WO2024082488A1 - 封装发光单元、显示装置和封装发光单元的制作方法 - Google Patents

封装发光单元、显示装置和封装发光单元的制作方法 Download PDF

Info

Publication number
WO2024082488A1
WO2024082488A1 PCT/CN2023/074909 CN2023074909W WO2024082488A1 WO 2024082488 A1 WO2024082488 A1 WO 2024082488A1 CN 2023074909 W CN2023074909 W CN 2023074909W WO 2024082488 A1 WO2024082488 A1 WO 2024082488A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film layer
emitting
unit
driving circuit
Prior art date
Application number
PCT/CN2023/074909
Other languages
English (en)
French (fr)
Inventor
杨超群
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2024082488A1 publication Critical patent/WO2024082488A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits

Definitions

  • the present application relates to the field of display technology, and in particular to a packaged light-emitting unit, a display device, and a method for manufacturing the packaged light-emitting unit.
  • Micro LED is another display technology with advantages of lightness, thinness and power saving after OLED (Organic Light-Emitting Diode) because of its self-luminous characteristics without backlight, energy saving, simple structure, small size and thinness.
  • OLED Organic Light-Emitting Diode
  • Micro LED has higher brightness, better luminous efficiency and lower power consumption than the existing OLED.
  • Micro LED display technology has received more and more attention due to its excellent characteristics.
  • the present application provides a packaged light-emitting unit, a display device and a method for manufacturing a packaged light-emitting unit.
  • the display or backlight function of display products of different sizes can be realized by splicing and bonding multiple packaged light-emitting units on a backplane with a simple structure, so that the development cost of new products is greatly reduced and the backplane yield is guaranteed.
  • the problem of difficulty in binning small-sized light-emitting chips can also be solved.
  • the present application provides a packaged light-emitting unit for being spliced and arranged on a backplane, wherein the packaged light-emitting unit at least comprises: Substrate unit; A driving circuit unit, located on the substrate unit; At least one light-emitting chip is located on the driving circuit unit, or is arranged side by side with the driving circuit unit on the substrate; wherein the at least one light-emitting chip is electrically connected to the driving circuit unit.
  • the packaged light-emitting unit further comprises a first film layer located on a side of the driving circuit unit away from the substrate unit; the first film layer is provided with an opening exposing the at least one light-emitting chip; Wherein, the reflectivity of the first film layer to light is lower than the reflectivity of the driving circuit unit to light.
  • the color of the first film layer is gray.
  • the distance between the side wall of the opening and the light-emitting chip is greater than 0; the angle between the side surface of the first film layer close to the light-emitting chip and the bottom surface of the first film layer is an acute angle;
  • the packaged light-emitting unit further includes a second film layer at least located between the first film layer and the light-emitting chip and covering the light-emitting chip; the refractive index of the second film layer is greater than the refractive index of the first film layer.
  • the refractive index of the first film layer is in the range of 1.4 to 1.5, and the refractive index of the second film layer is greater than 1.6.
  • the angle between the side surface of the first film layer close to the light-emitting chip and the bottom surface of the first film layer ranges from 30° to 75°.
  • the distance between the orthographic projection of the first film layer on the substrate unit and the orthographic projection of the light-emitting chip on the substrate unit ranges from 0.5 um to 5 um.
  • the thickness of the first film layer is greater than or equal to the thickness of the light-emitting chip, and the thickness of the first film layer ranges from 2um to 20um, and the optical density of the first film layer per 1 micron thickness is greater than 0.2.
  • the thickness difference between the first film layer and the light-emitting chip ranges from 1 um to 5 um.
  • the second film layer has a pencil hardness greater than H, and a water drop contact angle on the second film layer is greater than 100°.
  • the thickness of the second film layer ranges from 10 um to 50 um.
  • the second film layer also extends to a side of the first film layer away from the driving circuit unit, and a portion of the second film layer corresponding to the light-emitting chip protrudes in an arc shape in a direction away from the light-emitting chip.
  • the present application further provides a display device, comprising a back panel and a plurality of packaged light-emitting units spliced and arranged on the back panel;
  • the packaged light-emitting unit at least comprises a substrate unit, a driving circuit unit located on the substrate unit, and at least one light-emitting chip; the at least one light-emitting chip is located on the driving circuit unit, or is arranged side by side with the driving circuit unit on the substrate; the at least one light-emitting chip is electrically connected to the driving circuit unit;
  • the backplane includes a passive driving circuit, and the driving circuit unit is electrically connected to the passive driving circuit.
  • the light emitting color of each of the light emitting chips is the same; or, The light emitting color of each of the light emitting chips includes any one of red, green and blue, and the light emitting colors of at least some of the light emitting chips arranged adjacent to each other are different.
  • the packaged light-emitting unit further comprises a first film layer located on a side of the driving circuit unit away from the substrate unit; the first film layer is provided with an opening exposing the at least one light-emitting chip; Wherein, the reflectivity of the first film layer to light is lower than the reflectivity of the driving circuit unit to light.
  • the color of the first film layer is gray.
  • the distance between the side wall of the opening and the light-emitting chip is greater than 0; the angle between the side surface of the first film layer close to the light-emitting chip and the bottom surface of the first film layer is an acute angle;
  • the packaged light-emitting unit further includes a second film layer at least located between the first film layer and the light-emitting chip and covering the light-emitting chip; the refractive index of the second film layer is greater than the refractive index of the first film layer.
  • the angle between the side surface of the first film layer close to the light-emitting chip and the bottom surface of the first film layer ranges from 30° to 75°.
  • the second film layer also extends to a side of the first film layer away from the driving circuit unit, and a portion of the second film layer corresponding to the light-emitting chip protrudes in an arc shape in a direction away from the light-emitting chip.
  • the present application further provides a method for manufacturing a packaged light-emitting unit, comprising the following steps: Providing a substrate; wherein the substrate comprises a plurality of preset areas arranged at intervals; forming a driving circuit unit located on the base substrate in each of the preset regions; At least one light-emitting chip electrically connected to the driving circuit unit is formed in each of the preset areas; wherein the at least one light-emitting chip is superimposed on the driving circuit unit, or is arranged side by side with the driving circuit unit on the substrate; and cutting is performed along the edge of each of the preset areas to form a plurality of packaged light-emitting units.
  • the packaged light-emitting unit, the display device and the method for manufacturing the packaged light-emitting unit provided in the present application integrate the light-emitting chip and the driving circuit unit together as a whole that can work independently, so that multiple packaged light-emitting units can be spliced and bonded to the backplane to realize the display or backlight function of display products of different sizes; on the other hand, since the driving circuit unit in the packaged light-emitting unit has driving and IC functions, the backplane design can be simplified when the packaged light-emitting unit is used for display or backlight, which is beneficial to significantly reduce the cost of developing new products and improve the backplane yield; on the other hand, since the size of the packaged light-emitting unit is much larger than the size of the light-emitting chip, the packaged light-emitting unit can use the existing binning equipment for binning operations, which solves the problem of difficult binning of Micro LED chips and high equipment cost.
  • FIG1 is a schematic diagram of a partial cross-sectional structure of a packaged light-emitting unit provided in an embodiment of the present application.
  • FIGS. 2 to 11 are schematic diagrams of different positional relationships between a light-emitting chip and a driving circuit layer in a packaged light-emitting unit provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a partial cross-sectional structure of a display device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a partial cross-sectional structure of another display device provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a partial cross-sectional structure of another display device provided in an embodiment of the present application.
  • FIG. 15 is a schematic flow chart of a method for manufacturing a packaged light-emitting unit provided in an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a method for manufacturing a packaged light-emitting unit provided in an embodiment of the present application.
  • FIG. 17 is a top view of the packaged light-emitting unit manufactured by the manufacturing method shown in FIG. 16 .
  • FIG. 18 is a schematic diagram showing the positional relationship between the first film layer and the light-emitting chip in the packaged light-emitting unit shown in FIG. 17 .
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of “multiple” is two or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • a first feature being “above” or “below” a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact but are in contact through another feature between them.
  • a first feature being “above”, “above” and “above” a second feature includes that the first feature is directly above and obliquely above the second feature, or simply indicates that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” and “below” a second feature includes that the first feature is directly below and obliquely below the second feature, or simply indicates that the first feature is lower in level than the second feature.
  • the embodiment of the present application provides a packaged light-emitting unit 1, which includes a substrate unit 2, a driving circuit unit 3, at least one light-emitting chip 4 and a packaging unit 5.
  • the driving circuit unit 3 is located on the substrate unit 2; at least one light-emitting chip 4 is arranged in a superimposed manner with the driving circuit unit 3, or is arranged side by side with the driving circuit unit 3 on the substrate unit 2; wherein at least one light-emitting chip 4 is electrically connected to the driving circuit unit 3.
  • FIG1 only shows the case where one light-emitting chip 4 is arranged side by side with the driving circuit unit 3, but the number of light-emitting chips 4 and the positional relationship between the light-emitting chip 4 and the driving circuit unit 3 are not limited thereto.
  • the material of the substrate unit 2 includes glass, but is not limited thereto.
  • the light-emitting chip 4 and the driving circuit unit 3 are arranged in a superimposed manner, the light-emitting chip 4 is located on the side of the driving circuit unit 3 away from the substrate unit 2, and is directly electrically connected to the driving circuit unit 3; when the light-emitting chip 4 and the driving circuit unit 3 are arranged side by side, the light-emitting chip 4 and the driving circuit unit 3 are arranged at intervals, and the light-emitting chip 4 is electrically connected to the driving circuit unit 3 through the connecting wiring arranged in the substrate unit 2.
  • the driving circuit unit 3 can drive at least one light-emitting chip 4 to emit light, and can also take into account the function of the IC; therefore, the packaged light-emitting unit 1 in the embodiment of the present application integrates at least one light-emitting chip 4 with the driving circuit unit 3, so that at least one light-emitting chip 4 in the packaged light-emitting unit 1 and the driving circuit unit 3 are used as a whole for direct display or backlight function.
  • the driving circuit unit 3 in the packaged light-emitting unit 1 takes into account both the driving and IC functions, when multiple packaged light-emitting units 1 are spliced and bonded to the backplane to realize the display or backlight function of display products of different sizes, the originally complex backplane becomes simple because it does not need to be provided with a driving circuit and IC. It is understandable that when the size of the display product changes, only a simple modification of the backplane structure is required to meet the requirements, so that the cost of the mask used to make the backplane is greatly reduced, which is conducive to reducing the cost of developing new products and improving the backplane yield.
  • the backplane described in the embodiment of the present application is a substrate with simple routing, similar to the TFT substrate in the prior art.
  • the backplane in the present application does not need to be equipped with devices such as TFT, but only needs to be equipped with simple routing, such as passive drive (PM) routing.
  • PM passive drive
  • the driving circuit unit 3 can be an integral module or can be composed of a plurality of branch modules disposed at intervals.
  • the driving circuit unit 3 is an integral module; in another specific embodiment, as shown in FIGS. 8 to 11 , the driving circuit unit 3 is composed of two or three branch modules 10 disposed at intervals.
  • the driving circuit unit 3 is composed of a plurality of branch modules arranged at intervals, the plurality of branch modules are electrically connected via connection wires arranged in the substrate unit 2 .
  • the light emitting chip 4 includes a micro light emitting diode (Micro LED) chip, but is not limited thereto.
  • Micro LED micro light emitting diode
  • Micro LED chips with a size of Mini level need to be binned, and existing equipment can meet the requirements.
  • the size of Micro LED is very small (usually less than 50um)
  • Micro LED chips require relatively precise mechanical and image recognition systems during the capture and release process, and testing requires microprobes to complete, which makes the equipment cost very high and the test speed is also very limited.
  • the binning equipment based on Micro LED chips has not yet been developed.
  • the embodiment of the present application integrates the Micro LED chip (light-emitting chip 4) and the driving circuit unit 3 on the substrate unit 2 to form an independently working packaged light-emitting unit 1; since the size of the packaged light-emitting unit 1 is much larger than the size of the Micro LED chip, the packaged light-emitting unit 1 can use the existing binning equipment (such as Mini LED binning equipment) for binning operations, which solves the problem of difficult binning of Micro LED chips and high equipment cost.
  • Mini LED binning equipment such as Mini LED binning equipment
  • the number of light emitting chips 4 in the packaged light emitting unit 1 may be one or more. As shown in FIGS. 2 to 11 , in some specific embodiments, the number of light emitting chips 4 in each packaged light emitting unit 1 is one, and in other specific embodiments, the number of light emitting chips 4 in each packaged light emitting unit 1 is three.
  • At least one light emitting chip 4 can be arranged on the substrate unit 2 in a superimposed manner with the driving circuit unit 3, or can be arranged side by side with the driving circuit unit 3 on the substrate unit 2. As shown in FIGS. 2 to 11 , when at least one light emitting chip 4 is arranged side by side with the driving circuit unit 3 on the substrate unit 2, at least one light emitting chip 4 can be located on any side of the driving circuit unit 3, and is not limited to the several positional relationships listed in FIGS. 2 to 11 .
  • the driving circuit unit 3 when the driving circuit unit 3 is composed of a plurality of branch modules disposed at intervals, the plurality of branch modules may be disposed around one or more light-emitting chips 4 , or evenly distributed around one or more light-emitting chips 4 .
  • the driving circuit unit 3 is composed of two branch modules 10 arranged at intervals, and the two branch modules 10 are symmetrically distributed on two opposite sides of three light-emitting chips 4 arranged side by side.
  • the driving circuit unit 3 is composed of three branch modules 10 arranged at intervals, wherein two branch modules 10 are symmetrically distributed on two opposite sides of three light-emitting chips 4 arranged side by side, and another branch module 10 is located on the other side of the three light-emitting chips 4 arranged side by side.
  • each packaged light-emitting unit 1 may include three light-emitting chips 4 that emit red light, green light, and blue light, respectively; or, each packaged light-emitting unit 1 includes one light-emitting chip 4, and the light-emitting chips 4 in three adjacent packaged light-emitting units 1 emit red light, green light, and blue light, respectively.
  • the number of light-emitting chips 4 in each packaged light-emitting unit 1 is not limited, and the light-emitting color of each light-emitting chip 4 is the same, for example, each light-emitting chip 4 emits blue light or white light, but is not limited thereto.
  • the packaging unit 5 at least covers the substrate unit 2 and a portion of the driving circuit unit 3 .
  • the packaging unit 5 includes a first film layer 6 located on the side of the driving circuit unit 3 away from the substrate unit 2; an opening is provided on the first film layer 6 to expose the light-emitting chip 4; the reflectivity of the first film layer 6 to light is lower than the reflectivity of the driving circuit unit 3 to light.
  • the metal layer in the driving circuit unit 3 will cause the light reflectivity on the light-emitting side of the packaged light-emitting unit 1 to be larger.
  • the embodiment of the present application can reduce the light reflectivity on the light-emitting side of the packaged light-emitting unit 1 by covering the first film layer 6 on the driving circuit unit 3.
  • the spacing between the side wall of the opening and the light emitting chip is greater than or equal to 0, that is, the spacing between the orthographic projection of the first film layer 6 on the substrate unit 2 and the orthographic projection of the light emitting chip 4 on the substrate unit 2 is greater than or equal to 0. It can be understood that the first film layer 6 covers other positions except the light emitting chip 4, and reduces the light reflectivity on the driving circuit unit 3 without affecting the light extraction efficiency of the light emitting chip 4.
  • the side wall of the opening is equivalent to the side surface 8 of the first film layer 6 close to the at least one light-emitting chip 4 .
  • the color of the first film layer 6 is gray, and it can absorb the light incident from the outside to reduce the light reflectivity of the light output side of the packaged light-emitting unit 1 .
  • the material of the first film layer 6 includes a mixture of pigment and diffusion particles; the pigment includes any one of carbon powder and organic black, and the material of the diffusion particles includes any one or more of TiO 2 , ZrO 2 and SiO 2 , but is not limited thereto.
  • the color of the first film layer 6 in the embodiment of the present application is gray.
  • the gray first film layer 6 can reduce the light reflectivity while reducing the absorption of light emitted by the light-emitting chip 4, which is beneficial to improve the light extraction efficiency.
  • the packaging unit 5 also includes a second film layer 7 located at least between the first film layer 6 and at least one light-emitting chip 4 and covering at least one light-emitting chip 4; the refractive index of the second film layer 7 is greater than the refractive index of the first film layer 6.
  • the first film layer 6 and the second film layer 7 form a micro-lens pattern (MLP) for improving the light output efficiency of the light-emitting chip 4 through the coordination of structure and refractive index; specifically, as shown in Figure 1, most of the lateral light of the light-emitting chip 4 can be emitted from the second film layer 7 with a larger refractive index to the side 8 of the first film layer 6 with a smaller refractive index, and is totally reflected on the side 8 of the first film layer 6 and emitted through the second film layer 7. In this process, the lateral light moves closer to the forward viewing angle direction, which effectively improves the light output rate in the forward viewing angle direction.
  • MLP micro-lens pattern
  • the first film layer 6 has a light absorption effect, which is used to reduce the reflectivity of external light on the light-emitting side of the packaged light-emitting unit 1; and the first film layer 6 and the second film layer 7 with different refractive indices can improve the light-emitting efficiency of the packaged light-emitting unit 1 through structural coordination.
  • the refractive index of the first film layer 6 is in the range of 1.4 to 1.5; and the refractive index of the second film layer 7 is greater than 1.6.
  • the distance D between the orthographic projection of the first film layer 6 on the substrate unit 2 and the orthographic projection of the light-emitting chip 4 on the substrate unit 2 ranges from 0.5 um to 5 um.
  • the thickness of the first film layer 6 is greater than or equal to the thickness of the light emitting chip 4, and the thickness of the first film layer 6 ranges from 2um to 20um. In a specific embodiment, the difference between the thickness of the first film layer 6 and the thickness of at least one light emitting chip 4 ranges from 1um to 5um.
  • the thickness described in the present application refers to the height in a direction perpendicular to the substrate unit 2 .
  • the angle ⁇ between the side surface 8 of the first film layer 6 close to at least one light-emitting chip 4 and the bottom surface 9 of the first film layer 6 ranges from 30° to 75°. In a specific embodiment, the angle ⁇ between the side surface 8 of the first film layer 6 close to at least one light-emitting chip 4 and the bottom surface 9 of the first film layer 6 ranges from 30° to 45°.
  • the optical density OD of the first film layer 6 per 1 micron thickness is greater than 0.2.
  • the second film layer 7 is transparent and has a high refractive index.
  • the material of the second film layer 7 includes any one of an acrylic monomer containing a benzene ring and a photoresist doped with refractive particles 11, but is not limited thereto; wherein the material of the refractive particles 11 includes at least one of TiO 2 and ZrO 2. It is understandable that the second film layer 7 may contain refractive particles 11 with a high refractive index, or may not contain them, which is not limited here.
  • the accompanying drawings show that the second film layer 7 contains refractive particles 11 with a high refractive index, but is not limited thereto.
  • the second film layer 7 has a pencil hardness greater than H, and the water drop contact angle on the second film layer 7 is greater than 100°, so that the second film layer 7 has a higher hardness and has anti-fouling and scratch-resistant functions, which can effectively protect the driving circuit unit 3 and the light-emitting chip 4.
  • the thickness of the second film layer 7 is in the range of 10 um to 50 um.
  • the first film layer 6 is disposed around at least one light emitting chip 4; as shown in FIG. 1 , the second film layer 7 also extends to the side of the first film layer 6 away from the driving circuit unit 3, and the portion of the second film layer 7 corresponding to the at least one light emitting chip 4 is arc-shaped and convex in a direction away from the at least one light emitting chip 4.
  • the second film layer 7 that is arc-shaped and convex in a direction away from the at least one light emitting chip 4 can enhance the light gathering effect, which is conducive to further improving the light emitting effect of the packaged light emitting unit 1.
  • the packaging unit 5 may further include an adhesive layer covering the first film layer 6 and the second film layer 7 .
  • the packaged light-emitting unit 1 in the embodiment of the present application has the following advantages: On the one hand, the light emitting chip (e.g., Micro LED chip) 4 and the driving circuit unit 3 are integrated together as a whole that can work independently, so that multiple packaged light emitting units 1 can be spliced and bonded to the backplane to achieve the display or backlight function of display products of different sizes; On the other hand, since the driving circuit unit 3 in the packaged light-emitting unit 1 has driving and IC functions, the backplane design can be simplified when the packaged light-emitting unit 1 is used for display or backlight, which is beneficial to significantly reduce the cost of developing new products and improve the backplane yield; On the other hand, when the light emitting chip 4 is a Micro LED chip, since the size of the packaged light emitting unit 1 is much larger than that of the Micro LED chip, the packaged light emitting unit 1 can be binned using existing binning equipment (such as Mini LED binning equipment), thus solving the problem of difficulty in b
  • the packaging unit 5 in the packaged light-emitting unit 1 includes a first film layer 6 with a low refractive index and a second film layer 7 with a high refractive index, and the angle ⁇ between the side surface 8 of the first film layer 6 close to the light-emitting chip 4 and the bottom surface 9 of the first film layer 6 is in the range of 30° to 75°, so that the first film layer 6 can reduce the light reflectivity of external light on the light-emitting side of the packaged light-emitting unit 1, and the first film layer 6 and the second film layer 7 can cooperate to effectively improve the light-emitting efficiency of the packaged light-emitting unit 1. Therefore, when the packaged light-emitting unit 1 is used for direct display, it is beneficial to improve the contrast.
  • the embodiment of the present application further provides a display device 12, which includes a backplane 13 and a plurality of packaged light-emitting units 1 described in the above embodiments spliced and arranged on the backplane 13; wherein the backplane 13 includes a passive drive (PM) circuit (not shown in the figure), and the drive circuit unit 3 is electrically connected to the passive drive circuit.
  • PM passive drive
  • the passive drive circuit is used to control the normal operation of the drive circuit unit 3.
  • a plurality of packaged light-emitting units 1 spliced and arranged on the back plate 13 are used as a backlight source.
  • the display device 12 also includes a display panel 14, such as a liquid crystal display panel, but not limited to this; a plurality of packaged light-emitting units 1 spliced and arranged on the back panel 13 serve as the backlight source of the display panel 14; the light-emitting color of each light-emitting chip 4 is the same, for example, each light-emitting chip 4 emits white light, but not limited to this.
  • a display panel 14 such as a liquid crystal display panel, but not limited to this
  • a plurality of packaged light-emitting units 1 spliced and arranged on the back panel 13 serve as the backlight source of the display panel 14
  • the light-emitting color of each light-emitting chip 4 is the same, for example, each light-emitting chip 4 emits white light, but not limited to this.
  • the plurality of packaged light-emitting units 1 spliced and arranged on the back plate 13 may be an edge-entry backlight source or a direct-entry backlight source, which is not limited here.
  • the display device 12 further includes a color conversion layer 15 located on the light emitting side of the plurality of packaged light emitting units 1; specifically, each light emitting chip 4 emits blue light, but is not limited thereto; the color conversion layer 15 can convert the light emitted by the light emitting chip 4 into red light and green light to achieve a three-primary color display.
  • the driving circuit unit 3 in the packaged light-emitting unit 1 takes into account both driving and IC functions, only passive driving wiring, for example, needs to be arranged in the backplane 13 , which effectively simplifies the design of the backplane 13 .
  • the size of the backlight source of the display device 12 can be changed by changing the number of packaged light-emitting units 1, and the corresponding structural change of the backplane 13 is small, which is beneficial to simplify the design of the backplane 13 while realizing the backlight function of display products of different sizes, thereby helping to significantly reduce the cost of developing new products and improve the yield of the backplane 13;
  • the packaged light-emitting unit 1 can use the existing binning equipment (such as Mini LED binning equipment) for binning operations, which solves the problem of difficult binning of Micro LED chips and high equipment cost;
  • the packaging unit 5 in the packaged light-emitting unit 1 can not only reduce the light reflectivity of external light on the light-emitting side of the packaged light-emitting unit 1, but also effectively improve the light-emitting efficiency of the packaged light-emitting unit 1.
  • the embodiment of the present application further provides a display device 12′, which is different from the display device 12 described in the above embodiment in that a plurality of packaged light-emitting units 1 spliced and arranged on a back panel 13′ are used for direct display.
  • each light emitting chip 4 includes any one of red, green and blue, and the light emitting colors of at least some adjacent light emitting chips 4 are different.
  • the display device 12' in the embodiment of the present application may also include other conventional structures, which are not described in detail here.
  • the size of the display device 12' can be changed by changing the number of packaged light-emitting units 1, and the corresponding structural change of the backplane 13' is small, which is conducive to simplifying the design of the backplane 13' while realizing the backlight function of display products of different sizes, thereby facilitating a significant reduction in the cost of developing new products and improving the yield of the backplane 13';
  • the packaged light-emitting unit 1 can use the existing binning equipment (such as Mini LED binning equipment) for binning operations, which solves the problem of difficult binning of Micro LED chips and high equipment cost;
  • the packaging unit 5 in the packaged light-emitting unit 1 can not only reduce the light reflectivity of external light on the light-emitting side of the packaged light-emitting unit 1, but also effectively improve the light-emitting efficiency of the packaged light-emitting unit 1, which is conduc
  • an embodiment of the present application provides a method for manufacturing the packaged light-emitting unit in the aforementioned embodiment, and the manufacturing method includes steps S601 to S606 .
  • S601 Provide a substrate; wherein the substrate includes a plurality of preset areas arranged at intervals.
  • the base substrate 16 includes a plurality of preset areas 17 arranged at intervals.
  • the material of the base substrate 16 includes glass, but is not limited thereto.
  • a driving circuit unit 3 located on the base substrate 16 is formed in each preset area 17 .
  • the driving circuit unit 3 may cover the entire preset area 17 , or may be located only in a partial area of the preset area 17 .
  • S603 forming at least one light-emitting chip electrically connected to the driving circuit unit in each preset area; wherein the at least one light-emitting chip is overlapped with the driving circuit unit, or is arranged side by side with the driving circuit unit on the substrate.
  • a light emitting chip 4 electrically connected to the driving circuit unit 3 is formed in each preset area 17, and the light emitting chip 4 is arranged overlapping with the driving circuit unit 3.
  • the number of light emitting chips 4 in each preset area 17 is not limited to one, and the positional relationship between the light emitting chip 4 and the driving circuit unit 3 is not limited to that shown in b of FIG. 16 , and can also be arranged side by side as shown in FIGS. 2 to 11 .
  • a patterned first film layer is formed in each preset area; wherein the first film layer is provided with an opening exposing the light-emitting chip, the angle between the side surface of the first film layer close to at least one light-emitting chip and the bottom surface of the first film layer is an acute angle, and the reflectivity of the first film layer to light is lower than the reflectivity of the driving circuit unit to light.
  • a patterned first film layer 6 is formed in each preset area 17 ; wherein the first film layer 6 is located on the base substrate 16 and the driving circuit unit 3 and the spacing between the first film layer 6 and the light emitting chip 4 is greater than 0.
  • the first film layer 6 can be manufactured by using an exposure and development process.
  • S605 forming a second film layer in each preset region that covers the light-emitting chip and is at least located between the first film layer and the light-emitting chip; wherein the refractive index of the second film layer is greater than the refractive index of the first film layer, and the first film layer and the second film layer constitute a packaging unit.
  • a second film layer 7 is formed in each preset area 17 , covering the light emitting chip 4 and being at least located between the first film layer 6 and the light emitting chip 4 .
  • the second film layer 7 can be manufactured by photolithography or IJP (inkjet printing) process.
  • S606 Cutting is performed along the edge of each preset area to form a plurality of packaged light-emitting units.
  • a plurality of packaged light-emitting units 1 are formed by cutting along the edge of each preset area 17 .
  • the base substrate 16 in each preset area 17 is used as a substrate unit in the packaged light-emitting unit 1 after being cut.
  • each film layer in the packaged light-emitting unit 1 can be referred to the description in the aforementioned embodiment, which will not be repeated here.
  • the light emitting chip 4 and the driving circuit unit 3 are integrated on the substrate 16, and then processed through packaging and cutting to form an independent package (such as the packaged light emitting unit 1 shown in FIG. 1), and each package can work independently.
  • the encapsulated light-emitting unit 1 manufactured in the embodiment of the present application has the following advantages: On the one hand, multiple packaged light-emitting units 1 can be spliced and bonded to the backplane to achieve display or backlight functions of display products of different sizes; On the other hand, since the driving circuit unit 3 in the packaged light-emitting unit 1 has driving and IC functions, the backplane design can be simplified when the packaged light-emitting unit 1 is used for display or backlight, which is beneficial to significantly reduce the cost of developing new products and improve the backplane yield; On the other hand, when the light emitting chip 4 is a Micro LED chip, the packaged light emitting unit 1 can use the existing binning equipment (such as Mini LED binning equipment) to perform binning operations, which solves the problem of difficult binning of Micro LED chips and high equipment cost; On the other hand, the encapsulation unit 5 in the encapsulated light-emitting unit 1 can not only reduce the light reflectivity of the external light on the light-e

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

公开一种封装发光单元、显示装置和封装发光单元的制作方法,封装发光单元至少包括衬底单元、位于衬底单元上的驱动电路单元、以及与驱动电路单元叠加或者并排设置的至少一个发光芯片;其中,至少一个发光芯片与驱动电路单元电连接。

Description

封装发光单元、显示装置和封装发光单元的制作方法 技术领域
本申请涉及显示技术领域,具体涉及一种封装发光单元、显示装置和封装发光单元的制作方法。
背景技术
微发光二极管(Micro LED)因为具有自发光无需背光源的特性,且具有节能、机构简易、体积小、以及薄型等优势,是继OLED(Organic Light-Emitting Diode,有机发光二极管)之后另一具轻薄及省电优势的显示技术。Micro LED作为新一代的显示技术,比现有的OLED亮度更高、发光效率更好且功率更低。近年来,由于具有上述优异的特性,Micro LED显示技术受到越来越广泛的关注。
但是,Micro LED由于芯片尺寸小且光学分Bin(Bin Code档次范围)困难,目前业内还未找到很好的针对Micro LED芯片进行分Bin的方法。同时,开发相应的TFT(Thin Film Transistor,薄膜晶体管)基板(或背板)时发现,当需求的屏幕尺寸发生较小变化时就需要改变用于制作新的TFT基板的Mask(光罩)的设计,导致面板厂开发新产品的成本一直居高不下且不利于保证TFT基板的良率。
技术问题
本申请提供一种封装发光单元、显示装置和封装发光单元的制作方法,可以通过将多个封装发光单元拼接键合在结构简单的背板上实现不同尺寸的显示产品的显示或背光功能,使得新产品的开发成本大幅降低且背板良率有保证,还可以解决小尺寸发光芯片分Bin困难的问题。
技术解决方案
第一方面,本申请提供一种封装发光单元,用于拼接设置在背板上,所述封装发光单元至少包括:
衬底单元;
驱动电路单元,位于所述衬底单元上;
至少一个发光芯片,位于所述驱动电路单元上,或者与所述驱动电路单元并排设置在所述衬底基板上;其中,所述至少一个发光芯片与所述驱动电路单元电连接。
在本申请所提供的封装发光单元中,所述封装发光单元还包括位于所述驱动电路单元远离所述衬底单元一侧的第一膜层;所述第一膜层上设有裸露出所述至少一个发光芯片的开口;
其中,所述第一膜层对光线的反射率小于所述驱动电路单元对光线的反射率。
在本申请所提供的封装发光单元中,所述第一膜层的颜色为灰色。
在本申请所提供的封装发光单元中,所述开口的侧壁与所述发光芯片之间的间距大于0;所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角为锐角;
所述封装发光单元还包括至少位于所述第一膜层和所述发光芯片之间且覆盖所述发光芯片的第二膜层;所述第二膜层的折射率大于所述第一膜层的折射率。
在本申请所提供的封装发光单元中,所述第一膜层的折射率范围为1.4至1.5,所述第二膜层的折射率大于1.6。
在本申请所提供的封装发光单元中,所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角范围为30°至75°。
在本申请所提供的封装发光单元中,所述第一膜层在所述衬底单元上的正投影与所述发光芯片在所述衬底单元上的正投影之间的间距范围为0.5um至5um。
在本申请所提供的封装发光单元中,所述第一膜层的厚度大于或等于所述发光芯片的厚度,且所述第一膜层的厚度范围为2um至20um,且每1微米厚度的所述第一膜层的光学密度大于0.2。
在本申请所提供的封装发光单元中,所述第一膜层与所述发光芯片之间的厚度差的范围为1um至5um。
在本申请所提供的封装发光单元中,所述第二膜层具有大于H的铅笔硬度,且所述第二膜层上的水滴接触角大于100°。
在本申请所提供的封装发光单元中,所述第二膜层的厚度范围为10um至50um。
在本申请所提供的封装发光单元中,所述第二膜层还延伸至所述第一膜层远离所述驱动电路单元的一侧,且所述第二膜层与所述发光芯片对应的部分朝远离所述发光芯片的方向呈弧形凸出。
第二方面,本申请还提供一种显示装置,包括背板和拼接设置在所述背板上的多个封装发光单元;
所述封装发光单元至少包括衬底单元、位于所述衬底单元上的驱动电路单元、以及至少一个发光芯片;所述至少一个发光芯片位于所述驱动电路单元上,或者与所述驱动电路单元并排设置在所述衬底基板上;所述至少一个发光芯片与所述驱动电路单元电连接;
其中,所述背板包括被动驱动电路,所述驱动电路单元与所述被动驱动电路电连接。
在本申请所提供的显示装置中,每个所述发光芯片的发光颜色相同;或者,
每个所述发光芯片的发光颜色包括红色、绿色和蓝色中的任意一种,且至少有部分相邻设置的所述发光芯片的发光颜色不同。
在本申请所提供的显示装置中,所述封装发光单元还包括位于所述驱动电路单元远离所述衬底单元一侧的第一膜层;所述第一膜层上设有裸露出所述至少一个发光芯片的开口;
其中,所述第一膜层对光线的反射率小于所述驱动电路单元对光线的反射率。
在本申请所提供的显示装置中,所述第一膜层的颜色为灰色。
在本申请所提供的显示装置中,所述开口的侧壁与所述发光芯片之间的间距大于0;所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角为锐角;
所述封装发光单元还包括至少位于所述第一膜层和所述发光芯片之间且覆盖所述发光芯片的第二膜层;所述第二膜层的折射率大于所述第一膜层的折射率。
在本申请所提供的显示装置中,所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角范围为30°至75°。
在本申请所提供的显示装置中,所述第二膜层还延伸至所述第一膜层远离所述驱动电路单元的一侧,且所述第二膜层与所述发光芯片对应的部分朝远离所述发光芯片的方向呈弧形凸出。
第三方面,本申请还提供一种封装发光单元的制作方法,包括以下步骤:
提供衬底基板;其中,所述衬底基板包括多个间隔设置的预设区域;
在每个所述预设区域中形成位于所述衬底基板上的驱动电路单元;
在每个所述预设区域中形成与所述驱动电路单元电连接的至少一个发光芯片;其中,所述至少一个发光芯片与所述驱动电路单元叠加设置,或与所述驱动电路单元并排设置在所述衬底基板上;以及
沿每个所述预设区域的边缘进行切割,以形成多个封装发光单元。
有益效果
相较于现有技术,本申请提供的封装发光单元、显示装置和封装发光单元的制作方法,一方面,将发光芯片和驱动电路单元集成在一起作为可以独立工作的整体,使得多个封装发光单元可以拼接键合到背板上,以实现不同尺寸显示产品的显示或背光功能;另一方面,由于封装发光单元中的驱动电路单元具备驱动和IC功能,使得封装发光单元用于显示或背光时,可以简化背板设计,有利于大幅度降低开发新产品的成本和提高背板良率;另一方面,由于封装发光单元的尺寸远大于发光芯片的尺寸,使得封装发光单元可以沿用现有的分Bin设备进行分Bin作业,解决了Micro LED芯片分Bin困难且设备造价高的问题。
附图说明
图1为本申请实施例提供的一种封装发光单元的部分截面结构示意图。
图2至图11为本申请实施例提供的封装发光单元中发光芯片与驱动电路层的不同位置关系示意图。
图12为本申请实施例提供的一种显示装置的部分截面结构示意图。
图13为本申请实施例提供的另一种显示装置的部分截面结构示意图。
图14为本申请实施例提供的另一种显示装置的部分截面结构示意图。
图15为本申请实施例提供的一种封装发光单元的制作方法的流程示意图。
图16为本申请实施例提供的一种封装发光单元的制作方法的结构示意图。
图17为图16所示的制作方法制作得到的封装发光单元的俯视图。
图18为图17所示的封装发光单元中第一膜层与发光芯片的位置关系示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1所示,本申请实施例提供了一种封装发光单元1,封装发光单元1包括衬底单元2、驱动电路单元3、至少一个发光芯片4和封装单元5。驱动电路单元3位于衬底单元2上;至少一个发光芯片4与驱动电路单元3叠加设置,或者与驱动电路单元3并排设置在衬底单元2上;其中,至少一个发光芯片4与驱动电路单元3电连接。可以理解的,图1仅示出一个发光芯片4与驱动电路单元3并排设置的情况,但发光芯片4的数量以及发光芯片4与驱动电路单元3的位置关系不限于此。
具体的,衬底单元2的材料包括玻璃,但不限于此。
需要说明的是,当发光芯片4与驱动电路单元3叠加设置时,发光芯片4位于驱动电路单元3远离衬底单元2的一侧,且直接与驱动电路单元3电连接;当发光芯片4与驱动电路单元3并排设置时,发光芯片4与驱动电路单元3间隔设置,且发光芯片4通过设置在衬底单元2中的连接走线与驱动电路单元3电连接。
具体的,驱动电路单元3可以驱动至少一个发光芯片4发光,还可以兼顾IC的功能;因此,本申请实施例中的封装发光单元1将至少一个发光芯片4与驱动电路单元3集成在一起,使得封装发光单元1中的至少一个发光芯片4与驱动电路单元3作为整体被用于直接显示或背光功能。
由于封装发光单元1中的驱动电路单元3兼顾驱动和IC功能,当多个封装发光单元1被拼接键合到背板上用于实现不同尺寸显示产品的显示或背光功能时,原本结构复杂的背板因为不需要设置驱动电路和IC而变得简单。可以理解的,当显示产品的尺寸变化时,只需要对背板结构做简单的修改就可以满足要求,使得用于制作背板的Mask(光罩)费用大幅度降低,有利于降低开发新产品的成本以及提升背板良率。
可以理解的,本申请实施例所述的背板为设有简单走线的基板,类似于现有技术中的TFT基板,但是,与TFT基板不同的是,本申请中的背板中不需要设置TFT等器件,只需要设置简单的走线,例如被动驱动(PM)走线。
具体的,驱动电路单元3可以是一个整体模块,也可以由多个间隔设置的分支模块组成。例如,在一具体实施方式中,如图2至图7所示,驱动电路单元3为一个整体模块;在另一具体实施方式中,如图8至图11所示,驱动电路单元3由两个或三个间隔设置的分支模块10组成。
需要说明的是,当驱动电路单元3由多个间隔设置的分支模块组成时,多个分支模块之间通过设置在衬底单元2中的连接走线实现电连接。
具体的,发光芯片4包括微发光二极管(Micro LED)芯片,但不限于此。
通常,尺寸达到Mini级别的LED芯片要做分Bin处理,现有设备可以满足要求。但是,由于Micro LED的尺寸非常小(通常小于50um),使得Micro LED芯片在抓放的过程中需要比较精确的的机械和图像识别***,而测试则需要微探针才能够完成,这使得设备的造价变得非常高,而且测试速度也很有限。并且,目前基于Micro LED芯片的分Bin设备还未开发出来。而本申请实施例将Micro LED芯片(发光芯片4)与驱动电路单元3集成在衬底单元2上,形成独立工作的封装发光单元1;由于封装发光单元1的尺寸远大于Micro LED芯片的尺寸,使得封装发光单元1可以沿用现有的分Bin设备(例如Mini LED的分Bin设备)进行分Bin作业,解决了Micro LED芯片分Bin困难且设备造价高的问题。
具体的,封装发光单元1中的发光芯片4的数量可以是一个,也可以是多个。如图2至图11所示,在一些具体实施方式中,每个封装发光单元1中的发光芯片4的数量为一个,在另一些具体实施方式中,每个封装发光单元1中的发光芯片4的数量为三个。
具体的,至少一个发光芯片4可以与驱动电路单元3叠加设置在衬底单元2上,还可以与驱动电路单元3并排设置在衬底单元2上。如图2至图11所示,当至少一个发光芯片4与驱动电路单元3并排设置在衬底单元2上时,至少一个发光芯片4可以位于驱动电路单元3的任意一侧,且不限于图2至图11中列举的几种位置关系。
具体的,当驱动电路单元3由多个间隔设置的分支模块组成时,多个分支模块可以围绕一个或多个发光芯片4设置,或均匀的分布在一个或多个发光芯片4的周围。
例如,在一具体实施方式中,如图8和图9所示,驱动电路单元3由两个间隔设置的分支模块10组成,两个分支模块10对称分布在三个并排设置的发光芯片4的相对设置的两侧。在另一具体实施方式中,如图10和图11所示,驱动电路单元3由三个间隔设置的分支模块10组成,其中两个分支模块10对称分布在三个并排设置的发光芯片4的相对设置的两侧,另一个分支模块10位于三个并排设置的发光芯片4的另一侧。
可以理解的,当封装发光单元1用于直接显示时,每个封装发光单元1可以包括分别发红光、绿光和蓝光的三个发光芯片4;或者,每个封装发光单元1包括一个发光芯片4,且相邻的三个封装发光单元1中的发光芯片4分别发红光、绿光和蓝光。当封装发光单元1用于背光时,每个封装发光单元1中的发光芯片4数量不做限制,且每个发光芯片4的发光颜色相同,例如每个发光芯片4发蓝光或白光,但不限于此。
具体的,封装单元5至少覆盖衬底单元2和部分驱动电路单元3。
在一具体实施方式中,封装单元5包括位于驱动电路单元3远离衬底单元2一侧的第一膜层6;第一膜层6上设有裸露出发光芯片4的开口;第一膜层6对光线的反射率小于驱动电路单元3对光线的反射率。
当封装发光单元1被键合到背板上用于显示时,由于封装发光单元1中的驱动电路单元3占据的面积较大,驱动电路单元3中的金属层将导致封装发光单元1的出光侧的光反射率较大,本申请实施例通过在驱动电路单元3上覆盖第一膜层6可以降低封装发光单元1的出光侧的光反射率。
具体的,开口的侧壁与发光芯片之间的间距大于或等于0,也就是说,第一膜层6在衬底单元2上的正投影与发光芯片4在衬底单元2上的正投影之间的间距大于或等于0。可以理解的,第一膜层6覆盖在除了发光芯片4之外的其他位置上,在不影响发光芯片4的出光效率的基础上降低驱动电路单元3上的光反射率。
可以理解的,由于开口贯穿第一膜层6,故开口的侧壁等同于第一膜层6靠近至少一个发光芯片4一侧的侧面8。
具体的,第一膜层6的颜色为灰色的,可以将外界射入的光吸收以降低封装发光单元1的出光侧的光反射率。
具体的,第一膜层6材料包含颜料和扩散粒子的混合物;颜料包括碳粉和有机黑中的任意一种,扩散粒子的材料包括TiO 2、ZrO 2和SiO 2中的任意一种或多种,但不限于此。
可以理解的,本申请实施例中的第一膜层6的颜色为灰色的,用于与黑色的第一膜层6相比,灰色的第一膜层6可以在降低光反射率的同时减少对发光芯片4发出的光的吸收,从而有利于提高出光效率。
在另一具体实施方式中,如图1所示,第一膜层6上的开口的侧壁与发光芯片4之间的间距大于0,且第一膜层6靠近至少一个发光芯片4一侧的侧面8与第一膜层6的底面9之间的夹角θ为锐角;封装单元5还包括至少位于第一膜层6和至少一个发光芯片4之间且覆盖至少一个发光芯片4的第二膜层7;第二膜层7的折射率大于第一膜层6的折射率。
可以理解的,第一膜层6和第二膜层7通过结构和折射率的配合构成了用于提高发光芯片4出光效率的微镜结构(Micro-lens Pattern,MLP);具体的,如图1所示,发光芯片4侧向的大部分光线都可以从折射率较大的第二膜层7射到折射率较小的第一膜层6的侧面8上,并在第一膜层6的侧面8发生全反射,并通过第二膜层7射出,在该过程中,侧向光向正向视角方向靠拢,有效的提高了正向视角方向的出光率。
因此,本申请实施例中,第一膜层6具有吸光作用,用于降低外界光在封装发光单元1的出光侧的反射率;且折射率不同的第一膜层6和第二膜层7通过结构上的配合可以提高封装发光单元1的出光效率。
具体的,第一膜层6的折射率范围为1.4至1.5;第二膜层7的折射率大于1.6。
具体的,如图18所示,第一膜层6在衬底单元2上的正投影与发光芯片4在衬底单元2上的正投影之间的间距D的范围为0.5um至5um。
具体的,第一膜层6的厚度大于或等于发光芯片4的厚度,且第一膜层6的厚度范围为2um至20um。在一具体实施方式中,第一膜层6的厚度与至少一个发光芯片4的厚度差的范围为1um至5um。
可以理解的,本申请中所述的厚度是指在垂直于衬底单元2方向上的高度。
具体的,第一膜层6靠近至少一个发光芯片4一侧的侧面8与第一膜层6的底面9之间的夹角θ范围为30°至75°。在一具体实施方式中,第一膜层6靠近至少一个发光芯片4一侧的侧面8与第一膜层6的底面9之间的夹角θ范围为30°至45°。
具体的,在第一膜层6的厚度方向上,每1微米厚度的第一膜层6的光学密度OD大于0.2。
具体的,第二膜层7为透明的且具有较高的折射率。在一具体实施方式中,第二膜层7的材料包括含有苯环的丙烯酸单体和掺杂有折射粒子11的光刻胶中的任意一种,但不限于此;其中,折射粒子11的材料包括TiO 2和ZrO 2中的至少一种。可以理解的,第二膜层7中可以包含高折射率的折射粒子11,也可以不含包,此处不作限制。附图中示出了第二膜层7中包含高折射率的折射粒子11,但不限于此。
在一具体实施方式中,第二膜层7具有大于H的铅笔硬度,且第二膜层7上的水滴接触角大于100 °,使得第二膜层7具有较高的硬度,同时具有防污和耐刮擦功能,可以有效的保护驱动电路单元3和发光芯片4。
具体的,第二膜层7的厚度范围为10um至50um。
在一具体实施方式中,如图1和图18所示,第一膜层6围绕至少一个发光芯片4设置;如图1所示,第二膜层7还延伸至第一膜层6远离驱动电路单元3的一侧,且第二膜层7与至少一个发光芯片4对应的部分朝远离至少一个发光芯片4的方向呈弧形凸出。朝远离至少一个发光芯片4的方向呈弧形凸出的第二膜层7可以加强光线聚拢作用,有利于进一步提高封装发光单元1的出光效果。
当然,在其他实施方式中,封装单元5还可以包括覆盖第一膜层6和第二膜层7的胶层。
综上,本申请实施例中的封装发光单元1具有以下优势:
一方面,将发光芯片(例如Micro LED芯片)4和驱动电路单元3集成在一起作为可以独立工作的整体,使得多个封装发光单元1可以拼接键合到背板上,以实现不同尺寸显示产品的显示或背光功能;
另一方面,由于封装发光单元1中的驱动电路单元3具备驱动和IC功能,使得封装发光单元1用于显示或背光时,可以简化背板设计,有利于大幅度降低开发新产品的成本和提高背板良率;
另一方面,当发光芯片4为Micro LED芯片时,由于封装发光单元1的尺寸远大于Micro LED芯片的尺寸,使得封装发光单元1可以沿用现有的分Bin设备(例如Mini LED的分Bin设备)进行分bin作业,解决了Micro LED芯片分Bin困难且设备造价高的问题;
另一方面,封装发光单元1中的封装单元5包括具有降低反射作用且折射率较小的第一膜层6和折射率较高的第二膜层7,且第一膜层6靠近发光芯片4一侧的侧面8与第一膜层6的底面9之间的夹角θ范围为30°至75°,使得第一膜层6可以降低外界光线在封装发光单元1的出光侧的光反射率,且第一膜层6和第二膜层7配合可以有效提高封装发光单元1的出光效率,因此,当封装发光单元1用于直接显示时,有利于提高对比度。
结合图1、图12和图13所示,本申请实施例还提供了一种显示装置12,显示装置12包括背板13和拼接设置在背板13上的多个前述实施例所述的封装发光单元1;其中,背板13包括被动驱动(PM)电路(图中为示出),驱动电路单元3与被动驱动电路电连接。可以理解的,被动驱动电路用于控制驱动电路单元3正常工作。
具体的,拼接设置在背板13上的多个封装发光单元1用作背光源。
在一具体实施方式中,如图12所示,显示装置12还包括显示面板14,例如液晶显示面板,但不限于此;多个拼接设置在背板13上的封装发光单元1作为显示面板14的背光源;每个发光芯片4的发光颜色相同,例如每个发光芯片4发白光,但不限于此。
具体的,多个拼接设置在背板13上的封装发光单元1可以为侧入式背光源,也可以为直入式背光源,此处不做限制。
在另一具体实施方式中,如图13所示,显示装置12还包括位于多个封装发光单元1的出光侧的色转换层15;具体的,每个发光芯片4发蓝光,但不限于此;色转换层15可以将发光芯片4发出的光转换成红光和绿光,以实现三基色显示。
由于封装发光单元1中的驱动电路单元3兼顾驱动和IC功能,使得背板13中只需要设置例如被动驱动的走线即可,有效的简化了背板13设计。
本申请实施例中,一方面,显示装置12的背光源的尺寸可以通过改变封装发光单元1的数量来改变,且对应的背板13的结构变动较小,有利于在实现不同尺寸显示产品的背光功能的同时简化背板13设计,从而有利于大幅度降低开发新产品的成本和提高背板13良率;另一方面,当发光芯片4为Micro LED芯片时,封装发光单元1可以沿用现有的分Bin设备(例如Mini LED的分Bin设备)进行分bin作业,解决了Micro LED芯片分Bin困难且设备造价高的问题;另一方面,封装发光单元1中的封装单元5既可以降低外界光线在封装发光单元1的出光侧的光反射率,还可以有效提高封装发光单元1的出光效率。
结合图1和图14所示,本申请实施例还提供了一种显示装置12’,与上述实施例所述的显示装置12不同的在于,拼接设置在背板13’上的多个封装发光单元1用于直接显示。
具体的,每个发光芯片4的发光颜色包括红色、绿色和蓝色中的任意一种,且至少有部分相邻设置的发光芯片4的发光颜色不同。
可以理解的,本申请实施例中的显示装置12’还可以包括其他常规结构,此处不作具体介绍。
本申请实施例中,一方面,显示装置12’的尺寸可以通过改变封装发光单元1的数量来改变,且对应的背板13’的结构变动较小,有利于在实现不同尺寸显示产品的背光功能的同时简化背板13’设计,从而有利于大幅度降低开发新产品的成本和提高背板13’良率;另一方面,当发光芯片4为Micro LED芯片时,封装发光单元1可以沿用现有的分Bin设备(例如Mini LED的分Bin设备)进行分bin作业,解决了Micro LED芯片分Bin困难且设备造价高的问题;另一方面,封装发光单元1中的封装单元5既可以降低外界光线在封装发光单元1的出光侧的光反射率,还可以有效提高封装发光单元1的出光效率,有利于提高显示装置12’的显示对比度。
如图15和图16所示,本申请实施例提供了一种前述实施例中的封装发光单元的制作方法,制作方法包括步骤S601至S606。
S601:提供衬底基板;其中,衬底基板包括多个间隔设置的预设区域。
具体的,如图16中的a所示,衬底基板16包括多个间隔设置的预设区域17。衬底基板16的材料包括玻璃,但不限于此。
S602:在每个预设区域中形成位于衬底基板上的驱动电路单元。
具体的,如图16中的a所示,每个预设区域17中形成有位于衬底基板16上的驱动电路单元3。
需要说明的是,驱动电路单元3可以覆盖整个预设区域17,也可以仅位于预设区域17中的部分区域。
S603:在每个预设区域中形成与驱动电路单元电连接的至少一个发光芯片;其中,至少一个发光芯片与驱动电路单元叠加设置,或与驱动电路单元并排设置在衬底基板上。
具体的,如图16中的b所示,每个预设区域17中形成与驱动电路单元3电连接的一个发光芯片4,且发光芯片4与驱动电路单元3叠加设置。但是,可以理解的,每个预设区域17中的发光芯片4的数量不限于一个,且发光芯片4与驱动电路单元3的位置关系不限于图16中的b所示,还可以如图2至图11所示的并排设置。
S604:在每个预设区域中形成图案化的第一膜层;其中,第一膜层上设有裸露出发光芯片的开口,第一膜层靠近至少一个发光芯片一侧的侧面与第一膜层的底面之间的夹角为锐角,且第一膜层对光线的反射率小于驱动电路单元对光线的反射率。
具体的,如图16中的c以及图18所示,每个预设区域17中形成有图案化的第一膜层6;其中,第一膜层6位于衬底基板16和驱动电路单元3上且与发光芯片4之间的间距大于0。
具体的,第一膜层6可以采用曝光显影工艺制作得到。
S605:在每个预设区域中形成覆盖发光芯片且至少位于第一膜层和发光芯片之间的第二膜层;其中,第二膜层的折射率大于第一膜层的折射率,第一膜层和第二膜层构成封装单元。
具体的,如图16中的d所示,每个预设区域17中形成有覆盖发光芯片4且至少位于第一膜层6和发光芯片4之间的第二膜层7。
具体的,第二膜层7可以通过光刻或者IJP(喷墨打印)工艺制作得到。
S606:沿每个预设区域的边缘进行切割,以形成多个封装发光单元。
具体的,结合图16中的d和图17所示,沿每个预设区域17的边缘进行切割后形成多个封装发光单元1。
可以理解的,每个预设区域17中的衬底基板16经过切割之后作为封装发光单元1中的衬底单元。
具体的,关于封装发光单元1中的每个膜层的特点可以参考前述实施例中的描述,此处不再赘述。
本申请实施例中,将发光芯片4和驱动电路单元3集成在衬底基板16上,然后经过封装切割等处理工艺,形成独立的封装体(例如图1所示封装发光单元1),且每个封装体可以独立的工作。
本申请实施例制作得到的封装发光单元1具有以下优势:
一方面,多个封装发光单元1可以拼接键合到背板上,以实现不同尺寸显示产品的显示或背光功能;
另一方面,由于封装发光单元1中的驱动电路单元3具备驱动和IC功能,使得封装发光单元1用于显示或背光时,可以简化背板设计,有利于大幅度降低开发新产品的成本和提高背板良率;
另一方面,当发光芯片4为Micro LED芯片时,封装发光单元1可以沿用现有的分Bin设备(例如Mini LED的分Bin设备)进行分bin作业,解决了Micro LED芯片分Bin困难且设备造价高的问题;
另一方面,封装发光单元1中的封装单元5既可以降低外界光线在封装发光单元1的出光侧的光反射率,还可以有效提高封装发光单元1的出光效率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种封装发光单元、显示装置和封装发光单元的制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种封装发光单元,用于拼接设置在背板上,所述封装发光单元至少包括:
    衬底单元;
    驱动电路单元,位于所述衬底单元上;
    至少一个发光芯片,位于所述驱动电路单元上,或者与所述驱动电路单元并排设置在所述衬底基板上;其中,所述至少一个发光芯片与所述驱动电路单元电连接。
  2. 根据权利要求1所述的封装发光单元,其中,所述封装发光单元还包括位于所述驱动电路单元远离所述衬底单元一侧的第一膜层;所述第一膜层上设有裸露出所述至少一个发光芯片的开口;
    其中,所述第一膜层对光线的反射率小于所述驱动电路单元对光线的反射率。
  3. 根据权利要求2所述的封装发光单元,其中,所述第一膜层的颜色为灰色。
  4. 根据权利要求2所述的封装发光单元,其中,所述开口的侧壁与所述发光芯片之间的间距大于0;所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角为锐角;
    所述封装发光单元还包括至少位于所述第一膜层和所述发光芯片之间且覆盖所述发光芯片的第二膜层;所述第二膜层的折射率大于所述第一膜层的折射率。
  5. 根据权利要求4所述的封装发光单元,其中,所述第一膜层的折射率范围为1.4至1.5,所述第二膜层的折射率大于1.6。
  6. 根据权利要求4所述的封装发光单元,其中,所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角范围为30°至75°。
  7. 根据权利要求4所述的封装发光单元,其中,所述第一膜层在所述衬底单元上的正投影与所述发光芯片在所述衬底单元上的正投影之间的间距范围为0.5um至5um。
  8. 根据权利要求4所述的封装发光单元,其中,所述第一膜层的厚度大于或等于所述发光芯片的厚度,且所述第一膜层的厚度范围为2um至20um,且每1微米厚度的所述第一膜层的光学密度大于0.2。
  9. 根据权利要求8所述的封装发光单元,其中,所述第一膜层与所述发光芯片之间的厚度差的范围为1um至5um。
  10. 根据权利要求4所述的封装发光单元,其中,所述第二膜层具有大于H的铅笔硬度,且所述第二膜层上的水滴接触角大于100°。
  11. 根据权利要求4所述的封装发光单元,其中,所述第二膜层的厚度范围为10um至50um。
  12. 根据权利要求4所述的封装发光单元,其中,所述第二膜层还延伸至所述第一膜层远离所述驱动电路单元的一侧,且所述第二膜层与所述发光芯片对应的部分朝远离所述发光芯片的方向呈弧形凸出。
  13. 一种显示装置,包括背板和拼接设置在所述背板上的多个如权利要求1所述的封装发光单元;其中,所述背板包括被动驱动电路,所述驱动电路单元与所述被动驱动电路电连接。
  14. 根据权利要求13所述的显示装置,其中,每个所述发光芯片的发光颜色相同;或者,
    每个所述发光芯片的发光颜色包括红色、绿色和蓝色中的任意一种,且至少有部分相邻设置的所述发光芯片的发光颜色不同。
  15. 根据权利要求13所述的显示装置,其中,所述封装发光单元还包括位于所述驱动电路单元远离所述衬底单元一侧的第一膜层;所述第一膜层上设有裸露出所述至少一个发光芯片的开口;
    其中,所述第一膜层对光线的反射率小于所述驱动电路单元对光线的反射率。
  16. 根据权利要求15所述的显示装置,其中,所述第一膜层的颜色为灰色。
  17. 根据权利要求15所述的显示装置,其中,所述开口的侧壁与所述发光芯片之间的间距大于0;所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角为锐角;
    所述封装发光单元还包括至少位于所述第一膜层和所述发光芯片之间且覆盖所述发光芯片的第二膜层;所述第二膜层的折射率大于所述第一膜层的折射率。
  18. 根据权利要求17所述的显示装置,其中,所述第一膜层靠近所述发光芯片一侧的侧面与所述第一膜层的底面之间的夹角范围为30°至75°。
  19. 根据权利要求17所述的显示装置,其中,所述第二膜层还延伸至所述第一膜层远离所述驱动电路单元的一侧,且所述第二膜层与所述发光芯片对应的部分朝远离所述发光芯片的方向呈弧形凸出。
  20. 一种如权利要求1所述的封装发光单元的制作方法,包括以下步骤:
    提供衬底基板;其中,所述衬底基板包括多个间隔设置的预设区域;
    在每个所述预设区域中形成位于所述衬底基板上的驱动电路单元;
    在每个所述预设区域中形成与所述驱动电路单元电连接的至少一个发光芯片;其中,所述至少一个发光芯片与所述驱动电路单元叠加设置,或与所述驱动电路单元并排设置在所述衬底基板上;以及
    沿每个所述预设区域的边缘进行切割,以形成多个所述封装发光单元。
PCT/CN2023/074909 2022-10-21 2023-02-08 封装发光单元、显示装置和封装发光单元的制作方法 WO2024082488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211296112.7A CN115662984A (zh) 2022-10-21 2022-10-21 封装发光单元、显示装置和封装发光单元的制作方法
CN202211296112.7 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024082488A1 true WO2024082488A1 (zh) 2024-04-25

Family

ID=84989531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074909 WO2024082488A1 (zh) 2022-10-21 2023-02-08 封装发光单元、显示装置和封装发光单元的制作方法

Country Status (2)

Country Link
CN (1) CN115662984A (zh)
WO (1) WO2024082488A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115662984A (zh) * 2022-10-21 2023-01-31 武汉华星光电半导体显示技术有限公司 封装发光单元、显示装置和封装发光单元的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659641A1 (en) * 2004-11-23 2006-05-24 Centro Ricerche Plast-Optica S.r.l. Process for manufacturing light emitting devices and device thereof
CN113764602A (zh) * 2021-09-29 2021-12-07 京东方科技集团股份有限公司 显示装置
CN114447022A (zh) * 2021-12-30 2022-05-06 京东方科技集团股份有限公司 显示面板及显示装置
CN115662984A (zh) * 2022-10-21 2023-01-31 武汉华星光电半导体显示技术有限公司 封装发光单元、显示装置和封装发光单元的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659641A1 (en) * 2004-11-23 2006-05-24 Centro Ricerche Plast-Optica S.r.l. Process for manufacturing light emitting devices and device thereof
CN113764602A (zh) * 2021-09-29 2021-12-07 京东方科技集团股份有限公司 显示装置
CN114447022A (zh) * 2021-12-30 2022-05-06 京东方科技集团股份有限公司 显示面板及显示装置
CN115662984A (zh) * 2022-10-21 2023-01-31 武汉华星光电半导体显示技术有限公司 封装发光单元、显示装置和封装发光单元的制作方法

Also Published As

Publication number Publication date
CN115662984A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN110858599B (zh) 像素阵列封装结构及显示面板
US12015022B2 (en) Display panel and method for manufacturing the same, display device
TWI591405B (zh) 光致發光顯示裝置及其製造方法
TWI582498B (zh) 光學構件及包含其之顯示裝置
KR20190128101A (ko) 디스플레이 장치
JP7369338B2 (ja) ブラックマトリクス基板及びこれを備えた表示装置
JP2013008941A (ja) 発光素子モジュール
TWI765491B (zh) 顯示基板及其製備方法、顯示裝置
CN108885848A (zh) 显示装置和电子设备
US20190103584A1 (en) Light-Emitting Device and Manufacturing Method Thereof, Electronic Apparatus
CN107450218B (zh) 光致发光显示装置及其制造方法
WO2021031292A1 (zh) 背光模组
TW202109156A (zh) 顯示裝置
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
CN111415973B (zh) 显示面板及其制备方法
CN114388560A (zh) 显示面板及其制备方法、显示装置
US20230369546A1 (en) Light source device and manufacturing method of light source device
TWI830395B (zh) 顯示裝置
CN217903141U (zh) 显示面板及显示装置
JP7439530B2 (ja) 光モジュール及び表示装置
US11776990B2 (en) Micro light-emitting diode display panel
WO2024082482A1 (zh) 拼接显示面板和显示终端
TWI771883B (zh) 顯示裝置、波長轉換模組及其製造方法
US20230047170A1 (en) Display device and manufacturing method thereof
WO2022241687A1 (zh) 背光模组、显示装置和制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878494

Country of ref document: EP

Kind code of ref document: A1