WO2023133762A1 - Micro LED显示面板及其制作方法 - Google Patents

Micro LED显示面板及其制作方法 Download PDF

Info

Publication number
WO2023133762A1
WO2023133762A1 PCT/CN2022/071846 CN2022071846W WO2023133762A1 WO 2023133762 A1 WO2023133762 A1 WO 2023133762A1 CN 2022071846 W CN2022071846 W CN 2022071846W WO 2023133762 A1 WO2023133762 A1 WO 2023133762A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro led
display panel
led display
layer
pixel definition
Prior art date
Application number
PCT/CN2022/071846
Other languages
English (en)
French (fr)
Inventor
马刚
Original Assignee
厦门市芯颖显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市芯颖显示科技有限公司 filed Critical 厦门市芯颖显示科技有限公司
Priority to PCT/CN2022/071846 priority Critical patent/WO2023133762A1/zh
Priority to CN202280000033.9A priority patent/CN116897382A/zh
Publication of WO2023133762A1 publication Critical patent/WO2023133762A1/zh
Priority to US18/436,050 priority patent/US20240178353A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the present application relates to the field of display technology, in particular to a Micro LED display panel and a manufacturing method thereof.
  • the light beams emitted by Micro LED chips are usually divergent, which is not conducive to achieving a small viewing angle, but also easily leads to light crosstalk between adjacent chips.
  • the present invention provides a Micro LED display panel and a manufacturing method thereof, aiming at reducing the viewing angle of the Micro LED display panel.
  • the present invention provides a Micro LED display panel, comprising: a driving substrate; a plurality of Micro LED chips, the plurality of Micro LED chips are arranged on the driving substrate and distributed in an array on the driving substrate; a pixel definition layer , arranged on the driving substrate, the pixel definition layer has a plurality of openings, each of the Micro LED chips is located in each of the openings; a plurality of alignment structures, the plurality of alignment structures and the plurality of alignment structures A plurality of Micro LED chips correspond one by one, and each of the collimation structures is arranged in each of the openings; the collimation structures include interconnected substrates and curved lenses, and the substrates are filled in the openings, so The curved lens is arranged on the side of the substrate away from the Mirco LED chip.
  • the Micro The LED display panel further includes a reflective layer disposed on the inner wall of each opening.
  • the Micro The LED display panel further includes a light-shielding layer, the light-shielding layer is disposed on the side of the pixel definition layer away from the driving substrate, and the light-shielding layer is distributed between two adjacent alignment structures.
  • the Micro The LED display panel further includes a protective layer covering the plurality of collimation structures and the light shielding layer, and the refractive index of the protective layer is smaller than that of the curved lens.
  • the height of the base body above the pixel definition layer is the thickness of the light shielding layer.
  • the Micro The LED display panel further includes a distributed Bragg reflector disposed between the driving substrate and the plurality of Micro LED chips.
  • the curved lens includes a Fresnel lens or a spherical lens.
  • the cross-sectional shape of the opening in the thickness direction of the pixel definition layer is an inverted trapezoid.
  • the present invention also provides a method for manufacturing a Micro LED display panel, including: providing a driving substrate; forming a pixel definition layer with a plurality of openings on the driving substrate; forming a plurality of Micro LEDs distributed in an array on the driving substrate.
  • LED chips each of the Micro LED chips is located in each of the openings; an alignment structure corresponding to each of the Micro LED chips is formed in each of the openings, and the alignment structure includes a substrate connected to each other As well as a curved lens, the substrate is filled in the opening, and the curved lens is formed on a side of the substrate away from the Mirco LED chip.
  • the step of forming a pixel definition layer with a plurality of openings on the driving substrate includes: forming a negative photoresist layer on the driving substrate; patterning the negative photoresist layer, so that forming a plurality of through holes in the negative photoresist layer; filling the through holes with pixel definition material; removing the rest of the negative photoresist layer.
  • the step of forming an alignment structure corresponding to each of the Micro LED chips in each of the openings includes: filling a matrix material on the pixel definition layer and in the openings; The matrix material is embossed in a manner, the curved lens is formed above the Mirco LED chip, and the matrix is formed in the opening.
  • the beneficial effect of the present invention is: the Micro LED display panel and the manufacturing method thereof provided by the present invention, by disposing a pixel definition layer with a plurality of openings on the driving substrate, by arranging the Micro LED chips on the driving substrate in an array distribution and each Micro LED chip is placed in each opening. Since the opening is also filled with collimation structures, the light generated by the Micro LED chips is collimated by the curved lens of the collimation structure at a small angle. out, thereby realizing the small-angle display of the Micro LED display panel.
  • FIGS. 1A to 1D are schematic cross-sectional structure diagrams of a Micro LED display panel provided by an embodiment of the present invention.
  • FIGS. 2A to 2B are schematic cross-sectional structural views of the collimation structure provided by the embodiment of the present invention.
  • Fig. 3 is a schematic flowchart of a method for manufacturing a Micro LED display panel provided by an embodiment of the present invention
  • FIGS. 4A to 4J are schematic cross-sectional structural views of the Micro LED display panel provided by the embodiment of the present invention at various stages of the manufacturing method.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation.
  • installation connection
  • connection connection
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • FIG. 1A is a schematic cross-sectional structure diagram of a Micro LED display panel 10 provided by an embodiment of the present invention.
  • the Micro LED display panel 10 includes a driving substrate 11, a plurality of Micro LED chips 12, A pixel definition layer 13 and a plurality of collimating structures 15 .
  • a plurality of Micro LED chips 12 are disposed on the driving substrate 11 and distributed in an array on the driving substrate 11 .
  • the driving substrate 11 is a TFT (Thin Film Transistor) glass substrate, and the driving circuit (not shown in the figure) and electrodes 111 corresponding to the Micro LED chip 12 are arranged on the driving substrate 11 , and the Micro LED chip 12 and the The electrodes 111 are electrically connected, so that a plurality of Micro LED chips 12 are driven by the driving circuit on the driving substrate 11 , and each Micro LED chip 12 can be individually lit through the driving circuit.
  • TFT Thin Film Transistor
  • the light-emitting angle of the Micro LED chip 12 is not less than 120°, therefore, it is generally not easy to realize small-angle display of the display panel, and the Micro LED chip 12 After the LED chips 12 are arrayed, the light generated by two adjacent Micro LED chips 12 will also have crosstalk interference. Realize Micro A smaller angle display of the LED display panel 10 .
  • the pixel definition layer 13 is disposed on the driving substrate 11.
  • the pixel definition layer 13 has a plurality of openings (not labeled in the figure), and each of the Micro LED chips 12 is located in each of the openings.
  • the multiple openings in the pixel definition layer 13 are used to define the positions of the multiple Micro LED chips 12 on the driving substrate 11 , therefore, the multiple openings can also be arranged in an array in the pixel definition layer 13 .
  • a plurality of collimating structures 15 corresponds to a plurality of Micro LED chips 12 one by one, and each collimating structure 15 is disposed in each opening.
  • the collimation structure 15 includes a substrate 151 connected to each other and a curved lens 152 , the substrate 151 is filled in the opening, and the curved lens 152 is disposed on a side of the substrate 151 away from the Mirco LED chip 12 .
  • the base body 151 can further fix the Micro LED chip 12 disposed in the opening in the opening, so that it is on the light-emitting path of the Micro LED chip 12 , and the curved surface lens 152 is used to The refraction effect of the convex surface on the light can reduce the divergence angle of the light collimated by the collimation structure 15, so that the viewing angle of the Micro LED display panel 10 is reduced from 120° to 90° and 90° In the following, the small-angle display of the Micro LED display panel 10 is realized.
  • the light emitted by the Micro LED chip 12 is collimated by the collimation structure 15, its divergence angle has become smaller, so that the adjacent two Micro LED
  • the problem of optical crosstalk between chips 12 is alleviated to a certain extent.
  • the Micro LED display panel 10 may further include a reflective layer 14 disposed on the inner wall 131 of each opening. Since the reflective layer 14 is provided on the inner wall 131 of each opening, the light emitted to the inner wall 131 after the Micro LED chip 12 emits light will be reflected by the reflective layer 14, thereby changing the route of the light propagation, so that the original The light emitted at the light emitting angle can exit at a smaller angle after being reflected by the reflective layer 14 .
  • the material of the reflection layer 14 may include metal materials, such as silver or other metal materials capable of reflecting light.
  • the cross-sectional shape of the opening in the thickness direction of the pixel definition layer 13 is an inverted trapezoid, that is, the opening faces
  • the width of the opening on the side of the driving substrate 11 is smaller than the width of the opening on the side away from the driving substrate 11 .
  • the inner wall 131 of the opening is provided with a reflective layer 14 and the opening is also filled with a collimation structure 15 , part of the light generated by the Micro LED chip 12 is collimated by the curved lens 152 of the collimation structure 15 .
  • the other part after being reflected by the reflective layer 14, will change the light path and enter the curved lens 152, so that it will also exit at a smaller angle after being collimated by the curved lens 152, so as to realize Small angle display of Micro LED display panel.
  • FIG. 2A is a schematic cross-sectional structure diagram of the collimation structure 15 provided by the embodiment of the present invention. As shown in FIG. Specifically, it may include a Fresnel lens as shown in FIG. 2A , wherein the elliptical curved surface of the central part of the Fresnel lens in FIG. 2A corresponds to a convex curved surface.
  • FIG. 2B is another schematic cross-sectional structure diagram of the collimation structure 15 provided by the embodiment of the present invention. As shown in FIG. 2B, the curved lens 152 may specifically include a spherical lens as shown in FIG.
  • the spherical surface of the spherical lens shown in FIG. 2B corresponds to a convex surface.
  • the convex curved surface can refract different light rays in a cohesive form, so as to achieve the effect of reducing the divergence angle of the light rays.
  • the collimating structure 15 is integrally formed, and the dotted line marked in Fig. 2A and Fig. 2B is the dividing line defining the curved lens 152 and the base 151, and does not mean that the base 151 and the curved lens 152 are detachable. connect.
  • the substrate 151 and the curved lens 152 are made of the same material, which may specifically include epoxy resin. Wherein, when the material of the base body 151 includes epoxy resin, the base body 151 can specifically bond and fix the Micro LED chip 12 in the opening.
  • the embodiment of the present invention also provides a schematic cross-sectional structure diagram of another Micro LED display panel 10 .
  • the Micro LED display panel 10 shown in FIG. 1B further includes a light-shielding layer 16, which is disposed on the pixel definition layer 13 away from the driving substrate 11.
  • a light-shielding layer 16 is distributed between two adjacent collimation structures 15 .
  • the light-shielding layer 16 may include black epoxy resin material or other opaque materials.
  • the function of the light-shielding layer 16 is to enhance the contrast of the Micro LED display panel 10 , improve the display effect of the Micro LED display panel 10 , and further solve the problem of light crosstalk in the Micro LED display panel 10 .
  • the area between two adjacent collimation structures 15 is a non-luminous area, where more light in the non-luminous area will cause Micro
  • the LED display panel 10 has a low contrast ratio.
  • the light-shielding layer 16 will absorb all or most of the light emitted to the non-light-emitting area after the Micro LED chip 12 emits light, so as to improve the performance of the Micro LED display panel 10.
  • the contrast of the LED display panel 10 can avoid the interference of light emitted by two adjacent Micro LED chips 12 in the non-light-emitting area, and further solve the problem of light crosstalk in the Micro LED display panel 10 .
  • the height of the base body 151 above the pixel definition layer 13 is the thickness of the light shielding layer 16 .
  • the light emitted from the Micro LED chip 12 can be reflected by the reflective layer 14 to change the propagation path, so that the original The light that hits the reflective layer 14 with a larger divergence angle exits at a smaller angle after being reflected, while other light that also hits the non-luminous area with a larger divergence angle can be absorbed by the light-shielding layer 16, thereby improving the The contrast ratio of the Micro LED display panel 10.
  • the embodiment of the present invention also provides a schematic cross-sectional structure diagram of another Micro LED display panel 10 .
  • the Micro LED display panel 10 shown in FIG. 1A and FIG. 1B the Micro LED display panel 10 shown in FIG. Distributed Bragg Reflection (DBR)17.
  • DBR Distributed Bragg Reflection
  • the setting of the distributed Bragg reflector 17 is not necessarily related to the setting of the light-shielding layer 16. Therefore, in the embodiment of the present invention, the distributed Bragg reflector can also be directly added to the structure shown in FIG. 1A 17.
  • the function of the distributed Bragg reflector 17 is to reflect the light emitted from the bottom surface of the Micro LED chip 12 upwards, that is, to reflect the light emitted by the Micro LED chip 12 toward the substrate 11 in a direction away from the substrate 11, thereby improving the performance of the Micro LED.
  • the utilization rate of the light emitted by the chip 12 further improves the luminance of the Micro LED display panel 10 .
  • the distributed Bragg reflector 17 is a periodic structure composed of two materials with different refractive indices arranged alternately.
  • the optical thickness of each layer of material is 1/4 of the central reflection wavelength, which is equivalent to a group of photonic crystals. Since the electromagnetic wave whose frequency falls within the energy gap cannot penetrate, the reflectivity of the distributed Bragg reflector 17 can reach more than 99%.
  • the distributed Bragg reflector 17 may specifically include titanium oxide and silicon oxide materials. Since the distributed Bragg reflector 17 does not contain metal materials, compared with metal reflectors, the distributed Bragg reflector There is no absorption problem in the mirror 17, and its reflection effect is better than that of metal reflectors.
  • the embodiment of the present invention also provides a schematic cross-sectional structure diagram of another Micro LED display panel 10 .
  • the Micro LED display panel 10 shown in FIG. 1D further includes a protective layer 18 .
  • the setting of the protective layer 18 is not necessarily related to the setting of the distributed Bragg reflector 17 , therefore, in the embodiment of the present invention, the protective layer 18 can also be directly added to the structure shown in FIG. 1B .
  • the function of the protection layer 18 is to ensure the flatness of the display panel of the Micro LED display panel 10 and to further reduce the light emitting angle of the Micro LED chip 12 .
  • the protective layer 18 covers the plurality of collimating structures 15 and the light shielding layer 16 , and the refractive index of the protective layer 18 is smaller than that of the curved lens 152 .
  • the preferred range of the refractive index of the protective layer 18 is 1-1.41, and the preferred range of the refractive index of the curved lens 152 is 1.54-2.
  • an embodiment of the present invention also provides a manufacturing method of a Micro LED display panel, as shown in FIG. 3 , the manufacturing method may include the following steps:
  • Step S101 providing a driving substrate.
  • FIG. 4A the cross-sectional structure diagram of the Micro LED display panel after step S101 is completed is shown in FIG. 4A .
  • the driving substrate 11 is a TFT (Thin Film Transistor) glass substrate, and a driving circuit (not shown in the figure) and electrodes 111 are formed on the driving substrate 11 .
  • the electrodes 111 are used to electrically connect the driving substrate 11 with the Micro LED chip 12 (shown in FIG. 4I ).
  • a DBR reflector (not shown in FIG. 4A , please refer to the mark 17 in FIGS. 1C to 1D ) is also formed on the drive substrate.
  • the DBR reflector is formed between the electrode and the drive substrate 11.
  • the mode is formed on the driving substrate 11 .
  • Step S102 forming a pixel definition layer with a plurality of openings on the driving substrate.
  • step S102 may specifically include the following steps:
  • Step 1 forming a negative photoresist layer 19 on the driving substrate 11 .
  • FIG. 4B the schematic cross-sectional structure diagram of the Micro LED display panel after the first step is completed is shown in FIG. 4B .
  • the negative photoresist layer 19 can be coated on the driving substrate 11 by a spin coating method.
  • the negative photoresist layer 19 includes long-chain organic polymers, for example, the negative photoresist layer 19 may include cis-polyisoprene and a radiation-sensitive cross-linking agent.
  • Step 2 patterning the negative photoresist layer 19 to form a plurality of via holes 190 in the negative photoresist layer 19 .
  • FIG. 4C the schematic cross-sectional structure diagram of the Micro LED display panel after the second step is completed is shown in FIG. 4C .
  • patterning the negative photoresist layer 19 is a process of exposing the negative photoresist layer 19 using a mask with a predetermined pattern, and removing a part of the negative photoresist layer 19 after the exposure is completed.
  • the negative photoresist layer 19 containing cis-polyisoprene and a radiation-sensitive cross-linking agent as an example, the exposed cis-polyisoprene is cross-linked under the action of the cross-linking agent to form a body shape
  • the polymer is solidified and insoluble in the developer, while a part of the unexposed negative photoresist layer 19 (not shown in the figure) is dissolved in the developer (xylene), thereby being removed to form the opening 190, A part of the photoresist layer 19 that has been exposed remains on the driving substrate 11 to become the remaining negative photoresist layer 19R, and the remaining negative photoresist layer 19R is used to cover the electrode 111 to prevent the electrode 111 from being damaged in the subsequent
  • the exposure amount at the top of the negative photoresist layer 19 is larger, and the width of the top of the negative photoresist layer 19 after development is larger, while the bottom of the negative photoresist layer 19
  • the amount of exposure is small, and the width of the bottom of the negative photoresist layer 19 after development is small, thereby forming an inverted trapezoidal structure of the remaining negative photoresist layer 19R as shown in FIG. 4C.
  • the height of the inverted trapezoidal structure ranges from 20 to 50 ⁇ m.
  • Step 3 filling the through hole 190 with pixel definition material.
  • FIG. 4D the schematic cross-sectional structure diagram of the Micro LED display panel after the third step is completed is shown in FIG. 4D .
  • the pixel defining material may specifically include epoxy resin.
  • the pixel definition material is filled in the through hole 190 to form a pixel definition layer 13 on the substrate 11 .
  • the process of filling the pixel definition material in the through hole 190 usually also covers a layer of pixel definition material on the remaining negative photoresist layer 19R, therefore, the process of filling the pixel definition material in the through hole 190 also includes The excess pixel definition material outside the through hole 190 is removed, thereby exposing the remaining surface of the negative photoresist layer 19R.
  • Step 4 remove the remaining negative photoresist layer 19R.
  • FIG. 4E the cross-sectional structure diagram of the Micro LED display panel after the fourth step is completed is shown in FIG. 4E.
  • the remaining negative photoresist layer 19R after development in the second step has an inverted trapezoidal structure
  • a plurality of openings will be formed in the pixel definition layer 13 130
  • the cross-sectional shape of the opening 130 in the thickness direction of the pixel definition layer 13 is an inverted trapezoidal structure, exposing the electrode 111 .
  • the manufacturing method may further include: forming a reflective layer 14 on the inner wall 131 of each opening 130 .
  • the step of forming the reflective layer 14 on the inner wall 131 of each opening 130 may specifically include the following steps:
  • Step 1 Deposit reflective material 14' on the surface of the pixel definition layer 13, the inner wall 131 of the opening 130 and the surface of the driving substrate 11 not covered with the pixel definition layer 13.
  • the cross-sectional structure diagram of the Micro LED display panel after this step is completed is shown in FIG. 4F .
  • the reflective material 14' may include metal materials, such as silver or other reflective materials.
  • the reflective material 14' can be deposited by evaporation. It should be further explained that since the driving substrate 11 is also provided with an electrode 111, the corresponding reflective material 14' is also deposited on the electrode 111, which needs to be removed in a subsequent process.
  • Second step forming a positive photoresist layer 21 on the reflective material 14'. After this step is completed, a schematic cross-sectional structure diagram of the Micro LED display panel is shown in FIG. 4G .
  • the positive photoresist layer 21 includes quinone diazo and alkali-soluble phenolic resin.
  • Step 3 pattern the positive photoresist layer 21 to remove the positive photoresist layer on the bottom of the opening 130 .
  • the exposed positive photoresist layer 21 can be removed by a developer containing alkaline substances such as sodium hydroxide.
  • the positive photoresist layer 21 includes quinone diazo and alkali-soluble phenolic resin, the quinone diazo degenerates after exposure and dissolves in the developing solution together with the phenolic resin.
  • the positive photoresist layer on the top of the pixel definition layer 13 can also be selected to be retained.
  • the resist layer 21 or, choose to only keep the positive photoresist layer 21 on the inner wall 131.
  • Step 4 remove the reflective material 14' not covered with the positive photoresist layer 21.
  • an inductively coupled plasma can be used to Coupled Plasma (ICP) etching process, using the remaining positive photoresist layer 21 as a mask, etch and remove the reflective material 14 ′ that is not covered with the positive photoresist layer 21, so that at least the inner wall of the opening 130 131 to form a reflective layer 14 .
  • ICP Coupled Plasma
  • the reflective material 14' covered on the electrode 111 can be removed, avoiding the short circuit of the electrode 111 when the reflective material 14' is a conductive material, or avoiding the When the reflective material 14 ′ is an insulating material, the Micro LED chip and the electrode 111 cannot be electrically connected.
  • a reflective layer 14 can also be formed on the top of the pixel definition layer 13 . It should be further explained that when the reflective layer 14 is only formed on the inner wall 131 of the opening, since there is no reflective layer 14 on the top of the pixel definition layer 13, the pixel definition layer 13 can be in direct contact with the subsequent base material and combination, which is more conducive to the subsequent covering of the base material on the pixel definition layer 13 .
  • Step 5 removing the positive photoresist layer 21 covering the remaining reflective material 14'.
  • a schematic cross-sectional structure diagram of the Micro LED display panel is shown in FIG. 4H .
  • Step S103 forming a plurality of Micro LED chips distributed in an array on the driving substrate, each of the Micro LED chips is located in each of the openings.
  • FIG. 4I the cross-sectional structure diagram of the Micro LED display panel after step S103 is completed is shown in FIG. 4I .
  • the Micro The LED chip 12 is transferred to the electrode 111 of the driving substrate 11 , and the Micro LED chip 12 is heated to melt the solder and weld with the electrode, so as to realize the electrical connection between the Micro LED chip 12 and the electrode 111 on the driving substrate 11 . Afterwards, the elastic adhesive film is removed to transfer the Micro LED chip 12 to the driving substrate 11 .
  • Step S104 forming an alignment structure corresponding to each of the Micro LED chips in each of the openings, the alignment structure includes an interconnected substrate and a curved lens, the substrate is filled in the opening, and the curved lens is formed on the The side of the substrate away from the Mirco LED chip.
  • the schematic cross-sectional structure of the Micro LED display panel after step S104 is completed can refer to the schematic cross-sectional structure shown in FIGS. 1A-1D .
  • step S104 can be specifically divided into the steps of filling the opening 130 with a base material and forming a curved lens on the base material.
  • the matrix material 15' can be filled on the pixel definition layer 13 and in the opening 130.
  • the schematic cross-sectional structure of the Micro LED display panel is shown in FIG. 4J.
  • the matrix material 15' is imprinted by nanoimprinting using a mold with curved pits, and a curved lens 152 is formed above the Mirco LED chip 12, and a matrix 151 is formed in the opening 130, thereby forming a The cross-sectional structure of the Micro LED display panel shown in .
  • the manufacturing method may further include a step of forming a light-shielding layer 16 on the pixel definition layer 13 , and the light-shielding layer is formed by nanoimprinting. Therefore, the cross-sectional structure of the Micro LED display panel as shown in FIGS. 1B-1C can be finally formed through this manufacturing method.
  • the manufacturing method may further include a step of forming a protective layer 18 on the collimation structure 15 and the light shielding layer 16 . Therefore, the cross-sectional structure of the Micro LED display panel as shown in FIG. 1D can be finally formed through this manufacturing method.
  • a pixel definition layer having a plurality of openings is provided on the driving substrate, Micro LED chips are arranged on the driving substrate in an array distribution, and each Micro LED The LED chip is arranged in each opening, and the opening is also filled with a collimation structure. After the light generated by the Micro LED chip is collimated by the curved lens of the collimation structure, it exits at a small angle, thereby realizing the Micro LED display panel. small angle display.
  • the present invention can also have other implementations. All technical solutions formed by equivalent replacement or equivalent replacement fall within the scope of protection required by the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供一种Micro LED显示面板及其制作方法,Micro LED显示面板包括:驱动基板、多个Micro LED芯片、像素定义层以及多个准直结构。本发明通过在像素定义层中设置多个开口,并将每个Micro LED芯片和每个准直结构设置在每个开口内,使得Micro LED芯片产生的光线经过准直结构的准直作用后以较小角度出射,以实现Micro LED显示面板的小角度显示。

Description

Micro LED显示面板及其制作方法 技术领域
本申请涉及显示技术领域,尤其涉及一种Micro LED显示面板及其制作方法。
背景技术
目前,平板显示器大部分为广角显示器,其视角一般大于120度以上。在某些特殊领域,如抬头显示(Head Up Display,HUD)领域,为了避免用户通过频繁的移动视线来获取信息,需要将显示内容仅呈现在用户的正视视角范围内,因此,对具有较小视角的平板显示器有一定需求。
然而,在Micro LED显示面板中,Micro LED芯片发出的光束通常较为发散,不仅不利于实现较小的可视视角,还容易导致相邻芯片之间出现出光串扰的现象。
技术问题
本发明提供一种Micro LED显示面板及其制作方法,旨在实现缩小Micro LED显示面板的可视视角。
技术解决方案
本发明提供一种Micro LED显示面板,包括:驱动基板;多个Micro LED芯片,所述多个Micro LED芯片设置于所述驱动基板上,且在所述驱动基板上呈阵列分布;像素定义层,设置于所述驱动基板上,所述像素定义层具有多个开口,每个所述Micro LED芯片位于每个所述开口内;多个准直结构,所述多个准直结构与所述多个Micro LED芯片一一对应,每个所述准直结构设置于每个所述开口中;所述准直结构包括相互连接的基体以及曲面透镜,所述基体填充于所述开口中,所述曲面透镜设置于所述基体上远离所述Mirco LED芯片的一侧。
其中,所述Micro LED显示面板还包括反射层,所述反射层设置于每个所述开口的内壁上。
其中,所述Micro LED显示面板还包括遮光层,所述遮光层设置于所述像素定义层上远离所述驱动基板的一侧,且所述遮光层分布于相邻两个准直结构之间。
其中,所述Micro LED显示面板还包括保护层,所述保护层覆盖于所述多个准直结构以及所述遮光层上,且所述保护层的折射率小于所述曲面透镜的折射率。
其中,所述基体高出所述像素定义层的高度为所述遮光层的厚度。
其中,所述Micro LED显示面板还包括设置于所述驱动基板与所述多个Micro LED芯片之间的分布式布拉格反射镜。
其中,所述曲面透镜包括菲涅尔透镜或球形透镜。
其中,所述开口在所述像素定义层的厚度方向上的截面形状为倒梯形。
本发明还提供一种Micro LED显示面板的制作方法,包括:提供驱动基板;在所述驱动基板上形成具有多个开口的像素定义层;在所述驱动基板上形成呈阵列分布的多个Micro LED芯片,每个所述Micro LED芯片位于每个所述开口内;在每个所述开口中形成与每个所述Micro LED芯片对应的准直结构,所述准直结构包括相互连接的基体以及曲面透镜,所述基体填充于所述开口中,所述曲面透镜形成于所述基体上远离所述Mirco LED芯片的一侧。
其中,所述在所述驱动基板上形成具有多个开口的像素定义层的步骤之后,还包括:在每个所述开口的内壁上形成反射层。
其中,所述在所述驱动基板上形成具有多个开口的像素定义层的步骤,包括:在所述驱动基板上形成负性光阻层;图案化所述负性光阻层,以在所述负性光阻层中形成多个通孔;在所述通孔中填充像素定义材料;去除剩余的所述负性光阻层。
其中,所述在每个所述开口中形成与每个所述Micro LED芯片对应的准直结构的步骤,包括:在所述像素定义层上以及所述开口中填充基体材料,通过纳米压印的方式压印所述基体材料,在所述Mirco LED芯片的上方形成所述曲面透镜,并在所述开口中形成所述基体。
有益效果
本发明的有益效果为:本发明提供的Micro LED显示面板及其制作方法,通过在驱动基板上设置具有多个开口的像素定义层,通过将Micro LED芯片以呈阵列分布的方式设置于驱动基板上,并将每个Micro LED芯片设置于每个开口内,由于开口中还填充有准直结构,Micro LED芯片产生的光线在经过准直结构的曲面透镜的准直作用后,以较小角度出射,从而实现了Micro LED显示面板的小角度显示。
附图说明
为了更清楚地说明本发明的技术方案,下面将对根据本发明而成的各实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A~图1D是本发明实施例提供的Micro LED显示面板的剖面结构示意图;
图2A~图2B是本发明实施例提供的准直结构的剖面结构示意图;
图3是本发明实施例提供的Micro LED显示面板的制作方法的流程示意图;
图4A~图4J是本发明实施例提供的Micro LED显示面板在制作方法各阶段的剖面结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1A,图1A是本发明实施例提供的一种Micro LED显示面板10的剖面结构示意图,如图1A所示,该Micro LED显示面板10包括驱动基板11、多个Micro LED芯片12、像素定义层13以及多个准直结构15。
多个Micro LED芯片12设置于该驱动基板11上,且在该驱动基板11上呈阵列分布。具体的,该驱动基板11为TFT(Thin Film Transistor)玻璃基板,该驱动基板11上设置有驱动电路(图中未示出)及与Micro LED芯片12对应的电极111,Micro LED芯片12与该电极111电连接,从而使得多个Micro LED芯片12被驱动基板11上的驱动电路所驱动,每一个Micro LED芯片12都能通过驱动电路单独点亮。其中,Micro LED芯片12的发光角度不小于120°,因此,一般不易于实现显示面板的小角度显示,并且在将Micro LED芯片12进行阵列后,相邻两个Micro LED芯片12产生的光线还会发生串扰干涉,因此,在本发明实施例中,还通过设置像素定义层13和多个准直结构15,可用于实现Micro LED显示面板10的较小角度显示。
该像素定义层13设置于该驱动基板11上,该像素定义层13具有多个开口(图中未标号),每个该Micro LED芯片12位于每个该开口内。该像素定义层13中的多个开口用于定义多个Micro LED芯片12在驱动基板11上的位置,因此,该多个开口也可以选择在该像素定义层13中呈阵列排布。多个准直结构15与多个Micro LED芯片12一一对应,每个该准直结构15设置于每个该开口中。该准直结构15包括相互连接的基体151以及曲面透镜152,该基体151填充于该开口中,该曲面透镜152设置于该基体151上远离该Mirco LED芯片12的一侧。由于该基体151填充于该开口中,故该基体151可将设置于该开口中的Micro LED芯片12进一步固定在该开口中,从而处于Micro LED芯片12的发光路径上,再利用曲面透镜152上的凸曲面对光线的折射作用,可使得经由该准直结构15准直后的光线的发散角得以减小,使得Micro LED显示面板10的可视角度从120°降至90°及90°以下,从而实现了Micro LED显示面板10的小角度显示,同时,由于Micro LED芯片12发出的光线在准直结构15进行准直之后,其发散角已经变小,从而相邻的两个Micro LED芯片12之间的出光串扰问题在一定程度上得到缓解。
该Micro LED显示面板10还可以包括反射层14,该反射层14设置于每个该开口的内壁131上。由于在每个该开口的内壁131上设置有反射层14,使得当Micro LED芯片12发光后射向该内壁131的光线会被反射层14反射,从而改变光线传播的路线,使得原本以较大发光角度出射的光线,经反射层14的反射作用后能以较小角度出射。具体的,该反射层14的材质可以包括金属材料,例如银或其他具有反射光线作用的金属材料。进一步地,为了使得反射层14能够将光线向外反射而非向内反射,在本实施例中,优选该开口在该像素定义层13厚度方向上的截面形状为倒梯形,也即该开口朝向驱动基板11一侧的开口宽度小于该开口背离驱动基板11一侧的开口宽度。
由于开口的内壁131设置有反射层14,且开口中还填充有准直结构15,Micro LED芯片12产生的光线的其中一部分,在经过准直结构15的曲面透镜152的准直作用后,以较小角度出射,其中另一部分,在经由反射层14的反射作用后会改变光线路径入射到曲面透镜152中,从而也会经过曲面透镜152的准直作用后,以较小角度出射,从而实现了Micro LED显示面板的小角度显示。
具体的,请参阅图2A,图2A是本发明实施例提供的准直结构15的一种剖面结构示意图,如图2A所示,该曲面透镜152的出光面1521包括凸曲面,该曲面透镜152具体可以包括如图2A中所示的菲涅尔透镜,其中图2A中菲涅尔透镜中心部分的椭圆型弧面即对应凸曲面。另外,请参阅图2B,图2B是本发明实施例提供的准直结构15的另一种剖面结构示意图,如图2B所示,该曲面透镜152具体可以包括如图2B中所示的球形透镜,其中图2B中所示的球形透镜的球面即对应凸曲面。该凸曲面可将不同的光线以内聚的形成进行折射,从而达到减小光线发散角的效果。
需要进一步说明的是,该准直结构15为一体成型,在图2A和图2B中所标示出的虚线为定义曲面透镜152和基体151的分界线,并非表示基体151与曲面透镜152为可拆卸连接。在本实施例中,该基体151和曲面透镜152所采用的材料相同,具体可以包括环氧树脂。其中,当该基体151的材料包括环氧树脂时,该基体151具体可将该Micro LED芯片12粘接固定在该开口中。
基于图1A中示出的结构,请参阅图1B,本发明实施例还提供另一种Micro LED显示面板10的剖面结构示意图。与图1A中示出的Micro LED显示面板10相比,图1B中示出的Micro LED显示面板10还包括遮光层16,该遮光层16设置于该像素定义层13上远离该驱动基板11的一侧,且该遮光层16分布于相邻两个准直结构15之间。
该遮光层16具体可以包括黑色的环氧树脂材料或者其他不透光的材料。该遮光层16的作用在于增强该Micro LED显示面板10的对比度,提高Micro LED显示面板10的显示效果,并进一步解决Micro LED显示面板10中的出光串扰问题。
具体而言,相邻两个准直结构15之间的区域为非发光区域,其中处于非发光区域的光线较多就会导致Micro LED显示面板10具有较低的对比度,为了提高对比度,该遮光层16会将Micro LED芯片12发光后射向非发光区域的光线全部吸收或者吸收绝大部分,从而既能提高Micro LED显示面板10的对比度,又能避免相邻两个Micro LED芯片12发出的光线在非发光区存在干涉,进一步解决Micro LED显示面板10中的出光串扰问题。
其中,该基体151高出该像素定义层13的高度为该遮光层16的厚度。
具体的,通过设置该基体151高出该像素定义层13的高度为该遮光层16的厚度,可使得从Micro LED芯片12射出的光线可以经过反射层14的反射作用后改变传播路径,使得原本以较大发散角射向该反射层14的光线,在被反射后以较小角度出射,而其他同样以较大发散角射向非发光区的光线可以被遮光层16所吸收,从而提高了Micro LED显示面板10的对比度。
基于图1A和图1B中的结构,请参阅图1C,本发明实施例还提供另一种Micro LED显示面板10的剖面结构示意图。与图1A和图1B中示出的Micro LED显示面板10相比,图1C中示出的Micro LED显示面板10还包括设置于该驱动基板11与该多个Micro LED芯片12之间的分布式布拉格反射镜(Distributed Bragg Reflection,DBR)17。需要说明的是,分布式布拉格反射镜17的设置与遮光层16的设置没有必要的关联,因此,本发明实施例中,也可直接在图1A中示出的结构上增加分布式布拉格反射镜17。
该分布式布拉格反射镜17的作用在于将Micro LED芯片12底面发出的光线向上反射,也即将Micro LED芯片12朝向基底11发出的光线按照远离该基底11的方向进行反射,从而提高了对Micro LED芯片12发出光线的利用率,进一步提高了Micro LED显示面板10的发光亮度。具体的,该分布式布拉格反射镜17是由两种不同折射率的材料以交替排列组成的周期结构,每层材料的光学厚度为中心反射波长的1/4,相当于一组光子晶体。由于频率落在能隙范围内的电磁波无法穿透,分布式布拉格反射镜17的反射率可达99%以上。在本实施例中,该分布式布拉格反射镜17具体可以包括氧化钛和氧化硅材料,由于该分布式布拉格反射镜17不包含金属材料,因此,与金属反射镜相比,该分布式布拉格反射镜17中不存在吸收问题,其反射效果相较于金属反射镜更好。
基于图1B以及图1C中的结构,请参阅图1D,本发明实施例还提供又一种Micro LED显示面板10的剖面结构示意图。与图1B及图1C中示出的Micro LED显示面板10相比,图1D中示出的Micro LED显示面板10还包括保护层18。需要说明的是,保护层18的设置与分布式布拉格反射镜17的设置没有必要关联,因此,本发明实施例中,也可直接在图1B中示出的结构上增加保护层18。
该保护层18的作用在于保证Micro LED显示面板10显示面板的平整度以及进一步缩小Micro LED芯片12的发光角度。该保护层18覆盖于该多个准直结构15以及该遮光层16上,且该保护层18的折射率小于该曲面透镜152的折射率。
具体的,该保护层18的折射率的优选范围是1~1.41,该曲面透镜152的折射率的优选范围是1.54~2。通过设置该保护层18的折射率小于该曲面透镜152的折射率,使得光线经由该曲面透镜152射入保护层18中时,由于是高折射率的介质入射到低折射率的介质,根据折射定律可知,光线的发散角进一步被减小。
基于上述的Micro LED显示面板,本发明实施例还提供一种Micro LED显示面板的制作方法,如图3所示,该制作方法可以包括如下步骤:
步骤S101:提供驱动基板。
其中,步骤S101完成后Micro LED显示面板的剖面结构示意图如图4A所示。
具体的,该驱动基板11为TFT(Thin Film Transistor)玻璃基板,该驱动基板11上形成有驱动电路(图中未示出)及电极111。该电极111用于将驱动基板11与Micro LED芯片12(显示于图4I)电连接。该驱动基板上还形成有DBR反射镜(图4A中未示出,请参照图1C~1D中的标示17),该DBR反射镜形成于电极与驱动基板11之间,具体可通过蒸镀的方式在驱动基板11上形成。
步骤S102:在该驱动基板上形成具有多个开口的像素定义层。
其中,步骤S102具体可以包括如下步骤:
第一步:在该驱动基板11上形成负性光阻层19。
其中,第一步完成后Micro LED显示面板的剖面结构示意图如图4B所示。
具体的,该负性光阻层19可通过旋涂法涂覆在该驱动基板11上。该负性光阻层19包括长链高分子有机物,例如,该负性光阻层19可以包括顺聚异戊二烯和对辐照敏感的交联剂。
第二步:图案化该负性光阻层19,以在该负性光阻层19中形成多个通孔190。
其中,第二步完成后Micro LED显示面板的剖面结构示意图如图4C所示。
具体的,图案化该负性光阻层19是利用具有预设图案的掩模版对该负性光阻层19进行曝光,并在曝光完成后去除该负性光阻层19的一部分的过程。具体的,以该负性光阻层19包含顺聚异戊二烯和对辐照敏感的交联剂为例,曝光后的顺聚异戊二烯在交联剂作用下交联,成为体形高分子并固化,不溶于显影液中,而未被曝光的负性光阻层19的一部分(图中未示出)溶于显影液(二甲苯)中,从而被去除掉形成开孔190,而已被曝光的光阻层19的一部分保留于该驱动基板11上成为剩余的负性光阻层19R,该剩余的负性光阻层19R用于覆盖电极111,避免电极111在后续制程中损坏,该剩余的负性光阻层19R还用于在后续工艺中被去除以在所在的位置上形成容纳发光器件的开口。
本实施例中,利用负性光阻层19的特性,负性光阻层19顶部的曝光量较大,显影后负性光阻层19顶部的宽度较大,而负性光阻层19底部的曝光量较小,显影后负性光阻层19底部的宽度较小,从而形成如图4C中剩余的负性光阻层19R的倒梯形结构。其中,该倒梯形结构的高度的范围为20~50μm。
第三步:在该通孔190中填充像素定义材料。
其中,第三步完成后Micro LED显示面板的剖面结构示意图如图4D所示。
具体的,该像素定义材料具体可以包括环氧树脂。该像素定义材料填充在该通孔190中后以在该基底11上形成像素定义层13。其中,在该通孔190中填充像素定义材料的过程通常还会在剩余的负性光阻层19R上覆盖一层像素定义材料,因此,在该通孔190中填充像素定义材料的过程还包括将该通孔190之外的多余像素定义材料去除,从而暴露剩余的负性光阻层19R的表面。
第四步:去除剩余的该负性光阻层19R。
其中,第四步完成后Micro LED显示面板的剖面结构示意图如图4E所示。
具体的,由于在第二步中显影后剩余的负性光阻层19R为倒梯形结构,因此,在去除剩余的负性光阻层19R之后,会在该像素定义层13中形成多个开口130,且该开口130在像素定义层13的厚度方向上的截面形状为倒梯形结构,并暴露出电极111。
在步骤S102完成以后,该制作方法还可以包括:在每个该开口130的内壁131上形成反射层14。
其中,在每个该开口130的内壁131上形成反射层14的步骤具体可以包括如下步骤:
第一步:在该像素定义层13的表面、该开口130的内壁131以及该驱动基板上11未覆盖有该像素定义层13的表面上沉积反射材料14’。该步骤完成后的Micro LED显示面板的剖面结构示意图如图4F所示。
具体的,该反射材料14’可以包括金属材料,如银或者其他具有反射作用的材料,当该反射材料14’选择为银时,该反射材料14’可通过蒸镀的方式沉积。需要进一步说明的是,由于该驱动基板11上还设置有电极111,因此该电极111上也沉积相应的反射材料14’,需要在后续的工艺中去除。
第二步:在该反射材料14’上形成正性光阻层21。该步骤完成后Micro LED显示面板的剖面结构示意图如图4G所示。
具体的,该正性光阻层21包括重氮醌、碱溶性的酚醛树脂。
第三步:图案化该正性光阻层21,以去除该开口130的底部上的该正性光阻层。
具体的,可通过包含如氢氧化钠等碱性物质的显影液将曝光后的正性光阻层21去除。当该正性光阻层21包括重氮醌、碱溶性的酚醛树脂时,曝光后的重氮醌退化,与酚醛树脂一同溶于显影液。在图案化该正性光阻层21的步骤中,可以在选择保留该内壁131上的该正性光阻层21时,同时还选择保留位于该像素定义层13的顶部上的该正性光阻层21;或者是,选择只保留该内壁131上的该正性光阻层21。
第四步:去除未覆盖有该正性光阻层21的该反射材料14’。
具体的,由于图案化后至少在该内壁131上的反射材料14’上覆盖有正性光阻层21,因此,可利用电感耦合等离子体(Inductively Coupled Plasma,ICP)刻蚀工艺,以剩余的正性光阻层21为掩膜,刻蚀去除未覆盖有该正性光阻层21的该反射材料14’,从而至少在该开口130的内壁131上形成反射层14。通过去除该开口130的底部上的该反射材料14’,可以去除覆盖在该电极111上的反射材料14’,避免当反射材料14’为导电材料时导致该电极111的短接,或者避免该反射材料14’为绝缘材料时造成Micro LED芯片与该电极111之间不能进行电连接。
由于该像素定义层13的顶部上也可以选择保留该正性光阻层21,因此还可以在该像素定义层13的顶部上形成反射层14。需要进一步说明的是,当选择只在该开口的内壁131上形成反射层14时,由于该像素定义层13的顶部上没有反射层14,该像素定义层13可以与后续的基体材料直接接触而结合,从而更有利于后续的基体材料覆盖在该像素定义层13上。
第五步:去除覆盖在剩余的该反射材料14’上的该正性光阻层21。其中,该步骤完成后Micro LED显示面板的剖面结构示意图如图4H所示。
步骤S103:在该驱动基板上形成呈阵列分布的多个Micro LED芯片,每个该Micro LED芯片位于每个该开口内。
其中,步骤S103完成后Micro LED显示面板的剖面结构示意图如图4I所示。
具体的,可通过表面带有凸起的弹性黏膜,将表面带有焊锡的Micro LED芯片12转移驱动基板11的电极111上,并加热Micro LED芯片12使得焊锡熔化与电极焊接,从而实现Micro LED芯片12与驱动基板11上电极111的电连接。之后,移除弹性黏膜以将Micro LED芯片12转移到驱动基板11上。
步骤S104:在每个该开口中形成与每个该Micro LED芯片对应的准直结构,该准直结构包括相互连接的基体以及曲面透镜,该基体填充于该开口中,该曲面透镜形成于该基体上远离该Mirco LED芯片的一侧。
步骤S104完成后Micro LED显示面板的剖面结构示意图可以参照如图1A~1D中所示的剖面结构示意图。
其中,步骤S104具体可以分为在该开口130中填充基体材料以及在基体材料上形成曲面透镜的步骤。在图4I的基础上,可在像素定义层13上以及开口130中填充基体材料15’,该步骤完成后Micro LED显示面板的剖面结构示意图如图4J所示。之后,利用带有曲面凹坑的模具通过纳米压印的方式压印基体材料15’,而在Mirco LED芯片12的上方形成曲面透镜152,而在开口130中形成基体151,从而形成如图1A中示出的Micro LED显示面板的剖面结构。
在本实施例中,在执行步骤S103之前,该制作方法还可以包括在像素定义层13上形成遮光层16的步骤,该遮光层通过纳米压印的方式形成。因此,通过该制作方法最终可以形成如图1B~1C所示出的Micro LED显示面板的剖面结构。
在本实施例中,在执行步骤S104之后,该制作方法还可以包括在准直结构15以及遮光层16上形成保护层18的步骤。因此,通过该制作方法最终可以形成如图1D所示出的Micro LED显示面板的剖面结构。
本发明提供的Micro LED显示面板及其制作方法,通过在驱动基板上设置具有多个开口的像素定义层,通过将Micro LED芯片以呈阵列分布的方式设置于驱动基板上,并将每个Micro LED芯片设置于每个开口内,开口中还填充有准直结构,Micro LED芯片产生的光线经过准直结构的曲面透镜的准直作用后,以较小角度出射,从而实现了Micro LED显示面板的小角度显示。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效替换形成的技术方案,均落在本发明要求的保护范围。
综上所述,虽然本发明已将优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (12)

  1. 一种Micro LED显示面板,包括:
    驱动基板;
    多个Micro LED芯片,所述多个Micro LED芯片设置于所述驱动基板上,且在所述驱动基板上呈阵列分布;
    像素定义层,设置于所述驱动基板上,所述像素定义层具有多个开口,每个所述Micro LED芯片位于每个所述开口内;
    多个准直结构,所述多个准直结构与所述多个Micro LED芯片一一对应,每个所述准直结构设置于每个所述开口中;所述准直结构包括相互连接的基体以及曲面透镜,所述基体填充于所述开口中,所述曲面透镜设置于所述基体上远离所述MircoLED芯片的一侧。
  2. 根据权利要求1所述的Micro LED显示面板,其中,所述Micro LED显示面板还包括反射层,所述反射层设置于每个所述开口的内壁上。
  3. 根据权利要求1所述的Micro LED显示面板,其中,所述Micro LED显示面板还包括遮光层,所述遮光层设置于所述像素定义层上远离所述驱动基板的一侧,且所述遮光层分布于相邻两个准直结构之间。
  4. 根据权利要求3所述的Micro LED显示面板,其中,所述Micro LED显示面板还包括保护层,所述保护层覆盖于所述多个准直结构以及所述遮光层上,且所述保护层的折射率小于所述曲面透镜的折射率。
  5. 根据权利要求3所述的Micro LED显示面板,其中,所述基体高出所述像素定义层的高度为所述遮光层的厚度。
  6. 根据权利要求1所述的Micro LED显示面板,其中,所述Micro LED显示面板还包括设置于所述驱动基板与所述多个Micro LED芯片之间的分布式布拉格反射镜。
  7. 根据权利要求1所述的Micro LED显示面板,其中,所述曲面透镜包括菲涅尔透镜或球形透镜。
  8. 根据权利要求1所述的Micro LED显示面板,其中,所述开口在所述像素定义层的厚度方向上的截面形状为倒梯形。
  9. 一种Micro LED显示面板的制作方法,包括:
    提供驱动基板;
    在所述驱动基板上形成具有多个开口的像素定义层;
    在所述驱动基板上形成呈阵列分布的多个Micro LED芯片,每个所述Micro LED芯片位于每个所述开口内;
    在每个所述开口中形成与每个所述Micro LED芯片对应的准直结构,所述准直结构包括相互连接的基体以及曲面透镜,所述基体填充于所述开口中,所述曲面透镜形成于所述基体上远离所述Mirco LED芯片的一侧。
  10. 根据权利要求9所述的制作方法,其中,所述在所述驱动基板上形成具有多个开口的像素定义层的步骤之后,还包括:
    在每个所述开口的内壁上形成反射层。
  11. 根据权利要求9所述的制作方法,其中,所述在所述驱动基板上形成具有多个开口的像素定义层的步骤,包括:
    在所述驱动基板上形成负性光阻层;
    图案化所述负性光阻层,以在所述负性光阻层中形成多个通孔;
    在所述通孔中填充像素定义材料;
    去除剩余的所述负性光阻层。
  12. 根据权利要求9所述的制作方法,其中,所述在每个所述开口中形成与每个所述Micro LED芯片对应的准直结构的步骤,包括:
    在所述像素定义层上以及所述开口中填充基体材料,通过纳米压印的方式压印所述基体材料,在所述Mirco LED芯片的上方形成所述曲面透镜,并在所述开口中形成所述基体。
PCT/CN2022/071846 2022-01-13 2022-01-13 Micro LED显示面板及其制作方法 WO2023133762A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/071846 WO2023133762A1 (zh) 2022-01-13 2022-01-13 Micro LED显示面板及其制作方法
CN202280000033.9A CN116897382A (zh) 2022-01-13 2022-01-13 Micro LED显示面板及其制作方法
US18/436,050 US20240178353A1 (en) 2022-01-13 2024-02-08 Display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071846 WO2023133762A1 (zh) 2022-01-13 2022-01-13 Micro LED显示面板及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/436,050 Continuation-In-Part US20240178353A1 (en) 2022-01-13 2024-02-08 Display panel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2023133762A1 true WO2023133762A1 (zh) 2023-07-20

Family

ID=87280047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071846 WO2023133762A1 (zh) 2022-01-13 2022-01-13 Micro LED显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN116897382A (zh)
WO (1) WO2023133762A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304460A (ja) * 2006-05-15 2007-11-22 Toppan Printing Co Ltd 光学シート、バックライトユニット及び液晶表示装置
CN101737645A (zh) * 2009-12-31 2010-06-16 杭州士兰明芯科技有限公司 一种led白光灯泡及其制作方法
CN106384738A (zh) * 2016-10-28 2017-02-08 福州大学 一种基于压印工艺的Micro‑LED显示器件
CN108039125A (zh) * 2017-12-06 2018-05-15 北海威德电子科技有限公司 一种用于电子显示器的混合led发光体的制备方法
CN109346618A (zh) * 2018-09-13 2019-02-15 武汉华星光电半导体显示技术有限公司 Oled显示装置及其制备方法
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN112599478A (zh) * 2021-01-15 2021-04-02 苏州芯聚半导体有限公司 驱动基板及制作方法、显示面板
CN113270437A (zh) * 2020-02-17 2021-08-17 京东方科技集团股份有限公司 背板及其制备方法、显示装置
CN113838991A (zh) * 2020-06-08 2021-12-24 成都辰显光电有限公司 显示面板和显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304460A (ja) * 2006-05-15 2007-11-22 Toppan Printing Co Ltd 光学シート、バックライトユニット及び液晶表示装置
CN101737645A (zh) * 2009-12-31 2010-06-16 杭州士兰明芯科技有限公司 一种led白光灯泡及其制作方法
CN106384738A (zh) * 2016-10-28 2017-02-08 福州大学 一种基于压印工艺的Micro‑LED显示器件
CN108039125A (zh) * 2017-12-06 2018-05-15 北海威德电子科技有限公司 一种用于电子显示器的混合led发光体的制备方法
CN109346618A (zh) * 2018-09-13 2019-02-15 武汉华星光电半导体显示技术有限公司 Oled显示装置及其制备方法
CN113270437A (zh) * 2020-02-17 2021-08-17 京东方科技集团股份有限公司 背板及其制备方法、显示装置
CN113838991A (zh) * 2020-06-08 2021-12-24 成都辰显光电有限公司 显示面板和显示装置
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN112599478A (zh) * 2021-01-15 2021-04-02 苏州芯聚半导体有限公司 驱动基板及制作方法、显示面板

Also Published As

Publication number Publication date
CN116897382A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP3898217B1 (ja) バックライトユニットおよび液晶表示装置
JP4255334B2 (ja) 表示装置
US10693103B2 (en) Light-emitting device and manufacturing method thereof, electronic apparatus
US11088354B2 (en) Light-emitting panel and manufacturing method thereof
WO2020233291A1 (zh) 显示基板及其制备方法、显示面板
KR100295505B1 (ko) 평판형 표시장치의 도광판 및 그 제조방법
TW201741738A (zh) 光致發光顯示裝置及其製造方法
JP2003195058A (ja) 導光板、その製造方法、照明装置、及び液晶表示装置
CN109143663A (zh) 一种液晶面板及3d打印机
CN107438905B (zh) 发光器件阵列及包含该发光器件阵列的照明***
JP4128602B2 (ja) バックライトユニットおよび液晶表示装置
CN113156732A (zh) 反射式显示面板及其制备方法、及显示装置
WO2023133762A1 (zh) Micro LED显示面板及其制作方法
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
JP2013521609A (ja) 面発光装置及び液晶表示装置
US20240178353A1 (en) Display panel and manufacturing method thereof
TW202129381A (zh) 直下式背光裝置
CN215494468U (zh) 反射式显示面板及显示装置
CN113035930B (zh) 一种阵列基板、显示面板及显示装置
WO2020241117A1 (ja) 発光素子搭載基板およびそれを用いた表示装置
KR102236357B1 (ko) 색변환 기능을 갖는 마이크로 렌즈 어레이 제조 방법
JP4125198B2 (ja) 液晶表示素子
KR20070032173A (ko) 액정표시장치 및 그 제조 방법
CN219417946U (zh) 背光模组以及显示装置
CN116435296B (zh) 显示面板及其制备方法和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000033.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919425

Country of ref document: EP

Kind code of ref document: A1