WO2021189183A1 - 一种ta确定方法及装置、终端设备 - Google Patents

一种ta确定方法及装置、终端设备 Download PDF

Info

Publication number
WO2021189183A1
WO2021189183A1 PCT/CN2020/080629 CN2020080629W WO2021189183A1 WO 2021189183 A1 WO2021189183 A1 WO 2021189183A1 CN 2020080629 W CN2020080629 W CN 2020080629W WO 2021189183 A1 WO2021189183 A1 WO 2021189183A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
terminal device
command
commands
calculating
Prior art date
Application number
PCT/CN2020/080629
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202211505456.4A priority Critical patent/CN115802476A/zh
Priority to PCT/CN2020/080629 priority patent/WO2021189183A1/zh
Priority to CN202080098120.3A priority patent/CN115244997A/zh
Priority to EP20926686.5A priority patent/EP4120753A4/en
Publication of WO2021189183A1 publication Critical patent/WO2021189183A1/zh
Priority to US17/934,311 priority patent/US20230010343A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and in particular to a method and device for determining a timing advance (TA), and terminal equipment.
  • TA timing advance
  • the TA values maintained by terminal equipment are all indicated through the network.
  • the TA value between the terminal equipment and the satellite in the non-terrestrial communication network varies greatly. Since the TA value is constantly changing, the terminal device will not always use the previously maintained TA value, but calculate the current TA value through positioning when performing uplink transmission. However, the TA value obtained in this way has a certain deviation, which affects Accuracy of uplink synchronization.
  • the embodiments of the present application provide a TA determination method and device, and terminal equipment.
  • the terminal device calculates the first TA value according to the position information of the terminal device and the ephemeris information of the satellite;
  • the terminal device determines a second TA value according to the first TA value and the first adjustment value, and the second TA value is used for the terminal device to perform uplink synchronization.
  • the TA determination device provided in the embodiment of the present application is applied to a terminal device, and the device includes:
  • a calculation unit configured to calculate the first TA value according to the position information of the terminal device and the ephemeris information of the satellite;
  • the determining unit is configured to determine a second TA value according to the first TA value and the first adjustment value, and the second TA value is used for the terminal device to perform uplink synchronization.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above TA determination method.
  • the chip provided in the embodiment of the present application is used to implement the above TA determination method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above TA determination method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program causes a computer to execute the above TA determination method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above TA determination method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above TA determination method.
  • the terminal device calculates the latest TA value (ie, the first TA value) according to its own position information and satellite ephemeris information, and then adds a TA adjustment value (ie, the first adjustment value) to the latest TA value. ) To obtain the final TA value (that is, the second TA value).
  • the final TA value takes into account the constantly changing position relationship between the terminal device and the satellite and the TA adjustment value indicated by the network side, so the accuracy is higher and the terminal is improved The accuracy of the device's uplink synchronization.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a TA determination method provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of TA determination in Example 1 provided by an embodiment of the application.
  • Example 4 is a schematic diagram of TA determination in Example 2 provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the structural composition of a TA determination device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip of an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system etc.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with the terminal 120.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the terminal 120 is connected to the network device 110 through a wired line or a wireless interface.
  • the terminal 120 connected to the network device 110 through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Devices, cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistant (PDA), handhelds with wireless communication capabilities Devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • UE user equipment
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication system 100 may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the communication system 100 may also include other devices, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • NTN generally uses satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user area.
  • general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost has not increased significantly with the increase of the communication distance; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO and GEO are the main research objects.
  • the altitude range of LEO satellites is 500km-1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the terminal equipment is not high.
  • the orbital height of the GEO satellite is 35786km, and the period of rotation around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • An important feature of uplink transmission is orthogonal multiple access in time and frequency for different terminal devices, that is, the uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the base station In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the base station requires signals from different terminal devices with different frequency domain resources at the same time to arrive at the base station to be basically aligned. In order to ensure time synchronization on the base station side, NR supports an uplink timing advance mechanism.
  • the uplink clock and downlink clock on the base station side are the same, but there is an offset between the uplink clock and downlink clock on the terminal device side (the amount of offset is the uplink TA value, referred to as TA value for short), and different terminal devices have their own Different TA values.
  • the base station can control the time when the uplink signals from different terminal devices arrive at the base station. For the terminal equipment far away from the base station, due to the larger transmission delay, it is necessary to send the uplink data earlier than the terminal equipment closer to the base station.
  • the base station determines the TA value of each terminal device based on measuring the uplink transmission of the terminal device.
  • the base station sends TA commands to the terminal equipment in two ways.
  • the base station determines the TA value by measuring the received preamble, and uses the timing advance command (Timing in the Random Access Response, RAR) The Advance Command) field sends the TA value to the terminal device.
  • RAR Random Access Response
  • the adjustment of the TA value in the radio resource control (Radio Resource Control, RRC) connected state Although the terminal equipment and the base station have achieved uplink synchronization during the random access process, the timing of the uplink signal arriving at the base station may vary with time Changes occur, therefore, the terminal equipment needs to continuously update its TA value to maintain uplink synchronization. If the TA value of a terminal device needs to be corrected (or updated), the base station will send a TA command to the terminal device, requesting it to adjust the uplink timing. Among them, the TA command is sent to the terminal device through Timing Advance Command MAC CE, and it carries the TA adjustment value.
  • RRC Radio Resource Control
  • the TA values maintained by the terminal equipment are all indicated through the network, including the TA value indicated in the RAR and the TA adjustment value indicated in the TA command MAC CE.
  • a terminal device uses the previously maintained TA value plus the adjusted value in the TA command as the latest TA value.
  • the timing deviation between the terminal equipment and the satellite in NTN varies greatly (that is, the TA value varies greatly), especially in the LEO satellite scenario. Since the TA value is constantly changing, the terminal device does not always use the previously maintained TA value, but calculates the current TA value through positioning when sending uplink. As for how to use the TA adjustment value issued by the previous network, there is no solution. For this reason, the following technical solutions of the embodiments of the present application are proposed. The technical solutions of the embodiments of the present application propose a new TA determination method for terminal devices with positioning capabilities.
  • FIG. 2 is a schematic flowchart of a TA determination method provided by an embodiment of the application. As shown in FIG. 2, the TA determination method includes the following steps:
  • Step 201 The terminal device calculates a first TA value according to the position information of the terminal device and the ephemeris information of the satellite.
  • the terminal device calculates the current TA value (that is, the first TA value) according to its own position information and the ephemeris information of the satellite.
  • the terminal device has a positioning function, such as a global positioning system (Global Positioning System, GPS) positioning function.
  • the terminal device obtains its own position information through its own positioning function.
  • the position information can be passed through the earth Longitude and latitude coordinates are expressed.
  • satellites refer to communication satellites, such as LEO satellites, MEO satellites, GEO satellites, and so on.
  • the ephemeris information of the satellite refers to the precise position or trajectory table of the satellite operation over time.
  • the ephemeris information of the satellite may be stored on the terminal device side in a pre-configured manner, or the ephemeris information of the satellite may also be sent to the terminal device by broadcasting by the satellite.
  • the terminal equipment can determine the position of the satellite according to the ephemeris information of the satellite.
  • the terminal device can calculate the timing deviation of the terminal device relative to the satellite based on its own position information and the position of the satellite, and the timing deviation is also the first TA value.
  • the terminal device calculates its own distance relative to the satellite based on its own position information and the position of the satellite, and divides the distance by the speed of light (that is, the propagation speed of the communication signal) and then multiplies by 2 to obtain the first A TA value.
  • Step 202 The terminal device determines a second TA value according to the first TA value and the first adjustment value, and the second TA value is used for the terminal device to perform uplink synchronization.
  • the determination of the first adjustment value may be implemented in the following two ways.
  • the terminal device receives the first signaling sent by the network device, where the first signaling carries the first adjustment value.
  • the first signaling is a first TA command. That is, the first adjustment value is the TA adjustment value carried in the first TA command.
  • the time when the terminal device receives the first TA command may have the following situations:
  • the first TA command is a TA command received by the terminal device before calculating the first TA value.
  • the first TA command is the last TA command received by the terminal device before calculating the first TA value.
  • the first TA command is the TA command received by the terminal device when calculating the first TA value.
  • the first TA command is the last TA command received by the terminal device when calculating the first TA value.
  • the first TA command is a TA command received by the terminal device after calculating the first TA value.
  • the first TA command is the last TA command received by the terminal device after calculating the first TA value.
  • the first TA command is a TA command carried in the RAR.
  • the terminal device receives the RAR sent by the network device, and determines the TA adjustment value carried in the TA command in the RAR as the first adjustment value.
  • the terminal device sends a first message to the network device based on the pre-compensated TA value, and the first message includes a preamble (that is, the first message Is Msg1); wherein the TA adjustment value carried in the TA command in the RAR is determined by the network device based on the uplink timing of the first message, and the uplink timing of the first message is determined by the terminal device based on the The TA value of the pre-compensation is determined.
  • a preamble that is, the first message Is Msg1
  • the pre-compensated TA value is calculated by the terminal device according to the position information of the terminal device and the ephemeris information of the satellite. Further, specifically, the terminal device calculates its own distance relative to the satellite according to its current position information and satellite position information (the satellite position information can be determined based on the satellite’s ephemeris information), and divides the distance by the speed of light (ie, the speed of light). The propagation speed of the communication signal) is multiplied by 2 to obtain the pre-compensated TA value.
  • a TA value is calculated according to the current position information of the terminal device and the ephemeris information of the satellite, and the TA value is sent as the pre-compensated TA value The first news.
  • the terminal device sending the first message based on the pre-compensated TA value specifically refers to: the terminal device determines the uplink timing (that is, the uplink synchronization clock) based on the pre-compensated TA value, and sends the first message based on the uplink timing. information.
  • the network device may determine the TA adjustment value based on the receiving moment of the first message and the uplink timing of the first message, and feed the TA adjustment value carried in the TA command in the RAR to the terminal device.
  • the network actually determines the TA adjustment value instead of the TA absolute value when determining the TA value.
  • the TA adjustment value is used to determine the deviation from the currently used TA value.
  • TA absolute value is used to determine the TA value to be updated.
  • the last TA command received by the terminal device before calculating the first TA value is the TA command carried in the RAR, and the terminal device uses the TA adjustment value carried in the TA command in the RAR to append the latest TA command.
  • the calculated first TA value can obtain the second TA value, and the terminal device uses the second TA value to perform uplink synchronization (or perform uplink transmission).
  • the first TA command is a TA command carried in a Media Access Control Control Element (MAC CE).
  • MAC CE Media Access Control Control Element
  • the terminal device receives the MAC CE sent by the network device, and determines the TA adjustment value carried in the TA command in the MAC CE as the first adjustment value.
  • the last TA command received by the terminal device before calculating the first TA value is the TA command carried in the MAC CE, and the terminal device uses the TA adjustment value carried in the TA command in the MAC CE to add
  • the latest calculated first TA value can be used to obtain the second TA value, and the terminal device uses the second TA value to perform uplink synchronization (or perform uplink transmission).
  • the MAC CE in the above solution can also be called Timing Advance Command MAC CE.
  • the first adjustment value is determined based on N TA commands received by the terminal device, and the N is a positive integer. Specifically, the terminal device receives N TA commands, and determines the accumulated value of the N TA adjustment values carried in the N TA commands as the first adjustment value, where in the N TA commands Each TA command carries a TA adjustment value.
  • the terminal device receives TA command 1 at time T1, TA2 at time T2, and TA command 3 at time T3.
  • the moment when the terminal device receives the N TA commands may have the following situations:
  • the terminal device receives the N TA commands before calculating the first TA value.
  • the terminal device receives a part of the N TA commands before calculating the first TA value, and receives another of the N TA commands after calculating the first TA value. Part of TA commands.
  • the terminal device receives the N TA commands after calculating the first TA value.
  • the N TA commands include at least one of the following:
  • At least one TA command carried in RAR At least one TA command carried in RAR
  • At least one TA command carried in the MAC CE At least one TA command carried in the MAC CE.
  • the terminal device sends the first message associated with the RAR to the network device based on the pre-compensated TA value, and the first message includes a preamble (that is, the first The message is Msg1); wherein the TA adjustment value carried in the TA command in the RAR is determined by the network device based on the uplink timing of the first message, and the uplink timing of the first message is determined by the terminal device based on The pre-compensated TA value is determined.
  • the pre-compensated TA value is calculated by the terminal device according to the position information of the terminal device and the ephemeris information of the satellite. Further, specifically, the terminal device calculates its own distance relative to the satellite according to its current position information and satellite position information (the satellite position information can be determined based on the satellite’s ephemeris information), and divides the distance by the speed of light (ie, the speed of light). The propagation speed of the communication signal) is multiplied by 2 to obtain the pre-compensated TA value.
  • a TA value is calculated according to the current position information of the terminal device and the ephemeris information of the satellite, and the TA value is sent as the pre-compensated TA value The first news.
  • the terminal device sending the first message based on the pre-compensated TA value specifically refers to: the terminal device determines the uplink timing (that is, the uplink synchronization clock) based on the pre-compensated TA value, and sends the first message based on the uplink timing. information.
  • the network device may determine the TA adjustment value based on the receiving moment of the first message and the uplink timing of the first message, and feed the TA adjustment value carried in the TA command in the RAR to the terminal device.
  • the terminal device side maintains a local variable called the first TA variable.
  • the initial value of the first TA variable is zero. If the terminal device receives a TA command, the TA command carried The TA adjustment value is accumulated into the first TA variable.
  • the N TA adjustment values received by the terminal device may be accumulated into the first TA variable, that is, the value of the first TA variable is the first adjustment value.
  • the terminal device receives N TA commands before calculating the first TA value, and the value of the first TA variable is the accumulated value of the N TA adjustment values carried in the N TA commands.
  • the terminal device receives the RAR, and the TA command in the RAR carries an adjustment value. In this situation,
  • the terminal device If the terminal device sends the first message associated with the RAR based on the pre-compensated TA value before receiving the RAR, the terminal device will accumulate the TA adjustment value carried in the TA command in the RAR to all In the first TA variable.
  • the network device since the transmission of the first message performs TA pre-compensation, the network device actually determines the TA adjustment value instead of the TA absolute value when determining the TA value.
  • the terminal device obtains the TA adjustment value from the RAR sent by the network device, and accumulates it into the first TA variable.
  • the terminal device If the terminal device sends the first message without TA precompensation before receiving the RAR, the terminal device will not accumulate the TA adjustment value carried in the TA command in the RAR to all In the first TA variable.
  • the network device since the transmission of the first message does not perform TA pre-compensation, the network device actually determines the absolute value of the TA when determining the TA value. The terminal device will not accumulate the absolute value of TA in the RAR into the first TA variable.
  • the terminal device receives the MAC CE, and the TA command in the MAC CE carries a TA adjustment value. In this case, the terminal device accumulates the TA adjustment value carried in the TA command in the MAC CE to the first TA variable.
  • the MAC CE in the above solution can also be called Timing Advance Command MAC CE.
  • the terminal device after calculating the first TA value, the terminal device reads the value of the first TA variable, and adds the value of the first TA variable to the calculated first TA value to obtain the second TA Value, the terminal device uses the second TA value to perform uplink synchronization (or perform uplink transmission).
  • the terminal device optionally, if the terminal device does not receive any TA command (such as the TA command in RAR, the TA command in MAC CE) before calculating the first TA value, the terminal device uses the calculated first TA value Perform uplink synchronization (or uplink transmission).
  • any TA command such as the TA command in RAR, the TA command in MAC CE
  • the network in the embodiment of the present application refers to a network implemented by a satellite.
  • the terminal device calculates the current TA value (that is, the first TA value) according to its own position information and the ephemeris information of the satellite, and adds the TA adjustment value received last time to the calculated TA value to obtain a new TA value (that is, the first TA value).
  • Two TA values using the new TA value for uplink transmission.
  • the connected terminal device calculates the current TA value according to its own position information and satellite ephemeris information. If no TA command has been received before, the terminal device uses the calculated TA value for uplink transmission.
  • the terminal device receives the TA command sent by the network side, which indicates the TA adjustment value (denoted as delta_TA).
  • the terminal device In the next uplink transmission, the terminal device recalculates the current TA value according to its own position information and ephemeris information, and adds the previously received TA adjustment value as the latest TA value for uplink transmission.
  • the terminal device always maintains the TA adjustment value indicated in the last TA command, and appends the TA adjustment value to the newly calculated TA value.
  • the terminal device After the terminal device receives the Physical Downlink Shared Channel (PDSCH) that carries the Timing Advance Command MAC CE sent by the network side, it determines the TA adjustment amount according to the TA command in the Timing Advance Command MAC CE, as shown in the figure Delta_TA1, delta_TA2, delta_TA3 in 3. The terminal device uses the calculated TA value plus the TA adjustment value obtained last time as a new TA value to send a physical uplink shared channel (PUSCH).
  • PUSCH Physical Downlink Shared Channel
  • the terminal device due to the high-speed movement of satellites, the TA value calculated by the terminal device with positioning capability at different times will be different.
  • the terminal device does not simply adjust the TA value. It is used in addition to the TA value calculated last time, but considering the change of the TA value itself, the TA value is recalculated, and the TA adjusted value is added to the newly calculated TA value.
  • the terminal device side maintains a local variable (that is, the first TA variable), and accumulates the TA adjustment value in the TA commands received in the past to the local variable.
  • the terminal device calculates the current TA value (that is, the first TA value) according to its own position information and the ephemeris information of the satellite, and adds the calculated TA value to the value of the local variable to obtain a new TA value (that is, the second TA value). Value), using the new TA value for uplink transmission.
  • the specific implementation process is as follows:
  • the connected terminal device calculates the current TA value according to its own position information and satellite ephemeris information. If no TA command has been received before, the terminal device uses the calculated TA value for uplink transmission.
  • the terminal device side maintains a local variable (for example, delta_TA), and the initial value of the local variable is set to zero.
  • the terminal device receives the TA command sent by the network side, which indicates the TA adjustment value.
  • the terminal device accumulates the TA adjustment value into delta_TA.
  • the terminal device In the next uplink transmission, the terminal device recalculates the current TA value according to its own position information and ephemeris information, and adds the value of delta_TA maintained locally by the terminal device as the latest TA value for uplink transmission.
  • the terminal device when the terminal device initiates the random access process, if the terminal device performs TA pre-compensation when sending Msg1, the terminal device also accumulates the TA adjustment value indicated in the RAR into the local variable delta_TA. If the terminal device does not perform TA pre-compensation when sending Msg1, the terminal device will not accumulate the TA value indicated in the RAR into the local variable delta_TA.
  • the terminal device determines the TA adjustment amount according to the TA command in Timing Advance Command MAC CE, such as delta_TA1, delta_TA2, and delta_TA3 in FIG. 4.
  • the terminal device accumulates the TA adjustment amount determined by the TA command to delta_TA.
  • the terminal device uses the calculated TA value plus the value of delta_TA as the new TA value to send the PUSCH.
  • the terminal device due to the high-speed movement of satellites, the TA value calculated by the terminal device with positioning capability at different times will be different.
  • the terminal device does not simply adjust the TA value. Attach it to the TA value calculated last time, but consider the change of the TA value itself, recalculate the TA value, and append the historically accumulated TA adjustment value to the newly calculated TA value to help smooth the TA calculation error. Make TA adjustment more stable.
  • FIG. 5 is a schematic diagram of the structural composition of the TA determining apparatus provided by an embodiment of the application, which is applied to a terminal device. As shown in FIG. 5, the TA determining apparatus includes:
  • the calculation unit 501 is configured to calculate the first TA value according to the position information of the terminal device and the ephemeris information of the satellite;
  • the determining unit 502 is configured to determine a second TA value according to the first TA value and the first adjustment value, and the second TA value is used for the terminal device to perform uplink synchronization.
  • the device further includes:
  • the receiving unit 503 is configured to receive first signaling sent by a network device, where the first signaling carries the first adjustment value.
  • the first signaling is a first TA command.
  • the first TA command is a TA command received by the terminal device before calculating the first TA value
  • the first TA command is the TA command received by the terminal device when calculating the first TA value
  • the first TA command is a TA command received by the terminal device after calculating the first TA value.
  • the first TA command is the last TA command received by the terminal device before calculating the first TA value
  • the first TA command is the last TA command received by the terminal device when calculating the first TA value; or,
  • the first TA command is the last TA command received by the terminal device after calculating the first TA value.
  • the first TA command is a TA command carried in a random access response RAR
  • the receiving unit 503 is configured to receive the RAR sent by the network device
  • the determining unit 502 is configured to determine the TA adjustment value carried in the TA command in the RAR as the first adjustment value.
  • the first TA command is a TA command carried in the MAC CE
  • the receiving unit 503 is configured to receive the MAC CE sent by the network device
  • the determining unit 502 is configured to determine the TA adjustment value carried in the TA command in the MAC CE as the first adjustment value.
  • the first adjustment value is determined based on N TA commands received by the terminal device, and the N is a positive integer.
  • the device further includes:
  • the receiving unit 503 is configured to receive N TA commands
  • the determining unit 502 is configured to determine the accumulated value of the N TA adjustment values carried in the N TA commands as the first adjustment value, wherein each TA command in the N TA commands is Carry a TA adjustment value.
  • the receiving unit 503 is configured to:
  • the N TA commands are received before calculating the first TA value; or,
  • a part of the TA commands among the N TA commands is received before calculating the first TA value, and another part of the TA commands among the N TA commands is received after calculating the first TA value; or,
  • the N TA commands are received after calculating the first TA value.
  • the N TA commands include at least one of the following:
  • At least one TA command carried in RAR At least one TA command carried in RAR
  • At least one TA command carried in the MAC CE At least one TA command carried in the MAC CE.
  • the TA adjustment value carried in the TA command in the RAR is determined by the network device based on the uplink timing of the first message, and the first message is sent by the terminal device to the network device of.
  • the uplink timing of the first message is determined by the terminal device based on a pre-compensated TA value.
  • the pre-compensated TA value is calculated by the terminal device according to the position information of the terminal device and the ephemeris information of the satellite.
  • the first message includes a preamble.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the application. For the sake of brevity , I won’t repeat it here.
  • FIG. 7 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种TA确定方法及装置、终端设备,该方法包括:终端设备根据所述终端设备的位置信息和卫星的星历信息计算第一TA值;所述终端设备根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。

Description

一种TA确定方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种定时提前(Timing Advance,TA)的确定方法及装置、终端设备。
背景技术
在地面通信网络中,终端设备维护的TA值都是通过网络指示的。终端设备每次收到TA命令(TA command),都将之前维护的TA值加上该TA命令中携带的TA调整值作为最新的TA值使用。
与地面通信网络相比,非地面通信网络(Non-Terrestrial Network,NTN)中终端设备与卫星之间的TA值变化较大。由于TA值一直在变化,终端设备不会一直使用之前维护的TA值,而是在进行上行传输时通过定位计算当前的TA值,然而,通过这种方式得到的TA值存在一定的偏差,影响上行同步的精度。
发明内容
本申请实施例提供一种TA确定方法及装置、终端设备。
本申请实施例提供的TA确定方法,包括:
终端设备根据所述终端设备的位置信息和卫星的星历信息计算第一TA值;
所述终端设备根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。
本申请实施例提供的TA确定装置,应用于终端设备,所述装置包括:
计算单元,用于根据所述终端设备的位置信息和卫星的星历信息计算第一TA值;
确定单元,用于根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的TA确定方法。
本申请实施例提供的芯片,用于实现上述的TA确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的TA确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的TA确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的TA确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的TA确定方法。
通过上述技术方案,终端设备根据自身的位置信息和卫星的星历信息计算最新的TA值(即第一TA值),然后将该最新的TA值附加上一个TA调整值(即第一调整 值)得到最终的TA值(即第二TA值),该最终的TA值考虑了终端设备和卫星之间不断变化的位置关系以及网络侧指示的TA调整值,因而准确度较高,提高了终端设备上行同步的精度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信***架构的示意性图;
图2为本申请实施例提供的TA确定方法的流程示意图;
图3为本申请实施例提供的示例一的TA确定的示意图;
图4为本申请实施例提供的示例二的TA确定的示意图;
图5为本申请实施例提供的TA确定装置的结构组成示意图;
图6是本申请实施例提供的一种通信设备示意性结构图;
图7是本申请实施例的芯片的示意性结构图;
图8是本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、***、5G通信***或未来的通信***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信***中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端120。所述终端120通过有线线路或无线接口与所述网络设备110连接。通过无线接口与所述网络设备110连接的终端120可以被称为“无线通信终端”、“无线终端”或“移动终端”。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置,蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信***100可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信***100还可包括其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
●NTN
NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。其中,LEO和GEO是主要研究的对象。
1)LEO
LEO卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对终端设备的发射功率要求不高。
2)GEO
GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信***的***容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
●NR上行TA
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(intra-cell)干扰,基站要求来自同一时 刻但不同频域资源的不同终端设备的信号到达基站的时间基本上是对齐的。为了保证基站侧的时间同步,NR支持上行定时提前的机制。
基站侧的上行时钟和下行时钟是相同的,而终端设备侧的上行时钟和下行时钟之间有偏移(偏移的量即为上行TA值,简称为TA值),并且不同终端设备有各自不同的TA值。基站通过适当地控制每个终端设备的TA值,可以控制来自不同终端设备的上行信号到达基站的时间。对于离基站较远的终端设备,由于有较大的传输时延,就要比离基站较近的终端设备提前发送上行数据。
基站基于测量终端设备的上行传输来确定每个终端设备的TA值。基站通过两种方式给终端设备发送TA命令。
1)初始TA值的获取:在随机接入过程,基站通过测量接收到的前导码(preamble)来确定TA值,并通过随机接入响应(Random Access Response,RAR)中的定时提前命令(Timing Advance Command)字段将该TA值发送给终端设备。
2)无线资源控制(Radio Resource Control,RRC)连接态下的TA值的调整:虽然在随机接入过程中,终端设备与基站取得了上行同步,但上行信号到达基站的定时可能会随着时间发生变化,因此,终端设备需要不断地更新其TA值,以保持上行同步。如果某个终端设备的TA值需要校正(或者说更新),则基站会发送一个TA命令给该终端设备,要求其调整上行定时。其中,该TA命令是通过Timing Advance Command MAC CE发送给终端设备的,其携带TA调整值。
在NR地面网络中,终端设备维护的TA值都是通过网络指示的,包括RAR中指示的TA值和TA command MAC CE中指示的TA调整值。每次终端设备收到TA命令,都将之前维护的TA值加上该TA命令中的调整值作为最新的TA值使用。
与传统NR采用的蜂窝网络相比,NTN中终端设备与卫星之间的定时偏差变化较大(即TA值变化较大),尤其是LEO卫星的场景。由于TA值一直在变化,终端设备并不一直使用之前维护的TA值,而是在发送上行时通过定位计算当前的TA值。而至于如何使用之前网络下发的TA调整值,则没有解决方案。为此,提出了本申请实施例的以下技术方案,本申请实施例的技术方案针对具有定位能力的终端设备提出一种新的TA确定方法。
图2为本申请实施例提供的TA确定方法的流程示意图,如图2所示,所述TA确定方法包括以下步骤:
步骤201:终端设备根据所述终端设备的位置信息和卫星的星历信息计算第一TA值。
本申请实施例中,终端设备根据自身的位置信息和卫星的星历信息计算当前的TA值(即第一TA值)。
本申请实施例中,终端设备具有定位功能,如全球定位***(Global Positioning System,GPS)定位功能,终端设备通过自身的定位功能获取自身的位置信息,这里,可选地,位置信息可以通过地球经纬度坐标来表示。
本申请实施例中,卫星是指通信卫星,例如LEO卫星、MEO卫星、GEO卫星等。卫星的星历信息是指卫星运行随时间而变的精确位置或轨迹表。可选地,卫星的星历信息可以通过预配置的方式保存在终端设备侧,或者,卫星的星历信息也可以通过由卫星采用广播的方式发送给终端设备。终端设备根据卫星的星历信息可以确定卫星的位置。
本申请实施例中,终端设备根据自身的位置信息和卫星的位置可以计算出终端设备相对于卫星的定时偏差,该定时偏差也即第一TA值。
在一可选方式中,终端设备根据自身的位置信息和卫星的位置计算出自身相对于卫星的距离,通过将该距离除以光速(即通信信号的传播速度)再乘以2即可得到第一TA 值。
步骤202:所述终端设备根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。
本申请实施例中,第一调整值的确定可以有如下两种实现方式。
●方式一
所述终端设备接收网络设备发送的第一信令,所述第一信令携带所述第一调整值。
在一可选方式中,所述第一信令为第一TA命令。即所述第一调整值为第一TA命令中携带的TA调整值。
这里,所述终端设备接收所述第一TA命令的时间可以有如下几种情况:
情况1)所述第一TA命令为所述终端设备在计算所述第一TA值之前接收到的TA命令。
可选地,所述第一TA命令为所述终端设备在计算所述第一TA值之前最近一次接收到的TA命令。
情况2)所述第一TA命令为所述终端设备在计算所述第一TA值时接收到的TA命令。
可选地,所述第一TA命令为所述终端设备在计算所述第一TA值时最近一次接收到的TA命令。
情况3)所述第一TA命令为所述终端设备在计算所述第一TA值之后接收到的TA命令。
可选地,所述第一TA命令为所述终端设备在计算所述第一TA值之后最近一次接收到的TA命令。
需要说明的是,所述第一TA命令的接收时刻距离所述第一TA值的计算时刻越近,则根据所述第一TA值和所述第一TA命令中的第一调整值计算出的第二TA的精度就越高。
A)在一可选方式中,所述第一TA命令为携带在RAR中的TA命令。这种情况下,所述终端设备接收所述网络设备发送的RAR,将所述RAR中的TA命令中携带的TA调整值确定为所述第一调整值。
进一步,所述终端设备接收所述网络设备发送RAR之前,所述终端设备基于预补偿的TA值向所述网络设备发送第一消息,所述第一消息包括前导码(即所述第一消息为Msg1);其中,所述RAR中的TA命令中携带的TA调整值由所述网络设备基于所述第一消息的上行定时确定,所述第一消息的上行定时由所述终端设备基于所述预补偿的TA值确定。
在一可选方式中,所述预补偿的TA值是所述终端设备根据所述终端设备的位置信息和所述卫星的星历信息计算得到的。进一步,具体地,终端设备根据自身当前的位置信息和卫星的位置信息(卫星的位置信息可基于卫星的星历信息确定)计算出自身相对于卫星的距离,通过将该距离除以光速(即通信信号的传播速度)再乘以2即可得到所述预补偿的TA值。
具体实现时,终端设备需要发送第一消息的情况下,根据所述终端设备当前的位置信息和所述卫星的星历信息计算得到一个TA值,将该TA值作为预补偿的TA值来发送第一消息。需要说明的是,所述终端设备基于预补偿的TA值发送第一消息具体是指:所述终端设备基于预补偿的TA值确定上行定时(即上行同步时钟),基于该上行定时发送第一消息。网络设备接收到第一消息后,可以基于该第一消息的接收时刻以及该第一消息的上行定时确定TA调整值,并将该TA调整值携带在RAR中的TA命令中反馈给 终端设备。
这里,由于第一消息的发送进行了TA预补偿,因而网络在确定TA值的时候实际确定的是TA调整值而非TA绝对值,TA调整值用于确定相对于当前使用的TA值的偏差,TA绝对值用于确定待更新的TA值。
在一个示例中,终端设备在计算所述第一TA值之前最近一次接收到的TA命令为携带在RAR中的TA命令,终端设备利用该RAR中的TA命令中携带的TA调整值附加上最新计算出的第一TA值,可以得到第二TA值,终端设备利用该第二TA值进行上行同步(或者说进行上行传输)。
B)在另一可选方式中,所述第一TA命令为携带在媒体接入控制控制单元(Media Access Control Control Element,MAC CE)中的TA命令。这种情况下,所述终端设备接收所述网络设备发送的MAC CE,将所述MAC CE中的TA命令中携带的TA调整值确定为所述第一调整值。
在一个示例中,终端设备在计算所述第一TA值之前最近一次接收到的TA命令为携带在MAC CE中的TA命令,终端设备利用该MAC CE中的TA命令中携带的TA调整值附加上最新计算出的第一TA值,可以得到第二TA值,终端设备利用该第二TA值进行上行同步(或者说进行上行传输)。
需要说明的是,上述方案中的MAC CE也可以称为Timing Advance Command MAC CE。
●方式二
所述第一调整值基于所述终端设备接收到的N个TA命令确定,所述N为正整数。具体地,所述终端设备接收到N个TA命令,将所述N个TA命令中携带的N个TA调整值的累加值确定为所述第一调整值,其中,所述N个TA命令中的每个TA命令均携带一个TA调整值。
需要说明的是,所述N个TA命令中不同TA命令对应的接收时刻不同。例如:终端设备在T1时刻接收到TA命令1,在T2时刻接收到TA2,在T3时刻接收到TA命令3。这里,所述终端设备接收到所述N个TA命令的时刻,可以有如下几种情况:
情况1)所述终端设备在计算所述第一TA值之前接收到所述N个TA命令。
情况2)所述终端设备在计算所述第一TA值之前接收到所述N个TA命令中的一部分TA命令,在计算所述第一TA值之后接收到所述N个TA命令中的另一部分TA命令。
情况3)所述终端设备在计算所述第一TA值之后接收到所述N个TA命令。
本申请实施例中,所述N个TA命令包括以下至少之一:
至少一个携带在RAR中的TA命令;
至少一个携带在MAC CE中的TA命令。
这里,对于所述携带在RAR中的TA命令,所述终端设备基于预补偿的TA值向网络设备发送所述RAR关联的第一消息,所述第一消息包括前导码(即所述第一消息为Msg1);其中,所述RAR中的TA命令中携带的TA调整值由所述网络设备基于所述第一消息的上行定时确定,所述第一消息的上行定时由所述终端设备基于所述预补偿的TA值确定。
在一可选方式中,所述预补偿的TA值是所述终端设备根据所述终端设备的位置信息和所述卫星的星历信息计算得到的。进一步,具体地,终端设备根据自身当前的位置信息和卫星的位置信息(卫星的位置信息可基于卫星的星历信息确定)计算出自身相对于卫星的距离,通过将该距离除以光速(即通信信号的传播速度)再乘以2即可得到所述预补偿的TA值。
具体实现时,终端设备需要发送第一消息的情况下,根据所述终端设备当前的位置信息和所述卫星的星历信息计算得到一个TA值,将该TA值作为预补偿的TA值来发送第一消息。需要说明的是,所述终端设备基于预补偿的TA值发送第一消息具体是指:所述终端设备基于预补偿的TA值确定上行定时(即上行同步时钟),基于该上行定时发送第一消息。网络设备接收到第一消息后,可以基于该第一消息的接收时刻以及该第一消息的上行定时确定TA调整值,并将该TA调整值携带在RAR中的TA命令中反馈给终端设备。
在一个示例中,所述终端设备侧维护一个本地变量,称为第一TA变量,该第一TA变量的初始值为零,若所述终端设备接收到TA命令,将该TA命令中携带的TA调整值累加到所述第一TA变量中。如此,可以将所述终端设备接收到的N个TA调整值的累加到第一TA变量中,也就是说第一TA变量的取值即为所述第一调整值。例如:所述终端设备在计算所述第一TA值之前接收到N个TA命令,所述第一TA变量的取值为所述N个TA命令中携带的N个TA调整值的累加值。
A)在一可选方式中,所述终端设备接收到RAR,该RAR中的TA命携带一个调整值。这种情况下,
I)若所述终端设备在接收所述RAR之前,基于预补偿的TA值发送该RAR关联的第一消息,则所述终端设备将该RAR中的TA命令中携带的TA调整值累加到所述第一TA变量中。
这里,由于第一消息的发送进行了TA预补偿,因而网络设备在确定TA值的时候实际确定的是TA调整值而非TA绝对值。终端设备从网络设备发送的RAR中获取TA调整值,并累加到所述第一TA变量中。
II)若所述终端设备在接收所述RAR之前,未进行TA预补偿的情况下发送第一消息,则所述终端设备不会将该RAR中的TA命令中携带的TA调整值累加到所述第一TA变量中。
这里,由于第一消息的发送未进行TA预补偿,因而网络设备在确定TA值的时候实际确定的是TA绝对值。终端设备不会将RAR中的TA绝对值累加到所述第一TA变量中。
B)在另一可选方式中,所述终端设备接收到MAC CE,该MAC CE中的TA命令携带一个TA调整值。这种情况下,所述终端设备将该MAC CE中的TA命令中携带的TA调整值累加到所述第一TA变量中。
需要说明的是,上述方案中的MAC CE也可以称为Timing Advance Command MAC CE。
在一个示例中,终端设备在计算出第一TA值后,读取第一TA变量的取值,将该第一TA变量的取值附加上计算出的第一TA值,可以得到第二TA值,终端设备利用该第二TA值进行上行同步(或者说进行上行传输)。
本申请实施例中,可选地,如果终端设备计算第一TA值之前没收到任何TA命令(如RAR中的TA命令,MAC CE中的TA命令),则终端设备使用计算的第一TA值进行上行同步(或者说进行上行传输)。
需要说明的是,本申请实施例中的网络是指卫星实现的网络。
以下结合具体应用示例对本申请实施例的技术方案进行距离说明。
示例一
终端设备根据自身的位置信息和卫星的星历信息计算当前的TA值(即第一TA值),将最近一次收到的TA调整值附加上计算的TA值后得到新的TA值(即第二TA值),利用该新的TA值进行上行传输。具体实施过程如下:
1.连接态的终端设备根据自身的位置信息和卫星的星历信息计算当前的TA值,如果之前没收到任何TA命令,则终端设备使用计算的TA值进行上行传输。
2.终端设备收到网络侧发送的TA命令,其中指示了TA调整值(记作delta_TA)。
3.终端设备在下次上行传输时,根据自身的位置信息和星历信息重新计算当前的TA值,并附加上之前接收到的TA调整值,作为最新的TA值进行上行传输。
需要说明的是,终端设备始终维护最后一个TA命令中指示的TA调整值,并将该TA调整值附加在最新计算的TA值上。
参照图3,终端设备接收到网络侧发送的携带Timing Advance Command MAC CE的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)后,根据Timing Advance Command MAC CE中的TA命令确定TA调整量,如图3中的delta_TA1、delta_TA2、delta_TA3。终端设备使用计算的TA值加上最近一次获得的TA调整量作为新的TA值来发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
本申请实施例的技术方案,由于卫星的高速移动,具有定位能力的终端设备在不同时刻计算的TA值会不同,对于网络上次发送的TA调整值,终端设备不是简单的将该TA调整值附加在上次计算的TA值上来使用,而是考虑TA值本身的变化,重新计算TA值,将TA调整值附加在新计算的TA值上。
示例二
终端设备侧维护一个本地变量(即第一TA变量),将历次收到的TA命令中的TA调整值累加到该本地变量中。终端设备根据自身的位置信息和卫星的星历信息计算当前的TA值(即第一TA值),将计算的TA值附加上本地变量的取值作后得到新的TA值(即第二TA值),利用该新的TA值进行上行传输。具体实施过程如下:
1.连接态的终端设备根据自身的位置信息和卫星的星历信息计算当前的TA值,如果之前没收到任何TA命令,则终端设备使用计算的TA值进行上行传输。
2.终端设备侧维护一个本地变量(例如delta_TA),该本地变量的初始值置零。终端设备收到网络侧发送的TA命令,其中指示了TA调整值。终端设备将该TA调整值累加到delta_TA中。
3.终端设备在下次上行传输时,根据自身的位置信息和星历信息重新计算当前的TA值,并附加上终端设备本地维护的delta_TA的取值,作为最新的TA值进行上行传输。
需要说明的是,当终端设备发起随机接入过程时,如果终端设备在发送Msg1时进行了TA预补偿,则终端设备将RAR中指示的TA调整值也累加到本地变量delta_TA中。如果终端设备在发送Msg1时没有进行TA预补偿,则终端设备不会将RAR中指示的TA值累加到本地变量delta_TA中。
参照图4,终端设备接收到网络侧发送的携带Timing Advance Command MAC CE的PDSCH后,根据Timing Advance Command MAC CE中的TA命令确定TA调整量,如图4中的delta_TA1、delta_TA2、delta_TA3。终端设备将TA命令确定TA调整量累加到delta_TA中。终端设备使用计算的TA值加上delta_TA的取值作为新的TA值来发送PUSCH。
本申请实施例的技术方案,由于卫星的高速移动,具有定位能力的终端设备在不同时刻计算的TA值会不同,对于网络上次发送的TA调整值,终端设备不是简单的将该TA调整值附加在上次计算的TA值上来使用,而是考虑TA值本身的变化,重新计算TA值,将历史累加的TA调整值附加在新计算的TA值上,有助于平滑TA的计算误差,使得TA调整更稳定。
图5为本申请实施例提供的TA确定装置的结构组成示意图,应用于终端设备, 如图5所示,所述TA确定装置包括:
计算单元501,用于根据所述终端设备的位置信息和卫星的星历信息计算第一TA值;
确定单元502,用于根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。
在一可选方式中,所述装置还包括:
接收单元503,用于接收网络设备发送的第一信令,所述第一信令携带所述第一调整值。
在一可选方式中,所述第一信令为第一TA命令。
在一可选方式中,所述第一TA命令为所述终端设备在计算所述第一TA值之前接收到的TA命令;或者,
所述第一TA命令为所述终端设备在计算所述第一TA值时接收到的TA命令;或者,
所述第一TA命令为所述终端设备在计算所述第一TA值之后接收到的TA命令。
在一可选方式中,所述第一TA命令为所述终端设备在计算所述第一TA值之前最近一次接收到的TA命令;或者,
所述第一TA命令为所述终端设备在计算所述第一TA值时最近一次接收到的TA命令;或者,
所述第一TA命令为所述终端设备在计算所述第一TA值之后最近一次接收到的TA命令。
在一可选方式中,所述第一TA命令为携带在随机接入响应RAR中的TA命令的情况下,
所述接收单元503,用于接收所述网络设备发送的RAR;
所述确定单元502,用于将所述RAR中的TA命令中携带的TA调整值确定为所述第一调整值。
在一可选方式中,所述第一TA命令为携带在MAC CE中的TA命令的情况下,
所述接收单元503,用于接收所述网络设备发送的MAC CE;
所述确定单元502,用于将所述MAC CE中的TA命令中携带的TA调整值确定为所述第一调整值。
在一可选方式中,所述第一调整值基于所述终端设备接收到的N个TA命令确定,所述N为正整数。
在一可选方式中,所述装置还包括:
接收单元503,用于接收到N个TA命令;
所述确定单元502,用于将所述N个TA命令中携带的N个TA调整值的累加值确定为所述第一调整值,其中,所述N个TA命令中的每个TA命令均携带一个TA调整值。
在一可选方式中,所述接收单元503,用于:
在计算所述第一TA值之前接收到所述N个TA命令;或者,
在计算所述第一TA值之前接收到所述N个TA命令中的一部分TA命令,在计算所述第一TA值之后接收到所述N个TA命令中的另一部分TA命令;或者,
在计算所述第一TA值之后接收到所述N个TA命令。
在一可选方式中,所述N个TA命令包括以下至少之一:
至少一个携带在RAR中的TA命令;
至少一个携带在MAC CE中的TA命令。
在一可选方式中,所述RAR中的TA命令中携带的TA调整值由所述网络设备基于第一消息的上行定时确定,所述第一消息由所述终端设备向所述网络设备发送的。
在一可选方式中,所述第一消息的上行定时由所述终端设备基于预补偿的TA值确定。
在一可选方式中,所述预补偿的TA值是所述终端设备根据所述终端设备的位置信息和所述卫星的星历信息计算得到的。
在一可选方式中,所述第一消息包括前导码。
本领域技术人员应当理解,本申请实施例的上述TA确定装置的相关描述可以参照本申请实施例的TA确定方法的相关描述进行理解。
图6是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或 片上***芯片等。
图8是本申请实施例提供的一种通信***800的示意性框图。如图8所示,该通信***800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并 且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何 熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (35)

  1. 一种定时提前TA确定方法,所述方法包括:
    终端设备根据所述终端设备的位置信息和卫星的星历信息计算第一TA值;
    所述终端设备根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第一信令,所述第一信令携带所述第一调整值。
  3. 根据权利要求2所述的方法,其中,所述第一信令为第一TA命令。
  4. 根据权利要求3所述的方法,其中,
    所述第一TA命令为所述终端设备在计算所述第一TA值之前接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值时接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值之后接收到的TA命令。
  5. 根据权利要求4所述的方法,其中,
    所述第一TA命令为所述终端设备在计算所述第一TA值之前最近一次接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值时最近一次接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值之后最近一次接收到的TA命令。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述第一TA命令为携带在随机接入响应RAR中的TA命令的情况下,所述方法还包括:
    所述终端设备接收所述网络设备发送的RAR,将所述RAR中的TA命令中携带的TA调整值确定为所述第一调整值。
  7. 根据权利要求3至5中任一项所述的方法,其中,所述第一TA命令为携带在媒体接入控制控制单元MAC CE中的TA命令的情况下,所述方法还包括:
    所述终端设备接收所述网络设备发送的MAC CE,将所述MAC CE中的TA命令中携带的TA调整值确定为所述第一调整值。
  8. 根据权利要求1所述的方法,其中,所述第一调整值基于所述终端设备接收到的N个TA命令确定,所述N为正整数。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端设备接收到所述N个TA命令,将所述N个TA命令中携带的N个TA调整值的累加值确定为所述第一调整值,其中,所述N个TA命令中的每个TA命令均携带一个TA调整值。
  10. 根据权利要求9所述的方法,其中,所述终端设备接收到N个TA命令,包括:
    所述终端设备在计算所述第一TA值之前接收到所述N个TA命令;或者,
    所述终端设备在计算所述第一TA值之前接收到所述N个TA命令中的一部分TA命令,在计算所述第一TA值之后接收到所述N个TA命令中的另一部分TA命令;或者,
    所述终端设备在计算所述第一TA值之后接收到所述N个TA命令。
  11. 根据权利要求8至10中任一项所述的方法,其中,所述N个TA命令包括以下至少之一:
    至少一个携带在RAR中的TA命令;
    至少一个携带在MAC CE中的TA命令。
  12. 根据权利要求6或11所述的方法,其中,所述RAR中的TA命令中携带的TA调整值由所述网络设备基于第一消息的上行定时确定,所述第一消息由所述终端设备向所述网络设备发送的。
  13. 根据权利要求12所述的方法,其中,所述第一消息的上行定时由所述终端设备基于预补偿的TA值确定。
  14. 根据权利要求13所述的方法,其中,所述预补偿的TA值是所述终端设备根据所述终端设备的位置信息和所述卫星的星历信息计算得到的。
  15. 根据权利要求12至14中任一项所述的方法,其中,所述第一消息包括前导码。
  16. 一种TA确定装置,应用于终端设备,所述装置包括:
    计算单元,用于根据所述终端设备的位置信息和卫星的星历信息计算第一TA值;
    确定单元,用于根据所述第一TA值和第一调整值确定第二TA值,所述第二TA值用于所述终端设备进行上行同步。
  17. 根据权利要求16所述的装置,其中,所述装置还包括:
    接收单元,用于接收网络设备发送的第一信令,所述第一信令携带所述第一调整值。
  18. 根据权利要求17所述的装置,其中,所述第一信令为第一TA命令。
  19. 根据权利要求18所述的装置,其中,
    所述第一TA命令为所述终端设备在计算所述第一TA值之前接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值时接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值之后接收到的TA命令。
  20. 根据权利要求19所述的装置,其中,
    所述第一TA命令为所述终端设备在计算所述第一TA值之前最近一次接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值时最近一次接收到的TA命令;或者,
    所述第一TA命令为所述终端设备在计算所述第一TA值之后最近一次接收到的TA命令。
  21. 根据权利要求18至20中任一项所述的装置,其中,所述第一TA命令为携带在随机接入响应RAR中的TA命令的情况下,
    所述接收单元,用于接收所述网络设备发送的RAR;
    所述确定单元,用于将所述RAR中的TA命令中携带的TA调整值确定为所述第一调整值。
  22. 根据权利要求18至20中任一项所述的装置,其中,所述第一TA命令为携带在MAC CE中的TA命令的情况下,
    所述接收单元,用于接收所述网络设备发送的MAC CE;
    所述确定单元,用于将所述MAC CE中的TA命令中携带的TA调整值确定为所 述第一调整值。
  23. 根据权利要求16所述的装置,其中,所述第一调整值基于所述终端设备接收到的N个TA命令确定,所述N为正整数。
  24. 根据权利要求23所述的装置,其中,所述装置还包括:
    接收单元,用于接收到N个TA命令;
    所述确定单元,用于将所述N个TA命令中携带的N个TA调整值的累加值确定为所述第一调整值,其中,所述N个TA命令中的每个TA命令均携带一个TA调整值。
  25. 根据权利要求24所述的装置,其中,所述接收单元,用于:
    在计算所述第一TA值之前接收到所述N个TA命令;或者,
    在计算所述第一TA值之前接收到所述N个TA命令中的一部分TA命令,在计算所述第一TA值之后接收到所述N个TA命令中的另一部分TA命令;或者,
    在计算所述第一TA值之后接收到所述N个TA命令。
  26. 根据权利要求23至25中任一项所述的装置,其中,所述N个TA命令包括以下至少之一:
    至少一个携带在RAR中的TA命令;
    至少一个携带在MAC CE中的TA命令。
  27. 根据权利要求21或26所述的装置,其中,所述RAR中的TA命令中携带的TA调整值由所述网络设备基于第一消息的上行定时确定,所述第一消息由所述终端设备向所述网络设备发送的。
  28. 根据权利要求27所述的装置,其中,所述第一消息的上行定时由所述终端设备基于预补偿的TA值确定。
  29. 根据权利要求28所述的装置,其中,所述预补偿的TA值是所述终端设备根据所述终端设备的位置信息和所述卫星的星历信息计算得到的。
  30. 根据权利要求27至29中任一项所述的装置,其中,所述第一消息包括前导码。
  31. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  32. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  34. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  35. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2020/080629 2020-03-23 2020-03-23 一种ta确定方法及装置、终端设备 WO2021189183A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202211505456.4A CN115802476A (zh) 2020-03-23 2020-03-23 一种ta确定方法及装置、终端设备
PCT/CN2020/080629 WO2021189183A1 (zh) 2020-03-23 2020-03-23 一种ta确定方法及装置、终端设备
CN202080098120.3A CN115244997A (zh) 2020-03-23 2020-03-23 一种ta确定方法及装置、终端设备
EP20926686.5A EP4120753A4 (en) 2020-03-23 2020-03-23 METHOD AND APPARATUS FOR DETERMINING TA AND TERMINAL DEVICE
US17/934,311 US20230010343A1 (en) 2020-03-23 2022-09-22 Ta determination method and apparatus, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080629 WO2021189183A1 (zh) 2020-03-23 2020-03-23 一种ta确定方法及装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/934,311 Continuation US20230010343A1 (en) 2020-03-23 2022-09-22 Ta determination method and apparatus, and terminal device

Publications (1)

Publication Number Publication Date
WO2021189183A1 true WO2021189183A1 (zh) 2021-09-30

Family

ID=77890827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080629 WO2021189183A1 (zh) 2020-03-23 2020-03-23 一种ta确定方法及装置、终端设备

Country Status (4)

Country Link
US (1) US20230010343A1 (zh)
EP (1) EP4120753A4 (zh)
CN (2) CN115802476A (zh)
WO (1) WO2021189183A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130365A1 (zh) * 2022-01-07 2023-07-13 Oppo广东移动通信有限公司 恢复上行同步的方法、终端设备及存储介质
WO2023129072A3 (en) * 2021-12-28 2023-08-17 Turkcell Teknoloji Arastirma Ve Gelistirme Anonim Sirketi A time management system
WO2023211885A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Closed loop time and frequency corrections in non-terrestrial networks

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220061009A1 (en) * 2020-08-24 2022-02-24 Electronics And Telecommunications Research Institute Method and apparatus for timing control in wireless communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188128A (zh) * 2015-08-21 2015-12-23 北京北方烽火科技有限公司 一种无线授时和空口同步方法、基站、通讯设备及***
CN107197517A (zh) * 2017-08-02 2017-09-22 电子科技大学 基于ta分组的lte卫星上行链路同步方法
CN109842932A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 获取时间提前量的方法与装置
CN110446254A (zh) * 2019-09-12 2019-11-12 成都天奥集团有限公司 一种用于卫星通信***的上行定时提前量终端预测方法
WO2019246276A1 (en) * 2018-06-20 2019-12-26 Qualcomm Incorporated Upstream timing control mechanisms for non-terrestrial networks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11363643B2 (en) * 2018-08-10 2022-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedures for satellite communications
EP4042757A4 (en) * 2019-09-30 2022-10-05 ZTE Corporation SYSTEM AND METHOD FOR CONFIGURATION OF TRANSMISSION RESOURCES AND IMPLEMENTATION OF RACH IN WIRELESS COMMUNICATION NETWORKS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188128A (zh) * 2015-08-21 2015-12-23 北京北方烽火科技有限公司 一种无线授时和空口同步方法、基站、通讯设备及***
CN107197517A (zh) * 2017-08-02 2017-09-22 电子科技大学 基于ta分组的lte卫星上行链路同步方法
CN109842932A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 获取时间提前量的方法与装置
WO2019246276A1 (en) * 2018-06-20 2019-12-26 Qualcomm Incorporated Upstream timing control mechanisms for non-terrestrial networks
CN110446254A (zh) * 2019-09-12 2019-11-12 成都天奥集团有限公司 一种用于卫星通信***的上行定时提前量终端预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120753A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023129072A3 (en) * 2021-12-28 2023-08-17 Turkcell Teknoloji Arastirma Ve Gelistirme Anonim Sirketi A time management system
WO2023130365A1 (zh) * 2022-01-07 2023-07-13 Oppo广东移动通信有限公司 恢复上行同步的方法、终端设备及存储介质
WO2023211885A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Closed loop time and frequency corrections in non-terrestrial networks

Also Published As

Publication number Publication date
CN115802476A (zh) 2023-03-14
EP4120753A4 (en) 2023-04-26
CN115244997A (zh) 2022-10-25
US20230010343A1 (en) 2023-01-12
EP4120753A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021189183A1 (zh) 一种ta确定方法及装置、终端设备
CN111615186B (zh) 一种更新定时提前的方法、终端及网络设备
WO2021159449A1 (zh) 一种定时提前更新方法、终端设备、网络设备
WO2020169048A1 (zh) 一种更新定时提前的方法、终端及基站
EP4311320A1 (en) Information transmission method, terminal device, and network device
WO2022121710A1 (zh) 重复传输次数确定方法与装置、终端和网络设备
US20220240262A1 (en) Wireless communication method and device
WO2021155596A1 (zh) 信息指示方法、装置、设备、***及存储介质
WO2022011710A1 (zh) 上行定时提前的更新方法、装置、设备及介质
WO2022027628A1 (zh) 上行提前定时的确定方法、装置、设备及存储介质
WO2021056385A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2021102889A1 (zh) 随机接入方法、装置、网络设备、终端和存储介质
WO2023035276A1 (zh) 上行传输方法、装置、设备及存储介质
CN115052332B (zh) 信号传输方法、装置及存储介质
EP4340494A1 (en) Wireless communication method, terminal device, and network device
WO2023077327A1 (zh) 定时器参数的确定方法、装置、设备及存储介质
US20240163819A1 (en) Time synchronization method and apparatus, and terminal device
WO2024040393A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
US20240031964A1 (en) Adjustment method and determination method for transmission timing, and terminal device
US11894930B1 (en) Wireless communication method and terminal device
WO2024092456A1 (zh) 位置测量方法、定时器维护方法和设备
WO2022236628A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021168651A1 (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020926686

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE