WO2023120730A1 - 積層磁性材、トランス用コア、および積層磁性材の製造方法 - Google Patents

積層磁性材、トランス用コア、および積層磁性材の製造方法 Download PDF

Info

Publication number
WO2023120730A1
WO2023120730A1 PCT/JP2022/047785 JP2022047785W WO2023120730A1 WO 2023120730 A1 WO2023120730 A1 WO 2023120730A1 JP 2022047785 W JP2022047785 W JP 2022047785W WO 2023120730 A1 WO2023120730 A1 WO 2023120730A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
magnetic material
laminated magnetic
laminated
quenched alloy
Prior art date
Application number
PCT/JP2022/047785
Other languages
English (en)
French (fr)
Inventor
石川湧己
野口伸
相牟田京平
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Publication of WO2023120730A1 publication Critical patent/WO2023120730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a laminated magnetic material, a transformer core, and a method for manufacturing a laminated magnetic material.
  • Electromagnetic steel sheets have a thickness of about 0.20 to 0.35 mm, whereas amorphous alloys require ultra-quenching during their production, and are supplied in strips having a thickness of about 25 ⁇ m, for example.
  • the laminated magnetic material of the present invention is a laminated magnetic material in which the laminated quenched alloy ribbons are thermosetting or room temperature curable and are interlayer-bonded with a resin having a glass transition temperature of 100° C. or less.
  • the peel strength at room temperature is 1.0 gf/mm or more, and the magnetic flux density B80 of the entire laminated magnetic material is 1.25 T or more at an applied magnetic field of 80 A/m.
  • the quenched alloy ribbons bonded between layers with the resin have a magnetic flux density B80 of 1.4 T or more at an applied magnetic field of 80 A / m, and an iron loss Pcm of 0.26 W at a frequency of 50 Hz and a maximum magnetic flux density of 1.4 T. /kg or less.
  • the transformer core of the present invention preferably has the laminated magnetic material.
  • the laminated quenched alloy ribbons are thermosetting or room temperature curable, and the laminated magnetic material is laminated with a resin having a glass transition temperature of 100° C. or less.
  • a method for manufacturing a material comprising the steps of: applying the resin to one or both sides of the quenched alloy ribbon; and laminating the quenched alloy ribbon and curing the resin.
  • the resin is preferably at least one of epoxy resin, epoxy-modified silicone resin and acrylic resin.
  • an excellent laminated magnetic material for a transformer that has excellent heat resistance, is advantageous for ensuring reliability, maintains a high magnetic flux density, and has little iron loss.
  • FIG. 1 is a schematic perspective view showing an embodiment of the laminated magnetic material of the present invention
  • FIG. 1 is a schematic perspective view showing an embodiment of the laminated magnetic material of the present invention in which a resin layer 2 is arranged between two quenched alloy ribbons 1.
  • FIG. It is a schematic diagram of a test piece for a peel test.
  • 1 is a schematic diagram of a peel test measuring device
  • FIG. 1 is a schematic perspective view showing an embodiment of a transformer core of the invention
  • the present inventor clarified the relationship between the physical properties and adhesion conditions of the resin and the adhesive stress ⁇ determined by the various physical properties of the resin.
  • the present invention has been completed by discovering a laminated magnetic material for a transformer which maintains the magnetic properties of the transformer. A detailed description will be given below.
  • the present inventors made a detailed study of a magnetic material provided with a resin (adhesive) as disclosed in Patent Document 1.
  • the volume decreases when the resin (adhesive) hardens, and when it is heated and adhered, Since there is a difference in thermal expansion coefficient between the amorphous alloy ribbon and the adhesive, the resin (adhesive) applies adhesive stress mainly in the in-plane direction to the amorphous alloy ribbon.
  • the elastic modulus of the resin at room temperature is ⁇ [MPa]
  • ⁇ 1 [1/K] is the linear expansion coefficient of the resin at room temperature
  • Ta [K] is the curing temperature of the resin
  • is the linear shrinkage rate of the resin when cured
  • h1 [ ⁇ m] is the resin thickness of the resin
  • amorphous When the thickness of the alloy ribbon is h2 [ ⁇ m], the linear expansion coefficient of the amorphous alloy ribbon is ⁇ 2 [1/K], and the room temperature is RT, the adhesive stress ⁇ [MPa] shown by the following formula is It is represented by a formula.
  • [] represents a unit.
  • RT at room temperature is assumed to be 296 [K].
  • the amorphous alloy ribbon Since the amorphous alloy ribbon has a large magnetostriction, the magnetic domain structure of the amorphous alloy ribbon is disturbed by the adhesive stress, and the magnetic properties of the amorphous alloy ribbon are changed.
  • amorphous alloy ribbons are laminated to form a laminated magnetic material, and a laminated core made of these laminated magnetic materials is used as a core for a power transformer in the commercial frequency band (50 Hz, 60 Hz), iron loss increases and a predetermined magnetic field A phenomenon occurs in which the magnetic flux density decreases when is applied.
  • An increase in the iron loss of the core leads to a decrease in efficiency of the transformer, and a decrease in magnetic flux density when a predetermined magnetic field is applied causes a problem of increased noise generated when the transformer is excited.
  • the iron loss P CM (hereinafter referred to as P CM14/50 ) is the iron loss [W/kg] at a frequency of 50 Hz and the maximum magnetic flux density of 1.4 T
  • the magnetic flux density B80 (hereinafter referred to as B80) is Represents the magnetic flux density [T] when magnetized with an applied magnetic field of 80 A/m. Based on this finding, the present inventor has conceived of a novel magnetic material.
  • the present invention provides a laminated magnetic material in which laminated quenched alloy ribbons are thermosetting or room temperature curable and are interlayer-bonded with a resin having a glass transition temperature of 100° C. or less,
  • the laminated magnetic material has a peel strength of 1.0 gf/mm or more at room temperature and a magnetic flux density B80 of 1.25 T or more at an applied magnetic field of 80 A/m for the entire laminated magnetic material.
  • the resins of the present invention should be thermosetting or cold setting.
  • Thermosetting or normal-temperature-setting resins are relatively low-molecular-weight liquid compounds before reaction. It is a resin that initiates a polymerization reaction when it is blocked and comes into contact with an active metal, and when it is polymerized into a polymer compound, it hardens and becomes a solid.
  • Thermosetting or normal-temperature-setting resins have higher heat resistance than hot-melt thermoplastic resins, and their adhesive strength is less likely to decrease even at high temperatures.
  • FIG. 1(a) is a schematic perspective view showing one embodiment of the laminated magnetic material.
  • a laminated magnetic material 11 of this embodiment includes a plurality of quenched alloy ribbons 1 and a resin layer 2 disposed between the plurality of quenched alloy ribbons 1 .
  • the form in a figure is shown typically, and does not necessarily correspond with an actual dimension.
  • FIG. 1(b) is a schematic perspective view showing one embodiment of the quenched alloy ribbon 1, which has two main surfaces 1a and 1b facing each other.
  • the laminated magnetic material 11 preferably has a B80 of 1.25 T or more.
  • the material of the quenched alloy ribbon 1, which constitutes the laminated magnetic material 11 of the present embodiment, is not particularly limited.
  • Fe-based amorphous alloy ribbon can be used.
  • "2605HB1M” is a registered trademark of Hitachi Metals, Ltd.
  • the composition is such that when the total amount of Fe, Si, and B is 100 atomic %, Si is 0 atomic % or more and 10 atomic % or less, and B is 10 atomic %. More than 20 atomic % or less is preferable.
  • the width of the quenched alloy ribbon 1 is not particularly limited, but can be, for example, 100 mm or more. If the width of the ribbon is 100 mm or more, a practical transformer can be favorably produced. More preferably, the width of the ribbon is 125 mm or more. On the other hand, the upper limit of the width of the ribbon is not particularly limited. brittleness, and the magnetic flux density B80 may decrease. More preferably, the width of the ribbon is 275 mm or less.
  • the thickness of the quenched alloy ribbon 1 is preferably 10 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 10 ⁇ m, the mechanical strength of the quenched alloy ribbon 1 tends to be insufficient. More preferably, the thickness is 15 ⁇ m or more, and more preferably 20 ⁇ m or more. On the other hand, when the thickness of the ribbon exceeds 50 ⁇ m, it tends to be difficult to stably obtain an amorphous phase. The thickness is more preferably 35 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the quenched alloy ribbon 1 has no anisotropy derived from the crystal structure and does not have crystal grain boundaries that impede movement of domain walls, so it has excellent soft magnetic properties such as high magnetic permeability and low loss while maintaining high magnetic flux density. have. Further, the quenched alloy ribbon 1 alone preferably has a B80 of 1.48 T or more.
  • the quenched alloy ribbon 1 can be produced by various known methods. For example, by preparing a molten alloy having the composition described above and discharging the molten alloy onto the surface of the chill roll, a film of the molten alloy is formed on the surface of the chill roll, and the amorphous alloy ribbon 1 formed on the surface is It is obtained by peeling from the surface of the cooling roll by blowing a peeling gas and winding it into a roll shape with a take-up roll.
  • the quenched alloy ribbon 1 is effective as a transformer ribbon after heat treatment so that the direction of easy magnetization is in the longitudinal direction of the ribbon.
  • a method for obtaining such a quenched alloy ribbon in the case of heat treatment, for example, a method of heat treatment while being stretched (tension annealing), or a method of heat treatment while a magnetic field is applied in the longitudinal direction of the ribbon, A method of heat-treating the ribbon while applying a magnetic field in the longitudinal direction of the ribbon while being stretched is preferable.
  • the resin layer 2 is formed on the quenched alloy ribbon 1 subjected to such a heat treatment, and another quenched alloy ribbon 1 is joined to form the laminated magnetic material 11 .
  • FIG. 2 is a schematic perspective view showing a laminated magnetic material 12 in which a resin layer 2 is arranged between two quenched alloy ribbons 1. As shown in FIG.
  • the resin constituting the resin layer 2 has an elastic modulus of the resin at room temperature ⁇ [MPa], a linear expansion coefficient of the resin at room temperature ⁇ 1 [1/K], a curing temperature of the resin Ta [K], and the resin ⁇ is the linear shrinkage rate at the time of curing, h1 [ ⁇ m] is the resin thickness of the resin, h2 [ ⁇ m] is the thickness of the quenched alloy ribbon, and ⁇ 2 [1 / K] is the linear expansion coefficient of the quenched alloy ribbon.
  • room temperature is RT
  • the adhesive stress ⁇ [MPa] calculated by the above equation 1 is preferably 3 MPa or less, and is preferably formed using a thermosetting or room temperature curable resin.
  • the flexural modulus was measured by pouring resin into a strip-shaped mold and curing the resin.
  • the distance L between the fulcrums is 30 mm when the bending elastic modulus of the resin exceeds 700 MPa, 14 mm when the bending elastic modulus is 70 MPa or more and 700 MPa or less, and 8 mm when the bending elastic modulus is less than 70 MPa. do.
  • the test speed was set to 0.48 mm/min, and the load F [N] continuously applied to the sample until the bending strain ⁇ derived from Equation 2 below exceeded 0.0025, and the deflection D [mm] at that time were measured. do.
  • Bending stress ⁇ and bending strain ⁇ are calculated from the measured load and deflection using the following formulas (Equations 2 and 3) to obtain a stress-strain curve.
  • the stress curve in the bending strain section 0.0005 ⁇ 0.0025 of the stress-strain curve is linearly regressed by the method of least squares, and the slope thereof is defined as the bending elastic modulus [MPa].
  • the linear expansion coefficient ⁇ 1 [1/K] of the resin at room temperature is measured using a thermomechanical analyzer (TMA).
  • TMA thermomechanical analyzer
  • the linear shrinkage rate ⁇ of the cured resin is calculated using the following formula from the specific gravity of the uncured resin and the specific gravity of the cured resin.
  • the specific gravity of the uncured resin and the specific gravity of the cured resin are measured according to the JISK6833 specific gravity cup method and the JISK7122 water substitution method.
  • the uncured specific gravity in the case of a two-liquid mixing type adhesive is calculated by the following method. Assuming that two-liquid mixed adhesives are A agent and B agent, the respective specific gravities of A agent and B agent are measured using the JISK6833 specific gravity cup method. Based on the recommended mixing mass ratio of the two-liquid mixing type adhesive, the masses of the components A and B to be mixed are determined and calculated according to the following formula.
  • the adhesive stress ⁇ is preferably 3 MPa or less.
  • the reason for this is that the magnetic domain structure of the quenched alloy ribbon changes due to the adhesive stress acting on the quenched alloy ribbon from the resin, but if the adhesive stress is 3 MPa or less, the influence on the magnetic domain structure can be reduced. This is because it is possible to prevent deterioration of the magnetic properties of the quenched alloy ribbon.
  • the adhesive stress ⁇ of the resin is 3 MPa or less, the laminated magnetic material for a transformer has good magnetic properties such that the B80 of the entire laminated magnetic material is 1.25 T or more and the PCM14/50 is 0.26 W/kg or less. wood is obtained.
  • the adhesive stress ⁇ is more preferably 0.6 MPa or less.
  • the B80 of the entire laminated magnetic material is 1.39 T or more, and the PCM14/50 is 0.16 W/kg or less.
  • a laminated magnetic material for a transformer having magnetic properties is obtained.
  • thermosetting or normal-temperature-setting resins have higher heat resistance than hot-melt thermoplastic resins, and their adhesive strength is less likely to decrease at high temperatures.
  • Transformer cores inevitably rise in temperature during use, so hot-melt thermoplastic resins had concerns about their heat resistance and long-term reliability. For this reason, it is desirable to use a thermosetting or room-temperature-setting resin with excellent heat resistance.
  • the laminated magnetic material for transformers has a high space factor of 90% or more.
  • Hot-melt thermoplastic resins must be dissolved in an organic solvent for coating such thin films, and the use of organic solvents raises concerns about the effects on the human body and the environment.
  • thermosetting or normal-temperature-setting resin is a liquid compound with a relatively low molecular weight before curing, and therefore has a low viscosity and can be applied thinly without using a solvent such as an organic solvent. Therefore, there is little influence on the human body and the environment, and there is an advantage that the production process can be simplified.
  • thermosetting or room-temperature-setting resin used in this embodiment may be of any composition.
  • Typical thermosetting or room temperature setting resins include epoxy resins, acrylic resins, modified silicone resins, silicone resins, unsaturated polyester resins, vinyl ester resins, and the like.
  • the resin layer of the laminated magnetic material of the present invention is a resin composition containing at least one of these thermosetting or room temperature setting resins as a component.
  • Other components may include curing agents, and if necessary, other resins, curing accelerators, fillers, solvents, plasticizers, and the like.
  • the thermosetting or normal temperature setting resin is preferably at least one of epoxy resin, epoxy-modified silicone resin and acrylic resin.
  • Epoxy resins are the most widely used thermosetting resins or room temperature curing resins, and are particularly preferable because they come in many types and are highly practical, including from an economic standpoint.
  • the epoxy resin used in this embodiment is not particularly limited, but known monofunctional epoxy resins, polyfunctional epoxy resins, and the like can be used. Examples thereof include modified epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, aliphatic type epoxy resin, glycidylamine type epoxy resin, urethane modified epoxy resin, and rubber modified epoxy resin. These epoxy resins may be used alone or in combination of two or more.
  • the content of the epoxy resin in the resin layer is preferably at least 10% by mass or more, preferably 20% by mass or more, and more preferably 30% by mass or more, in order to develop high adhesive strength peculiar to epoxy resins.
  • the content is too large, the elastic modulus increases and the adhesive stress applied to the soft magnetic amorphous alloy ribbon 1 increases.
  • thermosetting resins or room temperature curing resins there are many types of acrylic resins, and in addition to being thermosetting resins or room temperature curing resins that are highly practical from an economic standpoint, the curing speed is fast, so the bonding process can be shortened.
  • the curing types even if the two liquids are not thoroughly mixed, the reaction can start and cure when the two liquids come into contact (honeymoon adhesion). Since there are many types of room-temperature curing methods such as adhesion and photocurable adhesion, it is preferable because the adhesion process can be easily optimized.
  • the acrylic resin used in the present invention is thermosetting or room temperature setting. Room temperature curing acrylic resins include second generation acrylic resins (SGA).
  • SGA is a resin that is hardened by graft polymerization of an elastomer and an acrylic monomer. Although it is thermoplastic, it has high heat resistance and does not easily lose adhesive strength at high temperatures.
  • acrylic resin components include polyacrylic acid and its copolymer, polyacrylic acid ester and its copolymer, polymethacrylic acid and its copolymer, polymethacrylic acid ester and its copolymer, urethane-acrylic Examples include acid copolymers, styrene-acrylic acid copolymers, and the like. These acrylic resins may be used alone or in combination of two or more.
  • the content of the acrylic resin in the resin layer is preferably at least 10% by mass or more, preferably 20% by mass or more, and more preferably 30% by mass or more, in order to develop high adhesive strength peculiar to acrylic resins.
  • Epoxy-modified silicone resin is preferable because it has an extremely low elastic modulus and can greatly reduce adhesive stress.
  • the type of epoxy-modified silicone resin can be either one in which some of the functional groups of the modified silicone resin are substituted with epoxy groups, or one in which the epoxy resin and the modified silicone are incompatible and phase-separated to form a sea-island structure. good.
  • the content of the epoxy-modified silicone resin in the epoxy-modified silicone resin composition is preferably at least 10% by mass or more.
  • the thickness of the resin layer 2 is preferably 5 ⁇ m or less, more preferably 3.0 ⁇ m or less, and even more preferably 2.0 ⁇ m or less. On the other hand, if the resin layer 2 is too thin, sufficient adhesive strength cannot be exhibited, so the thickness is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more.
  • Space factor calculation method The space factor is calculated by the following formula. Here, when displaying the space factor in percentage (%), the following formula is multiplied by 100.
  • the resin layer 2 is preferably adhered to at least one of the main surfaces 1a and 1b of the quenched alloy ribbon 1 so as not to be easily peeled off.
  • the resin layers 2 may be arranged on the two main surfaces 1a and 1b of the quenched alloy ribbon 1, respectively.
  • the resin layer 2 may be arranged on the entire main surfaces 1a, 1b, or may be arranged on the main surfaces 1a, 1b in stripes, dots, or the like, where the resin layer 2 is arranged, and the resin layer 2 is arranged. It may be provided in a predetermined pattern including a region that does not
  • FIG. 3 shows a schematic diagram of the laminated magnetic material 12 (laminated magnetic material for peel strength evaluation) used for the peel strength test.
  • the laminated magnetic material 12 is a laminated magnetic material in which a portion of one surface of the quenched alloy ribbon 1a and a portion of one surface of the quenched alloy ribbon 1b are adhered together.
  • the laminated magnetic material is a laminated magnetic material that is not bonded (bonded) at one end in the longitudinal direction.
  • the width of the laminated magnetic material is 25 mm, and the length of the bonded portion is 100 mm.
  • the peel strength of the laminated magnetic material is the force required to separate the laminated quenched alloy ribbons 1a and 1b, that is, the peel strength or holding force.
  • Methods for measuring peel strength include, for example, the 90° or 180° peel test method (K6854: 1999).
  • the peel strength can be measured using a peel strength measuring device 3 as shown in FIG. First, the other surface (the surface not coated with the resin) of the quenched alloy ribbon constituting the laminated magnetic material 12, for example, the other surface of the quenched alloy ribbon 1a, is attached to the metal base 3d with a double-faced tape 3e. fixed.
  • one end of the laminated magnetic material 12 that is not attached is gripped by a clip 3a, and the clip 3a is pulled at a constant speed by a force gauge 3b fixed via a linear guide 3c, and the load at that time is measured.
  • the peel strength of the laminated magnetic material can be measured.
  • the pulling speed was set to 90 mm/min.
  • load measurement is performed over a peel length of at least 40 mm excluding the first 25 mm, and the maximum load is taken as the peel strength [gf/mm] of the laminated magnetic material.
  • the laminated quenched alloy ribbons are thermosetting or room temperature curable, and are laminated with a resin having a glass transition temperature of 100° C. or less.
  • a method for manufacturing a magnetic material comprising the steps of: applying the resin to one or both sides of the quenched alloy ribbon; and laminating the quenched alloy ribbon and curing the resin.
  • the resin in the manufacturing method of the laminated magnetic material of the present embodiment that is, the thermosetting or normal temperature setting resin is the resin described above.
  • the step of applying a resin is a step of placing a resin on one side or both sides of the quenched alloy ribbon 1 to form the resin layer 2 .
  • the method for forming the resin layer 2 is not particularly limited. After that, there is a method of evaporating the solvent.
  • the method of forming the resin layer 2 by applying a resin using a flexographic printing method is often used when applying a thermosetting resin that does not contain a solvent.
  • step of curing the resin after the step of applying the resin, another quenched alloy ribbon 1 is superimposed on the surface of the quenched alloy ribbon 1 coated with the resin, pressed with a roller or the like, and heated to the curing temperature of the resin. It is a process of heating and hardening.
  • FIG. 5 is a perspective view showing one embodiment of a transformer core, which is an embodiment of the present invention.
  • Four laminated magnetic materials 11 are used to form a rectangular transformer core as a whole.
  • the shape of the transformer core is not limited to this embodiment.
  • a soft magnetic amorphous alloy ribbon made of 2605HB1M manufactured by Hitachi Metals, Ltd. and having a length of 120 mm, a width of 25 mm, and a thickness of 25 ⁇ m was prepared.
  • a tension of 40 MPa was applied in the longitudinal direction of the ribbon, and tension annealing was performed at 450° C. to impart induced magnetic anisotropy in which the direction is the direction of easy magnetization.
  • the coefficient of linear expansion of 2605HB1M is 4.3 ⁇ 10 ⁇ 6 [1/K].
  • PCM14/50 and B80 which are the magnetic properties of the soft magnetic amorphous alloy ribbon, are 0.114 W/kg and 1.55 T, respectively.
  • Examples and comparative examples of laminated magnetic materials were produced by bonding two soft magnetic amorphous alloy ribbons described above using resins having various adhesive stresses, and PCM14/50 and magnetic flux density B80 were measured for each. .
  • resins a1, b1, c1, d1, e1, f1, g1, h1, i1 and j1 were prepared.
  • Resins a1, b1, c1, d1 and e1 were used in Examples, and resins f1, g1, h1 and i1 were used in Comparative Examples.
  • the curing temperature, curing type, durometer hardness, resin layer thickness, elastic modulus, linear expansion coefficient, thermal contraction coefficient, linear contraction coefficient during curing, and adhesive stress of each resin are as shown in Table 1.
  • the modulus of elasticity, the coefficient of linear expansion, and the coefficient of linear shrinkage during curing are based on the results measured by the above-described measurement methods.
  • the curing type there are a one-liquid type that contains a curing agent in advance and cures by heating, and a two-liquid type that cures by mixing a curing agent and a main agent at the time of use.
  • Durometer hardness is measured by using a durometer hardness tester (rubber hardness tester) to press a type D (A) indentation against the surface of the test piece with a specified spring force. It is the hardness obtained from the depth, and refers to the value measured by the test method specified in JIS K7215.
  • the adhesive stress ⁇ [MPa] uses the elastic modulus, linear expansion coefficient, linear shrinkage coefficient at the time of curing, and curing temperature of each resin shown in Table 1, and the linear expansion coefficient of the amorphous alloy ribbon is 4.3 ⁇ 10 ⁇ 6 [1/K], and the room temperature is 300 [K], and the value is calculated from the above formula (Equation 1).
  • the thickness of the resin layer 2 after curing is between 1.9 ⁇ m and 4.9 ⁇ m in Examples 1 to 5, and between 2.9 ⁇ m and 6 in Comparative Examples 1 to 4. .7 ⁇ m.
  • PCM14/50 and magnetic flux density B80 were measured for the prepared samples. Each magnetic property was measured in consideration of the cross-sectional area and mass of only the portion of the soft magnetic amorphous alloy ribbon bonded between the layers with the resin among the laminated magnetic materials.
  • PCM14/50 each sample was excited at a frequency of 50 Hz and a maximum magnetic flux density of 1.4 T, and iron loss (W/kg) at that time was measured.
  • B80 a magnetic field with a frequency of 50 Hz and 80 A/m was applied, and the magnetic flux density B80 was measured.
  • the B80 of the entire laminated magnetic material is obtained by multiplying the magnetic flux density B80 measured in consideration of the cross-sectional area of only the portion of the soft magnetic amorphous alloy ribbon that is interlayer-bonded with resin by the space factor of the laminated magnetic material. calculated as
  • a BH loop analyzer SY8218 manufactured by Iwasaki Tsushinki Co., Ltd. was used as an AC magnetic characteristic measuring device, and an amplifier SY-5001 manufactured by PMK was used.
  • a frame for measurement was manufactured and used with reference to JISC2556 "Method for measuring magnetic properties of an electromagnetic steel strip using a single plate tester".
  • the jig construction consists of a MnZn ferrite yoke, a resin bobbin and polyurethane-coated copper wire.
  • a primary winding (exciting coil) (wire diameter: 0.5 mm) and a secondary winding (B coil) (wire diameter: 0.5 mm) were applied to a resin bobbin with 57 and 100 turns of polyurethane-coated copper wire, respectively.
  • a ribbon was inserted and a magnetic field was applied to the ribbon with a bobbin length of 36.2 mm.
  • the ribbon was sandwiched between upper and lower MnZn ferrite yokes. By sandwiching the ribbon between the MnZn ferrite yokes, the flow of the magnetic flux is made into a closed magnetic path, and the generation of the demagnetizing field in the ribbon can be prevented.
  • the background caused by the MnZn ferrite yoke and the air gap between the coil and the magnetic material was measured by connecting a compensating coil between the jig and the SY8218 and applying a magnetic field of 8000 A/m. The number of turns of the compensating coil was adjusted so that the output of was zero. Table 2 shows the measurement results of each sample.
  • the B80 of the soft magnetic amorphous alloy ribbon portion bonded between layers with resin is 1.4 T or more, and the PCM14/50 is 0. 0.26 W/kg or less, and had good magnetic properties for use in commercial frequency band transformers.
  • the B80 of the portion of the soft magnetic amorphous alloy ribbon bonded between the layers with the resin is 1.5 T or more, and the B80 of the entire laminated magnetic material is 1.4 T or more, and the P CM14/50 of 0.16 W/kg or less, which indicates a B80 of 90% or more versus the unbonded Comparative Example 5, and an increase in PCM14/50 of 17% or less, which is very good. It shows magnetic properties.
  • the linear shrinkage rate of the cured resin is preferably 0.8% or less.
  • the heat shrinkage rate ⁇ of the resin is preferably 0.3% or less.
  • Table 3 shows the peel strength evaluation results of the samples of Examples 1 to 5 and Comparative Examples 1 to 4 using the peel strength measurement method described above.
  • Comparative Example 6 a two-layer laminate was produced using polyester resin j1, which is a hot-melt thermoplastic resin, and its peel strength was also evaluated.
  • the peel strength at a high temperature of 70° C. was measured for Examples 1 to 5 and Comparative Example 6.
  • Examples 1 to 5 and Comparative Example 6 exhibit sufficient peel strength of 1.0 gf/mm or more at room temperature.
  • Examples 1 to 5 maintained a peel strength of 1.0 gf / mm or more, and the peel strength change rate (vs.
  • thermosetting or normal-temperature-setting resins such as those of Examples 1 to 5 are adhesives with excellent heat resistance, in which the peel strength is less likely to decrease even at high temperatures.
  • the present embodiment it is possible to provide an excellent laminated magnetic material, a core for a transformer, and a method for manufacturing the laminated magnetic material, which are excellent in heat resistance, maintain a high magnetic flux density, and have little iron loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

耐熱性及び磁束密度の低減防止および鉄損増加の抑制に優れた積層磁性材、並びに積層磁性材の製造方法を提供する。 積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材であって、室温における積層磁性材のピール強度が1.0gf/mm以上であり、かつ、積層磁性材全体の、印加磁界が80A/mにおける磁束密度B80が1.25T以上であること を特徴とする積層磁性材。

Description

積層磁性材、トランス用コア、および積層磁性材の製造方法
 本発明は、積層磁性材、トランス用コア、および積層磁性材の製造方法に関する。
 CO排出削減の世界的潮流の中、電力トランスの高効率化が求められている。電力トランスの磁心には方向性電磁鋼板が従来から使用されてきたが、これに代えて電磁鋼板の約1/3~1/5の低損失特性を有するアモルファス合金のトランス用コアへの応用が期待されている。電磁鋼板の板厚が0.20~0.35mm程度であるのに対して、アモルファス合金はその製造時に超急冷を必要とする関係上、例えば、厚さ25μm程度の薄帯で供給される。そのため、電磁鋼板と同一サイズの鉄心をアモルファス合金で作製する場合、10倍以上の積層回数が必要になるなど、鉄心製造プロセスへの負担が過大であるという課題があった。この課題を解決するため、例えば特許文献1に開示されるように、アモルファス合金リボンを複数枚接着積層して板状にし、電磁鋼板と同様の取り扱いを可能とする検討が行われてきた。
しかしその場合でも、樹脂(接着剤)とアモルファス合金リボン間に生じる接着応力によってアモルファス合金リボンの磁気特性が劣化する問題があった。そこで特許文献2に開示されるように、ポリエステル樹脂等のデュロメータ硬さがD60以下の柔らかい樹脂(接着剤)を用いることでアモルファス合金リボンへの負荷を軽減し、磁気特性の劣化を抑制する試みがなされてきた。ここで、デュロメータ硬さとは、デュロメータ(ゴム硬度計)で計測した試料の硬さのことである。
特開2002-151316号公報 WO2019/087932
 しかしながら、トランス用コアは使用時の温度上昇が避けられず、特許文献2にあるホットメルト型のポリエステル樹脂のような熱可塑性樹脂では耐熱性や長期的な信頼性は十分とは言えなかった。そのため、新しい磁気特性の劣化防止技術が求められた。
そこで本発明は、上記課題に鑑み、耐熱性や信頼性確保に有利で、優れた磁気特性を維持した積層磁性材、トランス用コア、および積層磁性材の製造方法を提供することを目的とする。
 本発明の積層磁性材は、積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材であって、室温におけるピール強度が1.0gf/mm以上であり、かつ、積層磁性材全体の、印加磁界が80A/mにおける磁束密度B80が1.25T以上であることを特徴とする。
 また、前記樹脂で層間接合された急冷合金薄帯は、印加磁界が80A/mにおける磁束密度B80が1.4T以上、かつ、周波数50Hz、最大磁束密度1.4Tにおける鉄損Pcmが0.26W/kg以下とすることが好ましい。
 本発明においては、前記磁性材は、前記樹脂の室温における弾性率をγ[MPa]、前記樹脂のガラス転移温度以下における線膨張率をα1[1/K]、前記樹脂の硬化温度をTa[K]、前記樹脂の硬化時の線収縮率をβ、前記樹脂の樹脂厚さをh1[μm]、急冷合金薄帯の厚さをh2[μm]、急冷合金薄帯の線膨張率をα2[1/K]、室温をRT、とするとき、以下の数式で示される接着応力σ[MPa]が3MPa以下であることが好ましい。
σ = h1 / h2 × γ × {(α1―α2) × (Ta-RT) + β}
 本発明においては、前記接着応力σは、0.6MPa以下とすることが好ましい。
 本発明のトランス用コアは、前記積層磁性材を有することが好ましい。
 本発明の積層磁性材の製造方法は、積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材の製造方法であって、前記急冷合金薄帯の片面、または両面に、前記樹脂を塗布する工程と、前記急冷合金薄帯を積層して、前記樹脂を硬化させる工程と、を有する。
を特徴とする。
 本発明においては、前記樹脂が、エポキシ樹脂、エポキシ変性シリコーン樹脂、アクリル樹脂のうち少なくとも一種であることが好ましい。
 本発明によれば、耐熱性に優れ、信頼性確保に有利で、磁束密度が高く維持され鉄損の少ない優れたトランス用の積層磁性材を提供できる。
本発明の積層磁性材の一実施形態を示す模式的な斜視図である。 2枚の急冷合金薄帯1の間に樹脂層2が配置されている本発明の積層磁性材の一実施形態を示す模式的な斜視図である。 ピール試験用の試験片の概要図である。 ピール試験測定装置の概要図である。 発明のトランス用コアの一実施形態を示す模式的な斜視図である。
 本発明者は、トランス用の積層磁性材を形成する上で、樹脂の諸物性および接着条件と、樹脂の諸物性で決まる接着応力σとの関係を明らかにし、優れた耐熱性を持ち、優れた磁気特性を維持したトランス用の積層磁性材を見出し、本発明を完成させた。以下、詳しく説明する。 
 まず、本発明者等は、特許文献1に開示されるような樹脂(接着剤)が付与された磁性材を詳細に検討した。アモルファス合金リボン層の間に樹脂(接着剤)を塗布して積層磁性材を製造しようとすると、樹脂(接着剤)が硬化する際に体積が減少すること、および、加熱して接着した場合にはアモルファス合金リボンと接着剤の熱膨張係数の差があることから、樹脂(接着剤)がアモルファス合金リボンに対して主に面内方向に接着応力を付与する状態となる。
 ここで、複数の軟磁性アモルファス合金リボンと、前記軟磁性アモルファス合金リボンの間に配置された樹脂(接着剤)からなる樹脂層を考えた場合、樹脂の室温における弾性率をγ[MPa]、樹脂の室温における線膨張率をα1[1/K]、樹脂の硬化温度をTa[K]、前記樹脂の硬化時の線収縮率をβ、前記樹脂の樹脂厚さをh1[μm]、アモルファス合金リボンの厚さをh2[μm]、アモルファス合金リボンの線膨張率をα2[1/K]、室温をRT、とするとき、以下の数式で示される接着応力σ[MPa]が、以下の数式で表される。なお、[]は単位を表す。ここで、室温のRTは296[K]とする。
Figure JPOXMLDOC01-appb-M000001
 アモルファス合金リボンは、磁歪が大きいことから、接着応力によりアモルファス合金リボンの磁区構造が乱れ、アモルファス合金リボンの磁気特性が変化する。特に、アモルファス合金リボンを積層して積層磁性材とし、それら積層磁性材からなる積層コアを、商用周波数帯(50Hz、60Hz)における電力トランス用コアとして使用する場合、鉄損の増加や所定の磁界を印加した時の磁束密度が低下するという現象が起きる。コアの鉄損の増加はトランスの効率低下を招き、所定の磁界を印加した時の磁束密度が低下すると、トランスを励磁した時に発生する騒音が大きくなる問題が生じる。よって、アモルファス合金リボンをトランス用コアとして使用する場合、アモルファス合金リボンに生じる接着応力をできるだけ小さく制御することが重要である。
 また、その応力の許容限度を把握することで、使用可能な樹脂を選定する上において有用な知見が得られる。この接着応力は、接着剤を構成している樹脂の種類によって異なる。つまり、積層のための樹脂層の種類によって磁気特性、特に鉄損PCMや磁束密度B80 が大きく異なり得ることが分かった。なお、鉄損PCM(以下、PCM14/50と示す。)は、周波数50Hz、最大磁束密度1.4Tにおける鉄損[W/kg]、磁束密度B80(以下、B80と示す。)は、80A/mの印加磁界で磁化したときの磁束密度[T]を表す。この知見に基づき、本発明者は、新規な磁性材を想到した。
 すなわち、本発明は、積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材であって、
室温にけるピール強度が1.0gf/mm以上であり、かつ、積層磁性材全体の、印加磁界が80A/mにおける磁束密度B80が1.25T以上である積層磁性材である。
 本発明の樹脂は、熱硬化性、または常温硬化性とする必要がある。熱硬化性、または常温硬化性樹脂は、反応前は比較的低分子量の液体化合物であるが、加熱、硬化剤との混合、触媒との反応、紫外線照射、空気中の水分との接触、酸素の遮断かつ活性金属との接触等によって重合反応が開始し、高分子化合物に重合することで硬化して固体となる樹脂である。熱硬化性、または常温硬化性樹脂は、ホットメルト型の熱可塑性樹脂に比べて耐熱性が高く、高温下においても接着強度が低下しにくい。
 以下、本発明の積層磁性材、トランス用コア、および積層磁性材の製造方法の実施形態について、図を用いて詳細に説明する。
 まず、本発明の積層磁性材の実施形態について説明する。図1(a)は、積層磁性材の一実施形態を示す模式的な斜視図である。本実施形態の積層磁性材11は、複数の急冷合金薄帯1と、複数の急冷合金薄帯1間に配置された樹脂層2とを備える。尚、図中の形態は模式的に示したものであり、実際の寸法とは必ずしも一致しない。図1(b)は、急冷合金薄帯1の一実施形態を示す模式的な斜視図であり、向かい合う2つの主面1a、1bが存在している。
 ここで、積層磁性材11は、1.25T以上のB80を有することが好ましい。
[急冷合金薄帯]
 本実施形態の積層磁性材11を構成する、急冷合金薄帯1の材質は、特に問わないが、例えば、非晶質合金薄帯(アモルファス合金薄帯)や、日立金属株式会社製2605HB1M材などのFe系アモルファス合金薄帯を用いることができる。ここで、「2605HB1M」は、日立金属株式会社の登録商標である。特に、Fe系アモルファス合金薄帯である場合、その組成は、Fe、Si、Bの合計量を100原子%としたとき、Siが、0原子%以上10原子%以下、Bが、10原子%以上20原子%以下、であることが好ましい。
 急冷合金薄帯1の幅は、特に限定されないが、例えば、100mm以上とすることができる。リボンの幅が100mm以上であると、実用的な変圧器を好適に作製できる。リボンの幅は、125mm以上であることがより好ましい。一方、リボンの幅の上限は特に限定されないが、例えば、幅が300mmを超えると、幅方向に均一な厚さのリボンを得られないことがあり、その結果、形状が不均一な為に部分的に脆化したり、磁束密度B80が低下する可能性がある。リボンの幅は、275mm以下であることがより好ましい。
 急冷合金薄帯1の厚さは、10μm以上50μm以下であることが好ましい。厚さが10μm未満であると、急冷合金薄帯1の機械的強度が不十分となる傾向がある。厚さは、15μm以上であることがより好ましく、更に、20μm以上であることがより好ましい。一方、リボンの厚さが50μmを超えると、アモルファス相を安定して得ることが難しくなる傾向がある。厚さは、35μm以下であることがより好ましく、更に、30μm以下であることがより好ましい。
 急冷合金薄帯1は、結晶構造に由来する異方性がなく、磁壁の移動を妨げる結晶粒界が存在しないため、高磁束密度でありながら高透磁率、低損失の優れた軟磁気特性を有する。また、急冷合金薄帯1は、単体で、1.48T以上のB80を有することが好ましい。
 急冷合金薄帯1は、種々の公知の方法により製造することができる。例えば、上述した組成を有する合金溶湯を用意し、冷却ロール表面に合金溶湯を吐出させることによって、冷却ロールの表面に合金溶湯の膜を形成させ、表面にて形成されたアモルファス合金リボン1を、剥離ガスの吹きつけによって冷却ロールの表面から剥離し、巻き取りロールによってロール状に巻き取ることにより得られる。
 急冷合金薄帯1は、薄帯長手方向に磁化容易方向を持つように熱処理されたものがトランス用のリボンとして有効である。そのような急冷合金薄帯を得るための方法として、熱処理する場合に、例えば、張架した状態で熱処理(テンションアニール)する方法、又は薄帯長手方向に磁界をかけた状態で熱処理する方法、張架しながら薄帯長手方向に磁界をかけた状態で熱処理する方法、等が好適である。このような熱処理を施された急冷合金薄帯1に樹脂層2を形成して、他の急冷合金薄帯1を接合して積層磁性材11を構成すればよい。
[樹脂層]
 本実施形態の積層磁性材11の樹脂層2は、急冷合金薄帯1の2つの主面1a、1bのうち、少なくとも一面に配置されている。図2は、2枚の急冷合金薄帯1の間に樹脂層2が配置されている積層磁性材12を示す模式的な斜視図である。ここで、樹脂層2を構成する樹脂は樹脂の室温における弾性率をγ[MPa]、樹脂の室温における線膨張率をα1[1/K]、樹脂の硬化温度をTa[K]、前記樹脂の硬化時の線収縮率をβ、前記樹脂の樹脂厚さをh1[μm]、急冷合金薄帯の厚さをh2[μm]、急冷合金薄帯の線膨張率をα2[1/K]、室温をRT、とするとき、上述の式1で算出される接着応力σ[MPa]が3MPa以下である、熱硬化性、または常温硬化性樹脂を用いて形成されることが好ましい。
 ここで、接着応力の計算に用いる樹脂の物性は、以下の物性値を使用する。
 樹脂の弾性率γ[MPa]は、室温(=296K)における曲げ弾性率を使用する。曲げ弾性率の測定は、短冊形の型に樹脂を流し込んで樹脂を硬化させることで作製した、厚さT[mm](=2mm)×幅W[mm](=25mm)×長さL[mm](=40mm)の短冊形状試験片に対し、JISK7171法に準拠した測定装置を用いて、三点曲げ試験を行う。支点間距離Lは、樹脂の曲げ弾性率が700MPaを超える場合は30mm、曲げ弾性率が70MPa以上700MPa以下の場合は14mm、曲げ弾性率が70 MPa未満の場合には、支点間距離は8mmとする。試験速度は、0.48mm/minとし、下記の式2から導き出される曲げひずみεが0.0025を超えるまで連続的に試料にかかる荷重F[N]と、その時のたわみD[mm]を測定する。測定した荷重とたわみから以下の数式(数2および数3)を用いて、曲げ応力τおよび曲げひずみεを算出し、応力ひずみ曲線を取得する。応力ひずみ曲線の曲げひずみ区間0.0005≦ε≦0.0025における応力曲線に対して最小二乗法による線形回帰を行い、その傾きを曲げ弾性率[MPa]とする。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 樹脂の室温における線膨張率α1[1/K]は、熱機械分析装置(TMA)を用いて測定を行う。樹脂の硬化時の線収縮率βは、未硬化樹脂の比重と樹脂硬化物の比重から以下の数式を用いて算出する。
Figure JPOXMLDOC01-appb-M000004
 また、未硬化樹脂の比重および樹脂硬化物の比重の測定は、JISK6833比重カップ法およびJISK7122水中置換法に準じて測定を行う。
なお、二液混合型の接着剤の場合の未硬化の比重は、以下の方法で計算する。二液混合型の接着剤をA剤およびB剤とすると、A剤およびB剤のそれぞれの比重を、JISK6833比重カップ法を用いて測定する。その二液混合型接着剤の推奨混合質量割合をもとに、A剤およびB剤の混合する質量を決定し、以下の数式に従って計算する。
Figure JPOXMLDOC01-appb-M000005
 本発明では、接着応力σを3MPa以下であることが好ましい。その理由は、樹脂から急冷合金薄帯に対して作用する接着応力によって急冷合金薄帯の磁区構造が変化してしまうが、接着応力が3MPa以下では磁区構造に与える影響を小さくすることができ、急冷合金薄帯の磁気特性の劣化を防止することが可能となるからである。
 樹脂の接着応力σが3MPa以下であれば、積層磁性材全体のB80が1.25T以上、かつ、PCM14/50が0.26W/kg以下の良好な磁気特性を有したトランス用の積層磁性材が得られる。さらに、接着応力σは0.6MPa以下であることがより好ましい。接着応力がこの範囲の樹脂である熱硬化性、または常温硬化性樹脂を用いることで、積層磁性材全体のB80が1.39T以上、PCM14/50が0.16W/kg以下の極めて優れた磁気特性を持つトランス用の積層磁性材が得られる。
 一般に、熱硬化性又は常温硬化性樹脂は、ホットメルト型の熱可塑性樹脂に比べて耐熱性が高く、高温時における接着強度が低下しにくい。トランス用コアは、使用時の温度上昇が避けられないため、ホットメルト型の熱可塑性樹脂では耐熱性や長期的な信頼性に懸念があった。このため、耐熱性に優れた熱硬化性又は常温硬化性樹脂を使用することが望ましい。また、トランス用の積層磁性材は、90%以上の高い占積率であることが望ましく、そのためには樹脂層の厚さを数μm程度の薄膜に塗工することが好ましい。ホットメルト型の熱可塑性樹脂は、このような薄膜の塗工のためには有機溶剤に溶かして使用する必要があり、有機溶剤の使用は人体や環境への影響が懸念される。また、生産工程においても、溶剤蒸気の作業環境への汚染や拡散を防止するための局所排気装置等の設置や防爆対策等を行う必要がある。一方で、熱硬化性又は常温硬化性樹脂は、硬化前は比較的低分子量の液体化合物であるため粘度が低く、有機溶剤等の溶剤を使用せずに薄く塗布することが可能である。よって、人体や環境への影響が少なく、生産工程においても工程を簡略化できる利点がある。
 本実施形態で使用する熱硬化性又は常温硬化性樹脂は、どのような成分の樹脂を用いても構わない。代表的な熱硬化性又は常温硬化性樹脂は、エポキシ樹脂、アクリル樹脂、変性シリコーン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等が挙げられる。本発明の積層磁性材の樹脂層は、これらの熱硬化性又は常温硬化性樹脂のうち少なくとも一種を成分として含む樹脂組成物である。その他の成分として、硬化剤、および必要に応じてその他の樹脂、硬化促進剤、充填剤、溶剤、可塑剤などを含んでいてもよい。熱硬化性又は常温硬化性樹脂は、特に、エポキシ樹脂、エポキシ変性シリコーン樹脂、アクリル樹脂のうち少なくとも一種であることが望ましい。
 エポキシ樹脂は、最も広く用いられている熱硬化性樹脂又は常温硬化性樹脂であり、種類も多く、経済面も含めて実用性が高いので特に好ましい。本実施形態で用いられるエポキシ樹脂としては、特に限定はしないが、公知の単官能性エポキシ樹脂、多官能性エポキシ樹脂などを用いることができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂等の変性エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は単独で用いても、2種類以上を混合して用いてもよい。樹脂層におけるエポキシ樹脂の含有量は、エポキシ樹脂特有の高い接着力を発現させるために少なくとも10質量%以上が好ましく、20質量%以上が好ましく、さらには30質量%以上がより好ましい。また、含有量が多すぎると弾性率が高くなって軟磁性アモルファス合金リボン1に与える接着応力が大きくなってしまう観点から、80質量%以下が好ましく、70質量%以下がより好ましい。
 アクリル樹脂は、種類も多く、経済面も含めて実用性が高い熱硬化性樹脂又は常温硬化性樹脂であるほか、硬化速度が速いために接着工程の短縮が可能である点、二液型室温硬化タイプの中には二液を十分に混合しなくとも、二液が接触すれば反応が開始し硬化する(ハネムーン接着)ことが可能な接触反応型で硬化を行うことができる点、嫌気性接着や光硬化性接着といった常温硬化方法の種類が豊富にある点から、接着工程を最適化しやすいため好ましい。本発明で用いられるアクリル樹脂は、熱硬化性または常温硬化性である。常温硬化性のアクリル樹脂の中には、第二世代アクリル樹脂(SGA)が含まれる。SGAは、エラストマーとアクリルモノマーがグラフト重合し硬化する樹脂で、熱可塑性であるものの耐熱性が高く、高温時の接着強度が低下しにくい。アクリル樹脂の成分としては、例えば、ポリアクリル酸及びその共重合体、ポリアクリル酸エステルおよびその共重合体、ポリメタクリル酸及びその共重合体、ポリメタクリル酸エステル及びその共重合体、ウレタン-アクリル酸共重合体、スチレン-アクリル酸共重合体などが挙げられる。これらのアクリル樹脂は単独で用いても、2種類以上を混合して用いてもよい。樹脂層におけるアクリル樹脂の含有量は、アクリル樹脂特有の高い接着力を発現させるために少なくとも10質量%以上が好ましく、20質量%以上が好ましく、さらには30質量%以上がより好ましい。
 エポキシ変性シリコーン樹脂は、極めて低い弾性率をもつため、接着応力を大きく低減可能であり、好ましい。エポキシ変性シリコーン樹脂の種類は、変性シリコーン樹脂の官能基の一部をエポキシ基に置換したもの、またはエポキシ樹脂と変成シリコーンが非相溶で相分離し、海島構造を形成しているもののどちらでも良い。エポキシ変性シリコーン樹脂組成物におけるエポキシ変性シリコーン樹脂の含有量は、少なくとも10質量%以上が好ましい。
 積層磁性材の優れた磁気特性を維持する観点から、占積率を可能な限り高め、90%以上の占積率をもつことが好ましい。樹脂層2の厚さは、5μm以下が好ましく、3.0μm以下がより好ましく、さらには2.0μm以下がより好ましい。
一方で、樹脂層2が薄すぎると十分な接着強度を発現できないことから、1μm以上が好ましく、1.5μm以上がより好ましい。
(占積率算出方法)
占積率は、以下の数式で計算を行う。
ここで、占積率をパーセンテージ(%)で表示する際は、以下の数式に100を掛けるとする。
Figure JPOXMLDOC01-appb-M000006
 樹脂層2は、容易に剥離しないように、急冷合金薄帯1の主面1a、1bの少なくとも一面に接着されていることが好ましい。樹脂層2は、急冷合金薄帯1の2つの主面1a、1bにそれぞれ配置されていてもよい。樹脂層2は、主面1a、1bの全体に配置されていてもよいし、主面1a、1b上にストライプ状、ドット状等、樹脂層2が配置される領域と、樹脂層2が配置されない領域と、を含む所定のパターンで設けられていてもよい。
(ピール強度評価用積層磁性材)
 図3に、ピール強度試験に用いる積層磁性材12(ピール強度評価用積層磁性材)の模式図を示す。図3に示すように、積層磁性材12は、急冷合金薄帯1aの一方の面の一部と、急冷合金薄帯1bの一方の面の一部とを貼り合わせた積層磁性材である。すなわち、積層磁性材の長手方向の一端側が、貼り合わされていない(接着されていない)積層磁性材である。積層磁性材の幅は25mmとし、張り合わせ部分の長さは100mmとする。
(ピール強度測定方法)
 積層磁性材のピール強度とは、積層された急冷合金薄帯1aと1bとを剥離するのに必要な力、すなわち、剥離強度もしくは保持力である。ピール強度の測定方法としては、例えば、90°もしくは180°度剥離試験法(K6854:1999)がある。
そのうち、180°剥離試験法の具体例として、図4に示すようなピール強度測定装置3を用いて、ピール強度を測定することができる。まず、積層磁性材12を構成する急冷合金薄帯の他方の面(樹脂が塗布されていない面)、例えば、急冷合金薄帯1aの他方の面を、金属ベース3dとを、両面テープ3eで固定する。次に、積層磁性材12の貼り合わせていない一端側をクリップ3aで把持し、そのクリップ3aを、リニアガイド3cを介して固定したフォースゲージ3bで一定速度で引っ張り、その際の荷重を測定することにより、積層磁性材のピール強度を測定できる。ここで、本実施形態では、引っ張る速度を90mm/minとした。
各試験片について、最初の25mmを除いた少なくとも40mmの長さのはく離長さにわたって,荷重測定を行い、そのうちの最大荷重を積層磁性材のピール強度[gf/mm]とする。
 本実施形態における積層磁性材料の製造方法は、積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材の製造方法であって、前記急冷合金薄帯の片面、または両面に、前記樹脂を塗布する工程と、前記急冷合金薄帯を積層して、前記樹脂を硬化させる工程と、を有する。
ここで、本実施形態の積層磁性材料の製造方法における樹脂、つまり、熱硬化性または常温硬化性樹脂については、上述の樹脂である。
 樹脂を塗布する工程は、急冷合金薄帯1の片面、または両面に、樹脂を配置して樹脂層2を形成する工程のことである。樹脂層2を形成するための方法は特に限定はしないが、例えば、フレキソ印刷方式による樹脂の塗布方法、または樹脂と溶媒を含む接着剤を作製し、その接着剤をスプレーやコーターで塗布し、その後、溶媒を蒸発させる方法がある。
特に、フレキソ印刷方式を使用して樹脂を塗布して樹脂層2を構成する方法は、溶媒を含まない熱硬化性樹脂を塗布する際によく用いられる。
 樹脂を硬化させる工程は、樹脂を塗布する工程の後、樹脂が塗布された急冷合金薄帯1の面に、他の急冷合金薄帯1を重ね、ローラー等で圧着し、樹脂の硬化温度まで加熱して硬化させる工程のことである。
 次に、本発明の実施形態であるトランス用コアを説明する。本実施形態のトランス用コアは、複数の積層磁性材11を、複数積層方向の垂直な端面同士を突き合わせるように配置され、環状のトランス用コアが形成される。図5は、本発明の実施形態であるトランス用コアの一実施形態を示す斜視図であり、4個の積層磁性材11を用いて全体として矩形のトランス用コアが形成されている。ここで、トランス用コアの形状は本実施形態に限定されるものではない。
 急冷合金薄帯1として、日立金属株式会社製の2605HB1M材で、長さ120mm、幅25mm、厚さ25μmの軟磁性アモルファス合金リボンを用意した。接着前に、リボン長手方向に40MPaの張力を印加し、450℃でテンションアニールを行い、当該方向が磁化容易方向となる誘導磁気異方性を付与した。
ここで、2605HB1Mの線膨張率は、4.3×10-6[1/K]である。
また、軟磁性アモルファス合金リボンの磁気特性である、PCM14/50とB80は、各々、0.114W/kgと1.55Tであることを確認した。
 上述の軟磁性アモルファス合金リボンの二枚を、種々の接着応力を有する樹脂を用いて接着した積層磁性材の実施例と比較例を作製し、それぞれについてPCM14/50および磁束密度B80を測定した。
 樹脂は、下記の表1に示すように、9種の樹脂a1、b1、c1、d1、e1、f1、g1、h1、i1、j1を用意した。樹脂a1、b1、c1、d1、e1が実施例に用いられ、樹脂f1、g1、h1、i1が比較例に用いられた。
 ここで、各樹脂の硬化温度、硬化タイプ、デュロメータ硬さ、樹脂層の厚さ、弾性率、線膨張率、熱収縮率、硬化時の線収縮率、接着応力は表1の通りであり、弾性率、線膨張率、硬化時の線収縮率は、上述した測定方法により測定した結果に基づくものである。また、熱収縮率δは、樹脂の線膨張率をα1、樹脂の硬化温度をTa、アモルファス合金リボンの線膨張率をα2、室温をRT(=296K)とするとき、以下の数式で表される。
Figure JPOXMLDOC01-appb-M000007
アモルファス合金リボンの線膨張率α2については、4.3×10-6[1/K]を用いた。
 硬化タイプについては、あらかじめ硬化剤を含んでいて加熱によって硬化する1液タイプ、使用時に硬化剤と主剤を調合して硬化する2液タイプがある。
 デュロメータ硬さとは、デュロメータ硬さ試験機(ゴム硬度計)を用いて、タイプD(A)の形状の押針を、規定のスプリングの力で試験片表面に押し付け、そのときの押針の押込み深さから得られる硬さであり、JIS K7215で規定される試験方法によって測定される値をいう。
 なお、接着応力σ[MPa]は、表1にある各樹脂の弾性率、線膨張率、硬化時の線収縮率、樹脂の硬化温度を用い、アモルファス合金リボンの線膨張率は4.3×10-6[1/K]、室温は300[K]として、上述の数式(数1)から算出した値である。
Figure JPOXMLDOC01-appb-T000008
[試料の作製]
 表1に示した実施例1~5及び比較例1~4の樹脂を、フレキソ印刷方式を用いて軟磁性アモルファス合金リボン上の全面に塗布し、他方の軟磁性アモルファス合金リボンを重ね合わせ、ローラーで圧着した。ここで、2液タイプ樹脂については、硬化剤と本剤を均一になるまで混ぜ合わせた後、フレキソ印刷方式で塗布した。圧着後は、各硬化温度で加熱または室温硬化のものは室温で放置し、十分に硬化させ、実施例1~5、比較例1~4の試料を作製した。また、樹脂層を形成せずに、軟磁性アモルファス合金リボンを2枚、自重で積層した試料を比較例5として用意した。
 硬化後の樹脂層2の厚さは、表1をみてもわかるように、実施例1~5は、1.9μmから4.9μmの間となり、比較例1~4は、2.9μm~6.7μmの間となった。
(磁気特性)
 作製した試料について、PCM14/50および磁束密度B80を測定した。各磁気特性は、積層磁性材のうち、樹脂で層間接合された軟磁性アモルファス合金リボンの部分のみの断面積および質量を考慮して測定を行った。PCM14/50は、各試料を周波数50Hz、最大磁束密度1.4Tで励磁させ、その時の鉄損(W/kg)を測定した。B80は、周波数50Hz、80A/mの磁界を印加し、磁束密度B80を測定した。特に、積層磁性材全体のB80は、樹脂で層間接合された軟磁性アモルファス合金リボンの部分のみの断面積を考慮して測定した磁束密度B80に、その積層磁性材の占積率を掛け合わせたものとして算出した。
 それぞれの測定には、岩崎通信機株式会社製BHループアナライザSY8218の交流磁気特性測定装置を使用し、アンプにはPMK社製SY-5001を使用した。また、測定治具として、JISC2556 「単板試験器による電磁鋼帯の磁気特性の測定方法」を参考にした測定用の枠を製作して使用した。治具の構成は、MnZnフェライトヨーク、樹脂ボビンおよびポリウレタン被覆銅線から成る。樹脂ボビンにポリウレタン被覆銅線で一次巻線(励磁コイル)(線径0.5mm)と二次巻線(Bコイル)(線径0.5mm)をそれぞれ57、100ターン施し、ボビンの間にリボンを挿入してボビン長36.2mm分のリボンに磁界を印加した。測定の際は、上下のMnZnフェライトヨークでリボンを挟み込んで測定を行った。MnZnフェライトヨークでリボンを挟み込むことで磁束の流れを閉磁路にし、リボンに反磁界が発生するのを防ぐことができる。また、MnZnフェライトヨークおよびコイルと磁性材の間の空隙に起因して発生するバックグラウンドは、治具とSY8218の間に補償コイルを接続し、8000A/mの磁界を印加した際の無試料時の出力がゼロになるよう補償コイルの巻線数を調整し、補正を行った。
表2に各試料の測定結果を示す。
Figure JPOXMLDOC01-appb-T000009
 表1及び表2から分かるように、接着応力が3MPa以下の実施例1~5は、樹脂で層間接合された軟磁性アモルファス合金リボンの部分のB80が1.4T以上、PCM14/50が0.26W/kg以下であり、商用周波数帯のトランス用途として、良好な磁気特性を有した。特に0.6MPa以下の実施例1および実施例2は、樹脂で層間接合された軟磁性アモルファス合金リボンの部分のB80が1.5T以上で、積層磁性材全体のB80が1.4T以上、PCM14/50が0.16W/kg以下であり、これは、未接着の比較例5に対して、90%以上のB80を示し、17%以下のPCM14/50の増加率と、極めて優れた磁気特性を示している。
ここで、実施例1~5のように、樹脂の弾性率が2600MPa以下の樹脂を使用した場合に、良好な磁気特性が得られることが分かった。更に、表1及び表2から、樹脂の硬化時の線収縮率は、0.8%以下であることが好ましいことが分かる。また、樹脂の熱収縮率δは、0.3%以下が好ましいことが分かる。
(ピール強度評価)
上述したピール強度測定方法を用いて、実施例1~5及び比較例1~4の各試料のピール強度を評価した結果を表3に示す。比較例6として、ホットメルト型の熱可塑性樹脂であるポリエステル樹脂j1を使用した二層積層体を作製し、そのピール強度も評価した。合わせて、耐熱性を評価するために、実施例1~5及び比較例6について、70℃高温下におけるピール強度を測定した。
Figure JPOXMLDOC01-appb-T000010
実施例1~5及び比較例6は、室温においては1.0gf/mm以上の十分なピール強度を示している。一方で、70℃の高温下では、実施例1~5は1.0gf/mm以上のピール強度を維持し、室温のピール強度に対する70℃のピール強度の比を示すピール強度の変化率(対室温比)を見ても90%未満のピール強度の増加を確認することができた。しかし、比較例6は、1.0gf/mm未満のピール強度となり、対室温比でも大幅なピール強度の減少が確認された。よって、実施例1~5のような熱硬化または常温硬化性樹脂は、高温下においてもピール強度が低下しにくく、耐熱性に優れた接着剤であることがわかる。
 以上より、本実施形態によれば、耐熱性に優れ、磁束密度が高く維持され鉄損の少ない優れたた積層磁性材、トランス用コア、および積層磁性材の製造方法を提供することができる。
 以上、本発明について、上記実施形態を用いて説明してきたが、本発明の技術範囲は、上記実施形態に限定されない。
1 急冷合金薄帯
1a,1b 急冷合金薄帯の主面
2 樹脂層
3 ピール強度測定装置3a クリップ
3b フォースゲージ
3c リニアガイド
3d 金属ベース
3e 両面テープ
11、12 積層磁性材
 

 
 

Claims (8)

  1.  積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材であって、
     室温における積層磁性材のピール強度が1.0gf/mm以上であり、かつ、積層磁性材全体の、印加磁界が80A/mにおける磁束密度B80が1.25T以上であることを特徴とする積層磁性材。
  2.  前記樹脂で層間接合された急冷合金薄帯の、印加磁界が80A/mにおける磁束密度B80が1.4T以上、かつ、周波数50Hz、最大磁束密度1.4Tにおける鉄損Pcmが0.26W/kg以下であることを特徴とする請求項1に記載の積層磁性材。
  3.  前記樹脂の室温における弾性率をγ[MPa]、前記樹脂の室温における線膨張率をα1[1/K]、前記樹脂の硬化温度をTa[K]、前記樹脂の硬化時の線収縮率をβ、前記樹脂の樹脂厚さをh1[μm]、急冷合金薄帯の厚さをh2[μm]、急冷合金薄帯の線膨張率をα2[1/K]、室温をRT、とするとき、以下の数式で示される接着応力σ[MPa]が3MPa以下であることを特徴とする請求項1に記載の積層磁性材。
    σ = h1 / h2 × γ × {(α1―α2) × (Ta-RT) + β}
  4.  前記接着応力σは0.6MPa以下であることを特徴とする請求項3に記載の積層磁性材。
  5.  前記樹脂が、エポキシ樹脂、エポキシ変性シリコーン樹脂、アクリル樹脂のうち少なくとも一種であることを特徴とする請求項1から請求項4のいずれか一項に記載の積層磁性材。
  6.  請求項5に記載の積層磁性材を有することを特徴とするトランス用コア。
  7.  積層された急冷合金薄帯が、熱硬化性、または常温硬化性であり、かつ、100℃以下のガラス転移温度を有する樹脂で層間接合された積層磁性材の製造方法であって、
    前記急冷合金薄帯の片面、または両面に、前記樹脂を塗布する工程と、
    前記急冷合金薄帯を積層して、前記樹脂を硬化させる工程と、を有することを特徴とする積層磁性材の製造方法。
  8.  前記樹脂が、エポキシ樹脂、エポキシ変性シリコーン樹脂、アクリル樹脂のうち少なくとも一種であることを特徴とする請求項7に記載の積層磁性材の製造方法。
PCT/JP2022/047785 2021-12-24 2022-12-23 積層磁性材、トランス用コア、および積層磁性材の製造方法 WO2023120730A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021211626 2021-12-24
JP2021-211626 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023120730A1 true WO2023120730A1 (ja) 2023-06-29

Family

ID=86902894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047785 WO2023120730A1 (ja) 2021-12-24 2022-12-23 積層磁性材、トランス用コア、および積層磁性材の製造方法

Country Status (1)

Country Link
WO (1) WO2023120730A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336487A (ja) * 1999-05-28 2000-12-05 Nkk Corp 剪断強度及び剥離強度に優れた接着鉄芯用電磁鋼板の製造方法
JP2005109209A (ja) * 2003-09-30 2005-04-21 Mitsui Chemicals Inc 磁性基材、磁性積層体およびその製造方法
JP2009194724A (ja) * 2008-02-15 2009-08-27 Hitachi Metals Ltd 積層体、及びアンテナ
WO2019087932A1 (ja) * 2017-10-31 2019-05-09 日立金属株式会社 磁性材、それを用いた積層磁性材、積層パケットおよび積層コア、並びに、磁性材の製造方法
JP2021154732A (ja) * 2020-03-25 2021-10-07 日立金属株式会社 軟磁性合金薄帯の積層体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336487A (ja) * 1999-05-28 2000-12-05 Nkk Corp 剪断強度及び剥離強度に優れた接着鉄芯用電磁鋼板の製造方法
JP2005109209A (ja) * 2003-09-30 2005-04-21 Mitsui Chemicals Inc 磁性基材、磁性積層体およびその製造方法
JP2009194724A (ja) * 2008-02-15 2009-08-27 Hitachi Metals Ltd 積層体、及びアンテナ
WO2019087932A1 (ja) * 2017-10-31 2019-05-09 日立金属株式会社 磁性材、それを用いた積層磁性材、積層パケットおよび積層コア、並びに、磁性材の製造方法
JP2021154732A (ja) * 2020-03-25 2021-10-07 日立金属株式会社 軟磁性合金薄帯の積層体の製造方法

Similar Documents

Publication Publication Date Title
JP7347634B2 (ja) 軟磁性合金薄帯の積層体
US8123972B2 (en) Sheet-like soft-magnetic material and production method thereof
JP4807523B2 (ja) シート状軟磁性材料及びその製造方法
JP7354249B2 (ja) 電磁鋼板、その製造方法、及び電磁鋼板積層体
JP6661059B2 (ja) 磁性材、それを用いた積層磁性材、積層パケットおよび積層コア、並びに、磁性材の製造方法
EP3910652A1 (en) Laminated iron core
JP2012521649A (ja) 軟磁性材料による積層コア,及び軟磁性の積層コアを形成する接着力によりコア単層板を接合する方法
JP6839985B2 (ja) 磁気シールド部材、磁気シールド部材の製造方法及び磁気シールドパネル
WO2023120730A1 (ja) 積層磁性材、トランス用コア、および積層磁性材の製造方法
JPH07336969A (ja) 接着鉄心用電磁鋼板およびその製造方法
WO2009125639A1 (ja) 巻磁心およびその製造方法
WO2023140303A1 (ja) 積層磁性材、および積層磁性材の製造方法
JP2009194724A (ja) 積層体、及びアンテナ
JPS6345043A (ja) 非晶質合金薄帯積層板およびその製造方法
JPS6163004A (ja) 接着ラミネート方向性けい素鋼板
JP2023097867A (ja) 軟磁性アモルファス合金リボンの積層体およびその製造方法
JP4145223B2 (ja) 金属薄板およびその製造方法
JP2021002553A (ja) 磁性材、積層磁性体および積層コア、並びに、磁性材の製造方法および積層磁性体の製造方法
JPS63115313A (ja) 非晶質磁性合金薄帯積層板を使用したコアの製造方法
JPS6211483B2 (ja)
JPH04311011A (ja) 変圧器用巻鉄芯の製造方法
JP4473476B2 (ja) 低騒音巻きトランス用コアの製造方法
JP2023043867A (ja) 軟磁性合金薄帯の積層体の製造方法
JPH0752686B2 (ja) 磁気特性の良好な非晶質合金接着積層体
JPH08250339A (ja) 低騒音方向性電磁鋼板および積層鉄心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911431

Country of ref document: EP

Kind code of ref document: A1