WO2021169937A1 - 一种搪玻璃用钢及其制造方法 - Google Patents

一种搪玻璃用钢及其制造方法 Download PDF

Info

Publication number
WO2021169937A1
WO2021169937A1 PCT/CN2021/077405 CN2021077405W WO2021169937A1 WO 2021169937 A1 WO2021169937 A1 WO 2021169937A1 CN 2021077405 W CN2021077405 W CN 2021077405W WO 2021169937 A1 WO2021169937 A1 WO 2021169937A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
steel
lined steel
cooling
lined
Prior art date
Application number
PCT/CN2021/077405
Other languages
English (en)
French (fr)
Inventor
孙全社
姚士杰
鲁岩
王俊凯
秦勤
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP21761106.0A priority Critical patent/EP4112761A4/en
Priority to AU2021226442A priority patent/AU2021226442A1/en
Priority to JP2022551019A priority patent/JP2023515558A/ja
Priority to US17/801,641 priority patent/US20230114417A1/en
Priority to KR1020227032678A priority patent/KR20220144394A/ko
Publication of WO2021169937A1 publication Critical patent/WO2021169937A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a metal material and a manufacturing method thereof, in particular to a steel material and a manufacturing method thereof.
  • the glass lining process is a process in which glassy enamel containing high quartz components is coated on the surface of a metal substrate, and then sintered at a high temperature to make the enamel firmly adhere to the surface of the substrate to form a composite material.
  • glass-lined equipment such as glass-lined reactors, glass-lined storage tanks, etc., made of steel plates as the metal base, has good durability due to the stability of glass and the high strength of metal. Abrasiveness, high corrosion resistance to various acids and organic solvents, and good corrosion resistance to alkaline solutions, so it has a wide range of applications.
  • the steel plate undergoes repeated enameling and high-temperature firing after forming, welding, and other processing.
  • the firing temperature is between 930°C and 870°C.
  • coating defects such as scale explosion, poor adhesion and pinholes are often produced. These defects are also the main problems to be solved by the existing special glass-lined steel plates.
  • it is also necessary to improve the workability of the steel sheet. Easy to punch, easy to bend and easy to punch, etc., to improve the low temperature toughness of the steel plate to meet the service requirements of glass-lined equipment under -20°C or even -40°C.
  • the commonly used steel grades are still Q245R and other ordinary pressure vessel steels.
  • this type of steel is not only prone to enamel defects such as scale explosion, but also the manufactured glass-lined steel
  • the equipment cannot meet the service requirements of -20°C and below.
  • the existing special glass-lined steel has a relatively high yield strength (such as above 0.90), and the yield strength is mostly 350MPa or even 400MPa or more. Due to the high yield strength, the strength fluctuations between the same plate and different steel plates are also large. Molding processing such as reeling and punching brings difficulties, and sometimes requires repeated molding for many times, and the workability is poor, which is not conducive to the production of glass-lined equipment.
  • the low-temperature toughness of glass-lined equipment made of the existing dedicated glass-lined steel is also poor, and cannot meet the service requirements under -20°C and lower temperature conditions.
  • One of the objectives of the present invention is to provide a glass-lined steel, which aims to solve the problems of difficult processing and poor low-temperature toughness of the existing glass-lined steel.
  • the glass-lined steel of the present invention has excellent workability and low-temperature toughness, as well as excellent enameling properties, and can be effectively used for making glass-lined equipment.
  • the present invention provides a glass-lined steel whose chemical element mass percentage is:
  • the balance is Fe and other inevitable impurities
  • the microstructure of the glass-lined steel is ferrite; or ferrite + cementite, preferably the volume percentage content of ferrite is more than 90%.
  • the ferrite crystal grains are uniform equiaxed crystal grains, and the average crystal grain diameter is not more than 40 ⁇ m.
  • C In the glass-lined steel of the present invention, carbon is an important strengthening element. As the carbon content in the steel increases, the strength increases but the plasticity and toughness decrease.
  • the microstructure in the steel is mainly composed of pearlite + ferrite, and the higher the pearlite component, the higher the strength of the steel.
  • the carbon content is reduced as much as possible, so that the structure in the steel is composed of ferrite or ferrite + cementite, so as to improve the plasticity and low temperature toughness of the steel, and improve the workability of the steel. Therefore, the mass percentage of C in the glass-lined steel of the present invention is controlled to be between 0.015 and 0.060%.
  • the mass percentage of C can be controlled between 0.02 and 0.05%.
  • Si is a strengthening matrix element and also a deoxidizing element, and can improve the strength of the steel sheet and the resistance to softening during high-temperature firing.
  • Si content is too high, it will also damage the plasticity and toughness of the steel plate while increasing the strength, and it is also not conducive to welding.
  • the mass percentage of Si in the glass-lined steel of the present invention is controlled to be between 0.01 and 0.50%.
  • the mass percentage of Si can be controlled between 0.10 and 0.40%.
  • Mn In the glass-lined steel of the present invention, Mn, like Si, is both a strengthening matrix element and a deoxidizing element. It can also improve the strength of the steel sheet and its resistance to softening during high-temperature firing. In order to avoid excessively high strength or excessive strength fluctuation range that is not conducive to the workability of the steel sheet, and to improve the plasticity and low temperature toughness of the steel sheet, the mass percentage of Mn in the glass-lined steel of the present invention is controlled to be between 0.20 and 1.5%.
  • the mass percentage of Mn can be controlled between 0.50 and 1.2%.
  • P In the glass-lined steel of the present invention, P is also a useful strengthening element, which can improve the strength of the steel sheet and the resistance to softening during high-temperature firing.
  • the mass percentage of P in the glass-lined steel of the present invention is controlled to be 0.005 to 0.10 %between.
  • the mass percentage of P is controlled between 0.005 and 0.08%. In some other embodiments, the mass percentage of P is 0.008-0.03%.
  • Al is a strong deoxidizing element, which can be used to reduce the oxygen content in the steel, thereby reducing oxide inclusions in the steel, and improving the plasticity and toughness of the steel.
  • the mass percentage of Al is controlled between 0.010% and 0.070%.
  • Ti is a strong carbon and nitride forming element. Adding enough Ti to the steel can fix carbon and nitrogen, and combine with titanium and sulfur to form a compound.
  • the types of second phase particles that can finally be formed include TiC, TiCN, TiN, TiS and Ti 4 C 2 S 2, etc. They can exist in the form of inclusions and precipitated phases.
  • these carbonitride precipitates of Ti can also play a role in preventing grain growth in the heat-affected zone during welding, thereby improving welding performance. But when the titanium content is too high, titanium preferentially forms coarse titanium nitride inclusions with nitrogen. Therefore, the mass percentage of Ti in the glass-lined steel of the present invention is controlled to be between 0.10% and 0.30%.
  • the glass-lined steel of the present invention also contains at least one of the following elements:
  • an appropriate amount of copper, chromium, nickel, and molybdenum can effectively improve the bubbles generated during the enameling process of the steel plate and improve the adhesion of the enamel.
  • excessively high content of copper, chromium, nickel and molybdenum will not only increase the cost of the alloy, but also easily affect the adhesion and surface quality of the enamel during the coating process.
  • the glass-lined steel of the present invention further contains at least two of Cu, Cr, Ni and Mo; preferably, Cu ⁇ 0.20%, more preferably ⁇ 0.10%; Cr ⁇ 0.20% , More preferably ⁇ 0.10%; Ni ⁇ 0.20%, more preferably ⁇ 0.05%; Mo ⁇ 0.10%, more preferably ⁇ 0.05%.
  • Cu 0.01-0.10%; Cr: 0.01-0.10%; Ni: 0.005-0.05%; Mo: 0.005-0.03%.
  • the glass-lined steel of the present invention satisfies Ti/C ⁇ 3.0, and Ti and C in the formula respectively represent the mass percentages of the corresponding elements.
  • the glass-lined steel of the present invention satisfies Ti/C ⁇ 4.0, and Ti and C in the formula respectively represent the mass percentages of the corresponding elements.
  • the amount of titanium added is related to carbon.
  • the element body + cementite structure can effectively improve the plasticity and toughness of the steel, reduce the yield strength, and improve the workability and low temperature toughness of the steel.
  • the inevitable impurity elements include S and N, wherein: S ⁇ 0.03%; and/or N ⁇ 0.008%.
  • sulfur can combine with manganese in the steel to form plastic inclusions manganese sulfide, which is particularly unfavorable to the transverse plasticity and toughness of the steel, so the content of sulfur should be as low as possible.
  • plastic manganese sulfide inclusions can be avoided to a certain extent, and composite manganese-titanium sulfide inclusions are formed, which are spherical or round, which reduces the damage of manganese sulfide inclusions to plasticity and toughness.
  • These inclusions are beneficial hydrogen traps and can effectively improve the anti-scale explosion performance of the steel plate.
  • the sulfur content is controlled at S ⁇ 0.03%. In some embodiments, the content of S is 0.001-0.03%.
  • titanium-containing steel nitrogen is very easy to form titanium nitride inclusions. From the solid solubility product of nitrogen and titanium, titanium nitride may precipitate to form coarse inclusions at high temperatures or even in molten steel. This kind of square or prismatic inclusions will greatly damage the plasticity and toughness of steel. Therefore, it is necessary to reduce the nitrogen content in steel as much as possible, that is, control N ⁇ 0.008%. In some embodiments, the content of N is 0.001-0.008%.
  • the inventors creatively discovered through multiple experiments that when Ti eff /C ⁇ 4.0, the yield ratio of steel can be significantly reduced, and the tensile strength of steel can be reduced not too much. At the same time of strength, the steel achieves a better yield strength range.
  • the glass-lined steel of the present invention further contains at least one of Nb: 0.005 to 0.10%, V: 0.005 to 0.05%, and B: 0.0005 to 0.005%.
  • Nb and V are also strong carbon and nitride forming elements like titanium. Adding a suitable amount of niobium and/or vanadium can replace part of the titanium, because the higher the titanium content, the easier The formation of coarse TiN inclusions will damage the plasticity and toughness of the steel plate.
  • Nb and V play a role of precipitation strengthening and solid solution strengthening, and the precipitated phases of carbon and nitride are also beneficial irreversible hydrogen storage traps to improve the anti-scaling performance of steel.
  • B is very beneficial to improve the anti-scale explosion performance of steel.
  • the mass percentage of Nb is controlled between 0.005 and 0.10%
  • the mass percentage of V is controlled between 0.005 and 0.05%
  • the mass percentage of B is controlled between 0.0005 and 0.005%. between.
  • each chemical element satisfies: Ti+(48/93)Nb+(48/51)V ⁇ 4C, where Ti, Nb, V and C each represent the mass percentage of each element.
  • the glass-lined steel of the present invention further contains at least one of Ca: 0.001 to 0.005% and Mg: 0.0005 to 0.005%.
  • Ca and Mg mainly play a role in changing the characteristics of inclusions. Due to the requirement of improving the hydrogen storage performance of steel plate, steel contains more inclusions and precipitated phases, and the refined and spherical inclusions not only help to improve the hydrogen storage effect, but also help to reduce the damage to the plasticity and toughness of steel. , A small amount of Ca or/and Mg can play a role in changing the characteristics of inclusions. Therefore, in the glass-lined steel of the present invention, the mass percentage of Ca can be controlled between 0.001 and 0.005%, and the mass percentage of Mg can be between 0.0005 and 0.005%.
  • each chemical element further satisfies at least one of the following items:
  • the content of C element is 0.035-0.045%.
  • the glass-lined steel of the present invention its performance satisfies at least one of the following items: the yield strength is 205 ⁇ 345MPa, the elongation A50 ⁇ 30%, and the Charpy impact energy at -40°C is Akv ⁇ 34J, yield ratio ⁇ 0.8. Further, the performance of the glass-lined steel of the present invention also includes at least one of the following items: the tensile strength is 400-440MPa, the Charpy impact energy at 0°C Akv ⁇ 120J, the Charpy impact energy at -20°C Akv ⁇ 100J.
  • the yield strength is 205 ⁇ 345MPa, the elongation A50 ⁇ 30%, the Charpy impact energy at -40°C, Akv ⁇ 34J, the yield strength
  • the ratio is less than or equal to 0.8; and it is preferably further satisfied: the tensile strength is 400-440 MPa, the Charpy impact energy at 0°C, Akv ⁇ 120J, and the Charpy impact energy at -20°C, Akv ⁇ 100J.
  • the preferred yield strength is 245-300MPa; the preferred tensile strength is 405-435MPa; the preferred A50 ⁇ 35%, such as 35%-45%; the preferred yield ratio ⁇ 0.73; the preferred Charpy impact energy at -40°C Akv ⁇ 85J.
  • the thickness of the glass-lined steel of the present invention is 10-25 mm.
  • another object of the present invention is to provide a method for manufacturing glass-lined steel.
  • the glass-lined steel obtained by the manufacturing method has excellent workability and low-temperature toughness, as well as excellent enameling properties. .
  • the present invention proposes the above-mentioned manufacturing method of glass-lined steel, which includes the following steps:
  • Hot rolling controlling the end temperature of hot rolling to be 800-920°C.
  • the method for manufacturing glass-lined steel according to the present invention further includes step (5): heat treatment in addition to the above steps.
  • the purpose of converter smelting and refining is to remove harmful elements and impurity elements in the steel, and add necessary alloying elements to achieve the design The target composition requirements.
  • Continuous casting is used to cast slabs. Compared with die casting, continuous casting has the characteristics of uniform composition and better surface quality. Therefore, the performance of steel plates manufactured by continuous casting process is more uniform and more suitable for the manufacture of glass-lined steel.
  • the heating temperature is controlled within the range of 1100 to 1250°C, so that after the slab is fully heated, the microstructure in the steel is completely austenitized and homogenized, so as to obtain a uniform display after rolling. Micro-organization.
  • controlling the temperature at the end of the hot rolling to be 800-920°C can ensure the full transformation of the ferrite structure and the grain growth after rolling, and also prevent the abnormal growth of the grains.
  • the alloying elements such as titanium, niobium and vanadium in the solid solution state will re-precipitate as fine and dispersed particles distributed on the ferrite matrix as the hot rolling deformation progresses and the temperature drops. On the one hand, it fixes the carbon in the steel, Elements such as nitrogen, on the other hand, are also conducive to the refinement of ferrite grains.
  • step (4) air cooling or water cooling is adopted.
  • either a single steel plate or multiple steel plates can be piled up for air cooling, and finally cooled to room temperature.
  • the final cooling temperature of the water cooling is controlled to be 650-750°C, and the cooling rate is not more than 50°C/s. Then air-cooled to room temperature.
  • the final cooling temperature of water cooling is 650-750°C, and the water cooling is to accelerate the cooling, thereby effectively preventing the further growth of ferrite grains and precipitated phases, which is beneficial to improve the plasticity and plasticity of the steel plate.
  • Toughness, to prevent abnormal growth of ferrite grains, and relatively small precipitation is beneficial to improve the hydrogen storage performance of the steel sheet. Accelerated cooling can also speed up the production rhythm, but an excessively high cooling rate will cause bad plate shape and even cause insufficient recrystallization of ferrite and grain growth. Therefore, when water cooling is used for cooling, the cooling rate should be controlled not to be greater than 50°C/s.
  • the heat treatment temperature is 880-980°C.
  • the heat preservation time is 30 minutes to 3 hours.
  • the original structure of the steel plate namely the ferrite structure or the ferrite + cementite structure
  • the original structure of the steel plate is austenitized and then transformed into ferrite during the cooling process. It can appropriately reduce the yield strength of the steel, improve the toughness of the steel, and then better improve the workability and low-temperature toughness of the steel plate.
  • the glass-lined steel and the manufacturing method thereof of the present invention have the following advantages and beneficial effects:
  • the present invention can stably control the yield strength of the steel plate within an appropriate range through the control of the steel composition and processing technology, and reduce the adverse effects of excessively high yield strength or excessive fluctuations on workability.
  • the elongation A50 of the glass-lined steel of the present invention is greater than or equal to 30%, which can meet the manufacturing requirements of complex molded parts.
  • the manufactured glass-lined container meets the requirements of impact toughness at -40°C or even lower temperature.
  • the yield strength of the glass-lined steel of the present invention satisfies 205-345MPa, the elongation A50 ⁇ 30%, the Charpy impact energy at -40°C, Akv ⁇ 34J, and the yield ratio ⁇ 0.8.
  • it has excellent workability and low-temperature toughness, as well as excellent enameling properties, and can be effectively used to make glass-lined equipment.
  • Fig. 1 shows the microstructure morphology of the glass-lined steel according to the present invention in the hot-rolled state in Example 2.
  • Fig. 2 shows the microstructure morphology of the hot-rolled sheet of the glass-lined steel of the present invention after being fired at a simulated high temperature for 5 times in Example 2.
  • the glass-lined steel of the present invention is prepared by the following steps:
  • Heating The heating temperature is 1050 to 1250°C.
  • Hot rolling control the final temperature of hot rolling to be 800-920°C.
  • Air cooling or water cooling is adopted.
  • air cooling cool to room temperature
  • water cooling the final cooling temperature of water cooling is controlled to be 650-750°C, and the cooling rate is not more than 50°C/s, and then air-cooled to room temperature.
  • the heat treatment temperature is 880-980°C, and the holding time is 30 minutes to 3 hours.
  • Table 1 lists the mass percentages of the chemical elements in the glass-lined steel of Examples 1-6.
  • Table 2 lists the specific process parameters of each step of the manufacturing method of Examples 1-6.
  • Table 3 lists the relevant performance parameters of the glass-lined steel of Examples 1-6.
  • the above-mentioned steel plate is sawed and cut into a block sample with a size of 150mm ⁇ 150mm, and then both sides are polished before shot blasting, and the surface is cleaned with alcohol and then painted.
  • the coating is made of glass glaze (the quartz component in the glaze is about 71%), single-sided or double-sided wet spraying method, divided into one base glaze and two top glazes, the firing temperature of the base glaze At 890-920°C, the firing temperature of the two surface glazes is 870-900°C. After enameling, place it at room temperature for a week to observe whether there are any scaly spots on the surface.
  • Fig. 1 shows the microstructure morphology of the glass-lined steel according to the present invention in the hot-rolled state in Example 2. It can be seen from Figure 1 that when the glass-lined steel in this embodiment is in the hot rolled state, the microstructure under the optical microscope is mainly composed of ferrite, the crystal grains are uniformly equiaxed, and the average crystal grain diameter Not more than 40 ⁇ m.
  • the delivered steel plate has such a microstructure, which is conducive to maintaining a fine and uniform microstructure state, that is, the heritability of the microstructure after being processed and formed and fired at multiple high temperatures, thereby improving the service state of the glass-lined equipment Performance under.
  • Fig. 2 shows the microstructure morphology of the hot-rolled sheet of the glass-lined steel of the present invention after being fired at a simulated high temperature for 5 times in Example 2.
  • the specific heat treatment process is: 900°C ⁇ 10min+air cooling (1 time) ⁇ 940°C ⁇ 10min+air cooling (1 time) ⁇ 870°C ⁇ 10min+air cooling (3 times).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

一种搪玻璃用钢,其化学元素质量百分比为:C:0.015~0.060%;Si:0.01~0.50%;Mn:0.20~1.5%;P:0.005~0.10%;Al:0.010~0.070%;Ti:0.10~0.30%;余量为Fe和其他不可避免的杂质,其中所述搪玻璃用钢的微观组织为铁素体;或者铁素体+渗碳体。此外本发明还公开了搪玻璃用钢的制造方法,其步骤包括(1)冶炼,精炼,连铸,以得到板坯,(2)加热:加热温度1050~1250℃,(3)热轧:控制热轧终了温度为800~920℃,(4)冷却,(5)热处理。该搪玻璃用钢具有优良可加工性和低温韧性,同时也具有优良的涂搪性。

Description

一种搪玻璃用钢及其制造方法 技术领域
本发明涉及一种金属材料及其制造方法,尤其涉及一种钢材及其制造方法。
背景技术
搪玻璃工艺是将含有高石英组份的玻璃质瓷釉涂覆在金属基体表面,然后通过高温烧结使得瓷釉牢固地密着于基体表面而形成复合材料的工艺。在现有技术中,以钢板为金属底胚制作而成的搪玻璃设备,如搪玻璃反应釜、搪玻璃储罐等,由于兼备玻璃的稳定性和金属的高强度等特点,具有良好的耐磨性,对各种酸、有机溶剂均有极高的耐腐蚀性,对碱性溶液也具有良好的耐腐蚀性,应用领域十分广泛。
在现有搪玻璃设备的制作过程中,钢板在经过成型、焊接等加工后,要经过反复多次的涂搪和高温烧成过程,烧成温度大约在930℃至870℃之间。在涂搪过程中常常产生鳞爆、密着不良和针孔等涂搪缺陷,这些缺陷也是现有的搪玻璃专用钢板所要解决的主要问题。但是考虑到从钢板成型到涂搪、到搪玻璃设备的制成和服役的整个过程,除了提高钢板的涂搪性能以外,为了改善加工过程,提高服役周期,还需要提高钢板的可加工性如易冲压、易弯曲和易冲孔等,提高钢板的低温韧性满足搪玻璃设备在-20℃以下甚至-40℃环境下服役要求。
目前,在搪玻璃设备制造过程中,常用的钢种仍然是Q245R等普通压力容器用钢,这类钢种在制作搪玻璃容器时,不仅容易产生鳞爆等搪瓷缺陷,而且所制作的搪玻璃设备无法满足-20℃及以下温度的服役要求。而现有专用的搪玻璃用钢屈强比较高(如在0.90以上),屈服强度多在350MPa甚至400MPa以上,由于屈服强度高、同板和不同钢板之间的强度波动也大,给冲压、卷桶和冲孔等成型加工带来困难,有时需要多次反复成型,可加工性差,不利于搪玻璃设备的生产制造。此外,现有专用的搪玻璃用钢所制作的搪玻璃设备的低温韧性同样较差,无法满足-20℃及更低温条件下的服役要求。
发明内容
本发明的目的之一在于提供一种搪玻璃用钢,其旨在解决现有的搪玻璃用钢的加工困难、低温韧性差的问题。本发明所述的搪玻璃用钢具有优良可加工性和低温韧性,同时也具有优良的涂搪性,可以有效用于制作搪玻璃设备。
为了实现上述目的,本发明提供了一种搪玻璃用钢,其化学元素质量百分比为:
C:0.015~0.060%;
Si:0.01~0.50%;
Mn:0.20~1.5%;
P:0.005~0.10%;
Al:0.010~0.070%;
Ti:0.10~0.30%;
余量为Fe和其他不可避免的杂质;
其中所述搪玻璃用钢的微观组织为铁素体;或者铁素体+渗碳体,优选铁素体的体积百分比含量为90%以上。
优选地,所述铁素体晶粒为均匀的等轴晶粒,平均晶粒直径不大于40μm。
具体来说,在本发明所述的搪玻璃用钢中,各化学元素的设计原理如下所述:
C:在本发明所述的搪玻璃用钢中,碳是重要的强化元素,随着钢中含碳量增加,强度提高但塑性和韧性下降。对于常规的搪玻璃用钢来说,钢中的微观组织主要由珠光体+铁素体组成,珠光体的组份越高钢的强度也越高。对于本发明搪玻璃用钢,尽量地降低含碳量,使得钢中的组织由铁素体或铁素体+渗碳体组成,以提高钢的塑性和低温韧性,改善钢的可加工性。因此在本发明所述的搪玻璃用钢中控制C的质量百分比在0.015~0.060%之间。
在一些优选的实施方式中,C的质量百分比可以控制在0.02~0.05%之间。
Si:在本发明所述的搪玻璃用钢中,Si是强化基体元素也是脱氧元素,能够提高钢板的强度以及在高温烧成时的抗软化能力。但Si含量过高,在提高强度的同时也会损害钢板的塑性和韧性,也不利于焊接。综合考虑Si对性能的改善效果和不利因素,在本发明所述的搪玻璃用钢中控制Si的质量百分比在0.01~0.50%之间。
在一些优选的实施方式中,Si的质量百分比可以控制在0.10~0.40%之间。
Mn:在本发明所述的搪玻璃用钢中,Mn同Si一样,同样既是强化基体元素也是脱氧元素。同样能够提高钢板的强度以及在高温烧成时的抗软化能力。为了避免强度过高或强度波动范围过大不利于钢板的可加工性,提高钢板的塑性和低温韧性, 在本发明所述的搪玻璃用钢中控制Mn的质量百分比0.20~1.5%之间。
在一些优选的实施方式中,Mn的质量百分比可以控制在0.50~1.2%之间。
P:在本发明所述的搪玻璃用钢中,P也是有益的强化元素,能够提高钢板的强度以及在高温烧成时的抗软化能力。但当磷的含量过高时,虽然提高了钢的强度,但同时也会损害钢板的塑性和韧性,不利于钢材后期的使用和焊接。因此,为了避免强度过高或强度波动范围过大对钢板的可加工性产生影响,提高钢板的塑性和低温韧性,在本发明所述的搪玻璃用钢中控制P的质量百分比在0.005~0.10%之间。
在一些优选的实施方式中,P的质量百分比控制在0.005~0.08%之间。在另外一些实施方式中,P的质量百分比为0.008~0.03%。
Al:在本发明所述的搪玻璃用钢中,Al是强脱氧元素,可以用于降低钢中的氧含量,从而减少钢中氧化物夹杂,提高钢的塑性和韧性。在本发明所述的搪玻璃用钢中,Al的质量百分比控制在0.010~0.070%之间。
Ti:在本发明所述的搪玻璃用钢中,Ti是强碳、氮化物形成元素,在钢中加入足量的Ti可以起到固定碳、氮的作用,结合钛和硫形成化合物的作用,最终可以形成的第二相粒子种类包括TiC、TiCN、TiN、TiS和Ti 4C 2S 2等,它们可以以夹杂物和析出相的形式存在。此外,Ti的这些碳氮化物析出物在焊接时还可以起到阻止热影响区晶粒长大的作用,从而改善焊接性能。但当钛含量过高时,钛优先和氮形成粗大的氮化钛夹杂物。因此,在本发明所述的搪玻璃用钢中控制Ti的质量百分比0.10~0.30%之间。
进一步地,在本发明所述的搪玻璃用钢中,其还含有下述各元素的至少其中之一:
Cu≤0.50%;
Cr≤0.50%;
Ni≤0.50%;
Mo≤0.50%;
并且满足:Cu+Cr+Ni+Mo≤1.0%,式中的Cu、Cr、Ni、Mo均表示其质量百分含量。
在本发明所述的搪玻璃用钢中,适量的铜、铬、镍和钼可以有效改善钢板在搪瓷过程中产生的气泡、提高搪瓷密着性。但过高含量的铜、铬、镍和钼不仅会提高合金成本,还容易在涂搪过程中,对搪瓷密着和表面质量产生影响。优选地,Cu≤ 0.20%,更优选≤0.10%;Cr≤0.20%,更优选≤0.10%;Ni≤0.20%,更优选≤0.05%;Mo≤0.10%,更优选≤0.05%。优选地,当含有时,Cu:0.01-0.10%;Cr:0.01-0.10%;Ni:0.005-0.05%;Mo:0.005-0.03%。
在一些实施方案中,在本发明所述的搪玻璃用钢中还含有Cu、Cr、Ni和Mo中的至少两种;优选地,Cu≤0.20%,更优选≤0.10%;Cr≤0.20%,更优选≤0.10%;Ni≤0.20%,更优选≤0.05%;Mo≤0.10%,更优选≤0.05%。优选地,当含有时,Cu:0.01-0.10%;Cr:0.01-0.10%;Ni:0.005-0.05%;Mo:0.005-0.03%。
优选地,Cu+Cr+Ni+Mo≤0.5%;更优选地,Cu+Cr+Ni+Mo≤0.2%。
进一步地,在本发明所述的搪玻璃用钢中,其满足Ti/C≥3.0,式中的Ti和C分别表示对应元素的质量百分含量。
进一步地,在本发明所述的搪玻璃用钢中,其满足Ti/C≥4.0,式中的Ti和C分别表示对应元素的质量百分含量。
在本发明所述的搪玻璃用钢中,钛的加入量和碳有关,通过控制Ti/C≥3.0这一技术特征,确保钢中不会形成珠光体组织,而是形成铁素体或铁素体+渗碳体组织,从而可以有效地提高钢的塑性和韧性、降低屈服强度,提高钢的可加工性和低温韧性。
进一步地,在本发明所述的搪玻璃用钢中,其中不可避免的杂质元素包括S和N,其中:S≤0.03%;并且/或者N≤0.008%。
在本发明所述的搪玻璃用钢中,硫在钢中可以与锰化合形成塑性夹杂物硫化锰,尤其对钢的横向塑性和韧性不利,因此硫的含量应尽可能地低。在添加钛的钢中,在一定程度上可以避免塑性硫化锰夹杂物的形成,而形成复合的硫化锰钛夹杂物,呈球形或圆形,减轻了硫化锰夹杂物对塑性和韧性的损害,这些夹杂物是有益的贮氢陷阱,可以有效提高钢板的抗鳞爆性能。但是如果硫的含量过高,其夹杂物颗粒就会越大,对塑性和韧性的损害就越大,因此,硫含量控制在S≤0.03%。在一些实施方案中,S的含量为0.001-0.03%。
在含钛钢中,氮极易形成氮化钛夹杂物,由氮和钛的固溶度积,氮化钛可能在高温下甚至在钢液中就会析出形成粗大的夹杂物,这是一种呈方形或棱形的夹杂物,对钢的塑性和韧性损害很大,因此要尽量降低钢中含氮量,即控制N≤0.008%。在一些实施方案中,N的含量为0.001-0.008%。
进一步优选地,在本发明所述的搪玻璃用钢中,其各化学元素还满足:Ti eff/C≥ 4.0,其中Ti eff=Ti-1.5×S-3.43×N,式中的Ti、S和N均分别表示各对应元素的质量百分含量。
在本发明所述的搪玻璃用钢中,发明人通过多次试验创造性的发现,当Ti eff/C≥4.0时,可以显著降低钢的屈强比,实现在不过多地降低钢的抗拉强度的同时,使钢达到更好的屈服强度范围。
进一步地,在本发明所述的搪玻璃用钢中,还含有Nb:0.005~0.10%、V:0.005~0.05%、B:0.0005~0.005%中的至少其中之一。
在本发明所述的搪玻璃用钢中,Nb和V同钛一样也是强碳、氮化物形成元素,加入适量的铌和/或钒,可以替代部分的钛,因为钛含量越高,越容易形成粗大的TiN夹杂物,会损害钢板的塑性和韧性。Nb和V起着析出强化和固溶强化作用,其碳、氮化物的析出相也是有利的不可逆贮氢陷阱,以提高钢的抗鳞爆性能。B对提高钢的抗鳞爆性能十分有益。因此,在本发明所述的搪玻璃用钢中控制Nb的质量百分比在0.005~0.10%之间,控制V的质量百分比在0.005~0.05%之间,控制B的质量百分比在0.0005~0.005%之间。
进一步优选地,在本发明所述的搪玻璃用钢中,当含有Nb和V元素时,各化学元素满足:Ti+(48/93)Nb+(48/51)V≥4C,式中的Ti、Nb、V和C均分别表示各元素的质量百分含量。
进一步地,在本发明所述的搪玻璃用钢中,还含有Ca:0.001~0.005%、Mg:0.0005~0.005%中的至少其中之一。
在本发明所述的搪玻璃用钢中,Ca和Mg主要起到改变夹杂物特性的作用。由于提高钢板贮氢性能的要求,钢中含有较多的夹杂物和析出相,而细化的、呈球形的夹杂物不仅有利于提高贮氢作用还有利于减轻对钢的塑性、韧性的损害,微量的Ca或/和Mg可以起到改变夹杂物特性的作用。因此,在本发明所述的搪玻璃用钢中还可以控制Ca的质量百分比在0.001~0.005%之间,Mg的质量百分比在0.0005~0.005%之间。
进一步地,在本发明所述的搪玻璃用钢中,其各化学元素含量进一步满足下述各项的至少其中之一:
C:0.02~0.05%;
Si:0.10~0.40%;
Mn:0.50~1.2%;
P:0.005~0.08%。
进一步地,在本发明所述的搪玻璃用钢中,C元素含量为0.035~0.045%。
进一步地,在本发明所述的搪玻璃用钢中,其性能满足下述各项的至少之一:屈服强度为205~345MPa,延伸率A50≥30%,-40℃夏比冲击功Akv≥34J,屈强比≤0.8。进一步地,本发明所述的搪玻璃用钢的性能还包括下述各项的至少之一:抗拉强度为400~440MPa,0℃夏比冲击功Akv≥120J,-20℃夏比冲击功Akv≥100J。
在优选的实施方案中,在本发明所述的搪玻璃用钢中,其性能满足:屈服强度为205~345MPa,延伸率A50≥30%,-40℃夏比冲击功Akv≥34J,屈强比≤0.8;且优选进一步满足:抗拉强度为400~440MPa,0℃夏比冲击功Akv≥120J,-20℃夏比冲击功Akv≥100J。
本发明所述的搪玻璃用钢中,优选的屈服强度为245~300MPa;优选的抗拉强度为405~435MPa;优选的A50≥35%,如35%~45%;优选的屈强比≤0.73;优选的-40℃夏比冲击功Akv≥85J。
进一步地,本发明所述的搪玻璃用钢的厚度为10-25mm。
相应地,本发明的另一目的在于提供一种搪玻璃用钢的制造方法,采用该制造方法所获得的搪玻璃用钢,具有优良可加工性和低温韧性,同时也具有优良的涂搪性。
为了实现上述目的,本发明提出了上述的搪玻璃用钢的制造方法,包括步骤:
(1)冶炼,精炼,连铸,以得到板坯;
(2)加热:加热温度1050~1250℃;
(3)热轧:控制热轧终了温度为800~920℃;和
(4)冷却。
进一步优选地,在本发明所述的搪玻璃用钢的制造方法,除上述步骤外还包括步骤(5):热处理。
在本发明所述的搪玻璃用钢的制造方法中,在所述步骤(1)中,转炉冶炼和精炼的目的在于脱去钢中的有害元素和杂质元素,加入必要的合金元素,达到设计的目标成分要求。采用连铸方式铸成板坯,连铸较模铸具有成分均匀、表面质量好等特点,因此以连铸工艺制造的钢板性能更均匀,更适合用于搪玻璃用钢的制造。在所述步骤(2)中,加热温度控制在1100~1250℃范围内,可以使板坯经过充分加热后,钢中的微观组织完全奥氏体化和均匀化,从而获得轧后均匀的显微组织。采用 上述加热温度,可以实现在加热过程中,大量的钛、铌和钒等的夹杂物和析出相会有部分或全部溶解呈固溶状态,在随后的轧制和冷却过程中会重新析出成较小的粒子,同时这些析出相也可以起着阻止晶粒长大的作用。在所述步骤(3)中,控制热轧终了温度为800~920℃,能够保证轧后铁素体组织的充分转变和晶粒长大,也防止晶粒的异常长大。呈固溶状态的钛、铌和钒等合金元素随着热轧变形的进行和温度的下降,重新析出呈细小、弥散的粒子分布在铁素体基体上,一方面固定了钢中的碳、氮等元素,另一方面也有利于细化铁素体晶粒。
进一步地,在本发明所述的搪玻璃用钢的制造方法中,在步骤(4)中,采用空冷或水冷。
当采用空冷的冷却方式时,既可以采取单张钢板冷却也可以多张钢板堆冷的方式进行空冷,最终冷至室温。
当采用水冷进行冷却时,控制水冷的终冷温度为650~750℃,冷却速率不大于50℃/s。然后空冷至室温。
在本发明所述的技术方案中,水冷的终冷温度为650~750℃,水冷是为了加速冷却,进而有效阻止铁素体晶粒和析出相的进一步长大,有利于提高钢板的塑性、韧性,防止铁素体晶粒的异常长大,细小的析出相对提高钢板的贮氢性能有益。加速冷却还可以加快生产节奏,但过高的冷却速率会带来不好的板型甚至造成铁素体未充分再结晶和晶粒长大,因此在采用水冷进行冷却时,控制冷却速率不大于50℃/s。
进一步优选地,在本发明所述的搪玻璃用钢的制造方法中,在步骤(5)中,热处理温度为880~980℃。优选地,热处理保温时间为30分钟到3小时。
在本发明所述的技术方案中,在热处理的加热过程中通过将钢板的原始组织即铁素体组织或者铁素体+渗碳体组织奥氏体化后在冷却过程中再转变成铁素体,起到适当降低钢的屈服强度,提高钢的韧性,进而更好地提高钢板的可加工性和低温韧性。
本发明所述的搪玻璃用钢及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
与现有技术相比,本发明通过钢材成分和加工工艺的控制,可以稳定地控制钢板的屈服强度在一个合适的范围内,降低屈服强度过高或波动过大对加工性的不利影响。本发明搪玻璃用钢的延伸率A50≥30%,可以满足复杂成型零件的制作要求。 所制作的搪玻璃容器达到-40℃甚至更低温度下的冲击韧性要求。本发明所述的搪玻璃用钢屈服强度满足205~345MPa,延伸率A50≥30%,-40℃夏比冲击功Akv≥34J,屈强比≤0.8。相对于现有技术具有优良可加工性和低温韧性,同时也具有优良的涂搪性,可以有效用于制作搪玻璃设备。
附图说明
图1显示了本发明所述的搪玻璃用钢在实施例2中热轧态的微观组织形貌。
图2显示了本发明所述的搪玻璃用钢在实施例2中热轧板经5次模拟高温烧成后的微观组织形貌。
图1和2中的标尺为100微米。
具体实施方式
下面将结合具体的实施例和说明书附图对本发明所述的搪玻璃用钢及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-6
本发明所述的搪玻璃用钢采用以下步骤制得:
(1)冶炼,精炼,连铸,以得到板坯。
(2)加热:加热温度1050~1250℃。
(3)热轧:控制热轧终了温度为800~920℃。
(4)冷却:采用空冷或水冷,当采用空冷时,冷却至室温;当采用水冷时,控制水冷的终冷温度为650~750℃,冷却速率不大于50℃/s,然后空冷至室温。
实施例的方法还可包括步骤:
(5)热处理:热处理温度为880~980℃,保温时间为30分钟到3小时。
表1列出了实施例1-6的搪玻璃用钢的各化学元素的质量百分配比。
表1(wt%)
Figure PCTCN2021077405-appb-000001
Figure PCTCN2021077405-appb-000002
表2列出了实施例1-6的制造方法的各步骤的具体工艺参数。
表2
Figure PCTCN2021077405-appb-000003
表3列出了实施例1-6的搪玻璃用钢的相关性能参数。
表3
Figure PCTCN2021077405-appb-000004
Figure PCTCN2021077405-appb-000005
从表3可以看出,实施例1-6的搪玻璃用钢性能优异,屈服强度为245~312MPa,延伸率A50≥36%,-40℃夏比冲击功Akv≥86J,屈强比R p0.2/R m≤0.8,说明钢板具有优良的塑性,同时有着合适的屈服强度控制范围(即不同钢板之间的屈服强度波动范围较小)。在使用这些搪玻璃用钢制作搪玻璃容器时,无论是对于封头的冲压还是罐身的卷曲,以及各种冲孔加工等,既满足了各种加工成型的塑性要求,又不至于因为钢板过高的强度或硬度带来加工困难和较大的回弹,并可以减少冲压和卷曲的次数。
此外,从表3中的冲击试验韧性可以看出,不同成分和加工工艺的搪玻璃用钢在0℃、-20℃的冲击功均高于100J,-40℃的冲击功也高于标准要求的34J,完全满足制作-20℃以下温度的搪玻璃设备的要求,明显优于目前应用的搪玻璃用钢,由此说明上述的搪玻璃用钢具有优良可加工性和低温韧性。
将上述钢板锯切成150mm×150mm大小的块状试样,然后将两面磨光后再进行抛丸处理,表面用酒精清洗干净后进行涂搪。涂搪均采用玻璃质釉料(其中釉料中的石英组份约为71%)、单面或者双面湿法喷涂方法,分一次底釉和两次面釉,其中底釉的烧成温度在890-920℃,两次面釉的烧成温度均为870-900℃。涂搪完成后在室温下放置一周观察表面有无出现鳞爆点。经采用上述的搪玻璃瓷釉和烧成工艺,均没有发生鳞爆现象,在施底釉和面釉的条件下密着等级均达到I级,试验表明本发明的钢板具有良好的抗鳞爆性和密着性,完全满足制造搪玻璃设备如反应釜、贮罐等的加工要求。
图1显示了本发明所述的搪玻璃用钢在实施例2中热轧态的微观组织形貌。从图1中可以看出,本实施例中的搪玻璃用钢在热轧态时,在光学显微镜下微观组织主要由铁素体组成,晶粒呈均匀的等轴晶形状,平均晶粒直径不大于40μm。交货态 钢板具有这样的显微组织,有利于在经过加工成型、多次高温烧成后仍保持细小、均匀的显微组织状态即显微组织的遗传性,从而提高搪玻璃设备的服役状态下的性能。
图2显示了本发明所述的搪玻璃用钢在实施例2中热轧板经5次模拟高温烧成后的微观组织形貌。具体的热处理工艺为:900℃×10min+空冷(1次)→940℃×10min+空冷(1次)→870℃×10min+空冷(3次)。从图2可以看出,本实施例中的搪玻璃用钢经5次模拟高温烧成后的微观组织仍为等轴的铁素体组织,相比热轧态下晶粒略有长大,但仍保持细小、均匀。
需要注意的是,以上所列举实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (15)

  1. 一种搪玻璃用钢,其特征在于,其化学元素质量百分比为:
    C:0.015~0.060%;
    Si:0.01~0.50%;
    Mn:0.20~1.5%;
    P:0.005~0.10%;
    Al:0.010~0.070%;
    Ti:0.10~0.30%;
    余量为Fe和其他不可避免的杂质;
    其中所述搪玻璃用钢的微观组织为铁素体;或者铁素体+渗碳体;优选地,所述铁素体晶粒为均匀的等轴晶粒,平均晶粒直径不大于40μm。
  2. 如权利要求1所述的搪玻璃用钢,其特征在于,其还含有下述各元素的至少其中之一:
    Cu≤0.50%;
    Cr≤0.50%;
    Ni≤0.50%;
    Mo≤0.50%;
    并且满足:Cu+Cr+Ni+Mo≤1.0%。
  3. 如权利要求1所述的搪玻璃用钢,其特征在于,其满足Ti/C≥3.0;优选地,Ti/C≥4.0。
  4. 如权利要求1所述的搪玻璃用钢,其特征在于,其中不可避免的杂质元素包括S和N,其中:S≤0.03%;并且/或者N≤0.008%。
  5. 如权利要求4所述的搪玻璃用钢,其特征在于,其各化学元素还满足:Ti eff/C≥4.0,其中Ti eff=Ti-1.5×S-3.43×N。
  6. 如权利要求1所述的搪玻璃用钢,其特征在于,还含有Nb:0.005~0.10%、V:0.005~0.05%、B:0.0005~0.005%中的至少其中之一。
  7. 如权利要求6所述的搪玻璃用钢,其特征在于,当含有Nb和V元素时,各化学元素满足:Ti+(48/93)Nb+(48/51)V≥4C。
  8. 如权利要求1所述的搪玻璃用钢,其特征在于,还含有Ca:0.001~0.005%、 Mg:0.0005~0.005%中的至少其中之一。
  9. 如权利要求1所述的搪玻璃用钢,其特征在于,其各化学元素含量进一步满足下述各项的至少其中之一:
    C:0.02~0.05%;
    Si:0.10~0.40%;
    Mn:0.50~1.2%;
    P:0.005~0.08%。
  10. 如权利要求9所述的搪玻璃用钢,其特征在于,C元素含量为0.035~0.045%。
  11. 如权利要求1-10中任意一项所述的搪玻璃用钢,其特征在于,其性能满足下述各项的至少之一:屈服强度为205~345MPa,延伸率A50≥30%,-40℃夏比冲击功Akv≥34J,屈强比≤0.8;优选地,所述搪玻璃用钢的性能还满足下述各项的至少之一:抗拉强度为400~440MPa,0℃夏比冲击功Akv≥120J,-20℃夏比冲击功Akv≥100J。
  12. 如权利要求1-11中任意一项所述的搪玻璃用钢的制造方法,其特征在于,其包括步骤:
    (1)冶炼,精炼,连铸,以得到板坯;
    (2)加热:加热温度1050~1250℃;
    (3)热轧:控制热轧终了温度为800~920℃;
    (4)冷却;和任选的
    (5)热处理。
  13. 如权利要求12所述的制造方法,其特征在于,在步骤(4)中,采用空冷或水冷进行冷却。
  14. 如权利要求13所述的制造方法,其特征在于,在步骤(4)中,采用空冷进行冷却,采取单张钢板冷或多张钢板堆冷的方式进行空冷,最终冷至室温;或采用水冷进行冷却,水冷的终冷温度为650~750℃,冷却速率不大于50℃/s,然后空冷至室温。
  15. 如权利要求12-14中任意一项所述的制造方法,其特征在于,在步骤(5)中,热处理温度为880~980℃,热处理保温时间为30分钟到3小时。
PCT/CN2021/077405 2020-02-25 2021-02-23 一种搪玻璃用钢及其制造方法 WO2021169937A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21761106.0A EP4112761A4 (en) 2020-02-25 2021-02-23 GLASS COATING STEEL AND PRODUCTION METHOD THEREOF
AU2021226442A AU2021226442A1 (en) 2020-02-25 2021-02-23 Steel for glass lining and production method therefor
JP2022551019A JP2023515558A (ja) 2020-02-25 2021-02-23 グラスライニング用鋼及びその製造方法
US17/801,641 US20230114417A1 (en) 2020-02-25 2021-02-23 Steel for glass lining and production method therefor
KR1020227032678A KR20220144394A (ko) 2020-02-25 2021-02-23 글라스 라이닝을 위한 강 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010116680.9A CN113373385A (zh) 2020-02-25 2020-02-25 一种搪玻璃用钢及其制造方法
CN202010116680.9 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169937A1 true WO2021169937A1 (zh) 2021-09-02

Family

ID=77490391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077405 WO2021169937A1 (zh) 2020-02-25 2021-02-23 一种搪玻璃用钢及其制造方法

Country Status (7)

Country Link
US (1) US20230114417A1 (zh)
EP (1) EP4112761A4 (zh)
JP (1) JP2023515558A (zh)
KR (1) KR20220144394A (zh)
CN (1) CN113373385A (zh)
AU (1) AU2021226442A1 (zh)
WO (1) WO2021169937A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293092A (zh) * 2021-09-08 2022-04-08 武汉钢铁有限公司 一种适用于-70℃环境下的低合金高强钢
CN114427066A (zh) * 2022-01-26 2022-05-03 北京首钢股份有限公司 一种搪瓷钢及其钢基板和制备方法
CN115369329A (zh) * 2022-09-30 2022-11-22 武汉钢铁有限公司 一种宽幅薄规格高表面质量热轧深冲搪瓷钢及生产方法
CN115491599A (zh) * 2022-09-19 2022-12-20 马鞍山钢铁股份有限公司 一种400MPa级双面搪瓷用冷轧钢板及其生产方法
WO2023093798A1 (zh) * 2021-11-25 2023-06-01 宝山钢铁股份有限公司 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075617B (zh) * 2021-09-30 2023-05-16 山东钢铁股份有限公司 一种降低钢材中TiN夹杂危害性的方法
CN114395688A (zh) * 2021-12-09 2022-04-26 安阳钢铁集团有限责任公司 一种低碳搪瓷钢的生产工艺
CN115110000B (zh) * 2022-06-28 2024-01-19 马鞍山钢铁股份有限公司 一种330MPa级冷轧搪瓷用钢及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169727A (en) * 1980-05-29 1981-12-26 Nippon Kokan Kk <Nkk> Manufacture of hot-rolled steel plate for enameled product having excellent antifishscale property
KR20050068251A (ko) * 2003-12-29 2005-07-05 주식회사 포스코 법랑용 강판 및 그 제조 방법
CN102719768A (zh) * 2011-03-29 2012-10-10 鞍钢股份有限公司 一种液压成形用冷轧钢板及其制造方法
CN102766822A (zh) * 2012-07-27 2012-11-07 宝山钢铁股份有限公司 一种搪玻璃用高强度钢板及其制造方法
CN107663610A (zh) * 2016-07-29 2018-02-06 本钢板材股份有限公司 一种330MPa级单面搪瓷用热轧酸洗钢板的生产方法
CN107779762A (zh) * 2016-08-30 2018-03-09 宝山钢铁股份有限公司 一种具有优良抗高温变形性能的搪玻璃用钢板及其制造方法
CN108796391A (zh) * 2017-04-26 2018-11-13 宝山钢铁股份有限公司 一种具有优良塑韧性和抗鳞爆性的搪玻璃用钢及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581170B2 (ja) * 1978-04-24 1983-01-10 川崎製鉄株式会社 ほうろう性の優れた熱延鋼板の製造法
JPS60100622A (ja) * 1983-11-02 1985-06-04 Kawasaki Steel Corp ほうろう用熱延鋼板の製造方法
KR100951256B1 (ko) * 2002-12-27 2010-04-02 주식회사 포스코 법랑용 열연강판 제조방법
CN100453678C (zh) * 2005-11-16 2009-01-21 鞍钢股份有限公司 一种热轧双面搪瓷用钢板及其制造方法
CN102312167B (zh) * 2010-06-29 2014-04-02 鞍钢股份有限公司 一种高强度双面搪瓷用热轧钢板及其制造方法
CN102758137A (zh) * 2011-04-25 2012-10-31 宝山钢铁股份有限公司 一种合金材料、搪瓷用钢及其制造方法和用途
JP5482779B2 (ja) * 2011-12-27 2014-05-07 Jfeスチール株式会社 打抜き性と伸びフランジ加工性に優れた高張力熱延鋼板およびその製造方法
JP5644964B2 (ja) * 2011-12-28 2014-12-24 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN104419874A (zh) * 2013-09-05 2015-03-18 鞍钢股份有限公司 抗鳞爆性能优异的热轧双面搪瓷钢及其制造方法
CN106480368A (zh) * 2015-08-31 2017-03-08 鞍钢股份有限公司 一种搪后高强度双面搪瓷用热轧钢板及其制造方法
CN105331883B (zh) * 2015-09-29 2017-08-25 宝山钢铁股份有限公司 一种双面搪瓷用热轧高强度中厚板及其制造方法
CN106811705A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 一种抗鳞爆性能优良的搪玻璃用钢板及其制造方法
CN107419183A (zh) * 2016-05-23 2017-12-01 上海梅山钢铁股份有限公司 一种二段式热水器搪瓷内胆用热轧钢板及其制造方法
CN110066960A (zh) * 2018-01-23 2019-07-30 宝山钢铁股份有限公司 一种具有优异抗鳞爆性的高强度搪玻璃用钢及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169727A (en) * 1980-05-29 1981-12-26 Nippon Kokan Kk <Nkk> Manufacture of hot-rolled steel plate for enameled product having excellent antifishscale property
KR20050068251A (ko) * 2003-12-29 2005-07-05 주식회사 포스코 법랑용 강판 및 그 제조 방법
CN102719768A (zh) * 2011-03-29 2012-10-10 鞍钢股份有限公司 一种液压成形用冷轧钢板及其制造方法
CN102766822A (zh) * 2012-07-27 2012-11-07 宝山钢铁股份有限公司 一种搪玻璃用高强度钢板及其制造方法
CN107663610A (zh) * 2016-07-29 2018-02-06 本钢板材股份有限公司 一种330MPa级单面搪瓷用热轧酸洗钢板的生产方法
CN107779762A (zh) * 2016-08-30 2018-03-09 宝山钢铁股份有限公司 一种具有优良抗高温变形性能的搪玻璃用钢板及其制造方法
CN108796391A (zh) * 2017-04-26 2018-11-13 宝山钢铁股份有限公司 一种具有优良塑韧性和抗鳞爆性的搪玻璃用钢及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293092A (zh) * 2021-09-08 2022-04-08 武汉钢铁有限公司 一种适用于-70℃环境下的低合金高强钢
WO2023093798A1 (zh) * 2021-11-25 2023-06-01 宝山钢铁股份有限公司 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法
CN114427066A (zh) * 2022-01-26 2022-05-03 北京首钢股份有限公司 一种搪瓷钢及其钢基板和制备方法
CN114427066B (zh) * 2022-01-26 2023-02-24 北京首钢股份有限公司 一种搪瓷钢及其钢基板和制备方法
CN115491599A (zh) * 2022-09-19 2022-12-20 马鞍山钢铁股份有限公司 一种400MPa级双面搪瓷用冷轧钢板及其生产方法
CN115491599B (zh) * 2022-09-19 2023-07-25 马鞍山钢铁股份有限公司 一种400MPa级双面搪瓷用冷轧钢板及其生产方法
CN115369329A (zh) * 2022-09-30 2022-11-22 武汉钢铁有限公司 一种宽幅薄规格高表面质量热轧深冲搪瓷钢及生产方法

Also Published As

Publication number Publication date
EP4112761A4 (en) 2023-08-16
CN113373385A (zh) 2021-09-10
KR20220144394A (ko) 2022-10-26
AU2021226442A1 (en) 2022-10-13
EP4112761A1 (en) 2023-01-04
US20230114417A1 (en) 2023-04-13
JP2023515558A (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2021169937A1 (zh) 一种搪玻璃用钢及其制造方法
CN106544597B (zh) 超薄超宽核电承压设备用钢板及其制造方法
CN101643828B (zh) 一种耐时效镀锡原板的生产方法
WO2022022066A1 (zh) 一种极地海洋工程用钢板及其制备方法
EP3196328A1 (en) Enamel steel having high-temperature baking hardenability and manufacturing method therefor
CN107974612B (zh) 一种抗sscc球罐用高强韧钢板及其制造方法
US20110168303A1 (en) High tensile strength steel for container and producing method of the same
WO2014015822A1 (zh) 一种搪玻璃用高强度钢板及其制造方法
WO2017219549A1 (zh) 一种250mm厚的S355NL低碳高韧性低合金钢板及其制造方法
CN108796391B (zh) 一种具有优良塑韧性和抗鳞爆性的搪玻璃用钢及其制造方法
CN109554607A (zh) 具有优良抗鳞爆性和深冲性的冷轧搪瓷钢板及其制造方法
CN110184528A (zh) 一种高温模拟焊后热处理条件下具有优异性能的q345r钢板及其制造方法
KR20140081599A (ko) 재질 및 두께 편차가 작고 내도금박리성이 우수한 열연강판 및 그 제조방법
WO2016112682A1 (zh) 一种正火抗酸压力容器钢板及其制造方法
JP2001107186A (ja) 高強度缶用鋼板およびその製造方法
CN113308647B (zh) 一种搪瓷用冷轧钢板及其制造方法
CN111270169A (zh) 一种具有优异低温韧性的含Ni合金钢板及其生产方法
WO2023179058A1 (zh) 一种7Ni用钢及其生产方法
CN109207850B (zh) 高服役强度的搪瓷用钢板及其制造方法
CN110066966A (zh) 一种低内应力含钛高强钢及生产方法
CN115109994B (zh) 一种高强度冷轧热镀锌微合金带钢及其制造方法
CN114908285B (zh) 一种低成本高温搪瓷用热轧钢板及其制造方法
JP5540580B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
CN114182163A (zh) 一种低成本高强度搪玻璃用钢及其制造方法
CN105886960B (zh) 低回弹高成形性的高强钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551019

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032678

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761106

Country of ref document: EP

Effective date: 20220926

ENP Entry into the national phase

Ref document number: 2021226442

Country of ref document: AU

Date of ref document: 20210223

Kind code of ref document: A