WO2023093798A1 - 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法 - Google Patents

一种双面搪瓷内胆用高强度冷轧钢板及其制造方法 Download PDF

Info

Publication number
WO2023093798A1
WO2023093798A1 PCT/CN2022/133985 CN2022133985W WO2023093798A1 WO 2023093798 A1 WO2023093798 A1 WO 2023093798A1 CN 2022133985 W CN2022133985 W CN 2022133985W WO 2023093798 A1 WO2023093798 A1 WO 2023093798A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
double
rolled steel
sided
strength cold
Prior art date
Application number
PCT/CN2022/133985
Other languages
English (en)
French (fr)
Inventor
魏娇
孙全社
曲李能
蒋小明
王俊凯
王金涛
王木
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2023093798A1 publication Critical patent/WO2023093798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention relates to a metal material and a manufacturing method thereof, in particular to a high-strength cold-rolled steel for a double-sided enamel inner container and a manufacturing method thereof.
  • the common manufacturing process of the enamel liner is as follows: the steel plate is stamped and rolled into an end cover and a barrel body, and then welded to form the bottom embryo of the liner, followed by pretreatment to remove surface residual oil and iron oxide scale and other impurities to obtain a surface suitable for enamelling, and finally carry out wet enamelling and high-temperature sintering to obtain a finished enamel inner container.
  • Steel plate is one of the key materials for making enamel liner. It not only determines the compressive strength of the whole liner, but also determines the enamel quality and service life of the whole liner to a large extent. Therefore, the market generally has higher performance requirements for steel for enamel inner tanks, which need to have higher yield strength, excellent formability, excellent weldability and enamelling performance.
  • the main concern is the strength of the steel plate.
  • the yield strength of the steel plate is above 350MPa, but there are still some shortcomings: these steel plates are mainly suitable for single-sided enamelling process, and cannot meet the double-sided enamelling process. The surface enamel is not scaled and exploded.
  • One of the objectives of the present invention is to provide a high-strength cold-rolled steel plate for double-sided enamelled inner tanks, which not only has high strength, good plasticity and excellent enamelling performance , which can also meet the requirements of double-sided enamelling.
  • the high-strength cold-rolled steel plate for the double-sided enamel inner tank has good comprehensive performance in forming, enamelling, welding and pressure resistance, especially excellent welding performance, excellent anti-scale explosion performance, adhesion performance and needle resistance. Pores, bubble defects and high strength after high-temperature enamelling, it is especially suitable for making double-sided enamel liners.
  • the present invention provides a kind of high-strength cold-rolled steel plate for double-sided enamel liner, which contains Fe and unavoidable impurities, and it also contains the following chemical elements in mass percentage:
  • the mass percentage of each chemical element is:
  • C, Mn and P elements are mainly used for strengthening, and an appropriate amount of Ti and B elements are added to appropriately increase the content of S elements, and alloy elements such as Cu, Cr, and Mg are also added auxiliary.
  • Ti and B elements are added to appropriately increase the content of S elements
  • alloy elements such as Cu, Cr, and Mg are also added auxiliary.
  • Ti, C, S, and N can form fine, dispersed second-phase particles, which not only help to improve the anti-scale explosion performance, but also can control During sintering, the ferrite grains grow up, which improves the high temperature softening ability of the steel plate.
  • an appropriate amount of B element can alleviate the secondary brittleness problem caused by P, and at the same time, it can further improve the scale explosion resistance and increase the high temperature strength of the steel plate.
  • C In the high-strength cold-rolled steel plate for double-sided enamelled inner tank according to the present invention, C is the most basic strengthening element. With the increase of the content of C element in the steel, the strength of the steel plate will also increase, but Plasticity and toughness will decrease accordingly.
  • Adding an appropriate amount of C element to the steel can not only ensure the basic strength of the steel plate, but also combine with the Ti element in the steel to form TiC particles, so that C can exist in the form of pearlite and TiC particles; correspondingly, the use of process control can
  • the formed TiC particles are uniformly and dispersedly distributed on the ferrite matrix, which can not only improve the strength of the steel plate through precipitation strengthening, but also serve as an effective hydrogen trap to improve the anti-scale explosion performance of the steel plate, and can also control the oxidation resistance of the steel plate during high-temperature sintering. Coarsening of tensite grains and growth of ferrite grains can effectively prevent the steel plate from softening after sintering.
  • the content of C element in the steel should not be too high.
  • the content of C element in the steel is too high, a large amount of pearlite will be formed in the steel, which will not only damage the formability of the steel plate, but also cause damage to the steel during firing. More CO gas is generated, and bubbles and pinhole defects are formed on the surface of the enamel. Therefore, in the high-strength cold-rolled steel plate for double-sided enamelled inner container of the present invention, the mass percentage of C element is controlled between 0.06-0.12%.
  • Si element can dissolve in ferrite and austenite, and improve the hardness and strength of steel, but if the content is too high, it will significantly reduce Plasticity and toughness of steel.
  • adding an appropriate amount of Si to the steel will not affect the adhesion of the steel plate, but when the content of Si in the steel is too high, a SiO 2 film will be formed on the surface of the steel plate when it is heated, which hinders the infiltration of the enamel on the steel plate and the second The chemical reaction between them reduces the adhesion strength between the steel plate and the enamel.
  • the mass percentage of Si is controlled to satisfy: 0 ⁇ Si ⁇ 0.08 %. In some embodiments, the mass percentage of Si is 0.005-0.08%.
  • Mn In the high-strength cold-rolled steel plate for double-sided enameled inner tanks of the present invention, Mn is a commonly used strengthening element, which can exist in a solid solution state and play a role in strengthening the ferrite matrix. At the same time, Mn element can also react with S element to form MnS, which can not only overcome the thermal embrittlement caused by sulfur, but also act as an effective hydrogen trap, playing an important role in the resistance to scale explosion. However, MnS is a strip-shaped inclusion, which will be detrimental to the transverse properties of the steel plate.
  • the mass percentage of Mn is controlled between 0.5-1.2%.
  • P In the high-strength cold-rolled steel plate for double-sided enamelled inner tank according to the present invention, adding an appropriate amount of P element in the steel can effectively improve the ability of the steel plate to resist scale explosion; in addition, P solid solution in ferrite can also increase strength and hardness of the steel plate; however, P segregation is serious, which not only increases the cold brittleness of steel, but also significantly reduces plasticity and toughness. Secondary processing brittleness. Therefore, in the high-strength cold-rolled steel plate for the double-sided enameled inner container of the present invention, the mass percentage of P element is controlled between 0.01-0.05%.
  • S In the high-strength cold-rolled steel plate for double-sided enamel inner tank according to the present invention, if the content of S element is increased appropriately, it can form complex inclusions with titanium and manganese, which plays a beneficial role in preventing scale explosion during enamelling; In the present invention, by reasonably controlling the matching amount and process, it is possible to further prevent these composite inclusions from being too large, otherwise affecting the scale explosion resistance and formability of the steel plate. Therefore, in order to realize the beneficial effect of S element in steel, in the high-strength cold-rolled steel plate for double-sided enameled inner container of the present invention, the mass percentage of S is controlled between 0.005-0.05%.
  • the Al element can not only play the role of deoxidation and grain refinement, but also fix the nitrogen in the steel and reduce the aging tendency of the steel. Improve the low temperature toughness of steel.
  • the content of Al element in the steel should not be too high. When the content of Al element in the steel is too high, it will bring difficulties in smelting and pouring. Based on this, in the high-strength cold-rolled steel plate for the double-sided enameled inner container of the present invention, the mass percentage of the Al element is controlled between 0.008-0.06%.
  • N In the high-strength cold-rolled steel plate for double-sided enamelled inner tank according to the present invention, nitrogen is the same as carbon. The higher the content of N element in the steel, the worse the formability of the steel plate and cause aging. The upper limit of the content is limited; in addition, in the present invention, the N element can combine with Ti to form corresponding nitrides, which can improve the anti-scale explosion performance of the steel plate. It should be noted that the content of N element in the steel should not be too high. When the content of N element in the steel is too high, the size of the formed nitride is too large, the effect of improving the resistance to scale explosion is very limited, and the plasticity of the steel is damaged. Therefore, in the high-strength cold-rolled steel plate for double-sided enamelled inner container according to the present invention, the mass percentage of N element is N ⁇ 0.006%.
  • Ti In the high-strength cold-rolled steel plate for double-sided enamel inner tank according to the present invention, Ti is an extremely active metal element, which can produce stable compounds with carbon, nitrogen, and sulfur, and these compounds can be uniformly dispersed through process control Distributed in the ferrite matrix to play their role in preventing scale explosion and strengthening the matrix.
  • Ti element also has certain benefits for adhesion. Tim O n formed by the oxidation of Ti element can be enriched on the surface of the steel plate, so that the adhesion layer between the steel plate and the enamel is obviously widened, but if the amount of Tim O n is too large, It will hinder the physical and chemical reaction between the steel plate and the enamel. Therefore, in order to exert the beneficial effect of the Ti element, in the high-strength cold-rolled steel plate for the double-sided enameled inner container of the present invention, the mass percentage of the Ti element is controlled between 0.03-0.1%.
  • element B In the high-strength cold-rolled steel plate for double-sided enamelled inner tank according to the present invention, element B can effectively improve the secondary brittleness problem caused by P segregation; in addition, B forms boron carbide in the steel, and part of it is in solid solution Form exists, which can further improve the scale explosion resistance of the material; but if the B content is too high, it will also cause transverse cracks at the corners of the continuous casting slab. In addition, B elements can also segregate at austenite grain boundaries, and prevent element diffusion and grain boundary migration during high-temperature sintering, thereby improving the high-temperature strength of the steel plate.
  • the mass percentage of the B element is controlled between 0.0002-0.0035%. In some embodiments, the mass percentage of element B is 0.0005-0.0035%.
  • the Cr element in the high-strength cold-rolled steel plate for double-sided enamel inner tank according to the present invention, the Cr element can effectively enhance the strength of the steel and reduce the toughness of the steel; an appropriate amount of Cr is beneficial to improve the adhesion performance of the steel; but it is necessary to pay attention Yes, the content of Cr element in steel should not be too high, when the content of Cr element in steel is too high, it will cause scale explosion. Therefore, in the high-strength cold-rolled steel plate for the double-sided enameled inner container of the present invention, the mass percentage of Cr element is controlled between 0.01-0.06%. In some embodiments, the mass percentage of Cr element is 0.01-0.05%.
  • Cu in the high-strength cold-rolled steel plate for double-sided enamel inner tank according to the present invention, under the pretreatment process including pickling, a small amount of Cu is beneficial to the enamel adhesion performance;
  • the Cu element in the steel mainly consists of Cu 2+ dissolved in the acid solution during pickling will form metal Cu or Cu 2 S compound on the surface of the steel plate again through the replacement reaction, and the residue Cu or Cu 2 S after pickling is a porous
  • the thin film acts as a cathode to generate galvanic corrosion during high-temperature enamel firing, which increases the roughness of the steel plate surface, thereby improving the adhesion performance of the enamel.
  • copper is locally enriched, a large number of air bubbles will be generated in the enamel layer.
  • the mass percentage of Cu element is controlled between 0.01-0.06%. In some embodiments, the mass percentage of Cu element is 0.01-0.05%.
  • Mg In the high-strength cold-rolled steel plate for double-sided enamelled inner tank of the present invention, adding an appropriate amount of Mg element can effectively improve the shape of inclusions in the steel, and improve the plasticity and toughness of the steel. Therefore, in the present invention, the mass percentage of the Mg element is controlled between 0.0005-0.03%.
  • the high-strength cold-rolled steel sheet for double-sided enameled inner container according to the present invention among the unavoidable impurities, O ⁇ 0.008%, Ni ⁇ 0.1%, and Mo ⁇ 0.1%.
  • O, Ni, and Mo are unavoidable impurity elements in steel, and the content of impurity elements in steel needs to be controlled as low as possible under the premise of technical conditions and production costs.
  • the O element will affect the processability and enameling performance of the steel plate.
  • too high O element content will lead to excessive oxide inclusions in the steel, which will deteriorate the plasticity and toughness of the steel plate; on the other hand, too high O element content will consume a large amount of Ti, forming too much Tim O n is not conducive to the adhesion performance, but also reduces the formation of the second phase particles TiN, Ti 4 C 2 S 2 and TiC that are beneficial to the anti-scale explosion performance.
  • Ni and Mo elements are beneficial to improve the adhesion performance of enamel. This is because Ni and Mo elements can promote the infiltration and penetration of enamel to the steel plate during high-temperature enamel firing, and promote the ionization of enamel in the enamel. Mutual dissolution and diffusion with iron ions. In addition, Ni also has the effect of preventing the diffusion of hydrogen in the steel, which can improve the anti-scale explosion performance of the steel plate. However, both Ni and Mo elements are precious alloys. If the content of Ni and Mo elements is too high, it will not only increase the cost, but also reduce the adhesion performance. In general, the adverse effects of impurity elements Ni and Mo are greater than the beneficial effects.
  • the content of impurity elements Ni and Mo must be strictly controlled, and the mass percentage of Ni and Mo elements must be controlled to meet: Ni ⁇ 0.1%, Mo ⁇ 0.1% %. In some embodiments, the mass percentages of Ni and Mo elements are controlled to satisfy: Ni ⁇ 0.02%, Mo ⁇ 0.04%.
  • each chemical element also satisfies at least one of the following formulas:
  • the mass percentages of C, Ti, N and S are further controlled to meet: 0.05% ⁇ C-(Ti-3.43N-1.5S)/4 ⁇ 0.1%.
  • the present invention can further control the quality of Ti, C, N and S elements while controlling the content of a single element
  • the percentage satisfies: 0.65 ⁇ 2.5Ti/(1.2C+8.57N+3.75S) ⁇ 1.35, the purpose of which is to ensure that the carbon, nitrogen, and sulfide particles of titanium are finely and uniformly dispersed in the ferrite matrix, and not only It can improve the anti-scaling performance of the steel plate, and can also play a role in precipitation strengthening, and can inhibit the growth of ferrite grains during high-temperature sintering, and improve the strength of the steel plate and the strength after sintering. If the relational expression is not satisfied, the size of the second phase particles formed in the steel plate will be too large, which will reduce the formability and scale explosion resistance of the steel plate.
  • the high-strength cold-rolled steel plate for double-sided enamel inner container according to the present invention, it also contains: Nb: 0.005-0.04%.
  • Nb element can be further added to the steel.
  • Nb like Ti, is a strong carbon and nitride forming element, and part of Nb exists in a solid solution state.
  • the Nb element can increase the recrystallization temperature of steel, inhibit the recrystallization of austenite, effectively maintain the deformation effect of austenite, and thus refine the ferrite grains; the grain refinement effect of Nb can prevent The steel plate softens after sintering and prevents grain coarsening in the heat-affected zone during welding.
  • carbon and nitride precipitates of Nb also contribute to the hydrogen storage capacity of the steel sheet. Therefore, considering the beneficial effect of Nb element, in the high-strength cold-rolled steel plate for double-sided enamel inner container according to the present invention, it is preferable to add an appropriate amount of Nb element, and control the mass percentage of Nb element at 0.005 Between -0.04%.
  • the matrix of its microstructure is uniform and fine ferrite+pearlite, wherein the proportion of pearlite is less than 8% by volume ; Among them, pearlite is located at the ferrite trifurcation grain boundary. In some embodiments, the phase proportion of pearlite is 2.0-6.5% by volume.
  • its microstructure includes second-phase particles, and the second-phase particles include fine, dispersed Ti second-phase particles.
  • the second phase particles of Ti include TiN, Ti 4 C 2 S 2 and TiC, wherein the diameter of the TiN precipitate is 50-300nm, the diameter of Ti 4 C 2 S 2 precipitates is 30-200nm, and the diameter of TiC precipitates is 1-15nm.
  • the ferrite grain size is 10-11.
  • the high-strength cold-rolled steel plate for double-sided enamel inner tank meets at least one of the following items: yield strength is ⁇ 360 MPa, and elongation at break when the gauge length is 80 mm ⁇ 28.0%, yield strength ⁇ 330MPa after 850°C high-temperature firing for 12 minutes. Furthermore, the tensile strength of the high-strength cold-rolled steel plate for the double-sided enamelled inner container of the present invention is ⁇ 440 MPa.
  • the yield strength of the high-strength cold-rolled steel plate for the double-sided enamel liner of the present invention is 360-415 MPa
  • the tensile strength is 440-510 MPa
  • the elongation at break A 80 is 28.0-33.0%
  • the high temperature of 850 ° C The yield strength after sintering for 12 minutes is 330-370MPa.
  • the present invention provides a double-sided enamelled steel comprising a substrate and an enamel layer on both surfaces of the substrate, wherein the elemental composition of the substrate is the same as that of the double-sided enamelled steel described in any embodiment of the present invention.
  • the surface enamel liner is made of high-strength cold-rolled steel plate with the same elemental composition.
  • the enamelled steel has a yield strength ⁇ 330 MPa (preferably 330-370 MPa), a tensile strength ⁇ 400 MPa (preferably 400-460 MPa), and a hydrogen permeation value ⁇ 7.5 min/mm 2 .
  • the enamelled steel has a hydrogen permeation value of 7.5-16.0 min/mm 2 .
  • the matrix of the microstructure of the substrate is uniform and fine ferrite+pearlite, wherein the phase ratio of pearlite by volume is ⁇ 8% (preferably 1.5-6.5%), wherein pearlite is located in the ferrite At the trifurcation grain boundary of the element body.
  • the microstructure of the substrate further includes second phase particles comprising fine, dispersed second phase particles of Ti.
  • the Ti second phase particles include TiN, Ti 4 C 2 S 2 and TiC, wherein the diameter of TiN precipitates is 50-300 nm, and the diameter of Ti 4 C 2 S 2 precipitates is 30-200 nm, The diameter of the TiC precipitate is 3 to 25 nm.
  • the material used for the enamel layer may be enamel glaze known in the art.
  • An exemplary material is Flow EMP6515 high temperature glaze.
  • another object of the present invention is to provide a kind of manufacturing method of high-strength cold-rolled steel plate for double-sided enamelled inner tank, the manufacturing method is simple and feasible, and the yield of the high-strength cold-rolled steel plate for double-sided enameled inner tank made is
  • the strength is ⁇ 360MPa
  • the elongation at break at a gauge length of 80mm is ⁇ 28.0%
  • the hydrogen permeation value is ⁇ 7.5min/mm 2
  • the yield strength is ⁇ 330MPa after at least 850°C high-temperature firing for at least 12 minutes, which can meet the requirements of double-sided coating. Tang's request.
  • the present invention proposes the manufacture method of above-mentioned double-sided enamel liner high-strength cold-rolled steel plate, which comprises steps:
  • Hot rolling and coiling the final rolling temperature of hot rolling is controlled to be 810-880°C, and the coiling temperature is controlled to be 620-680°C;
  • the soaking temperature is 780-850°C
  • the soaking time is 120-200s
  • the overaging temperature is between 165-450°C
  • the overaging time is 250-350s
  • step (1) the basic requirements can be obtained through pre-desulfurization of molten iron, compound blowing at the top and bottom of the converter, and tapping alloying.
  • the composition of molten steel can be obtained by CAS refining treatment to obtain uniform and stable molten steel with uniform temperature and composition, and finally the continuous casting slab with the above composition can be formed through continuous casting.
  • the hot continuous rolling process is all carried out in the austenite single-phase region, and the final rolling temperature is set at the Ar3 transformation temperature (the transition from austenite to ferrite during cooling) Transformation temperature) and close to this temperature, the purpose is to accumulate sufficient deformation in the austenite non-recrystallized zone, the austenite grain boundary and the "deformation zone" inside the grain together serve as the nucleation core of ferrite, so that the hot
  • the rolling plate obtains a refined ferrite structure, so the present invention controls the final rolling temperature between 810-880°C; correspondingly, in the coiling process, the coiling temperature has a significant impact on the structure and properties of the steel plate, in order to To ensure that the steel plate has a high strength, and at the same time, the pearlite and TiC particles are fully separated.
  • the present invention controls the coiling temperature between 620-680°C. When the coiling temperature is too low, the yield ratio of the material increases, which is not conducive to Formability
  • step (4) descaling can effectively remove the iron oxide scale on the surface of the hot-rolled steel strip, so as to facilitate subsequent operations.
  • the cold rolling reduction rate has an influence on the mechanical properties and anti-scaling performance of the steel plate.
  • the reduction rate affects the strength of the steel plate.
  • the greater the cold rolling reduction rate the greater the elongation of the microstructure along the rolling direction, resulting in an increase in the nucleation rate during the recrystallization process.
  • the ferrite crystals The finer the grain, the higher the yield strength of the steel plate.
  • the normal-temperature structure of the high-strength cold-rolled steel plate for double-sided enamel inner tanks of the present invention contains hard phases such as cementite and titanium carbon, nitrogen, and sulfide.
  • the cold rolling reduction rate is controlled to 60-70%.
  • step (6) a high-temperature rapid continuous annealing process is adopted, and the specific control soaking temperature is 780-850°C, the soaking time is 120-200s, and the overaging temperature is 165-450°C Between, the control overaging time is 250-350s.
  • the recrystallization process can be completed in a short time at high temperature, and the coarseness of ferrite grains can be avoided, so as to obtain high-strength cold-rolled steel sheets with good strength and plasticity;
  • the low-temperature precipitated TiC particles of carbon and titanium are fully precipitated, which effectively improves the anti-scaling performance of the steel plate.
  • step (2) the heating temperature is 1100-1230° C., and the time in the furnace is ⁇ 360 minutes.
  • the heating temperature is preferably controlled to be 1100-1230° C., and the furnace time ⁇ 360 minutes, the following can be obtained.
  • the heating temperature is 1130-1230° C., and the time in the furnace is 370-420 minutes.
  • step (2) if the heating temperature or time is lower than the set value, the above two purposes will not be achieved; if the heating temperature is too high or the time is too long, it will cause oxidation and Decarburization causes severe burning loss of the billet, which affects the yield.
  • step (7) the leveling reduction rate is controlled to 0.6-1.2%.
  • the flattening reduction rate is controlled to 0.6-1.2%, and the cold-rolled strip after annealing is carried out to the secondary cold rolling with a small reduction rate, and the following two benefits can be obtained Effects: First, it can reduce or eliminate the "yield platform" on the stress-strain curve, avoiding the appearance of "Lüders band” during stamping; second, it can improve the flatness of the steel plate and the smoothness of the plate surface.
  • the present invention also provides a method for preparing double-sided enamelled steel, which includes the steps of preparing the high-strength cold-rolled steel plate for double-sided enameled inner container of the present invention by the method described above, and A step of enamelling the prepared double-sided enamel liner with a high-strength cold-rolled steel plate.
  • a step of enamelling the prepared double-sided enamel liner with a high-strength cold-rolled steel plate in the simmering step, 840-900° C. is simmered for 8-15 minutes.
  • the enamelling treatment is performed using a one-enameling-one-firing process or a two-enameling-two-firing process.
  • the glaze used for the enamel layer can be various glazes well known in the art.
  • the high-strength cold-rolled steel plate for the double-sided enamel inner container of the present invention and its manufacturing method have the following advantages and beneficial effects:
  • the present invention is based on the design idea of low alloy cost and low processing technology cost.
  • composition design it is based on carbon, manganese and phosphorus strengthening, adding relatively low-cost titanium and boron elements, and assisting the addition of copper and chromium and magnesium and other alloying elements; in terms of processing technology, by controlling the heating temperature of the continuous casting slab, the finishing temperature of hot rolling, the coiling temperature and the reduction rate of cold rolling, and adopting a high-temperature rapid continuous annealing process with high efficiency, it is ensured that the steel plate has Excellent surface quality, mechanical properties and enamelling properties.
  • the matrix of the microstructure of the high-strength cold-rolled steel plate for the double-sided enamel liner of the present invention is even and small ferrite+pearlite, the phase ratio of its pearlite ⁇ 8%, and the ferrite grain size is between Between grades 10-11.
  • the invention mainly uses solid solution strengthening, precipitation strengthening and fine grain strengthening to improve the strength of the steel plate to ensure that the yield strength of the steel plate is ⁇ 360MPa, and the elongation at break is ⁇ 28.0% at a gauge length of 80mm; , the fine, dispersed titanium second phase particles can effectively control the growth of ferrite grains, and the boron element can improve the high temperature strength of the steel, ensuring that the yield strength of the steel plate remains above 330MPa after sintering, which is better Fully meet the withstand voltage requirements of the electric heating liner.
  • the pearlite at the ferrite trifurcation grain boundary, the fine and dispersed second-phase particles of titanium are used to improve the scale explosion resistance of the steel plate
  • boron can further improve the anti-scale explosion performance
  • the refined ferrite grains can also improve the anti-scale explosion performance, because the grain boundary plays the role of storing hydrogen, and the finer the grain, the larger the grain boundary area The higher the hydrogen storage capacity.
  • the hydrogen permeation value of the high-strength cold-rolled steel plate for the double-sided enamelled inner container of the invention is ⁇ 7.5min/mm 2 , which meets the anti-scaling requirement of double-sided enameling.
  • the content of free carbon forming pearlite is limited, which suppresses the occurrence of poor air bubbles and pinhole defects during the sintering process.
  • Figure 1 shows the metallographic microstructure of the high-strength cold-rolled steel plate for double-sided enameled inner container of Example 1.
  • Figure 2 and Figure 3 show the distribution state of the second phase particles observed under the transmission electron microscope of the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1.
  • Fig. 4 shows the metallographic microstructure of the high-strength cold-rolled steel plate for the double-sided enamel inner container of Example 1 after simulated high-temperature sintering.
  • Figure 5 and Figure 6 show the distribution state of the second phase particles observed under the transmission electron microscope after the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1 is sintered at a simulated high temperature.
  • Figure 7 shows the bubble structure of the enamel layer after double-sided glazing and high-temperature sintering of the high-strength cold-rolled steel plate for the double-sided enamel inner container of Example 1.
  • Fig. 8 shows the bubble structure of the enamel layer after double-sided glazing and high-temperature sintering of the comparative steel plate of Comparative Example 1.
  • Table 1-1 and Table 1-2 list the mass percentage of each chemical element in the high-strength cold-rolled steel plate for double-sided enameled inner container of Example 1-6 and the comparative steel plate of Comparative Example 1-2.
  • Table 1-1 (wt%, the balance is Fe and other unavoidable impurities other than O, Ni, Mo)
  • the high-strength cold-rolled steel plate for the double-sided enamel inner container of the embodiment 1-6 of the present invention and the contrast steel plate of the comparative example 1-2 all adopt the following steps to make:
  • Billet heating control the heating temperature to 1100-1230°C, and control the heating time in the furnace for ⁇ 360min, so that the slab cast slab is fully austenitized, obtains an austenite structure with uniform composition, and reduces the deformation of the steel resistance.
  • Hot rolling and coiling The final rolling temperature of hot rolling is controlled to be 810-880°C, after rolling, it is cooled to the coiling temperature by laminar flow, and then coiled, and the coiling temperature is controlled to be 620-680°C.
  • the soaking temperature is 780-850°C
  • the soaking time is 120-200s
  • the overaging temperature is between 165-450°C
  • the overaging time is 250-350s.
  • the high-strength cold-rolled steel plates for double-sided enamel liners in Examples 1-6 are all prepared by the above steps, and their chemical composition and related process parameters all meet the control requirements of the design specifications of the present invention .
  • the comparative steel plates of Comparative Examples 1-2 were also prepared by the above-mentioned steps and processes, there were parameters in the chemical composition that did not meet the control requirements of the design specifications of the present invention.
  • Table 2-1 and Table 2-2 list the specific process parameters of the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1-6 and the comparative steel material of Comparative Example 1-2.
  • the overaging temperature changes during the actual operation, and it is not stable at a fixed value, but during the overaging period, the temperature gradually decreases, so in step (6) of Table 2-2
  • the overaging temperature is presented as a range value rather than a point value in each example and comparative example.
  • the special feature of steel for enamelling is that it will be served after high-temperature sintering. Therefore, in order to verify the yield strength changes of the steel plates of each embodiment and comparative example before and after high-temperature sintering, the present invention aims at the implementation after continuous annealing.
  • the steel plates of examples 1-6 and comparative examples 1-2 are directly subjected to tensile tests, which are sampled along the rolling direction of the annealed steel plates, processed into tensile samples with a gauge length of 80mm according to the JIS13A standard, and then each embodiment and comparative example The conventional mechanical properties of the tensile sample were tested to obtain the yield strength, tensile strength and elongation at break A 80 at a gauge length of 80 mm.
  • the simulated high-temperature sintering test was carried out on the steel plates of Examples 1-6 and Comparative Example 1-2, and the sintering temperature was controlled to be 850 ° C, and the time in the furnace was 12 minutes; The samples were taken from the rolling direction, and the tensile test was carried out to obtain the yield strength of the steel materials of each embodiment and comparative example after simulated sintering (850° C. ⁇ 12 min).
  • Table 3-1 and Table 3-2 list the performance test results of the high-strength cold-rolled steel sheets for double-sided enamelled inner containers of Examples 1-6 and the enamelled steels of Comparative Examples 1-2.
  • the yield strength of the high-strength cold-rolled steel plate for the double-sided enamel liner of embodiment 1-6 is higher, and its yield strength is between 363-409MPa, and the tensile strength is between 447-409MPa.
  • Between 502MPa and the elongation at break A 80 at a gauge length of 80mm is between 28.5-32.5%, which can meet the forming requirements of the three-stage liner body rolling or head stamping.
  • the phase ratio of pearlite is between 2.17-6.03%, and the ferrite grain size is 10.5.
  • the high-strength cold-rolled steel sheets for double-sided enamel inner tanks in Examples 1-6 still maintain a high yield strength, and their yield strengths are all greater than 330MPa, and the yield strength is between 332-368MPa. Between, the tensile strength is greater than 400MPa, in the range of 400 ⁇ 460MPa. This shows that the cold-rolled steel for enameling of Examples 1-6 of the present invention has good high temperature softening resistance, can effectively improve the pressing ability of the enameled inner container, and prolong the service life of the inner container.
  • the enamel plate obtained after double-sided glazing has a good bubble structure of the enamel layer, and the bubbles are small and evenly dispersed; the hydrogen penetration time of the steel plate All of them exceed the threshold value of 6.7min/mm 2 stipulated in the European standard EN 10209-2013, meeting the anti-scaling requirements for double-sided enamelling.
  • Comparative Example 1 is within the control range of the design of the present invention, it is calculated that Ti-3.43N-1.5S ⁇ 0, indicating that the combination with N and S has consumed all Ti, and there is no remaining Ti and C combined.
  • the C element content of Comparative Example 1 exceeds the control range, that is to say, C is all used to form pearlite, and the content of pearlite structure exceeds the limit range of the present invention, resulting in a large amount of gas generated during firing, and the porcelain layer has not yet been fused. Fully released, resulting in dense bubbles and different sizes in the porcelain layer, resulting in poor bubble structure.
  • the contents of C and Ti in Comparative Example 2 are all lower than the control range of the present invention, and a sufficient amount of pearlite and titanium carbon, sulfur and nitride cannot be formed, thereby reducing the strength and hydrogen absorption capacity of the steel plate.
  • the strength of the comparative steel plate in Comparative Example 2 will be further reduced, which cannot meet the requirements of high-pressure water circulation and pressure, and cannot meet the requirements of double-sided enamelling without scaling.
  • Figure 1 shows the metallographic microstructure of the high-strength cold-rolled steel plate for double-sided enameled inner container of Example 1.
  • Figure 2 and Figure 3 show the distribution state of the second phase particles observed under the transmission electron microscope of the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1.
  • the matrix of the microstructure of the high-strength cold-rolled steel plate for double-sided enamel liner in Example 1 is uniform and fine ferrite+pearlite, wherein the average grain size of ferrite is The particle diameter was 8.14 ⁇ m.
  • the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1 has TiN, Ti 4 C 2 S 2 , and TiC particles dispersed in the ferrite matrix , wherein the diameter of the TiN precipitated phase is 76nm, the diameter of the Ti 4 C 2 S 2 precipitated phase is 41nm, and the size of the TiC precipitated phase is mainly between 1-7nm.
  • Fig. 4 shows the metallographic microstructure of the high-strength cold-rolled steel plate for the double-sided enamel inner container of Example 1 after simulated high-temperature sintering.
  • Figure 5 and Figure 6 show the distribution state of the second phase particles observed under the transmission electron microscope after the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1 is sintered at a simulated high temperature.
  • the microstructure of the high-strength cold-rolled steel plate for the double-sided enameled inner container of Example 1 after simulated high-temperature enamelling is uniform and fine ferrite+pearlite, that is to say The microstructure is the same as that after cold rolling and annealing, and the average grain size of ferrite is 9.52 ⁇ m. It can be seen that the grain size of ferrite does not change significantly after high temperature sintering.
  • the volume ratio of pearlite is still ⁇ 8%, which is in the range of 1.5-6.5%.
  • Figure 7 shows the bubble structure of the enamel layer after double-sided glazing and high-temperature sintering of the high-strength cold-rolled steel plate for the double-sided enamel inner container of Example 1.
  • the high-strength cold-rolled steel plate for the double-sided enamelled inner container of Example 1 is glazed on both sides and sintered at high temperature, and the bubbles in the enamel layer are fine and uniformly dispersed, which belongs to a good bubble structure.
  • Fig. 8 shows the bubble structure of the enamel layer after double-sided glazing and high-temperature sintering of the comparative steel plate of Comparative Example 1.
  • the pearlite content in the comparative steel plate of Comparative Example 1 is too high, and a large amount of CO and other gases are generated during the enamel firing process. These gases are not fully released before the enamel layer is fused, and a large amount of Bubbles with large and uneven sizes, some of which have a diameter of up to 300 ⁇ m, almost penetrate the entire enamel layer, and easily form pinhole defects, which affect the performance of enamel products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种双面搪瓷内胆用高强度冷轧钢板,其含有Fe和不可避免的杂质,其还含有质量百分比如下的下述化学元素:C:0.06-0.12%,0<Si≤0.08%,Mn:0.5-1.2%,P:0.01-0.05%,S:0.005-0.05%,Al:0.008-0.06%,N≤0.006%,Ti:0.03-0.1%,B:0.0002-0.0035%,Cr:0.01-0.06%,Cu:0.01-0.06%,Mg:0.0005-0.03%。相应地,本发明还公开了上述双面搪瓷内胆用高强度冷轧钢板的制造方法,其包括步骤:(1)冶炼、精炼和连铸;(2)铸坯加热;(3)热轧和卷取:控制热轧的终轧温度为810-880℃,控制卷取温度为620-680℃;(4)除鳞;(5)冷轧:控制冷轧压下率为60-70%;(6)连续退火:均热温度为780-850℃,均热时间为120-200s,过时效温度为165-450℃之间,过时效时间为250-350s;(7)平整。

Description

一种双面搪瓷内胆用高强度冷轧钢板及其制造方法 技术领域
本发明涉及一种金属材料及其制造方法,尤其涉及一种双面搪瓷内胆用高强冷轧钢及其制造方法。
背景技术
在现有技术中,常见的搪瓷内胆制作工艺为:将钢板经冲压和卷圆后成为端盖和桶身,然后焊接成为内胆底胚,接着进行预处理,去除表面残油、氧化铁皮等杂质以获得适宜涂搪的表面,最后进行湿法涂搪和高温烧结,以获得成品搪瓷内胆。
钢板是制作搪瓷内胆的关键材料之一,它既决定了整体内胆的耐压强度,又在很大程度上决定了整体内胆的搪瓷质量和使用寿命。因此,市场对于搪瓷内胆用钢的性能要求通常较高,其需要具有较高的屈服强度、优异的成形性、优良的焊接性和涂搪性能。
在现有技术中,已有部分研究人员针对用于生产搪瓷内胆的高强度钢板进行了研究。例如,在公开号为CN103510011A、CN101139684A、CN101255530A、CN202199726A和CN103643118A的专利文献中,均设计了用于生产搪瓷内胆的高强度钢板。它们的成分特点是以低碳钢为基础,通过提高锰和钛的含量,并辅助添加铌或稀土元素,以达到提高钢板的强度和抗鳞爆性能的目的。
在上述这些专利技术方案中,主要关注的是钢板的强度问题,列举的实例中钢板的屈服强度均在350MPa以上,但仍存在一些不足:这些钢板主要适用于单面涂搪工艺,无法满足双面搪瓷不鳞爆的要求。
而在搪瓷内胆的实际服役过程中,随着热水从排水管排出,其同时会带走大量的热量;目前,电热企业均采用在内胆和外壳之间填充泡发层的方法以达到保温的效果。为了提高电热水器的工作效率,避免热量流失和减低能耗,许多厂家已尝试开发换热型全新内胆结构,这就要求搪瓷内胆不仅与水接触的内壁进行涂搪,而且与余热接触的外表面也要进行涂搪以防发生蒸汽腐蚀。
然而,到目前为止,国内尚未有资料或应用实践表明针对双面搪瓷内胆用高强度冷轧钢板进行开发。基于此,为了满足市场需求,本发明期望获得一种新的双面搪瓷内胆用高强度冷轧钢板及其制造方法。
发明内容
本发明的目的之一在于提供一种双面搪瓷内胆用高强度冷轧钢板,该双面搪瓷内胆用高强度冷轧钢板不仅具有较高的强度、良好的塑性以及优良的涂搪性能,其同时还可以满足双面涂搪的要求。
该双面搪瓷内胆用高强度冷轧钢板在成型、涂搪、焊接和耐压等方面具有良好的综合性能,尤其是具有优异的焊接性能、优良的抗鳞爆性能、密着性能和抗针孔、气泡缺陷性能和较高的高温搪烧后的强度,其特别适合制作双面搪瓷内胆。
为了实现上述目的,本发明提供了一种双面搪瓷内胆用高强度冷轧钢板,其含有Fe和不可避免的杂质,其还含有质量百分比如下的下述化学元素:
C:0.06-0.12%,0<Si≤0.08%,Mn:0.5-1.2%,P:0.01-0.05%,S:0.005-0.05%,Al:0.008-0.06%,N≤0.006%,Ti:0.03-0.1%,B:0.0002-0.0035%,Cr:0.01-0.06%,Cu:0.01-0.06%,Mg:0.0005-0.03%。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,其各化学元素质量百分比为:
C:0.06-0.12%,0<Si≤0.08%,Mn:0.5-1.2%,P:0.01-0.05%,S:0.005-0.05%,Al:0.008-0.06%,N≤0.006%,Ti:0.03-0.1%,B:0.0002-0.0035%,Cr:0.01-0.06%,Cu:0.01-0.06%,Mg:0.0005-0.03%,余量为Fe及其他不可避免的杂质。
在本发明的化学成分设计中,主要采用C、Mn和P元素进行强化,并配合添加适量的Ti和B元素,适当提高S元素含量,同时辅助添加Cu、Cr和Mg等合金元素。其中,通过添加适量Ti元素、提高S含量、控制N元素含量,可以使得Ti与C、S和N生成细小、弥散的第二相粒子,其不仅有助于提高抗鳞爆性能,而且可以控制搪烧时铁素体晶粒长大,提高钢板抗高温软化能力。此外,适量的B元素可减轻P引起的二次脆性问题,同时其还可以进一步改善抗鳞爆性能,提高钢板的高温强度。
在本发明中,通过合理地调整化学元素及其加入量,特别是对抗鳞爆性能、抗针孔缺陷性能和强度有影响的Ti、C、S和N的关系进行限定,并通过控制加工工艺, 实现了双面搪瓷内胆用高强度冷轧钢板的开发,确保钢板在具有较高强度和良好塑性的同时,满足双面涂搪不鳞爆和搪瓷层气泡结构良好的要求。
在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,各化学元素的设计原理如下所述:
C:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,C是最基本的强化元素,随着钢中C元素含量的升高,钢板的强度也会随之增加,但塑性和韧性会相应下降。钢中添加适量的C元素,不仅可以保证钢板的基础强度,还可以与钢中的Ti元素结合形成TiC颗粒,以使C能够以珠光体和TiC颗粒的形式存在;相应地,利用工艺控制可以使形成TiC颗粒均匀弥散地分布在铁素体基体上,其既可以通过析出强化提高钢板的强度,还能作为有效氢陷阱提升钢板的抗鳞爆性能,并且在高温搪烧时还可以控制奥氏体晶粒粗化、铁素体晶粒长大,有效防止搪烧后钢板软化。但需要注意的是,钢中C元素含量不宜过高,当钢中C元素含量太高时,会在钢中形成大量的珠光体,其不仅会损害钢板的成形性,还会在搪烧时产生较多CO气体,在搪瓷表面形成气泡、针孔缺陷。因此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将C元素的质量百分比控制在0.06-0.12%之间。
Si:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,Si元素能够溶于铁素体和奥氏体中,并提高钢的硬度和强度,但含量过高会显著降低钢的塑性和韧性。一般来讲,钢中添加适量的Si并不会影响钢板的密着性能,但当钢中Si元素含量过高时,钢板在加热时会在表面形成SiO 2薄膜,阻碍瓷釉对钢板的浸润和二者之间的化学反应,降低钢板与瓷釉的密着强度。此外,Si还会加速酸洗过程中钢板对氢的吸附,加剧鳞爆发生的可能性。因此,综合考虑Si元素对于钢板性能所带来的有益效果以及不利影响,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,控制Si的质量百分比满足:0<Si≤0.08%。在一些实施方案中,Si的质量百分比为0.005~0.08%。
Mn:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,Mn是常用的强化元素,其能够添以固溶状态存在,并起到强化铁素体基体的作用。同时,Mn元素还能够与S元素反应生成MnS,其不仅可以克服硫引起的热脆性,而且还能作为有效氢陷阱,对抗鳞爆性能起重要作用。但是MnS为长条状夹杂物,其会对钢板的横向性能不利,因而在钢材的设计中还添加有适量的Ti元素,以使长条状MnS能够逐渐被球状Ti 4C 2S 2所代替,从而改善钢板的横向塑性和韧性。需要注意的是,钢中Mn元 素含量同样不宜过高,当钢中Mn元素含量过高时,不仅会降低材料的塑性和密着性能,还会影响钢板的挠曲性能,这是因为:Mn元素降低了铁素体向奥氏体转变的温度,导致钢板在高温搪烧时容易产生挠曲和变形。因此,为了确保钢板的性能,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将Mn的质量百分比控制在0.5-1.2%之间。
P:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,钢中添加适量的P元素能够有效提高钢板抗鳞爆的能力;此外,P固溶于铁素体还可增加钢板的强度和硬度;但P偏析严重,其不仅会增加钢的冷脆性,还会显著降低塑性和韧性,因此本发明可以通过加入适量硼、钼等合金元素,减缓P的偏聚带来的二次加工脆性。因此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将P元素的质量百分比控制在0.01-0.05%之间。
S:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,适当提高S元素含量,能够与钛、锰形成复杂夹杂物,对涂搪时防止鳞爆起着有益作用;在本发明中,通过合理控制其匹配量和工艺,可以进一步防止这些复合夹杂物尺寸过大,否则影响钢板的抗鳞爆性能和成形性能。因此,为了实现S元素在钢中所起到的有益效果,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将S的质量百分比控制在0.005-0.05%之间。
Al:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,Al元素不仅可以起到脱氧和细化晶粒的作用,还能固定钢中的氮,降低钢的时效倾向,提高钢的低温韧性。但需要注意的是,钢中Al元素含量不宜过高,当钢中Al元素含量过高时,会给冶炼和浇注等方面带来困难。基于此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将Al元素的质量百分比控制在0.008-0.06%之间。
N:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,氮与碳一样,钢中N元素含量越高,钢板的成形性越差,并引起时效,因此要对N元素含量的上限进行限定;此外,在本发明中,N元素能够Ti结合形成相应氮化物,可提高钢板的抗鳞爆性能。需要注意的是,钢中N元素含量不宜过高,当钢中N元素含量过高时,则形成的氮化物的尺寸偏大,对抗鳞爆性能的提升作用十分有限,且损害钢的塑性。因此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将N元素的质量百分比为N≤0.006%。
Ti:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,Ti是极其活泼的金属元素,其能够与碳、氮、硫生产稳定的化合物,通过工艺控制使得这些化合物均匀弥散地分布在铁素体基体,发挥它们防止鳞爆、强化基体的作用。另外,Ti元素对密着也有一定的好处,Ti元素氧化生成的Ti mO n可以富集于钢板表面,使钢板和瓷釉之间的密着层明显加宽,但如果Ti mO n数量过多,则会阻碍钢板与瓷釉之间的物理化学反应。因此,为了发挥Ti元素的有益效果,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将Ti元素的质量百分含量比控制在0.03-0.1%之间。
B:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,B元素可以有效改善P偏聚引起的二次脆性问题;此外,B在钢中形成碳化硼、部分以固溶形式存在,其可以进一步改善材料的抗鳞爆性能;但B含量过高,也会造成连铸坯角部横裂纹。此外,B元素还可以偏聚在奥氏体晶界,并在高温搪烧时阻止元素扩散和晶界迁移,从而提高钢板的高温强度。因此,为了发挥B元素的有益效果,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将B元素的质量百分比控制在0.0002-0.0035%之间。在一些实施方案中,B元素的质量百分比为0.0005~0.0035%。
Cr:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,Cr元素可以有效增强钢材的强度,降低钢材的韧性;适量的Cr有利于提升钢材的密着性能;但需要注意的是,钢中Cr元素含量不宜过高,当钢中Cr元素含量过高时,会引起鳞爆。因此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将Cr元素的质量百分比控制在0.01-0.06%之间。在一些实施方案中,Cr元素的质量百分比为0.01~0.05%。
Cu:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,在含有酸洗的前处理工艺下,微量的Cu对搪瓷密着性能有一定的益处;Cu元素在钢中主要以固溶的形式存在,酸洗时溶解在酸液里的Cu 2+会通过置换反应再次在钢板表面形成金属Cu或Cu 2S化合物,酸洗后的残渣物Cu或Cu 2S是一种多孔薄膜,在高温搪烧时作为阴极产生电偶腐蚀,使钢板表面粗糙程度增加,从而提高搪瓷的密着性能。但是,在局部富集铜的地方,搪瓷层内会产生大量的气泡。基于此,为了发挥Cu元素的有益效果,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,将Cu元素的质量百分比控制在0.01-0.06%之间。在一些实施方案中,Cu元素的质量百分比为0.01~0.05%。
Mg:在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,添加适量的Mg元素可以有效改善钢中夹杂物的形态,提高钢的塑性和韧性。因此,在本发明中,将Mg 元素的质量百分比控制在0.0005-0.03%之间。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,在不可避免的杂质中,O≤0.008%,Ni≤0.1%,Mo≤0.1%。
在本发明所述的技术方案中,O、Ni、Mo均是钢中不可避免的杂质元素,在技术条件以及生产成本允许的前提下,需要控制钢中杂质元素的含量尽可能的低。
O:在本发明中,O元素会影响钢板的加工性能和搪瓷性能。一方面,过高的O元素含量会导致钢中产生过多的氧化物夹杂,恶化钢板的塑性和韧性;另一方面,过高的O元素含量还会消耗掉大量的Ti,形成过多的Ti mO n,不利于密着性能,还会减少有益于抗鳞爆性能的第二相粒子TiN、Ti 4C 2S 2和TiC的生成。为此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,需要严格控制杂质元素O的含量,控制O元素的质量百分比满足:O≤0.008%。
Ni和Mo:在本发明中,Ni和Mo元素有利于提高搪瓷的密着性能,这是由于在高温搪烧时,Ni和Mo元素能够促进瓷釉对钢板的浸润与渗透,且促进瓷釉中的离子与铁离子的相互溶解与扩散。另外,Ni还有阻止钢中氢扩散的作用,可改善钢板的抗鳞爆性能。但Ni和Mo元素都是贵重合金,Ni和Mo元素含量过高,不仅会增加成本,而且还会降低密着性能。总的来说,杂质元素Ni和Mo所带来的不利影响大于其所起到的有益效果。因此,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,必须严格控制杂质元素Ni和Mo的含量,控制Ni和Mo元素的质量百分比满足:Ni≤0.1%,Mo≤0.1%。在一些实施方案中,控制Ni和Mo元素的质量百分比满足:Ni≤0.02%,Mo≤0.04%。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,各化学元素还满足下列各式的至少其中之一:
0.05%≤C-(Ti-3.43N-1.5S)/4≤0.1%;
0.08%≤Ti+0.875C≤0.25%;
0.65≤2.5Ti/(1.2C+8.57N+3.75S)≤1.35;
式中元素符号均表示对应元素的质量百分比。
在现有技术文献中,并未涉及Ti、C、N、S的限定关系。根据钛化合物的生成自由能和固溶度,Ti首先固定钢中的N和S,当Ti有剩余时,才会与C结合形成TiC。若过剩钛=Ti-(4C+3.43N+1.5S)>0,说明碳全部被钛固定;若过剩钛≤0,说明 钛只与部分碳结合或没有与碳结合,则碳以珠光体的形式存在,珠光体组分控制对钢板的涂搪性能尤其是抗针孔缺陷有较大影响。珠光体在烧成过程中会分解产生CO气体,一般地,珠光体含量越高,烧成温度越高或烧成时间越长,则产生的气体越多,极易在搪瓷层中产生过多、过大的气泡,造成表面气泡、针孔缺陷,损害瓷层质量。
在上述技术方案中,本发明所述的双面搪瓷内胆用高强度冷轧钢板中,在控制单一元素含量的同时,还进一步控制了C、Ti、N和S的质量百分比满足:0.05%≤C-(Ti-3.43N-1.5S)/4≤0.1%。
这是因为:在本发明中碳主要以钛的低温析出物TiC颗粒和珠光体的形式存在,此关系式是对形成珠光体组织的自由碳的含量进行限定,一方面钢中要保证残留超过0.05%C形成珠光体以确保钢板的强度和抗鳞爆性能,另一方面要限制珠光体的含量不能过高,否则会在高温搪烧时形成大量CO气体,造成搪瓷层气泡结构不良、表面针孔缺陷,还会损害钢板塑性。
此外,为了保证钢板中形成足量的第二相粒子,还可以优选地控制Ti、C的质量百分比满足:0.08%≤Ti+0.875C≤0.25%。
另外,由于析出物的类型、尺寸和形貌对钢板的性能有较大影响,为了控制析出物,本发明在控制单一元素含量的同时,还可以进一步控制Ti、C、N以及S元素的质量百分比满足:0.65≤2.5Ti/(1.2C+8.57N+3.75S)≤1.35,其目的是为了保证钛的碳、氮、硫化物颗粒细小且均匀弥散地分布在铁素体基体内,进而不仅可以提高钢板的抗鳞爆性能,还能起到析出强化的作用,并且在高温搪烧时起到抑制铁素体晶粒长大的作用,提高钢板的强度和搪烧后的强度。若不满足该关系式,钢板中形成的第二相粒子的尺寸偏大,会降低钢板的成形性能和抗鳞爆性能。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,其还含有:Nb:0.005-0.04%。
在本发明上述技术方案中,钢中还可以进一步地添加Nb元素,Nb和Ti一样,都是强碳、氮化物形成元素,还有部分Nb以固溶的状态存在。
在本发明中,Nb元素可以提高钢的再结晶温度,抑制奥氏体的再结晶,有效保持奥氏体的形变效果,从而细化铁素体晶粒;Nb的细化晶粒作用可防止钢板在搪烧后软化以及在焊接时阻止热影响区晶粒的粗化。另外,Nb的碳、氮化析出物对于钢 板的贮氢能力也有所帮助。因此,考虑到Nb元素所起到的有益效果,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,可以优选地添加适量的Nb元素,并控制Nb元素的质量百分比在0.005-0.04%之间。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,其微观组织的基体为均匀细小的铁素体+珠光体,其中以体积计珠光体的相比例<8%;其中珠光***于铁素体三叉晶界处。在一些实施方案中,以体积计珠光体的相比例为2.0~6.5%。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,其微观组织包括第二相粒子,所述第二相粒子包括细小、弥散分布的Ti的第二相粒子。
更进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,所述Ti的第二相粒子包括TiN、Ti 4C 2S 2和TiC,其中TiN析出物的直径为50-300nm,Ti 4C 2S 2析出物的直径为30-200nm,TiC析出物的直径为1-15nm。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,其中铁素体晶粒度为10-11级。
进一步地,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,其性能满足下述各项的至少其中之一:屈服强度为≥360MPa,标距为80mm下的断裂延伸率≥28.0%,850℃高温搪烧12min后的屈服强度≥330MPa。进一步地,本发明的双面搪瓷内胆用高强度冷轧钢板的抗拉强度≥440MPa。
在一些实施方案中,本发明的双面搪瓷内胆用高强度冷轧钢板的屈服强度为360~415MPa,抗拉强度为440~510MPa,断裂延伸率A 80为28.0~33.0%,850℃高温搪烧12min后的屈服强度为330~370MPa。
在一些实施方案中,本发明提供一种双面搪瓷钢,其包括基材和基材两个表面上的搪瓷层,其中,该基材的元素组成与本发明任一实施方案所述的双面搪瓷内胆用高强度冷轧钢板的元素组成相同。在一些实施方案中,该搪瓷钢的屈服强度≥330MPa(优选为330~370MPa),抗拉强度≥400MPa(优选为400~460MPa),氢渗透值≥7.5min/mm 2。在一些实施方案中,该搪瓷钢的氢渗透值为7.5~16.0min/mm 2。在一些实施方案中,该基材的微观组织的基体为均匀细小的铁素体+珠光体,其中以体积计珠光体的相比例<8%(优选1.5~6.5%),其中珠光***于铁素体三叉晶界处。在一些实施方案中,该基材的微观组织中还包括第二相粒子,所述第二相粒子包括细小、弥散分布的Ti的第二相粒子。更进一步地,所述Ti的第二相粒子包括TiN、 Ti 4C 2S 2和TiC,其中TiN析出物的直径为50~300nm,Ti 4C 2S 2析出物的直径为30~200nm,TiC析出物的直径为3~25nm。所述搪瓷层所用材料可以是本领域周知的搪瓷釉料。示例性的材料为福禄EMP6515型高温釉料。
相应地,本发明的另一目的在于提供一种双面搪瓷内胆用高强度冷轧钢板的制造方法,该制造方法简便可行,制得的双面搪瓷内胆用高强度冷轧钢板的屈服强度为≥360MPa,标距为80mm下的断裂延伸率≥28.0%,氢渗透值≥7.5min/mm 2,经过至少850℃高温搪烧至少12min后的屈服强度≥330MPa,其可以满足双面涂搪的要求。
为了实现上述目的,本发明提出了上述的双面搪瓷内胆用高强度冷轧钢板的制造方法,其包括步骤:
(1)冶炼、精炼和连铸;
(2)铸坯加热;
(3)热轧和卷取:控制热轧的终轧温度为810-880℃,控制卷取温度为620-680℃;
(4)除鳞;
(5)冷轧:控制冷轧压下率为60-70%;
(6)连续退火:均热温度为780-850℃,均热时间为120-200s,过时效温度为165-450℃之间,过时效时间为250-350s;
(7)平整。
在本发明所述的双面搪瓷内胆用高强度冷轧钢板的制造方法中,在步骤(1)中,经过铁水预脱硫、转炉顶底复合吹炼、出钢合金化可以得到满足基本要求的钢液成分,然后可以经CAS精炼处理获得温度和成分均匀、稳定的钢水,最后经过连铸形成上述成分的连铸坯。
在步骤(3)的热轧和卷取过程中,热连轧过程全部在奥氏体单相区进行,并且终轧温度设定在Ar3相变温度(冷却时奥氏体向铁素体的转变温度)以上且接近该温度,目的是为了在奥氏体未再结晶区累积足够的变形量,奥氏体晶界以及晶粒内部的“形变带”一同作为铁素体形核核心,使热轧板得到细化的铁素体组织,由此本发明将终轧温度控制在810-880℃之间;相应地,在卷曲过程中,卷取温度对于钢板的组织性能的影响十分显著,为了确保钢板具有较高的强度,同时使珠光体和TiC颗粒充分析出,本发明将卷取温度控制在620-680℃之间,当卷取温度过低时,材料 的屈强比提高,不利于成形性能。
在本发明所述的制造方法中,在所述步骤(4)中,除鳞可以有效去除热轧带钢表面的氧化铁皮,以方便后续操作。
在步骤(5)的冷轧操作中,冷轧压下率对钢板的力学性能和抗鳞爆性能均有影响。首先,压下率的大小影响钢板的强度,冷轧压下率越大,则组织沿轧向呈拉长的程度越大,导致再结晶过程形核率增加,再结晶完成时铁素体晶粒越细小,进而提高钢板的屈服强度。再次,本发明所述的双面搪瓷内胆用高强度冷轧钢板常温组织中含有渗碳体和钛的碳、氮、硫化物等硬质相,这些粒子在冷轧时不变形,与基体的变形不协调,因此在粒子周围会形成大量空位,增加钢板的贮氢能力,冷轧压下率越大,空位的数量越多,则钢板的抗鳞爆性能越强。考虑到钢板的强度、抗鳞爆性能及轧机的负荷能力,在本发明所述制造方法的步骤(5)中,控制冷轧压下率为60-70%。
相应地,在上述步骤(6)中,采用了高温快速的连续退火工艺,其具体控制均热温度为780-850℃,控制均热时间为120-200s,控制过时效温度为165-450℃之间,控制过时效时间为250-350s。通过这种技术方案,可以在高温短时间内完成再结晶过程,可避免铁素体晶粒的粗大,从而得到强度和塑性均较好的高强度冷轧钢板;短时间的过时效处理使得渗碳体和钛的低温析出物TiC颗粒充分析出,有效提升了钢板的抗鳞爆性能。
进一步地,在本发明所述的制造方法中,在步骤(2)中,加热温度为1100-1230℃,在炉时间≥360min。
在本发明所述的双面搪瓷内胆用高强度冷轧钢板的制造方法中,在步骤(2)中,优选地控制加热温度为1100-1230℃,在炉时间≥360min,可以获得下述两个有益效果;一是可以提高钢材的塑性,降低变形抗力,在轧制中获得较大的压下量;二是保证合金元素充分溶解,获得成分均匀的奥氏体组织。在一些实施方案中,步骤(2)中,加热温度为1130~1230℃,在炉时间为370~420分钟。
在步骤(2)的铸坯加热过程中,若加热温度或时间低于设定值,则达不到上述二个目的;若加热温度偏高或时间偏长,则会引起铸坯的氧化和脱碳,铸坯烧损严重,影响成材率。
进一步地,在本发明所述的制造方法中,在步骤(7)中,控制平整压下率为 0.6-1.2%。
上述方案中,在所述步骤(7)中,控制平整压下率为0.6-1.2%,对退火后的冷轧带钢进行小压下率的二次冷轧,可以获得下述两个有益效果;一是可以减轻或消除应力-应变曲线上的“屈服平台”,避免冲压时出现“吕德斯带”;二是可以改善钢板的平直度和板面的光洁度。
在一些实施方案中,本发明还提供一种双面搪瓷钢的制备方法,该方法包括采用前文所述方法制备本发明所述的双面搪瓷内胆用高强度冷轧钢板的步骤,以及将制备得到的双面搪瓷内胆用高强度冷轧钢板进行搪烧的步骤。在一些实施方案中,所述搪烧步骤中,在840~900℃搪烧8~15分钟。在一些实施方案中,采用一次涂搪一次烧成工艺或两次涂搪两次烧成工艺进行搪烧处理。搪瓷层所用釉料可以为本领域熟知的各种釉料。
相较于现有技术,本发明所述的双面搪瓷内胆用高强度冷轧钢板及其制造方法具有如下所述的优点以及有益效果:
(1)本发明基于低合金成本和低加工工艺成本的设计思路,在成分设计方面,以碳、锰和磷强化为基础,添加成本相对较低的钛和硼元素,并辅助添加铜、铬和镁等合金元素;在加工工艺方面,通过控制连铸坯加热温度、热轧终轧温度、卷取温度和冷轧压下率,并采用效率较高的高温快速连续退火工艺,确保钢板具有优异的表面质量、力学性能和涂搪性能。
(2)本发明的双面搪瓷内胆用高强度冷轧钢板的微观组织的基体为均匀细小的铁素体+珠光体,其珠光体的相比例<8%,铁素体晶粒度在10-11级之间。本发明主要利用固溶强化、析出强化和细晶强化来提高钢板的强度,以确保钢板屈服强度≥360MPa,标距为80mm下的断裂延伸率≥28.0%;在进行850℃高温搪烧12min后,细小、弥散分布的钛的第二相粒子能有效控制铁素体晶粒的长大,且硼元素能够提高钢的高温强度,确保了钢板搪烧后屈服强度仍保持在330MPa以上,更好地满足电热内胆的耐压要求。
(3)在本发明的双面搪瓷内胆用高强度冷轧钢板中,主要依靠铁素体三叉晶界处的珠光体,钛的细小、弥散分布第二相粒子来提高钢板的抗鳞爆性能,另外,硼也可进一步改善抗鳞爆性能,且细化的铁素体晶粒也能提高抗鳞爆性能,因为晶界起着贮存氢的作用,晶粒越细晶界面积越大则贮氢能力越高。本发明的双面搪瓷内 胆用高强度冷轧钢板的氢渗透值≥7.5min/mm 2,满足双面涂搪的抗鳞爆要求。此外,在本发明所述的双面搪瓷内胆用高强度冷轧钢板中,对形成珠光体的自由碳含量进行限定,抑制了搪烧过程中气泡不良、针孔缺陷的发生。
附图说明
图1显示了实施例1的双面搪瓷内胆用高强度冷轧钢板的金相显微组织。
图2和图3显示了实施例1的双面搪瓷内胆用高强度冷轧钢板在透射电子显微镜下观察到的第二相粒子的分布状态。
图4显示了实施例1的双面搪瓷内胆用高强度冷轧钢板经过模拟高温烧结后的金相显微组织。
图5和图6显示了实施例1的双面搪瓷内胆用高强度冷轧钢板经过模拟高温烧结后在透射电子显微镜下观察到的第二相粒子的分布状态。
图7显示了实施例1的双面搪瓷内胆用高强度冷轧钢板经过双面施釉和高温烧结后搪瓷层的气泡结构。
图8显示了对比例1的对比钢板经过双面施釉和高温烧结后搪瓷层的气泡结构。
具体实施方式
下面将结合具体的实施例和说明书附图对本发明所述的双面搪瓷内胆用高强度冷轧钢板及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6和对比例1-2
表1-1和表1-2列出了实施例1-6的双面搪瓷内胆用高强度冷轧钢板和对比例1-2对比钢板中各化学元素质量百分比。
表1-1(wt%,余量为Fe和其他除了O、Ni、Mo以外的不可避免的杂质)
Figure PCTCN2022133985-appb-000001
Figure PCTCN2022133985-appb-000002
表1-2
编号 M* N* Q*
实施例1 0.068 0.122 0.87
实施例2 0.086 0.153 0.80
实施例3 0.056 0.099 0.76
实施例4 0.062 0.092 0.69
实施例5 0.099 0.205 1.33
实施例6 0.079 0.162 0.73
对比例1 0.15 0.174 0.33
对比例2 0.049 0.064 0.40
注:M*=C-(Ti-3.43N-1.5S)/4;N*=Ti+0.875C;Q*=2.5Ti/(1.2C+8.57N+3.75S),上式中元素符号均表示对应元素的质量百分比。
本发明所述实施例1-6的双面搪瓷内胆用高强度冷轧钢板和对比例1-2的对比钢板均采用以下步骤制得:
(1)按照表1-1和表1-2所示的化学成分配比进行冶炼、精炼和连铸:经过铁水预脱硫、转炉顶底复合吹炼、出钢合金化得到满足基本要求的钢液成分,然后经CAS精炼处理后获得温度和成分均匀、稳定的钢水,最后经过连铸形成表1-1和表1-2所示的化学成分的连铸坯。
(2)铸坯加热:控制加热温度为1100-1230℃,控制加热在炉时间≥360min,以使板坯铸坯充分奥氏体化,获得成分均匀的奥氏体组织,并且降低钢的变形抗力。
(3)热轧和卷取:控制热轧的终轧温度为810-880℃,轧后经过层流冷却至卷取温度,随后进行卷取,控制卷取温度为620-680℃。
(4)除鳞:充分去除热轧板卷表面的氧化铁皮。
(5)冷轧:控制冷轧压下率为60-70%。
(6)连续退火:均热温度为780-850℃,均热时间为120-200s,过时效温度为165-450℃之间,过时效时间为250-350s。
(7)平整:控制平整压下率为0.6-1.2%。
需要说明的是,在本发明中,实施例1-6的双面搪瓷内胆用高强度冷轧钢板均采用以上步骤制得,且其化学成分及相关工艺参数均满足本发明设计规范控制要求。对比例1-2的对比钢板虽然也采用上述步骤流程制得,但是其化学成分中均存在不满足本发明设计规范控制要求的参数。
表2-1和表2-2列出了实施例1-6的双面搪瓷内胆用高强度冷轧钢板和对比例1-2的对比钢材的具体工艺参数。
表2-1
Figure PCTCN2022133985-appb-000003
表2-2
Figure PCTCN2022133985-appb-000004
Figure PCTCN2022133985-appb-000005
需要说明的是,实际操作过程中过时效温度是变化的,并非是稳定在一个固定值,而是在过时效时间段内,温度逐步降低,因此在表2-2的步骤(6)中的过时效温度在各实施例和对比例中呈现为一段范围值而不是点值。
将经过上述制造工艺制得的实施例1-6的双面搪瓷内胆用高强度冷轧钢板和对比例1-2的对比钢材分别进行性能测试,并将测试结果列于下述表3-1和表3-2之中,其具体测试方法如下所述:
(1)搪瓷用钢的特殊之处在于要经过高温烧结后再进行服役,因此为了验证经高温搪烧前后,各实施例和对比例钢板的屈服强度变化,本发明针对完成连续退火后的实施例1-6和对比例1-2的钢板直接进行拉伸试验,其沿退火态钢板的轧向取样,按照JIS13A标准加工成标距为80mm的拉伸试样,而后各实施例和对比例的拉伸试样的常规力学性能进行检测,以获得屈服强度、抗拉强度和标距为80mm下的断裂延伸率A 80
相应地,对制得的实施例1-6和对比例1-2的钢板进行模拟高温搪烧试验,并控制搪烧温度为850℃,在炉时间为12min;而后沿模拟高温搪烧后钢板的轧向取样,并进行拉伸试验,以获得各实施例和对比例钢材在模拟搪烧(850℃×12min)后的屈服强度。
(2)对实施例1-6和对比例1-2的钢板进行双面湿法施釉和850℃×12min烧结,将钢板放置72h,观察其鳞爆现象;并通过光学显微镜对搪瓷板横截面的显微形貌进行观察,检验搪瓷层的气泡结构。相应地,为了进一步量化钢板的抗鳞爆性能,采用欧标EN 10209-2013规定的电化学氢渗透方法测试未涂搪的钢板的TH2值。
表3-1和表3-2列出了实施例1-6的双面搪瓷内胆用高强度冷轧钢板和对比例1-2 搪瓷钢的各项性能测试结果。
表3-1
Figure PCTCN2022133985-appb-000006
表3-2
Figure PCTCN2022133985-appb-000007
如表3所示,在本发明中,实施例1-6的双面搪瓷内胆用高强度冷轧钢板的屈服强度较高,其屈服强度在363-409MPa之间,抗拉强度在447-502MPa之间,标距为 80mm下的断裂延伸率A 80在28.5-32.5%之间,可满足三段式内胆桶身卷圆或封头冲压的成形要求。
相应地,在实施例1-6的双面搪瓷内胆用高强度冷轧钢板中,其珠光体的相比例在2.17-6.03%之间,其铁素体晶粒度均为10.5级。
经模拟高温搪烧(850℃×12min)后,实施例1-6的双面搪瓷内胆用高强度冷轧钢板仍保持较高的屈服强度,其屈服强度均大于330MPa,且在332-368MPa之间,抗拉强度也大于400MPa,在400~460MPa的范围内。这说明本发明所述的实施例1-6的冷轧搪瓷用钢具有良好的抗高温软化能力,能有效提升搪瓷内胆的打压能力,延长内胆的使用寿命。
基于实施例1-6的双面搪瓷内胆用高强度冷轧钢板,经过双面施釉后获得的搪瓷板,具有良好的搪瓷层气泡结构,其气泡细小且均匀分散;钢板的氢穿透时间均超过欧标EN 10209-2013中规定的阈值6.7min/mm 2,满足双面涂搪时的抗鳞爆要求。
然而,对比例1中Ti元素虽然在本发明设计的控制范围内,但经计算,Ti-3.43N-1.5S<0,说明与N和S结合已消耗掉全部Ti,并无剩余Ti与C结合。并且对比例1的C元素含量超出控制范围,也就是说C全部用于形成珠光体,且珠光体组织的含量超过本发明的限定范围,导致搪烧时产生大量的气体,瓷层熔合时尚未充分释放,造成瓷层中气泡密集且大小不一,导致气泡结构不良。
对比例2中C和Ti的含量均低于本发明的控制范围,无法形成足量的珠光体和钛的碳、硫和氮化物,从而降低了钢板的强度和吸氢能力。对比例2的对比钢板经过双面施釉和高温烧结后,强度会进一步降低,达不到高压水循环打压要求,且无法满足双面涂搪不发生鳞爆的要求。
图1显示了实施例1的双面搪瓷内胆用高强度冷轧钢板的金相显微组织。
图2和图3显示了实施例1的双面搪瓷内胆用高强度冷轧钢板在透射电子显微镜下观察到的第二相粒子的分布状态。
如图1所示,在该实施方式中,实施例1的双面搪瓷内胆用高强度冷轧钢板的微观组织的基体为均匀细小的铁素体+珠光体,其中铁素体的平均晶粒直径为8.14μm。
如图2和图3所示,在该实施方式中,实施例1的双面搪瓷内胆用高强度冷轧钢板在铁素体基体中弥散分布着TiN、Ti 4C 2S 2、TiC颗粒,其中TiN析出相的直径为76nm,Ti 4C 2S 2析出相的直径为41nm,TiC析出相的尺寸主要在1-7nm之间。
图4显示了实施例1的双面搪瓷内胆用高强度冷轧钢板经过模拟高温烧结后的金相显微组织。图5和图6显示了实施例1的双面搪瓷内胆用高强度冷轧钢板经过模拟高温烧结后在透射电子显微镜下观察到的第二相粒子的分布状态。
如图4所示,在该实施方式中,实施例1的双面搪瓷内胆用高强度冷轧钢板经过模拟高温搪烧后的微观组织为均匀细小的铁素体+珠光体,也就是说与冷轧退火后的组织状态相同,其中铁素体的平均晶粒直径为9.52μm,可见,经过高温烧结后铁素体晶粒度并未出现明显变化。
实施例1-6的双面搪瓷内胆用高强度冷轧钢板经过模拟高温搪烧后的微观组织中,珠光体的体积比仍<8%,在1.5~6.5%范围内。
如图5和图6所示,在该实施方式中,实施例1的双面搪瓷内胆用高强度冷轧钢板经过模拟高温搪烧后,在铁素体基体中弥散分布着TiN、Ti 4C 2S 2、TiC颗粒,其中TiN析出相的直径为82nm,Ti 4C 2S 2析出相的直径为73nm,TiC析出相的尺寸主要在3-25nm之间,说明析出相在高温烧结过程中有聚集长大的趋势。
图7显示了实施例1的双面搪瓷内胆用高强度冷轧钢板经过双面施釉和高温烧结后搪瓷层的气泡结构。
如图7所示,在该实施方式中,实施例1的双面搪瓷内胆用高强度冷轧钢板经过双面施釉和高温烧结后搪瓷层的气泡细小且均匀分散,属于良好的气泡结构。
图8显示了对比例1的对比钢板经过双面施釉和高温烧结后搪瓷层的气泡结构。
如图8所示,对比例1的对比钢板中的珠光体含量过高,在搪烧过程中产生大量的CO等气体,这些气体在搪瓷层融合前来不及充分释放,在瓷层中形成了大量的、大小不均匀的气泡,有个别尺寸较大的气泡直径达300μm,几乎贯穿整个搪瓷层,极易形成针孔缺陷,影响搪瓷制品的使用性能。
需要注意的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (15)

  1. 一种双面搪瓷内胆用高强度冷轧钢板,其含有Fe和不可避免的杂质,其特征在于,其还含有质量百分比如下的下述化学元素:
    C:0.06-0.12%,0<Si≤0.08%,Mn:0.5-1.2%,P:0.01-0.05%,S:0.005-0.05%,Al:0.008-0.06%,N≤0.006%,Ti:0.03-0.1%,B:0.0002-0.0035%,Cr:0.01-0.06%,Cu:0.01-0.06%,Mg:0.0005-0.03%。
  2. 如权利要求1所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,其各化学元素质量百分比为:
    C:0.06-0.12%,0<Si≤0.08%,Mn:0.5-1.2%,P:0.01-0.05%,S:0.005-0.05%,Al:0.008-0.06%,N≤0.006%,Ti:0.03-0.1%,B:0.0002-0.0035%,Cr:0.01-0.06%,Cu:0.01-0.06%,Mg:0.0005-0.03%,余量为Fe及其他不可避免的杂质。
  3. 如权利要求1或2所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,在不可避免的杂质中,O≤0.008%,Ni≤0.1%,Mo≤0.1%。
  4. 如权利要求1或2所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,各化学元素还满足下列各式的至少其中之一:
    0.05%≤C-(Ti-3.43N-1.5S)/4≤0.1%;
    0.08%≤Ti+0.875C≤0.25%;
    0.65≤2.5Ti/(1.2C+8.57N+3.75S)≤1.35。
  5. 如权利要求1或2所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,其还含有:Nb:0.005-0.04%。
  6. 如权利要求1或2所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,其微观组织的基体为均匀细小的铁素体+珠光体,其中以体积比计珠光体的相比例<8%;其中珠光***于铁素体三叉晶界处。
  7. 如权利要求6所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,其微观组织包括第二相粒子,所述第二相粒子包括细小、弥散分布的Ti的第二相粒子。
  8. 如权利要求7所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,所述Ti的第二相粒子包括TiN、Ti 4C 2S 2和TiC,其中TiN析出物的直径为50-300nm,Ti 4C 2S 2析出物的直径为30-200nm,TiC析出物的直径为1-15nm。
  9. 如权利要求6所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,其中铁素体晶粒度为10-11级。
  10. 如权利要求1或2所述的双面搪瓷内胆用高强度冷轧钢板,其特征在于,其性能满足下述各项的至少其中之一:屈服强度为≥360MPa,标距为80mm下的断裂延伸率≥28.0%,抗拉强度≥440MPa,850℃高温搪烧12min后的屈服强度≥330MPa;优选地,所述双面搪瓷内胆用高强度冷轧钢板的屈服强度为360~415MPa,抗拉强度为440~510MPa,断裂延伸率A 80为28.0~33.0%,850℃高温搪烧12min后的屈服强度为330~370MPa。
  11. 一种双面搪瓷钢,其包括基材和基材两个表面上的搪瓷层,其中,该基材的元素组成与权利要求1-5中任一项所述的双面搪瓷内胆用高强度冷轧钢板的元素组成相同;优选地,所述搪瓷钢的屈服强度≥330MPa、优选为330~370MPa,抗拉强度≥400MPa、优选为400~460MPa,氢渗透值≥7.5min/mm 2、优选为7.5~16.0min/mm 2;优选地,该基材的微观组织的基体为均匀细小的铁素体+珠光体,其中以体积计珠光体的相比例<8%、优选1.5~6.5%,其中珠光***于铁素体三叉晶界处;优选地,该基材的微观组织中还包括第二相粒子,所述第二相粒子包括细小、弥散分布的Ti的第二相粒子;优选地,所述Ti的第二相粒子包括TiN、Ti 4C 2S 2和TiC,其中TiN析出物的直径为50~300nm,Ti 4C 2S 2析出物的直径为30~200nm,TiC析出物的直径为3~25nm。
  12. 一种如权利要求1-10中任意一项所述的双面搪瓷内胆用高强度冷轧钢板的制造方法,其特征在于,包括步骤:
    (1)冶炼、精炼和连铸;
    (2)铸坯加热;
    (3)热轧和卷取:控制热轧的终轧温度为810-880℃,控制卷取温度为620-680℃;
    (4)除鳞;
    (5)冷轧:控制冷轧压下率为60-70%;
    (6)连续退火:均热温度为780-850℃,均热时间为120-200s,过时效温度为165-450℃之间,过时效时间为250-350s;
    (7)平整。
  13. 如权利要求12所述的制造方法,其特征在于,在步骤(2)中,加热温度为1100-1230℃,在炉时间≥360min。
  14. 如权利要求12或13所述的制造方法,其特征在于,在步骤(7)中,控制平整压下率为0.6-1.2%。
  15. 权利要求11所述的双面搪瓷钢的制备方法,其特征在于,该方法包括采用权利要求12-14中任一项所述的方法制备所述双面搪瓷内胆用高强度冷轧钢板,以及将制备得到的双面搪瓷内胆用高强度冷轧钢板进行搪烧的步骤;优选地,所述搪烧步骤中,在840~900℃搪烧8~15分钟。
PCT/CN2022/133985 2021-11-25 2022-11-24 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法 WO2023093798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111414367.4 2021-11-25
CN202111414367.4A CN116162850A (zh) 2021-11-25 2021-11-25 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2023093798A1 true WO2023093798A1 (zh) 2023-06-01

Family

ID=86416954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133985 WO2023093798A1 (zh) 2021-11-25 2022-11-24 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法

Country Status (2)

Country Link
CN (1) CN116162850A (zh)
WO (1) WO2023093798A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045580A (ja) * 2004-07-30 2006-02-16 Nippon Steel Corp ホーロー密着性が良好なホーロー用メッキ鋼板およびその製造方法並びにホーロー製品
CN105316579A (zh) * 2014-07-29 2016-02-10 上海梅山钢铁股份有限公司 热水器搪瓷内胆用薄规格热轧酸洗钢板及其制造方法
CN111996468A (zh) * 2020-09-18 2020-11-27 山西太钢不锈钢股份有限公司 一种搪瓷钢及其制备方法和应用
WO2021169937A1 (zh) * 2020-02-25 2021-09-02 宝山钢铁股份有限公司 一种搪玻璃用钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045580A (ja) * 2004-07-30 2006-02-16 Nippon Steel Corp ホーロー密着性が良好なホーロー用メッキ鋼板およびその製造方法並びにホーロー製品
CN105316579A (zh) * 2014-07-29 2016-02-10 上海梅山钢铁股份有限公司 热水器搪瓷内胆用薄规格热轧酸洗钢板及其制造方法
WO2021169937A1 (zh) * 2020-02-25 2021-09-02 宝山钢铁股份有限公司 一种搪玻璃用钢及其制造方法
CN111996468A (zh) * 2020-09-18 2020-11-27 山西太钢不锈钢股份有限公司 一种搪瓷钢及其制备方法和应用

Also Published As

Publication number Publication date
CN116162850A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2021036272A1 (zh) 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
CN108467993B (zh) 一种低温管线用超宽高韧性热轧厚板及其生产方法
WO2021233247A1 (zh) 一种深冲内胆用冷轧搪瓷钢及其制造方法
WO2023241666A1 (zh) 一种具有高耐候性能的高强度热轧带钢及其制造方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
WO2023241665A1 (zh) 一种具有高耐候性能的高强度高塑性热轧带钢及其制造方法
WO2016041490A1 (zh) 一种具有高温烘烤硬化性的搪瓷用钢及其制造方法
CN111057945B (zh) 一种500MPa级强韧耐候桥梁钢及其制备方法
CN111424211B (zh) 宽幅700MPa级热轧集装箱用耐候钢及其制造方法
JP2023510288A (ja) 高耐食性ストリップ鋼およびその製造方法
WO2020135437A1 (zh) 一种耐海水腐蚀钢及其制造方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
CN110714165B (zh) 一种320MPa级家电面板用冷轧薄板及其生产方法
CN108796380B (zh) 烧成后屈服强度在210MPa以上的极低碳冷轧搪瓷用钢板及其制造方法
CN109943779B (zh) 一种搪瓷用低碳冷轧钢板及其生产方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN113198851A (zh) 一种搪瓷钢热轧酸洗薄板的生产方法
CN110273106B (zh) 一种260MPa级冷轧连退搪瓷钢及其生产方法
CN110777301B (zh) 一种冷轧搪瓷钢及其制造方法
WO2022171112A1 (zh) 一种低成本高温搪瓷用热轧钢板及其制造方法
WO2023093798A1 (zh) 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法
CN113308647A (zh) 一种搪瓷用冷轧钢板及其制造方法
CN111411305B (zh) 高韧性厚规格搪玻璃性好的高Ti低合金钢及其制造方法
WO2023138595A1 (zh) 一种耐氢氧化钠腐蚀的高强度管道及其制造方法
WO2023241631A1 (zh) 一种800MPa级高扩孔热镀锌钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897881

Country of ref document: EP

Kind code of ref document: A1