WO2024046377A1 - 冷藏冷冻装置 - Google Patents

冷藏冷冻装置 Download PDF

Info

Publication number
WO2024046377A1
WO2024046377A1 PCT/CN2023/115877 CN2023115877W WO2024046377A1 WO 2024046377 A1 WO2024046377 A1 WO 2024046377A1 CN 2023115877 W CN2023115877 W CN 2023115877W WO 2024046377 A1 WO2024046377 A1 WO 2024046377A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
storage space
refrigeration
liquid storage
oxygen
Prior art date
Application number
PCT/CN2023/115877
Other languages
English (en)
French (fr)
Inventor
王春利
苗建林
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024046377A1 publication Critical patent/WO2024046377A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to controlled atmosphere preservation technology, and in particular to a refrigeration and freezing device.
  • Controlled atmosphere preservation technology is a technology that extends the storage life of food by adjusting the composition of ambient gases.
  • the oxygen treatment device can process oxygen through the electrochemical reaction of the electrode to create a low-oxygen preservation atmosphere or a high-oxygen preservation atmosphere.
  • the electrolyte will evaporate due to heat, causing the electrolyte to gradually decrease. Therefore, it is necessary to set up a liquid storage device to replenish liquid to the oxygen treatment device.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigeration and freezing device.
  • a further object of the present invention is to enable the refrigeration and freezing device to use the liquid storage module to replenish electrolyte to the oxygen treatment device without affecting the volume ratio, so that the oxygen treatment device can sustainably adjust the oxygen content of the storage space.
  • Another further object of the present invention is to simplify the difficulty of disassembly and assembly of the liquid storage module, and to reduce or avoid the obvious reduction in the thermal insulation performance of the refrigeration and freezing device caused by installing the liquid storage module in the foam layer.
  • Another further object of the present invention is to simplify the replenishing method of the liquid storage module, so that the liquid storage module can replenish electrolyte to the oxygen treatment device sustainably.
  • a further object of the present invention is to display the liquid level of the liquid storage module through an interactive window, so that the user can observe and take timely replenishment measures.
  • the present invention provides a refrigeration and freezing device, including:
  • a box body which has an inner bag and a foam layer formed on the outside of the inner bag, and the inner side of the inner bag defines a storage space;
  • an oxygen treatment device which is in gas flow communication with the storage space and used to adjust the oxygen content of the storage space through electrochemical reaction
  • a liquid storage module has a box body, which is arranged in the foaming layer, and the inside of the box body defines a liquid storage space for storing liquid, and the liquid storage space is in liquid communication with the oxygen treatment device. , to replenish the oxygen treatment device with the electrolyte required for the electrochemical reaction.
  • the box also has a box shell, and the foam layer is formed between the box shell and the inner bag;
  • the liner is provided with an opening-shaped interactive window, and the foam layer has a mounting groove communicated with the interactive window for assembling the liquid storage module; the mounting groove is along the thickness of the foam layer The direction is recessed toward the direction away from the interaction window, and a gap is formed between it and the box shell.
  • the box body is provided with a liquid injection port connected to the liquid storage space, and the liquid injection port is exposed through the interactive window, thereby allowing external liquid to be injected into the liquid storage space.
  • a cover is provided on the box body, and the cover is reciprocally disposed at the liquid injection port to open or close the liquid injection port;
  • the cover is a push-type spring cover, which can rotate and pop up under pressure to at least partially extend into the storage space through the interactive window, thereby opening the liquid filling port.
  • At least a portion of the box is made of a transparent material to form a visible area for revealing the liquid storage volume of the box;
  • the visible area is exposed through the interactive window; and the visible area extends longitudinally and is located below the liquid injection port.
  • the interactive window is located on the side wall of the inner tank, and the installation groove is correspondingly provided between the side wall of the inner tank and the side wall of the box shell.
  • the box body has a first side wall that is flush with the side wall of the inner bag and seals the interaction window, and a first side wall that is opposite to the first side wall and hidden inside the installation groove. second side wall; and
  • the liquid injection port is located on the first side wall.
  • the oxygen treatment device has a casing and an electrode pair, and the casing defines a An electrochemical reaction chamber for holding electrolyte; and the housing has a liquid replenishing port connected to the electrochemical reaction chamber; the electrode pair is provided in the electrochemical reaction chamber and is used to convert the electrolyte through an electrochemical reaction.
  • the oxygen in the storage space is transferred to the electrochemical reaction chamber; and
  • a liquid outlet is provided on the bottom wall of the box, and the liquid outlet is connected to the liquid replenishing port to replenish electrolyte to the electrochemical reaction chamber.
  • the housing also has an exhaust hole connected to the electrochemical reaction chamber for exhausting oxygen from the electrochemical reaction chamber;
  • An air inlet and an air outlet are provided on the top wall of the box; wherein, the air inlet is connected to the exhaust hole to allow the oxygen discharged from the exhaust hole to pass into the liquid storage space for filtering Soluble impurities, the air outlet is used to allow filtered oxygen to be discharged outward.
  • the storage space is a refrigerated space
  • the oxygen treatment device is installed in the storage space or the foam layer.
  • the box body of the liquid storage module is arranged in the foaming layer, and the liquid storage space of the box body is connected with the liquid path of the oxygen treatment device, so that the liquid stored in the box body is supplied to the oxygen treatment device.
  • the refrigeration and freezing device can use the liquid storage module to replenish electrolyte to the oxygen treatment device without affecting the volume ratio, so that the oxygen treatment device can sustainably adjust the storage capacity.
  • the oxygen content of the object space is not limited to replenish electrolyte to the object space.
  • an interactive window is provided on the inner tank, and an installation groove connected to the interactive window is provided in the foam layer, and a gap is formed between the installation groove and the case shell, so that the liquid can be stored
  • the module can be installed into the installation groove after the foam layer is formed, which helps simplify the disassembly and assembly of the liquid storage module.
  • the solution of the present invention can reduce or avoid the obvious reduction in the thermal insulation performance of the refrigeration and freezing device caused by installing the liquid storage module in the foam layer.
  • an interactive window is provided on the inner tank and the liquid filling port of the box is connected to the storage space through the interactive window.
  • the interactive window can be used as an operation window for the user to replenish liquid into the liquid storage space. Since the interactive window can expose the liquid injection port, when the liquid storage volume of the liquid storage space is insufficient, external liquid can be injected into the liquid storage space through the liquid injection port. Therefore, the above solution of the present invention can simplify the liquid replenishment method of the liquid storage module.
  • the liquid storage module can continuously replenish electrolyte to the oxygen treatment device.
  • the interactive window can be used as a user to observe the liquid storage space.
  • Observation window for liquid level Since the interactive window can reveal the visible area, the user can easily observe the liquid storage volume in the liquid storage space. Therefore, the above solution of the present invention allows the user to obtain an intuitive interactive experience. When the liquid storage volume in the liquid storage space is insufficient, the user can take rehydration measures in a timely manner.
  • Figure 1 is a schematic structural diagram of a refrigeration and freezing device according to an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of the refrigeration and freezing device shown in Figure 1 from another perspective;
  • Figure 3 is a schematic internal structure diagram of the refrigeration and freezing device shown in Figure 2;
  • Figure 4 is a schematic structural diagram of the inner tank of the refrigeration and freezing device shown in Figure 1;
  • FIG. 5 is a schematic structural diagram of the liquid storage module of the refrigeration and freezing device shown in Figure 1;
  • Figure 6 is a schematic perspective view of the liquid storage module of the refrigeration and freezing device shown in Figure 5;
  • Figure 7 is a schematic structural diagram of an oxygen treatment device of a refrigeration and freezing device according to one embodiment of the present invention.
  • Figure 8 is a schematic exploded view of the oxygen treatment device of the refrigeration and freezing device shown in Figure 7;
  • Figure 9 is a schematic structural diagram of the foam layer of the box of the refrigeration and freezing device according to one embodiment of the present invention.
  • the refrigeration and freezing device 10 will be described below with reference to FIGS. 1 to 9 .
  • the directions or positional relationships indicated by “inside”, “outside”, “up”, “down”, “top”, “bottom”, “lateral”, “horizontal”, “vertical”, etc. are based on the directions or positional relationships shown in the drawings and are only for To facilitate the description of the present invention and to simplify the description, it is not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore cannot be construed as a limitation of the present invention.
  • some of the drawings of the present invention are illustrated in perspective form.
  • first”, “second”, etc. are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first”, “second”, etc. may explicitly or implicitly include at least one of the features, that is, include one or more of the features. It should be understood that the term “plurality” means at least two, such as two, three, etc. Unless otherwise expressly and specifically limited. When a feature "includes or includes” one or some of the features it encompasses, unless specifically described otherwise, this indicates that other features are not excluded and may further be included.
  • FIG. 1 is a schematic structural diagram of a refrigeration and freezing device 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the refrigeration and freezing device 10 shown in FIG. 1 from another perspective. Among them, Figure 1 is the front side perspective, and Figure 2 is the rear side perspective.
  • FIG. 3 is a schematic internal structure diagram of the refrigeration and freezing device 10 shown in FIG. 2 , with the inner tank 120 hidden in the figure.
  • the refrigeration and freezing device 10 may generally include a box 100 , an oxygen treatment device 300 and a liquid storage module 500 .
  • the refrigeration and freezing device 10 in the embodiment of the present invention may be a refrigerator, or a refrigeration equipment with a low-temperature storage function such as a refrigerator, a freezer, or a refrigerator.
  • the box 100 has an inner bladder 120 and a foam layer 180 formed on the outside of the inner bladder 120.
  • the inner side of the inner bladder 120 defines a storage space 122.
  • the inner side of the inner bladder 120 may define a storage compartment.
  • the storage space 122 can directly refer to the internal space of the storage compartment, or of course it can Refers to the internal space of the storage container 600 provided in the storage room.
  • the foam layer 180 may be made of thermal insulation material, such as polyurethane foam.
  • the oxygen treatment device 300 is in airflow communication with the storage space 122, and is used to adjust the oxygen content of the storage space 122 through electrochemical reactions. For example, the oxygen content in the storage space 122 is consumed through electrochemical reactions to reduce the oxygen content in the storage space 122. Alternatively, oxygen may be generated through an electrochemical reaction and the generated oxygen may be introduced into the storage space 122 to increase the oxygen content in the storage space 122 .
  • the refrigeration and freezing device 10 can be preset with a controlled atmosphere preservation mode, and when the controlled atmosphere preservation mode is activated, the oxygen treatment device 300 can be operated, for example, by providing power to the oxygen treatment device 300 so that it can react under the action of electrolysis voltage. An electrochemical reaction is performed to adjust the oxygen content of the storage space 122 .
  • the liquid storage module 500 has a box body 510, which is disposed in the foam layer 180, and the interior of the box body 510 defines a liquid storage space for storing liquid.
  • the liquid storage space is in liquid communication with the oxygen treatment device 300 to provide oxygen to the oxygen treatment device 300.
  • the processing device 300 replenishes the electrolyte required for the electrochemical reaction.
  • the liquid stored in the box body 510 is used to supply the oxygen treatment device 300 to the oxygen treatment device 300.
  • the refrigeration and freezing device 10 can use the liquid storage module 500 to replenish the electrolyte to the oxygen treatment device 300 without affecting the volume ratio, so that the oxygen treatment device 300 Sustainably regulate the oxygen content of storage space 122.
  • Controlled atmosphere preservation in order to facilitate the liquid replenishment module 500 to the oxygen treatment device 300, those of ordinary skill in the art can easily think of adopting the proximity principle and arranging the liquid replenishment module in the storage space 122, which will compress the The volume ratio of the refrigeration and freezing device 10.
  • the inventor of the present application creatively installed the liquid storage module 500 in the foam layer 180, which broke through the shackles of the existing technology and achieved sustainable performance for the refrigeration and freezing device 10 while maintaining a high volume ratio.
  • Controlled atmosphere preservation provides a new idea, and also solves many technical problems such as liquid spillage caused by the liquid storage module 500 being easily touched by objects.
  • the box body 510 of the liquid storage module 500 can be disposed at any part of the foam layer 180 , for example, it can be disposed on the side of the inner bladder 120 , or can be disposed on the top, bottom and back of the inner bladder 120 .
  • the box body 510 of the liquid storage module 500 may be disposed in the gap between the upper inner pot 120 and the lower inner pot 120 .
  • the box body 100 further has a box shell 170 , and the foam layer 180 is formed between the box shell 170 and the inner bladder 120 .
  • the box shell 170 is covered on the outside of the foam layer 180 to sandwich the foam layer 180 with the inner bladder 120 .
  • FIG. 4 is a schematic structural diagram of the inner tank 120 of the refrigeration and freezing device 10 shown in FIG. 1 .
  • the liner 120 is provided with an opening-shaped interactive window 124, and the foam layer 180 has an installation groove communicating with the interactive window 124 for assembling the liquid storage module 500.
  • the liquid storage module 500 can be assembled into the installation groove to be disposed in the foam layer 180 .
  • the installation groove can be reserved during the molding process of the foam layer 180 .
  • the installation groove is recessed along the thickness direction of the foam layer 180 toward a direction away from the interaction window 124 , and forms a gap with the box shell 170 .
  • the mounting groove does not penetrate the foam layer 180 , so that the liquid storage module 500 assembled into the mounting groove will not be tightly attached to the tank shell 170 . That is, a certain thickness of heat insulation material is formed between the box shell 170 and the oxygen treatment device 300 .
  • the liquid storage module 500 does not need to be pre-installed in the foaming layer 180 to avoid the foaming process from adversely affecting the structure and performance of the liquid storage module 500 , and the assembly process of the liquid storage module 500 can be done in the storage space 122 Execution, with the advantages of simple assembly process.
  • the liquid storage module 500 can be opened by opening the interactive window 124 in the inner bladder 120 and providing a mounting groove communicating with the interactive window 124 in the foam layer 180, and forming a gap between the mounting groove and the case shell 170, the liquid storage module 500 can The bubble layer 180 is formed and then installed into the installation groove, which helps to simplify the difficulty of disassembly and assembly of the liquid storage module 500 . Moreover, since the installation groove does not penetrate the foam layer 180 , the solution of this embodiment can reduce or avoid the obvious reduction in the thermal insulation performance of the refrigeration and freezing device 10 caused by installing the liquid storage module 500 in the foam layer 180 .
  • the liquid storage module 500 can be fixed in the installation groove, and the fixing method includes but is not limited to screwing, snapping, riveting, welding, and bonding.
  • the box body 510 is provided with a liquid injection port 514 connected to the liquid storage space, and the liquid injection port 514 is exposed through the interactive window 124, thereby allowing external liquid to be injected into the liquid storage space.
  • FIG. 5 is a schematic structural diagram of the liquid storage module 500 of the refrigeration and freezing device 10 shown in FIG. 1 .
  • FIG. 6 is a schematic perspective view of the liquid storage module 500 of the refrigeration and freezing device 10 shown in FIG. 5 .
  • the liquid filling port 514 is disposed on the side wall of the box body 510 facing the storage space 122 so as to be exposed through the interactive window 124 .
  • the interactive window 124 By setting up an interactive window 124 on the inner tank 120 and connecting the liquid filling port 514 of the box 510 to the storage space 122 through the interactive window 124, the interactive window 124 can be used as a user's guide to the storage space. Operation window for fluid space replenishment. Since the interactive window 124 can expose the liquid injection port 514, when the liquid storage volume of the liquid storage space is insufficient, external liquid can be injected into the liquid storage space through the liquid injection port 514. Therefore, the above solution of this embodiment can simplify the liquid storage module.
  • the liquid replenishment method of 500 enables the liquid storage module 500 to replenish the electrolyte to the oxygen treatment device 300 continuously.
  • the box body 510 is provided with a cover 550, and the cover 550 is reciprocally disposed at the liquid filling port 514 to open or close the liquid filling port 514.
  • the cover 550 opens the liquid filling port 514, the liquid filling port 514 is allowed to be exposed.
  • the liquid filling port 514 can be opened only when receiving external liquid, thereby reducing or preventing foreign matter from entering the liquid storage space. , to keep the liquid stored in the liquid storage space clean.
  • the cover 550 may be a push-type pop-up cover that can rotate and pop up under pressure to at least partially extend into the storage space 122 through the interaction window 124 to open the liquid filling port 514 .
  • the bottom of the cover 550 may be connected to the box body 510 through a rotating shaft and be pivotably connected to the box body 510 .
  • the lid body 550 closes the liquid filling port 514, its outer surface is coplanar with the outer surface of the box body 510.
  • the top of the lid body 550 can be connected to the box body 510 through the snap-in structure; when it is necessary to open the liquid filling port 514 , the top of the cover 550 can be pressed to separate the top of the cover 550 from the box 510.
  • the cover 550 can rotate around the rotating axis and at least partially extend into the storage space 122, thereby opening the liquid filling port 514.
  • At least a portion of the box body 510 is made of a transparent material to form a visible area 516 for revealing the liquid storage volume of the box body 510 .
  • the transparent material may be polymethyl methacrylate, polycarbonate, polyethylene terephthalate, or polypropylene.
  • the visible area 516 of this embodiment is exposed through the interactive window 124 .
  • the visible area 516 extends longitudinally and is located below the liquid filling port 514 .
  • the visible area 516 is also provided on the side wall of the box 510 facing the storage space 122 so as to be exposed through the interactive window 124 .
  • the interactive window 124 can be used as an observation window for the user to observe the liquid level in the liquid storage space. Since the interactive window 124 can reveal the visible area 516, the user can easily observe the liquid storage volume in the liquid storage space. Therefore, the above solution of this embodiment allows the user to obtain direct information. A visual interactive experience. When the liquid storage volume in the liquid storage space is insufficient, the user can take rehydration measures in a timely manner.
  • the interactive window 124 may be located on the side wall of the inner bladder 120 , and the mounting groove is correspondingly disposed between the side wall of the inner bladder 120 and the side wall of the box shell 170 .
  • an interactive window 124 is provided on the side wall of the inner tank 120 to allow the liquid to be stored.
  • the module 500 is embedded in the foam layer 180 on the side of the box 100, which can reduce the difficulty of interaction between the user and the liquid storage module 500 to a certain extent. The user can quickly obtain the stored items in the storage space 122 without moving them.
  • the liquid storage volume information of the liquid storage module 500 is obtained, and the liquid replenishment operation can be performed in time when the liquid storage volume of the liquid storage module 500 is insufficient.
  • the liquid storage module 500 may further include a liquid level sensor, which is disposed in the liquid storage space and used to detect the liquid level in the liquid storage space.
  • the refrigeration and freezing device 10 can send out an alarm signal.
  • the alarm signal can be transmitted to the user through wireless transmission technology to remind the user to replenish liquid in time.
  • the box body 510 has a first side wall flush with the side wall of the inner bladder 120 and closing the interaction window 124 and a second side wall opposite the first side wall and hidden inside the mounting groove. .
  • the liquid filling port 514 is located on the first side wall.
  • the opening area of the interactive window 124 and the surface area of the first side wall of the box body 510 can be approximately the same, so that the first side wall of the box body 510 just closes the interactive window 124 and the outer surface of the first side wall is in contact with the side wall of the inner bladder 120
  • the inner surfaces are connected into a complete plane to make the appearance beautiful.
  • the liquid filling port 514 may be provided in the upper section of the first side wall.
  • the visible area 516 can also be provided on the first side wall, for example, it can be provided on the middle section or the lower section of the first side wall.
  • the oxygen treatment device 300 has a housing 320 and an electrode pair, and the housing 320 defines an electrochemical reaction chamber for containing electrolyte.
  • the electrode pair is disposed in the electrochemical reaction chamber and used to transfer oxygen in the storage space 122 to the electrochemical reaction chamber through electrochemical reaction.
  • FIG. 7 is a schematic structural diagram of the oxygen treatment device 300 of the refrigeration and freezing device 10 according to an embodiment of the present invention.
  • FIG. 8 is a schematic exploded view of the oxygen treatment device 300 of the refrigeration and freezing device 10 shown in FIG. 7 .
  • the electrode pair may include a cathode plate 330 and an anode plate 340.
  • the electrochemical reaction chamber is a place where the cathode plate 330 and the anode plate 340 perform electrochemical reactions. It is used to hold alkaline electrolyte, such as 1mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • Housing 320 has lateral openings 321 .
  • the housing 320 may be in the shape of a flat rectangular parallelepiped.
  • the housing 320 may be in the shape of a flat rectangular parallelepiped.
  • the lateral opening 321 can be provided on any surface of the housing 320, such as the top surface, bottom surface or side surface. In one example, the lateral opening 321 may be provided on the surface of the housing 320 with the largest area.
  • the cathode plate 330 is disposed at the lateral opening 321 to jointly define an electrochemical reaction chamber for containing electrolyte with the casing 320 and to consume oxygen in the storage space 122 through electrochemical reaction. Oxygen in the air can undergo a reduction reaction at the cathode plate 330, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the anode plate 340 and the cathode plate 330 are spaced apart from each other and are arranged in the electrochemical reaction chamber, and are used to provide reactants to the cathode plate 330 and generate oxygen through electrochemical reactions.
  • the OH - generated by the cathode plate 330 can undergo an oxidation reaction at the anode plate 340 and generate oxygen, that is: 4OH - ⁇ O 2 +2H 2 O+4e - .
  • the housing 320 has a liquid replenishing port 322 connected to the electrochemical reaction chamber.
  • the box body 510 may also be substantially in the shape of a flat rectangular parallelepiped.
  • the box body 510 also has a top wall and a bottom wall connected between the first side wall and the second side wall and arranged oppositely in the vertical direction.
  • a liquid outlet 511 is provided on the bottom wall, and the liquid outlet 511 is connected to the liquid replenishing port 322 to replenish electrolyte to the electrochemical reaction chamber.
  • the liquid contained in the liquid storage space may be water or electrolyte, and its concentration may be lower than the electrolyte contained in the electrochemical reaction chamber.
  • the refrigeration and freezing device 10 also includes a fluid replenishment pipeline 420 embedded in the foam layer 180 .
  • the first end of the fluid replenishment pipeline 420 is connected to the fluid replenishment port 322 of the oxygen treatment device 300 , and the second end of the fluid replenishment pipeline 420 is connected to the liquid storage module.
  • the liquid outlet 511 of 500 is used to guide the liquid flowing out of the liquid storage space from the liquid outlet 511 to the liquid replenishment port 322, thereby replenishing liquid to the electrochemical reaction chamber.
  • the liquid outlet 511 is higher than the liquid replenishing port 322. In this way, the liquid in the liquid storage space can automatically flow into the electrochemical reaction chamber under the action of gravity without the need for a power device.
  • the liquid outlet 511 can also be transformed to be lower than the liquid replenishing port 322 Or be level with the fluid replenishing port 322.
  • a pump can be installed on the liquid replenishing pipeline 420 to drive the liquid in the liquid storage space to flow into the electrochemical reaction chamber under the action of the pump; or the siphon principle can be used to cause the liquid in the liquid storage space to flow into the electrochemical reaction chamber. .
  • a one-way valve may be provided on the fluid replacement pipeline 420 to allow one-way passage of liquid from the liquid outlet 511 to ensure one-way flow of liquid flowing through the fluid replacement pipeline 420 .
  • the housing 320 also has an exhaust hole 323 connected to the electrochemical reaction chamber for exhausting oxygen from the electrochemical reaction chamber.
  • An air inlet 512 and an air outlet 513 are provided on the top wall of the box 510 .
  • the air inlet 512 is connected to the exhaust hole 323 to allow the oxygen discharged from the exhaust hole 323 to pass into the liquid storage space to filter soluble impurities, such as the electrolyte carried by the oxygen.
  • the air outlet 513 is used to allow filtered oxygen to be discharged outward.
  • the refrigeration and freezing device 10 also includes a filter pipeline 430 embedded in the foam layer 180.
  • the first end of the filter pipeline 430 is connected to the exhaust hole 323 of the oxygen treatment device 300, and the second end of the filter pipeline 430 is connected to the box.
  • the air inlet 512 of 510 is used to guide the oxygen flowing out from the exhaust hole 323 to the air outlet 513, so as to enter the liquid storage space for filtration.
  • the liquid storage module 500 may further include an air filter pipe 540 and an air outlet pipe.
  • the air filter pipe 540 is inserted into the liquid storage space from the air inlet 512 and extends to the bottom section of the liquid storage space to guide the oxygen to be filtered to the liquid storage space so that the soluble impurities in the oxygen are dissolved in the liquid storage space.
  • the air outlet pipe is inserted into the box body 510 from the air outlet 513, and extends to the upper section of the liquid storage space, and is located above the liquid stored in the liquid storage space, so as to guide the filtered oxygen out through it.
  • the oxygen to be filtered can reach the liquid storage space under the guidance of the air filter pipe 540, and flow through the liquid stored in the liquid storage space, so that the soluble impurities in the oxygen are dissolved in the liquid storage space, completing the purification of the gas.
  • the purified gas can flow into the designated space under the guidance of the air outlet pipe, thereby regulating the oxygen content in the space.
  • the liquid storage module 500 further includes an air blocking mechanism 530, which is disposed in the liquid storage space and separates the liquid storage space into a gas filter area and a non-gas filter area where the air path is blocked.
  • the gas filter area is used to allow the gas flowing into the air inlet 512 to flow therethrough to achieve filtration.
  • the non-filtered area is used to receive liquid from the outside.
  • the air filter area and the non-air filter area can be arranged side by side in the transverse direction, and the air blocking mechanism 530 blocks the air filter area.
  • a part of the liquid path between the gas filter area and the non-gas filter area keeps the liquid path connected between the gas filter area and the non-gas filter area when the gas path is blocked.
  • the air blocking mechanism 530 is a partition-like structure located between the air filter area and the non-air filter area and extends downward from the lower surface of the top wall of the box body 510 and forms a gap with the upper surface of the bottom wall of the box body 510 .
  • the air filtering area is located on one lateral side of the air blocking mechanism 530 , and the non-air filtering area is located on the other lateral side of the air blocking mechanism 530 .
  • the air inlet 512 and the air outlet 513 can be respectively provided on the top wall of the area where the air filter area is located.
  • the liquid injection port 514 can be provided on the top wall of the area where the non-air filter area is located.
  • the air blocking mechanism 530 in the liquid storage space, and using the air blocking mechanism 530 to separate the liquid storage space into a filtered air area and a non-air filtered area where the air path is blocked, it is possible to execute the operation only in the air filtered area.
  • Gas purification function Since the air filter area is only a subspace of the liquid storage space and is blocked from other areas of the liquid storage space, the gas flowing into the air inlet 512 can only flow in the air filter area without The liquid storage module 500 of this embodiment has a high purification gas release rate due to free diffusion into the non-filtered gas area, resulting in the inability to discharge quickly.
  • the box body 510 further has third side walls and fourth side walls connected between the first side wall and the second side wall and arranged oppositely in the horizontal direction.
  • a fixing piece 517 is connected to the outer surface of the third side wall and/or the fourth side wall, and the fixing piece 517 has a screw hole for cooperating with a screw to fix the box body 510 to the mounting groove.
  • the storage space 122 may be a refrigerated space for refrigerating items.
  • the oxygen treatment device 300 may be disposed in the storage space 122 .
  • the refrigerated space may refer to the internal space of the storage container 600 provided in the refrigerated room.
  • the storage container 600 may be provided with a ventilation port.
  • the oxygen treatment device 300 may be disposed at the ventilation opening to be in airflow communication with the storage space 122 .
  • the oxygen treatment device 300 may be disposed within the foaming layer 180, as shown in Figures 2 and 3.
  • the foaming layer 180 is hidden in the figures.
  • the refrigeration and freezing device 10 may further include a ventilation pipeline 200 embedded in the foam layer 180 .
  • the ventilation pipeline 200 may include an air intake pipeline 210 and a return air pipeline 220 .
  • the air inlet pipe 210 is used to guide the gas in the storage space 122 to the cathode plate 330
  • the return pipe 220 is used to guide the gas flowing through the cathode plate 330 back to the storage space 122 to reduce the oxygen in the storage space 122 .
  • a first ventilation port connected to the first end of the air inlet pipeline 210 and a second ventilation port connected to the first end of the return air pipeline 220 are formed on the wall of the inner tank 120 .
  • Each ventilation port is an opening formed on the wall of the inner bladder 120 .
  • the second of the intake pipe 210 end and the second end of the return air pipe 220 can be connected to the two ends of the cathode plate 330 respectively.
  • the second end of the air inlet pipe 210 can be connected to the upwind side of the cathode plate 330, and the second end of the return air pipe 220 can be connected to the upwind side of the cathode plate 330.
  • the leeward side of the cathode plate 330 allows the gas flowing out of the air inlet pipe 210 to flow into the return air pipe 220 after flowing through the cathode plate 330 .
  • the air inlet pipe 210 and the air return pipe 220 are used to connect the storage space 122 and the oxygen treatment device 300.
  • the gas with a high oxygen content in the storage space 122 can flow to the cathode plate 330 through the air inlet pipe 210.
  • the cathode plate 330 uses the oxygen in it as a reactant to perform an electrochemical reaction to form hypoxic gas with lower oxygen content.
  • hypoxic gases can be returned to the storage space 122 through the return pipeline 220, thereby reducing the storage space. 122The role of oxygen content.
  • the oxygen treatment device 300 can be disposed at any part of the foam layer 180 , for example, it can be disposed on the back of the liner 120 , or can be disposed on the top, bottom, and side of the liner 120 .
  • the oxygen treatment device 300 may be disposed in the gap between the upper inner pot 120 and the lower inner pot 120 .
  • the side of the foam layer 180 facing away from the inner liner 120 is provided with an assembly groove 182 that communicates with the external environment of the foam layer 180 for assembling the oxygen treatment device 300 .
  • Figure 9 is a schematic structural diagram of the foam layer 180 of the box 100 of the refrigeration and freezing device 10 according to one embodiment of the present invention. The figure shows the foam layer and the assembly groove 182 for assembling the oxygen treatment device 300. .
  • the oxygen treatment device 300 can be assembled into the assembly groove 182 to be disposed in the foam layer 180 .
  • the assembly groove 182 can be reserved during the molding process of the foam layer 180 .
  • the assembly groove 182 is recessed along the thickness direction of the foam layer 180 toward the inner bladder 120 and forms a gap with the inner bladder 120 . In other words, the assembly groove 182 does not penetrate the foam layer 180 , so that the oxygen treatment device 300 assembled to the assembly groove 182 will not be close to the inner bladder 120 . That is, a certain thickness of heat insulation material is formed between the inner tank 120 and the oxygen treatment device 300 .
  • the oxygen treatment The device 300 can be installed into the assembly groove 182 after the foam layer 180 is formed, which helps to simplify the difficulty of disassembly and assembly of the oxygen treatment device 300 . And since the oxygen treatment device 300 will not be close to the inner tank 120, the solution of this embodiment can reduce or This prevents the low-temperature environment of the refrigeration and freezing device 10 from affecting the normal progress of the electrochemical reaction.
  • the oxygen treatment device 300 can be fixed in the assembly groove 182, and the fixing method includes but is not limited to screwing, snapping, riveting, welding, and bonding.
  • the box body 100 further includes a box shell 170 , which is covered on the outside of the foam layer 180 to sandwich the foam layer 180 with the inner bladder 120 .
  • the box shell 170 has a back plate, and the assembly groove 182 is formed between the back wall of the inner bladder 120 and the back plate of the box shell 170 . That is to say, the oxygen treatment device 300 of this embodiment is disposed in the foam layer 180 on the back of the inner bladder 120 .
  • the back plate of the box shell 170 can close the opening of the assembly groove 182 to improve the appearance.
  • the back plate of the box shell 170 can be provided with an installation opening facing the assembly groove 182. During the assembly process, there is no need to disassemble the back plate of the box shell 170, and the oxygen treatment device 300 can be directly fixed to the installation port through the installation opening. into the assembly groove 182.
  • a cover plate may be provided at the installation opening to cover the installation opening to improve the appearance.
  • the oxygen treatment device 300 can be fixed into the assembly groove 182 first, and then the back plate of the box shell 170 is covered on the back of the foam layer 180 .
  • the oxygen treatment device 300 does not need to be pre-installed in the foaming layer 180 to avoid the foaming process from adversely affecting the structure and performance of the oxygen treatment device 300 , and the assembly process of the oxygen treatment device 300 can be carried out during the refrigeration and freezing device 10 It is executed on the back and has the advantage of simple assembly process.
  • the oxygen treatment device 300 and the liquid storage module 500 are respectively disposed on the foaming layer 180 .
  • a compressor chamber for installing a compressor is also defined within the box 100 .
  • the oxygen treatment device 300 may be installed in the compressor chamber.
  • a support plate for fixing the compressor is provided at the bottom of the compressor chamber, and the oxygen treatment device 300 can be directly or indirectly disposed on the support plate.
  • the refrigeration and freezing device 10 further includes another inner bladder 150 , the inner side of which defines another storage space 152 , such as a variable temperature compartment or a freezing compartment.
  • the refrigeration and freezing device 10 also has an oxygen delivery pipeline 440 embedded in the foam layer 180, which connects the air outlet 513 and another storage space 152 to deliver oxygen to the other storage space 152 to create a high-oxygen fresh-keeping atmosphere. The freshness preservation performance of the refrigeration and freezing device 10 is improved.
  • a one-way valve may also be provided on the oxygen supply pipeline 440 to allow oxygen flowing to the other storage space 152 to pass in one direction to ensure that it flows through the oxygen supply pipeline. 440 unidirectional flow of gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

本发明提供了一种冷藏冷冻装置,包括:箱体,其具有内胆以及形成于内胆外侧的发泡层,内胆的内侧限定出储物空间;氧气处理装置,其与储物空间气流连通,并用于通过电化学反应来调节储物空间的氧气含量;和储液模块,其具有盒体,设置于发泡层内,且盒体的内部限定出用于储液的储液空间,储液空间与氧气处理装置液路相通,以向氧气处理装置补充电化学反应所需的电解液。由于盒体并未占据储物空间,因此冷藏冷冻装置能够在不影响容积率的情况下,利用储液模块向氧气处理装置补充电解液,使氧气处理装置可持续性地调节储物空间的氧气含量。

Description

冷藏冷冻装置 技术领域
本发明涉及气调保鲜技术,特别是涉及冷藏冷冻装置。
背景技术
气调保鲜技术是通过调节环境气体成分来延长食品贮藏寿命的技术。氧气处理装置可以通过电极的电化学反应来处理氧气,营造出低氧保鲜气氛或者高氧保鲜气氛。在反应过程中,伴随着大量热量的产生,电解液会受热蒸发,导致电解液逐渐减少,因此有必要设置储液装置,以向氧气处理装置补液。
然而,发明人认识到,储液装置具有一定的体积,需要占用一定的安装空间,若在冷藏冷冻装置上安装储液装置,会对冷藏冷冻装置的结构布局产生明显影响。当将储液装置安装在用于储物的储物空间时,会严重降低冷藏冷冻装置的容积率。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冷藏冷冻装置。
本发明的一个进一步的目的是要使冷藏冷冻装置在不影响容积率的情况下,利用储液模块向氧气处理装置补充电解液,使氧气处理装置可持续性地调节储物空间的氧气含量。
本发明的另一个进一步的目的是要简化储液模块的拆装难度,且减少或避免因在发泡层内安装储液模块而导致冷藏冷冻装置的保温性能明显降低。
本发明的又一个进一步的目的是要简化储液模块的补液方式,使储液模块可持续性地向氧气处理装置补充电解液。
本发明的再一个进一步的目的是要使储液模块的液位通过交互窗口显露出来,以便用户观察并及时采取补液措施。
特别地,本发明提供了一种冷藏冷冻装置,包括:
箱体,其具有内胆以及形成于所述内胆外侧的发泡层,所述内胆的内侧限定出储物空间;
氧气处理装置,其与所述储物空间气流连通,并用于通过电化学反应来调节所述储物空间的氧气含量;和
储液模块,其具有盒体,设置于所述发泡层内,且所述盒体的内部限定出用于储液的储液空间,所述储液空间与所述氧气处理装置液路相通,以向所述氧气处理装置补充所述电化学反应所需的电解液。
可选地,所述箱体还具有箱壳,所述发泡层形成于所述箱壳和所述内胆之间;且
所述内胆开设有开口状的交互窗口,所述发泡层具有与所述交互窗口相通以供装配所述储液模块的安装凹槽;所述安装凹槽沿所述发泡层的厚度方向朝向背离所述交互窗口的方向凹陷,且与所述箱壳之间形成间隙。
可选地,所述盒体开设有连通所述储液空间的注液口,且所述注液口通过所述交互窗口显露出来,从而允许外部液体注入所述储液空间。
可选地,所述盒体上设置有盖体,所述盖体可往复运动地设置在所述注液口处,以打开或封闭所述注液口;且
所述盖体为按压式弹盖,其受压可转动地弹起,以至少部分地经由所述交互窗口伸入所述储物空间内,从而打开所述注液口。
可选地,所述盒体的至少一部分由透明材料制成,以形成用于显露所述盒体的储液量的可视区域;且
所述可视区域通过所述交互窗口显露出来;且所述可视区域沿纵向延伸设置,并位于所述注液口的下方。
可选地,所述交互窗口位于所述内胆的侧壁上,所述安装凹槽相应设置于所述内胆的侧壁与所述箱壳的侧壁之间。
可选地,所述盒体具有与所述内胆的侧壁相平齐且封闭所述交互窗口的第一侧壁以及与所述第一侧壁相对并且隐藏于所述安装凹槽内部的第二侧壁;且
所述注液口位于所述第一侧壁上。
可选地,所述氧气处理装置具有壳体和电极对,所述壳体内限定出 用于盛装电解液的电化学反应仓;且所述壳体具有连通所述电化学反应仓的补液口;所述电极对设置于所述电化学反应仓且用于通过电化学反应将所述储物空间的氧气转移至所述电化学反应仓;且
所述盒体的底壁上开设有出液口,所述出液口连通所述补液口,以向所述电化学反应仓补充电解液。
可选地,所述壳体还具有连通所述电化学反应仓的排气孔,用于排出所述电化学反应仓的氧气;且
所述盒体的顶壁上开设有进气口和出气口;其中,所述进气口连通所述排气孔,以允许所述排气孔排出的氧气通入所述储液空间以过滤可溶性杂质,所述出气口用于允许过滤后的氧气向外排出。
可选地,所述储物空间为冷藏空间;且
氧气处理装置设置于储物空间内或者发泡层内。
本发明的冷藏冷冻装置,通过将储液模块的盒体设置于发泡层内,并使盒体的储液空间与氧气处理装置液路相通,以利用盒体所储存的液体向氧气处理装置补充电解液,由于盒体并未占据储物空间,因此冷藏冷冻装置能够在不影响容积率的情况下,利用储液模块向氧气处理装置补充电解液,使氧气处理装置可持续性地调节储物空间的氧气含量。
进一步地,本发明的冷藏冷冻装置,通过在内胆上开设交互窗口,并在发泡层中设置与交互窗口相通的安装凹槽,且使安装凹槽与箱壳之间形成间隙,储液模块可以在发泡层成型之后再安装至安装凹槽,这有利于简化储液模块的拆装难度。并且由于安装凹槽并未贯穿发泡层,因此本发明的方案能够减少或避免因在发泡层内安装储液模块而导致冷藏冷冻装置的保温性能明显降低。
进一步地,本发明的冷藏冷冻装置,通过在内胆上开设交互窗口,并使盒体的注液口经交互窗口连通储物空间,可利用交互窗口作为用户向储液空间补液的操作窗口。由于交互窗口可将注液口显露出来,当储液空间的储液量不足时,外部液体可以经注液口注入储液空间,因此,本发明的上述方案可简化储液模块的补液方式,使储液模块可持续性地向氧气处理装置补充电解液。
进一步地,本发明的冷藏冷冻装置,通过在盒体上设置可视区域,并使可视区域与交互窗口相对,可利用交互窗口作为用户观察储液空间 液位的观察窗口。由于交互窗口可将可视区域显露出来,用户可以十分方便地观察储液空间的储液量,因此,本发明的上述方案可使用户获得直观的交互体验。当储液空间的储液量不足时,用户可以及时地采取补液措施。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性结构图;
图2是图1所示的冷藏冷冻装置的另一视角的示意性结构图;
图3是图2所示的冷藏冷冻装置的示意性内部结构图;
图4是图1所示的冷藏冷冻装置的内胆的示意性结构图;
图5是图1所示的冷藏冷冻装置的储液模块的示意性结构图;
图6是图5所示的冷藏冷冻装置的储液模块的示意性透视图;
图7是根据本发明一个实施例的冷藏冷冻装置的氧气处理装置的示意性结构图;
图8是图7所示的冷藏冷冻装置的氧气处理装置的示意性分解图;
图9是根据本发明一个实施例的冷藏冷冻装置的箱体的发泡层的示意性结构图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图9来描述本发明实施例的冷藏冷冻装置10。其中, “内”“外”“上”“下”“顶”“底”“横向”“水平”“竖直”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。为便于示意装置的结构,本发明的部分附图采用透视的形式进行示意。
在本实施例的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。需要理解的是,术语“多个”的含义是至少两个,例如两个,三个等。除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“一个示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本发明实施例提供了一种冷藏冷冻装置10。图1是根据本发明一个实施例的冷藏冷冻装置10的示意性结构图。图2是图1所示的冷藏冷冻装置10的另一视角的示意性结构图。其中,图1为前侧视角,图2为后侧视角。图3是图2所示的冷藏冷冻装置10的示意性内部结构图,图中隐去了内胆120。
冷藏冷冻装置10一般性地可包括箱体100、氧气处理装置300和储液模块500。本发明实施例的冷藏冷冻装置10可以为冰箱,也可以为冷柜、冷冻柜或者冷藏柜等具备低温储存功能的制冷设备。
箱体100具有内胆120以及形成于内胆120外侧的发泡层180,内胆120的内侧限定出储物空间122。例如,内胆120的内侧可以限定出储物间室。储物空间122可以直接指储物间室的内部空间,当然也可以 指设置于储物间室内的储物容器600的内部空间。发泡层180可以由保温隔热材料制成,例如聚氨酯泡沫等。
氧气处理装置300与储物空间122气流连通,并用于通过电化学反应来调节储物空间122的氧气含量,例如通过电化学反应消耗储物空间122的氧气从而降低储物空间122的氧气含量,或者通过电化学反应生成氧气并将生成的氧气通入储物空间122从而提高储物空间122的氧气含量。
例如,冷藏冷冻装置10可以预设有气调保鲜模式,并且可以在启动气调保鲜模式时,使氧气处理装置300工作,例如,向氧气处理装置300提供电源,使其在电解电压的作用下进行电化学反应,从而调节储物空间122的氧气含量。
储液模块500具有盒体510,其设置于发泡层180内,且盒体510的内部限定出用于储液的储液空间,储液空间与氧气处理装置300液路相通,以向氧气处理装置300补充电化学反应所需的电解液。
通过将储液模块500的盒体510设置于发泡层180内,并使盒体510的储液空间与氧气处理装置300液路相通,以利用盒体510所储存的液体向氧气处理装置300补充电解液,由于盒体510并未占据储物空间122,因此冷藏冷冻装置10能够在不影响容积率的情况下,利用储液模块500向氧气处理装置300补充电解液,使氧气处理装置300可持续性地调节储物空间122的氧气含量。
需要强调的是,对于气调保鲜而言,为便于储液模块500向氧气处理装置300补液,本领域普通技术人员容易想到采用就近原则,将补液模块设置在储物空间122内,这会压缩冷藏冷冻装置10的容积率。本申请的发明人通过创造性地将储液模块500安装在发泡层180内,这突破了现有技术的思想桎梏,为冷藏冷冻装置10在保持较高容积率的情况下实现可持续性地气调保鲜提供了新思路,同时也解决了储液模块500因易被物品触及而导致液体洒溢等多个技术性问题。
储液模块500的盒体510可以设置于发泡层180的任意部位,例如可以设置于内胆120的侧部,或者可以设置于内胆120的顶部、底部以及背部。对于法式冰箱或者T型冰箱而言,在一个示例中,储液模块500的盒体510可以设置于上部内胆120与下部内胆120之间的间隙中。
在一些可选的实施例中,箱体100还具有箱壳170,发泡层180形成于箱壳170和内胆120之间。箱壳170罩设于发泡层180的外侧,以与内胆120夹持发泡层180。
图4是图1所示的冷藏冷冻装置10的内胆120的示意性结构图。内胆120开设有开口状的交互窗口124,发泡层180具有与交互窗口124相通以供装配储液模块500的安装凹槽。在发泡层180成型之后,储液模块500可以装配至安装凹槽内,从而设置于发泡层180内。安装凹槽可以在发泡层180成型过程中预留出来。安装凹槽沿发泡层180的厚度方向朝向背离交互窗口124的方向凹陷,且与箱壳170之间形成间隙。换言之,安装凹槽并未贯穿发泡层180,这使得装配至安装凹槽的储液模块500不会紧贴箱壳170。也即,箱壳170与氧气处理装置300之间形成有一定厚度的隔热保温材料。
采用上述结构,储液模块500无需预装于发泡层180内,避免发泡过程对储液模块500的结构和性能产生不利影响,并且储液模块500的装配过程可以在储物空间122内执行,具备装配过程简单等优点。
通过在内胆120上开设交互窗口124,并在发泡层180中设置与交互窗口124相通的安装凹槽,且使安装凹槽与箱壳170之间形成间隙,储液模块500可以在发泡层180成型之后再安装至安装凹槽,这有利于简化储液模块500的拆装难度。并且由于安装凹槽并未贯穿发泡层180,因此本实施例的方案能够减少或避免因在发泡层180内安装储液模块500而导致冷藏冷冻装置10的保温性能明显降低。
储液模块500可以固定于安装凹槽内,固定方式包括但不限于螺接、卡接、铆接、焊接以及粘接。
在一些可选的实施例中,盒体510开设有连通储液空间的注液口514,且注液口514通过交互窗口124显露出来,从而允许外部液体注入储液空间。图5是图1所示的冷藏冷冻装置10的储液模块500的示意性结构图。图6是图5所示的冷藏冷冻装置10的储液模块500的示意性透视图。例如,注液口514设置于盒体510面朝储物空间122的侧壁上,以通过交互窗口124显露出来。
通过在内胆120上开设交互窗口124,并使盒体510的注液口514经交互窗口124连通储物空间122,可利用交互窗口124作为用户向储 液空间补液的操作窗口。由于交互窗口124可将注液口514显露出来,当储液空间的储液量不足时,外部液体可以经注液口514注入储液空间,因此,本实施例的上述方案可简化储液模块500的补液方式,使储液模块500可持续性地向氧气处理装置300补充电解液。
盒体510上设置有盖体550,盖体550可往复运动地设置在注液口514处,以打开或封闭注液口514。盖体550打开注液口514时,允许注液口514显露出来。通过在盒体510上设置盖体550,并利用盖体550打开或封闭注液口514,可使注液口514仅在接收外部液体时呈开放状态,从而可减少或避免异物进入储液空间,使储液空间所储存的液体保持洁净。
盖体550可以为按压式弹盖,其受压可转动地弹起,以至少部分地经由交互窗口124伸入储物空间122内,从而打开注液口514。
在一个示例中,盖体550的底部可以通过转轴连接至盒体510,并与盒体510可枢转地连接。当盖体550封闭注液口514时,其外表面与盒体510的外表面共面,此时盖体550的顶部可以通过卡接结构连接至盒体510;当需要打开注液口514时,可以按压盖体550的顶部,使盖体550的顶部与盒体510脱离,此时盖体550可以绕转轴转动,并且至少部分地伸入储物空间122,从而打开注液口514。
在了解本公开实施例的基础上,本领域技术人员应当易于获知按压式弹盖与盒体510之间的装配结构,本公开不再赘述。
在一些可选的实施例中,盒体510的至少一部分由透明材料制成,以形成用于显露盒体510的储液量的可视区域516。透明材料可以为聚甲基丙烯酸甲酯、聚碳酸酯、聚对苯二甲酸乙二醇脂或者聚丙烯等。
本实施例的可视区域516通过交互窗口124显露出来。可视区域516沿纵向延伸设置,并位于注液口514的下方。例如,可视区域516也设置于盒体510面朝储物空间122的侧壁上,以便通过交互窗口124显露出来。
通过在盒体510上设置可视区域516,并使可视区域516与交互窗口124相对,可利用交互窗口124作为用户观察储液空间液位的观察窗口。由于交互窗口124可将可视区域516显露出来,用户可以十分方便地观察储液空间的储液量,因此,本实施例的上述方案可使用户获得直 观的交互体验。当储液空间的储液量不足时,用户可以及时地采取补液措施。
在一个示例中,交互窗口124可以位于内胆120的侧壁上,安装凹槽相应设置于内胆120的侧壁与箱壳170的侧壁之间。
由于内胆120的侧壁不易被储物空间122所储存的物品所遮挡,且与用户的可活动区域距离较近,因此,在内胆120的侧壁上设置交互窗口124,并使储液模块500嵌入箱体100侧部的发泡层180内,可以在一定程度上降低用户与储液模块500之间的交互难度,用户无需挪动储物空间122所储存的物品便可以快捷地获取储液模块500的储液量信息,并且可以在储液模块500的储液量不足时及时执行补液操作。
在一些可选的实施例中,储液模块500可以进一步地包括液位传感器,设置于储液空间内,并用于检测储液空间的液位。在液位传感器检测到储液空间的液位低于设定值时,冷藏冷冻装置10可以发出报警信号,例如可以通过无线传输技术将报警信号输送给用户,以提醒用户及时补液。
在一些进一步的示例中,盒体510具有与内胆120的侧壁相平齐且封闭交互窗口124的第一侧壁以及与第一侧壁相对并且隐藏于安装凹槽内部的第二侧壁。注液口514位于第一侧壁上。交互窗口124的开口面积与盒体510的第一侧壁的表面积可以大致相同,使得盒体510的第一侧壁恰好封闭交互窗口124且使第一侧壁的外表面与内胆120侧壁的内表面连接成完整的平面,以使外形美观。
注液口514可以设置于第一侧壁的上部区段。可视区域516也可以设置于第一侧壁上,例如可以设置于第一侧壁的中部区段或者下部区段。
在一些可选的实施例中,氧气处理装置300具有壳体320和电极对,壳体320内限定出用于盛装电解液的电化学反应仓。电极对设置于电化学反应仓且用于通过电化学反应将储物空间122的氧气转移至电化学反应仓。
图7是根据本发明一个实施例的冷藏冷冻装置10的氧气处理装置300的示意性结构图。图8是图7所示的冷藏冷冻装置10的氧气处理装置300的示意性分解图。电极对可以包括阴极板330和阳极板340。电化学反应仓为阴极板330和阳极板340进行电化学反应的场所,其内可 以盛装碱性电解液,例如1mol/L的NaOH,其浓度可以根据实际需要进行调整。
壳体320具有侧向开口321。例如壳体320可以呈扁平的长方体形状。例如壳体320可以呈扁平的长方体形状。侧向开口321可以设置在壳体320的任意面上,例如顶面、底面或者侧面。在一个示例中,侧向开口321可以设置在壳体320的面积最大的面上。
阴极板330设置于侧向开口321处以与壳体320共同限定出用于盛装电解液的电化学反应仓,并用于通过电化学反应消耗储物空间122的氧气。空气中的氧气可以在阴极板330处发生还原反应,即:O2+2H2O+4e-→4OH-
阳极板340与阴极板330相互间隔地设置于电化学反应仓内,并用于通过电化学反应向阴极板330提供反应物并生成氧气。阴极板330产生的OH-可以在阳极板340处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-
以上关于阴极板330和阳极板340的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的氧气处理装置300的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
壳体320具有连通电化学反应仓的补液口322。
盒体510也可以大致呈扁平的长方体形状。盒体510还具有连接于第一侧壁和第二侧壁之间且沿竖直方向相对设置的顶壁和底壁。底壁上开设有出液口511,出液口511连通补液口322,以向电化学反应仓补充电解液。储液空间所盛装的液体可以为水,或者也可以为电解液,其浓度可以低于电化学反应仓所盛装的电解液。
冷藏冷冻装置10还包括预埋于发泡层180内的补液管路420,补液管路420的第一端连通氧气处理装置300的补液口322,补液管路420的第二端连通储液模块500的出液口511,以将自出液口511流出储液空间的液体导引至补液口322,从而向电化学反应仓补液。出液口511高于补液口322,如此一来,储液空间内的液体可以在重力作用下自动流入电化学反应仓,而无需借助动力装置。
当然,在另一些示例中,出液口511也可以变换为低于补液口322 或与补液口322相平。此时,可以在补液管路420上安装泵,以在泵的作用下驱使储液空间内的液体流入电化学反应仓;或者可以利用虹吸原理,使储液空间内的液体流入电化学反应仓。
在一些进一步的示例中,补液管路420上可以设置有单向阀,用于允许来自出液口511的液体单向通过,保证流经补液管路420的液体的单向流动。
在一些进一步的实施例中,壳体320还具有连通电化学反应仓的排气孔323,用于排出电化学反应仓的氧气。
盒体510的顶壁上开设有进气口512和出气口513。其中,进气口512连通排气孔323,以允许排气孔323排出的氧气通入储液空间以过滤可溶性杂质,例如氧气所携带的电解液。出气口513用于允许过滤后的氧气向外排出。
冷藏冷冻装置10还包括预埋于发泡层180内的过滤管路430,过滤管路430的第一端连通氧气处理装置300的排气孔323,过滤管路430的第二端连通盒体510的进气口512,以将自排气孔323流出的氧气导引至出气口513,从而进入储液空间进行过滤。
储液模块500还可以进一步地包括滤气管540和出气管。其中,滤气管540从进气口512***储液空间,并延伸至储液空间的底部区段,以将待过滤的氧气导引至储液空间,使得氧气中的可溶性杂质溶解于储液空间。出气管从出气口513***盒体510内,并延伸至储液空间的上部区段,且位于储液空间所储存的液体上方,以将过滤后的氧气经其导引出。
采用上述方案,待过滤氧气可以在滤气管540的导引下到达储液空间,并且流经储液空间所储存的液体,使得氧气中的可溶性杂质溶解于储液空间,完成气体的净化。净化后的气体可以在出气管的导引下流入指定空间,从而起到调节空间氧气含量的作用。
在一个可选的实施例中,储液模块500还包括气阻机构530,设置于储液空间内,且将储液空间分隔出气路阻断的滤气区和非滤气区。其中,滤气区用于使流入进气口512的气体流经其中以实现过滤。非滤气区用于接收来自外部液体。
滤气区和非滤气区可以沿横向并列设置,气阻机构530阻断滤气区 和非滤气区之间的一部分液路,使滤气区和非滤气区在气路阻断的情况下保持液路相通。例如,气阻机构530为位于滤气区与非滤气区之间且自盒体510的顶壁下表面向下延伸并与盒体510的底壁上表面之间形成间隙的隔板状结构。滤气区位于气阻机构530的横向一侧,非滤气区则位于气阻机构530的横向另一侧。进气口512和出气口513可以分别设置于滤气区所在区域的顶壁上。注液口514则可以设置于非滤气区所在区域的顶壁上。
采用上述结构,通过在储液空间内设置气阻机构530,并利用气阻机构530将储液空间分隔出气路阻断的滤气区和非滤气区,可实现仅在滤气区内执行净化气体的功能。由于滤气区仅为储液空间的一个子空间,且与储液空间的其他区域之间的气路阻断,通入进气口512的气体仅能在滤气区内流动,而不会自由扩散至非滤气区而导致无法快速排放,因此本实施例的储液模块500具备较高的净化气体释放率。
在一些可选的实施例中,盒体510还具有连接于第一侧壁和第二侧壁之间且沿水平方向相对设置的第三侧壁和第四侧壁。第三侧壁和/或第四侧壁的外表面连接有固定件517,固定件517具有用于与螺钉配合以将盒体510固定于安装凹槽的螺孔。
以上实施例中,储物空间122可以为用于冷藏物品的冷藏空间。氧气处理装置300可以设置于储物空间122内。例如,冷藏空间可以指设置于冷藏间室内的储物容器600的内部空间。储物容器600上可以开设有换气口。氧气处理装置300可以设置于换气口处,以与储物空间122气流连通。
在另一个示例中,氧气处理装置300可以设置于发泡层180内,如图2和3所示,为便于示意各个部件的结构以及连接关系,图中隐去了发泡层180。此时,冷藏冷冻装置10可以进一步地包括预埋于发泡层180的换气管路200。换气管路200可包括进气管路210和回气管路220。
进气管路210用于将储物空间122的气体导引至阴极板330,回气管路220用于将流经阴极板330的气体导引回储物空间122,以降低储物空间122的氧气含量。例如,内胆120的胆壁上开设有连通进气管路210的第一端的第一换气口和连通回气管路220的第一端的第二换气口。每个换气口分别为形成于内胆120胆壁上的开口。进气管路210的第二 端以及回气管路220的第二端可以分别连通阴极板330的两端,具体地,进气管路210的第二端可以连通阴极板330的上风侧,回气管路220的第二端可以连通阴极板330的下风侧,使得流出进气管路210的气体可以在流经阴极板330之后流入回气管路220。
采用上述结构,利用进气管路210与回气管路220连通储物空间122与氧气处理装置300,储物空间122内的氧气含量较高的气体可以经进气管路210流动至阴极板330处,使阴极板330利用其中的氧气作为反应物进行电化学反应,形成氧气含量较低的低氧气体,这些低氧气体可以经回气管路220返回至储物空间122,从而起到降低储物空间122氧气含量的作用。
氧气处理装置300可以设置于发泡层180的任意部位,例如可以设置于内胆120的背部,或者可以设置于内胆120的顶部、底部以及侧部。对于法式冰箱或者T型冰箱而言,在一个示例中,氧气处理装置300可以设置于上部内胆120与下部内胆120之间的间隙中。
在一些可选的实施例中,发泡层180背对内胆120的一侧开设有与发泡层180的外部环境相通以供装配氧气处理装置300的装配凹槽182。图9是根据本发明一个实施例的冷藏冷冻装置10的箱体100的发泡层180的示意性结构图,图中示出了用于装配氧气处理装置300的发泡层以及装配凹槽182。
在发泡层180成型之后,氧气处理装置300可以装配至装配凹槽182内,从而设置于发泡层180内。装配凹槽182可以在发泡层180成型过程中预留出来。装配凹槽182沿发泡层180的厚度方向朝向靠近内胆120的方向凹陷,且与内胆120之间形成间隙。换言之,装配凹槽182并未贯穿发泡层180,这使得装配至装配凹槽182的氧气处理装置300不会紧贴内胆120。也即,内胆120与氧气处理装置300之间形成有一定厚度的隔热保温材料。
采用上述结构,通过在发泡层180背对内胆120的一侧开设连通发泡层180的外部环境的装配凹槽182,并使装配凹槽182与内胆120之间形成间隙,氧气处理装置300可以在发泡层180成型之后再安装至装配凹槽182,这有利于简化氧气处理装置300的拆装难度。并且由于氧气处理装置300并不会紧贴内胆120,因此本实施例的方案能够减少或 避免冷藏冷冻装置10的低温环境影响电化学反应的正常进行。
氧气处理装置300可以固定于装配凹槽182内,固定方式包括但不限于螺接、卡接、铆接、焊接以及粘接。
在一些可选的实施例中,箱体100还包括箱壳170,其罩设于发泡层180的外侧,以与内胆120夹持发泡层180。箱壳170具有背板,装配凹槽182形成于内胆120的背壁与箱壳170的背板之间。也就是说,本实施例的氧气处理装置300设置于内胆120背部的发泡层180内。箱壳170的背板可以封闭装配凹槽182的开口,以使外形美观。
在一个示例中,箱壳170的背板可以开设有正对装配凹槽182的安装口,在装配过程中,无需拆卸箱壳170的背板,可以直接通过安装口将氧气处理装置300固定至装配凹槽182内。在一个进一步的示例中,安装口处可以设置有盖板,用于遮蔽安装口,以使外形美观。在另一个示例中,可以先将氧气处理装置300固定至装配凹槽182内,然后再将箱壳170的背板覆盖在发泡层180的背部。
采用上述结构,氧气处理装置300无需预装于发泡层180内,避免发泡过程对氧气处理装置300的结构和性能产生不利影响,并且氧气处理装置300的装配过程可以在冷藏冷冻装置10的背部执行,具备装配过程简单等优点。
在一个示例中,当氧气处理装置300与储液模块500分别设置于发泡层180时。
在又一个示例中,箱体100内还限定出用于安装压缩机的压缩机室。氧气处理装置300可以设置于压缩机室内。例如,压缩机室的底部设置有用于固定压缩机的支撑板,氧气处理装置300可以直接或间接地设置于支撑板上。
在一个示例中,冷藏冷冻装置10还包括另一内胆150,其内侧限定出另一储物空间152,例如变温间室或者冷冻间室。冷藏冷冻装置10还具有预埋于发泡层180内的输氧管路440,其连通出气口513与另一储物空间152,以向另一储物空间152输送氧气,营造高氧保鲜气氛,提升冷藏冷冻装置10的保鲜性能。
在一些进一步的示例中,输氧管路440上也可以设置有单向阀,用于允许流向上述另一储物空间152的氧气单向通过,保证流经输氧管路 440的气体的单向流动。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冷藏冷冻装置,包括:
    箱体,其具有内胆以及形成于所述内胆外侧的发泡层,所述内胆的内侧限定出储物空间;
    氧气处理装置,其与所述储物空间气流连通,并用于通过电化学反应来调节所述储物空间的氧气含量;和
    储液模块,其具有盒体,设置于所述发泡层内,且所述盒体的内部限定出用于储液的储液空间,所述储液空间与所述氧气处理装置液路相通,以向所述氧气处理装置补充所述电化学反应所需的电解液。
  2. 根据权利要求1所述的冷藏冷冻装置,其中,
    所述箱体还具有箱壳,所述发泡层形成于所述箱壳和所述内胆之间;且
    所述内胆开设有开口状的交互窗口,所述发泡层具有与所述交互窗口相通以供装配所述储液模块的安装凹槽;所述安装凹槽沿所述发泡层的厚度方向朝向背离所述交互窗口的方向凹陷,且与所述箱壳之间形成间隙。
  3. 根据权利要求2所述的冷藏冷冻装置,其中,
    所述盒体开设有连通所述储液空间的注液口,且所述注液口通过所述交互窗口显露出来,从而允许外部液体注入所述储液空间。
  4. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述盒体上设置有盖体,所述盖体可往复运动地设置在所述注液口处,以打开或封闭所述注液口;且
    所述盖体为按压式弹盖,其受压可转动地弹起,以至少部分地经由所述交互窗口伸入所述储物空间内,从而打开所述注液口。
  5. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述盒体的至少一部分由透明材料制成,以形成用于显露所述盒体的储液量的可视区域;且
    所述可视区域通过所述交互窗口显露出来;且所述可视区域沿纵向延伸设置,并位于所述注液口的下方。
  6. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述交互窗口位于所述内胆的侧壁上,所述安装凹槽相应设置于所述内胆的侧壁与所述箱壳的侧壁之间。
  7. 根据权利要求6所述的冷藏冷冻装置,其中,
    所述盒体具有与所述内胆的侧壁相平齐且封闭所述交互窗口的第一侧壁以及与所述第一侧壁相对并且隐藏于所述安装凹槽内部的第二侧壁;且
    所述注液口位于所述第一侧壁上。
  8. 根据权利要求1所述的冷藏冷冻装置,其中,
    所述氧气处理装置具有壳体和电极对,所述壳体内限定出用于盛装电解液的电化学反应仓;且所述壳体具有连通所述电化学反应仓的补液口;所述电极对设置于所述电化学反应仓且用于通过电化学反应将所述储物空间的氧气转移至所述电化学反应仓;且
    所述盒体的底壁上开设有出液口,所述出液口连通所述补液口,以向所述电化学反应仓补充电解液。
  9. 根据权利要求8所述的冷藏冷冻装置,其中,
    所述壳体还具有连通所述电化学反应仓的排气孔,用于排出所述电化学反应仓的氧气;且
    所述盒体的顶壁上开设有进气口和出气口;其中,所述进气口连通所述排气孔,以允许所述排气孔排出的氧气通入所述储液空间以过滤可溶性杂质,所述出气口用于允许过滤后的氧气向外排出。
  10. 根据权利要求1所述的冷藏冷冻装置,其中,
    所述储物空间为冷藏空间;且
    所述氧气处理装置设置于所述储物空间内或者所述发泡层内。
PCT/CN2023/115877 2022-08-31 2023-08-30 冷藏冷冻装置 WO2024046377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211060629.6 2022-08-31
CN202211060629.6A CN117663608A (zh) 2022-08-31 2022-08-31 冷藏冷冻装置

Publications (1)

Publication Number Publication Date
WO2024046377A1 true WO2024046377A1 (zh) 2024-03-07

Family

ID=90085075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115877 WO2024046377A1 (zh) 2022-08-31 2023-08-30 冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN117663608A (zh)
WO (1) WO2024046377A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200333062A1 (en) * 2017-12-29 2020-10-22 Haier Smart Home Co., Ltd. Refrigerating and freezing device
CN113446789A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446802A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧模组与冰箱
CN214630987U (zh) * 2020-12-18 2021-11-09 佛山顺德歌林美电子产品有限公司 一种带有电解液补充***的除氧储物柜
CN215930250U (zh) * 2021-07-09 2022-03-01 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN216409398U (zh) * 2021-05-20 2022-04-29 青岛海尔电冰箱有限公司 冰箱及其电解除氧装置
CN218495517U (zh) * 2022-08-31 2023-02-17 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218495515U (zh) * 2022-08-31 2023-02-17 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218915507U (zh) * 2022-08-31 2023-04-25 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN219346911U (zh) * 2022-08-31 2023-07-14 青岛海尔电冰箱有限公司 冷藏冷冻装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200333062A1 (en) * 2017-12-29 2020-10-22 Haier Smart Home Co., Ltd. Refrigerating and freezing device
CN113446789A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446802A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧模组与冰箱
CN214630987U (zh) * 2020-12-18 2021-11-09 佛山顺德歌林美电子产品有限公司 一种带有电解液补充***的除氧储物柜
CN216409398U (zh) * 2021-05-20 2022-04-29 青岛海尔电冰箱有限公司 冰箱及其电解除氧装置
CN215930250U (zh) * 2021-07-09 2022-03-01 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218495517U (zh) * 2022-08-31 2023-02-17 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218495515U (zh) * 2022-08-31 2023-02-17 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN218915507U (zh) * 2022-08-31 2023-04-25 青岛海尔电冰箱有限公司 冷藏冷冻装置
CN219346911U (zh) * 2022-08-31 2023-07-14 青岛海尔电冰箱有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
CN117663608A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2022016824A1 (zh) 保鲜装置及具有其的冰箱
CN218915506U (zh) 冷藏冷冻装置
CN218495514U (zh) 冷藏冷冻装置
CN218915507U (zh) 冷藏冷冻装置
WO2022068913A1 (zh) 冰箱
CN219037233U (zh) 冷藏冷冻装置
WO2024046387A1 (zh) 冷藏冷冻装置
WO2024046375A1 (zh) 冷藏冷冻装置
CN218495515U (zh) 冷藏冷冻装置
CN113975911A (zh) 除氧模组、保鲜装置及冰箱
CN218495517U (zh) 冷藏冷冻装置
CN219346911U (zh) 冷藏冷冻装置
WO2024046376A1 (zh) 冷藏冷冻装置
WO2024046377A1 (zh) 冷藏冷冻装置
WO2024017204A1 (zh) 冰箱
CN220017832U (zh) 气调装置及冷藏冷冻装置
CN219346910U (zh) 冷藏冷冻装置
WO2024046379A1 (zh) 冷藏冷冻装置
WO2024046378A1 (zh) 冷藏冷冻装置
CN213335085U (zh) 冰箱
WO2024046388A1 (zh) 冷藏冷冻装置
CN117663603A (zh) 冷藏冷冻装置
CN117663602A (zh) 冷藏冷冻装置
CN218972992U (zh) 气调装置及冷藏冷冻装置
CN115900182A (zh) 冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859406

Country of ref document: EP

Kind code of ref document: A1