WO2024055944A1 - 氧气处理装置以及具有其的冷藏冷冻装置 - Google Patents

氧气处理装置以及具有其的冷藏冷冻装置 Download PDF

Info

Publication number
WO2024055944A1
WO2024055944A1 PCT/CN2023/118142 CN2023118142W WO2024055944A1 WO 2024055944 A1 WO2024055944 A1 WO 2024055944A1 CN 2023118142 W CN2023118142 W CN 2023118142W WO 2024055944 A1 WO2024055944 A1 WO 2024055944A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
gas
air
treatment device
oxygen treatment
Prior art date
Application number
PCT/CN2023/118142
Other languages
English (en)
French (fr)
Inventor
黄璐璐
苗建林
程学丽
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024055944A1 publication Critical patent/WO2024055944A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to controlled atmosphere preservation technology, and in particular to an oxygen treatment device and a refrigeration and freezing device having the same.
  • Controlled atmosphere preservation technology is a technology that extends the storage life of food by adjusting the composition of ambient gases. Refrigeration and freezing devices with controlled atmosphere preservation functions are widely popular. Among the many gas components, oxygen has attracted much attention.
  • the oxygen treatment device can process oxygen in the surrounding gas, thereby regulating the oxygen content.
  • some oxygen treatment devices in the prior art for example, some oxygen treatment devices that use electrochemical reactions to process oxygen, require the cathode membrane to directly contact the oxygen in the space in order to carry out the electrochemical reaction, which greatly affects the electrochemical reaction.
  • the installation environment of the oxygen treatment device is limited.
  • the assembly of the oxygen treatment device is highly dependent on the structure of the scene.
  • the oxygen treatment device only relies on the principle of molecular diffusion to capture oxygen molecules in the air. The work efficiency is low, and the oxygen in the space is The content changes unevenly.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide an oxygen treatment device and a refrigeration and freezing device having the same.
  • a further object of the present invention is to reduce the dependence of the assembly of the oxygen treatment device on the scene structure, improve the assembly flexibility of the oxygen treatment device in the refrigeration and freezing device, and expand the application scope of the oxygen treatment device.
  • Another further object of the invention is to reduce the operational difficulty of connecting the oxygen treatment device to external piping.
  • Another further object of the present invention is to make the oxygen content of the oxygen-depleted gas sent out of the gas outlet port be at a lower level, or to make the oxygen content of the oxygen-rich gas sent out of the gas outlet port be at a higher level.
  • Another further object of the present invention is to change the way of capturing oxygen by relying only on the principle of molecular diffusion, and increase the gas flow rate flowing through the air flow channel per unit time, thereby improving the working efficiency of the oxygen treatment device.
  • a further object of the present invention is to guide the gas flowing through the air flow channel, thereby reducing or avoiding turbulence and improving the air conditioning efficiency of the space to be adjusted.
  • an oxygen treatment device including:
  • a casing on which an air inlet interface and an air outlet interface are formed for communicating with external pipelines, and an air flow channel connected with the air inlet interface and the air outlet interface is defined inside;
  • An oxygen treatment component is disposed in the gas flow channel and used to process oxygen in the gas flowing into the gas flow channel from the air inlet interface to generate oxygen-depleted gas or oxygen-rich gas; the oxygen-depleted gas or the oxygen-rich gas Oxygen-rich gas is sent out through the air outlet to adjust the external space of oxygen content.
  • the air inlet interface is a hollow cylindrical interface formed on the housing and bulging outward; and/or the air outlet interface is a hollow cylindrical interface formed on the casing and bulging outward.
  • the air inlet interface and the air outlet interface are arranged longitudinally and laterally offset.
  • the oxygen treatment device also includes:
  • An airflow actuating device is provided in the airflow channel and has an air suction port and an air outlet;
  • the air suction port is in air flow communication with the air inlet interface, and the air outlet is opposite to the air outlet interface; and the air flow actuating device is used to promote the air flow from the air inlet interface to the air flow channel and to the air flow channel. Air flow from the air outlet.
  • the airflow channel has a first section connected to the air inlet interface and with a gradually expanding flow cross section, and a second section connected with the air suction port of the airflow actuating device and with a tapered flow cross section.
  • the gas flow channel further has a third section connected between the first section and the second section; and the oxygen treatment component is disposed in the third section.
  • the oxygen treatment component has a treatment part for treating oxygen in the gas flowing through the gas flow channel to produce the oxygen-depleted gas or the oxygen-rich gas; and the outer surface of the treatment part is along The streamline clusters of the airflow flowing through the third section extend in an extending direction.
  • the treatment part is a cathode, which is used to consume oxygen in the gas flowing through the gas flow channel through electrochemical reaction to generate oxygen-depleted gas; and the oxygen treatment component further includes:
  • An electrolytic chamber having a lateral opening; the processing part is disposed at the lateral opening to jointly define an electrolytic chamber for containing electrolyte together with the electrolytic chamber;
  • the mating part serves as an anode and is disposed in the electrolysis chamber and used to provide reactants to the processing part through electrochemical reactions and generate oxygen.
  • the oxygen treatment assembly further includes an exhaust chamber, which is arranged above the electrolysis chamber and has an exhaust hole; the exhaust chamber is connected to the electrolysis chamber and is used to collect the mating part The generated oxygen is discharged through the exhaust hole.
  • the housing is provided with an oxygen exhaust port; and the oxygen treatment device further includes an oxygen exhaust pipe, one end of which is connected to the exhaust hole, and the other end extends from the oxygen exhaust port to the shell. Outside the body, it is used to discharge the oxygen discharged through the exhaust hole to the outside of the housing.
  • the housing has a bottom wall and a top wall, as well as first and second side walls that extend upward from the bottom wall to the top wall and are oppositely arranged;
  • the air outlet is formed on the on the top wall of the housing;
  • the air inlet interface is formed on the first side wall of the housing;
  • the air flow actuating device is fixed on the second side wall of the housing and is located on the air outlet interface below.
  • the housing also has:
  • a third side wall and a fourth side wall respectively extend upward from the bottom wall to the top wall and together with the first side wall and the second side wall enclose a cylinder with a top opening;
  • the first flow guide surface and the second flow guide surface respectively extend from the inner surface of the first side wall to the inner surface of the third side wall and the inner surface of the fourth side wall, and are connected with the third side wall.
  • An obtuse angle is formed between the inner surfaces of the side walls to define the first section;
  • the third flow guide surface and the fourth flow guide surface respectively extend from the inner surface of the second side wall to the inner surface of the third side wall and the inner surface of the fourth side wall, and are connected with the third side wall.
  • An obtuse angle is formed between the inner surfaces of the two side walls to define the second section.
  • the top wall of the housing is detachably provided.
  • the air flow actuating device is a centrifugal fan.
  • a refrigeration and freezing device including:
  • a box whose interior defines a storage space
  • the oxygen treatment device as described in any one of the above, wherein the gas outlet is connected to the storage space; the oxygen-poor gas or the oxygen-rich gas is sent out through the gas outlet and flows into the storage space, Thereby adjusting the oxygen content of the storage space.
  • the oxygen treatment device of the present invention and the refrigeration and freezing device having the same are provided with an air inlet interface and an air outlet interface for connecting external pipelines on the casing, and the oxygen treatment component is arranged in the air flow connecting the air inlet interface and the air outlet interface.
  • the gas from the external space can flow into the air flow channel through the air inlet interface, and be processed by the oxygen processing component, thereby forming oxygen-poor gas or oxygen-rich gas, and finally being sent out from the air outlet interface. Since the gas in the external space can enter the air inlet interface through the pipeline, using the solution of the present invention, the oxygen treatment device can be installed at any position, which can reduce the dependence of the assembly of the oxygen treatment device on the scene structure and improve the performance of the oxygen treatment device in refrigeration. Assembly flexibility in refrigeration units and expanding the range of applications for oxygen treatment units.
  • the air inlet interface is a hollow cylindrical interface formed on the casing and raised outward
  • the air outlet interface is formed on the casing and bulges outward.
  • the air inlet interface and/or the air outlet interface can be connected to the external pipeline through plugging or nesting, which can reduce the difficulty of connecting the oxygen treatment device to the external pipeline.
  • the air inlet interface and the air outlet interface are arranged on two different walls of the housing, or the air inlet interface and the air outlet interface are arranged longitudinally and vertically.
  • the lateral misalignment arrangement can extend the gas flow path flowing through the air flow channel, so that the gas flowing through the air flow channel fully contacts the oxygen treatment component, so that the oxygen content of the oxygen-depleted gas sent out of the gas outlet interface is at a lower level, or the gas is sent out.
  • the oxygen content of the oxygen-rich gas at the interface is at a high level.
  • the air suction port of the air flow actuating device is in air flow communication with the air inlet interface
  • the air flow actuating device is When the air outlet is opposite to the air outlet interface, the air in the external space can flow from the air inlet interface into the air flow channel and flow to the air outlet interface under the actuator of the air flow actuating device, forming an active high-speed air flow circulation structure, changing the situation that only relies on The way in which oxygen is captured by the principle of molecular diffusion helps to increase the gas flow rate flowing through the air flow channel per unit time, thereby improving the working efficiency of the oxygen treatment device.
  • the oxygen treatment device of the present invention and the refrigeration and freezing device having the same are provided in the air flow channel by arranging a first section connected to the air inlet interface and passing through a gradually expanding flow cross section and an air suction port connected to the air flow actuating device and passing through
  • the second section with tapered flow cross section can be respectively The first section and the second section are used to guide the gas flowing through the air flow channel, thereby reducing or avoiding turbulence.
  • the gas flowing into the air inlet interface can slow down the flow to extend the flow time, so as to fully contact the oxygen treatment component; under the action of the second section, the gas can accelerate the flow and flow at a higher flow out of the air outlet interface at a high speed to improve the air conditioning efficiency of the space to be adjusted.
  • Figure 1 is a schematic structural diagram of an oxygen treatment device according to an embodiment of the present invention.
  • Figure 2 is a schematic exploded view of the oxygen treatment device shown in Figure 1;
  • FIG 3 is a schematic internal structure diagram of the oxygen treatment device shown in Figure 1;
  • Figure 4 is a schematic top view of the internal structure of the oxygen treatment device shown in Figure 3;
  • Figure 5 is a schematic structural diagram of the housing of the oxygen treatment device shown in Figure 1, with the top wall of the housing hidden in the figure;
  • Figure 6 is an assembly structural diagram of the positioning mechanism and air flow actuating device of the oxygen treatment device according to one embodiment of the present invention.
  • Figure 7 is a schematic exploded view of the assembly structure of the positioning mechanism and the airflow actuator shown in Figure 6;
  • Figure 8 is an assembly structural diagram of the oxygen treatment component and the liquid volume regulating chamber of the oxygen treatment device according to one embodiment of the present invention.
  • Figure 9 is a schematic side view of the assembly structure of the oxygen treatment component and the liquid volume regulating chamber of the oxygen treatment device shown in Figure 8;
  • Figure 10 is a schematic exploded view of the assembly structure of the oxygen treatment component and the liquid volume regulating chamber of the oxygen treatment device shown in Figure 8;
  • Figure 11 is a schematic perspective view of the liquid volume regulating chamber of the oxygen treatment device shown in Figure 8.
  • Figure 12 is a schematic structural diagram of an oxygen treatment device according to another embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of a refrigeration and freezing device according to an embodiment of the present invention.
  • the oxygen treatment device 10 and the refrigeration and freezing device 20 provided with the oxygen treatment device 10 according to the embodiment of the present invention will be described below with reference to FIGS. 1 to 13 .
  • the orientations or positional relationships indicated by “inside”, “outer”, “upper”, “lower”, “top”, “bottom”, “horizontal”, “vertical”, etc. are based on the orientations or positional relationships shown in the drawings and are only for convenience of description.
  • the present invention and simplified description are not intended to indicate or imply that the devices or elements referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore are not to be construed as limitations of the present invention.
  • first”, “second”, etc. are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first”, “second”, etc. may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited. When a feature "includes or includes” one or some of the features it encompasses, unless specifically described otherwise, this indicates that other features are not excluded and may further be included.
  • the terms “installed”, “connected”, “connected”, “fixed” and “coupled” should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection, or Integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited .
  • installed can be a fixed connection or a detachable connection, or Integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited .
  • the embodiment of the present invention first provides an oxygen treatment device 10 .
  • the oxygen treatment device 10 may generally include a housing 200 and an oxygen treatment assembly 300 .
  • the housing 200 is formed with an air inlet interface 231 and an air outlet interface 221 for communicating with external pipelines, and an air flow channel 280 is defined inside the casing 200 for communicating with the air inlet interface 231 and the air outlet interface 221 . Since the air inlet interface 231 and the air outlet interface 221 are formed on the casing 200, the air flow channel 280 can be connected to the space to be adjusted through the pipeline, so that the gas in the space to be adjusted can flow from the air inlet interface 231 into the air flow channel 280, and Flows through the oxygen treatment component 300 to form oxygen-depleted gas or oxygen-rich gas under the action of the oxygen processing component 300 .
  • the oxygen treatment component 300 is disposed in the gas flow channel 280 and is used to process oxygen in the gas flowing into the gas flow channel 280 from the air inlet interface 231 to generate oxygen-depleted gas or oxygen-rich gas. Oxygen-poor gas or oxygen-rich gas is sent out through the gas outlet 221 to adjust the oxygen content in the external space.
  • the external space here may refer to the space to be adjusted, such as the storage space of a refrigeration and freezing unit. That is to say, the air inlet interface 231 and the air outlet interface 221 can be connected to the same space through external pipelines. Of course, in another example, the air inlet interface 231 and the air outlet interface 221 can communicate with different spaces through external pipelines respectively.
  • the air inlet interface 231 and the air outlet interface 221 By arranging the air inlet interface 231 and the air outlet interface 221 on the housing 200 for communicating with the external pipeline, and arranging the oxygen treatment component 300 in the air flow channel 280 connecting the air inlet interface 231 and the air outlet interface 221, the air from the external space
  • the gas can flow into the gas flow channel 280 through the gas inlet interface 231 and be processed by the oxygen processing assembly 300 to form oxygen-depleted gas or oxygen-rich gas, and is finally sent out from the gas outlet interface 221 .
  • the oxygen treatment device 10 can be installed at any location, for example, at any location away from the space to be adjusted, which can reduce the oxygen content.
  • the assembly of the processing device 10 depends on the scene structure. This improves the assembly flexibility of the oxygen treatment device 10 in the refrigeration and freezing device 20 and expands the application range of the oxygen treatment device 10 .
  • the oxygen treatment component 300 can consume oxygen or generate oxygen, thereby regulating the oxygen content in the gas flowing through the gas flow channel 280 to achieve the purpose of processing oxygen.
  • the oxygen treatment component 300 can use any method to consume oxygen or generate oxygen, for example, it can use electrochemical reaction, adsorption, membrane filtration, dissolution or any other chemical method.
  • the oxygen treatment device 10 may further include an air inlet pipeline and an air outlet pipeline.
  • the air intake pipeline is connected to the air intake interface 231 and serves as an external pipeline of the air intake interface 231 .
  • the air outlet pipeline is connected to the air outlet interface 221 and serves as an external pipeline of the air outlet interface 221 .
  • One end of the air intake pipeline away from the air intake interface 231 can be extended to the space to be adjusted.
  • the end of the air outlet pipe away from the air outlet interface 221 can be extended to the space to be adjusted.
  • the gas in the space to be adjusted flows into the air inlet interface 231 through the air inlet pipe, and flows into the air flow channel 280, and then flows out of the air flow channel 280 through the air outlet interface 221, and flows back to the space to be adjusted through the air outlet pipe, the air inlet interface 231 and the air outlet interface 221 can be connected to respective external pipelines directly or indirectly.
  • the air inlet interface 231 and the air outlet interface 221 may be openings or holes formed on the housing 200 respectively.
  • the air inlet interface 231 is a hollow cylindrical interface formed on the housing 200 and raised outward; and/or the air outlet interface 221 is a hollow cylindrical interface formed on the housing 200 and raised outward. .
  • the air inlet interface 231 is a hollow cylindrical interface formed on the casing 200 and bulges outward
  • the air outlet interface 221 is a hollow cylindrical interface formed on the casing 200 and bulges outward
  • the air inlet interface 231 and/or Or the gas outlet interface 221 can be connected to the external pipeline through plugging or nesting, which can reduce the operational difficulty of connecting the oxygen treatment device 10 to the external pipeline.
  • the air inlet interface 231 and the air outlet interface 221 are formed on two different walls of the housing 200, so that the air inlet interface 231 and the air outlet interface 221 can be appropriately extended. The distance between them allows the gas flow channel 280 to have a longer gas flow path, so that the flow time of the gas flowing through the gas flow channel 280 is increased, thereby fully contacting the oxygen treatment assembly 300 .
  • the air inlet interface 231 is formed on the bottom wall 210 or one side wall of the housing 200
  • the air outlet interface 221 is formed on the top wall 220 or another side wall of the housing 200. The positions of the air inlet interface 231 and the air outlet interface 221 can be interchanged.
  • the air inlet interface 231 and the air outlet interface 221 are arranged longitudinally and laterally offset.
  • the air inlet interface 231 is formed in the bottom section of the housing 200, and the air outlet interface 221 is formed in the top section of the housing 200; further, the air inlet interface 231 may be located on a lateral side of the housing 200, Further, the air outlet interface 221 may be located on the other transverse side of the housing 200 .
  • the housing 200 is generally in the shape of a hollow column, such as a hollow prism or a hollow cylinder.
  • the air inlet interface 231 is provided on the side wall of the housing 200 and is located at the bottom of the housing 200 .
  • the air outlet interface 221 is provided on the housing 200 . on the top wall 220 of the body 200 and away from the side wall of the housing 200 where the air inlet interface 231 is provided, so as to be obliquely opposite to the air inlet interface 231 .
  • the air flow channel 280 can be lengthened.
  • the gas flow path allows the gas flowing through the gas flow channel 280 to fully contact the oxygen treatment component 300, so that the oxygen content of the oxygen-depleted gas sent out of the gas outlet 221 is at a low level. Or the oxygen content of the oxygen-rich gas sent out of the gas outlet 221 is at a relatively high level.
  • the oxygen treatment device 10 further includes an air flow actuating device, which is disposed in the air flow channel 280 and has an air suction port 411 and an air outlet 412 .
  • the air suction port 411 is in air flow communication with the air inlet interface 231, and the air outlet 412 is opposite to the air outlet port 221.
  • the air flow actuating device is used to promote the formation of air flow from the air inlet interface 231 into the air flow channel 280 and to the air outlet interface 221.
  • the air suction port 411 of the airflow actuating device is connected with the air inlet interface 231, and the air outlet 412 of the airflow actuating device is opposite to the air outlet interface 221, the external space
  • the gas can flow from the air inlet interface 231 into the air flow channel 280 and flow to the air outlet interface 221 under the actuator of the air flow actuating device, forming an active high-speed air flow circulation structure, changing the way of capturing oxygen only relying on the principle of molecular diffusion, and has It helps to increase the gas flow rate flowing through the air flow channel 280 per unit time, thereby improving the working efficiency of the oxygen treatment device 10 .
  • the air flow actuating device is a centrifugal fan.
  • the air flow actuating device can also be replaced by any other fan, such as an axial flow fan.
  • the air flow channel 280 has a first section 281 connected to the air inlet interface 231 and with a gradually expanding flow cross section, and a second section 281 connected with the suction port 411 of the air flow actuating device and with a tapered flow section.
  • Paragraph 282 When the gas flows through the first section 281, in the gas flow direction, the cross-sectional area of the streamline cluster perpendicular to the gas flow (ie, the area of the flow cross-section) gradually expands.
  • the cross-sectional area of the streamline cluster perpendicular to the gas flow ie, the area of the flow cross-section
  • first section 281 connected to the air inlet interface 231 and with a gradually expanding flow cross section
  • second section 282 connected with the air suction port 411 of the air flow actuating device 400 and with a tapered flow cross section
  • the first section 281 and the second section 282 are used to guide the gas flowing through the air flow channel 280, thereby reducing or avoiding turbulence.
  • the gas flowing into the air inlet interface 231 can slow down the flow to extend the flow time, so as to fully contact the oxygen treatment component 300; under the action of the second section 282, the gas can accelerate the flow. And flows out of the air outlet interface 221 at a high speed to improve the air conditioning efficiency of the space to be adjusted.
  • first section 281 and second section 282 may be directly connected.
  • the oxygen treatment component 300 can be disposed in the first section 281 or the second section 282. Of course, it can also be disposed at the junction of the first section 281 and the second section 282, or in the first section at the same time. 281 and within the second section 282.
  • the airflow channel 280 also has a third section 283 connected between the first section 281 and the second section 282 .
  • the first section 281 and the second section 282 are respectively located on both sides of the third section 283 .
  • the dotted lines in FIG. 5 show the dividing line between the first section 281 and the third section 283 and the dividing line between the second section 282 and the third section 283 .
  • the oxygen treatment component 300 is disposed in the third section 283.
  • the area of the flow cross section of the third section 283 ie, the cross-sectional area of the streamline cluster perpendicular to the gas flow
  • the flow rate of the gas flowing through the third section 283 does not change significantly, so that various parts of the oxygen treatment assembly 300 can be evenly contacted with the flowing gas, thereby uniformly generating oxygen-poor gas or oxygen-rich gas.
  • the oxygen treatment device 10 further includes a positioning mechanism 500, which is fixed to the air flow in the airflow channel 280, and is fixedly connected with the airflow actuator to fix the airflow actuator in the airflow channel 280.
  • the airflow actuating device can be assembled on the positioning mechanism 500 first, and then the positioning mechanism 500 can be assembled in the airflow channel 280 , for example, fixed on the inner wall of the housing 200 .
  • the positioning mechanism 500 is used to indirectly fix the airflow actuating device to the airflow channel 280 , thereby avoiding the direct connection operation between the airflow actuating device and the housing 200 in the relatively narrow airflow channel 280 .
  • the airflow actuating device includes a volute 410 and a wind wheel 420 disposed in the volute 410.
  • An air inlet 411 and an air outlet 412 are formed on the volute 410, respectively.
  • the positioning mechanism 500 defines a mounting slot 510 in which the volute 410 is assembled, a first opening 520 communicating with the mounting slot 510 and communicating with the air outlet 412, and a second opening 530 communicating with the mounting slot 510 and communicating with the air suction port 411. .
  • the first opening 520 may face the air suction port 411 of the volute 410
  • the second opening 530 may face the air outlet 412 of the volute 410 .
  • the volute 410 can be fixed in the installation groove 510 by screwing.
  • the assembly stability between the airflow actuating device and the positioning mechanism 500 can be improved. And reduce or prevent the positioning mechanism 500 from blocking the air suction port 411 and the air outlet 412 of the air flow actuating device.
  • the positioning mechanism 500 further defines an outwardly protruding claw 540 extending outwardly from at least a portion of the opening edge of the mounting slot 510 .
  • the inner wall of the housing 200 accordingly defines a slot 241 into which the protruding claw 540 is inserted to achieve clamping.
  • the positioning mechanism 500 is fixed in the air flow channel 280 and the positioning mechanism 500 is fixedly connected to the air flow actuating device, so that the air flow actuating device is fixed in the air flow channel 280.
  • the claw and the slot 241 are used,
  • the positioning mechanism 500 is fixed on the inner wall of the housing 200 with a matching structure, the assembly method of the air flow actuating device of the oxygen treatment device 10 can be simplified.
  • the protruding claws 540 may be formed to extend radially outward from at least a portion of the opening edge of the mounting groove 510 , for example, may be formed to extend outward from both lateral ends and the bottom end of the mounting groove 510 .
  • the positioning mechanism 500 further defines a flange 550 extending outwardly from the top end of the opening edge of the mounting groove 510 .
  • the flange 550 is provided with a first screw hole 551, and the inner wall of the housing 200 is correspondingly formed with a second screw hole 242 opposite to the first screw hole 551, so that the flange 550 is fixedly connected to the inner wall of the housing 200 through screwing. .
  • the positioning mechanism 500 can define an outer protruding claw 540 and a flange 550 at the same time, so that the positioning mechanism 500 can be fixed on the inner wall of the housing 200 by using the matching structure of the claw and the slot 241 and the screw connection structure. , which is conducive to further improving the assembly stability of the airflow actuating device in the airflow channel 280 .
  • the oxygen processing assembly 300 has a processing portion 320 for processing oxygen in the gas flowing through the gas flow channel 280 to produce oxygen-depleted gas or oxygen-rich gas.
  • the outer surface of the treatment part 320 extends along the extending direction of the streamline cluster of the airflow flowing through the third section 283 .
  • the processing part 320 may be a plate-shaped electrode, such as a cathode.
  • the extension direction of the outer surface of the treatment part 320 is parallel to the extension direction of the streamline cluster of the gas flow flowing through the third section 283. In this way, the gas flowing through the third section 283 can be evenly aligned with the gas flow in a time sequence.
  • the outer surface of the treatment part 320 is in contact everywhere, thereby extending the contact time between the treatment part 320 and the airflow to be treated per unit time.
  • the processing part 320 is a cathode for consuming oxygen in the gas flowing through the gas flow channel 280 through an electrochemical reaction to generate oxygen-depleted gas.
  • Oxygen in the air can undergo a reduction reaction at the processing part 320, that is: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the oxygen treatment assembly 300 further includes an electrolytic chamber 310 and a matching portion 330 .
  • the electrolytic chamber 310 has a lateral opening 315.
  • the electrolytic chamber 310 can be in the shape of a flat rectangular parallelepiped, and the lateral opening 315 can be provided on a side wall of the electrolytic chamber 310 with a larger area.
  • the processing part 320 is disposed at the lateral opening 315 to jointly define an electrolytic chamber for containing electrolyte with the electrolytic chamber 310 .
  • the electrolytic chamber is a place where the processing part 320 and the matching part 330 perform electrochemical reactions. It can contain alkaline electrolyte, such as 1 to 8 mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • the matching part 330 serves as an anode, is disposed in the electrolytic chamber, and is used to provide reactants to the processing part 320 through electrochemical reactions and generate oxygen.
  • the matching part 330 and the processing part 320 may be arranged in the electrolytic chamber spaced apart from each other.
  • the OH - generated by the processing part 320 can undergo an oxidation reaction at the matching part 330 and generate oxygen, that is: 4OH - ⁇ O 2 +2H 2 O+4e - .
  • the fitting portion 330 may be a plate-shaped electrode. In other examples, of course, the fitting portion 330 can also be transformed into a columnar shape, an arc shape, or any other suitable shape.
  • the oxygen treatment assembly 300 further includes an exhaust chamber 340, which is disposed above the electrolysis chamber 310 and has an exhaust hole.
  • the exhaust chamber 340 is connected to the electrolytic chamber and is used to collect oxygen generated by the fitting part 330 and discharge it through the exhaust hole. That is to say, the exhaust chamber 340 is connected to the electrolytic chamber on the one hand, and the external environment on the other hand, so as to exhaust the oxygen discharged from the exhaust hole to the external environment.
  • the oxygen collected and discharged through the exhaust chamber 340 can be discharged directly.
  • the oxygen collected and discharged through the exhaust chamber 340 can also be transported to the high-oxygen preservation space of the refrigeration and freezing device 20 to create a high-oxygen preservation atmosphere and improve the preservation performance of the refrigeration and freezing device 20 .
  • the oxygen treatment device 10 can be used to consume the oxygen in the low-oxygen preservation space of the refrigeration and freezing device 20, and the oxygen treatment device 10 can also be used to increase the oxygen in the high-oxygen preservation space of the refrigeration and freezing device 20.
  • the oxygen treatment device 10 can be realized function reuse.
  • the exhaust chamber 340 and the electrolysis chamber 310 are integrally formed. With this arrangement, the assembly structure between the exhaust chamber 340 and the electrolytic chamber 310 can be omitted, and the airtightness of the connection structure between the exhaust chamber 340 and the electrolytic chamber is ensured.
  • a gas-liquid communication port is formed between the electrolysis chamber 310 and the exhaust chamber 340 so that the electrolysis chamber 310 and the exhaust chamber 340 can communicate with each other.
  • the housing 200 is also provided with an oxygen exhaust port 222 .
  • the oxygen treatment device 10 also includes an oxygen exhaust pipe 350, one end of which is connected to the exhaust hole, and the other end extends from the oxygen exhaust port 222 to the outside of the housing 200, for exhausting oxygen discharged through the exhaust hole to the outside of the housing 200.
  • the oxygen treatment device 10 can also omit the oxygen exhaust pipe 350.
  • the exhaust hole can be a hollow columnar interface formed on the exhaust chamber 340 and raised outward.
  • the exhaust hole can be through the oxygen exhaust pipe.
  • the port 222 extends to the outside of the housing 200 to discharge the oxygen flowing therethrough to the outside of the housing 200 .
  • the housing 200 is also provided with a liquid filling port 223.
  • the oxygen treatment device 10 also includes a liquid replenishing pipe 360, one end of which is connected to the electrolytic chamber, and the other end extends from the liquid injection port 223 to the outside of the housing 200 for guiding external liquid to the electrolytic chamber.
  • the housing 200 has a bottom wall 210 and a top wall 220 as well as first and second side walls 230 and 240 respectively extending upward from the bottom wall 210 to the top wall 220 and arranged oppositely.
  • the air outlet interface 221 is formed on the top wall 220 of the housing 200, and may be disposed on a lateral side of the housing 200, for example.
  • the air inlet interface 231 is formed on the first side wall 230 of the housing 200.
  • the first side wall 230 can be formed on the other transverse side of the housing 200, and the air inlet interface 231 can be disposed at the bottom center of the first side wall 230.
  • the air flow actuating device is fixed on the second side wall 240 of the housing 200 and is located below the air outlet interface 221 .
  • the gas flowing through the air flow channel 280 can flow in an upward oblique direction, thereby extending the flow path of the gas flowing through the air flow channel 280 .
  • the housing 200 also has third and fourth side walls 250 and 260 , first and second flow guide surfaces 271 and 272 , and third and fourth flow guide surfaces 273 and 274 .
  • the third side wall 250 and the fourth side wall 260 respectively extend upward from the bottom wall 210 to the top wall 220 and together with the first side wall 230 and the second side wall 240 surround a cylinder with a top opening.
  • the first side wall 230 is generally parallel to the second side wall 240
  • the third side wall 250 is generally parallel to the fourth side wall 260 .
  • the first flow guide surface 271 and the second flow guide surface 272 respectively extend from the inner surface of the first side wall 230 to the inner surface of the third side wall 250 and the inner surface of the fourth side wall 260, and are connected with the first side wall 230.
  • An obtuse angle is formed between the inner surfaces to define a first section 281 .
  • the first flow guide surface 271 may extend from the inner surface of the end section of the first side wall 230 close to the third side wall 250 to the inner surface of the end section of the third side wall 250 close to the first side wall 230 .
  • the second flow guide surface 272 may extend from the inner surface of the end section of the first side wall 230 close to the fourth side wall 260 to the inner surface of the end section of the fourth side wall 260 close to the first side wall 230 .
  • the third flow guide surface 273 and the fourth flow guide surface 274 respectively extend from the inner surface of the second side wall 240 to the inner surface of the third side wall 250 and the inner surface of the fourth side wall 260, and are connected with the second side wall 240.
  • An obtuse angle is formed between the inner surfaces of the two sections to define a second section 282 .
  • the third flow guide surface 273 may extend from an inner surface of the end section of the second side wall 240 close to the third side wall 250 to an inner surface of the end section of the third side wall 250 close to the second side wall 240 .
  • the fourth flow guide surface 274 may extend from an inner surface of the end section of the second side wall 240 close to the fourth side wall 260 to an inner surface of the end section of the fourth side wall 260 close to the second side wall 240 .
  • the flow guide surface 272, the third flow guide surface 273 and the fourth flow guide surface 274 can all be formed through an integrated process. manufactured.
  • the top wall 220 of the housing 200 is removably disposed. And the edge of the top wall 220 of the housing 200 can be fixedly connected with the edge of the top opening to achieve sealing. Connection methods include but are not limited to screwing, bonding or snapping.
  • the oxygen exhaust port 222 and the liquid injection port 223 may be respectively provided on the top wall 220 of the housing 200.
  • One end of the liquid replenishing pipe 360 connected to the electrolytic chamber can be connected to the exhaust chamber 340, thereby indirectly connecting to the electrolytic chamber.
  • the oxygen treatment device 10 further includes a liquid volume regulating chamber 700 , which is disposed on one side of the electrolytic chamber 310 and defines a liquid storage space for storing liquid inside.
  • the liquid storage space can be connected to the electrolytic chamber through the liquid communication pipe 380 to replenish liquid to the electrolytic chamber.
  • the end of the fluid replenishing tube 360 connected to the electrolysis chamber can be connected to the liquid storage space, thereby indirectly connecting to the electrolysis chamber.
  • the number of oxygen treatment components 300 may be one or more, such as two, three, four or more.
  • the liquid volume adjustment chamber 700 may be provided with at least one, for example, one, two, three, four or more.
  • Each of the oxygen treatment components 300 and the liquid volume adjustment chamber 700 can be set up separately and independently, and can be arranged side by side horizontally and communicate with each other.
  • "Intercommunication" means that the liquid volume adjustment chamber 700 and any oxygen treatment component 300 can communicate directly or indirectly to achieve liquid exchange, thereby keeping the liquid level consistent.
  • gas exchange can also be achieved between the liquid volume adjustment chamber 700 and any oxygen treatment component 300 .
  • the liquid volume adjustment chamber 700 and each oxygen treatment component 300 are stacked in a horizontal direction.
  • the liquid volume adjustment chamber 700 has a liquid refill port 342 connected to an external liquid source to receive liquid from the external liquid source and provide it to at least one oxygen treatment component 300 .
  • the liquid volume regulating chamber 700 is used for storing liquid.
  • the liquid volume adjustment chamber 700 of this embodiment is not used to assemble the electrode pair.
  • Liquid from an external liquid source can enter the liquid volume adjustment chamber 700 through the liquid replenishment port 342 . Since the liquid volume regulating chamber 700 is interconnected with each oxygen treatment component 300 , the liquid entering the liquid volume regulating chamber 700 can flow into the electrolytic chamber 310 of the oxygen treatment component 300 to replenish electrolyte solution to the electrolytic chamber 310 .
  • the liquid volume adjustment chamber 700 forms a connector with the electrolytic chamber 310 of each oxygen treatment component 300, and the liquid level can be consistent based on the connector principle, therefore, adopting the solution of this embodiment is beneficial to reducing the impact of the fluid replenishment process.
  • the impact force of the electrode pair improves the structural stability of the oxygen treatment device 10 .
  • the volume of the entire oxygen treatment device 10 can be reduced.
  • the number of liquid volume adjustment chambers 700 may also be provided as two, three or more. At this time, the liquid storage capacity of the entire oxygen treatment device 10 can be increased to a certain extent and the frequency of liquid replenishment can be reduced.
  • the number of oxygen treatment components 300 may be one. Of course, there may also be multiple oxygen treatment components 300 according to actual needs, such as two, three or more. As shown in Figures 2-4, a liquid volume regulating chamber 700 and two oxygen treatment assemblies 300 are shown. When multiple oxygen treatment assemblies 300 are provided, the oxygen regulation efficiency of the entire oxygen treatment device 10 can be improved, allowing it to quickly create a suitable fresh-keeping atmosphere.
  • the electrolysis chamber 310 and the exhaust chamber 340 can jointly form an oxygen reaction chamber. Since the liquid volume regulating chamber 700 and the oxygen reaction chamber are respectively used to store liquid, the liquid volume regulating chamber 700 and the oxygen reaction chamber may be collectively referred to as liquid storage chambers. The way in which each liquid storage tank can communicate with each other can be set according to actual needs. In some optional embodiments, each liquid storage tank is provided with a liquid communication port 312.
  • the oxygen treatment device 10 also includes at least one liquid communication pipe 380. One liquid communication pipe 380 connects the liquid communication ports 312 of the two liquid storage tanks to connect the liquid circuits of each liquid storage tank.
  • one liquid path connecting pipe 380 can connect the liquid path connecting ports 312 of two adjacent liquid storage bins.
  • the two liquid storage bins at the head end and the tail end do not need to be directly connected.
  • the number of liquid path connecting pipes 380 is one less than the number of liquid storage bins.
  • adjacent liquid storage tanks can be embedded in each other or plugged into each other to achieve interconnection of internal spaces.
  • each liquid storage tank is set up separately and independently, when a liquid communication port 312 is opened on the liquid storage tank and the liquid communication pipe 380 is used to connect the liquid communication port 312 of the liquid storage tank to achieve liquid communication, the liquid communication port 312 can be connected according to actual needs. It is very convenient to increase or decrease the number of liquid storage tanks. Therefore, using the solution of this embodiment, the structure and working efficiency of the oxygen treatment device 10 can be flexibly adjusted without the need for adaptive modification of the internal structure of each liquid storage tank, and The entire device has high integration and integration.
  • the liquid communication port 312 is located in the bottom section of the liquid storage tank.
  • the liquid communication port 312 can be provided on the side wall of the liquid storage tank.
  • the liquid communication port 312 may be provided at the lower part of the side wall of the liquid storage tank.
  • Each liquid storage tank may have two liquid communication ports 312 to connect to two adjacent liquid storage tanks through liquid communication pipes 380 .
  • the two liquid storage tanks located at the head end and the end each have a liquid connection port 312 that is in an "idle state” and is not connected to the liquid connection port 312 of the adjacent liquid storage tank.
  • the sealing plug 391 can be used to seal it in the "idle state”
  • the liquid line communication port 312 in the "idle” state to prevent liquid leakage.
  • a gas path communication port 343 is provided in the top section of each liquid storage tank.
  • the gas path communication port 343 can be provided on the top wall 220 of the liquid storage tank.
  • the air path communication port 343 can also be provided on the side wall of the liquid storage tank and located at the upper part of the side wall of the liquid storage tank.
  • the oxygen treatment device 10 also includes at least one gas path communication pipe 370.
  • One gas path communication pipe 370 connects the gas path communication ports 343 of the two liquid storage tanks to connect the gas channels of the liquid storage tanks.
  • one air path communication pipe 370 can connect the air path communication ports 343 of two adjacent liquid storage tanks. At this time, the two liquid storage tanks located at the first end and the end do not need to be directly connected.
  • the number of gas path communication pipes 370 is one less than the number of liquid storage tanks. Using the solution of this embodiment, the gas path connection structure is simple, which facilitates the addition and deletion of the liquid storage tank.
  • a liquid storage tank is also provided with a vent 341 that is connected to the gas path of the gas path communication port 343 and used to communicate with the external environment.
  • the vent 341 can be provided on any liquid storage tank.
  • the vent 341 is connected to the air path communication port 343 of the liquid storage bin and is connected to the external environment of each liquid storage bin, so that each liquid storage bin is directly or indirectly connected to the external environment by air path.
  • the vents 341 connected to the external environment can be connected in series in each liquid storage tank. It is connected to the air flow space of the external environment.
  • vent 341 may be provided on the top wall 220 of a liquid storage tank.
  • the vent 341 may be provided on the top wall 220 of the exhaust chamber 340.
  • another vent 341 can be further opened in another liquid storage tank to increase the exhaust rate.
  • the liquid communication port 312 is opened in the electrolytic chamber 310
  • the gas communication port 343 is opened in the exhaust chamber 340
  • the gas communication port 343 can be opened in the exhaust chamber. 340 on the top wall.
  • the liquid communication port 312 can be opened at the lower part of the side wall of the electrolytic chamber 310 .
  • the air path communication port 343 can be used as an exhaust hole of the exhaust chamber 340 .
  • the vent 341 is opened in the exhaust chamber of any oxygen reaction chamber.
  • the vent 341 can be located on the top wall of the exhaust chamber of the oxygen reaction chamber.
  • the liquid volume adjustment chamber 700 includes an upper chamber body 740 and a lower chamber body 730 .
  • the liquid replenishing port 342 is opened in the upper chamber body 740 of the liquid volume regulating chamber 700 , for example, it can be formed in the top wall of the upper chamber body 740 of the liquid volume regulating chamber 700 .
  • the gas path communication port 343 is also provided in the upper chamber body 740 of the liquid volume regulating chamber 700 , for example, it can be formed in the top wall of the upper chamber body 740 of the liquid volume regulating chamber 700 .
  • the oxygen treatment device 10 also includes a liquid level switch 720, which is disposed in the lower chamber 730 of the liquid volume regulating chamber 700 and is used to switch on and off the lower chamber 730 of the liquid volume regulating chamber 700 according to the liquid level movement in the lower chamber 730.
  • the liquid level switch 720 can move downward to open the passage between the lower chamber body 730 and the upper chamber body 740 of the liquid volume regulating chamber 700. At this time, the liquid from the external liquid source It can flow into the lower chamber body 730 through the upper chamber body 740 to increase the liquid volume of the liquid volume regulating chamber 700 .
  • the liquid level switch 720 can move upward to the initial position so that the passage between the lower chamber body 730 and the upper chamber body 740 of the liquid volume regulating chamber 700 returns to the off state. When the liquid from the external liquid source cannot flow into the lower chamber body 730.
  • each liquid storage port 342 can be opened.
  • the liquid level in the chamber is in a dynamic equilibrium state to ensure the smooth progress of the electrochemical reaction.
  • the liquid stored in the liquid storage tank can always be in the lower tank body 730 and will not occupy the airflow space defined by the upper tank body 740 .
  • the liquid level switch 720 may include a rotary float 721, a rotary shaft 723 and a switch body 722.
  • the rotating shaft 723 is fixed in the lower compartment body 730 .
  • the switch body 722 is fixedly connected to the rotary float 721, or is integrated with the rotary float 721.
  • the rotary float 721 can be rotatably arranged in the lower chamber body 730 around the rotation axis 723, and floats up and down according to the liquid level in the lower chamber body 730, thereby driving the switch body 722 to move, thereby turning on and off the lower chamber of the liquid volume regulating chamber 700.
  • the upper chamber body 740 of the liquid volume regulating chamber 700 is provided with an isolation chamber 710 that communicates with the liquid replenishing port 342 and is spaced apart from the air path communicating port 343 .
  • a liquid outlet 711 is provided at the bottom of the isolation chamber 710, and is connected to the lower chamber body 730 of the liquid volume regulating chamber 700 through the liquid outlet 711. Isolation warehouse 710 and above
  • the fact that the chamber body 740 is connected and spaced apart from the gas path communication port 343 means that the liquid flowing into the upper chamber body 740 can only enter the isolation chamber 710 and flow into the lower chamber body 730 through the liquid outlet 711 of the isolation chamber 710 and will not flow to the other direction.
  • the gas path communication port 343 is provided, and the gas flowing to the gas path communication port 343 will not flow into the isolation compartment 710 .
  • the liquid level switch 720 is used to open and close the liquid outlet 711 by moving, thereby opening and closing the passage between the lower chamber body 730 and the upper chamber body 740 of the liquid volume regulating chamber 700 .
  • the switch body 722 of the liquid level switch 720 can just close the liquid outlet 711 .
  • the rotary float 721 drives the switch body 722 to move to open or close the liquid outlet 711, thus opening or closing the passage between the lower chamber body 730 and the upper chamber body 740 of the liquid volume regulating chamber 700.
  • the liquid outlet 711 can penetrate the bottom wall of the isolation chamber 710 and protrude downward.
  • the switch body 722 may have a sealing plug 391 adapted to the bottom opening of the liquid outlet 711 to close the liquid outlet 711 .
  • the liquid level switch 720 closes the passage between the lower chamber body 730 and the upper chamber body 740 of the liquid volume adjustment chamber 700, all the liquid flowing into the upper chamber body 740 can be temporarily stored in the isolation chamber 710. Instead of overflowing to other parts of the upper chamber body 740, the air flow space of the liquid volume regulating chamber 700 can be kept dry and unobstructed.
  • the liquid level switch 720 can be configured so that the liquid level of the liquid volume regulating chamber 700 is always lower than the upper chamber body 740 .
  • each electrolytic chamber 310 may be provided with two lateral openings 315 , and each lateral opening 315 is provided with There is a cathode. That is, each electrolytic chamber 310 is equipped with two cathodes and a common anode.
  • each electrolytic chamber 310 can be in contact with external gas. Therefore, the contact area between the cathode assembled in the electrolytic chamber 310 and the external gas can be increased, thereby improving the electrochemical reaction efficiency.
  • the lateral openings 315 can be provided on any wall of the electrolytic chamber 310.
  • the lateral opening 315 may be disposed on the wall of the electrolytic chamber 310 with the largest area perpendicular to the arrangement direction of the plurality of oxygen treatment assemblies 300 . That is, the wall of the electrolysis chamber 310 with the largest area is perpendicular to the arrangement direction of the plurality of oxygen treatment assemblies 300 , and the lateral opening 315 is provided on the wall with the largest area of the electrolysis chamber 310 .
  • Such an arrangement can increase the working area of the cathode, thereby further improving the electrochemical reaction efficiency.
  • the electrolytic chamber 310 is flat in shape. Compared with traditional oxygen treatment devices, the oxygen treatment device 10 of the embodiment of the present invention has a significantly reduced volume while maintaining a high working efficiency.
  • Each liquid storage tank can be connected to each other to achieve integrated assembly, for example, through a snap-on structure, a plug-in structure or a screw-on structure.
  • the oxygen treatment device 10 may further include at least one connecting shaft 392 .
  • the number of connecting shafts 392 may be one or more, such as two, three, four or more.
  • the wall of each liquid storage tank is provided with at least one shaft hole 311 that is disposed and coaxial.
  • the shaft hole 311 is isolated from the internal space of the liquid storage tank and allows the connecting shaft 392 to be inserted therein to achieve connection.
  • the number of shaft holes 311 in each liquid storage tank is the same as the number of connecting shafts 392 .
  • a connecting shaft 392 is inserted into the coaxial shaft holes 311 of multiple liquid storage tanks.
  • the shaft holes 311 of each liquid storage tank can be divided into multiple groups, and each group of shaft holes 311 is coaxially arranged, and the same connecting shaft 392 penetrates the same group of shaft holes 311 of multiple liquid storage tanks.
  • each liquid storage tank there are four connecting shafts 392, and the wall of each liquid storage tank is provided with four shaft holes 311. Among them, two shaft holes 311 are located in the top section of the liquid storage tank, and the other two shaft holes 311 are located in the bottom section of the liquid storage tank.
  • each liquid storage tank can be assembled into one body through the connecting shaft 392, the assembly method is simple, and an airflow gap can be formed between adjacent liquid storage tanks.
  • the top wall 220 of the housing 200 is connected with a flange extending downward from an edge of the top wall 220 to define a lower opening.
  • the vertical length of the hem can be adjusted according to actual needs to adapt to different scenarios.
  • the vertical length of the hem is approximately equal to the depth of the lower opening.
  • the edge of the lower opening is in contact with the edge of the top opening of the barrel surrounded by the first side wall, the second side wall, the third side wall and the fourth side wall to achieve sealing.
  • a light hole can be opened on the top wall 220 of the housing 200 for air path communication. At least a portion of tube 370 extends therethrough to the exterior of housing 200 .
  • An embodiment of the present invention also provides a refrigeration and freezing device 20.
  • the refrigeration and freezing device 20 in the embodiment of the present invention may be a refrigerator, or a refrigeration equipment with a low-temperature storage function such as a refrigerator, a freezer, or a refrigerator. 13 , the refrigeration and freezing device 20 includes a box 600 and an oxygen treatment device 10 .
  • the interior of the box 600 defines a storage space 610 .
  • the oxygen treatment device 10 may adopt the structure shown in any of the above embodiments.
  • the air outlet interface 221 of the oxygen treatment device 10 is connected to the storage space 610, for example, through a return air pipeline. Oxygen-poor gas or oxygen-rich gas is sent out through the gas outlet 221 to adjust the oxygen content of the storage space 610 .
  • the storage space 610 may be a low-oxygen preservation space; the oxygen treatment component 300 is used to consume oxygen in the gas flowing into the air flow channel 280 through an electrochemical reaction to generate oxygen-depleted gas.
  • a high-oxygen preservation space can be further defined in the box 600 .
  • the high-oxygen fresh-keeping space can be connected to the oxygen exhaust port 222 on the housing 200 through a pipeline to receive oxygen from the oxygen exhaust port 222.
  • the storage space 610 may be a high-oxygen preservation space.
  • the oxygen treatment component 300 is used to generate oxygen through electrochemical reaction and discharge it through the exhaust hole.
  • the exhaust hole of the oxygen treatment component 300 can be connected to the air flow channel 280 and to the air outlet 221.
  • the air outlet 221 can be connected to the high oxygen preservation space through pipelines to transport oxygen generated by the electrochemical reaction to the high oxygen preservation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明提供了一种氧气处理装置以及具有其的冷藏冷冻装置,氧气处理装置包括壳体和氧气处理组件,壳体上形成有进气接口和出气接口,壳体内限定出气流通道;氧气处理组件设置于气流通道内并处理流入其中的氧气,以产生贫氧气体或富氧气体并经出气接口送出。

Description

氧气处理装置以及具有其的冷藏冷冻装置 技术领域
本发明涉及气调保鲜技术,特别是涉及氧气处理装置以及具有其的冷藏冷冻装置。
背景技术
气调保鲜技术是通过调节环境气体成分来延长食品贮藏寿命的技术。具备气调保鲜功能的冷藏冷冻装置广受青睐。在众多的气体成分中,氧气备受关注。氧气处理装置能够对周围气体中的氧气进行处理,从而起到调节氧气含量的作用。
然而,发明人认识到,现有技术中的部分氧气处理装置,例如,一些利用电化学反应来处理氧气的氧气处理装置,需使阴极膜直接接触空间的氧气才能进行电化学反应,这极大地限制了氧气处理装置的搭载环境,氧气处理装置的装配对场景的结构依赖度很高,并且氧气处理装置对空气中的氧分子捕捉仅依靠分子扩散原理进行,工作效率较低,且空间的氧气含量变化不均匀。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种氧气处理装置以及具有其的冷藏冷冻装置。
本发明的一个进一步的目的是要降低氧气处理装置的装配对场景结构依赖度,提高氧气处理装置在冷藏冷冻装置中的装配灵活性,且扩大氧气处理装置的应用范围。
本发明的另一个进一步的目的是要降低氧气处理装置与外部管路之间连接的操作难度。
本发明的再一个进一步的目的是要使得送出出气接口的贫氧气体的氧气含量处于较低水平,或使得送出出气接口的富氧气体的氧气含量处于较高水平。
本发明的又一个进一步的目的是要改变仅依靠分子扩散原理捕捉氧气的方式,提升单位时间内流经气流通道的气体流量,从而提高氧气处理装置的工作效率。
本发明的再一个进一步的目的是要对流经气流通道的气体进行导流,从而减少或避免扰流,且提高待调节空间的气调效率。
特别地,根据本发明的一方面,提供了一种氧气处理装置,包括:
壳体,其上形成有用于连通外部管路的进气接口和出气接口,且其内部限定出连通所述进气接口和所述出气接口的气流通道;和
氧气处理组件,设置于所述气流通道内,并用于处理自所述进气接口流入所述气流通道的气体中的氧气,以产生贫氧气体或富氧气体;所述贫氧气体或所述富氧气体经所述出气接口送出,从而调节外部空间 的氧气含量。
可选地,所述进气接口为形成于所述壳体上并向外***的中空柱状接口;且/或所述出气接口为形成于所述壳体上并向外***的中空柱状接口。
可选地,所述进气接口与所述出气接口沿纵向和横向错位布置。
可选地,氧气处理装置还包括:
气流促动装置,设置于所述气流通道内,且其具有吸风口和出风口;其中
所述吸风口与所述进气接口气流连通,所述出风口与所述出气接口相对;且所述气流促动装置用于促使形成自所述进气接口流入所述气流通道并流向所述出气接口的气流。
可选地,所述气流通道具有连接所述进气接口并且过流截面渐扩的第一区段以及连接所述气流促动装置的所述吸风口并且过流截面渐缩的第二区段。
可选地,所述气流通道还具有连接于所述第一区段和所述第二区段之间的第三区段;且所述氧气处理组件设置于所述第三区段内。
可选地,所述氧气处理组件具有用于处理流经所述气流通道的气体中的氧气以产生所述贫氧气体或所述富氧气体的处理部;且所述处理部的外表面沿流经所述第三区段的气流的流线簇的延伸方向伸展。
可选地,所述处理部为阴极,其用于通过电化学反应消耗流经所述气流通道的气体中的氧气,以产生贫氧气体;且所述氧气处理组件还包括:
电解仓,其具有侧向开口;所述处理部设置于所述侧向开口处以与所述电解仓共同限定出用于盛装电解液的电解腔;
配合部,其作为阳极,设置于所述电解腔内,并用于通过电化学反应向所述处理部提供反应物,且生成氧气。
可选地,所述氧气处理组件还包括排气仓,其设置于所述电解仓的上方,并且开设有排气孔;所述排气仓连通所述电解腔,并用于收集所述配合部生成的氧气,且经所述排气孔排出。
可选地,所述壳体上开设有排氧口;且所述氧气处理装置还包括排氧管,其一端连通所述排气孔,另一端自所述排氧口伸出至所述壳体外部,用于将经所述排气孔排出的氧气排至所述壳体外部。
可选地,所述壳体具有底壁和顶壁以及分别自所述底壁向上延伸至所述顶壁并且相对设置的第一侧壁和第二侧壁;所述出气接口形成于所述壳体的顶壁上;所述进气接口形成于所述壳体的第一侧壁上;所述气流促动装置固定于所述壳体的第二侧壁上,并且位于所述出气接口的下方。
可选地,所述壳体还具有:
第三侧壁和第四侧壁,分别自所述底壁向上延伸至所述顶壁并与所述第一侧壁和所述第二侧壁共同围出具有顶部开口的筒体;
第一导流面和第二导流面,分别自所述第一侧壁的内表面延伸至所述第三侧壁的内表面以及所述第四侧壁的内表面,且与所述第一侧壁的内表面之间形成钝角,以限定出所述第一区段;以及
第三导流面和第四导流面,分别自所述第二侧壁的内表面延伸至所述第三侧壁的内表面以及所述第四侧壁的内表面,且与所述第二侧壁的内表面之间形成钝角,以限定出所述第二区段。
可选地,所述壳体的顶壁可拆卸地设置。
可选地,所述气流促动装置为离心风机。
根据本发明的另一方面,还提供了一种冷藏冷冻装置,包括:
箱体,其内部限定出储物空间;以及
如以上任一项所述的氧气处理装置,其中所述出气接口连通所述储物空间;所述贫氧气体或所述富氧气体经所述出气接口送出,并流入所述储物空间,从而调节所述储物空间的氧气含量。
本发明的氧气处理装置以及具有其的冷藏冷冻装置,通过在壳体上设置用于连通外部管路的进气接口和出气接口,并将氧气处理组件设置在连通进气接口和出气接口的气流通道内,来自外部空间的气体可经进气接口流入气流通道内,并接受氧气处理组件的处理,从而形成贫氧气体或富氧气体,最终从出气接口送出。由于外部空间的气体可经由管路进入进气接口,因此,采用本发明的方案,氧气处理装置可以设置在任意位置,可降低氧气处理装置的装配对场景结构依赖度,提高氧气处理装置在冷藏冷冻装置中的装配灵活性,且扩大氧气处理装置的应用范围。
进一步地,本发明的氧气处理装置以及具有其的冷藏冷冻装置,当进气接口为形成于壳体上并向外***的中空柱状接口,且/或出气接口为形成于壳体上并向外***的中空柱状接口时,进气接口和/或出气接口可以通过插接或者嵌套的方式连通外部管路,这可以降低氧气处理装置与外部管路之间连接的操作难度。
进一步地,本发明的氧气处理装置以及具有其的冷藏冷冻装置,通过将进气接口和出气接口设置在壳体的两个不同的壁上,或进一步地使进气接口与出气接口沿纵向和横向错位布置,可以延长流经气流通道的气体流动路径,使流经气流通道的气体与氧气处理组件充分接触,从而使得送出出气接口的贫氧气体的氧气含量处于较低水平,或使得送出出气接口的富氧气体的氧气含量处于较高水平。
进一步地,本发明的氧气处理装置以及具有其的冷藏冷冻装置,当在气流通道内设置气流促动装置,并使气流促动装置的吸风口与进气接口气流连通,且使气流促动装置的出风口与出气接口相对时,外部空间的气体可以在气流促动装置的促动下,自进气接口流入气流通道并流向出气接口,形成主动式的高速的气流循环结构,改变了仅依靠分子扩散原理捕捉氧气的方式,有助于提升单位时间内流经气流通道的气体流量,从而提高氧气处理装置的工作效率。
更进一步地,本发明的氧气处理装置以及具有其的冷藏冷冻装置,通过在气流通道内设置连接进气接口并且过流截面渐扩的第一区段以及连接气流促动装置的吸风口并且过流截面渐缩的第二区段,可以分别 利用第一区段和第二区段对流经气流通道的气体进行导流,从而减少或避免扰流。并且在第一区段的作用下,流入进气接口的气体可以减速流动,以延长流动时间,从而与氧气处理组件充分接触;在第二区段的作用下,气体可以加速流动并以较高的速度流出出气接口,以提高待调节空间的气调效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的氧气处理装置的示意性结构图;
图2是图1所示的氧气处理装置的示意性分解图;
图3是图1所示的氧气处理装置的示意性内部结构图;
图4是图3所示的氧气处理装置的内部结构的示意性俯视图;
图5是图1所示的氧气处理装置的壳体的示意性结构图,图中隐去了壳体的顶壁;
图6是根据本发明一个实施例的氧气处理装置的定位机构和气流促动装置的装配结构图;
图7是图6所示的定位机构和气流促动装置的装配结构的示意性分解图;
图8是根据本发明一个实施例的氧气处理装置的氧气处理组件与液量调节仓的装配结构图;
图9是图8所示的氧气处理装置的氧气处理组件与液量调节仓的装配结构的示意性侧视图;
图10是图8所示的氧气处理装置的氧气处理组件与液量调节仓的装配结构的示意性分解图;
图11是图8所示的氧气处理装置的液量调节仓的示意性透视图;
图12是根据本发明另一实施例的氧气处理装置的示意性结构图;
图13是根据本发明一个实施例的冷藏冷冻装置的示意性结构图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图13来描述本发明实施例的氧气处理装置10以及具有其的冷藏冷冻装置20。其中,“内”“外”“上”“下”“顶”“底”“横向”“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。为便于示意装置的结构,本发明的部分附图 采用透视的形式进行示意。
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明实施例的描述中,参考术语“一个实施例”、“一些实施例”、“一些示例”、“一个示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本发明实施例首先提供了一种氧气处理装置10。参看图1至图3,氧气处理装置10一般性地可包括壳体200和氧气处理组件300。
其中,壳体200上形成有用于连通外部管路的进气接口231和出气接口221,且其内部限定出连通进气接口231和出气接口221的气流通道280。由于壳体200上形成有进气接口231和出气接口221,因此,气流通道280可以通过管路连通待调节的空间,使得待调节空间内的气体可以自进气接口231流入气流通道280,并流经氧气处理组件300,以在氧气处理组件300的作用下形成贫氧气体或富氧气体。
氧气处理组件300设置于气流通道280内,并用于处理自进气接口231流入气流通道280的气体中的氧气,以产生贫氧气体或富氧气体。贫氧气体或富氧气体经出气接口221送出,从而调节外部空间的氧气含量。此处的外部空间可以指待调节的空间,例如冷藏冷冻装置的储物空间。也就是说,进气接口231和出气接口221可以分别通过外部管路连通同一空间。当然,在另一个示例中,进气接口231和出气接口221可以分别通过外部管路连通不同空间。
通过在壳体200上设置用于连通外部管路的进气接口231和出气接口221,并将氧气处理组件300设置在连通进气接口231和出气接口221的气流通道280内,来自外部空间的气体可经进气接口231流入气流通道280内,并接受氧气处理组件300的处理,从而形成贫氧气体或富氧气体,最终从出气接口221送出。由于外部空间的气体可经由管路进入进气接口231,因此,采用本实施例的方案,氧气处理装置10可以设置在任意位置,例如,设置在远离待调节空间的任意位置,这可降低氧气处理装置10的装配对场景结构依 赖度,提高氧气处理装置10在冷藏冷冻装置20中的装配灵活性,且扩大氧气处理装置10的应用范围。
氧气处理组件300可以消耗氧气或者生成氧气,从而起到调节流经气流通道280的气体中的氧气含量的作用,达到处理氧气的目的。氧气处理组件300可以采用任意方式来消耗氧气或者生成氧气,例如,可以采用电化学反应方式、吸附方式、膜过滤方式、溶解方式或者任意其他化学方式。
在一些可选的实施例中,氧气处理装置10还可以进一步地包括进气管路和出气管路。进气管路连通进气接口231,并作为进气接口231的外部管路。出气管路连通出气接口221,并作为出气接口221的外部管路。进气管路远离进气接口231的一端可以延伸至待调节的空间。出气管路远离出气接口221的一端可以延伸至待调节的空间。待调节空间内的气体经进气管路流入进气接口231,并流入气流通道280,然后经出气接口221流出气流通道280,并经出气管路流回待调节空间,进气接口231和出气接口221可以分别直接或间接地连通各自的外部管路。
在一个示例中,进气接口231和出气接口221可以分别为形成于壳体200上的开口或开孔。在一些可选的实施例中,进气接口231为形成于壳体200上并向外***的中空柱状接口;且/或出气接口221为形成于壳体200上并向外***的中空柱状接口。
当进气接口231为形成于壳体200上并向外***的中空柱状接口,且/或出气接口221为形成于壳体200上并向外***的中空柱状接口时,进气接口231和/或出气接口221可以通过插接或者嵌套的方式连通外部管路,这可以降低氧气处理装置10与外部管路之间连接的操作难度。
参看图4和图5,在一些可选的实施例中,进气接口231与出气接口221形成于壳体200的两个不同的壁上,这样可以适当地延长进气接口231与出气接口221之间的距离,使气流通道280具有较长的气流路径,使得气体流经气流通道280时的流动时间增加,从而与氧气处理组件300充分地接触。在一个示例中,进气接口231形成于壳体200的底壁210或者一个侧壁上,出气接口221形成于壳体200的顶壁220或者另一个侧壁上。进气接口231和出气接口221的位置可以互换。
在一个进一步的实施例中,进气接口231与出气接口221沿纵向和横向错位布置。例如,在一个示例中,进气接口231形成于壳体200的底部区段,出气接口221形成于壳体200的顶部区段;进一步地进气接口231可以位于壳体200的横向一侧,进一步地出气接口221可以位于壳体200的横向另一侧。在一个进一步的示例中,壳体200大致呈空心柱状,例如空心棱柱或者空心圆柱,进气接口231设置于壳体200的侧壁上,并位于壳体200的底部,出气接口221设置于壳体200的顶壁220上,并远离设置有进气接口231的壳体200的侧壁,以与进气接口231斜向相对。
通过将进气接口231和出气接口221设置在壳体200的两个不同的壁上,或进一步地使进气接口231与出气接口221沿纵向和横向错位布置,可以延长流经气流通道280的气体流动路径,使流经气流通道280的气体与氧气处理组件300充分接触,从而使得送出出气接口221的贫氧气体的氧气含量处于较低水平, 或使得送出出气接口221的富氧气体的氧气含量处于较高水平。
参看图6和图7,在一些可选的实施例中,氧气处理装置10还包括气流促动装置,设置于气流通道280内,且其具有吸风口411和出风口412。其中,吸风口411与进气接口231气流连通,出风口412与出气接口221相对。且气流促动装置用于促使形成自进气接口231流入气流通道280并流向出气接口221的气流。
当在气流通道280内设置气流促动装置,并使气流促动装置的吸风口411与进气接口231气流连通,且使气流促动装置的出风口412与出气接口221相对时,外部空间的气体可以在气流促动装置的促动下,自进气接口231流入气流通道280并流向出气接口221,形成主动式的高速的气流循环结构,改变了仅依靠分子扩散原理捕捉氧气的方式,有助于提升单位时间内流经气流通道280的气体流量,从而提高氧气处理装置10的工作效率。
在一个示例中,气流促动装置为离心风机。当然,在另一些示例中,气流促动装置也可以替换为任意其他风机,例如轴流风机等。
在一些可选的实施例中,气流通道280具有连接进气接口231并且过流截面渐扩的第一区段281以及连接气流促动装置的吸风口411并且过流截面渐缩的第二区段282。气体在流经第一区段281时,在气体流动方向上,垂直于气流的流线簇的断面面积(即,过流截面的面积)逐渐扩大。气体在流经第二区段282时,在气体流动方向上,垂直于气流的流线簇的断面面积(即,过流截面的面积)逐渐缩小。
通过在气流通道280内设置连接进气接口231并且过流截面渐扩的第一区段281以及连接气流促动装置400的吸风口411并且过流截面渐缩的第二区段282,可以分别利用第一区段281和第二区段282对流经气流通道280的气体进行导流,从而减少或避免扰流。并且在第一区段281的作用下,流入进气接口231的气体可以减速流动,以延长流动时间,从而与氧气处理组件300充分接触;在第二区段282的作用下,气体可以加速流动并以较高的速度流出出气接口221,以提高待调节空间的气调效率。
在一个示例中,第一区段281和第二区段282可以直接地相连。氧气处理组件300可以设置于第一区段281内或者第二区段282内,当然也可以设置于第一区段281和第二区段282的相接部位,或者同时设置于第一区段281和第二区段282内。
在另一个示例中,气流通道280还具有连接于第一区段281和第二区段282之间的第三区段283。如图4和图5所示,第一区段281和第二区段282分别位于第三区段283的两侧。图5中虚线示出了第一区段281与第三区段283之间的分界线以及第二区段282与第三区段283之间的分界线。
氧气处理组件300设置于第三区段283内。在气体流动方向上,第三区段283的过流截面的面积(即,垂直于气流的流线簇的断面面积)可以保持不变。这样一来,流经第三区段283的气体的流速无明显变化,可使氧气处理组件300的各个部位均匀地与流经的气体接触,从而均匀地产生贫氧气体或富氧气体。
如图6和图7所示,在一些可选的实施例中,氧气处理装置10还包括定位机构500,其固定于气流通 道280内,并与气流促动装置固定连接,以将气流促动装置固定在气流通道280内。
当需要将气流促动装置安装至气流通道280时,可以先将气流促动装置装配于定位机构500上,然后再将定位机构500装配于气流通道280内,例如固定于壳体200的内壁上。采用定位机构500使气流促动装置间接地固定于气流通道280,可避免直接在较为狭小的气流通道280内执行气流促动装置与壳体200的连接操作。
在一些进一步的实施例中,气流促动装置包括蜗壳410以及设置于蜗壳410内的风轮420。吸风口411和出风口412分别形成于蜗壳410上。
定位机构500限定出供蜗壳410装配其中的安装槽510,还限定出连通安装槽510并与出风口412贯通的第一开口520以及连通安装槽510并与吸风口411贯通的第二开口530。第一开口520可以正对蜗壳410的吸风口411,第二开口530可以正对蜗壳410的出风口412。蜗壳410可以通过螺接的方式固定于安装槽510内。
通过将气流促动装置装配于定位机构500的安装槽510内,且利用第一开口520和第二开口530连通安装槽510,可以提高气流促动装置与定位机构500之间的装配稳定性,且减少或避免定位机构500堵塞气流促动装置的吸风口411和出风口412。
在一些可选的实施例中,定位机构500还限定出自安装槽510的至少一部分开口边缘向外延伸形成的外凸卡爪540。壳体200的内壁相应地限定出供外凸卡爪540***其中以实现卡接的卡槽241。
采用上述方案,通过在气流通道280内固定定位机构500,并使定位机构500与气流促动装置固定连接,以将气流促动装置固定在气流通道280内,当采用卡爪与卡槽241的配合结构将定位机构500固定在壳体200的内壁上时,可简化氧气处理装置10的气流促动装置的装配方式。
在一些可选的实施例中,外凸卡爪540可以自安装槽510的至少一部分开口边缘沿径向向外延伸形成,例如可以自安装槽510的横向两端以及底端向外延伸形成。
在一个示例中,定位机构500还限定出自安装槽510的开口边缘的顶端向外延伸形成的翻边550。翻边550上开设有第一螺孔551,壳体200的内壁相应形成有与第一螺孔551相对的第二螺孔242,以通过螺接使翻边550与壳体200的内壁固定连接。
在另一个示例中,定位机构500可以同时限定出外凸卡爪540与翻边550,从而同时利用卡爪与卡槽241的配合结构以及螺接结构将定位机构500固定在壳体200的内壁上,这有利于进一步提高气流促动装置在气流通道280内的装配稳定性。
参看图8,在一些可选的实施例中,氧气处理组件300具有用于处理流经气流通道280的气体中的氧气以产生贫氧气体或富氧气体的处理部320。处理部320的外表面沿流经第三区段283的气流的流线簇的延伸方向伸展。处理部320可以为板状电极,例如阴极。
也即,处理部320的外表面的伸展方向平行于流经第三区段283的气流的流线簇的延伸方向,这样一来,流经第三区段283的气体可以按照时序均匀地与处理部320的外表面各处接触,从而延长单位时间内处理部320与待处理气流的接触时长。
在一些进一步的实施例中,处理部320为阴极,其用于通过电化学反应消耗流经气流通道280的气体中的氧气,以产生贫氧气体。空气中的氧气可以在处理部320处发生还原反应,即:O2+2H2O+4e-→4OH-
参看图9和图10,氧气处理组件300还包括电解仓310和配合部330。
其中,电解仓310具有侧向开口315。例如电解仓310可以呈扁平的长方体形状,侧向开口315可以设置于电解仓310的面积较大的侧壁上。处理部320设置于侧向开口315处以与电解仓310共同限定出用于盛装电解液的电解腔。电解腔为处理部320和配合部330进行电化学反应的场所,其内可以盛装碱性电解液,例如1~8mol/L的NaOH,其浓度可以根据实际需要进行调整。
配合部330,其作为阳极,设置于电解腔内,并用于通过电化学反应向处理部320提供反应物,且生成氧气。配合部330与处理部320可以相互间隔地设置于电解腔内。处理部320产生的OH-可以在配合部330处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-。在一个示例中,配合部330可以为板状电极。在另一些示例中,配合部330当然也可以为变换为柱状或者弧状等任意其他合适的形状。
以上关于处理部320和配合部330的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的氧气处理装置10的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
在一些可选的实施例中,氧气处理组件300还包括排气仓340,其设置于电解仓310的上方,并且开设有排气孔。排气仓340连通电解腔,并用于收集配合部330生成的氧气,且经排气孔排出。也就是说,排气仓340一方面连通电解腔,另一方面连通外部环境,以将自排气孔排出的氧气排至外部环境。
经排气仓340收集并排出的氧气可以直接排放。当然在另一个示例中,经排气仓340收集并排出的氧气也可以输送至冷藏冷冻装置20的高氧保鲜空间,以营造高氧保鲜气氛,提升冷藏冷冻装置20的保鲜性能。
采用上述结构,既可以利用氧气处理装置10消耗冷藏冷冻装置20的低氧保鲜空间的氧气,也可以利用氧气处理装置10提升冷藏冷冻装置20的高氧保鲜空间的氧气,可实现氧气处理装置10的功能复用。
在一些可选的实施例中,排气仓340与电解仓310一体成型。如此设置,可以省略排气仓340与电解仓310之间的装配结构,且保证排气仓340与电解腔之间的连接结构的气密性。电解仓310和排气仓340之间形成有气液连通口,使电解仓310和排气仓340实现互通。
在一些可选的实施例中,壳体200上还开设有排氧口222。氧气处理装置10还包括排氧管350,其一端连通排气孔,另一端自排氧口222伸出至壳体200外部,用于将经排气孔排出的氧气排至壳体200外部。
在另一些可选的实施例中,氧气处理装置10还可以省略排氧管350,排气孔可以为形成于排气仓340上并向外***的中空柱状接口,排气孔可以经排氧口222伸出至壳体200外部,以将流经的氧气排至壳体200外部。
在一些可选的实施例中,壳体200上还开设有注液口,223。且氧气处理装置10还包括补液管360,其一端连通电解腔,另一端自注液口223伸出至壳体200外部,用于将外部液体导引至电解腔。
在一些可选的实施例中,壳体200具有底壁210和顶壁220以及分别自底壁210向上延伸至顶壁220并且相对设置的第一侧壁230和第二侧壁240。
出气接口221形成于壳体200的顶壁220上,例如可以设置于壳体200的横向一侧。进气接口231形成于壳体200的第一侧壁230上,例如第一侧壁230可以形成于壳体200的横向另一侧,进气接口231可以设置于第一侧壁230的底部中央。气流促动装置固定于壳体200的第二侧壁240上,并且位于出气接口221的下方。
采用上述结构,在气流促动装置的作用下,流经气流通道280的气体能够沿倾斜向上的方向流动,延长了流经气流通道280的气体流动路径。
壳体200还具有第三侧壁250和第四侧壁260、第一导流面271和第二导流面272以及第三导流面273和第四导流面274。
其中,第三侧壁250和第四侧壁260分别自底壁210向上延伸至顶壁220并与第一侧壁230和第二侧壁240共同围出具有顶部开口的筒体。在一个示例中,第一侧壁230大致平行于第二侧壁240,第三侧壁250大致平行于第四侧壁260。
第一导流面271和第二导流面272分别自第一侧壁230的内表面延伸至第三侧壁250的内表面以及第四侧壁260的内表面,且与第一侧壁230的内表面之间形成钝角,以限定出第一区段281。第一导流面271可以自第一侧壁230靠近第三侧壁250的端部区段的内表面延伸至第三侧壁250靠近第一侧壁230的端部区段的内表面。第二导流面272可以自第一侧壁230靠近第四侧壁260的端部区段的内表面延伸至第四侧壁260靠近第一侧壁230的端部区段的内表面。
第三导流面273和第四导流面274分别自第二侧壁240的内表面延伸至第三侧壁250的内表面以及第四侧壁260的内表面,且与第二侧壁240的内表面之间形成钝角,以限定出第二区段282。第三导流面273可以自第二侧壁240靠近第三侧壁250的端部区段的内表面延伸至第三侧壁250靠近第二侧壁240的端部区段的内表面。第四导流面274可以自第二侧壁240靠近第四侧壁260的端部区段的内表面延伸至第四侧壁260靠近第二侧壁240的端部区段的内表面。
在一个示例中,壳体200的顶壁220、底壁210、第一侧壁230、第二侧壁240、第三侧壁250、第四侧壁260、第一导流面271、第二导流面272、第三导流面273以及第四导流面274均可以通过一体成型工艺 制造出来。采用上述结构,由于壳体200可以采用一体成型工艺批量化生产,因此,一方面可以简化整个氧气处理装置10的装配工序,另一方面可以保证产品的一致性。
在一个示例中,壳体200的顶壁220可拆卸地设置。并且壳体200顶壁220的边缘可以与顶部开口的边缘固定连接,以实现密封。连接方式包括但不限于螺接、粘接或者卡接等。排氧口222和注液口223可以分别设置于壳体200的顶壁220上。补液管360连通电解腔的一端可以连通排气仓340,从而间接地连通电解腔。
在另一个示例中,氧气处理装置10还包括液量调节仓700,其设置于电解仓310的一侧,且其内部限定出用于储存液体的储液空间。储液空间可通过液路连通管380连通电解腔,以向电解腔补充液体。补液管360连通电解腔的一端可以连通储液空间,从而间接地连通电解腔。
氧气处理组件300可以设置为一个或多个,例如两个,三个,四个或者更多个。液量调节仓700可以设置为至少一个,例如一个,两个,三个,四个或者更多个。
各个氧气处理组件300和液量调节仓700可以分离独立设置并沿水平并列排布且互通。“互通”是指液量调节仓700与任一氧气处理组件300均可以直接或间接地相通,以实现液体交换,从而使液位保持一致。当然,在一个示例中,当各个氧气处理组件300和液量调节仓700互通时,液量调节仓700与任一氧气处理组件300之间也可以实现气体交换。本实施例的液量调节仓700与各个氧气处理组件300沿水平方向层叠设置。
液量调节仓700具有连通外部液源的补液口342,以接收来自外部液源的液体并向至少一个氧气处理组件300提供。
液量调节仓700用于储液。本实施例的液量调节仓700并非用于装配电极对。来自外部液源的液体可经补液口342进入液量调节仓700。由于液量调节仓700与各个氧气处理组件300互通,因此,进入液量调节仓700的液体可以流入氧气处理组件300的电解仓310,以向电解仓310补充电解液。
采用上述方案,由于液量调节仓700与各个氧气处理组件300的电解仓310形成连通器,并可基于连通器原理达到液位一致,因此,采用本实施例的方案,有利于降低补液过程对电极对的冲击力,提高氧气处理装置10的结构稳定性。
在一个示例中,液量调节仓700为一个。当液量调节仓700设置为一个时,可减小整个氧气处理装置10的体积。在另一个示例中,液量调节仓700也可以设置为两个,三个或者更多个。此时可在一定程度上提高整个氧气处理装置10的储液量,减少补液频率。
氧气处理组件300可以为一个,当然也可以根据实际需要设置为多个,例如两个,三个或者更多个。如图2-4所示,图中示出了一个液量调节仓700和两个氧气处理组件300。当氧气处理组件300设置为多个时,可提高整个氧气处理装置10的氧气调节效率,使其快速营造合适的保鲜气氛。
电解仓310和排气仓340可以共同形成氧气反应仓。由于液量调节仓700和氧气反应仓分别用于储液,因此,可将液量调节仓700和氧气反应仓统称为储液仓。各个储液仓实现互通的方式可以根据实际需要进行设置。在一些可选的实施例中,每个储液仓分别开设有液路连通口312。氧气处理装置10还包括至少一个液路连通管380,一液路连通管380连通两个储液仓的液路连通口312,使各个储液仓液路连通。
例如,一个液路连通管380可以连通相邻两个储液仓的液路连通口312。此时,位于首端和末端的两个储液仓无需直接地连通。液路连通管380的数量比储液仓的数量少一个。采用本实施例的方案,液路连接结构简单,便于储液仓的增减。
在另一个示例中,相邻储液仓之间可以相互嵌入,或者相互插接,以实现内部空间的互相连通。
由于各个储液仓分离独立设置,当在储液仓上开设液路连通口312,并利用液路连通管380连通储液仓的液路连通口312以实现液路连通时,可根据实际需要十分方便地增减储液仓的数量,因此,采用本实施例的方案,可以灵活机动地调整氧气处理装置10的结构和工作效率,无需针对各个储液仓的内部结构进行适应性改造,并且整个装置具备较高的整合性和集成性。
在一个示例中,液路连通口312位于储液仓的底部区段。液路连通口312可以设置于储液仓的侧壁上。例如,液路连通口312可以设置在储液仓的侧壁下部。采用本实施例的方案,当液量调节仓700向电解仓310补液时,液体可以自电解仓310的底部缓缓地进入电解仓310内,不会对电极对产生冲刷作用,从而可降低补液过程对电极对造成损伤。
每个储液仓的液路连通口312可以设置为两个,以通过液路连通管380分别与相邻两个储液仓连接起来。位于首端和末端的两个储液仓各有一个液路连通口312处于“闲置状态”,未与相邻储液仓的液路连通口312连接,此时可采用密封塞391封闭处于“闲置”状态的液路连通口312,以防漏液。
在一些可选的实施例中,每一储液仓的顶部区段开设有气路连通口343。气路连通口343可以设置于储液仓的顶壁220上。当然,气路连通口343也可以设置在储液仓的侧壁上,并位于储液仓的侧壁上部。
氧气处理装置10还包括至少一个气路连通管370,一气路连通管370连通两个储液仓的气路连通口343,使储液仓气路连通。例如,一个气路连通管370可以连通相邻两个储液仓的气路连通口343。此时,位于首端和末端的两个储液仓无需直接地连通。气路连通管370的数量比储液仓的数量少一个。采用本实施例的方案,气路连接结构简单,便于储液仓的增减。
一个储液仓还开设有与气路连通口343气路连通并用于连通外部环境的通气口341。通气口341可以开设在任一个储液仓上。该通气口341连通所在储液仓的气路连通口343,且连通各个储液仓的外部环境,从而使各个储液仓与外部环境直接或间接地气路连通。
通过在储液仓的顶部区段开设气路连通口343,并利用气路连通管370使各个储液仓实现气路连通,且在一个储液仓开设与气路连通口343气路连通并用于连通外部环境的通气口341,可在各个储液仓内串联出 连通外部环境的气流空间,当液量调节仓700接收来自外部液源的液体时,在气流空间的作用下,有利于实现气液平衡,减少或避免补液过程产生气阻,保证补液过程顺畅进行。
采用上述方案,全部储液仓内的气体均可以通过通气口341排入外部环境。当在电解仓310内进行的电化学反应产生气体时,各个电解仓310内产生的气体均可以汇集至通气口341,并集中排出,这便于废气的集中处理和利用。通气口341可以设置于一个储液仓的顶壁220上。例如,通气口341可以设置于排气仓340的顶壁220上。在另一个示例中,当在一个储液仓开设一个通气口341时,还可以进一步地在另一储液仓开设另一通气口341,以提高排气速率。
在一些可选的实施例中,对于氧气反应仓而言,液路连通口312开设于电解仓310,气路连通口343开设于排气仓340,气路连通口343可以开设于排气仓340的顶壁上。例如,液路连通口312可以开设于电解仓310的侧壁下部。气路连通口343可以作为排气仓340的排气孔。通气口341开设于任一个氧气反应仓的排气仓,例如,通气口341可以位于该氧气反应仓的排气仓的顶壁上。
在一个示例中,液量调节仓700包括上仓体740和下仓体730。补液口342开设于液量调节仓700的上仓体740,例如可以开设于液量调节仓700的上仓体740的顶壁。气路连通口343也开设于液量调节仓700的上仓体740,例如可以开设于液量调节仓700的上仓体740的顶壁。
参看图11,其中,图11(a)采用虚线示意透视部位,图11(b)采用实线示意透视部位。氧气处理装置10还包括液位开关720,设置于液量调节仓700的下仓体730内,用于根据下仓体730内的液位移动,从而通断液量调节仓700的下仓体730与上仓体740之间的通路。
当液量调节仓700的液量减少时,液位开关720可以向下移动从而打开液量调节仓700的下仓体730与上仓体740之间的通路,此时来自外部液源的液体可以经上仓体740流入下仓体730,以提高液量调节仓700的液量。当液量调节仓700的液量增加时,液位开关720可以向上移动至初始位置从而使液量调节仓700的下仓体730与上仓体740之间的通路恢复至关断状态,此时来自外部液源的液体无法流入下仓体730。
当在液量调节仓700的上仓体740开设补液口342,并在液量调节仓700的下仓体730设置液位开关720时,在液位开关720的作用下,可使各个储液仓内的液位处于动态平衡状态,从而保证电化学反应的平稳进行。并且储液仓所储存的液体可始终处于下仓体730内,不会占据上仓体740所限定出的气流空间。
液位开关720可包括转动式浮子721、转动轴723和开关本体722。其中,转动轴723固定于下仓体730内。开关本体722与转动式浮子721固定连接,或与转动式浮子721为一体件。转动式浮子721可绕转动轴723可转动地设置于下仓体730内,并根据下仓体730内的液位上下浮动,从而带动开关本体722移动,进而通断液量调节仓700的下仓体730与上仓体740之间的通路。
液量调节仓700的上仓体740内设置有连通补液口342且与气路连通口343间隔设置的隔离仓710。隔离仓710的底部开设有出液口711,并通过出液口711连通液量调节仓700的下仓体730。隔离仓710与上 仓体740相连通且与气路连通口343间隔设置是指,流入上仓体740的液体仅能进入隔离仓710,并经隔离仓710的出液口711流入下仓体730,不会流向气路连通口343,且流向气路连通口343的气体不会流入隔离仓710。
液位开关720用于通过移动开闭出液口711,从而通断液量调节仓700的下仓体730与上仓体740之间的通路。例如,当液量调节仓700的下仓体730内的液量充足且无需补液时,液位开关720的开关本体722可恰好封闭出液口711。转动式浮子721在浮力变化的情况下通过带动开关本体722移动从而打开或封闭出液口711,从而通断液量调节仓700的下仓体730与上仓体740之间的通路。
出液口711可以贯穿于隔离仓710的底壁,并向下凸出设置。开关本体722可以具有与出液口711的底端开口相适配以封闭出液口711的密封塞391。
采用上述方案,当液位开关720关断液量调节仓700的下仓体730与上仓体740之间的通路时,流入上仓体740内的液体可以全部暂存于隔离仓710内,而不会溢流至上仓体740的其他部位,可使液量调节仓700的气流空间保持干燥、畅通。液位开关720可配置成使液量调节仓700的液位始终低于上仓体740。
在一些可选的实施例中,当氧气处理组件为多个时,多个氧气处理组件间隔排布,每个电解仓310可以开设有两个侧向开口315,每个侧向开口315处设置有一个阴极。也即,每个电解仓310装配有两个阴极以及一个共用的阳极。
采用上述方案,由于电解仓310并未相互遮挡,各个电解仓310均能与外部气体接触,因此,可以提高装配至电解仓310的阴极与外部气体的接触面积,从而提高电化学反应效率。侧向开口315可以设置在电解仓310的任意壁上。
在一些可选的实施例中,侧向开口315可以设置在垂直于多个氧气处理组件300的排布方向且面积最大的电解仓310的壁上。也即,电解仓310的面积最大的壁垂直于多个氧气处理组件300的排布方向,侧向开口315设置在电解仓310的面积最大的壁上。如此设置,可提高阴极的工作面积,从而进一步提高电化学反应效率。
在一些可选的实施例中,电解仓310为扁平形状。与传统的氧气处理装置相比,本发明实施例的氧气处理装置10在保持较高工作效率的情况下,体积明显降低。
各个储液仓可以相互连接,以实现集成式的装配,例如可以通过卡接结构、插接结构或者螺接结构等实现相互连接。
在一些可选的实施例中,氧气处理装置10还可以进一步地包括至少一个连接轴392。连接轴392可以设置为一个或多个,例如两个,三个,四个或者更多个。各个储液仓的壁设置有贯穿设置且同轴的至少一个轴孔311,轴孔311与储液仓的内部空间相互隔断,且供连接轴392***其中,从而实现连接。每个储液仓的轴孔311的数量与连接轴392的数量相同。一个连接轴392***多个储液仓的同轴的轴孔311内。当 连接轴392的数量和每个储液仓的轴孔311的数量分别为多个时,各个储液仓的轴孔311可以划分为多组,每组轴孔311同轴设置,相同的连接轴392贯穿多个储液仓的同组轴孔311。
在一个进一步的示例中,连接轴392为四个,且每一储液仓的壁设置有四个轴孔311。其中,两个轴孔311位于储液仓的顶部区段,另外两个轴孔311位于储液仓的底部区段。
采用上述方案,各个储液仓可以通过连接轴392装配为一体,装配方式简单,且相邻储液仓之间可形成气流间隙。
在一个示例中,壳体200的顶壁220连接有自顶壁220的边缘向下延伸从而限定出下部开口的折边。
折边的竖直长度可以根据实际需要进行调整,以适应不同的场景。折边的竖直长度大致等同于下部开口的深度。下部开口的边缘与第一侧壁、第二侧壁、第三侧壁以及第四侧壁共同围出的筒体的顶部开口的边缘相贴合,以实现密封。
如图12所示,当折边的竖直长度较小时,为避免因空间狭小而导致无法装配气路连通管370,可在壳体200的顶壁220上开设光孔,以供气路连通管370的至少一部分经其伸出至壳体200的外部。
本发明实施例还提供了一种冷藏冷冻装置20。本发明实施例的冷藏冷冻装置20可以为冰箱,也可以为冷柜、冷冻柜或者冷藏柜等具备低温储存功能的制冷设备。结合图13,冷藏冷冻装置20包括箱体600和氧气处理装置10。箱体600的内部限定出储物空间610。氧气处理装置10可以采用以上任一实施例所示出的结构。
氧气处理装置10的出气接口221连通储物空间610,例如可以经由回气管路连通储物空间610。贫氧气体或富氧气体经出气接口221送出,从而调节储物空间610的氧气含量。
在一个示例中,储物空间610可以为低氧保鲜空间;氧气处理组件300用于通过电化学反应消耗流入气流通道280的气体中的氧气,以产生贫氧气体。此时,在一个进一步的示例中,箱体600内还可以进一步地限定出高氧保鲜空间。该高氧保鲜空间可以通过管路连通壳体200上的排氧口222,以接收来自排氧口222的氧气。
在另一个示例中,储物空间610可以为高氧保鲜空间。氧气处理组件300用于通过电化学反应生成氧气,并经排气孔排出。氧气处理组件300的排气孔可以连通气流通道280,并连通出气接口221,出气接口221可以通过管路连通高氧保鲜空间,以将电化学反应生成的氧气输送至高氧保鲜空间。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (15)

  1. 一种氧气处理装置,其特征在于,包括:
    壳体,其上形成有用于连通外部管路的进气接口和出气接口,且其内部限定出连通所述进气接口和所述出气接口的气流通道;和
    氧气处理组件,设置于所述气流通道内,并用于处理自所述进气接口流入所述气流通道的气体中的氧气,以产生贫氧气体或富氧气体;所述贫氧气体或所述富氧气体经所述出气接口送出,从而调节外部空间的氧气含量。
  2. 根据权利要求1所述的氧气处理装置,其特征在于,所述进气接口为形成于所述壳体上并向外***的中空柱状接口;且/或所述出气接口为形成于所述壳体上并向外***的中空柱状接口。
  3. 根据权利要求1所述的氧气处理装置,其特征在于,所述进气接口与所述出气接口沿纵向和横向错位布置。
  4. 根据权利要求1所述的氧气处理装置,其特征在于,还包括:
    气流促动装置,设置于所述气流通道内,且其具有吸风口和出风口;其中
    所述吸风口与所述进气接口气流连通,所述出风口与所述出气接口相对;且所述气流促动装置用于促使形成自所述进气接口流入所述气流通道并流向所述出气接口的气流。
  5. 根据权利要求4所述的氧气处理装置,其特征在于,所述气流通道具有连接所述进气接口并且过流截面渐扩的第一区段以及连接所述气流促动装置的所述吸风口并且过流截面渐缩的第二区段。
  6. 根据权利要求5所述的氧气处理装置,其特征在于,所述气流通道还具有连接于所述第一区段和所述第二区段之间的第三区段;且所述氧气处理组件设置于所述第三区段内。
  7. 根据权利要求6所述的氧气处理装置,其特征在于,所述氧气处理组件具有用于处理流经所述气流通道的气体中的氧气以产生所述贫氧气体或所述富氧气体的处理部;且所述处理部的外表面沿流经所述第三区段的气流的流线簇的延伸方向伸展。
  8. 根据权利要求7所述的氧气处理装置,其特征在于,所述处理部为阴极,其用于通过电化学反应消耗流经所述气流通道的气体中的氧气,以产生贫氧气体;且所述氧气处理组件还包括:
    电解仓,其具有侧向开口;所述处理部设置于所述侧向开口处以与所述电解仓共同限定出用于盛装电解液的电解腔;
    配合部,其作为阳极,设置于所述电解腔内,并用于通过电化学反应向所述处理部提供反应物,且生成氧气。
  9. 根据权利要求8所述的氧气处理装置,其特征在于,所述氧气处理组件还包括排气仓,其设置于所述电解仓的上方,并且开设有排气孔;所述排气仓连通所述电解腔,并用于收集所述配合部生成的氧气, 且经所述排气孔排出。
  10. 根据权利要求9所述的氧气处理装置,其特征在于,所述壳体上开设有排氧口;且所述氧气处理装置还包括排氧管,其一端连通所述排气孔,另一端自所述排氧口伸出至所述壳体外部,用于将经所述排气孔排出的氧气排至所述壳体外部。
  11. 根据权利要求4所述的氧气处理装置,其特征在于,所述壳体具有底壁和顶壁以及分别自所述底壁向上延伸至所述顶壁并且相对设置的第一侧壁和第二侧壁;所述出气接口形成于所述壳体的顶壁上;所述进气接口形成于所述壳体的第一侧壁上;所述气流促动装置固定于所述壳体的第二侧壁上,并且位于所述出气接口的下方。
  12. 根据权利要求11所述的氧气处理装置,其特征在于,所述壳体还具有:
    第三侧壁和第四侧壁,分别自所述底壁向上延伸至所述顶壁并与所述第一侧壁和所述第二侧壁共同围出具有顶部开口的筒体;
    第一导流面和第二导流面,分别自所述第一侧壁的内表面延伸至所述第三侧壁的内表面以及所述第四侧壁的内表面,且与所述第一侧壁的内表面之间形成钝角,以限定出所述第一区段;以及
    第三导流面和第四导流面,分别自所述第二侧壁的内表面延伸至所述第三侧壁的内表面以及所述第四侧壁的内表面,且与所述第二侧壁的内表面之间形成钝角,以限定出所述第二区段。
  13. 根据权利要求11所述的氧气处理装置,其特征在于,所述壳体的顶壁可拆卸地设置。
  14. 根据权利要求4所述的氧气处理装置,其特征在于,所述气流促动装置为离心风机。
  15. 一种冷藏冷冻装置,其特征在于,包括:
    箱体,其内部限定出储物空间;以及
    如权利要求1所述的氧气处理装置,其中所述出气接口连通所述储物空间;所述贫氧气体或所述富氧气体经所述出气接口送出,并流入所述储物空间,从而调节所述储物空间的氧气含量。
PCT/CN2023/118142 2022-09-14 2023-09-12 氧气处理装置以及具有其的冷藏冷冻装置 WO2024055944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211116738.5 2022-09-14
CN202211116738.5A CN116007278A (zh) 2022-09-14 2022-09-14 氧气处理装置以及具有其的冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2024055944A1 true WO2024055944A1 (zh) 2024-03-21

Family

ID=86030510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118142 WO2024055944A1 (zh) 2022-09-14 2023-09-12 氧气处理装置以及具有其的冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN116007278A (zh)
WO (1) WO2024055944A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116007278A (zh) * 2022-09-14 2023-04-25 青岛海尔电冰箱有限公司 氧气处理装置以及具有其的冷藏冷冻装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949630A (zh) * 2010-09-27 2011-01-19 合肥美的荣事达电冰箱有限公司 冰箱保鲜***及具有其的冰箱
CN106766516A (zh) * 2016-12-02 2017-05-31 青岛海尔股份有限公司 储物装置
CN116007278A (zh) * 2022-09-14 2023-04-25 青岛海尔电冰箱有限公司 氧气处理装置以及具有其的冷藏冷冻装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949630A (zh) * 2010-09-27 2011-01-19 合肥美的荣事达电冰箱有限公司 冰箱保鲜***及具有其的冰箱
CN106766516A (zh) * 2016-12-02 2017-05-31 青岛海尔股份有限公司 储物装置
CN116007278A (zh) * 2022-09-14 2023-04-25 青岛海尔电冰箱有限公司 氧气处理装置以及具有其的冷藏冷冻装置

Also Published As

Publication number Publication date
CN116007278A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2024055944A1 (zh) 氧气处理装置以及具有其的冷藏冷冻装置
WO2024055943A1 (zh) 氧气处理装置以及具有其的冷藏冷冻装置
BR122017015929B1 (pt) Placa de extremidade para célula de combustível, e, célula de combustível
CN219037233U (zh) 冷藏冷冻装置
WO2024046376A1 (zh) 冷藏冷冻装置
WO2024017204A1 (zh) 冰箱
WO2024103963A1 (zh) 一种干湿联合换热设备
WO2024046375A1 (zh) 冷藏冷冻装置
CN219346955U (zh) 氧气处理装置以及具有其的冷藏冷冻装置
WO2023143368A1 (zh) 冰箱
CN205934074U (zh) 一种微弧氧化处理冷却装置
CN218096794U (zh) 气压调节装置、氧气处理装置及冰箱
CN219037284U (zh) 氧气处理装置以及具有其的冷藏冷冻装置
CN215208747U (zh) 一种地热水处理的曝气箱
WO2024046385A1 (zh) 冷藏冷冻装置
CN112194240A (zh) 一种市政自动污水处理设备
CN221257125U (zh) 一种喷水自适应无油真空泵
WO2023160324A1 (zh) 氧气处理装置以及具有其的冰箱
WO2024067613A1 (zh) 冷藏冷冻装置
WO2024046383A1 (zh) 储液装置以及具有其的冷藏冷冻装置
WO2024046388A1 (zh) 冷藏冷冻装置
WO2023098474A1 (zh) 电解除氧装置以及具有其的冰箱
CN212645385U (zh) 一种金属镁冶炼迅速降温装置
JP2002089447A (ja) 圧縮機
CN218115423U (zh) 一种用于沼气工程的原位空气脱硫***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864676

Country of ref document: EP

Kind code of ref document: A1