WO2023071591A1 - 一种定时提前ta确定方法及通信装置 - Google Patents

一种定时提前ta确定方法及通信装置 Download PDF

Info

Publication number
WO2023071591A1
WO2023071591A1 PCT/CN2022/119118 CN2022119118W WO2023071591A1 WO 2023071591 A1 WO2023071591 A1 WO 2023071591A1 CN 2022119118 W CN2022119118 W CN 2022119118W WO 2023071591 A1 WO2023071591 A1 WO 2023071591A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
terminal
time
information
adjustment amount
Prior art date
Application number
PCT/CN2022/119118
Other languages
English (en)
French (fr)
Inventor
陈莹
宋兴华
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071591A1 publication Critical patent/WO2023071591A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method for determining a TA and a communication device.
  • timing advance Timing advance
  • the base station can estimate the TA of the UE through the random access preamble (preamble) sent by the UE (UEs with different distances from the base station have different TAs), and then send the timing advance command (TAC ) to notify the UE, and the UE can determine the value of TA according to the TAC.
  • TAC timing advance command
  • Different UEs send uplink data according to different corresponding TAs (different TAs are equal to the round-trip transmission delay from each UE to the base station). From the perspective of the base station, all uplink and downlink system frames are aligned, and the base station can receive data from Uplink data of multiple UEs.
  • the above TAC mechanism can be understood as a closed-loop TA adjustment mechanism.
  • the distance between the satellite and the UE is relatively long, and the time delay is relatively large. It is not accurate to determine TA directly based on TAC. Therefore, in order to ensure the uplink synchronization in satellite communication, the introduction An open-loop TA adjustment mechanism is implemented (that is, the UE does not need to send a preamble to estimate TA).
  • the terminal determines the current TA by accumulating the last TA after receiving the TAC (the TA may compensate for global navigation satellite system (global navigation satellite system, GNSS), ephemeris information, and public TA information error), on the other hand, when the location is updated or the ephemeris information is monitored, the ephemeris information, public TA information, and GNSS errors may be added to the TA again, resulting in inaccurate calculation of the TA error. The value is also inaccurate.
  • global navigation satellite system global navigation satellite system
  • ephemeris information global navigation satellite system
  • public TA information error public TA information error
  • the present application provides a TA determination method and a communication device, so as to reduce the error jump when determining the TA adjustment amount and improve the accuracy of the TA adjustment amount.
  • the present application provides a method for determining a TA.
  • the method can be executed by a terminal.
  • the terminal can be understood as a UE, a vehicle-mounted device, a chip of the terminal, etc.
  • the present application does not specifically limit the type of the terminal.
  • the terminal can communicate with satellites.
  • satellites can be geostationary satellites, non-stationary satellites, artificial satellites, low-orbit satellites, medium-orbit satellites, and high-orbit satellites. This application does not specifically limit it here.
  • the terminal can determine the valid duration of the first parameter and the valid duration of the second parameter.
  • the first parameter includes: the positioning information of the terminal; the second parameter includes one or more of the following information: the ephemeris information of the serving satellite and the public TA Information; then according to the effective time of the first parameter, the effective time of the second parameter, the valid duration of the first parameter and the valid duration of the second parameter, determine the invalidation time of the first parameter and the invalidation time of the second parameter;
  • the first parameter and the second parameter are updated at the earliest failure time or before the earliest failure time of the parameter failure time and the second parameter failure time; the terminal can determine the TA adjustment amount according to the updated first parameter and the second parameter ; and communicate with the serving satellite according to the TA adjustment.
  • the effective duration of the first parameter may be determined according to the moving speed of the terminal device, or according to the duration of the timer sent by the network side device, wherein the network side device can be understood as a serving satellite, a ground gateway , ground base station, etc., which are not specifically limited in this application.
  • the second parameter is continuously broadcast and does not need to be updated by the terminal equipment. The terminal only needs to monitor at a certain moment. Therefore, the updating of the second parameter mentioned above should be understood as monitoring, acquiring, etc. in practical application.
  • the effective duration of the second parameter can be determined by the timer carried when the serving satellite delivers the second parameter, or by other means, which is not specifically limited in this application.
  • the terminal After the terminal receives the first parameter or the second parameter and the corresponding timer, it will judge the effective time of the parameter, and the invalid time is calculated by the terminal according to the valid time of the parameter, and the error may exceed the specified value, which cannot meet the communication requirements.
  • the network side device In addition to updating the first parameter and the second parameter to correct the TA, the network side device will also correct the error of the first parameter and the second parameter through the TAC indication.
  • the TAC adjusts the TA by accumulating. If the timing advance corresponding to the TAC is accumulated during the first parameter adjustment or the second parameter adjustment, an error jump during the TA adjustment will be caused.
  • the timing advance corresponding to TAC will be accumulated, and there will also be a TA error jump, because TAC also corrects the error of another parameter, and The terminal only updated one of the parameters. Therefore, only when the two parameters are updated at the same time, and the timing advance corresponding to the TAC including the two parameters is not accumulated during the update, the TA error will not jump.
  • first parameter and the second parameter are constantly changing, they are effective at a certain moment, and may become invalid at a certain moment, and the effective and invalid times of the first parameter and the second parameter are also different. Update the first parameter and the second parameter at the same time when the failure occurs or before the failure, so as to avoid accumulating too much TA error related to the first parameter and the second parameter when calculating the TA adjustment amount. Error jump to improve the accuracy of TA adjustment.
  • the terminal can determine the TA adjustment amount according to the following formula:
  • T TA (N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the public TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • the terminal may determine the TA adjustment amount according to the updated first parameter, the second parameter, and the first timing advance N TA .
  • This method takes into account the influence of TAC, so that the accuracy is higher when TA is adjusted.
  • the TA adjustment amount is determined according to the following formula:
  • T TA (N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the public TA
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • N TA 0; i is an integer.
  • the terminal receives a TAC between the effective times of two updates of the first parameter and the second parameter, it can be considered that the TAC has expired. Therefore, when the first parameter and the second parameter are updated for the i+1th time , the TA adjustment amount may be directly determined based on the updated first parameter and the second parameter without considering the influence of N TA .
  • N TA 0; i is an integer.
  • the terminal sends an uplink signal before the effective time of updating the first parameter and the update of the second parameter, and receives the TAC after the invalid time of updating the first parameter and the second parameter, it can be considered that the TAC has expired, so
  • the TA adjustment amount may be directly determined based on the updated first parameter and the second parameter without considering the influence of N TA .
  • the present application provides a method for determining a TA, which can be executed by a terminal.
  • the terminal can be understood as a UE, a vehicle-mounted device, a chip of a terminal, etc.
  • the present application does not specifically limit the type of the terminal.
  • the terminal can communicate with satellites.
  • satellites can be geostationary satellites, non-stationary satellites, artificial satellites, low-orbit satellites, medium-orbit satellites, and high-orbit satellites. This application does not specifically limit it here.
  • the terminal can obtain the first parameter and the second parameter; the first parameter includes: positioning information of the terminal; the second parameter includes one or more of the following information: ephemeris information and public TA information of the serving satellite; , the terminal updates the first parameter or the second parameter; at the jth moment, the terminal receives the timing advance command TAC, and updates the first timing advance N TA according to the TAC; the jth moment is the failure moment of the first parameter or the second parameter or at Before the failure moment; 2 ⁇ j ⁇ N; at the Nth moment, the terminal determines the TA adjustment amount according to the updated N TA component at the N-1th moment, and communicates with the serving satellite according to the TA adjustment amount; where, N TA ’s The component is ⁇ N TA ; 0 ⁇ 1.
  • the timing advance corresponding to TAC will not be accumulated, and there will be TA error jumps, because TAC also corrects other Error in one parameter. If the timing advance corresponding to the TAC is accumulated, the error of the updated parameters will be accumulated, so the present application introduces a component of the TAC to adjust the adjustment amount of the TA. In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the TA adjustment amount is determined according to the following formula:
  • T TA ( ⁇ N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • ⁇ N TA is the component of N TA
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the common TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • is negatively correlated with the remaining duration of the positioning information of the terminal. It should be noted that the longer the remaining time of the positioning information of the terminal, the smaller the value of ⁇ , and the shorter the remaining time of the positioning information of the terminal, the larger the value of ⁇ . In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • is negatively correlated with the remaining duration of the second parameter. It should be noted that the longer the remaining time of the second parameter, the smaller the value of ⁇ , and the shorter the remaining time of the second parameter, the larger the value of ⁇ . In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the error jump when determining the TA adjustment amount can be reduced and the accuracy of the TA adjustment amount can be improved.
  • the present application provides a communication device.
  • the communication device may be a terminal, and the terminal may be understood as a UE, a vehicle-mounted device, a chip of the terminal, etc.
  • the present application does not specifically limit the type of the terminal.
  • the communication device includes: a processing unit, configured to determine the effective duration of the first parameter and the effective duration of the second parameter, the first parameter includes: positioning information of the terminal; the second parameter includes one or more of the following information: serving satellite ephemeris information and public TA information; according to the effective time of the first parameter, the effective time of the second parameter, the effective duration of the first parameter and the effective duration of the second parameter, determine the invalidation time of the first parameter and the effective time of the second parameter Invalidation time; update the first parameter and the second parameter at the earliest failure time or before the earliest failure time in the failure time of the first parameter and the failure time of the second parameter; according to the updated first parameter and the second parameter, Determine the TA adjustment amount;
  • the input and output unit is used for communicating with the serving satellite according to the TA adjustment.
  • the TA adjustment amount is determined according to the following formula:
  • T TA (N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the public TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • the processing unit is specifically configured to: determine the TA adjustment amount according to the updated first parameter, the second parameter, and the first timing advance N TA .
  • the TA adjustment amount is determined according to the following formula:
  • T TA (N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • N TA,UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA,common is the timing advance determined with the public
  • N TA, offset is the timing offset
  • T C is the minimum time unit.
  • the input and output unit is also used to send an uplink signal and receive a timing advance command TAC.
  • the present application provides a communication device.
  • the communication device may be a terminal, and the terminal may be understood as a UE, a vehicle-mounted device, a chip of the terminal, etc.
  • the present application does not specifically limit the type of the terminal.
  • the processing unit is configured to obtain a first parameter and a second parameter; the first parameter includes: positioning information of the terminal; the second parameter includes one or more of the following information: ephemeris information and public TA information of the serving satellite; At the first moment, the terminal updates the first parameter or the second parameter; at the jth moment, the terminal receives the TAC, and updates the first timing advance N TA according to the TAC; the jth moment is the failure moment of the first parameter or the second parameter or at Before the failure moment; 2 ⁇ j ⁇ N; at the Nth moment, the terminal determines the TA adjustment amount according to the updated N TA component at the N-1st moment; and controls the input and output unit to communicate with the serving satellite according to the TA adjustment amount; Wherein, the component of N TA is ⁇ N TA ; 0 ⁇ 1.
  • the TA adjustment amount is determined according to the following formula:
  • T TA ( ⁇ N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • ⁇ N TA is the component of N TA
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the common TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • the terminal updates the second parameter, ⁇ is negatively correlated with the remaining duration of the positioning information of the terminal.
  • is negatively correlated with the remaining duration of the second parameter.
  • the input and output unit may be called a transceiver unit, a communication unit, etc.
  • the transceiver unit may be a transceiver
  • the processing unit may be processor.
  • the transceiver unit may be an input-output interface, an input-output circuit, or an input-output pin, etc., and may also be called an interface, a communication interface, or an interface circuit, etc.
  • the processing unit may be a processor, a processing circuit, or a logic circuit.
  • the present application provides a communication device, including at least one processor and a memory; the memory is used to store computer programs or instructions, and when the device is running, the at least one processor executes the computer programs or instructions, so that The communication device executes the method according to the above first aspect or each embodiment of the first aspect, or executes the method according to the above second aspect or each embodiment of the second aspect.
  • the present application provides another communication device, including: a logic circuit and an input-output interface; where the input-output interface can be understood as an interface circuit, and the logic circuit can be used to run code instructions to implement the above-mentioned first aspect or the first aspect The method in each embodiment of the second aspect, or execute the method in the above second aspect or in each embodiment of the second aspect.
  • the present application also provides a computer-readable storage medium, in which computer-readable instructions are stored, and when the computer-readable instructions are run on the computer, the computer can execute the computer-readable storage medium as described in the first aspect or the second aspect.
  • the method in any possible design of the first aspect, or perform the method in the second aspect or any possible design of the second aspect.
  • the present application provides a computer program product containing instructions, which, when run on a computer, cause the computer to execute the above-mentioned first aspect or the method of each embodiment of the first aspect, or execute the above-mentioned second aspect or The method of the embodiments of the second aspect.
  • the present application provides a chip system, the chip system includes a processor, and may also include a memory, for implementing the method described in the first aspect or any possible design of the first aspect, or Execute the method in the above-mentioned second aspect or any possible design of the second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a communication system, the system includes a terminal and a satellite, and the communication system is used to implement the method described in the first aspect or any possible design of the first aspect, or Execute the method in the above-mentioned second aspect or any possible design of the second aspect.
  • Fig. 1 shows a schematic diagram of a land communication system
  • FIG. 2 shows a schematic diagram of a non-terrestrial communication system provided by an embodiment of the present application
  • FIG. 3 shows a schematic diagram of the fifth generation (5th generation, 5G) satellite communication system architecture provided by the embodiment of the present application;
  • FIG. 4 shows a schematic flow chart of a TA determination method provided by an embodiment of the present application
  • FIG. 5 shows a timing diagram of a first parameter and a second parameter
  • FIG. 6 shows a timing diagram of the first parameter and the second parameter provided by the embodiment of the present application.
  • FIG. 7 shows a schematic diagram of an update scenario provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of an update scenario provided by an embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of a TA determination method provided by an embodiment of the present application.
  • FIG. 10 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 shows the architecture of a land network communication system.
  • the communication system 100 may include a network device 110 and terminal devices 101 - 106 . It should be understood that the communication system 100 may include more or less network devices or terminal devices.
  • a network device or a terminal device may be hardware, or functionally divided software, or a combination of the above two.
  • the terminal device 104 to the terminal device 106 may also form a communication system, for example, the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106 .
  • Network devices and terminal devices can communicate through other devices or network elements.
  • the network device 110 may send downlink data to the terminal devices 101 - 106 , and may also receive uplink data sent by the terminal devices 101 - 106 .
  • the terminal devices 101 - 106 may also send uplink data to the network device 110 , and may also receive downlink data sent by the network device 110 .
  • the network device 110 is a node in a radio access network (radio access network, RAN), and may also be called a base station, and may also be called a RAN node (or device).
  • access network equipment are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC) ), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), Baseband unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), or network equipment in 5G communication systems, or network equipment in possible future communication systems.
  • the network device 110 may also be other devices having a network device function, for example, the network device 110 may also be a device serving as a network device function
  • Terminal equipment 101 to terminal equipment 106 which can also be referred to as UE, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc., are devices that provide voice or data connectivity to users.
  • terminal devices 101 to 106 include handheld devices, vehicle-mounted devices, and the like that have a wireless connection function.
  • terminal devices 101 to 106 can be: mobile phones, tablet computers, notebook computers, palmtop computers, mobile internet devices (mobile internet device, MID), wearable devices (such as smart watches, smart bracelets, pedometer, etc.), vehicle-mounted equipment (such as automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, industrial control Wireless terminals in (industrial control), smart home devices (such as refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self driving, remote medical surgery Wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, Flying equipment (for example, intelligent robots, hot air balloons, drones, airplanes), etc.
  • the terminal devices 101 to 106 may also be other devices having terminal functions.
  • the terminal devices 101 to 106 may also be devices that function as terminals in D2D communication.
  • the TA determination method provided in the embodiment of the present application may be applicable to a non-terrestrial network (non-terrestrial networks, NTN) communication system.
  • NTN non-terrestrial networks
  • the NTN communication system includes a satellite 201 and a terminal device 202 .
  • the terminal device 202 reference may be made to relevant descriptions of the above-mentioned terminal device 101 to terminal device 106 .
  • the satellite 201 may also be called a high-altitude platform, a high-altitude aircraft, or a satellite base station.
  • the satellite 201 can be regarded as one or more network devices in the architecture of the terrestrial network communication system.
  • the satellite 201 provides communication services to the terminal equipment 202, and the satellite 201 can also be connected to core network equipment.
  • the structure and functions of the satellite can also refer to the above description of the network equipment.
  • a 5G satellite communication system architecture is shown in Figure 3.
  • the ground terminal equipment accesses the network through the 5G new air interface, and the 5G base station is deployed on the satellite and connected to the core network on the ground through a wireless link.
  • the wireless link there is a wireless link between the satellites to complete signaling interaction and user data transmission between base stations.
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane.
  • the access and mobility management function AMF is responsible for user access management, security authentication, and mobility management.
  • the user plane function UPF is responsible for managing user plane data transmission, traffic statistics and other functions.
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the 5G core network.
  • 5G new air interface the wireless link between the terminal and the base station.
  • Xn interface the interface between the 5G base station and the base station, mainly used for signaling interaction such as handover.
  • NG interface the interface between the 5G base station and the 5G core network, which mainly exchanges signaling such as NAS of the core network and user service data.
  • the network equipment in the terrestrial network communication system and the satellite in the NTN communication system can be collectively regarded as network equipment.
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application will be described by taking a satellite as an example for realizing the functions of the network equipment. It can be understood that when the method provided by the embodiment of the present application is applied to the land network communication system, the actions performed by the satellite can be applied to the base station or network equipment for execution.
  • the device for realizing the function of the terminal device may be the terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the aforementioned satellites may be geostationary satellites, non-stationary satellites, artificial satellites, low-orbit satellites, medium-orbit satellites, and high-orbit satellites, etc., which are not specifically limited in this application.
  • the terminal determines N TA by accumulating the corresponding TA, and determines the TA adjustment amount based on the determined N TA , and the terminal will Superimposed on the previous TA. As shown in Formula 1 below:
  • N TA_new N TA_old +(T A -31) ⁇ 16 ⁇ 64/2 ⁇ Formula 1
  • TA can be understood as the timing advance determined according to TAC; N TA_old can be understood as the value of N TA when the TA adjustment was determined last time; ⁇ can be understood as the scaling factor of the subcarrier spacing relative to the reference subcarrier spacing .
  • the terminal corrects the ephemeris information, public TA information or GNSS errors when performing position update or ephemeris update.
  • N TA will be added to the TA adjustment amount determined by the terminal, causing the terminal to determine the ephemeris information accumulated by the TA adjustment amount, and the public TA information or GNSS errors may increase, which will also cause certainty
  • the TA adjustment amount is not accurate. For example,
  • Time T 0 The terminal monitors ephemeris information or public TA information, and updates GNSS;
  • Time T 1 the uplink signal initiated by the terminal to the network side
  • Time T2 The terminal receives the TAC and adjusts the TA adjustment amount based on the TAC.
  • the TAC is determined by the network side after estimating the uplink signal initiated by the terminal at the time T1 .
  • the TAC can represent the GNSS and ephemeris information at the time T1 . Or error correction of public TA information.
  • Time T 3 The terminal compensates for the error of these parameters through the update of ephemeris information, or GNSS or public TA information. However, when receiving TAC before, the accumulated N TA still exists, which will cause the determined TA adjustment to be inaccurate.
  • the present application provides a TA determination method to reduce the occurrence of error jumps when determining the TA adjustment amount, while ensuring the accuracy of the TA adjustment amount.
  • the method can be executed by a terminal, and the terminal can be understood as a UE, a vehicle-mounted device, a chip of the terminal, etc., and the present application does not specifically limit the type of the terminal. It can be executed as follows with reference to Figure 4:
  • Step 401 the terminal determines the valid duration of the first parameter and the valid duration of the second parameter, the first parameter includes: positioning information of the terminal; the second parameter includes one or more of the following information: ephemeris information of the serving satellite and Public TA information.
  • the first parameter includes the positioning information of the terminal.
  • the positioning information of the terminal can be indicated by the GNSS capability.
  • the positioning may not be performed in real time. Perform positioning operations, this period of time can be understood as the effective duration.
  • the effective duration of the positioning information of the terminal can be determined according to the moving speed of the terminal itself, for example: the slower the terminal moves, the longer the effective duration of GNSS; the faster the terminal moves, the shorter the effective duration of GNSS.
  • the effective duration of the positioning information of the terminal can also be determined according to the duration of the timer issued by the network device.
  • the network side device can be understood as the serving satellite, ground gateway, ground base station, etc., such as: the duration of the timer issued by the serving satellite is 10 seconds (S), and the effective duration of the GNSS may be 5S, etc., which is only used as an example and not specifically limited.
  • the effective duration of the positioning information of the terminal can also be determined according to the effective duration of the terminal positioning information issued by the serving satellite. For example, the duration of multiple GNSS issued by the serving satellite is 10S, 5S, 15S, etc.
  • the terminal can combine the equipment capabilities, and the current moving speed, etc., determine to select a time as the effective duration of GNSS.
  • the positioning information of the terminal can also be determined according to the position change of the terminal between the two GNSSs and the time interval between the two GNSS positionings, which is only described here as an example and not specifically limited.
  • the positioning information of the terminal may also be indicated by Beidou positioning information, which is not specifically limited in this application.
  • the second parameter may include only the ephemeris information of the serving satellite, or only the public TA information, or both the ephemeris information of the serving satellite and the public TA information.
  • the application is flexible and determined. Usually, the service satellite continuously broadcasts the second parameter. The second parameter does not need to be updated by the terminal equipment. The terminal only needs to monitor the second parameter at a certain moment. Therefore, updating the second parameter in this application is understood as monitoring the second parameter , or get the second parameter.
  • the ephemeris information and public TA information of the serving satellite are delivered by the serving satellite, and the serving satellite can carry two pieces of information in one message (such as a system information block (SIB) message).
  • SIB system information block
  • the serving satellite can also carry the ephemeris information and public TA information of the serving satellite in different messages, such as: the serving satellite sends an A message, and the A message carries the ephemeris information and timer information of the serving satellite; B message, carrying public TA information and timer information in the B message; the terminal can determine the valid duration of the ephemeris information of the serving satellite according to the A message, and can determine the valid duration of the public TA according to the B message.
  • Step 402 the terminal determines the invalidation time of the first parameter and the invalidation time of the second parameter according to the valid time of the first parameter, the valid time of the second parameter, the valid duration of the first parameter and the valid duration of the second parameter.
  • the effective moment of the first parameter is time point 1
  • the effective duration of the first parameter is 10S
  • the invalidation time of the first parameter is the time point corresponding to time point 1 plus 10S
  • the effective time of the second parameter is time Point 2
  • the effective duration of the second parameter is 5S
  • the invalidation time of the second parameter is the time point corresponding to time point 2 plus 5S.
  • the time point 1 and the time point 2 may be the same time point or different time points, which are not specifically limited in this application.
  • Figure 5 shows an example of the effective moment and invalidation moment of the first parameter and the second parameter, the first parameter becomes effective at the moment 1, becomes invalid at the moment 4, becomes effective again at the moment 5, and becomes invalid at the moment 8; 2, the second parameter takes effect, at time 3 the second parameter becomes invalid, at time 4 the second parameter takes effect again, and at time 5 the second parameter becomes invalid, this is only an example and not specifically limited.
  • Step 403 updating the first parameter and the second parameter at or before the earliest failure time among the failure time of the first parameter and the failure time of the second parameter.
  • time 3 is the earliest failure time among the failure times of the first parameter and the second parameter.
  • the first parameter and the second parameter can be updated at or before time 3 at the same time, which can reduce The error jump when determining the TA adjustment amount improves the accuracy of the TA adjustment amount.
  • the valid duration of the first parameter is shorter than the valid duration of the second parameter, and it can be Updating the first parameter and the second parameter before the time is illustrated in the figure by updating at the failure moment (time 4) of the first parameter; among Fig. 6 (b) the effective duration of the first parameter is greater than the effective duration of the second parameter, which can The first parameter and the second parameter are updated at or before the failure time of the second parameter, which is illustrated by updating before the failure time of the second parameter (time 2) in the figure.
  • the failure time of the second parameter may be the failure time of the ephemeris information of the serving satellite, or the failure time of the public TA information time. If the second parameter includes both the ephemeris information of the serving satellite and the public TA information, the failure time of the second parameter includes both the failure time of the ephemeris information of the serving satellite and the failure time of the public TA information, and the first parameter Compared with the failure time of ephemeris information of the serving satellite and the failure time of public TA information, the earliest failure time among the three failure times is determined as the update time of the first parameter and the second parameter. Without loss of generality, in this embodiment of the present application, it is taken as an example that the second parameter includes ephemeris information and public TA information of the serving satellite, and their failure times are consistent.
  • Step 404 the terminal determines a TA adjustment amount according to the updated first parameter and the second parameter.
  • the terminal may determine the TA adjustment amount according to the following formula 2:
  • T TA (N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c Formula 2
  • T TA is the TA adjustment amount
  • N TA UE-specific is the timing advance determined based on satellite ephemeris information and terminal positioning information
  • N TA common is the timing advance associated with the public TA
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • the terminal After the terminal receives the first parameter or the second parameter and the corresponding timer, it will judge the effective time of the parameter.
  • the invalid time is calculated by the terminal according to the valid time of the parameter.
  • the error may exceed the specified and cannot meet the requirements. communication needs.
  • the network side device In addition to updating the first parameter and the second parameter to correct the TA, the network side device will also correct the error of the first parameter and the second parameter through the TAC indication.
  • the TAC adjusts the TA by accumulating. If the timing advance corresponding to the TAC is accumulated during the first parameter adjustment or the second parameter adjustment, an error jump during the TA adjustment will be caused.
  • the timing advance corresponding to TAC will be accumulated, and there will also be a TA error jump, because TAC also corrects the error of another parameter, and The terminal only updated one of the parameters. Therefore, only when the two parameters are updated at the same time, and the timing advance corresponding to the TAC including the two parameters is not accumulated during the update, the TA error will not jump.
  • Step 405 the terminal communicates with the serving satellite according to the TA adjustment.
  • first parameter and the second parameter are changing, they are effective at a certain moment, and may become invalid at a certain moment, and the effective and invalid times of the first parameter and the second parameter are also different. Updating the first parameter and the second parameter at the same time or before failure can avoid accumulating too many TA errors related to the first parameter and the second parameter when calculating the TA adjustment amount, and in this way can reduce the time spent on determining the TA adjustment amount The error jump improves the accuracy of determining the TA adjustment amount.
  • the terminal may also determine the TA adjustment amount according to the updated first parameter, the second parameter, and the first timing advance N TA . It should be noted that the N TA is determined according to the TAC, and the influence of the TAC is taken into account, so that when determining the TA adjustment amount, the accuracy is higher.
  • the TA adjustment amount can be determined according to the following formula 3:
  • T TA (N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c formula 3
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • N TA,UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA,common is the timing advance determined with the public The timing advance associated with TA
  • N TA, offset is the timing offset
  • T C is the minimum time unit.
  • the terminal after updating the first parameter and the second parameter for the first time, the terminal sends an uplink signal (indicated by UL in the figure), and receives TAC before updating the first parameter and the second parameter for the second time, because , the TAC is sent after the first update of the first parameter and the second parameter, so the TAC has expired, and the influence of the TAC may not be considered when the first parameter and the second parameter are updated for the second time.
  • N TA 0; i is an integer.
  • the terminal sent an uplink signal before the first update of the first parameter and the second parameter (indicated by UL in the figure), and received the TAC before the second update of the first parameter and the second parameter, because , the TAC is sent after the first update of the first parameter and the second parameter, so the TAC has expired, and the influence of the TAC may not be considered when the first parameter and the second parameter are updated for the second time.
  • N TA 0.
  • N TA_new N TA_old + T A ⁇ 16 ⁇ 64/2 ⁇ .
  • the TAC and N TA in the access control element can be updated according to the above formula 1.
  • the first parameter and the second parameter may not be updated at the same time.
  • the first parameter and the second parameter are not updated in real time, in order to reduce the error jump in determining the TA adjustment value, you can refer to the diagram shown in Figure 9.
  • the meaning of the first parameter and the second parameter please refer to the above description, and this application will not repeat them here.
  • Step 901 the terminal acquires a first parameter and a second parameter; the first parameter includes: positioning information of the terminal; the second parameter includes one or more of the following information: ephemeris information of serving satellites and public TA information.
  • Step 902 at the first moment, the terminal updates the first parameter or the second parameter.
  • Step 903 at the jth moment, the terminal receives the TAC, and updates N TA according to the TAC; the jth moment is the expiration time of the first parameter or the second parameter or before the expiration time; 2 ⁇ j ⁇ N.
  • the initial value of the first timing advance N TA is generally 0, after receiving the TAC later, the value of N TA can be determined by referring to formula 1, that is, the last time
  • the N TA determined after receiving the TAC is used as N TA_old to determine the current N TA determined after receiving the TAC.
  • the N TA may be accumulated to 0 again.
  • the initial value of TAC received at the jth moment may be 0 or the value after the last update, or it may be a preset fixed value or according to the updated first parameter and/or the second parameter according to the preset calculation relationship.
  • the values obtained by the parameters are not limited in this application.
  • the jth moment is the expiration time of the first parameter, or before the first parameter expiration time
  • the jth time Time j is the failure time of the second parameter, or before the failure time of the second parameter.
  • the jth time can be flexibly determined according to the parameters updated at the first time.
  • the first moment is the moment before the jth moment, and the specific time interval needs to be determined according to when the terminal receives the TAC in actual application. If it is 2S, then the time interval between the first moment and the jth moment is for 2S.
  • the serving satellite can estimate from the uplink signal that the uplink TA error at time t1 includes two parts Te(t1)+GNSSe(t1), where Te(t1) indicates the error of the second parameter, and GNSSe(t1) indicates The error of the first parameter.
  • the terminal monitors the second parameter at time t2 (assuming it includes the ephemeris information of the serving satellite and public TA information), and receives the TAC closed-loop message at time t3 (that is, the ephemeris information and Public TA information), if the terminal directly accumulates N TA according to TAC, it will re-accumulate the error Te(t1) between the ephemeris information and public TA information at time t1 (but in fact, the ephemeris information and public TA information have been refreshed at this time ), in order to reduce the TA accumulation error, the terminal needs to adjust the accumulation mode of the closed-loop TAC.
  • the terminal In an ideal situation, the terminal only needs to accumulate the part of GNSSe(t1) that corrects the GNSS error in the TAC, but the actual terminal cannot know the size of this part of the component).
  • the satellite evaluates the TA deviation and initiates TAC when the ephemeris information is about to expire, indicating that the error of the ephemeris information is already large, and the GNSS has not expired, indicating that the GNSS positioning error is still not large, so it can be considered Te(t1) is the main factor in Te(t1)+GNSSe(t1). Therefore, after receiving the new ephemeris information and public TA information, if the terminal receives the TAC corresponding to the uplink signal before the ephemeris update, it does not accumulate N TA .
  • the terminal If the terminal updates the GNSS at time t2 (the ephemeris information and or public TA information is not updated), the terminal receives the TAC closed-loop message at time t3 (that is, the GNSS is monitored once between sending the uplink signal and receiving the corresponding TAC), If the terminal directly accumulates N TA according to the TAC, it will re-accumulate the GNSS error GNSSe(t1) at time t1 (but the GNSS has been refreshed at this time), (in an ideal situation, the terminal only needs to accumulate the corrected ephemeris in the TAC Part Te(t1) of the information error, but the actual terminal cannot know the component size of this part).
  • the service satellite evaluates the TA deviation and initiates TAC when the GNSS is about to expire, it indicates that the error of the ephemeris information is already large, and the GNSS has not expired, indicating that the GNSS positioning error is still small, so it can be considered that Te(t1)+GNSSe Te(t1) is the main factor in (t1). Therefore, after receiving the new ephemeris information and public TA information, if the terminal receives the TAC corresponding to the uplink signal before the ephemeris information is updated, it does not accumulate N TA .
  • Step 904 at the Nth moment, the terminal determines the TA adjustment amount according to the updated N TA component at the N-1th moment, and communicates with the serving satellite according to the TA adjustment amount; wherein, the N TA component is ⁇ N TA ; 0 ⁇ ⁇ 1.
  • the length from the first moment to the Nth moment is not equal, and is an aperiodic update time. In actual application, it needs to be determined according to the service requirements of the terminal.
  • the time interval between the first moment and the Nth moment may be 10S may also be 5S, which is not specifically limited here. Among them, after the latest TAC is received between the first time and the Nth time at the N-1th time, the time of N TA is determined according to the TAC.
  • the terminal receives 3 TAC
  • the receiving time of the 1st to 3rd TAC is the jth time
  • the receiving time of the 3rd TAC can be understood as the N-1th time
  • the time between the N-1th time and the Nth time The time interval is not specifically limited, and can be flexibly determined according to the actual service requirements of the terminal.
  • the timing advance corresponding to TAC will not be accumulated, and there will be TA error jumps, because TAC also corrects other Error in one parameter. If the timing advance corresponding to the TAC is accumulated, the error of the updated parameters will be accumulated, so the present application introduces a component of the TAC to adjust the adjustment amount of the TA. In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the TA adjustment amount is determined according to the following formula 4:
  • T TA ( ⁇ N TA +N TA,UE-specific +N TA,common +N TA, offset ) ⁇ T c formula 4
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • ⁇ N TA is the component of N TA
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the common TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • the error of the TA includes two parts Te(t1)+GNSSe(t1). If any parameter in the first parameter or the second parameter has been updated, the TAC is received and will not be accumulated. TAC may determine that the TA adjustment is inaccurate. In practical applications, it can be assumed that the error GNSSe(t1) of the first parameter accounts for 50% of the total error, and the error Te(t1) of the second parameter accounts for 50% of the total error.
  • the terminal After updating the first parameter and receiving the TAC, when determining the TA adjustment amount, it can be determined according to the remaining duration of the second parameter to accumulate part, all or not to accumulate the N TA corresponding to the TAC, that is, the N TA component, for example, the first parameter After the update, the terminal receives the TAC. When determining the TA adjustment amount, it finds that the remaining duration of the second parameter is greater than the first preset threshold. Then, when determining the TA adjustment amount, it can accumulate 0% of 1/2 N TA .
  • the remaining duration of the second parameter is less than the second preset threshold, then when determining the TA adjustment amount, 100% of 1/2 N TA can be accumulated, and it is found that the remaining duration of the second parameter is greater than the second preset threshold and less than the first preset threshold, then when determining the TA adjustment amount, the X% of 1/2 N TA can be accumulated, and the value of X is (0, 100).
  • the error of the first parameter and the second parameter above It may not be 50% each, maybe one is 40% and the other is 60%, which can be determined according to the effective duration of the first parameter and the second parameter, for example, the effective duration of the first parameter is 3S, and the effective duration of the second parameter is 1S, then 3/4 (3/(1+3)) of the error of TA can correspond to the error of the first parameter, and 1/4 (1/(1+3)) can correspond to the error of the second parameter. It is not specifically limited here.
  • the terminal updates the second parameter ⁇ and is negatively correlated with the remaining duration of the positioning information of the terminal. It should be noted that the longer the remaining time of the positioning information of the terminal, the smaller the value of ⁇ , and the shorter the remaining time of the positioning information of the terminal, the larger the value of ⁇ . In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the terminal updates the first parameter, ⁇ is negatively correlated with the remaining duration of the second parameter. The longer the remaining time of the second parameter, the smaller the value of ⁇ , and the shorter the remaining time of the second parameter, the larger the value of ⁇ . In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the remaining duration of the second parameter, ⁇ is a predefined parameter, and the value of this parameter is related to the size of the effective duration.
  • the value of ⁇ can be determined through the following Table 1. If at the first moment, the terminal updates the second parameter, when the effective duration of GNSS is 10S, and the remaining duration of GNSS is 2S, ⁇
  • the value of is 0.8, which is only used as an example. In actual application, only one or more rows in the table may be used, which is not limited in this application.
  • the terminal updates the first parameter and the second parameter only includes one of the ephemeris information of the serving satellite or the public TA information
  • the value of ⁇ can be determined by referring to Table 2 below.
  • the following second parameter may be satellite ephemeris information or public TA information, which will not be described here.
  • the effective duration of the second parameter is 12S and the remaining duration of the second parameter is 2S, the value of ⁇ is 5/6. This is only for illustration, and only one or more rows in the table may be used in actual application , the application is not limited here.
  • the effective duration of the second parameter The remaining duration of the second parameter alpha 12S 2S 5/6 12S 8S 1/3 20S 1S 0.95 ... ... ...
  • the terminal updates the first parameter
  • the second parameter includes the ephemeris information of the serving satellite and the public TA information
  • the effective duration is different
  • the value of ⁇ can be determined by referring to Table 3 below.
  • the following second parameter may be satellite ephemeris information or public TA information, which will not be described here.
  • the total effective duration can be determined by adding the effective duration of the ephemeris information of the serving satellite to the effective duration of the public TA information, and the remaining duration of the ephemeris information of the serving satellite is compared with the remaining duration of the public TA information Add to determine the total remaining time, and determine ⁇ according to the relationship between the total remaining time and the total effective time.
  • the effective time of the ephemeris information of the serving satellite is 12S
  • the remaining time of the ephemeris information of the serving satellite is 8S
  • the public TA The effective duration of the information is 12S
  • the total effective duration is 24S (12S+12S)
  • the total remaining duration is 11S (8S+3S)
  • the value of ⁇ is 13/24( (24-11)/24), which is only used as an example here, and only one or more rows in the table may be used in actual application, which is not limited in this application.
  • ⁇ in the above Tables 1 to 3 can be determined according to the remaining duration of the second parameter or the first parameter after determining the proportion of the error of the first parameter and the error of the second parameter
  • the error of the first parameter accounts for 80% of the total error
  • the value Y is determined according to the remaining duration of the first parameter
  • the value determined by multiplying Y by 80% is ⁇ .
  • may also be a value determined directly according to the remaining duration of the first parameter or the remaining duration of the second parameter, which is not specifically limited in this application.
  • the moving speed of the terminal at different speeds, by limiting the size of the N TA component when the first parameter or the second parameter is updated, the error jump when determining the TA adjustment amount can be reduced and the accuracy of the TA adjustment amount can be improved.
  • the effective duration of the first parameter and the second parameter may be different. There is a large difference between the effective duration of the first parameter and the effective duration of the second parameter.
  • the effective duration of the first parameter is 3S
  • the effective duration of the second parameter is The effective duration of the parameter is 10S. If the first parameter and the second parameter are updated at the same time, the TA adjustment amount may be updated too frequently. Considering this situation, a valid duration threshold can be set. If the valid duration of the first parameter and the second parameter is less than the valid duration threshold, a method of simultaneously updating the first parameter and the second parameter can be adopted, that is, the implementation corresponding to Figure 4
  • the TA determination method in the example is used to determine the adjustment amount of TA.
  • the method of not updating the first parameter and the second parameter at the same time can be adopted, that is, the method corresponding to Figure 9
  • the TA determination method in the embodiment is used to determine the TA adjustment amount. No matter which embodiment is used for the TA determination method, the error jump when determining the TA adjustment amount can be reduced and the accuracy of the TA adjustment amount can be improved.
  • the present application provides a communication device as shown in FIG. 10 , the communication device includes: an input and output unit 1001 and a processing unit 1002 .
  • the communication device may be understood as a terminal, which is not specifically limited in this application. It should be understood that the input and output unit may be called a transceiver unit, a communication unit, etc., and when the communication device is a terminal device, the transceiver unit may be a transceiver; the processing unit may be a processor.
  • the transceiver unit may be an input-output interface, an input-output circuit, or an input-output pin, etc., and may also be called an interface, a communication interface, or an interface circuit, etc.;
  • the processing unit may be a processor, a processing circuit, a logic circuit, or the like.
  • the processing unit 1002 is configured to determine the valid duration of the first parameter and the valid duration of the second parameter, the first parameter includes: positioning information of the terminal; the second parameter includes one or more of the following information: the ephemeris of the serving satellite information and public TA information; according to the effective time of the first parameter, the effective time of the second parameter, the valid duration of the first parameter and the valid duration of the second parameter, determine the invalidation time of the first parameter and the invalidation time of the second parameter; Update the first parameter and the second parameter at the earliest failure time or before the earliest failure time of the failure time of the first parameter and the failure time of the second parameter; determine the TA adjustment according to the updated first parameter and the second parameter amount; the input and output unit 1001 is used to communicate with the serving satellite according to the TA adjustment amount.
  • first parameter and the second parameter are changing, they are effective at a certain moment, and may become invalid at a certain moment, and the effective and invalid times of the first parameter and the second parameter are also different. Update the first parameter and the second parameter at the same time at the same time or before failure to avoid accumulating too much TA error related to the first parameter and the second parameter when calculating the TA adjustment amount. In this way, the error in determining the TA adjustment amount can be reduced jump to improve the accuracy of TA adjustment.
  • the TA adjustment amount is determined according to the following formula:
  • T TA (N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the public TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • the processing unit 1002 is specifically configured to: determine the TA adjustment amount according to the updated first parameter, the second parameter, and the first timing advance N TA . This method takes into account the influence of TAC, so that the accuracy is higher when TA is adjusted.
  • the TA adjustment amount is determined according to the following formula:
  • T TA (N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • N TA,UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA,common is the timing advance determined with the public
  • N TA, offset is the timing offset
  • T C is the minimum time unit.
  • the input and output unit 1001 further configured to send an uplink signal and receive a TAC.
  • the terminal receives a TAC between the effective times of two updates of the first parameter and the second parameter, it can be considered that the TAC has expired. Therefore, when the first parameter and the second parameter are updated for the i+1th time , the TA adjustment amount may be directly determined based on the updated first parameter and the second parameter without considering the influence of N TA .
  • the terminal sends an uplink signal before the effective time of updating the first parameter and the update of the second parameter, and receives the TAC after the invalid time of updating the first parameter and the second parameter, it can be considered that the TAC has expired, so
  • the TA adjustment amount may be directly determined based on the updated first parameter and the second parameter without considering the influence of N TA .
  • the processing unit 1002 of the communication device may be configured to acquire a first parameter and a second parameter; the first parameter includes: terminal location information; the second parameter includes one or more of the following information: service Satellite ephemeris information and public TA information; at the first moment, the terminal updates the first parameter or the second parameter; at the jth moment, the terminal receives the TAC, and updates the first timing advance N TA according to the TAC; at the jth moment, the first The failure time of the first parameter or the second parameter is at or before the failure time; 2 ⁇ j ⁇ N; at the N time, the terminal determines the TA adjustment amount according to the updated N TA component at the N-1 time time; and controls the input and output unit 1001. Communicate with the serving satellite according to the TA adjustment amount; wherein, the component of N TA is ⁇ N TA ; 0 ⁇ 1.
  • the timing advance corresponding to TAC will not be accumulated, and there will be TA error jumps, because TAC also corrects other Error in one parameter. If the timing advance corresponding to the TAC is accumulated, the error of the updated parameters will be accumulated, so the present application introduces a component of the TAC to adjust the adjustment amount of the TA. In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the TA adjustment amount is determined according to the following formula:
  • T TA ( ⁇ N TA +N TA,UE-specific +N TA,common +N TA,offset ) ⁇ T c
  • T TA is the TA adjustment amount
  • N TA is the first timing advance
  • ⁇ N TA is the component of N TA
  • N TA UE-specific is the timing advance determined based on the ephemeris information of the serving satellite and the positioning information of the terminal
  • N TA common is the timing advance associated with the common TA information
  • N TA offset is the timing offset
  • T C is the minimum time unit.
  • is negatively correlated with the remaining duration of the positioning information of the terminal. It should be noted that the longer the remaining time of the positioning information of the terminal, the smaller the value of ⁇ , and the shorter the remaining time of the positioning information of the terminal, the larger the value of ⁇ . In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • is negatively correlated with the remaining duration of the second parameter. It should be noted that the longer the remaining time of the second parameter, the smaller the value of ⁇ , and the shorter the remaining time of the second parameter, the larger the value of ⁇ . In this way, the error jump when determining the TA adjustment amount can be reduced, and the accuracy of the TA adjustment amount can be improved.
  • the moving speed of the terminal at different speeds, by limiting the size of the N TA component when the first parameter or the second parameter is updated, the error jump when determining the TA adjustment amount can be reduced and the accuracy of the TA adjustment amount can be improved.
  • the communication device 1100 may be a chip or a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1100 may include at least one processor 1110, and the communication device 1100 may further include at least one memory 1120 for storing computer programs, program instructions and/or data.
  • the memory 1120 is coupled to the processor 1110 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1110 may cooperate with memory 1120 .
  • Processor 1110 may execute computer programs stored in memory 1120 .
  • the at least one memory 1120 may also be integrated with the processor 1110 .
  • the communication device 1100 may or may not include the transceiver 1130, and the communication device may or may not include the memory 1120, as shown in a dashed box in the figure, the communication device 1100 may Information exchange is performed with other devices through the transceiver 1130 .
  • the transceiver 1130 may be a circuit, a bus, a transceiver or any other device that can be used for information exchange.
  • the communications apparatus 1100 may be applied to the aforementioned terminal.
  • the memory 1120 stores necessary computer programs, program instructions and/or data for implementing the functions of the relay device in any of the above-mentioned embodiments.
  • the processor 1110 can execute the computer program stored in the memory 1120 to complete the method in any of the foregoing embodiments.
  • a specific connection medium among the transceiver 1130, the processor 1110, and the memory 1120 is not limited.
  • the memory 1120, the processor 1110, and the transceiver 1130 are connected through a bus.
  • the bus is represented by a thick line in FIG. 11, and the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • the embodiment of the present application also provides another communication device 1200, including: an interface circuit 1210 and a logic circuit 1220; the interface circuit 1210 can be understood as an input and output interface, and can be used to implement The schematic input and output unit or the same operation steps as the transceiver shown in FIG. 11 will not be repeated in this application.
  • the logic circuit 1220 can be used to run the code instructions to execute the method in any of the above-mentioned embodiments, which can be understood as the processing unit in FIG. 10 or the processor in FIG. 11 , which can realize the same function as the processing unit or processor, This application will not go into details here.
  • an embodiment of the present application further provides a readable storage medium, the readable storage medium stores instructions, and when the instructions are executed, the method for determining TA in any of the above embodiments is implemented.
  • the readable storage medium may include various mediums capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising the instruction device, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请提供一种定时提前TA确定方法及通信装置,终端可确定第一参数的有效时长和第二参数的有效时长,第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息、公共TA信息;之后终端可根据第一参数的生效时刻、第二参数的生效时刻和第一参数的有效时长和第二参数的有效时长,确定第一参数的失效时刻和第二参数的失效时刻;在第一参数的失效时刻和第二参数的失效时刻中最早的失效时刻或最早的失效时刻之前,更新第一参数和第二参数;根据更新后的第一参数以及第二参数,确定TA调整量;根据TA调整量与服务卫星进行通信。通过同时更新第一参数和第二参数,可以减少确定TA调整量时误差跳变情况出现。

Description

一种定时提前TA确定方法及通信装置
相关申请的交叉引用
本申请要求在2021年10月30日提交中国专利局、申请号为202111277807.6、申请名称为“一种定时提前TA确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种TA确定方法及通信装置。
背景技术
由于不同的用户设备(user equipment,UE)与基站的距离不同,这样不同UE发送的上行信息会在不同的时刻到达基站,会出现信号干扰,因此基站希望来自同一子帧的不同UE的信号到达基站的时间基本上是对齐的,那么基站就能正确接收UE所发送的上行数据,为了实现基站对UE上行数据的正确接收,引入了定时提前(timing advance,TA)。
在地面通信中,基站可通过UE发送的随机接入前导码(preamble)来估算UE的TA(与基站距离不同的UE,TA也不相同),然后再将定时提前命令(timing advance command,TAC)通知给UE,UE可根据TAC确定TA的取值。不同的UE根据对应的不同TA发送上行数据(不同的TA等于各UE到基站的往返传输时延),就基站的角度而言,所有的上下行***帧对齐,基站可在同一个子帧接收来自多个UE的上行数据。上述的TAC机制可以理解为闭环的TA调整机制,然而卫星通信中,卫星与UE之间的距离较远,时延较大,直接基于TAC确定TA不准确,因此为了保证卫星通信中上行同步引入了开环TA调整机制(也即不需要UE发送preamble来估算TA)。但是在卫星通信中,一方面终端在接收到TAC后通过累加上一次的TA来确定当前的TA(该TA可能补偿全球导航卫星***(global navigation satellite system,GNSS)、星历信息以及公共TA信息的误差),另一方面在位置更新或者星历信息监听时,星历信息、公共TA信息以及GNSS的误差可能会再次累加到TA中,造成TA的误差计算不准确,那么确定的TA的取值也不准确。
发明内容
本申请提供一种TA确定方法及通信装置,以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
第一方面,本申请提供一种TA确定方法,该方法可通过终端来执行,该终端可以理解为UE、车载设备、终端的芯片等,本申请在此不具体限定终端的类型。终端可与卫星进行通信,在本申请中,卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星以及高轨道卫星等,本申请在此不具体限定。
终端可确定第一参数的有效时长和第二参数的有效时长,第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息;之后根据第一参数的生效时刻、第二参数的生效时刻、第一参数的有效时长和第二参数的有 效时长,确定第一参数的失效时刻和第二参数的失效时刻;在第一参数的失效时刻和第二参数的失效时刻中最早的失效时刻或最早的失效时刻之前,更新第一参数和第二参数;终端可根据更新后的第一参数以及第二参数,确定TA调整量;并根据TA调整量与服务卫星进行通信。
需要说明的是,第一参数的有效时长可能是根据终端设备的移动速度确定的,或根据网络侧设备下发的定时器的时长来确定,其中,网络侧设备可以理解为服务卫星,地面网关,地面基站等,本申请在此不具体限定。第二参数是不断广播的,是不需要终端设备进行更新的,终端只需要在某个时刻监听即可。因此上述的更新第二参数,在实际应用时,应当理解为监听、获取等。第二参数的有效时长可通过服务卫星下发第二参数时携带的定时器来确定,也可通过其他方式来确定,本申请在此不具体限定。
另外,终端收到第一参数或第二参数以及相应定时器后,会判断该参数的生效时刻,其失效时刻是终端根据参数的有效时长推算的,其误差可能超过规定,不能满足通信需求。除了第一参数和第二参数更新来纠正TA,网络侧设备也会通过TAC指示来纠正第一参数和第二参数的误差。相关技术中TAC是通过累加的方式来对TA进行调整,如果在第一参数调整或者第二参数调整时同时累加TAC对应的定时提前量,那么会引起TA调整时的误差跳变。如果第一参数调整或第二参数更新不是同时进行的,在任何一个参数调整时,累加TAC对应的定时提前量,也会存在TA误差跳变,因为TAC还纠正了另外一个参数的误差,而终端只更新了其中一个参数。因此,只有当两个参数同时更新,并且更新时不累加包含了两个参数的TAC对应的定时提前量,才不引起TA误差的跳变。
由于第一参数和第二参数是不断变化的,在某个时刻是生效的,在某个时刻可能就失效,且第一参数和第二参数的生效和失效时刻也是不同的,在任意一个参数失效时或者失效之前同时更新第一参数和第二参数,避免在计算TA调整量时,累加太多与第一参数和第二参数相关的TA误差,通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,终端可根据如下公式确定TA调整量:
T TA=(N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,终端可根据更新后的第一参数、第二参数以及第一定时提前量N TA,确定TA调整量。该方式考虑到TAC的影响,使得在TA调整量时,准确度更高。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA为第一定时提前量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻与第i+1次更 新第一参数和第二参数的生效时刻之间的时刻,终端发送上行信号,且接收TAC,第i+1次更新第一参数和第二参数时,N TA=0;i为整数。
需要说明的是,在两次第一参数和第二参数更新的生效时刻之间,终端接收到TAC,可认为该TAC已经失效,因此在第i+1次更新第一参数和第二参数时,可以不考虑N TA的影响,直接基于更新的第一参数和第二参数确定TA调整量。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻之前,终端发送上行信号,且在第i次更新第一参数和第二参数的失效时刻之后,终端接收TAC,第i+1次更新第一参数和第二参数时,N TA=0;i为整数。
需要说明的是,在更新第一参数和第二参数更新的生效时刻之前,终端发送上行信号,在更新第一参数和第二参数的失效时刻之后接收到TAC,可认为该TAC已经失效,因此在第i+1次更新第一参数和第二参数时,可以不考虑N TA的影响,直接基于更新的第一参数和第二参数确定TA调整量。
第二方面,本申请提供一种TA确定方法,该方法可通过终端来执行,该终端可以理解为UE、车载设备、终端的芯片等,本申请在此不具体限定终端的类型。终端可与卫星进行通信,在本申请中,卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星以及高轨道卫星等,本申请在此不具体限定。
终端可获取第一参数和第二参数;第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息;在第1时刻,终端更新第一参数或第二参数;在第j时刻,终端接收定时提前命令TAC,根据TAC更新第一定时提前量N TA;第j时刻为第一参数或第二参数的失效时刻或在失效时刻之前;2≤j<N;在第N时刻,终端根据第N-1时刻更新后的N TA的分量确定TA调整量,并根据TA调整量与服务卫星进行通信;其中,N TA的分量为αN TA;0≤α≤1。
需要说明的是,考虑到第一参数和第二参数不同时更新的情况,在任何一个参数调整时,不累加TAC对应的定时提前量,也会存在TA误差跳变,因为TAC还纠正了另外一个参数的误差。如果累加TAC对应的定时提前量,那么又多累加了所更新参数的误差,所以本申请引入TAC的分量调整TA的调整量。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(αN TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA为第一定时提前量;αN TA为N TA的分量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第1时刻,终端更新第二参数,α与终端的定位信息的剩余时长负相关。需要说明的是,终端的定位信息剩余时间越长,α的值越小,终端的定位信息剩余时间越短,α的值越大。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,若在第1时刻,终端更新第一参数,α与第二参数的剩余时长负相关。需要说明的是,第二参数剩余时间越长,α的值越小,第二参数剩余时间越短, α的值越大。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,终端的移动速度小于第一阈值时,第二参数更新时,α=0,第一参数的更新时,α=1;或,终端的移动速度大于第二阈值时,第二参数更新时,α=1,第一参数的更新时,α=0;或,终端的移动速度大于第一阈值小于或等于第二阈值时,第一参数和第二参数更新时,α≠0。
考虑到终端的移动速度,在不同的速度时,通过限定第一参数或第二参数更新时N TA的分量大小,可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
第三方面,本申请提供一种通信装置,该通信装置可以为终端,该终端可以理解为UE、车载设备、终端的芯片等,本申请在此不具体限定终端的类型。
通信装置包括:处理单元,用于确定第一参数的有效时长和第二参数的有效时长,第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息;根据第一参数的生效时刻、第二参数的生效时刻、第一参数的有效时长和第二参数的有效时长,确定第一参数的失效时刻和第二参数的失效时刻;在第一参数的失效时刻和第二参数的失效时刻中最早的失效时刻或最早的失效时刻之前,更新第一参数和第二参数;根据更新后的第一参数以及第二参数,确定TA调整量;
输入输出单元,用于根据TA调整量与服务卫星进行通信。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,处理单元,具体用于:根据更新后的第一参数、第二参数以及第一定时提前量N TA,确定TA调整量。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA为第一定时提前量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻与第i+1次更新第一参数和第二参数的生效时刻之间的时刻,输入输出单元,还用于发送上行信号,且接收定时提前命令TAC,处理单元,在第i+1次更新第一参数和第二参数时,N TA=0;i为整数。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻之前,输入输出单元,还用于发送上行信号,且在第i次更新第一参数和第二参数的失效时刻之后,输入输出单元,还用于接收TAC,处理单元,在第i+1次更新第一参数和第二参数时,N TA=0;i为整数。
第四方面,本申请提供一种通信装置,该通信装置可以为终端,该终端可以理解为UE、车载设备、终端的芯片等,本申请在此不具体限定终端的类型。
处理单元,用于获取第一参数和第二参数;第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息;在第一时刻,终端更新第一参数或第二参数;在第j时刻,终端接收TAC,根据TAC更新第一定时提前量N TA;第j时刻为第一参数或第二参数的失效时刻或在失效时刻之前;2≤j<N;在第N时刻,终端根据第N-1时刻更新后的N TA的分量确定TA调整量;并控制输入输出单元,根据TA调整量与服务卫星进行通信;其中,N TA的分量为αN TA;0≤α≤1。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(αN TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA为第一定时提前量;αN TA为N TA的分量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第1时刻,终端更新第二参数,α与终端的定位信息的剩余时长负相关。
在一种可选的方式中,若在第1时刻,终端更新第一参数,α与第二参数的剩余时长负相关。
在一种可选的方式中,终端的移动速度小于第一阈值时,第二参数更新时,α=0,第一参数的更新时,α=1;或,终端的移动速度大于第二阈值时,第二参数更新时,α=1,第一参数的更新时,α=0;或,终端的移动速度大于第一阈值小于或等于第二阈值时,第一参数和第二参数更新时,α≠0。
对于上述第三方面或第四方面,应理解,所述输入输出单元可以称为收发单元、通信单元等,当通信装置是终端时,所述收发单元可以是收发器;所述处理单元可以是处理器。当通信装置是终端设备中的模块(如,芯片)时,所述收发单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
第五方面,本申请提供一种通信装置,包括至少一个处理器和存储器;该存储器用于存储计算机程序或指令,当该装置运行时,该至少一个处理器执行该计算机程序或指令,以使该通信装置执行如上述第一方面或第一方面的各实施例的方法,或执行如上述第二方面或第二方面的各实施例的方法。
第六方面,本申请提供另一种通信装置,包括:逻辑电路和输入输出接口;其中输入输出接口,可以理解为接口电路,逻辑电路可用于运行代码指令以执行上述第一方面或第一方面的各实施例的方法,或执行如上述第二方面或第二方面的各实施例的方法。
第七方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机可读指令,当计算机可读指令在计算机上运行时,以使得计算机执行如第一方面或第一方面中任一种可能的设计中的方法,或执行如上述第二方面或第二方面中任一种可能的设计中的方法。
第八方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使 得计算机执行上述第一方面或第一方面的各实施例的方法,或执行如上述第二方面或第二方面的各实施例的方法。
第九方面,本申请提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法,或执行如上述第二方面或第二方面中任一种可能的设计中的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请提供了一种通信***,所述***包括终端以及卫星,所述通信***用于执行上述第一方面或第一方面中任一种可能的设计中所述的方法,或执行如上述第二方面或第二方面中任一种可能的设计中的方法。
上述第二方面至第十方面可以达到的技术效果,请参照上述第一方面或第二方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1示出了一种陆地通信***的示意图;
图2示出了本申请实施例提供的一种非陆地通信***的示意图;
图3示出了本申请实施例提供的第五代(5th generation,5G)卫星通信***架构示意图;
图4示出了本申请实施例提供的一种TA确定方法的流程示意图;
图5示出了一种第一参数和第二参数的时序示意图;
图6示出了本申请实施例提供的第一参数和第二参数的时序示意图;
图7示出了本申请实施例提供的更新场景示意图;
图8示出了本申请实施例提供的更新场景示意图;
图9示出了本申请实施例提供的一种TA确定方法的流程示意图;
图10示出了本申请实施例提供的通信装置的结构示意图;
图11示出了本申请实施例提供的通信装置的结构示意图;
图12示出了本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或***实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。因此装置与方法的实施可以相互参见,重复之处不再赘述。
图1示出了一种陆地网络通信***的架构。通信***100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信***100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信***,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以向终端设备101~终端设备106发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信***中的网络设备,或者未来可能的通信***中的网络设备。网络设备110还可以是其他具有网络设备功能的设备,例如,网络设备110还可以是D2D通信中担任网络设备功能的设备。网络设备110还可以是未来可能的通信***中的网络设备。
终端设备101~终端设备106,又可以称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备101~终端设备106还可以是其他具有终端功能的设备,例如,终端设备101~终端设备106还可以是D2D通信中担任终端功能的设备。
基于图1所示的陆地网络通信***架构的描述,本申请实施例提供的TA确定方法可以适用于非陆地网络(non-terrestrial networks,NTN)通信***。如图2所示,NTN通信***中包括卫星201和终端设备202。终端设备202的解释可以参照上述终端设备101~终端设备106的相关描述。卫星201还可以称为高空平台、高空飞行器、或卫星基站。将NTN通信***与陆地网络通信***联系来看,可以将卫星201看作陆地网络通信***架构中的一个或多个网络设备。卫星201向终端设备202提供通信服务,卫星201还可以连接到核心网设备。卫星具有的结构和功能也可以参照上述对网络设备的描述。卫星201和终端设备202之间的通信方式也可以参照上述图1中的描述。在此不再赘述。
以5G为例,一种5G卫星通信***架构如图3所示。地面终端设备通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图3中的设备和接口的说明如下:
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(access and mobility management function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(user plane function,UPF)负责管理用户面数据的传输,流量统计等功 能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
可将陆地网络通信***中的网络设备和NTN通信***中的卫星,统一看作网络设备。用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。以下描述本申请实施例提供的技术方案时,以用于实现网络设备的功能的装置是卫星为例,来描述本申请实施例提供的技术方案。可以理解,将本申请实施例提供的方法应用到陆地网络通信***时,可以将卫星执行的动作应用到基站或网络设备来执行。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片***,该装置可以被安装在终端设备中。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端或UE为例,来描述本申请实施例提供的技术方案。
另外,上述的卫星可以为静止卫星、非静止卫星、人造卫星、低轨道卫星、中轨道卫星以及高轨道卫星等,本申请在此不具体限定。
如背景技术所述,相关技术在确定TA调整量时,终端在接收TAC后,通过累加对应的TA,确定N TA,基于确定的N TA确定TA调整量,终端每收到一次TAC后就会叠加在上一次的TA。如下述的公式1所示:
N TA_new=N TA_old+(T A-31)·16·64/2 μ    公式1
其中,T A可以理解为根据TAC确定的定时提前量;N TA_old可以理解为上一次确定TA调整量时,N TA的取值;μ可以理解为子载波间隔相对于参考子载波间隔的缩放因子。
将TAC闭环的TA调整机制直接应用于卫星通信时,终端在进行位置更新或者星历更新的时候,纠正星历信息,公共TA信息或者GNSS误差。但是,当终端接收到TAC后,N TA会累加在终端确定的TA调整量中,导致终端确定TA调整量累加的星历信息,公共TA信息或者GNSS误差可能变多,从而也就会造成确定的TA调整量不准确。例如,
T 0时刻:终端监听星历信息或公共TA信息,并更新GNSS;
T 1时刻:终端向网络侧发起的上行信号;
T 2时刻:终端收到了TAC并基于TAC调整TA调整量,该TAC是网络侧对终端在T 1时刻发起的上行信号估计后确定的,该TAC可表示对T 1时刻GNSS,星历信息,或者公共TA信息的误差纠正。
T 3时刻:终端通过星历信息,或者GNSS或者公共TA信息的更新,补偿这些参数的误差,但是,之前接收TAC时,累加的N TA仍存在,就会导致确定的TA调整量不准确。
考虑到上述情况,本申请提供一种TA确定方法,以减少确定TA调整量时误差跳变 情况出现,同时可以保证TA调整量的准确度。该方法可通过终端来执行,该终端可以理解为UE、车载设备、终端的芯片等,本申请在此不具体限定终端的类型。可参照图4执行如下:
步骤401,终端确定第一参数的有效时长和第二参数的有效时长,第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息。
需要说明的是,第一参数包括终端的定位信息,终端的定位信息可通过GNSS能力来指示,终端在定位时,为了节约设备的功耗可能不是实时定位的,终端可能在某段时间内一直执行定位操作,该段时间可以理解为有效时长。终端的定位信息的有效时长可以根据终端自身的移动速度确定,如:终端移动速度越慢,GNSS的有效时长越长;终端移动速度越快,GNSS的有效时长越短。终端的定位信息的有效时长还可以根据网络设备下发的定时器的时长确定,其中,网络侧设备可以理解为服务卫星,地面网关,地面基站等,如:服务卫星下发的定时器的时长为10秒(S),GNSS的有效时长可以为5S等,在此仅作示例性说明,并不具体限定。终端的定位信息的有效时长还可以根据服务卫星的下发的终端定位信息的有效时长确定,如:服务卫星下发多个GNSS的时长分别为10S、5S、15S等,终端可结合设备能力,和当前的移动速度等,确定选择一个时间作为GNSS的有效时长。终端的定位信息还可根据两次GNSS之间终端的位置变化情况以及两次GNSS定位的时间间隔来确定,在此仅作示例性说明,并不具体限定。此外,终端的定位信息还可通过北斗定位信息来指示,本申请在此不具体限定。
此外,第二参数可仅包括服务卫星的星历信息,还可仅包括公共TA信息,也可既包括服务卫星的星历信息又包括公共TA信息,本申请在此不具体限定,可根据实际应用灵活确定。通常服务卫星不断广播第二参数,第二参数是不需要终端设备更新的,终端只需要在某个时刻监听第二参数即可,因此在本申请中更新第二参数,理解为监听第二参数,或者获取第二参数。在实际应用时,服务卫星的星历信息和公共TA信息均是通过服务卫星下发的,服务卫星可在一条消息(如***信息块(system information block,SIB)消息)中携带两个信息,并携带一个定时器信息,以便终端根据该定时器信息确定服务卫星的星历信息的有效时长和公共TA信息的有效时长。服务卫星也可在不同的消息中携带服务卫星的星历信息和公共TA信息,如:服务卫星下发A消息,在A消息中携带服务卫星的星历信息和定时器信息;服务卫星下发B消息,在B消息中携带公共TA信息和定时器信息;终端可根据A消息确定服务卫星的星历信息的有效时长,可根据B消息确定公共TA的有效时长。
步骤402,终端根据第一参数的生效时刻、第二参数的生效时刻、第一参数的有效时长和第二参数的有效时长,确定第一参数的失效时刻和第二参数的失效时刻。
例如,第一参数的生效时刻为时间点1,第一参数的有效时长为10S,那么第一参数的失效时刻则为时间点1加上10S对应的时间点;第二参数的生效时刻为时间点2,第二参数的有效时长为5S,第二参数的失效时刻为时间点2加上5S对应的时间点。其中时间点1和时间点2可以为相同的时间点,也可以为不同的时间点,本申请在此不具体限定。图5示出了第一参数和第二参数的生效时刻和失效时刻的示例,在时刻1第一参数生效,在时刻4失效,在时刻5第一参数再次生效,在时刻8失效;在时刻2第二参数生效,时刻3第二参数失效,在时刻4第二参数再次生效,时刻5第二参数失效,在此仅示例性说 明并不具体限定。
步骤403,在第一参数的失效时刻和第二参数的失效时刻中最早的失效时刻或最早的失效时刻之前,更新第一参数和第二参数。以上述图5为例,第一参数和第二参数的失效时刻中时刻3为最早的失效时刻,在本申请中可在时刻3或者时刻3之前同时更新第一参数和第二参数,可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。另外,在第一参数和第二参数的生效时刻相同时,如图6中(a)所示,第一参数的有效时长小于第二参数的有效时长,可在第一参数的失效时刻或失效时刻之前更新第一参数和第二参数,图中以在第一参数的失效时刻(时刻4)更新进行示意;图6中(b)第一参数的有效时长大于第二参数的有效时长,可在第二参数的失效时刻或失效时刻之前更新第一参数和第二参数,图中以在第二参数的失效时刻之前(时刻2)更新进行示意。
还要说明的是,第二参数中若仅包括服务卫星的星历信息或公共TA信息时,第二参数的失效时刻可能是服务卫星的星历信息失效时刻,也可能是公共TA信息的失效时刻。第二参数若既包括服务卫星的星历信息也包括公共TA信息时,第二参数的失效时刻既包括服务卫星的星历信息的失效时刻,也包括公共TA信息的失效时刻,将第一参数的失效时刻与服务卫星的星历信息的失效时刻、公共TA信息的失效时刻进行比较,根据3个失效时刻中最早的失效时刻确定为第一参数和第二参数的更新时刻。不失一般性,本申请实施例以第二参数包括服务卫星的星历信息和公共TA信息、且它们的失效时刻一致为例。
步骤404,终端根据更新后的第一参数以及第二参数,确定TA调整量。
在一种可选实施例中,终端可根据如下公式2确定TA调整量:
T TA=(N TA,UE-specific+N TA,common+N TA,offset)×T c    公式2
其中,T TA为TA调整量;N TA,UE-specific为基于卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在实际应用时,终端收到第一参数或第二参数以及相应定时器后,会判断该参数的生效时刻,其失效时刻是终端根据参数的有效时长推算的,其误差可能超过规定,不能满足通信需求。除了第一参数和第二参数更新来纠正TA,网络侧设备也会通过TAC指示来纠正第一参数和第二参数的误差。相关技术中TAC是通过累加的方式来对TA进行调整,如果在第一参数调整或者第二参数调整时同时累加TAC对应的定时提前量,那么会引起TA调整时的误差跳变。如果第一参数调整或第二参数更新不是同时进行的,在任何一个参数调整时,累加TAC对应的定时提前量,也会存在TA误差跳变,因为TAC还纠正了另外一个参数的误差,而终端只更新了其中一个参数。因此,只有当两个参数同时更新,并且更新时不累加包含了两个参数的TAC对应的定时提前量,才不引起TA误差的跳变。
步骤405,终端根据TA调整量与服务卫星进行通信。
由于第一参数和第二参数是变化的,在某个时刻是生效的,在某个时刻可能就失效,且第一参数和第二参数的生效和失效时刻也是不同的,在任意一个参数失效时或者失效之前同时更新第一参数和第二参数,可避免在计算TA调整量时,累加太多与第一参数和第二参数相关的TA误差,通过该方式可以减少确定TA调整量时的误差跳变,提高了确定TA调整量的准确度。
在一种可选的方式中,终端还可根据更新后的第一参数、第二参数以及第一定时提前量N TA,确定TA调整量。需要说明的是该N TA是根据TAC确定的,考虑到TAC的影响,使得在确定TA调整量时,准确度更高。
在一种可选的方式中,可根据如下公式3确定TA调整量:
T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c    公式3
其中,T TA为TA调整量;N TA为第一定时提前量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻与第i+1次更新第一参数和第二参数的生效时刻之间的时刻,终端发送上行信号,并接收TAC,第i+1次更新第一参数和第二参数时,N TA=0;i为整数。如图7所示,在第一次更新第一参数和第二参数之后终端发送了上行信号(图中通过UL示意),在第二次更新第一参数和第二参数之前收到了TAC,由于,该TAC是在第一次更新第一参数和第二参数之后发送的,因此该TAC已经失效,在第二次更新第一参数和第二参数时,可以不考虑TAC的影响。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻之前,终端发送上行信号,且在第i次更新第一参数和第二参数的失效时刻之后,终端接收TAC,第i+1次更新第一参数和第二参数时,N TA=0;i为整数。如图8所示,在第一次更新第一参数和第二参数之前终端发送了上行信号(图中通过UL示意),在第二次更新第一参数和第二参数之前收到了TAC,由于,该TAC是在第一次更新第一参数和第二参数之后发送的,因此该TAC已经失效,在第二次更新第一参数和第二参数时,可以不考虑TAC的影响。
另外,在终端处于连接态时,因为GNSS更新,监听星历信息,和/或公共TA信息,进行N TA,UE-specific更新时,N TA=0。当终端更新GNSS时,监听星历信息,和/或公共TA信息之前发起了上行信号,在GNSS更新,星历信息,和/或公共TA信息监听之后收到了对应的TAC,N TA=0。除上述情况外,当终端接收到携带在Msg2/MsgB中的TAC,N TA可通过N TA_new=N TA_old+T A·16·64/2 μ确定,当终端处于连接态时,接收到携带媒体接入控制元素(media access control control element,MAC CE)中的TAC,N TA可通过上述公式1进行更新。
在实际应用时,第一参数和第二参数可能不是同时更新的,考虑到第一参数和第二参数不是实时更新的情况,为了减少确定TA调整量的误差跳变,可参照图9示意的方法来执行,关于第一参数、第二参数等含义可参照上文描述,本申请在此不赘述。
步骤901,终端获取第一参数和第二参数;第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息。
步骤902,在第1时刻,终端更新第一参数或第二参数。
步骤903,在第j时刻,终端接收TAC,根据TAC更新N TA;第j时刻为第一参数或第二参数的失效时刻或在失效时刻之前;2≤j<N。参照上述的公式1,在终端首次收到TAC时,第一定时提前量N TA的初始值,一般为0,之后收到TAC后,N TA的值可参照公式1来确定,也即将上一次收到TAC后确定的N TA作为N TA_old来确定当前收到TAC 后确定的N TA,但是在实际应用时,N TA可能再次累加为0,本申请在此不具体限定,具体要结合实际的应用情况来确定。因此在第j时刻接收到TAC的初始值可能为0也可能为上一次更新后的值,还可以是预设的定值或者根据预设的运算关系根据更新的第一参数和/或第二参数得到的值,本申请不作限定。
需要说明的是,若终端在第1时刻更新第一参数,那么第j时刻为第一参数的失效时刻,或在第一参数失效时刻之前;若终端在第1时刻更新第二参数,那么第j时刻为第二参数的失效时刻,或在第二参数失效时刻之前,在实际应用时,第j时刻可根据第1时刻更新的参数灵活确定。另外,第1时刻为在第j时刻之前的时刻,具体的时间间隔为多少,需要根据实际应用时终端何时接收TAC来确定,如为2S,那么第1时刻与第j时刻的时间间隔则为2S。
需要说明的是,若N=1,终端在需要更新N TA的时候尚未接收到TAC,即使有TAC的存在终端也选择不接收TAC。若N=2,则在第N=2时刻,终端在该时刻可能刚收到TAC,可能还来不及根据TAC更新TA调整量,因此在N=2时,终端不根据TAC更新TA调整量。还要说明的是,在第1时刻和第N时刻之间可能存在多个TAC接收时刻(也即第j时刻),多个TAC接收时刻之间可能是周期的也可能是非周期的,本申请在此不作具体限定,在每个TAC接收时刻终端均会接收TAC,每次TAC对应的定时提前量均是参照公式1调整的。所以本申请实施例考虑N>2。
还需要说明的是,服务卫星可根据上行信号估计出t1时刻上行TA的误差包括两部分Te(t1)+GNSSe(t1)其中,Te(t1)指示第二参数的误差,GNSSe(t1)指示第一参数的误差。终端在t2时刻监听了第二参数(假定包括服务卫星星历信息和公共TA信息),在t3时刻收到TAC闭环消息(即发送上行信号和收到对应的TAC中间监听了一次星历信息和公共TA信息),终端如果直接根据TAC累加N TA,会重新累加t1时刻的星历信息和公共TA信息的误差Te(t1)(但是实际上,此时星历信息和公共TA信息已经进行刷新),为了减少TA累加误差,终端需要调整闭环TAC的累加方式。(在理想的情况下,终端只需要累加TAC里面纠正GNSS误差的部分GNSSe(t1),但实际终端无法知道该部分分量大小)。另外,由于服务而卫星是在星历信息即将过期的时候评估的TA偏差并发起TAC,表明星历信息的误差已经较大了,而GNSS还没过期说明GNSS定位误差仍然不大,所以可以认为Te(t1)+GNSSe(t1)中Te(t1)占主要因素。因此,当终端在收到新的星历信息和公共TA信息之后,如果再收到星历更新之前的上行信号所对应的TAC,那么不累加N TA
若终端在t2时刻进行了GNSS的更新(星历信息和或公共TA信息没有更新),终端在t3时刻收到TAC闭环消息(即发送上行信号和收到对应的TAC中间监听了一次GNSS),终端如果直接根据TAC的累加N TA,会重新累加t1时刻的GNSS的误差GNSSe(t1)(但是此时GNSS已经进行刷新了),(在理想的情况下,终端只需要累加TAC里面纠正星历信息误差的部分Te(t1),但实际终端无法知道该部分分量大小)。由于服务卫星是在GNSS即将过期的时候评估的TA偏差并发起TAC,表明星历信息的误差已经较大,而GNSS还没过期说明GNSS定位误差仍然不大,所以可以认为Te(t1)+GNSSe(t1)中Te(t1)占主要因素。因此,当终端在收到新的星历信息和公共TA信息之后,如果再收到星历信息更新之前的上行信号所对应的TAC,也不累加N TA
步骤904,在第N时刻,终端根据第N-1时刻更新后的N TA的分量确定TA调整量,并根据TA调整量与服务卫星进行通信;其中,N TA的分量为αN TA;0≤α≤1。
需要说明的是,第1时刻到第N时刻是不等长的,是非周期的更新时刻,在实际应用 时,需要根据终端的业务需求确定,第1时刻到第N时刻间的时间间隔可能是10S,也可能是5S,在此不具体限定。其中,第N-1时刻也即第1时刻到第N时刻之间最晚一次收到TAC后,根据TAC确定N TA的时刻,例如,第1时刻后,第N时刻之前,终端接收到3次TAC,第1次到3次TAC的接收时刻均为第j时刻,其中第3次TAC的接收时刻可以理解为第N-1时刻,另外,第N-1时刻和第N时刻之间的时间间隔也不具体限定,可根据终端的实际业务需求,灵活确定。
需要说明的是,考虑到第一参数和第二参数不同时更新的情况,在任何一个参数调整时,不累加TAC对应的定时提前量,也会存在TA误差跳变,因为TAC还纠正了另外一个参数的误差。如果累加TAC对应的定时提前量,那么又多累加了所更新参数的误差,所以本申请引入TAC的分量调整TA的调整量。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,根据如下公式4确定TA调整量:
T TA=(αN TA+N TA,UE-specific+N TA,common+N TA,offset)×T c     公式4
其中,T TA为TA调整量;N TA为第一定时提前量;αN TA为N TA的分量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
考虑到终端接收到TAC后,TA的误差包括两部分Te(t1)+GNSSe(t1),如果在第一参数或第二参数中任一参数已经更新的情况下,接收到TAC,均不累加TAC可能确定TA调整量不准确,在实际应用时,可假定第一参数的误差GNSSe(t1)占总误差的50%,第二参数的误差Te(t1)占总误差的50%,假定在更新第一参数后,接收到TAC,在确定TA调整量时,可根据第二参数的剩余时长确定累加部分、全部或者不累加TAC对应的N TA也即N TA的分量,例如,第一参数更新后,终端收到TAC,在确定TA调整量时,发现第二参数的剩余时长大于第一预设阈值,那么在确定TA调整量时,可累加1/2 N TA的0%,在发现第二参数的剩余时长小于第二预设阈值,那么在确定TA调整量时,可累加1/2 N TA的100%,发现第二参数的剩余时长大于第二预设阈值小于第一预设阈值,那么在确定TA调整量时,可累加1/2 N TA的X%,X取值为(0,100),在此仅作示例性说明,当然上述第一参数和第二参数的误差可能并不是各占50%,可能一个是40%一个是60%,可根据第一参数和第二参数的有效时长来确定,例如,第一参数的有效时长为3S,第二参数的有效时长为1S,那么TA的误差中3/4(3/(1+3))可以对应第一参数的误差,1/4(1/(1+3))可对应第二参数的误差,本申请在此不具体限定。
在一种可选的方式中,若在第1时刻,终端更新第二参数α与终端的定位信息的剩余时长负相关。需要说明的是,终端的定位信息剩余时间越长,α的值越小,终端的定位信息剩余时间越短,α的值越大。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。若在第1时刻,终端更新第一参数,α与第二参数的剩余时长负相关。第二参数剩余时间越长,α的值越小,第二参数剩余时间越短,α的值越大。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在实际应用时,可参照公式或者查表确定α的取值,如可通过α=βt来确定,假定t指示终端的定位信息(GNSS)的剩余时长,但是在实际应用时,还可表示第二参数的剩余时长,β为预定义的参量,该参量的取值与有效时长的大小相关。为了更加清楚说明本 申请的方案,可通过下述表1来确定α的取值,若在第1时刻,终端更新第二参数,在GNSS有效时长为10S时,GNSS剩余时长为2S时,α的取值为0.8,在此仅作示例性说明,在实际应用时可能仅应用表格中的一行或多行,本申请在此不限定。
表1
GNSS有效时长 GNSS剩余时长 α
10S 2S 0.8
10S 8S 0.2
20S 1S 0.95
在实际应用时,若在第1时刻,终端更新第一参数,第二参数仅包括服务卫星的星历信息或公共TA信息中的一种时,可参照下述表2确定α的取值。下述的第二参数可以为卫星的星历信息,也可以为公共TA信息,在此不展开说明。在第二参数有效时长为12S时,第二参数剩余时长为2S时,α的取值为5/6,在此仅作示例性说明,在实际应用时可能仅应用表格中的一行或多行,本申请在此不限定。
表2
第二参数的有效时长 第二参数的剩余时长 α
12S 2S 5/6
12S 8S 1/3
20S 1S 0.95
在实际应用时,若在第1时刻,终端更新第一参数,第二参数包括服务卫星的星历信息和公共TA信息,且有效时长不同,可参照下述表3确定α的取值。下述的第二参数可以为卫星的星历信息,也可以为公共TA信息,在此不展开说明。在实际计算时,可通过将服务卫星的星历信息的有效时长与公共TA信息的有效时长相加确定总的有效时长,将服务卫星的星历信息的剩余时长与公共TA信息的剩余时长相加确定总的剩余时长,根据总的剩余时长与总的有效时长的关系确定α,如在服务卫星的星历信息的有效时长为12S,服务卫星的星历信息的剩余时长为8S,公共TA信息的有效时长为12S,公共TA信息的剩余时长为3S时,总的有效时长为24S(12S+12S),总的剩余时长为11S(8S+3S),α的取值为13/24((24-11)/24),在此仅作示例性说明,在实际应用时可能仅应用表格中的一行或多行,本申请在此不限定。
表3
Figure PCTCN2022119118-appb-000001
Figure PCTCN2022119118-appb-000002
此外,还要说明的是,上述表1到表3中的α可以是在确定了第一参数的误差和第二参数的误差所占的比例后根据第二参数或第一参数的剩余时长确定的值,例如,第一参数的误差占总误差的80%,根据第一参数的剩余时长确定数值Y,Y与80%相乘确定的值也即α。α还可能是直接根据第一参数的剩余时长或第二参数的剩余时长确定的值,本申请在此不具体限定。
在一种可选的方式中,终端的移动速度小于第一阈值时,第二参数更新时,α=0,第一参数的更新时,α=1;或,终端的移动速度大于第二阈值时,第二参数更新时,α=1,第一参数的更新时,α=0;或,终端的移动速度大于第一阈值小于或等于第二阈值时,第一参数和第二参数更新时,α≠0。考虑到终端的移动速度,在不同的速度时,通过限定第一参数或第二参数更新时N TA的分量大小,可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在实际应用时,第一参数和第二参数的有效时长可能并不相同,在第一参数的有效时长和第二参数的有效时长相差较大,例如第一参数的有效时长为3S,第二参数的有效时长为10S,第一参数和第二参数同时更新的话,TA调整的量的更新可能过于频繁。考虑到这种情况,可设置一个有效时长阈值,若第一参数和第二参数的有效时长小于有效时长阈值,可采用同时更新第一参数和第二参数的方法,也即图4对应的实施例中的TA确定方法来确定TA的调整量,若第一参数和第二参数的有效时长大于有效时长阈值,可采用不同时更新第一参数和第二参数的方法,也即图9对应的实施例中的TA确定方法来确定TA调整量,无论采用哪个实施例对应TA确定方法,均可以减少确定TA调整量时的误差跳变情况,提高TA调整量的准确度。
基于同样的构思,本申请提供一种通信装置如图10所示,该通信装置包括:输入输出单元1001和处理单元1002。该通信装置可以理解为终端,本申请在此不作具体限定。应理解,所述输入输出单元可以称为收发单元、通信单元等,当通信装置是终端设备时,所述收发单元可以是收发器;所述处理单元可以是处理器。当通信装置是终端中的模块(如,芯片)时,所述收发单元可以是输入输出接口、输入输出电路或输入输出管脚等,也可以称为接口、通信接口或接口电路等;所述处理单元可以是处理器、处理电路或逻辑电路等。
处理单元1002,用于确定第一参数的有效时长和第二参数的有效时长,第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息;根据第一参数的生效时刻、第二参数的生效时刻、第一参数的有效时长和第二参数的有效时长,确定第一参数的失效时刻和第二参数的失效时刻;在第一参数的失效时刻和第二参数的失效时刻中最早的失效时刻或最早的失效时刻之前,更新第一参数和第二参数;根据更新后的第一参数以及第二参数,确定TA调整量;输入输出单元1001,用于根据TA调整量与服务卫星进行通信。
由于第一参数和第二参数是变化的,在某个时刻是生效的,在某个时刻可能就失效,且第一参数和第二参数的生效和失效时刻也是不同的,在任意一个参数失效时或者失效之 前同时更新第一参数和第二参数,避免在计算TA调整量时,累加太多与第一参数和第二参数相关的TA误差,通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,处理单元1002,具体用于:根据更新后的第一参数、第二参数以及第一定时提前量N TA,确定TA调整量。该方式考虑到TAC的影响,使得在TA调整量时,准确度更高。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA为第一定时提前量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻与第i+1次更新第一参数和第二参数的生效时刻之间的时刻,输入输出单元1001,还用于发送上行信号,且接收TAC,处理单元1002,在第i+1次更新第一参数和第二参数时,N TA=0;i为整数。
需要说明的是,在两次第一参数和第二参数更新的生效时刻之间,终端接收到TAC,可认为该TAC已经失效,因此在第i+1次更新第一参数和第二参数时,可以不考虑N TA的影响,直接基于更新的第一参数和第二参数确定TA调整量。
在一种可选的方式中,若在第i次更新第一参数和第二参数的生效时刻之前,输入输出单元,还用于发送上行信号,且在第i次更新第一参数和第二参数的失效时刻之后,输入输出单元1001,还用于接收TAC,处理单元1002,在第i+1次更新第一参数和第二参数时,N TA=0;i为整数。
需要说明的是,在更新第一参数和第二参数更新的生效时刻之前,终端发送上行信号,在更新第一参数和第二参数的失效时刻之后接收到TAC,可认为该TAC已经失效,因此在第i+1次更新第一参数和第二参数时,可以不考虑N TA的影响,直接基于更新的第一参数和第二参数确定TA调整量。
在另一个实施例中,通信装置的处理单元1002,可用于获取第一参数和第二参数;第一参数包括:终端的定位信息;第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共TA信息;在第1时刻,终端更新第一参数或第二参数;在第j时刻,终端接收TAC,根据TAC更新第一定时提前量N TA;第j时刻为第一参数或第二参数的失效时刻或在失效时刻之前;2≤j<N;在第N时刻,终端根据第N-1时刻更新后的N TA的分量确定TA调整量;并控制输入输出单元1001,根据TA调整量与服务卫星进行通信;其中,N TA的分量为αN TA;0≤α≤1。
需要说明的是,考虑到第一参数和第二参数不同时更新的情况,在任何一个参数调整时,不累加TAC对应的定时提前量,也会存在TA误差跳变,因为TAC还纠正了另外一个参数的误差。如果累加TAC对应的定时提前量,那么又多累加了所更新参数的误差,所以本申请引入TAC的分量调整TA的调整量。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,根据如下公式确定TA调整量:
T TA=(αN TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,T TA为TA调整量;N TA为第一定时提前量;αN TA为N TA的分量;N TA,UE-specific为基于服务卫星的星历信息和终端的定位信息确定的定时提前量;N TA,common为与公共TA信息相关联的定时提前量;N TA,offset为定时偏移量;T C为最小时间单元。
在一种可选的方式中,若在第1时刻,终端更新第二参数,α与终端的定位信息的剩余时长负相关。需要说明的是,终端的定位信息剩余时间越长,α的值越小,终端的定位信息剩余时间越短,α的值越大。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,若在第1时刻,终端更新第一参数,α与第二参数的剩余时长负相关。需要说明的是,第二参数剩余时间越长,α的值越小,第二参数剩余时间越短,α的值越大。通过该方式可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
在一种可选的方式中,终端的移动速度小于第一阈值时,第二参数更新时,α=0,第一参数的更新时,α=1;或,终端的移动速度大于第二阈值时,第二参数更新时,α=1,第一参数的更新时,α=0;或,终端的移动速度大于第一阈值小于或等于第二阈值时,第一参数和第二参数更新时,α≠0。考虑到终端的移动速度,在不同的速度时,通过限定第一参数或第二参数更新时N TA的分量大小,可以减少确定TA调整量时的误差跳变,提高TA调整量的准确度。
此外,如图11所示,为本申请还提供的一种通信装置1100。示例性地,通信装置1100可以是芯片或芯片***。可选的,在本申请实施例中芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1100可以包括至少一个处理器1110,通信装置1100还可以包括至少一个存储器1120,用于存储计算机程序、程序指令和/或数据。存储器1120和处理器1110耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1110可能和存储器1120协同操作。处理器1110可能执行存储器1120中存储的计算机程序。可选的,所述至少一个存储器1120也可与处理器1110集成在一起。
可选的,在实际应用中,通信装置1100中可以包括收发器1130也可不包括收发器1130,该通信装置可包括存储器1120也可不包括存储器1120,图中以虚线框来示意,通信装置1100可以通过收发器1130和其它设备进行信息交互。收发器1130可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该通信装置1100可以应用于前述的终端。存储器1120保存实施上述任一实施例中的中继设备的功能的必要计算机程序、程序指令和/或数据。所述 处理器1110可执行所述存储器1120存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器1130、处理器1110以及存储器1120之间的具体连接介质。本申请实施例在图11中以存储器1120、处理器1110以及收发器1130之间通过总线连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图12,本申请实施例还提供另一种通信装置1200,包括:接口电路1210和逻辑电路1220;接口电路1210,可以理解为输入输出接口,可用于执行与上述图10示意的输入输出单元或如图11示意的收发器同样的操作步骤,本申请在此不再赘述。逻辑电路1220可用于运行所述代码指令以执行上述任一实施例中的方法,可以理解成上述图10中的处理单元或图11中的处理器,可以实现处理单元或处理器同样的功能,本申请在此不再赘述。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中TA确定方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (27)

  1. 一种TA确定方法,其特征在于,包括:
    终端确定第一参数的有效时长和第二参数的有效时长,所述第一参数包括:所述终端的定位信息;所述第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共定时提前TA信息;
    所述终端根据所述第一参数的生效时刻、所述第二参数的生效时刻、所述第一参数的有效时长和所述第二参数的有效时长,确定所述第一参数的失效时刻和所述第二参数的失效时刻;
    所述终端在所述第一参数的失效时刻和所述第二参数的失效时刻中最早的失效时刻或所述最早的失效时刻之前,更新所述第一参数和所述第二参数;
    所述终端根据更新后的所述第一参数以及所述第二参数,确定TA调整量;
    所述终端根据所述TA调整量与所述服务卫星进行通信。
  2. 根据权利要求1所述的方法,其特征在于,根据如下公式确定所述TA调整量:
    T TA=(N TA,UE-specific+N TA,common+N TA,offset)×T c
    其中,所述T TA为TA调整量;所述N TA,UE-specific为基于所述服务卫星的星历信息和所述终端的定位信息确定的定时提前量;所述N TA,common为与所述公共TA信息相关联的定时提前量;所述N TA,offset为定时偏移量;所述T C为最小时间单元。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端根据更新后的所述第一参数以及所述第二参数,确定TA调整量,包括:
    所述终端根据更新后的所述第一参数、所述第二参数以及第一定时提前量N TA,确定所述TA调整量。
  4. 根据权利要求3所述的方法,其特征在于,根据如下公式确定所述TA调整量:
    T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
    其中,所述T TA为TA调整量;所述N TA为第一定时提前量;所述N TA,UE-specific为基于所述服务卫星的星历信息和所述终端的定位信息确定的定时提前量;所述N TA,common为与所述公共TA信息相关联的定时提前量;所述N TA,offset为定时偏移量;所述T C为最小时间单元。
  5. 根据权利要求3或4所述的方法,其特征在于,还包括:
    若在第i次更新所述第一参数和所述第二参数的生效时刻与第i+1次更新所述第一参数和所述第二参数的生效时刻之间的时刻,所述终端发送上行信号,且接收定时提前命令TAC,所述第i+1次更新所述第一参数和所述第二参数时,N TA=0;所述i为整数。
  6. 根据权利要求3或4所述的方法,其特征在于,还包括:
    若在第i次更新所述第一参数和所述第二参数的生效时刻之前,所述终端发送上行信号,且在所述第i次更新所述第一参数和所述第二参数的失效时刻之后,所述终端接收TAC,所述第i+1次更新所述第一参数和所述第二参数时,N TA=0;所述i为整数。
  7. 一种TA确定方法,其特征在于,包括:
    终端获取第一参数和第二参数;所述第一参数包括:所述终端的定位信息;所述第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共定时提前TA信息;
    在第1时刻,所述终端更新所述第一参数或所述第二参数;
    在第j时刻,所述终端接收定时提前命令TAC,根据所述TAC更新第一定时提前量N TA;所述第j时刻为所述第一参数或所述第二参数的失效时刻或在所述失效时刻之前;所述2≤j<N;
    在第N时刻,所述终端根据第N-1时刻更新后的N TA的分量确定TA调整量,并根据所述TA调整量与所述服务卫星进行通信;
    其中,所述N TA的分量为αN TA;所述0≤α≤1。
  8. 根据权利要求7所述的方法,其特征在于,根据如下公式确定所述TA调整量:
    T TA=(αN TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
    其中,所述T TA为TA调整量;所述N TA为第一定时提前量;所述αN TA为所述N TA的分量;所述N TA,UE-specific为基于所述服务卫星的星历信息和所述终端的定位信息确定的定时提前量;所述N TA,common为与所述公共TA信息相关联的定时提前量;所述N TA,offset为定时偏移量;所述T C为最小时间单元。
  9. 根据权利要求7或8所述的方法,其特征在于,若在第1时刻,所述终端更新所述第二参数,所述α与所述终端的定位信息的剩余时长负相关。
  10. 根据权利要求7或8所述的方法,其特征在于,若在第1时刻,所述终端更新所述第一参数,所述α与所述第二参数的剩余时长负相关。
  11. 根据权利要求7-10中任一所述的方法,其特征在于,还包括:
    所述终端的移动速度小于第一阈值时,所述第二参数更新时,所述α=0,所述第一参数的更新时,所述α=1;或,
    所述终端的移动速度大于第二阈值时,所述第二参数更新时,所述α=1,所述第一参数的更新时,所述α=0;或,
    所述终端的移动速度大于所述第一阈值小于或等于所述第二阈值时,所述第一参数和所述第二参数更新时,所述α≠0。
  12. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一参数的有效时长和第二参数的有效时长,所述第一参数包括:终端的定位信息;所述第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共定时提前TA信息;根据所述第一参数的生效时刻、所述第二参数的生效时刻、所述第一参数的有效时长和所述第二参数的有效时长,确定所述第一参数的失效时刻和所述第二参数的失效时刻;在所述第一参数的失效时刻和所述第二参数的失效时刻中最早的失效时刻或所述最早的失效时刻之前,更新所述第一参数和所述第二参数;根据更新后的所述第一参数以及所述第二参数,确定TA调整量;
    输入输出单元,用于根据所述TA调整量与所述服务卫星进行通信。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元,用于根据如下公式确定所述TA调整量:
    T TA=(N TA,UE-specific+N TA,common+N TA,offset)×T c
    其中,所述T TA为TA调整量;所述N TA,UE-specific为基于所述服务卫星的星历信息和终端的定位信息确定的定时提前量;所述N TA,common为与所述公共TA信息相关联的定时提前量;所述N TA,offset为定时偏移量;所述T C为最小时间单元。
  14. 根据权利要求12或13所述的装置,其特征在于,所述处理单元,具体用于:
    根据更新后的所述第一参数、所述第二参数以及第一定时提前量N TA,确定所述TA调整量。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元,用于根据如下公式确定所述TA调整量:
    T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
    其中,所述T TA为TA调整量;所述N TA为第一定时提前量;所述N TA,UE-specific为基于所述服务卫星的星历信息和所述终端的定位信息确定的定时提前量;所述N TA,common为与所述公共TA信息相关联的定时提前量;所述N TA,offset为定时偏移量;所述T C为最小时间单元。
  16. 根据权利要求14或15所述的装置,其特征在于,若在第i次更新所述第一参数和所述第二参数的生效时刻与第i+1次更新所述第一参数和所述第二参数的生效时刻之间的时刻,所述输入输出单元,还用于发送上行信号,且接收定时提前命令TAC,所述处理单元,在所述第i+1次更新所述第一参数和所述第二参数时,N TA=0;所述i为整数。
  17. 根据权利要求14或15所述的装置,其特征在于,若在第i次更新所述第一参数和所述第二参数的生效时刻之前,所述输入输出单元,还用于发送上行信号,且在所述第i次更新所述第一参数和所述第二参数的失效时刻之后,所述输入输出单元,还用于接收TAC,所述处理单元,在所述第i+1次更新所述第一参数和所述第二参数时,N TA=0;所述i为整数。
  18. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第一参数和第二参数;所述第一参数包括:终端的定位信息;所述第二参数包括以下信息中的一种或多种:服务卫星的星历信息和公共定时提前TA信息;在第1时刻,更新所述第一参数或所述第二参数;在第j时刻,接收定时提前命令TAC,根据所述TAC更新第一定时提前量N TA;所述第j时刻为所述第一参数或所述第二参数的失效时刻或在所述失效时刻之前;所述2≤j<N;在第N时刻,根据第N-1时刻更新后的N TA的分量确定TA调整量;并控制输入输出单元根据所述TA调整量与所述服务卫星进行通信;
    其中,所述N TA的分量为αN TA;所述0≤α≤1。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元,用于根据如下公式确定所述TA调整量:
    T TA=(αN TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
    其中,所述T TA为TA调整量;所述N TA为第一定时提前量;所述αN TA为所述N TA的 分量;所述N TA,UE-specific为基于所述服务卫星的星历信息和所述终端的定位信息确定的定时提前量;所述N TA,common为与所述公共TA信息相关联的定时提前量;所述N TA,offset为定时偏移量;所述T C为最小时间单元。
  20. 根据权利要求18或19所述的装置,其特征在于,若在第1时刻,更新所述第二参数,所述α与所述终端的定位信息的剩余时长负相关。
  21. 根据权利要求18或19所述的装置,其特征在于,若在第1时刻,所述终端更新所述第一参数,所述α与所述第二参数的剩余时长负相关。
  22. 根据权利要求18-21中任一所述的装置,其特征在于,所述终端的移动速度小于第一阈值时,所述第二参数更新时,所述α=0,所述第一参数的更新时,所述α=1;或,
    所述终端的移动速度大于第二阈值时,所述第二参数更新时,所述α=1,所述第一参数的更新时,所述α=0;或,
    所述终端的移动速度大于所述第一阈值小于或等于所述第二阈值时,所述第一参数和所述第二参数更新时,所述α≠0。
  23. 一种通信装置,其特征在于,包括:至少一个处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述至少一个处理器,用于执行所述计算机程序或指令,以使得如权利要求1-6中任一项或权利要求7-11中任一项所述的方法被执行。
  24. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口;
    所述输入输出接口,用于与所述通信装置之外的模块通信;
    所述逻辑电路用于执行计算机程序,以使所述通信装置执行如权利要求1-6中任一项所述的方法,或以使所述通信装置执行如权利要求7-11中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被计算机执行时,使得如权利要求1-6中任一项或7-11中任一项所述的方法被执行。
  26. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当所述计算机程序或指令在计算机上运行时,使得上述权利要求1-6中任一项或7-11中任一项所述的方法被执行。
  27. 一种通信***,其特征在于,所述通信***包括终端和卫星,其中所述终端用于执行如权利要求1-11中任一项所述的方法,所述卫星用于和所述终端通信。
PCT/CN2022/119118 2021-10-30 2022-09-15 一种定时提前ta确定方法及通信装置 WO2023071591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111277807.6A CN116074943A (zh) 2021-10-30 2021-10-30 一种定时提前ta确定方法及通信装置
CN202111277807.6 2021-10-30

Publications (1)

Publication Number Publication Date
WO2023071591A1 true WO2023071591A1 (zh) 2023-05-04

Family

ID=86159107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119118 WO2023071591A1 (zh) 2021-10-30 2022-09-15 一种定时提前ta确定方法及通信装置

Country Status (2)

Country Link
CN (1) CN116074943A (zh)
WO (1) WO2023071591A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221127A1 (zh) * 2019-04-30 2020-11-05 ***通信有限公司研究院 定时提前确定方法及设备
CN112399546A (zh) * 2019-08-12 2021-02-23 华为技术有限公司 公共定时提前的指示方法、装置、设备及存储介质
WO2021160025A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 卫星通信的方法和装置
WO2021164579A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 更新定时偏移量的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221127A1 (zh) * 2019-04-30 2020-11-05 ***通信有限公司研究院 定时提前确定方法及设备
CN112399546A (zh) * 2019-08-12 2021-02-23 华为技术有限公司 公共定时提前的指示方法、装置、设备及存储介质
WO2021160025A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 卫星通信的方法和装置
WO2021164579A1 (zh) * 2020-02-18 2021-08-26 华为技术有限公司 更新定时偏移量的方法及装置

Also Published As

Publication number Publication date
CN116074943A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
US11843449B2 (en) Measurement synchronization method, network device and terminal device
US11968640B2 (en) Timing advance update method, terminal, and base station
CN105637950A (zh) 用于无线设备的全球时间同步服务器
US10334545B2 (en) Synchronizing time among two or more devices
EP3298836B1 (en) Radio access network node and method time coordinated cells for extended discontinuous reception (edrx)
EP3554153B1 (en) Core network node and method--time coordinated cells for extended discontinuous receive (edrx)
US10341973B2 (en) Determining reference frame information in a telecommunication network
EP4117353A1 (en) Method for determining timing advance, and communication apparatus
WO2021155738A1 (zh) 一种频率补偿方法及装置
WO2022016990A1 (zh) 一种卫星***配置信息的指示方法及设备
US11272471B2 (en) Methods, apparatus and electronic devices for absolute time synchronization
WO2021189183A1 (zh) 一种ta确定方法及装置、终端设备
WO2022121710A1 (zh) 重复传输次数确定方法与装置、终端和网络设备
WO2022028552A1 (zh) 一种通信方法及装置
WO2021062680A1 (zh) 数据传输方法及相关设备
WO2023071591A1 (zh) 一种定时提前ta确定方法及通信装置
CN112153731B (zh) 一种时钟调整方法及通信装置
US20230224843A1 (en) Timing offset parameter update method, device, and system
CN115486149A (zh) 用于同步的方法
US20230076690A1 (en) Random access channel (prach) signal transmission method and device
WO2023051891A1 (en) Uplink synchronization
WO2021159262A1 (zh) 定时提前量的阈值调整方法及装置
WO2021109147A1 (zh) 一种频率调整方法及通信装置
CN116508361A (zh) 非活动状态下的周期性数据的传输
US20230116714A1 (en) Method for Determining Segmentation Point of Digital Processing Operation and Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885478

Country of ref document: EP

Effective date: 20240509