WO2021062680A1 - 数据传输方法及相关设备 - Google Patents

数据传输方法及相关设备 Download PDF

Info

Publication number
WO2021062680A1
WO2021062680A1 PCT/CN2019/109550 CN2019109550W WO2021062680A1 WO 2021062680 A1 WO2021062680 A1 WO 2021062680A1 CN 2019109550 W CN2019109550 W CN 2019109550W WO 2021062680 A1 WO2021062680 A1 WO 2021062680A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
indication information
dci format
adjustment
adjustment indication
Prior art date
Application number
PCT/CN2019/109550
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/109550 priority Critical patent/WO2021062680A1/zh
Priority to CN201980095026.XA priority patent/CN113661751B/zh
Publication of WO2021062680A1 publication Critical patent/WO2021062680A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and related equipment.
  • TA Timing Advance
  • both the downlink signal sent by the network device and the uplink signal sent by the UE have a large Doppler frequency offset.
  • the embodiments of the present application provide a data transmission method and related equipment, which are used to quickly adjust TA and Doppler frequency shift.
  • an embodiment of the present application provides a data transmission method, which is applied to a UE, and the method includes:
  • the PDCCH carries adjustment indication information, and the adjustment indication information is used for adjustment of TA or Doppler frequency shift;
  • an embodiment of the present application provides a data transmission method, which is applied to a network device, and the method includes:
  • Sending a UE-specific PDCCH, the PDCCH carrying adjustment indication information, and the adjustment indication information is used to adjust the timing advance TA or Doppler shift;
  • an embodiment of the present application provides a data transmission device, which is characterized in that it is applied to a UE, and the device includes:
  • the detecting unit is configured to detect the PDCCH according to the UE-specific search space, the PDCCH carries adjustment indication information, and the adjustment indication information is used to adjust the timing advance TA or Doppler shift;
  • the transmission unit is configured to perform uplink transmission based on the adjustment instruction information.
  • an embodiment of the present application provides a data transmission device, which is characterized in that it is applied to a network device, and the device includes:
  • the sending unit is configured to send a UE-specific PDCCH, the PDCCH carries adjustment indication information, and the adjustment indication information is used to adjust the timing advance TA or Doppler shift;
  • the receiving unit is configured to receive data from the UE for uplink transmission, where the uplink transmission is performed by the UE based on the adjustment indication information.
  • an embodiment of the present application provides a user equipment, including a processor, a memory, a communication interface, and one or more programs.
  • the one or more programs are stored in the memory and configured to be processed by the above-mentioned memory.
  • the above program includes instructions for executing the steps in the method described in the first aspect of the embodiments of the present application.
  • embodiments of the present application provide a network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured to be processed by the above
  • the above program includes instructions for executing the steps in the method described in the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the above-mentioned computer-readable storage medium stores a computer program for electronic data exchange, wherein the above-mentioned computer program enables a computer to execute Part or all of the steps described in the method described in one aspect.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the above-mentioned computer-readable storage medium stores a computer program for electronic data exchange, wherein the above-mentioned computer program enables a computer to execute Part or all of the steps described in the method described in the second aspect.
  • an embodiment of the present application provides a computer program product, wherein the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the above-mentioned computer program is operable to cause a computer to execute as implemented in this application. Examples include part or all of the steps described in the method described in the first aspect.
  • the computer program product may be a software installation package.
  • an embodiment of the present application provides a computer program product, wherein the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the above-mentioned computer program is operable to make a computer execute as implemented in this application. Examples include part or all of the steps described in the method described in the first aspect.
  • the computer program product may be a software installation package.
  • the network device sends a specific PDCCH to the UE.
  • the PDCCH carries adjustment indication information.
  • the adjustment indication information is used to adjust the TA or Doppler shift, which realizes the adjustment directly through the indication information.
  • TA or Doppler frequency shift in order to achieve the purpose of rapid adjustment, and in addition, perform uplink transmission based on the adjustment instruction information, which realizes the application of the latest adjustment to the uplink transmission and improves the adjustment accuracy.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2A is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • 2B is a schematic diagram of TA adjustment provided by an embodiment of the present application.
  • 2C is a schematic diagram of another TA adjustment provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • the communication system includes a network device and a UE.
  • the network device can communicate with the UE.
  • the communication system can be the global system for mobile communication (CSM), code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) system, global Worldwide interoperability for microwave access (WiMAX) systems, long term evolution (LTE) systems, 5G communication systems (such as new radio (NR)), communication systems that integrate multiple communication technologies ( For example, a communication system that integrates LTE technology and NR technology), or a subsequent evolution communication system.
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • WiMAX global Worldwide interoperability for microwave access
  • LTE long term evolution
  • NR new radio
  • the form and quantity of the network equipment and UE shown in FIG. 1 are only for example, and do not constitute a limitation to the embodiment of the present application.
  • the UE in this application is a device with wireless communication function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (For example, airplanes, balloons, satellites, etc.).
  • the UE can be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, and wireless terminals in smart homes Wait.
  • the UE may also be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a computer device, or other processing device connected to a wireless modem.
  • UE can be called different names, such as: terminal equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment , User agent or user device, cell phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (PDA), 5G The terminal equipment in the network or the future evolution network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in this application is a device deployed on a wireless access network to provide wireless communication functions.
  • the network device may be a radio access network (Radio Access Network, RAN) device on the access network side of a cellular network.
  • the so-called RAN device is a device that connects the UE to the wireless network, including but not limited to: evolution Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (Base Station Controller, BSC), base transceiver station (Base Transceiver Station) , BTS), home base station (for example, Home evolved Node B, or Home Node B, HNB), base band unit (BBU), management entity (Mobility Management Entity, MME); for another example, network equipment can also be Node devices in Wireless Local Area Network (WLAN), such as access controllers (AC), gateways, or WIFI access points (Access Points, AP); for another example, network devices can also be NR The transmission
  • NTN Non-Terrestrial Network
  • general terrestrial communication cannot cover areas where communication equipment cannot be installed, such as oceans, mountains, and deserts, or areas that cannot be covered by communication due to sparse population.
  • satellite communication due to a satellite That is, it can cover a larger ground, and satellites can orbit the earth, so in theory, every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in marginal mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology. It is conducive to narrowing the digital gap with developed regions and promoting the development of these regions. Third, the satellite communication distance is long, and the communication distance increases and the cost of communication does not increase significantly. Finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • Communication satellites are divided into the following three types of satellites according to different orbital heights:
  • LEO Low Earth Orbit
  • MEO Medium Earth Orbit
  • the orbital height range is 8000km-18000km, and the orbital period is about 5-10 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 50ms.
  • the maximum satellite visibility time is generally a few hours;
  • the orbit height is about 36000km, and the orbit period is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • uplink transmission is that different UEs are orthogonal in time and frequency, that is, the uplink transmissions of different UEs from the same cell do not interfere with each other.
  • the network equipment requires signals from different UEs from the same subframe but with different frequency domain resources to arrive at the network equipment at substantially the same time.
  • the network device receives the uplink data sent by the UE within the cyclic prefix (CP) range, it can decode the uplink data correctly. Therefore, uplink synchronization requires that the signals from different UEs in the same subframe arrive at the network device at all times. Fall within the CP.
  • New Radio (NR) and Long Term Evolution (LTE) adopt an uplink TA mechanism.
  • TA is the advance of the time when the UE transmits the uplink subframe compared to the time when the downlink subframe is received.
  • the network equipment can control the time when the uplink signals from different UEs arrive at the network equipment by adjusting the timing advance of each UE. For UEs that are far away from the network equipment, due to the larger transmission delay, the timing advance is greater than that of the UEs that are closer to the network equipment.
  • the network device adjusts the timing advance by sending a TA command (Command) to the UE.
  • TA command Common
  • the network equipment determines the TA value by measuring the received random access preamble (preamble) code, and sends it to the UE through the TA command field of the RAR;
  • the network equipment In the radio resource control (Radio Resource Control, RRC) connection state, the network equipment needs to maintain TA information. Although in the random access process, the UE and the network device have achieved uplink synchronization, the timing of the uplink signal reaching the network device may change over time, such as a high-speed UE, the accumulation of the crystal oscillator offset of the UE causes the uplink timing deviation Wait. Therefore, the UE needs to continuously update its uplink TA value to maintain uplink synchronization.
  • the network equipment uses a closed-loop mechanism to adjust the upstream TA value. The network equipment determines the TA value of the UE based on measuring the uplink transmission of the UE. Therefore, as long as the UE has uplink transmission, the network equipment can be used to estimate the TA value.
  • RRC Radio Resource Control
  • any signal sent by the UE can all be used to measure the TA value.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • CQI Channel Quality Indication
  • ACK Acknowledgement
  • NACK Negative acknowledgment
  • Physical Uplink Shared Channel Physical Uplink Shared Channel, PUSCH, etc.
  • the adjustment cycle is controlled by a time alignment timer (Time Alignment Timer), and its value can be 500ms, 750ms, 1280ms, 1920ms, 2560ms, 5120ms, 10240ms, etc.
  • DCI Downlink control information
  • DCI format 1_0 or DCI format 1_1 Downlink control information
  • DownLink grant When network equipment schedules downlink data transmission through Downlink control information (DCI) (such as DCI format 1_0 or DCI format 1_1) of the DownLink grant (DownLink grant), it will carry a time domain resource allocation in the DCI
  • the (Time Domain Resource Allocation, TDRA) field is 4 bits and can indicate 16 different rows in a resource allocation table. Each row contains different resource allocation combinations, such as Physical Uplink Shared Channel.
  • the UE After receiving the PDSCH, the UE needs to feed back ACK/NACK.
  • the DCI of the DL grant will further indicate the position of the time slot and PUCCH resources for transmitting the ACK/NACK feedback information corresponding to the PDSCH.
  • the hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) feedback timing indication indicates the number of slots between the PDSCH and the PUCCH, that is, k1. For example, if the PDSCH is transmitted in slot n, if the corresponding value of the HARQ feedback timing indication is 4, it means that the corresponding feedback information is transmitted in slot n+4.
  • the PUCCH resource indicator is used to indicate a row in the predefined resource list, including time domain resources, frequency domain resources, and spreading sequence resources of the PUCCH in a slot.
  • the DCI of the DL grant also includes SRS request indication information, which is used to trigger the UE to send aperiodic SRS.
  • the network device sends an uplink grant (such as UL grant, DCI format 0_0 or DCI format 0_1) to schedule PUSCH transmission.
  • an uplink grant such as UL grant, DCI format 0_0 or DCI format 0_1
  • a network device When a network device schedules uplink data transmission through the DCI of the UL grant, it will carry a TDRA field in the DCI.
  • the TDRA field is 4 bits and can indicate 16 different rows in a resource allocation table. Each row contains different resource allocations. Combinations, such as the starting position S of the PDSCH, the length L, k2, and different types, etc., where k2 represents the number of offset slots between the slot where the DCI is located and the slot where the PUSCH is located.
  • the DCI of the UL grant also includes SRS request indication information, which is used to trigger the UE to send aperiodic SRS.
  • FIG. 2A is a schematic flowchart of a measurement method provided by an embodiment of the application, including the following steps:
  • Step 201 The network device sends a UE-specific PDCCH, the PDCCH carries adjustment indication information, and the adjustment indication information is used to adjust TA or Doppler shift.
  • Step 203 The UE performs uplink transmission based on the adjustment indication information.
  • Step 204 The network device receives data from the UE for uplink transmission.
  • the UE-specific PDCCH refers to a PDCCH that carries identification information of the UE.
  • the UE-specific search space refers to a search space that contains time-frequency resources for carrying the UE-specific PDCCH.
  • the uplink transmission performed by the UE includes one of the following: PUSCH transmission, PUCCH transmission, and SRS transmission.
  • the UE performing uplink transmission based on the adjustment indication information includes:
  • the UE determines a Doppler frequency shift adjustment value based on the adjustment indication information, and performs uplink transmission based on the Doppler frequency shift adjustment value.
  • the UE determining the TA adjustment value based on the adjustment indication information includes:
  • the UE determines the first TA value indicated by the adjustment indication information; the UE uses the first TA value as the TA adjustment value.
  • the UE determining the TA adjustment value based on the adjustment indication information includes:
  • the UE determines the first TA value indicated by the adjustment indication information and determines the second TA value currently maintained by the UE; the UE uses the sum of the first TA value and the second TA value as the The TA adjustment value.
  • the UE determining the Doppler frequency shift adjustment value based on the adjustment indication information includes:
  • the UE determines the first Doppler shift value indicated by the adjustment indication information; the UE uses the first Doppler shift value as the Doppler shift adjustment value.
  • the UE determining the Doppler frequency shift adjustment value based on the adjustment indication information includes:
  • the UE determines the first Doppler frequency shift value indicated by the adjustment indication information, and determines the second Doppler frequency shift value currently maintained by the UE; the UE shifts the first Doppler frequency The sum of the value and the second Doppler shift value is used as the Doppler shift adjustment value.
  • the UE receives the adjustment indication information carried by the PDCCH in downlink time slot n, it schedules PUSCH transmission in time slot n+3. If the TA value currently maintained by the UE is assumed to be TA1, and the TA value indicated by the adjustment indication information is TA2, the UE will adjust the uplink TA to TA2 or TA1+TA2 during PUSCH transmission, and then perform PUSCH according to the adjusted TA Transmission, so that the upstream and downstream timings are aligned on the network device side, as shown in Figure 2B.
  • the UE before the UE receives the adjustment indication information, if the Doppler frequency shift value maintained by the UE is FD1 and the Doppler frequency shift value indicated in the adjustment indication information is FD2, the UE will The uplink Doppler shift is adjusted to FD2, or FD1+FD2, as shown in Figure 2B.
  • the aforementioned TA adjustment value and the aforementioned Doppler frequency shift adjustment value are effective at the time of uplink transmission, and continue to be effective until the next adjustment instruction information is received.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in a newly added information field in the DCI.
  • a TA adjustment domain and a Doppler frequency shift (DFS) adjustment domain are added to the DCI.
  • the TA adjustment domain carries the TA value
  • the DFS adjustment domain carries the Doppler frequency shift value.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in an existing information field in the DCI.
  • the DCI includes one of the following: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or DCI format 2_3.
  • the existing information field includes a TDRA field.
  • the adjustment indication information can be added to the existing information field.
  • K2 in Table 1 represents the slot between the slot where DCI is located and the slot where PUSCH is located.
  • the number of offset slots, S represents the starting position of the PDSCH, and L represents the length of the PDSCH.
  • Row index PUSCH mapping type k2 S L TA 1 Type A j 0 14 TA1 2 Type A j 0 12 TA2 3 Type A j 0 10 TA3 4 Type B j 2 10 TA4 5 Type B j 4 10 TA5 6 Type B j 4 8 TA6 7 Type B j 4 6 TA7 8 Type A j+1 0 14 TA1 9 Type A j+1 0 12 TA2 10 Type A j+1 0 10 TA3 11 Type A j+2 0 14 TA1 12 Type A j+2 0 12 TA2 13 Type A j+2 0 10 TA3 14 Type B j 8 6 TA1 15 Type A j+3 0 14 TA2 16 Type A j+3 0 10 TA3
  • the adjustment instruction information is directly added to the existing information field in the DCI.
  • the network device can directly add the adjustment indication information to the high-level signaling configuration.
  • the adjustment instruction information is implicitly indicated by the information of the existing information field in the DCI. For example, by binding the value of k2 in the TDRA domain, that is, different k2 are associated with different TA values. For another example, it is bound to the location of the frequency domain resource indicated in the frequency domain resource assignment (Frequency domain resource assignment) information in the DCI, such as the starting physical resource block (PRB) number in the frequency domain resource, etc., Different frequency domain resource locations are associated with different TA values, and the network equipment implicitly indicates the TA value by scheduling different frequency domain resources.
  • the frequency domain resource assignment Frequency domain resource assignment
  • the existing information field includes a HARQ feedback timing indication field.
  • the adjustment indication information is carried in the HARQ feedback timing indication field, as shown in Table 2. Taking TA adjustment as an example, the adjustment indication information can be added to the existing information field.
  • dl-DataToUL-ACK It is the time offset from downlink data to uplink acknowledgement (Acknowledgement, ACK).
  • the configuration information of the PUCCH configured by the higher layer includes dl-DataToUL-ACK, that is, K1.
  • Related adjustment indication information may be added to the configuration information, and the adjustment indication information is associated with dl-DataToUL-ACK information, that is, each value of dl-DataToUL-ACK is associated with corresponding adjustment indication information.
  • the foregoing existing information field is not limited to the HARQ feedback timing indicator field, and may also be a PUCCH resource indicator field, for example.
  • the DCI includes one of the following: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or DCI format 2_3;
  • the uplink transmission includes the SRS transmission, and the existing information
  • the domain includes the SRS request domain.
  • the adjustment indication information is carried in the SRS request field. As shown in Table 3, taking TA adjustment as an example, the adjustment indication information can be added to the existing information field.
  • aperiodicSRS-ResourceTrigger is aperiodic SRS Resource trigger
  • SRS-SetUse is SRS set use
  • SRS-TPC-PDCCH-Group is SRS power control command group.
  • the configuration information of the SRS configured by the higher layer includes aperiodicSRS-ResourceTrigger.
  • Related adjustment indication information may be added to the configuration information, and the adjustment indication information is associated with the value of aperiodicSRS-ResourceTrigger, that is, the value of each type of aperiodicSRS-ResourceTrigger is associated with corresponding adjustment indication information.
  • the effective time of the adjustment indication information is indicated by the DCI carried by the PDCCH.
  • the effective time of the adjustment indication information is predefined or configured by signaling.
  • the effective time of the adjustment indication information may be indicated in the DCI at the same time. For example, several time slots or milliseconds from the time slot where the uplink channel or signal is transmitted. Taking TA as an example, within the valid time, it is considered that the uplink timing of the UE is aligned.
  • the UE When the UE receives the adjustment indication information through the DCI, it starts a timer.
  • the duration of the timer can be predefined or configured by high-level signaling, such as 500ms, 750ms, 1280ms, 1920ms, 2560ms, 5120ms, 10240ms, etc. Taking TA as an example, before the timer expires, it is considered that the uplink timing of the UE is aligned.
  • the UE Taking TA as an example, as shown in FIG. 2C, after the UE adjusts the TA according to the adjustment indication information in the DCI, the UE considers that the adjustment is effective within the effective time.
  • the network device sends a specific PDCCH to the UE.
  • the PDCCH carries adjustment indication information.
  • the adjustment indication information is used to adjust the TA or Doppler shift, which realizes the adjustment directly through the indication information.
  • TA or Doppler frequency shift in order to achieve the purpose of rapid adjustment, and in addition, perform uplink transmission based on the adjustment instruction information, which realizes the application of the latest adjustment to the uplink transmission and improves the adjustment accuracy.
  • FIG. 3 is a communication device provided by an embodiment of the present application, including: one or more processors, one or more memories, one or more transceivers, and one or more programs;
  • the one or more programs are stored in the memory and are configured to be executed by the one or more processors.
  • the communication device is a UE
  • the program includes instructions for executing the following steps:
  • the PDCCH carries adjustment indication information, and the adjustment indication information is used for adjustment of TA or Doppler frequency shift;
  • the program includes instructions specifically for performing the following steps:
  • the Doppler frequency shift adjustment value is determined based on the adjustment instruction information, and the uplink transmission is performed based on the Doppler frequency shift adjustment value.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in a newly added information field in the DCI.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in an existing information field in the DCI.
  • the DCI includes one of the following: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or DCI format 2_3.
  • the existing information field includes a TDRA field.
  • the existing information field includes a HARQ feedback timing indication field.
  • the uplink transmission includes one of the following: PUSCH transmission, PUCCH transmission, and SRS transmission.
  • the uplink transmission includes the SRS transmission
  • the existing information field includes an SRS request field.
  • the effective time of the adjustment indication information is indicated by the DCI carried by the PDCCH.
  • the effective time of the adjustment indication information is predefined or configured by signaling.
  • the communication device is a network device
  • the program includes instructions for executing the following steps:
  • Sending a UE-specific PDCCH, the PDCCH carrying adjustment indication information, and the adjustment indication information is used to adjust TA or Doppler shift;
  • the PDCCH carries DCI
  • the adjustment indication information is carried in a newly added information field in the DCI.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in an existing information field in the DCI.
  • the DCI includes one of the following: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or DCI format 2_3.
  • the existing information field includes a TDRA field.
  • the existing information field includes a HARQ feedback timing indication field.
  • the uplink transmission includes one of the following: PUSCH transmission, PUCCH transmission, and SRS transmission.
  • the uplink transmission includes the SRS transmission
  • the existing information field includes an SRS request field.
  • the effective time of the adjustment indication information is indicated by the DCI carried by the PDCCH.
  • the effective time of the adjustment indication information is predefined or configured by signaling.
  • FIG. 4 is a data transmission device provided by an embodiment of the present application, which is applied to a UE, and the device includes:
  • the detecting unit 401 is configured to detect a PDCCH according to a UE-specific search space, the PDCCH carries adjustment indication information, and the adjustment indication information is used to adjust TA or Doppler shift;
  • the transmission unit 402 is configured to perform uplink transmission based on the adjustment instruction information.
  • the transmission unit 402 is specifically configured to:
  • the Doppler frequency shift adjustment value is determined based on the adjustment instruction information, and the uplink transmission is performed based on the Doppler frequency shift adjustment value.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in a newly added information field in the DCI.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in an existing information field in the DCI.
  • the DCI includes one of the following: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or DCI format 2_3.
  • the existing information field includes a TDRA field.
  • the existing information field includes a HARQ feedback timing indication field.
  • the uplink transmission includes one of the following: PUSCH transmission, PUCCH transmission, and SRS transmission.
  • the uplink transmission includes the SRS transmission
  • the existing information field includes an SRS request field.
  • the effective time of the adjustment indication information is indicated by the DCI carried by the PDCCH.
  • the effective time of the adjustment indication information is predefined or configured by signaling.
  • the detection unit 401 may be realized by a processor, and the transmission unit 402 may be realized by a communication interface.
  • FIG. 5 is a data transmission device provided by an embodiment of the present application, which is applied to a network device, and the device includes:
  • the sending unit 501 is configured to send a UE-specific PDCCH, where the PDCCH carries adjustment indication information, and the adjustment indication information is used to adjust TA or Doppler shift;
  • the receiving unit 502 is configured to receive data from the UE for uplink transmission, where the uplink transmission is performed by the UE based on the adjustment indication information.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in a newly added information field in the DCI.
  • the PDCCH carries DCI
  • the adjustment indication information is carried in an existing information field in the DCI.
  • the DCI includes one of the following: DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or DCI format 2_3.
  • the existing information field includes a TDRA field.
  • the existing information field includes a HARQ feedback timing indication field.
  • the uplink transmission includes one of the following: PUSCH transmission, PUCCH transmission, and SRS transmission.
  • the uplink transmission includes the SRS transmission
  • the existing information field includes an SRS request field.
  • the effective time of the adjustment indication information is indicated by the DCI carried by the PDCCH.
  • the effective time of the adjustment indication information is predefined or configured by signaling.
  • the sending unit 501 and the receiving unit 502 can be implemented through a communication interface.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables a computer to execute part or all of the steps of any method as recorded in the above method embodiment ,
  • the above-mentioned computer includes UE or network equipment.
  • the embodiments of the present application also provide a computer program product.
  • the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the above-mentioned computer program is operable to cause a computer to execute any of the methods described in the above method Part or all of the steps of the method.
  • the computer program product may be a software installation package, and the above-mentioned computer includes UE or network equipment.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the foregoing methods of the various embodiments of the present application.
  • the aforementioned memory includes: U disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: a flash disk , Read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法及相关设备,方法包括:UE根据UE特定的搜索空间检测网络设备发送的PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整;UE基于所述调整指示信息进行上行传输。采用本申请实施例可快速的调整TA和多普勒频移。

Description

数据传输方法及相关设备 技术领域
本申请涉及通信技术领域,具体涉及一种数据传输方法及相关设备。
背景技术
对于卫星通信场景,卫星在轨道处于高速移动状态时,速度可达数公里每秒钟。一方面,不同位置的用户设备(User Equipment,UE)由于所处位置的不同,导致卫星与UE之间的距离随着时间的变化而发生快速的变化。现有的定时提前(Timing Advance,TA)调整是通过介质访问控制层(Media Access Control,MAC)-控制单元(Control element,CE)周期性进行的,该种调整方式无法满足TA的快速变化。
另一方面,由于卫星的高速移动,卫星与UE之间的相对移动速度很高,约几公里每秒。因此无论是网络设备发送的下行信号还是UE发送的上行信号,都有较大的多普勒频偏。
发明内容
本申请实施例提供了一种数据传输方法及相关设备,用于快速的调整TA和多普勒频移。
第一方面,本申请实施例提供一种数据传输方法,应用于UE,方法包括:
根据UE特定的搜索空间检测PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整;
基于所述调整指示信息进行上行传输。
第二方面,本申请实施例提供一种数据传输方法,应用于网络设备,方法包括:
发送UE特定的PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于定时提前TA或多普勒频移的调整;
接收来自所述UE进行上行传输的数据,所述上行传输是所述UE基于所述调整指示信息进行的。
第三方面,本申请实施例提供一种数据传输装置,其特征在于,应用于UE,所述装置包括:
检测单元,用于根据UE特定的搜索空间检测PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于定时提前TA或多普勒频移的调整;
传输单元,用于基于所述调整指示信息进行上行传输。
第四方面,本申请实施例提供一种数据传输装置,其特征在于,应用于网络设备,所述装置包括:
发送单元,用于发送UE特定的PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于定时提前TA或多普勒频移的调整;
接收单元,用于接收来自所述UE进行上行传输的数据,所述上行传输是所述UE基于所述调整指示信息进行的。
第五方面,本申请实施例提供一种用户设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面所述的方法中的步骤的指令。
第六方面,本申请实施例提供一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面所述的方法中的步骤的指令。
第七方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面所述的方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第二方面所述的方法中所描述的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面所述的方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面所述的方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,在本申请实施例中,网络设备给UE发送特定的PDCCH,该PDCCH携带调整指示信息,该调整指示信息用于TA或多普勒频移的调整,实现了直接通过指示信息调整TA或多普勒频移,以达到快速调整目的,另外基于调整指示信息进行上行传输,实现了将最新的调整应用于上行传输,提升了调整准确性。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种通信***构架示意图;
图2A是本申请实施例提供的一种数据传输方法的流程示意图;
图2B是本申请实施例提供的一种TA调整的示意图;
图2C是本申请实施例提供的另一种TA调整的示意图;
图3是本申请实施例提供的一种通信设备的结构示意图;
图4是本申请实施例提供的一种数据传输装置的结构示意图;
图5是本申请实施例提供的另一种数据传输装置的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
请参见图1,图1是本申请实施例提供的一种通信***构架示意图,所述通信***包括网络设备和UE。如图1所示,网络设备可以与UE进行通信。该通信***可以是全球移动通信***(global system for mobile communication,CSM)、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)***、长期演进(long term evolution,LTE)***、5G通信***(例如新空口(new radio,NR))、多种通信技术融合的通信***(例如LTE技术和NR技术融合的通信***)、或者后续演 进通信***。图1中所示的网络设备和UE的形态和数量仅用于举例,并不构成对本申请实施例的限定。
本申请中的UE是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持、可穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球、卫星上等)。该UE可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、智能家庭(smart home)中的无线终端等。UE也可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算机设备或连接到无线调制解调器的其他处理设备等。在不同的网络中UE可以叫做不同的名称,例如:终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G网络或未来演进网络中的终端设备等。
本申请中的网络设备是一种部署在无线接入网用以提供无线通信功能的设备。例如,网络设备可以是蜂窝网络中接入网侧的无线接入网(Radio Access Network,RAN)设备,所谓RAN设备即是一种将UE接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved Node B,或Home Node B,HNB)、基带单元(Base Band Unit,BBU)、管理实体(Mobility Management Entity,MME);再例如,网络设备也可以是无线局域网(Wireless Local Area Network,WLAN)中的节点设备,例如接入控制器(access controller,AC),网关,或WIFI接入点(Access Point,AP);再例如,网络设备也可以是NR***中的传输节点或收发点(transmission reception point,TRP或TP)等。
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究非地面通信网络(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面UE提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,以及卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通讯覆盖。其次,卫星通信有较大的社会价值,卫星通信在边缘山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,可以使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为如下三种卫星:
1)低轨道卫星(Low Earth Orbit,LEO),轨道高度范围为500km-1500km,轨道周期约为1.5-2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对UE的发射功率要求不高;
2)中轨道卫星(Medium Earth Orbit,MEO),轨道高度范围为8000km-18000km,轨道周期约为5-10小时。用户间单跳通信的信号传播延迟一般小于50ms。最大卫星可视时间一般为几小时;
3)地球同步轨道卫星(Geostationary Earth Orbit,GEO),轨道高度约为36000km,轨道周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
上行传输的一个重要特征是不同UE在时频上正交,即来自同一小区的不同UE的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,网络设备要求来自同一子帧,但不同频域资源的不同UE的信号到达网络设备的时间基本上是对齐的。网络设备只要在循环前缀(Cyclic Prefix,CP)范围内接收到UE所发送的上行数据,就能够正确地解码上行数据,因此上行同步要求来自同一子帧的不同UE的信号到达网络设备的时间都落在CP之内。为了保证网络设备的时间同步,新空口(New Radio,NR)与长期演进(Long Term Evolution,LTE)采用了上行TA的机制。
TA是UE传输上行子帧的时间相比接收到下行子帧的时间的提前量。网络设备通过调整每个UE的定时提前量,可以控制来自不同UE的上行信号到达网络设备的时间。对于离网络设备较远的UE,由于有较大的传输延迟,就要比离网络设备较近的UE定时提前量大。
网络设备通过给UE发送TA指令(Command)来调整定时提前量,包括两种方式给UE发送TA指令:
1)在随机接入过程,网络设备通过测量接收到的随机接入前导(preamble)码,来确定TA值,并通过RAR的TA指令字段发送给UE;
2)在无线资源控制(Radio Resource Control,RRC)连接态,网络设备需要维护TA信息。虽然在随机接入过程中,UE与网络设备取得了上行同步,但上行信号到达网络设备的定时可能会随着时间发生变化,如高速移动中的UE,UE的晶振偏移累积导致上行定时偏差等。因此,UE需要不断地更新其上行TA值,以保持上行同步。网络设备使用一种闭环机制来调整上行TA值。网络设备基于测量UE的上行传输来确定UE的TA值。因此,只要UE有上行传输,网络设备就可以用来估计TA值。理论上,UE发送的任何信号(如探测信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DMRS)、信道质量指示(Channel Quality Indication,CQI)、肯定确认(Acknowledgement,ACK)、否定确认(Negative,NACK)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等)都可用于测量TA值。如果某个特定UE需要校正,则网络设备会发送一个TA指令给该UE,要求其调整上行传输定时。该TA指令是通过TA指令的MAC-CE发送给UE的。调整的周期通过时间校准计时器(Time Alignment Timer)来控制,其取值可以是500ms,750ms,1280ms,1920ms,2560ms,5120ms,10240ms等。
网络设备通过下行授权(DownLink grant)的下行控制信令(Downlink control information,DCI)(如DCI格式(format)1_0或DCI format 1_1)调度下行数据传输时,会在DCI中携带一个时域资源分配(Time Domain Resource Allocation,TDRA)域,该TDRA域为4bit,可以指示一个资源分配表格中的16个不同的行,每一行包含不同的资源分配组合,比如物理上行共享信道(Physical Uplink Shared Channel,PDSCH)的起始位置S,长度L,k0以及不同的type等,其中,k0表示DCI所在的时隙(slot)和PDSCH所在的slot之间的偏移slot的个数。
UE在接收到PDSCH之后,需要反馈ACK/NACK。在该DL grant的DCI中的还会进一步指示传输该PDSCH对应的ACK/NACK反馈信息的时隙位置及PUCCH资源。其中,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈定时指示,指示PDSCH和PUCCH之间间隔的slot个数信息,即k1。例如,若该PDSCH在slot n中传输,若HARQ反馈定时指示对应的取值为4,则表示对应的反馈信息在slot n+4中传输。PUCCH资源指示用于指示预定义资源列表中的一个行,包括PUCCH在一个slot内的时域资源、频域资源和扩频序列资源。
DL grant的DCI中还包括SRS请求指示信息,用于触发UE发送非周期的SRS。
5G NR***中,网络设备发送上行授权(如UL grant,DCI format 0_0或DCI format0_1),调度PUSCH传输。
网络设备通过UL grant的DCI调度上行数据传输时,会在DCI中携带一个TDRA的域,该TDRA域为4bit,可以指示一个资源分配表格中的16个不同的行,每一行包含不同的资源分配组合,比如PDSCH的起始位置S,长度L,k2,以及不同的type等,其中,k2表示DCI所在的slot和PUSCH所在的slot之间的偏移slot的个数。
UL grant的DCI中还包括SRS请求指示信息,用于触发UE发送非周期的SRS。
请参见图2A,图2A为本申请实施例提供的一种测量方法的流程示意图,包括以下步骤:
步骤201:网络设备发送UE特定的PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整。
步骤202:所述UE根据所述UE特定的搜索空间检测PDCCH。
步骤203:所述UE基于所述调整指示信息进行上行传输。
步骤204:所述网络设备接收来自所述UE进行上行传输的数据。
其中,所述UE特定的PDCCH指的是携带有所述UE的标识信息的PDCCH。
其中,所述UE特定的搜索空间(UE specific search space)指的是包含的时频资源是用于承载所述UE特定的PDCCH的搜索空间。
其中,UE进行的上行传输包括以下其中一种:PUSCH传输、PUCCH传输、SRS传输。
可选地,所述UE基于所述调整指示信息进行上行传输,包括:
所述UE基于所述调整指示信息确定TA调整值,以及基于所述TA调整值进行上行传输;
或者,所述UE基于所述调整指示信息确定多普勒频移调整值,以及基于所述多普勒频移调整值进行上行传输。
具体地,所述UE基于所述调整指示信息确定TA调整值,包括:
所述UE确定所述调整指示信息指示的第一TA值;所述UE将所述第一TA值作为所述TA调整值。
或者,所述UE基于所述调整指示信息确定TA调整值,包括:
所述UE确定所述调整指示信息指示的第一TA值,以及确定所述UE当前维护的第二TA值;所述UE将所述第一TA值和所述第二TA值的和作为所述TA调整值。
具体地,所述UE基于所述调整指示信息确定多普勒频移调整值,包括:
所述UE确定所述调整指示信息指示的第一多普勒频移值;所述UE将所述第一多普勒频移值作为所述多普勒频移调整值。
或者,所述UE基于所述调整指示信息确定多普勒频移调整值,包括:
所述UE确定所述调整指示信息指示的第一多普勒频移值,以及确定所述UE当前维护的第二多普勒频移值;所述UE将所述第一多普勒频移值和所述第二多普勒频移值的和作为所述多普勒频移调整值。
举例来说,假如UE在下行时隙n收到PDCCH承载的调整指示信息,调度n+3时隙的PUSCH传输。假如UE当前具体维护的TA值假设为TA1,调整指示信息指示的TA值为TA2,则UE在PUSCH传输时,将上行的TA调整为TA2,或者TA1+TA2,然后按照调整后的TA进行PUSCH传输,使得在网络设备侧上行和下行定时对齐,如图2B所示。
又举例来说,在UE收到调整指示信息之前,假如UE维护的多普勒频移值为FD1,调整指示信息中指示的多普勒频移值为FD2,则UE在PUSCH传输时,将上行的多普勒频移 调整为FD2,或者FD1+FD2,如图2B所示。
需要说明的是,上述TA调整值和上述多普勒频移调整值在进行上行传输时刻生效,在收到下一次调整指示信息之前持续有效。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中新增的信息域中。如在DCI中增加TA调整域、多普勒频移(DFS)调整域等,TA调整域携带TA值,DFS调整域携带多普勒频移值。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
可选地,所述DCI包括以下其中一种:DCI format 0_0,DCI format 0_1,DCI format 1_0,DCI format 1_1,或DCI format 2_3。
可选地,在所述DCI包括DCI format 0_0或DCI format 0_1的情况下,所述现有的信息域包括TDRA域。
举例来说,如表1所示,对于TDRA表格,以TA调整为例,可以在现有的信息域中增加调整指示信息,表1中的k2表示DCI所在的slot和PUSCH所在的slot之间的偏移slot的个数,S表示PDSCH的起始位置,L表示PDSCH的长度。
表1
行索引 PUSCH映射类型 k2 S L TA
1 Type A j 0 14 TA1
2 Type A j 0 12 TA2
3 Type A j 0 10 TA3
4 Type B j 2 10 TA4
5 Type B j 4 10 TA5
6 Type B j 4 8 TA6
7 Type B j 4 6 TA7
8 Type A j+1 0 14 TA1
9 Type A j+1 0 12 TA2
10 Type A j+1 0 10 TA3
11 Type A j+2 0 14 TA1
12 Type A j+2 0 12 TA2
13 Type A j+2 0 10 TA3
14 Type B j 8 6 TA1
15 Type A j+3 0 14 TA2
16 Type A j+3 0 10 TA3
其中,将该调整指示信息直接添加至DCI中现有的信息域中。例如,如果TDRA域指示的TDRA信息是通过高层信令配置的,则网络设备可以直接在高层信令配置中添加该调整指示信息。
其中,通过DCI中现有的信息域的信息隐含的指示该调整指示信息。例如,通过TDRA域中的k2的取值绑定,即不同的k2关联不同的TA值。又例如,与DCI中的频域资源分配(Frequency domain resource assignment)信息中指示的频域资源的位置绑定,如频域资源中起始物理资源块(Physical Resource Block,PRB)的编号等,不同的频域资源位置关联不同的TA值,网络设备通过调度不同的频域资源,隐含的指示TA值。
可选地,在所述DCI包括DCI format 1_0或DCI format 1_1的情况下,所述现有的信息域包括HARQ反馈定时指示域。
举例来说,调整指示信息携带在HARQ反馈定时指示域中,如表2所示,以TA调整 为例,可以在现有的信息域中增加调整指示信息,表2中,dl-DataToUL-ACK为下行数据到上行肯定确认(Acknowledgement,ACK)的时间偏移。
表2
Figure PCTCN2019109550-appb-000001
其中,在高层配置的PUCCH的配置信息中,包括了dl-DataToUL-ACK,即K1。可以在该配置信息中,增加相关的调整指示信息,该调整指示信息与dl-DataToUL-ACK信息有关联关系,即每种dl-DataToUL-ACK的取值关联相应的调整指示信息。
需要说明的是,在DCI包括DCI format 1_0或DCI format 1_1的情况下,上述现有的信息域不限于HARQ反馈定时指示域,例如还可以是PUCCH资源指示域。
可选地,所述DCI包括以下其中一种:DCI format 0_0,DCI format 0_1,DCI format 1_0,DCI format 1_1,或DCI format 2_3;所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
举例来说,调整指示信息携带在SRS请求域中,如表3所示,以TA调整为例,可以在现有的信息域中增加调整指示信息,表3中,aperiodicSRS-ResourceTrigger为非周期SRS资源触发,SRS-SetUse为SRS设置使用,SRS-TPC-PDCCH-Group为SRS功率控制命令组。
表3
Figure PCTCN2019109550-appb-000002
Figure PCTCN2019109550-appb-000003
其中,在高层配置的SRS的配置信息中,包括了aperiodicSRS-ResourceTrigger。可以在该配置信息中,增加相关的调整指示信息,该调整指示信息与aperiodicSRS-ResourceTrigger的取值有关联关系,即每种aperiodicSRS-ResourceTrigger的取值关联相应的调整指示信息。
可选地,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
可选地,所述调整指示信息的有效时间是预定义的,或信令配置的。
具体的,可以在DCI中同时指示调整指示信息的有效时间。如从上行信道或信号传输所在时隙开始的若干个时隙或毫秒。以TA为例,在该有效时间内,认为UE的上行定时是对齐的。
当UE通过DCI收到调整指示信息,启动一个定时器,该定时器的时长可以是预定义的或者高层信令配置的,如500ms,750ms,1280ms,1920ms,2560ms,5120ms,10240ms等。以TA为例,在该定时器超时之前,认为UE的上行定时是对齐的。
以TA为例,如图2C所示,UE在根据DCI中的调整指示信息进行TA调整之后,UE认为在有效时间内,该调整有效。
可以看出,在本申请实施例中,网络设备给UE发送特定的PDCCH,该PDCCH携带调整指示信息,该调整指示信息用于TA或多普勒频移的调整,实现了直接通过指示信息调整TA或多普勒频移,以达到快速调整目的,另外基于调整指示信息进行上行传输,实现了将最新的调整应用于上行传输,提升了调整准确性。
需要说明的是,在本申请实施例中,上述提到的几种现有的信息域仅是用于举例,适用本申请的现有的信息域不仅限于上述几种。
请参见图3,图3是本申请实施例提供的一种通信设备,包括:一个或多个处理器、一个或多个存储器、一个或多个收发器,以及一个或多个程序;
所述一个或多个程序被存储在所述存储器中,并且被配置由所述一个或多个处理器执行。
在本申请的一实现方式中,所述通信设备为UE,所述程序包括用于执行以下步骤的指令:
根据UE特定的搜索空间检测PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整;
基于所述调整指示信息进行上行传输。
可选地,在基于所述调整指示信息进行上行传输方面,所述程序包括具体用于执行以下步骤的指令:
基于所述调整指示信息确定TA调整值,以及基于所述TA调整值进行上行传输;
或者,基于所述调整指示信息确定多普勒频移调整值,以及基于所述多普勒频移调整 值进行上行传输。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
可选地,所述DCI包括以下其中一种:DCI format 0_0,DCI format 0_1,DCI format 1_0,DCI format 1_1,或DCI format 2_3。
可选地,在所述DCI包括DCI format 0_0或DCI format 0_1的情况下,所述现有的信息域包括TDRA域。
可选地,在所述DCI包括DCI format 1_0或DCI format 1_1的情况下,所述现有的信息域包括HARQ反馈定时指示域。
可选地,所述上行传输包括以下其中一种:PUSCH传输、PUCCH传输、SRS传输。
可选地,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
可选地,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
可选地,所述调整指示信息的有效时间是预定义的,或信令配置的。
在本申请的另一实现方式中,所述通信设备为网络设备,所述程序包括用于执行以下步骤的指令:
发送UE特定的PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整;
接收来自所述UE进行上行传输的数据,所述上行传输是所述UE基于所述调整指示信息进行的。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
可选地,所述DCI包括以下其中一种:DCI format 0_0,DCI format 0_1,DCI format 1_0,DCI format 1_1,或DCI format 2_3。
可选地,在所述DCI包括DCI format 0_0或DCI format 0_1的情况下,所述现有的信息域包括TDRA域。
可选地,在所述DCI包括DCI format 1_0或DCI format 1_1的情况下,所述现有的信息域包括HARQ反馈定时指示域。
可选地,所述上行传输包括以下其中一种:PUSCH传输、PUCCH传输、SRS传输。
可选地,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
可选地,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
可选地,所述调整指示信息的有效时间是预定义的,或信令配置的。
需要说明的是,本实施例的具体实现过程可参见上述方法实施例所述的具体实现过程,在此不再叙述。
请参见图4,图4是本申请实施例提供的一种数据传输装置,应用于UE,该装置包括:
检测单元401,用于根据UE特定的搜索空间检测PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整;
传输单元402,用于基于所述调整指示信息进行上行传输。
可选地,在基于所述调整指示信息进行上行传输方面,传输单元402具体用于:
基于所述调整指示信息确定TA调整值,以及基于所述TA调整值进行上行传输;
或者,基于所述调整指示信息确定多普勒频移调整值,以及基于所述多普勒频移调整值进行上行传输。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
可选地,所述DCI包括以下其中一种:DCI format 0_0,DCI format 0_1,DCI format 1_0,DCI format 1_1,或DCI format 2_3。
可选地,在所述DCI包括DCI format 0_0或DCI format 0_1的情况下,所述现有的信息域包括TDRA域。
可选地,在所述DCI包括DCI format 1_0或DCI format 1_1的情况下,所述现有的信息域包括HARQ反馈定时指示域。
可选地,所述上行传输包括以下其中一种:PUSCH传输、PUCCH传输、SRS传输。
可选地,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
可选地,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
可选地,所述调整指示信息的有效时间是预定义的,或信令配置的。
需要说明的是,检测单元401可通过处理器实现,该传输单元402可通过通信接口实现。
请参见图5,图5是本申请实施例提供的一种数据传输装置,应用于网络设备,该装置包括:
发送单元501,用于发送UE特定的PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于TA或多普勒频移的调整;
接收单元502,用于接收来自所述UE进行上行传输的数据,所述上行传输是所述UE基于所述调整指示信息进行的。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
可选地,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
可选地,所述DCI包括以下其中一种:DCI format 0_0,DCI format 0_1,DCI format 1_0,DCI format 1_1,或DCI format 2_3。
可选地,在所述DCI包括DCI format 0_0或DCI format 0_1的情况下,所述现有的信息域包括TDRA域。
可选地,在所述DCI包括DCI format 1_0或DCI format 1_1的情况下,所述现有的信息域包括HARQ反馈定时指示域。
可选地,所述上行传输包括以下其中一种:PUSCH传输、PUCCH传输、SRS传输。
可选地,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
可选地,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
可选地,所述调整指示信息的有效时间是预定义的,或信令配置的。
需要说明的是,发送单元501和接收单元502可通过通信接口实现。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤,上述计算机包括UE或网络设备。
本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程 序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包,上述计算机包括UE或网络设备。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (46)

  1. 一种数据传输方法,其特征在于,应用于用户设备UE,所述方法包括:
    根据UE特定的搜索空间检测物理下行控制信道PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于定时提前TA或多普勒频移的调整;
    基于所述调整指示信息进行上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述调整指示信息进行上行传输,包括:
    基于所述调整指示信息确定TA调整值,以及基于所述TA调整值进行上行传输;
    或者,基于所述调整指示信息确定多普勒频移调整值,以及基于所述多普勒频移调整值进行上行传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述PDCCH携带下行控制信令DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
  4. 根据权利要求1或2所述的方法,其特征在于,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
  5. 根据权利要求3或4所述的方法,其特征在于,所述DCI包括以下其中一种:DCI格式0_0,DCI格式0_1,DCI格式1_0,DCI格式1_1,或DCI格式2_3。
  6. 根据权利要求5所述的方法,其特征在于,在所述DCI包括DCI格式0_0或DCI格式0_1的情况下,所述现有的信息域包括时域资源分配TDRA域。
  7. 根据权利要求5所述的方法,其特征在于,在所述DCI包括DCI格式1_0或DCI格式1_1的情况下,所述现有的信息域包括混合自动重传请求HARQ反馈定时指示域。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述上行传输包括以下至少一种:物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输、探测信号SRS传输。
  9. 根据权利要求5所述的方法,其特征在于,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
  10. 根据权利要求1-10任一项所述的方法,其特征在于,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述调整指示信息的有效时间是预定义的,或信令配置的。
  12. 一种数据传输方法,其特征在于,应用于网络设备,所述方法包括:
    发送用户设备UE特定的物理下行控制信道PDCCH,所述PDCCH携带调整指示信息, 所述调整指示信息用于定时提前TA或多普勒频移的调整;
    接收来自所述UE进行上行传输的数据,所述上行传输是所述UE基于所述调整指示信息进行的。
  13. 根据权利要求12所述的方法,其特征在于,所述PDCCH携带下行控制信令DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
  14. 根据权利要求12所述的方法,其特征在于,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
  15. 根据权利要求13或14所述的方法,其特征在于,所述DCI包括以下其中一种:DCI格式0_0,DCI格式0_1,DCI格式1_0,DCI格式1_1,或DCI格式2_3。
  16. 根据权利要求15所述的方法,其特征在于,在所述DCI包括DCI格式0_0或DCI格式0_1的情况下,所述现有的信息域包括时域资源分配TDRA域。
  17. 根据权利要求15所述的方法,其特征在于,在所述DCI包括DCI格式1_0或DCI格式1_1的情况下,所述现有的信息域包括混合自动重传请求HARQ反馈定时指示域。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述上行传输包括以下其中一种:物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输、探测信号SRS传输。
  19. 根据权利要求15所述的方法,其特征在于,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
  21. 根据权利要求12-19任一项所述的方法,其特征在于,所述调整指示信息的有效时间是预定义的,或信令配置的。
  22. 一种数据传输装置,其特征在于,应用于用户设备UE,所述装置包括:
    检测单元,用于根据UE特定的搜索空间检测物理下行控制信道PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于定时提前TA或多普勒频移的调整;
    传输单元,用于基于所述调整指示信息进行上行传输。
  23. 根据权利要求22所述的装置,其特征在于,在基于所述调整指示信息进行上行传输方面,所述传输单元具体用于:
    基于所述调整指示信息确定TA调整值,以及基于所述TA调整值进行上行传输;
    或者,基于所述调整指示信息确定多普勒频移调整值,以及基于所述多普勒频移调整值进行上行传输。
  24. 根据权利要求22或23所述的装置,其特征在于,所述PDCCH携带下行控制信 令DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
  25. 根据权利要求22或23所述的装置,其特征在于,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
  26. 根据权利要求24或25所述的装置,其特征在于,所述DCI包括以下其中一种:DCI格式0_0,DCI格式0_1,DCI格式1_0,DCI格式1_1,或DCI格式2_3。
  27. 根据权利要求26所述的装置,其特征在于,在所述DCI包括DCI格式0_0或DCI格式0_1的情况下,所述现有的信息域包括时域资源分配TDRA域。
  28. 根据权利要求26所述的装置,其特征在于,在所述DCI包括DCI格式1_0或DCI格式1_1的情况下,所述现有的信息域包括混合自动重传请求HARQ反馈定时指示域。
  29. 根据权利要求24-28任一项所述的装置,其特征在于,所述上行传输包括以下其中一种:物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输、探测信号SRS传输。
  30. 根据权利要求26所述的装置,其特征在于,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
  31. 根据权利要求22-30任一项所述的装置,其特征在于,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
  32. 根据权利要求22-30任一项所述的装置,其特征在于,所述调整指示信息的有效时间是预定义的,或信令配置的。
  33. 一种数据传输装置,其特征在于,应用于网络设备,所述装置包括:
    发送单元,用于发送用户设备UE特定的物理下行控制信道PDCCH,所述PDCCH携带调整指示信息,所述调整指示信息用于定时提前TA或多普勒频移的调整;
    接收单元,用于接收来自所述UE进行上行传输的数据,所述上行传输是所述UE基于所述调整指示信息进行的。
  34. 根据权利要求33所述的装置,其特征在于,所述PDCCH携带下行控制信令DCI,所述调整指示信息携带在所述DCI中新增的信息域中。
  35. 根据权利要求33所述的装置,其特征在于,所述PDCCH携带DCI,所述调整指示信息携带在所述DCI中现有的信息域中。
  36. 根据权利要求34或35所述的装置,其特征在于,所述DCI包括以下其中一种:DCI格式0_0,DCI格式0_1,DCI格式1_0,DCI格式1_1,或DCI格式2_3。
  37. 根据权利要求36所述的装置,其特征在于,在所述DCI包括DCI格式0_0或DCI格式0_1的情况下,所述现有的信息域包括时域资源分配TDRA域。
  38. 根据权利要求36所述的装置,其特征在于,在所述DCI包括DCI格式1_0或DCI格式1_1的情况下,所述现有的信息域包括混合自动重传请求HARQ反馈定时指示域。
  39. 根据权利要求34-38任一项所述的装置,其特征在于,所述上行传输包括以下其中一种:物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输、探测信号SRS传输。
  40. 根据权利要求36所述的装置,其特征在于,所述上行传输包括所述SRS传输,所述现有的信息域包括SRS请求域。
  41. 根据权利要求33-40任一项所述的装置,其特征在于,所述调整指示信息的有效时间是通过所述PDCCH携带的DCI指示的。
  42. 根据权利要求33-40任一项所述的装置,其特征在于,所述调整指示信息的有效时间是预定义的,或信令配置的。
  43. 一种用户设备,其特征在于,包括存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-11任一项所述的方法中的步骤的指令。
  44. 一种网络设备,其特征在于,包括存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求12-21任一项所述的方法中的步骤的指令。
  45. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-11任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求12-21任一项所述的方法。
PCT/CN2019/109550 2019-09-30 2019-09-30 数据传输方法及相关设备 WO2021062680A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109550 WO2021062680A1 (zh) 2019-09-30 2019-09-30 数据传输方法及相关设备
CN201980095026.XA CN113661751B (zh) 2019-09-30 2019-09-30 数据传输方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109550 WO2021062680A1 (zh) 2019-09-30 2019-09-30 数据传输方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021062680A1 true WO2021062680A1 (zh) 2021-04-08

Family

ID=75336336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109550 WO2021062680A1 (zh) 2019-09-30 2019-09-30 数据传输方法及相关设备

Country Status (2)

Country Link
CN (1) CN113661751B (zh)
WO (1) WO2021062680A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279318A1 (en) * 2021-07-08 2023-01-12 Zte Corporation Systems and methods for indication of valid time
WO2023011148A1 (zh) * 2021-08-05 2023-02-09 华为技术有限公司 上行信号同步方法和通信装置
WO2024092773A1 (zh) * 2022-11-04 2024-05-10 北京小米移动软件有限公司 时频同步的调整方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106063A1 (en) * 2016-12-09 2018-06-14 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
CN109005135A (zh) * 2017-06-06 2018-12-14 中兴通讯股份有限公司 一种处理通信***上行链路频偏的方法与装置
CN109150250A (zh) * 2016-11-04 2019-01-04 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN110213819A (zh) * 2018-02-28 2019-09-06 电信科学技术研究院有限公司 波束失败恢复方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213421A1 (ko) * 2016-06-10 2017-12-14 엘지전자 주식회사 무선 통신 시스템에서 레이턴시 감소를 위한 신호 송수신 방법 및 이를 위한 장치
WO2018027707A1 (en) * 2016-08-10 2018-02-15 Lenovo Innovations Limited (Hong Kong) Timing advance adjustment communication
CN108307495B (zh) * 2016-08-11 2020-12-04 华为技术有限公司 低功耗模式下的ue的跟踪处理方法和设备
CN108633086B (zh) * 2017-03-21 2020-11-03 华为技术有限公司 一种上行传输方法及装置
CN111052794A (zh) * 2017-09-08 2020-04-21 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
CN114710233A (zh) * 2017-11-17 2022-07-05 华为技术有限公司 下行控制信息确定方法和通信装置
CN110034865B (zh) * 2018-01-12 2020-09-15 维沃移动通信有限公司 Pucch资源的确定方法及其接收方法、终端设备和网络侧设备
GB2580913B (en) * 2019-01-29 2021-03-10 Tcl Communication Ltd Timing advance communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150250A (zh) * 2016-11-04 2019-01-04 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
WO2018106063A1 (en) * 2016-12-09 2018-06-14 Samsung Electronics Co., Ltd. Multiplexing control information in a physical uplink data channel
CN109005135A (zh) * 2017-06-06 2018-12-14 中兴通讯股份有限公司 一种处理通信***上行链路频偏的方法与装置
CN110213819A (zh) * 2018-02-28 2019-09-06 电信科学技术研究院有限公司 波束失败恢复方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Feature lead summary of Support for transmission in preconfigured UL resources", 3GPP DRAFT; R1-1905538 FEATURE LEAD SUMMARY PUR FOR NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 9 April 2019 (2019-04-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707600 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023279318A1 (en) * 2021-07-08 2023-01-12 Zte Corporation Systems and methods for indication of valid time
WO2023011148A1 (zh) * 2021-08-05 2023-02-09 华为技术有限公司 上行信号同步方法和通信装置
WO2024092773A1 (zh) * 2022-11-04 2024-05-10 北京小米移动软件有限公司 时频同步的调整方法及装置

Also Published As

Publication number Publication date
CN113661751B (zh) 2023-08-22
CN113661751A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
JP7198910B2 (ja) アップリンク送信タイミングのためのシステム及び方法
US20230013195A1 (en) Communication method and apparatus
CN114928880B (zh) 一种确定定时提前量的方法及设备
US9155084B2 (en) Methods and devices for transmitting data
CN110138531B (zh) 混合自动重传请求应答的传输方法及其装置
WO2019192545A1 (zh) 一种通信方法及装置
WO2017092563A1 (zh) 一种数据传输控制方法、装置、***及相关设备
CN110636550B (zh) 广覆盖场景下基于基站侧资源预留的多用户上行调度方法
WO2021062680A1 (zh) 数据传输方法及相关设备
US20210410080A1 (en) Power Control Method and Power Control Apparatus
JP7468678B2 (ja) ネットワーク装置、端末装置、及び方法
KR20200090904A (ko) 업링크 송신 타이밍 선행을 취득하기 위한 방법과 장치, 및 통신 시스템
JP2020516116A (ja) データ伝送方法、端末機器及びネットワーク機器
US20220287086A1 (en) Method of transmission/reception for sidelink in a wireless communication system and apparatus therefor
WO2021155596A1 (zh) 信息指示方法、装置、设备、***及存储介质
EP4205461A1 (en) A ue initiated propagation delay compensation mechanism
WO2021258369A1 (zh) 无线通信方法、终端设备和网络设备
JP2023521544A (ja) 情報伝送方法、端末機器及びネットワーク機器
CN114531938A (zh) 具有重复的配置的ul
KR20160119628A (ko) 무선통신 시스템에서 기준 시간 운용 방법 및 장치
CN112771971B (zh) 资源的调度方法、设备和存储介质
WO2022052562A1 (zh) 定时偏移参数更新方法、设备及***
TW202025839A (zh) 用於隨機存取的方法、網路設備和終端設備
CN116158158A (zh) 非地面网络中的mac-ce命令动作时序控制
WO2018171657A1 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947671

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947671

Country of ref document: EP

Kind code of ref document: A1