反应仓111内的气体全部排出,且能避免液体回收过程对气液分离过程产生干扰。
排气开关阀还配置成在氧气处理装置100开始进行电化学反应之前受控地启动。例如,在确定需要对第一储物区510或者第二储物区520的氧气进行处理时,先启动排气开关阀,并在确保出气阀口为打开状态的情况下,再使氧气处理装置100开始进行电化学反应。
需要说明的是,对于电磁阀而言,通过对其通电状态进行控制,即可调节启闭状态,例如,电磁阀不通电时为关闭状态,通电时则为启动状态。在了解本实施例的基础上,本领域技术人员应当易于获知电磁阀的结构和位置,因此,图中未做标示。
图5是图4所示的冰箱的氧气处理装置100的示意性分解图。在一些实施例中,氧气处理装置100还可以进一步地包括阳极部140、阴极部120、分隔件130和固定组件150。
壳体110上开设有安装口114。阴极部120设置于安装口114处,以与壳体110共同限定出用于盛装电解液的反应仓111。
例如,壳体110大致可以呈扁平的长方体状,并且壳体110的其中一个侧壁可以打开,以形成上述安装口114。阳极部140与阴极部120相互间隔地设置于反应仓111内。
在通电情况下,阴极部120用于通过电化学反应消耗氧气。例如,空气中的氧气可以在阴极部120处发生还原反应,即:O2+2H2O+4e-→4OH-。阴极部120产生的OH-可以在阳极部140处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-。氧气可以通过壳体110上的排气口112排出。阳极部140可以为阳极电极,例如镍网或者钛网,阴极部可以为阴极电极,例如含有银和二氧化锰的催化膜。
分隔件130设置于反应仓111内,并位于阴极部120与阳极部140之间,用于分隔阴极部120与阳极部140,防止发生短路。具体地,分隔件130上朝向阳极部140的一侧形成有多个凸起132,凸起132抵触于阳极部140上,阴极部120贴靠于分隔件130背离凸起132的一侧,以在阴极部120与阳极部140形成预设间隙,进而将阴极部120与阳极部140分隔开。
固定组件150可以设置于阴极部120的外侧,配置成将阴极部120固定于壳体110的安装口114处。具体地,该固定组件150还可以包括金属边框152和支撑件154。金属边框152贴靠于阴极部120的外侧。金属边框152与阴极部120直接接触,可以起到压紧阴极部120的作用,并且金属边框152上还可以设置有阴极部120的阴极供电端子152b,以与外部电源相连。支撑件154形成有插接槽。当金属边框152的围立部152a进支撑件154的插接槽时,金属边框152可以由支撑件154固定和定位,进而使得金属边框152压紧阴极部120。阳极部140上形成有阳极供电端子142。以与供电电源相连。
本发明的冰箱10,通过增设导气组件400,并使导气组件400构造成既能将氧气处理装置100生成的氧气导引至第二储物区520,又能将氧气处理装置100生成的氧气导引至箱体500的外部环境,可使冰箱10合理地处理氧气处理装置100生成的氧气,从而防止生成的氧气因无规则扩散而破坏低氧保鲜气氛。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括:
    箱体,其内部形成有第一储物区和第二储物区;
    氧气处理装置,其至少一部分与所述第一储物区气流连通,并用于通过电化学反应消耗所述第一储物区的氧气且生成氧气;且所述氧气处理装置形成有排气口,用于排出生成的氧气;以及
    导气组件,其具有进气端、第一出气端和第二出气端,其中,所述进气端用于与所述排气口连通,所述第一出气端与所述第二储物区连通,并用于将流出所述排气口的氧气导引至所述第二储物区,所述第二出气端用于与所述箱体的外部环境连通,并用于将流出所述排气口的氧气导引至所述外部环境。
  2. 根据权利要求1所述的冰箱,其中,
    所述导气组件包括:
    导气开关阀,其具有导气进气接口、第一导气阀口和第二导气阀口,其中,所述导气进气接口用于连接至所述排气口,并作为所述进气端;以及
    第一出气导管和第二出气导管,分别与所述第一导气阀口和所述第二导气阀口对应连通,其中,所述第一出气导管自所述第一导气阀口延伸至所述第二储物区,且其末端作为所述第一出气端,所述第二出气导管自所述第二导气阀口延伸至所述箱体的外部环境,且其末端作为所述第二出气端。
  3. 根据权利要求2所述的冰箱,其中,
    所述导气开关阀为电磁三通阀,并用于受控地开闭所述第一导气阀口和所述第二导气阀口,从而调节流经其的氧气的流动路径。
  4. 根据权利要求2所述的冰箱,其中,
    所述第二储物区上开设有进气孔,以供所述第一出气导管***其中,使得所述第一出气端连通所述第二储物区;且
    所述箱体上开设有开口,以供所述第二出气导管***其中,使得所述第二出气端连通所述外部环境。
  5. 根据权利要求4所述的冰箱,其中,
    所述第二储物区位于所述第一储物区的上方;且
    所述氧气处理装置设置在所述第一储物区的后侧;所述进气孔开设在所述第二储物区的后壁,所述开口开设在所述箱体的后壁。
  6. 根据权利要求2所述的冰箱,还包括:
    排气开关阀,连接至所述排气口,用于受控地启动或关闭,从而通断所述排气口与所述导气进气接口之间的通路。
  7. 根据权利要求6所述的冰箱,其特这在于,
    所述排气开关阀为电磁二通阀,且其具有排气进气接口和排气阀口,所述排气进气接口连接至所述排气口,所述排气阀口用于连通所述导气进气接口,且所述排气开关阀用于通过受控地启动或关闭来开闭所述排气阀口,从而通断所述排气口与所述导气进气接口之间的通路。
  8. 根据权利要求2所述的冰箱,还包括:
    分离仓,其具有进气口和出气口,其中所述进气口与所述排气口相连通,且所述分离仓的内部形成弧状气流通道,用于成使流经其的氧气沿曲面流动,从而使氧气所携带的液体分离;所述出气口与所述导气进气接口相连通,用于将分离液体后的氧气排至所述导气进气接口。
  9. 根据权利要求8所述的冰箱,其中,
    所述分离仓为中空筒状或者中空球状,以限定出所述弧状气流通道。
  10. 根据权利要求8所述的冰箱,其中,
    所述氧气处理装置具有壳体,其内部形成用于进行电化学反应的反应仓,所述排气口开设在所述壳体上,所述壳体上还开设有连通所述反应仓的回液口;且
    所述分离仓的底部开设有出液口,连通所述回液口,以使所述分离仓分离出的液体回流至所述氧气处理装置内。
PCT/CN2023/073139 2022-01-29 2023-01-19 冰箱 WO2023143368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220245111.9U CN217876676U (zh) 2022-01-29 2022-01-29 冰箱
CN202220245111.9 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023143368A1 true WO2023143368A1 (zh) 2023-08-03

Family

ID=84049026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073139 WO2023143368A1 (zh) 2022-01-29 2023-01-19 冰箱

Country Status (2)

Country Link
CN (1) CN217876676U (zh)
WO (1) WO2023143368A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217876676U (zh) * 2022-01-29 2022-11-22 青岛海尔电冰箱有限公司 冰箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013224659A1 (de) * 2012-12-03 2014-06-05 BSH Bosch und Siemens Hausgeräte GmbH Kühlschrank und Verfahren zur Konservierung von Lebensmitteln in einem Kühlschrank
CN105121977A (zh) * 2013-04-18 2015-12-02 株式会社电装 制冷循环装置
CN106628640A (zh) * 2016-12-02 2017-05-10 青岛海尔股份有限公司 气调保鲜储物装置
CN211625827U (zh) * 2019-12-18 2020-10-02 青岛海尔智能技术研发有限公司 冰箱
CN113007944A (zh) * 2019-12-18 2021-06-22 青岛海尔智能技术研发有限公司 冰箱
CN113091362A (zh) * 2019-12-23 2021-07-09 广东美的白色家电技术创新中心有限公司 一种冰箱
CN217876676U (zh) * 2022-01-29 2022-11-22 青岛海尔电冰箱有限公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013224659A1 (de) * 2012-12-03 2014-06-05 BSH Bosch und Siemens Hausgeräte GmbH Kühlschrank und Verfahren zur Konservierung von Lebensmitteln in einem Kühlschrank
CN105121977A (zh) * 2013-04-18 2015-12-02 株式会社电装 制冷循环装置
CN106628640A (zh) * 2016-12-02 2017-05-10 青岛海尔股份有限公司 气调保鲜储物装置
CN211625827U (zh) * 2019-12-18 2020-10-02 青岛海尔智能技术研发有限公司 冰箱
CN113007944A (zh) * 2019-12-18 2021-06-22 青岛海尔智能技术研发有限公司 冰箱
CN113091362A (zh) * 2019-12-23 2021-07-09 广东美的白色家电技术创新中心有限公司 一种冰箱
CN217876676U (zh) * 2022-01-29 2022-11-22 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
CN217876676U (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2023143368A1 (zh) 冰箱
WO2023124721A1 (zh) 冰箱
WO2024046375A1 (zh) 冷藏冷冻装置
WO2024055944A1 (zh) 氧气处理装置以及具有其的冷藏冷冻装置
CN218495515U (zh) 冷藏冷冻装置
WO2024017204A1 (zh) 冰箱
CN219346936U (zh) 冷藏冷冻装置
CN218495517U (zh) 冷藏冷冻装置
CN217686165U (zh) 氧气处理装置和具有其的冰箱
CN220227855U (zh) 用于冰箱的排液阀和冰箱
CN216409401U (zh) 冰箱
WO2023143367A1 (zh) 冰箱
WO2023098413A1 (zh) 氧气处理装置和具有其的冰箱
CN216409395U (zh) 冰箱
WO2024046377A1 (zh) 冷藏冷冻装置
CN217465014U (zh) 冰箱
CN215626820U (zh) 一种二氧化碳生成装置和冰箱
CN217465115U (zh) 氧气处理装置和具有其的冰箱
CN219346955U (zh) 氧气处理装置以及具有其的冷藏冷冻装置
CN218348973U (zh) 冰箱
WO2024046388A1 (zh) 冷藏冷冻装置
CN217465007U (zh) 冰箱
CN117663602A (zh) 冷藏冷冻装置
WO2023169341A1 (zh) 用于冰箱的氧气处理装置以及具有其的冰箱
CN220355831U (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746249

Country of ref document: EP

Kind code of ref document: A1