WO2021160025A1 - 卫星通信的方法和装置 - Google Patents

卫星通信的方法和装置 Download PDF

Info

Publication number
WO2021160025A1
WO2021160025A1 PCT/CN2021/075374 CN2021075374W WO2021160025A1 WO 2021160025 A1 WO2021160025 A1 WO 2021160025A1 CN 2021075374 W CN2021075374 W CN 2021075374W WO 2021160025 A1 WO2021160025 A1 WO 2021160025A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
timing advance
frequency offset
compensation
parameter
Prior art date
Application number
PCT/CN2021/075374
Other languages
English (en)
French (fr)
Inventor
陈莹
罗禾佳
王晓鲁
乔云飞
李榕
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21753546.7A priority Critical patent/EP4096116A4/en
Priority to KR1020227030793A priority patent/KR20220137096A/ko
Priority to BR112022015896A priority patent/BR112022015896A2/pt
Publication of WO2021160025A1 publication Critical patent/WO2021160025A1/zh
Priority to US17/819,441 priority patent/US20220386259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18543Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and more specifically, to methods and devices for satellite communications.
  • satellite communication Compared with terrestrial communication, satellite communication has its own unique advantages, for example, it can provide a wider coverage area; satellite base stations are not easily damaged by natural disasters or external forces.
  • the 5th generation (5G) system and its future evolution network if satellite communications are introduced, can provide communications services for areas that cannot be covered by terrestrial communications networks such as oceans and forests; enhance the reliability of 5G communications, such as ensuring airplanes and trains , And these traffic users get better communication services; provide more data transmission resources for 5G communication, and increase the speed of the network. Therefore, supporting communication with the ground and satellite at the same time is the inevitable trend of future 5G communication, which has relatively great benefits in terms of wide coverage, reliability, multiple connections, and high throughput.
  • Satellite communication there is a big difference between satellite communication and ground communication in terms of communication protocols.
  • Commonly used terminal devices such as mobile phones can only support baseline communication with ground base stations, and only dedicated satellite mobile phones can communicate with satellites.
  • 5G communication the satellite communication process needs to be redesigned so that it can be integrated with the existing terrestrial communication without introducing more cost and complexity to the terminal equipment.
  • the terminal When the terminal is communicating, it is only necessary to select the appropriate base station according to the corresponding needs. To communicate.
  • RTD round trip delay
  • the satellite can broadcast the common frequency compensation, so that the terminal device can adjust the transmission frequency according to the common frequency compensation, thereby reducing the influence of the Doppler frequency shift on the communication.
  • the public TA, TA change rate, and public frequency compensation of the satellite broadcast may be updated frequently. Therefore, the terminal device needs to monitor the update of the parameters in real time. , So the energy consumption required for monitoring is higher, and the system is also more complicated.
  • the present application provides a satellite communication method and device, which can reduce the energy consumption and communication complexity of terminal equipment on the premise of improving communication performance.
  • a satellite communication method including: a terminal device receives first indication information, the first indication information is used to indicate a valid period of first parameter information, and the first parameter information includes at least one of the following Types of information: the first timing advance, the parameter information of the first timing advance, the first frequency offset precompensation or the parameter information of the first frequency offset precompensation; the terminal device is in the valid period according to the The first parameter information performs uplink communication with the satellite.
  • the terminal device can learn the first timing advance, the parameter information of the first timing advance, the first frequency offset precompensation, or the parameters of the first frequency offset precompensation by receiving the first indication information
  • the valid period of the parameter information such as information, thus, there is no need to monitor whether the parameter information is updated within the valid period, so that the energy consumption and communication complexity of the terminal device can be reduced on the premise of improving the communication performance.
  • the terminal device still monitors in real time, it will greatly increase the energy consumption and communication complexity of the terminal device.
  • the above-mentioned scenarios can be more effectively dealt with, and the terminal device can be greatly reduced. Energy consumption and communication complexity.
  • the first timing advance includes a common timing advance.
  • the common timing advance can be understood as the same timing advance used by all terminal equipment of satellite communication, or the common timing advance can be understood as the timing advance used in the cell provided by the satellite. Below, in order to avoid To repeat, the description of the same or similar situations will be omitted.
  • the parameter information of the first timing advance includes a parameter used to determine the change of the first timing advance, for example, the rate of change of the first timing advance or the ephemeris parameter of the satellite, etc., where the satellite
  • the ephemeris parameters of may include, for example, the speed or angle of satellite motion, etc.
  • the rate of change of the first timing advance can be understood as the amount of change of the first timing advance within a certain time unit (for example, the first time unit).
  • the size of the first time unit is variable.
  • the first frequency offset pre-compensation includes common frequency offset pre-compensation.
  • the common frequency offset pre-compensation can be understood as the common frequency offset pre-compensation used by all terminal equipment communicating with the satellite, or the common frequency offset pre-compensation can be understood as the common frequency offset pre-compensation used in the cell provided by the satellite.
  • the description of the same or similar situations is omitted.
  • frequency offset compensation may also be referred to as frequency offset compensation, frequency offset pre-compensation, frequency offset pre-compensation, frequency pre-compensation, frequency compensation, and so on.
  • the parameter information of the first frequency offset pre-compensation includes parameters for determining the change of the first frequency offset pre-compensation, for example, the rate of change of the first frequency offset pre-compensation or the ephemeris parameters of the satellite, etc.
  • the ephemeris parameters of the satellite may include, for example, the speed or angle of the satellite's motion, etc.
  • the rate of change of the first frequency offset pre-compensation can be understood as the amount of change of the first frequency offset pre-compensation within a certain time unit (for example, a second time unit).
  • the size of the second time unit is variable.
  • the size of the first time unit and the second time unit may be the same or different, and the present application is not particularly limited.
  • the first indication information indicates the valid period of the first parameter information.
  • the first indication information may include the index or identifier corresponding to the valid period (for example, the size, range or location of the valid period, etc.)
  • the first indication information may include the bit corresponding to the specific value of the valid period (for example, the size of the valid period). In the following, in order to avoid redundant description, the description of the same or similar situations is omitted.
  • the first indication information display indicates the valid period of the first parameter information.
  • the terminal device may pre-store the correspondence between multiple parameter combinations and multiple time periods, and the first indication information may indicate A certain parameter group (for example, the first parameter group), therefore, the terminal device may determine the period corresponding to the first parameter group as the valid period of the first parameter information.
  • the same or similar situations are omitted. instruction of.
  • the method further includes:
  • the valid period of the first parameter information is determined according to the first indication information and the mapping relationship information, where the mapping relationship information is used to indicate the correspondence between multiple parameter groups and multiple time periods, and the first An indication information is used to indicate a first parameter group, and the valid period is a period corresponding to the first parameter group, wherein each parameter group includes at least one of the following parameters:
  • Timing advance timing advance index, timing advance calculation parameter, timing advance change rate, timing advance change rate index, timing advance change rate calculation parameter, frequency offset precompensation, frequency offset precompensation index, Frequency offset pre-compensation calculation parameters, frequency offset pre-compensation change rate, frequency offset pre-compensation change rate index, frequency offset pre-compensation change rate calculation parameters.
  • the first indication information further includes the first parameter information.
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the system message may be a system message of a terrestrial communication system.
  • the terrestrial communication system may also be referred to as a terrestrial communication system, for example, a cellular network system, etc.
  • a terrestrial communication system for example, a cellular network system, etc.
  • the above-listed fields (or fields) used to carry the first indication information are only exemplary, and this application is not limited thereto.
  • the first indication information can be carried in any cell in the system message.
  • Level field In the following, in order to avoid redundant description, the description of the same or similar situations is omitted.
  • the common timing advance parameter carried in the common timing advance indication field is determined according to the first timing advance.
  • the common timing advance parameter carried in the common timing advance indication field may include a first common timing advance parameter and a second common timing advance parameter
  • the first common timing advance parameter may indicate a common timing advance parameter in a terrestrial communication system
  • the second common timing advance parameter may indicate the common timing advance used in satellite communications, that is, the second common timing advance parameter may indicate the above-mentioned first timing advance.
  • the positional relationship of the first public timing advance parameter and the second public timing advance parameter in the public timing advance indication field can be arbitrarily configured, which is not particularly limited in this application.
  • the common timing advance parameter carried in the common timing advance indication field indicates the sum of the above-mentioned first common timing advance and the second common timing advance.
  • the parameter information of the first timing advance includes a first rate of change
  • the first rate of change is the amount of change of the first timing advance within a first time unit
  • the first time unit The size is variable, or
  • the parameter information of the first frequency offset pre-compensation includes a second rate of change, the second rate of change is the amount of change of the first frequency offset pre-compensation in a second time unit, and the size of the second time unit Is variable.
  • the method further includes: the terminal device receives second indication information, the second indication information includes information about the size of the first time unit, or the second indication information includes the second Information about the size of the time unit.
  • the second indication information is carried in a common timing advance indication field in the system message.
  • the above-listed fields used to carry the second indication information are only exemplary, and the present application is not limited thereto.
  • the second indication information may be carried in any cell-level field in the system message. In the following, in order to avoid redundant description, the description of the same or similar situations is omitted.
  • a satellite communication method which is characterized in that it includes:
  • the satellite sends first indication information
  • the first indication information is used to indicate the valid period of the first parameter information
  • the first parameter information includes at least one of the following information:
  • the first timing advance the parameter information of the first timing advance, the first frequency offset pre-compensation, or the parameter information of the first frequency offset pre-compensation;
  • the satellite performs uplink communication with the terminal device according to the first parameter information during the valid period.
  • the first indication information is used to indicate a first parameter group among a plurality of parameter groups
  • the valid period is a period corresponding to the first parameter group indicated by the mapping relationship information, wherein the mapping relationship
  • the information is used to indicate the correspondence between the multiple parameter groups and the multiple time periods, and each parameter group includes at least one of the following parameters:
  • Timing advance timing advance index, timing advance calculation parameter, timing advance change rate, timing advance change rate index, timing advance change rate calculation parameter, frequency offset precompensation, frequency offset precompensation index, Frequency offset pre-compensation calculation parameters, frequency offset pre-compensation change rate, frequency offset pre-compensation change rate index, frequency offset pre-compensation change rate calculation parameters.
  • the first indication information further includes the first parameter information.
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the common timing advance parameter carried in the common timing advance indication field is determined according to the first timing advance.
  • the parameter information of the first timing advance includes a first rate of change
  • the first rate of change is the amount of change of the first timing advance within a first time unit
  • the first time unit The size is variable, or
  • the parameter information of the first frequency offset pre-compensation includes a second rate of change, the second rate of change is the amount of change of the first frequency offset pre-compensation in a second time unit, and the size of the second time unit Is variable.
  • the method further includes: the satellite sends second indication information, the second indication information includes information about the size of the first time unit, or the second indication information includes the second time Information about the size of the unit.
  • the second indication information is carried in a common timing advance indication field in the system message.
  • a satellite communication device including: a transceiver unit, configured to receive first indication information, where the first indication information is used to indicate a valid period of first parameter information, and the first parameter information includes the following At least one kind of information: the first timing advance, the parameter information of the first timing advance, the first frequency offset precompensation or the parameter information of the first frequency offset precompensation; the processing unit is used to control the transceiver unit In the valid period, uplink communication is performed with the satellite according to the first parameter information.
  • the processing unit is further configured to determine the valid period of the first parameter information according to the first indication information and the mapping relationship information, wherein the mapping relationship information is used to indicate multiple parameter groups and multiple parameter groups.
  • the first indication information is used to indicate a first parameter group
  • the valid time period is a time period corresponding to the first parameter group, wherein each parameter group includes at least one of the following parameters:
  • Timing advance timing advance index, timing advance calculation parameter, timing advance change rate, timing advance change rate index, timing advance change rate calculation parameter, frequency offset precompensation, frequency offset precompensation index, Frequency offset pre-compensation calculation parameters, frequency offset pre-compensation change rate, frequency offset pre-compensation change rate index, frequency offset pre-compensation change rate calculation parameters.
  • the first indication information further includes the first parameter information.
  • the first indication information is carried in a common timing advance indication field in a system message of a terrestrial communication system.
  • the common timing advance parameter carried in the common timing advance indication field is determined according to the first timing advance.
  • the parameter information of the first timing advance includes a first rate of change
  • the first rate of change is the amount of change of the first timing advance within a first time unit
  • the first time unit The size is variable, or
  • the parameter information of the first frequency offset pre-compensation includes a second rate of change, the second rate of change is the amount of change of the first frequency offset pre-compensation in a second time unit, and the size of the second time unit Is variable.
  • the transceiver unit is further configured to receive second indication information, where the second indication information includes information about the size of the first time unit, or the second indication information includes information about the second time unit. Size information.
  • the second indication information is carried in a common timing advance indication field in the system message.
  • a satellite communication device including: a transceiver unit, configured to send first indication information, where the first indication information is used to indicate a valid period of first parameter information, and the first parameter information includes the following At least one kind of information: the first timing advance, the parameter information of the first timing advance, the first frequency offset precompensation or the parameter information of the first frequency offset precompensation; the processing unit is used to control the transceiver unit In the valid period, uplink communication is performed with the terminal device according to the first parameter information.
  • the first indication information is used to indicate a first parameter group among a plurality of parameter groups
  • the valid period is a period corresponding to the first parameter group indicated by the mapping relationship information, wherein the mapping relationship
  • the information is used to indicate the correspondence between the multiple parameter groups and the multiple time periods, and each parameter group includes at least one of the following parameters:
  • Timing advance timing advance index, timing advance calculation parameter, timing advance change rate, timing advance change rate index, timing advance change rate calculation parameter, frequency offset precompensation, frequency offset precompensation index, Frequency offset pre-compensation calculation parameters, frequency offset pre-compensation change rate, frequency offset pre-compensation change rate index, frequency offset pre-compensation change rate calculation parameters.
  • the first indication information further includes the first parameter information.
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the common timing advance parameter carried in the common timing advance indication field is determined according to the first timing advance.
  • the parameter information of the first timing advance includes a first rate of change
  • the first rate of change is the amount of change of the first timing advance within a first time unit
  • the first time unit The size is variable, or
  • the parameter information of the first frequency offset pre-compensation includes a second rate of change, the second rate of change is the amount of change of the first frequency offset pre-compensation in a second time unit, and the size of the second time unit Is variable.
  • the transceiver unit is further configured to send second indication information, where the second indication information includes information about the size of the first time unit, or the second indication information includes information about the second time unit. Size information.
  • the second indication information is carried in a common timing advance indication field in the system message.
  • a satellite communication method including: a terminal device receives first indication information, where the first indication information is used to indicate parameter information of a first frequency offset pre-compensation, and the first frequency offset pre-compensation is Frequency offset pre-compensation used when the satellite performs downlink communication with the terminal equipment; the terminal equipment determines the second frequency offset pre-compensation according to the parameter information of the first frequency offset pre-compensation and the first frequency offset pre-compensation The terminal device performs uplink communication with the satellite according to the second frequency offset pre-compensation.
  • the parameter information of the first frequency offset pre-compensation can be understood as a parameter used to determine the change of the first frequency offset pre-compensation, for example, the rate of change of the first frequency offset pre-compensation or satellite ephemeris parameters, etc.
  • the ephemeris parameters of the satellite may include, for example, the speed or angle of the satellite's motion, etc.
  • the terminal device can learn the parameter information of the first frequency offset pre-compensation by receiving the first indication information, and then can determine the change of the first frequency offset pre-compensation, thereby being able to perform frequency offset pre-compensation tracking by itself , Which can reduce the frequency offset pre-compensation adjustment error and closed loop pressure.
  • the first frequency offset pre-compensation includes common frequency offset pre-compensation.
  • the common frequency offset pre-compensation can be understood as the common frequency offset pre-compensation used by all terminal equipment communicating with the satellite, or the common frequency offset pre-compensation can be understood as the common frequency offset pre-compensation used in the cell provided by the satellite.
  • the description of the same or similar situations is omitted.
  • the rate of change of the first frequency offset pre-compensation can be understood as the amount of change of the first frequency offset pre-compensation within a certain time unit.
  • the size of the time unit is variable.
  • the terminal device performing uplink communication with the satellite according to the second frequency offset pre-compensation includes: the terminal device determines the crystal frequency of the terminal device according to the second frequency offset pre-compensation Offset; The terminal device performs uplink communication with the satellite according to the frequency offset of the crystal oscillator.
  • the terminal equipment and the satellite can negotiate the downlink communication frequency in advance (hereinafter, referred to as the downlink transmission frequency for ease of understanding and distinction), and further, can be based on the reception frequency of the downlink signal (hereinafter, for ease of understanding and distinction, referred to as Is the difference between the downlink receiving frequency) and the downlink sending frequency, and the frequency offset is determined, where the frequency offset includes the Doppler frequency offset and the crystal frequency offset of the terminal device.
  • the downlink transmission frequency for ease of understanding and distinction
  • Is the difference between the downlink receiving frequency
  • the frequency offset includes the Doppler frequency offset and the crystal frequency offset of the terminal device.
  • the terminal device can determine the frequency offset pre-compensation actually used by the satellite (that is, the second frequency offset pre-compensation) based on the change amount of the first frequency offset pre-compensation and the first frequency offset pre-compensation as described above, Combined with parameters such as its own geographic location and ephemeris, it is possible to determine its own crystal frequency deviation, so that the frequency deviation of the crystal oscillator can be frequency compensated in subsequent communications, so as to eliminate the influence of its own crystal frequency deviation on communication. Improve communication performance.
  • the first indication information displays parameter information indicating the first frequency offset pre-compensation.
  • the first indication information may include parameter information of the first frequency offset pre-compensation (for example, the first frequency offset pre-compensation The index or identification corresponding to the change rate of the satellite or the parameter value of the satellite ephemeris parameter, etc., or the first indication information may include the bit corresponding to the specific value of the first frequency offset pre-compensation parameter information, as follows In order to avoid repetition, the description of the same or similar situations is omitted.
  • the first indication information displays parameter information indicating the first frequency offset pre-compensation.
  • the terminal device may pre-store the correspondence between multiple parameter combinations and multiple parameter information, and the first indication The information may indicate a certain parameter group (for example, the first parameter group), so that the terminal device may determine the parameter information corresponding to the first parameter group as the parameter information for the first frequency offset pre-compensation.
  • the terminal device may determine the parameter information corresponding to the first parameter group as the parameter information for the first frequency offset pre-compensation.
  • the description of the same or similar situations is omitted.
  • the method further includes:
  • each parameter group includes at least one of the following parameters:
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the system message may be a system message of a terrestrial communication system.
  • the terrestrial communication system may also be referred to as a terrestrial communication system, for example, a cellular network system, etc.
  • a terrestrial communication system for example, a cellular network system, etc.
  • the above-listed fields (or fields) used to carry the first indication information are only exemplary, and this application is not limited thereto.
  • the first indication information can be carried in any cell in the system message.
  • Level field In the following, in order to avoid redundant description, the description of the same or similar situations is omitted.
  • the parameter information of the first frequency offset pre-compensation includes a change amount of the first frequency offset pre-compensation within a time unit, and the size of the time unit is variable.
  • the method further includes: the terminal device receives information about the size of the time unit.
  • the information about the size of the time unit is carried in the common timing advance indication field in the system message.
  • the fields (or fields) listed above for carrying information about the size of the time unit are only exemplary, and the application is not limited thereto.
  • the information about the size of the time unit may be It is carried in any cell-level field in the system message. In the following, in order to avoid redundant description, the description of the same or similar situations is omitted.
  • the method further includes: the terminal device receives information about the effective period of the parameter information of the first frequency offset pre-compensation; and the terminal device performs uplink communication with the satellite according to the second frequency offset pre-compensation , Including: the terminal device performs uplink communication with the satellite according to the second frequency offset pre-compensation in the valid period.
  • the terminal device can obtain the effective period of the parameter information of the first frequency offset precompensation by receiving the information of the effective period of the parameter information of the first frequency offset precompensation, so that there is no need to monitor in the effective period of time. Whether the parameter information of the first frequency offset pre-compensation is updated, so that the energy consumption and communication complexity of the terminal device can be reduced on the premise of improving the communication performance.
  • a satellite communication method including: a satellite sends first indication information, the first indication information is used to indicate parameter information of a first frequency offset pre-compensation, and the first frequency offset pre-compensation is a satellite Frequency offset pre-compensation used in downlink communication with the terminal equipment; the satellite performs uplink communication with the terminal equipment according to the second frequency offset pre-compensation, and the second frequency offset pre-compensation is the first frequency offset pre-compensation. Compensation is the frequency offset pre-compensation after the parameter information of the first frequency offset pre-compensation is changed.
  • the second frequency offset pre-compensation is used to determine the crystal oscillator frequency offset of the terminal device.
  • the first indication information displays parameter information indicating the first frequency offset pre-compensation.
  • the first indication information is used to indicate a first parameter group
  • the parameter information for the first frequency offset pre-compensation is parameter information corresponding to the first parameter group indicated by the mapping relationship information, and the mapping relationship
  • the information is used to indicate the correspondence between multiple parameter groups and multiple parameter information, where each parameter group includes at least one of the following parameters:
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the parameter information of the first frequency offset pre-compensation includes a change amount of the first frequency offset pre-compensation in a time unit, and the size of the time unit is variable.
  • the method further includes: sending information about the size of the time unit by a satellite.
  • the information about the size of the time unit is carried in the common timing advance indication field in the system message.
  • the method further includes: the satellite sends information about the effective period of the parameter information of the first frequency offset pre-compensation; and the satellite performs uplink communication with the terminal device according to the second frequency offset pre-compensation,
  • the method includes: the satellite performs uplink communication with the terminal device according to the second frequency offset pre-compensation in the valid period.
  • a satellite communication device including: a transceiver unit, configured to receive first indication information, where the first indication information is used to indicate parameter information of a first frequency offset precompensation, and the first frequency offset Pre-compensation is the frequency offset pre-compensation used when the satellite and the terminal device perform downlink communication; the processing unit is used to determine the second frequency offset pre-compensation according to the parameter information of the first frequency offset pre-compensation and the first frequency offset pre-compensation Frequency offset pre-compensation, and control the transceiver unit to perform uplink communication with the satellite according to the second frequency offset pre-compensation.
  • the processing unit is further configured to determine the crystal oscillator frequency offset of the terminal device according to the second frequency offset precompensation; and control the transceiver unit to perform uplink communication with the satellite according to the crystal oscillator frequency offset.
  • the first indication information includes parameter information of the first frequency offset pre-compensation.
  • the method further includes: determining the first frequency offset pre-compensation parameter information according to the first indication information and the mapping relationship information, where the mapping relationship information is used to indicate multiple parameter groups and multiple The corresponding relationship between parameter information, the first indication information is used to indicate a first parameter group, and the parameter information for the first frequency offset pre-compensation is parameter information corresponding to the first parameter group, wherein each parameter The group includes at least one of the following parameters:
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the parameter information of the first frequency offset pre-compensation includes a change amount of the first frequency offset pre-compensation within a time unit, and the size of the time unit is variable.
  • the transceiver unit is further configured to receive information about the size of the time unit.
  • the size information of the time unit is carried in a common timing advance indication field in a system message of the terrestrial communication system.
  • the transceiving unit is further configured to receive the information of the valid period of the parameter information of the first frequency offset pre-compensation; and the processing unit is further configured to control the transceiving unit in the valid period according to the second Frequency offset pre-compensation, and uplink communication with the satellite.
  • a satellite communication device including: a transceiver unit, configured to send first indication information, where the first indication information is used to indicate parameter information of a first frequency offset precompensation, and the first frequency offset Pre-compensation is the frequency offset pre-compensation used when the satellite performs downlink communication with the terminal device; the processing unit is used to control the transceiver unit to perform uplink communication with the terminal device according to the second frequency offset pre-compensation.
  • the offset pre-compensation is frequency offset pre-compensation after the first frequency offset pre-compensation is changed according to the parameter information of the first frequency offset pre-compensation.
  • the second frequency offset pre-compensation is used to determine the crystal oscillator frequency offset of the terminal device.
  • the first indication information displays parameter information indicating the first frequency offset pre-compensation.
  • the first indication information is used to indicate a first parameter group
  • the parameter information for the first frequency offset pre-compensation is parameter information corresponding to the first parameter group indicated by the mapping relationship information, and the mapping relationship
  • the information is used to indicate the correspondence between multiple parameter groups and multiple parameter information, where each parameter group includes at least one of the following parameters:
  • the first indication information is carried in a common timing advance indication field in a system message.
  • the parameter information of the first frequency offset pre-compensation includes a change amount of the first frequency offset pre-compensation in a time unit, and the size of the time unit is variable.
  • the transceiver unit is further configured to send information about the size of the time unit.
  • the size information of the time unit is carried in a common timing advance indication field in a system message of the terrestrial communication system.
  • the transceiving unit is further configured to send information about the valid period of the parameter information of the first frequency offset pre-compensation; the processing unit is further configured to control the transceiving unit according to the second frequency in the valid period Partial pre-compensation, and uplink communication with the terminal device.
  • a wireless communication device including various modules or units for executing the method in the first aspect or any one of the possible implementation manners of the first aspect.
  • a wireless communication device which includes various modules or units for executing the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • a wireless communication device which includes various modules or units for executing the method in the fifth aspect or any one of the possible implementation manners of the fifth aspect.
  • a wireless communication device including various modules or units for executing the method in the sixth aspect or any one of the possible implementation manners of the sixth aspect.
  • a communication device including a processor, which is coupled with a memory and can be used to execute the method in the first aspect and its possible implementation manners or the fifth aspect and its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a satellite.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the above-mentioned second aspect and its possible implementation manners or the sixth aspect and its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that any one of the first, second, fifth, or sixth aspects, as well as each of the foregoing The method in any one of the possible implementations of the aspect is implemented.
  • the above-mentioned communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be a different circuit or the same circuit. In this case, the circuit is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first, second, fifth, or sixth aspects , And the method in any one of the possible implementations of the above aspects.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processor in the above-mentioned sixteenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a processing device including a communication interface and a processing circuit, the communication interface is used to obtain data to be processed, and the processing circuit is used to perform any of the first or fifth aspects.
  • a method in a possible implementation manner processes the to-be-processed data.
  • a processing device including: a communication interface and a processing circuit, the communication interface is used to send instruction information according to a method in any one of the possible implementation manners of the second aspect or the sixth aspect , The processing circuit is used to generate the instruction information.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect , Any one of the second, fifth, or sixth aspects, as well as the method in any possible implementation manner of the foregoing aspects.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first Aspect, the second aspect, the fifth aspect, or any one of the sixth aspect, and the method in any possible implementation manner of the foregoing aspects.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned satellite and terminal equipment.
  • FIG. 1 is a schematic diagram of an example of a communication system to which the satellite communication method of the present application is applied.
  • Fig. 2 is a schematic diagram of another example of a communication system to which the satellite communication method of the present application is applied.
  • Fig. 3 is a schematic diagram of an example of an application scenario of a public TA in the satellite system of the present application.
  • Fig. 4 is a schematic diagram of an example of an application scenario of a public TA change parameter in the satellite system of the present application.
  • Fig. 5 is a schematic diagram of another example of an application scenario of a public TA change parameter in the satellite system of the present application.
  • Fig. 6 is a schematic flowchart of an example of the satellite communication method of the present application.
  • Fig. 7 is a schematic flowchart of another example of the satellite communication method of the present application.
  • Fig. 8 is a schematic diagram of the influence of crystal frequency deviation on communication.
  • FIG. 9 is a schematic flowchart of another example of the satellite communication method of the present application.
  • Fig. 10 is a schematic flowchart of another example of the satellite communication method of the present application.
  • FIG. 11 is a schematic flowchart of another example of the satellite communication method of the present application.
  • FIG. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is another schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a satellite according to an embodiment of the present application.
  • Fig. 1 shows a schematic diagram of an architecture of a communication system applicable to an embodiment of the present application.
  • the communication system may include at least one network device, such as the network device shown in FIG. 1; the communication system may also include at least one terminal device, such as the terminal device shown in FIG. 1.
  • Network equipment and terminal equipment can communicate via wireless links.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: base station controller (BSC), base transceiver station (base transceiver station, BTS), etc., and can also be one or a group of base stations in the 5G system (including multiple antenna panels) Antenna panels, etc., or satellites, etc.
  • the terminal equipment and the UE may also be referred to as access terminal equipment, subscriber units, user stations, mobile stations, mobile stations, remote stations, remote terminal equipment, mobile equipment, user terminal equipment, terminal equipment, Wireless communication equipment, user agent or user device.
  • the UE in the embodiments of the present application may be a mobile phone, a smart watch, a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical, smart grid (smart grid) Wireless terminal equipment in ), wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • network equipment may include satellites.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • D2D device-to-device
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a satellite phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, or public land mobile networks (PLMN) that will evolve in the future This is not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device used to communicate with terminal devices, and the network device may be a global system of mobile communication (GSM) system or code division multiple access (CDMA)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolutionary base station (evolutional base station) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolutional base station evolutionary base station
  • NodeB eNB or eNodeB
  • it can also be a wireless controller in the cloud radio access network (CRAN) scenario
  • the network device can be a relay station, access point, in-vehicle device, wearable device, D2D
  • the terminal that assumes the function of the base station in communication or machine communication, the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • Figure 2 shows the network application architecture of this technology.
  • the ground mobile terminal UE accesses the network through the 5G new air interface, and the 5G base station is deployed on the satellite and connected to the ground core network through a wireless link.
  • the network elements in Figure 2 and their interfaces are described as follows:
  • Terminal devices mobile devices that support 5G new air interfaces, typically mobile devices such as mobile phones and pads. You can access the satellite network through the air interface and initiate calls, surf the Internet and other services.
  • 5G base station It mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • 5G core network user access control, mobility management, session management, user security authentication, billing and other services. It is composed of multiple functional units, which can be divided into functional entities of the control plane and the data plane.
  • the Access and Mobility Management Unit AMF is responsible for user access management, security authentication, and mobility management.
  • the user plane unit UPF is responsible for the management of user plane data transmission, traffic statistics, security eavesdropping and other functions.
  • Ground station responsible for forwarding signaling and service data between the satellite base station and the 5G core network.
  • 5G new air interface the wireless link between the terminal and the base station.
  • Xn interface The interface between the 5G base station and the base station, which is mainly used for signaling interaction such as handover.
  • NG interface The interface between the 5G base station and the 5G core network, which mainly interacts with the core network's NAS and other signaling, as well as user service data.
  • RTD round trip delay
  • the public RTD can notify the terminal equipment in the form of broadcast.
  • the common TA may be related to the RTD, but also related to the TA error.
  • the error may be the maximum TA error possible for all users.
  • the error may also be included in the common TA, or a separate parameter may be added to indicate all users.
  • the maximum TA error possible for the user which is also a common TA.
  • the adjustment method (adjustment speed and one-time maximum TA adjustment amount) is completely unable to meet the corresponding requirements.
  • the method of broadcasting the TA change rate can be used.
  • the user performs a part of TA tracking on his own according to the broadcast TA change rate to reduce TA adjustment errors and closed-loop pressure.
  • the public TA and TA change rate of satellite broadcasting may be continuously updated with the movement of the satellite.
  • Figure 4 shows a schematic diagram of the transparent forwarding mode.
  • the satellite forwards the uplink signal to the ground station by forwarding.
  • the communication distance between the user and the ground station includes the service link and the feeder link. If the user has a location and knows the ephemeris, the TA change on the service link side can be obtained and compensated by the user according to the relative position between himself and the satellite. If the TA and other parameters of the feeder link also need to be compensated on the user side, the satellite needs to broadcast the TA change parameters of the feeder link, such as the rate of change of the broadcast TA. The user can perform the uplink TA by himself between two closed-loop TA adjustments. Adjustment. Due to the movement of the satellite, the distance between the satellite and the ground station, and the handover of the ground station, the TA parameters of this part will change over time.
  • FIG. 5 shows a schematic diagram of the gaze mode.
  • the beam changes its angle along with the movement of the satellite to provide services for a fixed area on the ground for a longer period of time.
  • the TA change parameters of the service link also require the user to constantly monitor the broadcast signal to update it.
  • the parameter information of the timing advance may include parameter information used to determine the change of the timing advance, such as the change rate of the timing advance or satellite movement parameters.
  • the change rate of the timing advance Taking the parameter information of the timing advance as an example, the solution of the present application will be described in detail.
  • Fig. 6 shows a schematic flowchart of a satellite communication method 100 provided by the present application, which can effectively reduce the above-mentioned increase in energy consumption and communication complexity of the terminal device caused by the monitoring of the public TA.
  • the satellite #A may send the indication information #A (that is, an example of the first indication information in the first aspect) to the terminal device #A.
  • the satellite #A can directly send the instruction information #A to the terminal device #A.
  • the satellite #A can send the instruction information #A to the satellite #B, and the satellite #B can send it to the terminal device #A.
  • the satellite #A may send the instruction information #A to other network equipment, such as a ground base station, and the ground base station sends the instruction information #A to the terminal equipment #A.
  • other network equipment such as a ground base station
  • the satellite #A may send the instruction information #A to other terminal equipment, such as the terminal equipment #B, and the terminal equipment #B (for example, through D2D communication technology) sends the instruction information #A to the terminal equipment #A.
  • the terminal equipment #B for example, through D2D communication technology
  • the indication information #A may indicate the effective period (denoted as effective period #1) of TA#1 (that is, an example of the first timing advance in the first aspect).
  • the TA#1 may be a common TA used by the satellite #A.
  • the indication information #A may be carried in a broadcast message or a multicast message.
  • the TA#1 may also be a dedicated TA configured by the satellite #A for the terminal device #A.
  • the indication information #A may be carried in a broadcast message or a multicast message, and the indication information #A may include a dedicated identification of the terminal device #A, for example, the device identification of the terminal device #A, or The identification of the terminal device #A in the cell provided by the satellite #A. Therefore, the terminal equipment in the cell can determine that the TA#1 is the dedicated TA of the terminal equipment #A based on the dedicated identification of the terminal equipment #A.
  • the indication information #A may be carried in a unicast message of the terminal device #A.
  • the parameter information of TA#1 that satellite #A indicates to terminal device #A may also include common parameters related to timing errors, such as TA_margin, where TA_margin represents TA The error.
  • TA_margin represents TA The error.
  • N TA represents the time offset
  • the terminal device #A can determine the N TA according to its own geographic location and the position of the satellite #A
  • N TA,offset is the common timing advance related to TDD and FDD in terrestrial communications Parameter (for example, n-TimingAdvanceOffset)
  • T C is a time unit, and the T C may be, for example, the sampling interval of orthogonal frequency division multiplexing (OFDM) symbols in NR, which is 5.086 ⁇ 10 (-11 ) s.
  • OFDM orthogonal frequency division multiplexing
  • the time units of offset are all T C ;
  • X represents the common timing offset, and the terminal device #A can multiply the timing offset indicated by the satellite #A
  • the X is obtained in the default time unit, or the value of X is obtained directly according to the instruction of satellite #A.
  • terminal device #A can adjust TA according to the following formula:
  • the terminal device #A can adjust the TA according to the following formula:
  • TA (N TA +N TA,offset +X+Y) ⁇ T C , or
  • TA (N TA +N TA,offset ) ⁇ T C +X+Y or
  • TA (N TA +N TA,offset +X) ⁇ T C+ Y or
  • Y represents the parameter related to the timing offset error.
  • the terminal device #A can multiply the default time unit by the timing offset indicated by the satellite #A to obtain the X and Y.
  • X1 is the timing offset indicated by the satellite #A
  • K1 is the default unit of X
  • Y1 is the timing offset indicated by satellite #A
  • K2 is the default unit of Y
  • K1 and K2 may be the same or different, and this application does not make specific limitations.
  • the terminal device #A directly obtains the X and Y values according to the instruction of the satellite #A.
  • the terminal device #A directly obtains one of X and Y according to the instruction of the satellite #A, and the other is obtained by multiplying the default time unit according to the timing offset indicated by the satellite #A.
  • terminal device #A compensates for the timing offset on the service link side
  • satellite #A compensates for the timing offset on the feeder link side
  • the value of X may be equal to 0, and satellite #A can indicate The value of X may not indicate the value of X.
  • the satellite #A does not indicate the value of X, it also needs to indicate the value of Y.
  • the valid period #1 may include one or more prescribed time periods.
  • the indication information #A may indicate the number of time periods included in the valid period #1 .
  • the time period may be specified by the communication system or communication protocol, or the mid-time period may also be negotiated and determined by network equipment (for example, satellite, ground base station or core network equipment) and terminal equipment, which is not specifically limited in this application. .
  • network equipment for example, satellite, ground base station or core network equipment
  • terminal equipment which is not specifically limited in this application.
  • the time period may be the transmission period of system information blocks (SIB) in the terrestrial communication system.
  • SIB system information blocks
  • the indication information #A may indicate the start time (or end time) and length of the valid period #1.
  • the indication information #A may indicate the start time and end time of the valid period #1.
  • the indication information #A may only indicate the length of the valid period #1.
  • the terminal device #A and the satellite #A may agree on the start or end time of the valid period #1, for example, terminal device # The time when A receives the instruction information #A is the start time of the valid period #1, or the start time of the time period at which the terminal device #A receives the instruction information #A is the valid period # The start time of 1, or the end time of the time period when the terminal device #A receives the instruction information #A is the end time of the valid period #1.
  • the size of the valid period #1 can be arbitrarily determined according to the actual situation, and this application is not particularly limited.
  • the satellite #A can determine the valid period #1 according to its moving speed, the geographic location of the service area, etc. size.
  • the instruction information #A can display and indicate the valid period #1 (namely method 1), or the instruction information #A may implicitly indicate the valid period #1 (namely method 2).
  • the instruction information #A can display and indicate the valid period #1 (namely method 1), or the instruction information #A may implicitly indicate the valid period #1 (namely method 2).
  • the indication information #A may include an index or identifier corresponding to the valid period #1, or the indication information #A may include a bit corresponding to the value of the valid period #1 (for example, the number of time periods included).
  • the indication information #A may be carried in the SIB, for example, SIB1.
  • the instruction information #A can be sent at the same time as the instruction information of TA#1 (denoted as instruction information #C) or the indicator information of the rate of change of TA#1 (denoted as instruction information #D), that is, the instruction
  • the information #A and the indication information #C and/or the indication information #D may be carried in the same message, such as SIB1.
  • the serving cell configuration common SIB (ServingCellConfigCommonSIB) field in SIB1 includes the common parameters of the cell, such as time-division duplex (TDD) and frequency-division duplex (frequencye-division) in terrestrial communications.
  • duplex, FDD related public timing advance parameters (for example, n-TimingAdvanceOffset). This parameter is similar to the public TA in satellite communications.
  • the terminal device needs to make a common TA compensation.
  • the ServingCellConfigCommonSIB Fields related to satellite communications are added to the domain, namely, the common timing advance (TimingAdvanceCommon) field, the common timing advance change rate (TimingAdvanceRateCommon) field, and the time domain valid period (TimingAdvanceRateValidPeriod) field.
  • the TimingAdvanceCommon field can carry the common timing advance.
  • the TimingAdvanceRateCommon field can carry information about the change rate of the common timing advance (for example, the change rate of TA#1), and the TimingAdvanceRateValidPeriod field can carry the valid period of the common timing advance (for example, valid Period #1).
  • mapping relationship information (denoted as the mapping relationship #A, that is, an example of the mapping relationship in the first aspect) may be pre-stored in the terminal device #A, and the mapping relationship #A may include multiple parameter groups and multiple parameters.
  • mapping relationship #A may be specified by the communication system or communication protocol, or the mapping relationship #A may also be negotiated and determined by the satellite #A and the terminal device #A, which is not particularly limited in this application.
  • each parameter group may include one or more of the following parameters:
  • Timing advance timing advance index
  • timing advance calculation parameters i.e., parameters used to calculate timing advance
  • timing advance change rate i.e., an example of timing advance parameter information
  • timing advance The index of the rate of change, the calculation parameter of the rate of change of the timing advance (that is, the parameter used to calculate the rate of change of the timing advance).
  • the indication information #A can be used to indicate the parameter group #A (that is, an example of the first parameter group in the first aspect), and the valid period #1 can be the one indicated by the mapping relationship #A and the parameter group #A.
  • the parameter group #A may be a parameter for satellite communication configured by the satellite #A for the terminal device #A.
  • the timing advance in the parameter group #A may be The common timing advance actually used by the terminal device #A, that is, the aforementioned TA#1.
  • the parameters in the parameter group may be carried in the above-mentioned SIB, for example, SIB1.
  • SIB1 the TimingAdvanceCommon field can carry information about the timing advance, the index of the timing advance, and the calculation parameter of the timing advance
  • the TimingAdvanceRateCommon field can carry the index of the timing advance change rate and the index of the timing advance change rate, and the timing advance Information about the calculation parameters of the volume change rate.
  • mapping relationship of Method 2 can be as follows:
  • terminal device #A can use TA#1 to perform uplink communication with satellite #A during the valid period #1, and, in this application, terminal device #A does not need to monitor the satellite# in the valid period #1 Information or message sent by A to update TA#1.
  • the satellite #A can still send the information used to update TA#1 Or message.
  • the satellite #A may no longer send information or messages for updating TA#1.
  • the indication information #A may be transmitted during the access process of the terminal device #A.
  • the instruction information #A may also be transmitted after the terminal device #A is connected, which is not specifically limited in this application.
  • FIG. 7 shows a schematic flowchart of a satellite communication method 200 provided by the present application.
  • the method 200 can effectively reduce the above-mentioned increase in energy consumption and communication complexity of the terminal device caused by the monitoring of the TA change rate.
  • the satellite #A may send the indication information #B (that is, another example of the first indication information in the first aspect) to the terminal device #A.
  • the indication information #B that is, another example of the first indication information in the first aspect
  • the sending mode of the instruction information #B is similar to the above instruction information #A, and detailed description is omitted here to avoid redundant description.
  • the indication information #B may indicate the rate of change of TA#1 (that is, an example of the first timing advance in the first aspect) (denoted as rate of change #1, that is, an example of parameter information in the first aspect)
  • the effective period of time (recorded as effective period #2).
  • the TA#1 may be a common TA used by the satellite #A.
  • the indication information #B may be carried in a broadcast message or a multicast message.
  • the TA#1 may also be a dedicated TA configured by the satellite #A for the terminal device #A.
  • the indication information #B may be carried in a broadcast message or a multicast message, and the indication information #B may include a dedicated identification of the terminal device #A, for example, the device identification of the terminal device #A, or The identification of the terminal device #A in the cell provided by the satellite #A. Therefore, the terminal equipment in the cell can determine that the TA#1 is the dedicated TA of the terminal equipment #A based on the dedicated identification of the terminal equipment #A.
  • the indication information #B may be carried in the unicast message of the terminal device #A.
  • the content indicated by the indication information #B may be similar to the above indication information #A.
  • the indication information #B may indicate the number of time periods included in the valid period #2.
  • the size of the effective period #2 can be arbitrarily determined according to actual conditions, and this application is not particularly limited.
  • satellite #A can determine the effective period #2 according to its moving speed, geographic location of the service area, etc. size.
  • the indication method of the indication information #B may be similar to the indication information #A mentioned above, that is, the indication information #B may display and indicate the valid period #2, or the indication information #B may implicitly indicate the valid period #2, in order to To avoid repetitive descriptions, detailed descriptions are omitted.
  • the terminal device #A can be based on its own geographic location and satellite satellite Obtain the TA change rate of the service link side (denoted as TA_UEpecific_rate) to finally determine its own TA change rate TA_rate:
  • TA_rate TA_common_rate+TA_UEpecific_rate
  • the common TA change rate may be a normalized value indicated.
  • the TA change rate when the terminal device #A is performing uplink synchronization, the TA needs to be adjusted according to the following formula:
  • TA_new TA_old+TA_rate ⁇ t+TAC
  • TA_new represents the adjusted TA at the current time
  • TA_old represents the TA calculated at the previous time
  • ⁇ t represents the time interval from the previous time to the current time
  • TAC represents the closed-loop timing adjustment instruction
  • satellite #A can pass the user level
  • the signaling indicates the TAC. Assuming that the terminal device #A receives the signaling, the terminal device #A will adjust the timing within an agreed time. In addition, the terminal device #A also needs to adjust the timing according to the TA change rate, so The timing advance adjustment amount introduced by the uplink signal sent by the terminal device #A is calculated by combining the open and closed loop information.
  • the terminal device #A can use the rate of change #1 and TA#1 to determine TA#2 within the valid period #2, and use TA#2 to perform uplink communication with the satellite #A, and, in this application, The terminal device #A does not need to monitor the information or message sent by the satellite #A for updating the rate of change #1 during the valid period #2.
  • the satellite #A can still send the update rate of change #1. Information or news.
  • the satellite #A may no longer send information or messages for updating the rate of change #1.
  • the indication information #B may be transmitted during the access process of the terminal device #A.
  • the indication information #B may be transmitted after the terminal device #A is connected, which is not particularly limited in this application.
  • the method 100 and the method 200 can be used alone or in combination, and the application is not particularly limited.
  • the SIB can carry information about the public timing advance, the effective period of the common timing advance, the change rate of the common timing advance, and the effective period of the common timing advance change rate.
  • the effective period of the common timing advance and the effective period of the common timing advance change rate may be the same.
  • the SIB can carry information about the common timing advance, the common timing advance change rate, and the effective period.
  • the rate of change #1 may indicate the amount of change of TA#1 in the time unit #A (ie, an example of the first time unit in the first aspect).
  • the time unit #A is variably, that is, in this application, the satellite #A can determine the time unit #A and send the size information of the time unit #A to the terminal device #A.
  • the size information of the time unit #A may be carried in the aforementioned SIB, such as SIB1. This information can be sent at the same time as the valid period of time, or at a different time.
  • the valid period of the public TA and the TA change rate are both 3 SIB periods, since the period of SIB1 is 160ms, if other system messages do not change, it means that the user can change according to TA within 480ms Rate and closed-loop instructions to adjust the public TA, without monitoring the broadcast signal.
  • the scope of the public TA is related to the type of base station equipment, the selection of reference points, and whether the public TA includes a feeder link.
  • the public TA can also be some discrete indicator parameters.
  • the time advance corresponding to the public TA may include ⁇ 2ms, 4ms, 6ms, 8ms, 10ms, 12ms,...40ms...100ms,...500ms ⁇ etc., which is not limited here. Assuming that the satellite orbit height is 600km, the corresponding public TA is 4ms.
  • the following Table 1 shows an example of the SIB (for example, ServingCellConfigCommonSIB) of the present application.
  • the (satellite) common timing advance includes distance-related common timing advance.
  • the (satellite) common timing advance includes the common timing advance related to the distance and the common timing advance related to the common error.
  • the common timing advance field TimingAdvanceCommon related to the error is a separate field.
  • Table 3 shows another example of the SIB (for example, ServingCellConfigCommonSIB) of the present application.
  • the TA indicated by the information carried by n-TimingAdvanceOffset may be the sum of the TA in the terrestrial communication system (for example, the TA related to TDD and FDD) and the TA in the satellite communication system (for example, TA#1) . In this case, there is no need to indicate TA#1.
  • Table 4 shows an example of SIB (for example, ServingCellConfigCommonSIB) in the above case.
  • the n-TimingAdvanceOffset field is related to the frequency band, for example, FR1 corresponds to 450MHz-6000MHz, and FR2 corresponds to 24250MHz-52600MHz. If the field is default, the value in the table is used, if not, the parameter indicated in n-TimingAdvanceOffset is used. In this application, if the field defaults to an agreed manner, for example, TimingAdvanceOffset is in accordance with the lookup table, and the public TA is 0, or TimingAdvanceOffset is in accordance with the lookup table, and the public TA adopts the corresponding value according to the network device type.
  • the TA indicated by the information carried by the TimingAdvanceOffset may be the sum of the TA in the terrestrial communication system (for example, the TA related to TDD and FDD) and the TA in the satellite communication system (for example, TA#1).
  • the n-TimingAdvanceOffset field may not be needed.
  • Table 5 shows an example of SIB (for example, ServingCellConfigCommonSIB) in the above case.
  • the Doppler frequency offset appears in the satellite communication.
  • the satellite can pre-compensate the frequency offset in advance.
  • the frequency offset pre-compensation will have a sudden change, resulting in an increase in the complexity of frequency synchronization of the terminal equipment. Therefore, in this application, the satellite can indicate the value of the frequency offset pre-compensation (or frequency offset pre-compensation) of the terminal device.
  • the base station side in order to reduce the received signal frequency on the user side, the base station side will first perform a frequency pre-compensation.
  • the user will detect a frequency offset based on the center frequency.
  • the frequency offset includes the residual Doppler frequency offset Fd compensated on the base station side and the frequency offset Fo caused by the terminal crystal oscillator. The user cannot distinguish the two components. If when sending an uplink signal, the frequency of Fd+Fo is directly used for pre-compensation, and finally a frequency deviation of approximately twice the crystal oscillator is generated on the terminal side, as shown in Figure 8.
  • the frequency offset of the crystal oscillator is relatively large, the frequency offset generated on the base station side will also be relatively large, which increases the signal processing complexity on the base station side. If the user can know the residual Doppler frequency offset Fd, the crystal frequency offset Fo can be obtained according to the downlink frequency offset, and pre-compensation is performed when the uplink signal is sent to reduce the frequency offset on the base station side.
  • the transmission frequency of the final signal is:
  • FIG. 9 shows a schematic flowchart of a satellite communication method 300 provided by the present application.
  • the method 300 can effectively reduce the increase in energy consumption and communication complexity of terminal equipment caused by monitoring of frequency offset pre-compensation.
  • the satellite #A may send the instruction information #E (ie, another example of the first instruction information in the first aspect) to the terminal device #A.
  • the instruction information #E ie, another example of the first instruction information in the first aspect
  • the sending mode of the instruction information #E is similar to the above instruction information #A, and detailed description is omitted here to avoid redundant description.
  • the indication information #E may refer to the effective period (denoted as effective period #3) of the frequency offset pre-compensation #1 (that is, an example of the first frequency offset pre-compensation in the first aspect).
  • frequency offset pre-compensation can also be referred to as pre-compensation of frequency offset (frequency deviation between the transmission power of the satellite and the received power of the terminal equipment, or the deviation between the received power of the satellite and the transmission power of the terminal equipment).
  • the frequency offset pre-compensation #1 may be a common frequency offset pre-compensation used by the satellite #A.
  • the indication information #E may be carried in a broadcast message or a multicast message.
  • the frequency offset pre-compensation #1 may also be a dedicated frequency offset pre-compensation configured by the satellite #A for the terminal device #A.
  • the indication information #E may be carried in a broadcast message or a multicast message, and the indication information #E may include a dedicated identification of the terminal device #A, for example, the device identification of the terminal device #A, or The identification of the terminal device #A in the cell provided by the satellite #A. Therefore, the terminal equipment in the cell can determine that the frequency offset pre-compensation #1 is the dedicated TA of the terminal equipment #A based on the dedicated identification of the terminal equipment #A.
  • the indication information #E may be carried in a unicast message of the terminal device #A.
  • the content indicated by the indication information #E may be similar to the above indication information #A.
  • the indication information #E may indicate the number of time periods included in the valid period #3.
  • the size of the effective period #3 can be arbitrarily determined according to actual conditions, and this application is not particularly limited.
  • satellite #A can determine the effective period #3 according to its moving speed, geographic location of the service area, etc. size.
  • the instruction information #E can display and indicate the valid period #3 (that is, mode 3), or the instruction information #E can implicitly indicate the valid period #3 (that is, mode 4).
  • the indication information #E may include an index or identifier corresponding to the valid period #3, or the indication information #E may include a bit corresponding to the value of the valid period #3 (for example, the number of time periods included).
  • the indication information #E may be carried in the SIB, for example, SIB1.
  • the indication information #E can be combined with the indication information of frequency offset pre-compensation #1 (denoted as indication information #G) or the indication information of the rate of change of frequency offset pre-compensation #1 (denoted as indication information #H) Simultaneous transmission, that is, the indication information #E and the indication information #G and/or the indication information #H may be carried in the same message, such as SIB1.
  • the ServingCellConfigCommonSIB (ServingCellConfigCommonSIB) field in SIB1 includes the common parameters of the cell. Therefore, in this application, the ServingCellConfigCommonSIB field can be added to the field related to satellite communications, that is, the common frequency offset preset.
  • FrequencyOffset field
  • common frequency offset pre-compensation change rate field
  • FrequencyOffsetPeriod frequency-domain valid period field
  • the FrequencyOffse field can carry information about common frequency offset pre-compensation (for example, frequency offset pre-compensation #1)
  • the FrequencyOffsetRate field may carry information about the rate of change of the common frequency offset precompensation (for example, the rate of change of frequency offset precompensation #1)
  • the FrequencyOffsetPeriod field may carry the valid period of the common frequency offset precompensation (for example, the valid period #1).
  • the terminal device #A may pre-store the mapping relationship information (denoted as the mapping relationship #B), and the mapping relationship #B may include the mapping relationship between multiple parameter groups and multiple time periods.
  • the mapping relationship #B may include the mapping relationship between multiple parameter groups and multiple time periods.
  • mapping relationship #B may be specified by the communication system or communication protocol, or the mapping relationship #B may also be negotiated and determined by the satellite #A and the terminal device #A, which is not specifically limited in this application.
  • each parameter group may include one or more of the following parameters:
  • Frequency offset pre-compensation index of frequency offset pre-compensation, calculation parameters of frequency offset pre-compensation (that is, parameters used to calculate frequency One example), the index of the frequency offset pre-compensation change rate, and the calculation parameter of the frequency offset pre-compensation change rate (that is, the parameter used to calculate the frequency offset pre-compensation change rate).
  • the indication information #E can be used to indicate the parameter group #B (that is, an example of the first parameter group in the first aspect), and the valid period #3 can be the one indicated by the mapping relationship #B and the parameter group #B.
  • the parameter group #B may be a parameter for satellite communication configured by the satellite #A for the terminal device #A.
  • the frequency offset pre-compensation in the parameter group #B It may be the common frequency offset pre-compensation actually used by the terminal device #A, that is, the above-mentioned frequency offset pre-compensation #1.
  • the parameters in the parameter group may be carried in the aforementioned SIB, for example, SIB1.
  • the frequency offset pre-compensation change rate and frequency offset pre-compensation change rate can be carried in the FrequencyOffsetRate field.
  • the index of the frequency offset pre-compensation rate of change calculation parameter information can be carried in the FrequencyOffsetRate field.
  • the terminal device #A can use the frequency offset pre-compensation #1 to perform uplink communication with the satellite #A during the valid period #3, and in this application, the terminal device #A does not need to be in the valid period #3 Monitor information or messages sent by satellite #A for updating frequency offset pre-compensation #1. It should be noted that in this application, in the valid period #3, although the terminal device #A does not monitor the information or messages used to update the frequency offset pre-compensation #1, the satellite #A can still send the information or messages used to update the frequency offset. Information or message of pre-compensation #1.
  • the satellite #A may no longer send information or messages for updating the frequency offset pre-compensation #1.
  • the method 300 and the above-mentioned method 100 can be used alone or in combination, and the application is not particularly limited.
  • the SIB can carry the common timing advance, the effective period of the common timing advance, the frequency offset pre-compensation, and the effective period of the frequency offset pre-compensation.
  • the effective period of the common timing advance and the effective period of frequency offset precompensation may be the same.
  • the SIB can carry information about the common timing advance, frequency offset precompensation, and effective period.
  • the effective period of the common timing advance and the effective period of frequency offset precompensation may be different.
  • the common timing advance can be carried in the SIB, the effective period of the common timing advance, frequency offset precompensation and frequency offset The effective period of partial pre-compensation.
  • Table 6 shows an example of the SIB (for example, ServingCellConfigCommonSIB) carrying the effective period of frequency offset pre-compensation according to the present application.
  • SIB for example, ServingCellConfigCommonSIB
  • the parameter information of the frequency offset pre-compensation can be broadcast.
  • the user performs a part of the frequency offset pre-compensation tracking by himself according to the parameter information of the broadcast frequency offset pre-compensation , Reduce the error of frequency offset pre-compensation adjustment and the pressure of closed loop. Subsequently, the transmission process of the parameter information for frequency offset pre-compensation will be described in detail with reference to FIG. 11.
  • the parameter information of frequency offset pre-compensation may include parameter information used to determine the change of frequency offset pre-compensation, such as frequency offset pre-compensation change rate or satellite movement parameters.
  • frequency offset pre-compensation change rate is taken as an example of the parameter information of the frequency offset pre-compensation, and the solution of the present application will be described in detail.
  • a corresponding field can be added to indicate the change parameters of frequency offset pre-compensation.
  • the frequency offset pre-compensation change rate (FrequencyOffsetRate) field the user can estimate the frequency offset change compensated on the base station side according to the change rate of the frequency offset compensation.
  • the frequency offset indicated by the FrequencyOffset field is 10 ppm
  • FrequencyOffsetRate indicates that the frequency offset compensation change rate per unit time is 1 ppm. Then every time a unit of time passes, the value of frequency compensation will increase by 1ppm.
  • FIG. 10 shows a schematic flowchart of a satellite communication method 400 provided by the present application.
  • the method 400 can effectively reduce the above-mentioned increase in the energy consumption and communication complexity of the terminal device caused by the monitoring of the frequency offset pre-compensation change rate. .
  • the satellite #A may send the indication information #F (that is, another example of the first indication information in the first aspect) to the terminal device #A.
  • the indication information #F that is, another example of the first indication information in the first aspect
  • the sending mode of the instruction information #F is similar to the instruction information #A described above, and detailed description is omitted here to avoid redundant description.
  • the indication information #F can indicate the rate of change of frequency offset precompensation #1 (that is, an example of the first frequency offset precompensation in the first aspect) (denoted as rate of change #2, that is, the parameter in the first aspect) An example of information) valid period (denoted as valid period #4).
  • the frequency offset pre-compensation #1 may be a common frequency offset pre-compensation #1 used by the satellite #A.
  • the indication information #F may be carried in a broadcast message or a multicast message.
  • the frequency offset pre-compensation #1 may also be a dedicated TA configured by the satellite #A for the terminal device #A.
  • the indication information #F may be carried in a broadcast message or a multicast message, and the indication information #F may include a dedicated identification of the terminal device #A, for example, the device identification of the terminal device #A, or The identification of the terminal device #A in the cell provided by the satellite #A. Therefore, the terminal equipment in the cell can determine that the frequency offset pre-compensation #1 is the dedicated frequency offset pre-compensation of the terminal equipment #A based on the dedicated identification of the terminal equipment #A.
  • the indication information #F may be carried in a unicast message of the terminal device #A.
  • the content indicated by the indication information #F may be similar to the above indication information #A.
  • the indication information #F may indicate the number of time periods included in the valid period #4.
  • the size of the effective period #4 can be arbitrarily determined according to actual conditions, and this application is not particularly limited.
  • satellite #A can determine the effective period #4 according to its moving speed, the geographic location of the service area, etc. size.
  • the indication method of the indication information #F may be similar to the indication information #E mentioned above, that is, the indication information #F may display and indicate the valid period #4, or the indication information #F may implicitly indicate the valid period #4, in order to Avoid repeating it, and omit its detailed description.
  • the terminal device #A can use the rate of change #2 and the frequency offset pre-compensation #1 to determine the frequency offset pre-compensation #2 within the valid period #4, and use the frequency offset pre-compensation #2 and satellite #A for uplink Communication, and, in this application, the terminal device #A does not need to listen to the information or message sent by the satellite #A for updating the rate of change #2 during the valid period #4.
  • the satellite #A may no longer send information or messages for updating the rate of change #2.
  • the method 300 and the method 400 can be used alone or in combination, and the application is not particularly limited.
  • the SIB can carry public frequency offset pre-compensation, public frequency offset pre-compensation effective period, public frequency offset pre-compensation change rate, and public frequency offset pre-compensation change rate effective period information.
  • the effective period of the common frequency offset pre-compensation and the effective period of the common frequency offset pre-compensation change rate can be the same.
  • the SIB can carry the common frequency offset pre-compensation, the common frequency offset pre-compensation change rate and the effective period Information.
  • the rate of change #2 may indicate the amount of change of the frequency offset pre-compensation #1 in the time unit #B (that is, an example of the second time unit in the first aspect).
  • the time unit #B is variably, that is, in this application, the satellite #A can determine the time unit #B and send the size information of the time unit #B to the terminal device #A.
  • the size information of the time unit #B may be carried in the aforementioned SIB, such as SIB1. This information can be sent at the same time as the valid period of time, or at a different time.
  • FIG. 11 shows a schematic diagram of a method 500 for frequency offset pre-compensation rate-of-change transmission.
  • satellite #1 sends to terminal equipment #1 the indication information (denoted as indication information #1) indicating the rate of change of frequency offset pre-compensation #A (denoted as rate of change #A).
  • indication information #1 indicating the rate of change of frequency offset pre-compensation #A (denoted as rate of change #A).
  • rate of change #A An example of the first indication information in the five aspects).
  • the satellite #1 may directly send the instruction information #1 to the terminal device #1.
  • satellite #1 may send the instruction information #1 to satellite #2, and satellite #2 to terminal device #1.
  • the satellite #1 may send the instruction information #1 to other network equipment, such as a ground base station, and the ground base station sends the instruction information #1 to the terminal equipment #1.
  • other network equipment such as a ground base station
  • the satellite #A may send the instruction information #1 to other terminal devices, such as terminal device #2, and send it to terminal device #1 by terminal device #2 (for example, through a technology such as D2D communication).
  • the frequency offset pre-compensation #A may be a common frequency offset pre-compensation used by satellite #1.
  • the indication information #1 may be carried in a broadcast message or a multicast message.
  • the frequency offset pre-compensation #A may also be a dedicated TA configured by the satellite #1 for the terminal device #1.
  • the indication information #1 may be carried in a broadcast message or a multicast message, and the indication information #1 may include a dedicated identification of the terminal device #1, for example, the device identification of the terminal device #1, or The identity of the terminal device #1 in the cell provided by the satellite #1. Therefore, the terminal equipment in the cell can determine that the frequency offset pre-compensation #A is the dedicated frequency offset pre-compensation of the terminal equipment #1 based on the dedicated identification of the terminal equipment #1.
  • the indication information #1 may be carried in the unicast message of the terminal device #1.
  • the indication information #1 may display and indicate the change rate #A (that is, mode A), or the indication information #1 may implicitly indicate the change rate #A (that is, mode B).
  • the indication information #1 may include an index or identifier corresponding to the rate of change #A, or the indication information #1 may include bits corresponding to the value of the rate of change #A.
  • the indication information #1 may be carried in the SIB, for example, SIB1.
  • the indication information #1 can be sent simultaneously with the indication information of the frequency offset pre-compensation #A (denoted as indication information #2), that is, the indication information #1 and the indication information #2 can be carried in the same message, for example SIB1.
  • a frequency offset pre-compensation (FrequencyOffset) field can be added to the SIB to carry indication information #2
  • a frequency offset pre-compensation change rate (FrequencyOffsetRate) field can be added to carry the indication information #1.
  • Table 7 shows an example of SIB of method A.
  • n-TimingAdvanceOffset For example ⁇ n0, n25600, n39936 ⁇ TimingAdvanceCommon For example ⁇ A1, A2, A3... ⁇ ... ...
  • the terminal device #1 may pre-store the mapping relationship information (denoted as the mapping relationship #1, which is an example of the mapping relationship information in the fifth aspect), and the mapping relationship #1 may include multiple parameter groups and multiple parameters.
  • mapping relationship #1 may be specified by the communication system or communication protocol, or the mapping relationship #1 may also be negotiated and determined between the satellite #1 and the terminal device #1, which is not specifically limited in this application.
  • each parameter group may include one or more of the following parameters:
  • Frequency offset pre-compensation index of frequency offset pre-compensation, calculation parameters of frequency offset pre-compensation (that is, parameters used to calculate frequency offset pre-compensation), effective period (or effective period of frequency offset pre-compensation change rate).
  • a valid period may include one or more prescribed time periods.
  • the indication information #A may indicate the number of time periods included in the valid period #A.
  • the time period may be specified by the communication system or communication protocol, or the mid-time period may also be negotiated and determined by network equipment (for example, satellite, ground base station or core network equipment) and terminal equipment, which is not specifically limited in this application. .
  • the time period may be the transmission period of system information blocks (SIB) in the terrestrial communication system.
  • SIB system information blocks
  • the indication information #1 can be used to indicate parameter group #1 (that is, an example of the first parameter group in the fifth aspect), and the rate of change #A can be the same as that indicated by the mapping relationship #1.
  • the rate of change corresponding to parameter group #1 can be used to indicate parameter group #1 (that is, an example of the first parameter group in the fifth aspect), and the rate of change #A can be the same as that indicated by the mapping relationship #1. The rate of change corresponding to parameter group #1.
  • the parameter group #1 may be a parameter for satellite communication configured by the satellite #1 for the terminal device #1.
  • the frequency offset pre-compensation in the parameter group #1 It may be the common frequency offset pre-compensation actually used by the terminal device #1, that is, the above-mentioned frequency offset pre-compensation #A.
  • the effective period #A may be the effective period of the change rate #A finally determined by the terminal device #1, or the effective period #A It can be the effective period of frequency offset pre-compensation #A.
  • the indication information #1 may specifically indicate the start time (or end time) and length of the valid period #A.
  • the indication information #1 may indicate the start time and the end time of the valid period #A.
  • the indication information #1 may only indicate the length of the valid period #A.
  • the terminal device #1 and the satellite #1 may agree on the start or end time of the valid period #A, for example, terminal device # 1
  • the time when the instruction information #1 is received is the start time of the valid period #A, or the start time of the time period in which the terminal device #1 receives the instruction information #1 is the start time of the valid period #
  • the start time of A, or the end time of the time period when the terminal device #1 receives the instruction information #1 is the end time of the valid period #A.
  • the size of the valid period #A can be arbitrarily determined according to the actual situation, and this application is not particularly limited.
  • the satellite #1 can determine the valid period #A according to its moving speed, the geographic location of the service area, etc. size.
  • the parameters in the parameter group may be carried in the above-mentioned SIB, for example, SIB1.
  • SIB1 the frequency offset pre-compensation, the index of the frequency offset pre-compensation, and the information of the calculation parameters of the frequency offset pre-compensation may be carried in the FrequencyOffset field, and the effective period of the frequency offset pre-compensation may be carried in the FrequencyOffsetPeriod field.
  • Table 8 shows an example of SIB of method B.
  • n-TimingAdvanceOffset For example, ⁇ n0, n25600, n39936 ⁇ TimingAdvanceCommon For example, ⁇ A1, A2, A3... ⁇ ... ... FrequencyOffset For example, ⁇ F1, F2, F3... ⁇ TimingAdvanceRateValidPeriod For example, ⁇ T1, T2, T3... ⁇ ... ...
  • the terminal device #1 can determine the rate of change #A according to the instruction information #1, and determine the rate of change of frequency offset #B according to the frequency offset precompensation #A and the rate of change #A, and perform satellite based on the frequency offset precompensation #B
  • the frequency offset of the crystal oscillator can be determined based on the frequency offset pre-compensation #B, and the frequency offset of the crystal oscillator can be compensated in the uplink communication.
  • FIG. 12 is a schematic block diagram of a communication device 600 provided by an embodiment of the present application.
  • the device 600 includes a transceiver unit 610 and a processing unit 620.
  • the transceiver unit 610 can communicate with the outside, and the processing unit 620 is used for data processing.
  • the transceiving unit 610 may also be referred to as a communication interface or a communication unit.
  • the device 600 may further include a storage unit, and the storage unit may be used to store instructions and/or data, and the processing unit 620 may read the instructions and/or data in the storage unit.
  • the device 600 can be used to perform the actions performed by the satellite in the above method embodiment.
  • the device 600 can be a satellite or a component that can be configured on the satellite, and the transceiver unit 610 is used to perform the satellite side in the above method embodiment.
  • the processing unit 620 is configured to perform the processing-related operations on the satellite side in the above method embodiment.
  • the device 600 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the device 600 can be a terminal device or a component configurable in the terminal device, and the transceiver unit 610 is used to perform the above method.
  • the processing unit 620 is configured to perform the processing-related operations on the terminal device side in the above method embodiment for the operations related to receiving and sending on the terminal device side.
  • an embodiment of the present application also provides a communication device 700.
  • the communication device 700 includes a processor 710, which is coupled to a memory 720.
  • the memory 720 is used to store computer programs or instructions or and/or data
  • the processor 710 is used to execute computer programs or instructions and/or data stored in the memory 720. , So that the method in the above method embodiment is executed.
  • the communication device 700 includes one or more processors 710.
  • the communication device 700 may further include a memory 7520.
  • the memory 720 included in the communication device 700 may be one or more.
  • the memory 720 may be integrated with the processor 710 or provided separately.
  • the wireless communication device 700 may further include a transceiver 7530, and the transceiver 730 is used for signal reception and/or transmission.
  • the processor 710 is configured to control the transceiver 730 to receive and/or send signals.
  • the communication device 700 is used to implement the operations performed by the satellite in the above method embodiments.
  • the processor 710 is used to implement the processing-related operations performed by the satellite in the foregoing method embodiment
  • the transceiver 730 is used to implement the transceiving-related operations performed by the satellite in the foregoing method embodiment.
  • the communication device 700 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 710 is used to implement the processing-related operations performed by the terminal device in the above method embodiment
  • the transceiver 730 is used to implement the transceiving-related operations performed by the terminal device in the above method embodiment.
  • the embodiment of the present application also provides a communication device 800, and the communication device 800 may be a terminal device or a chip.
  • the communication device 800 may be used to perform operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 14 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in Figure 14. In the actual terminal device product, one or more processors and one or more memories may exist.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 810 and a processing unit 820.
  • the transceiver unit 810 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 820 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 810 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 810 can be regarded as the sending unit, that is, the transceiving unit 810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver unit 810 is configured to perform a receiving operation of the terminal device.
  • the processing unit 820 is used to perform processing actions on the terminal device side.
  • FIG. 14 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 14.
  • the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be a different circuit or the same circuit. In this case, the circuit is used as an input circuit and an output circuit at different times.
  • the embodiment of the present application also provides a communication device 900, and the communication device 900 may be a satellite or a chip.
  • the communication device 900 can be used to perform the operations performed by the satellite in the foregoing method embodiments.
  • the communication device 900 When the communication device 900 is a satellite, for example, it is a satellite base station.
  • Figure 15 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 910 and part 920.
  • the 910 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 920 part is mainly used for baseband processing and control of the base station.
  • the part 910 can generally be referred to as a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the part 920 is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 910 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 910 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 910 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • Part 920 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiving unit of part 910 is used to execute the steps related to the transmission and reception performed by the satellite in the embodiment; the part 920 is used to execute the steps related to the processing performed by the satellite.
  • FIG. 15 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 15.
  • the chip When the communication device 900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be a different circuit or the same circuit. In this case, the circuit is used as an input circuit and an output circuit at different times.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device in the foregoing method embodiment or the method executed by the satellite.
  • the computer program when executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the satellite.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • An embodiment of the present application also provides a communication system, which includes the satellite and terminal equipment in the above embodiment.
  • the communication system includes the satellite and terminal equipment in the above embodiment.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application, according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a satellite, or a functional module in the terminal device or the satellite that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art or the part of the technical solutions can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供了一种卫星通信的方法和装置,该方法包括:终端设备接收第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;所述终端设备在所述有效时段,根据所述第一参数信息与卫星进行上行通信,终端设备通过接收第一指示信息,能够获知第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息等参数信息的有效时段,从而,无需在该有效时段内监听该参数信息是否更新,从而能够在提高通信性能的前提下,降低终端设备的能耗和通信复杂度。

Description

卫星通信的方法和装置
本申请要求于2020年2月14日提交中国专利局、申请号为202010093138.6、发明名称为“卫星通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及卫星通信的方法和装置。
背景技术
卫星通信相比地面通信有其独有的优点,例如可以提供更广的覆盖范围;卫星基站不容易受到自然灾害或者外力的破坏。第五代(5th generation,5G)***及其未来的演进网络若引入卫星通信可以为海洋,森林等一些地面通信网络不能覆盖的地区提供通信服务;增强5G通信的可靠性,例如确保飞机,火车,以及这些交通上的用户获得更加优质的通信服务;为5G通信提供更多数据传输的资源,提升网络的速率。因此,同时支持与地面与卫星的通信是未来5G通信的必然趋势,它在广覆盖,可靠性,多连接,高吞吐等方面都有比较大的益处。目前,卫星通信与地面通信在通信协议上有较大的区别,常用的终端设备例如手机,只能支持与地面的基站基线通信,只有专用的卫星手机才能够与卫星通信。在5G通信中,需要重新设计卫星通信过程,使得它能在和现有的地面通信融合,同时不对终端设备引入较多成本和复杂度,终端在通信时,只要根据相应的需求选择合适的基站进行通信。
卫星通信与地面通信融合一个显著的挑战是,如何处理卫星***中所存在的往返时延(round trip delay,RTD)过长的问题?例如,对地球赤道同步轨道于(geostationary orbit,GEO)卫星而言,其RTD可以达到数百毫秒,而5G***中RTD不超过1毫秒。另外一个问题是,卫星的运动速度非常快,另外,轨道高度600KM的低轨卫星的运动速度可以达到7.56km/s,RTD随着时间的变化非常快,对于上行时间同步也是一个比较大的挑战。另外,除了时间,卫星运动也引入较大的多普勒频移,在上下行的频率同步过程当中也需要考虑相关的影响。
目前已知一种技术,卫星可以广播公共定时提前量(timing advance,TA),以及公共TA变化率,从而,终端设备可以根据公共TA及其变化率,自行进行TA跟踪,从而能够减少TA调整的误差和闭环的压力。
另外,卫星可以广播公共频率补偿,从而,终端设备可以根据公共频率补偿,进行发送频率的调整,从而减少多普勒频移对通信的影响。
但是,上述现有技术中,例如,对于在星下点的小区,上述卫星广播的公共TA、TA变化率以及公共频率补偿等参数可能更新比较频繁,因此,终端设备需要实时监听参数的更新情况,因此监听所需的能耗较高,***也较为复杂。
发明内容
本申请提供一种卫星通信的方法和装置,能够在提高通信性能的前提下,降低终端设备的能耗和通信复杂度。
第一方面,提供了一种卫星通信的方法,包括:终端设备接收第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;所述终端设备在所述有效时段,根据所述第一参数信息与卫星进行上行通信。
根据本申请提供的方案,终端设备通过接收第一指示信息,能够获知第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息等参数信息的有效时段,从而,无需在该有效时段内监听该参数信息是否更新,从而能够在提高通信性能的前提下,降低终端设备的能耗和通信复杂度。特别是,对于参数不频繁更新的情况,如果终端设备仍然实时监听,将大大增加终端设备的能耗和通信复杂度,根据本申请提供的方法,能够更加有效的应对上述场景,大大降低终端设备的能耗和通信复杂度。
可选地,该第一定时提前量包括公共定时提前量。其中,公共定时提前量可以理解为与卫星通信的所有终端设备均使用的相同的定时提前量,或者,公共定时提前量可以理解为在卫星提供的小区内使用的定时提前量,以下,为了避免赘述,省略对相同或相似情况的说明。
可选地,该第一定时提前量的参数信息包括用于确定该第一定时提前量的变化情况的参数,例如,第一定时提前量的变化率或卫星的星历参数等,其中,卫星的星历参数可以包括例如卫星运动的速度或角度等,以下,为了避免赘述,省略对相同或相似情况的说明。
其中,第一定时提前量的变化率可以理解为第一定时提前量在某个时间单位(例如,第一时间单位)内的变化量。
可选地,该第一时间单元的大小是可变的。
可选地,该第一频偏预补偿包括公共频偏预补偿。其中,公共频偏预补偿可以理解为与卫星通信的所有终端设备均使用的公共频偏预补偿,或者,公共频偏预补偿可以理解为在卫星提供的小区内使用的公共频偏预补偿,以下,为了避免赘述,省略对相同或相似情况的说明。
在本申请中,频偏补偿也可以称为频偏补偿量、频偏预补偿、频偏预补偿量、频率预补偿、频率补偿量等。
可选地,该第一频偏预补偿的参数信息包括用于确定该第一频偏预补偿的变化情况的参数,例如,第一频偏预补偿的变化率或卫星的星历参数等,其中,卫星的星历参数可以包括例如卫星运动的速度或角度等,以下,为了避免赘述,省略对相同或相似情况的说明。
其中,第一频偏预补偿的变化率可以理解为第一频偏预补偿在某个时间单位(例如,第二时间单位)内的变化量。
可选地,该第二时间单元的大小是可变的。
在本申请实施例中,第一时间单位和第二时间单位的大小可以相同也可以不同,本申请并未特别限定。
在本申请中,该第一指示信息显示指示第一参数信息的有效时段,例如,该第一指示 信息可以包括该有效时段(例如,有效时段的大小、范围或位置等)对应的索引或标识等,或者,该第一指示信息可以包括该有效时段(例如,有效时段的大小)的具体值对应的比特,以下,为了避免赘述,省略对相同或相似情况的说明。
或者,在本申请中,该第一指示信息显示指示第一参数信息的有效时段,例如,终端设备中可以预先存储多个参数组合多个时段之间的对应关系,该第一指示信息可以指示某一参数组(例如,第一参数组),从而,终端设备可以将于该第一参数组对应的时段确定为第一参数信息的有效时段,以下,为了避免赘述,省略对相同或相似情况的说明。
即,所述方法还包括:
根据所述第一指示信息和映射关系信息,确定所述第一参数信息的有效时段,其中,所述映射关系信息用于指示多个参数组与多个时段之间的对应关系,所述第一指示信息用于指示第一参数组,所述有效时段是所述第一参数组对应的时段,其中,每个参数组包括以下至少一个参数:
定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
从而,能够实现通过下发通信使用的参数组的同时指示第一参数信息的有效时段,能够减少信令开销。
可选地,所述第一指示信息还包括所述第一参数信息。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
例如,该***消息可以是陆地通信***的***消息。
其中,陆地通信***也可以称为地面通信***,例如,蜂窝网***等,以下,为了避免赘述,省略对相同或相似情况的说明。
应理解,以上列举的用于承载第一指示信息的字段(或者说,域)仅为示例性说明,本申请并未限定于此,例如,第一指示信息可以承载于***消息中的任意小区级别的字段中。以下,为了避免赘述,省略对相同或相似情况的说明。
可选地,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
例如,所述公共定时提前指示域中承载的公共定时提前参数可以包括第一公共定时提前量参数和第二公共定时提前量参数,该第一公共定时提前量参数可以指示地面通信***中的公共定时提前量,该第二公共定时提前量参数可以指示卫星通信使用的公共定时提量,即,第二公共定时提前量参数可以指示上述第一定时提前量,以下,为了避免赘述,省略对相同或相似情况的说明。
其中,该第一公共定时提前参数和第二公共定时提前参数在公共定时提前指示域中的位置关系可以任意配置,本申请并未特别限定。
再例如,例如,所述公共定时提前指示域中承载的公共定时提前参数指示上述第一公共定时提前量与第二公共定时提前量的和。
可选地,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
可选地,所述方法还包括:所述终端设备接收第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
可选地,所述第二指示信息承载于***消息中的公共定时提前指示域中。
应理解,以上列举的用于承载第二指示信息的字段仅为示例性说明,本申请并未限定于此,例如,第二指示信息可以承载于***消息中的任意小区级别的字段中。以下,为了避免赘述,省略对相同或相似情况的说明。
第二方面,提供一种卫星通信的方法,其特征在于,包括:
卫星发送第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:
第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;
所述卫星在所述有效时段,根据所述第一参数信息与终端设备进行上行通信。
可选地,所述第一指示信息用于指示多个参数组中的第一参数组,所述有效时段是映射关系信息指示的所述第一参数组对应的时段,其中,所述映射关系信息用于指示所述多个参数组与多个时段之间的对应关系,每个参数组包括以下至少一个参数:
定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
可选地,所述第一指示信息还包括所述第一参数信息。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
可选地,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
可选地,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
可选地,所述方法还包括:所述卫星发送第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
可选地,所述第二指示信息承载于***消息中的公共定时提前指示域中。
第三方面,提供一种卫星通信的装置,包括:收发单元,用于接收第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;处理单元,用于控制所述收发单元在所述有效时段,根据所述第一参数信息与卫星进行上行通信。
可选地,所述处理单元还用于根据所述第一指示信息和映射关系信息,确定所述第一参数信息的有效时段,其中,所述映射关系信息用于指示多个参数组与多个时段之间的对应关系,所述第一指示信息用于指示第一参数组,所述有效时段是所述第一参数组对应的时段,其中,每个参数组包括以下至少一个参数:
定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
可选地,所述第一指示信息还包括所述第一参数信息。
可选地,所述第一指示信息承载于陆地通信***的***消息中的公共定时提前指示域中。
可选地,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
可选地,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
可选地,所述收发单元还用于接收第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
可选地,所述第二指示信息承载于***消息中的公共定时提前指示域中。
第四方面,提供一种卫星通信的装置,包括:收发单元,用于发送第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;处理单元,用于控制所述收发单元在所述有效时段,根据所述第一参数信息与终端设备进行上行通信。
可选地,所述第一指示信息用于指示多个参数组中的第一参数组,所述有效时段是映射关系信息指示的所述第一参数组对应的时段,其中,所述映射关系信息用于指示所述多个参数组与多个时段之间的对应关系,每个参数组包括以下至少一个参数:
定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
可选地,所述第一指示信息还包括所述第一参数信息。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
可选地,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
可选地,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预 补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
可选地,所述收发单元还用于发送第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
可选地,所述第二指示信息承载于***消息中的公共定时提前指示域中。
第五方面,提供一种卫星通信的方法,包括:终端设备接收第一指示信息,所述第一指示信息用于指示第一频偏预补偿的参数信息,所述第一频偏预补偿是卫星与所述终端设备进行下行通信时使用的频偏预补偿;所述终端设备根据所述第一频偏预补偿和所述第一频偏预补偿的参数信息,确定第二频偏预补偿;所述终端设备根据所述第二频偏预补偿,与所述卫星进行上行通信。
其中,该第一频偏预补偿的参数信息可以理解为用于确定该第一频偏预补偿的变化情况的参数,例如,第一频偏预补偿的变化率或卫星的星历参数等,其中,卫星的星历参数可以包括例如卫星运动的速度或角度等,以下,为了避免赘述,省略对相同或相似情况的说明。
根据本申请提供的方案,终端设备通过接收第一指示信息,能够获知第一频偏预补偿的参数信息,进而能够确定第一频偏预补偿的变化情况,从而能够自行进行频偏预补偿跟踪,从而能够减少频偏预补偿调整的误差和闭环的压力。
可选地,该第一频偏预补偿包括公共频偏预补偿。其中,公共频偏预补偿可以理解为与卫星通信的所有终端设备均使用的公共频偏预补偿,或者,公共频偏预补偿可以理解为在卫星提供的小区内使用的公共频偏预补偿,以下,为了避免赘述,省略对相同或相似情况的说明。
在本申请中,第一频偏预补偿的变化率可以理解为第一频偏预补偿在某个时间单位内的变化量。
可选地,该时间单元的大小是可变的。
可选地,所述终端设备根据所述第二频偏预补偿,与所述卫星进行上行通信,包括:所述终端设备根据所述第二频偏预补偿,确定所述终端设备的晶振频偏;所述终端设备根据所述晶振频偏,与所述卫星进行上行通信。
具体地说,终端设备和卫星可以预先协商下行通信的频率(以下,为了便于理解和区分,称为下行发送频率),进而,可以根据下行信号的接收频率(以下,为了便于理解和区分,称为下行接收频率)和该下行发送频率的差值,确定频率偏移量,其中,该频率偏移量包括多普勒频偏和终端设备的晶振频偏。
根据本申请的方案,终端设备能够如上所述基于第一频偏预补偿和第一频偏预补偿的变化量,确定卫星实际使用的频偏预补偿(即,第二频偏预补偿),再结合例如自身的地理位置和星历等参数,能够确定自身的晶振频偏,从而,能够在之后的通信中针对该晶振频偏进行频率补偿,从而能够消除自身晶振频偏对通信的影响,提高通信性能。
在本申请中,该第一指示信息显示指示第一频偏预补偿的参数信息,例如,该第一指示信息可以包括该第一频偏预补偿的参数信息(例如,第一频偏预补偿的变化率的大小或卫星的星历参数等的参数值)对应的索引或标识等,或者,该第一指示信息可以包括该第一频偏预补偿的参数信息的具体值对应的比特,以下,为了避免赘述,省略对相同或相似情况的说明。
或者,在本申请中,该第一指示信息显示指示第一频偏预补偿的参数信息,例如,终端设备中可以预先存储多个参数组合多个参数信息之间的对应关系,该第一指示信息可以指示某一参数组(例如,第一参数组),从而,终端设备可以将于该第一参数组对应的参数信息确定为第一频偏预补偿的参数信息,以下,为了避免赘述,省略对相同或相似情况的说明。
即,此情况下,所述方法还包括:
根据所述第一指示信息和映射关系信息,确定第一频偏预补偿的参数信息,其中,所述映射关系信息用于指示多个参数组与多个参数信息之间的对应关系,所述第一指示信息用于指示第一参数组,所述第一频偏预补偿的参数信息是所述第一参数组对应的参数信息,其中,每个参数组包括以下至少一个参数:
频偏预补偿、频偏预补偿计算参数或频偏预补偿的参数信息的有效时段。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
例如,该***消息可以是陆地通信***的***消息。
其中,陆地通信***也可以称为地面通信***,例如,蜂窝网***等,以下,为了避免赘述,省略对相同或相似情况的说明。
应理解,以上列举的用于承载第一指示信息的字段(或者说,域)仅为示例性说明,本申请并未限定于此,例如,第一指示信息可以承载于***消息中的任意小区级别的字段中。以下,为了避免赘述,省略对相同或相似情况的说明。
可选地,所述第一频偏预补偿的参数信息包括所述第一频偏预补偿在时间单位内的变化量,所述时间单位的大小是可变的。
可选地,所述方法还包括:终端设备接收所述时间单位的大小的信息。
可选地,所述时间单位的大小的信息承载于***消息中的公共定时提前指示域中。
应理解,以上列举的用于承载所述时间单位的大小的信息的字段(或者说,域)仅为示例性说明,本申请并未限定于此,例如,所述时间单位的大小的信息可以承载于***消息中的任意小区级别的字段中。以下,为了避免赘述,省略对相同或相似情况的说明。
可选地,所述方法还包括:终端设备接收第一频偏预补偿的参数信息的有效时段的信息;以及所述终端设备根据所述第二频偏预补偿,与所述卫星进行上行通信,包括:所述终端设备在所述有效时段根据所述第二频偏预补偿,与所述卫星进行上行通信。
根据本申请提供的方案,终端设备通过接收第一频偏预补偿的参数信息的有效时段的信息,能够获知第一频偏预补偿的参数信息的有效时段,从而,无需在该有效时段内监听该第一频偏预补偿的参数信息是否更新,从而能够在提高通信性能的前提下,降低终端设备的能耗和通信复杂度。
第六方面,提供一种卫星通信的方法,包括:卫星发送第一指示信息,所述第一指示信息用于指示第一频偏预补偿的参数信息,所述第一频偏预补偿是卫星与所述终端设备进行下行通信时使用的频偏预补偿;所述卫星根据第二频偏预补偿,与终端设备进行上行通信,所述第二频偏预补偿是所述第一频偏预补偿按所述第一频偏预补偿的参数信息变化后的频偏预补偿。
可选地,所述第二频偏预补偿用于确定所述终端设备的晶振频偏。
可选地,所述第一指示信息显示指示所述第一频偏预补偿的参数信息。
可选地,所述第一指示信息用于指示第一参数组,所述第一频偏预补偿的参数信息是映射关系信息指示的与所第一参数组对应的参数信息,所述映射关系信息用于指示多个参数组与多个参数信息之间的对应关系,其中,每个参数组包括以下至少一个参数:
频偏预补偿、频偏预补偿计算参数或频偏预补偿的参数信息的有效时段。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
可选地,述第一频偏预补偿的参数信息包括所述第一频偏预补偿在时间单位内的变化量,所述时间单位的大小是可变的。
可选地,所述方法还包括:卫星发送所述时间单位的大小的信息。
可选地,所述时间单位的大小的信息承载于***消息中的公共定时提前指示域中。
可选地,所述方法还包括:所述卫星发送第一频偏预补偿的参数信息的有效时段的信息;以及所述卫星根据所述第二频偏预补偿,与终端设备进行上行通信,包括:所述卫星在所述有效时段根据所述第二频偏预补偿,与所述终端设备进行上行通信。
第七方面,提供一种卫星通信的装置,包括:收发单元,用于接收第一指示信息,所述第一指示信息用于指示第一频偏预补偿的参数信息,所述第一频偏预补偿是卫星与所述终端设备进行下行通信时使用的频偏预补偿;处理单元,用于根据所述第一频偏预补偿和所述第一频偏预补偿的参数信息,确定第二频偏预补偿,并控制所述收发单元根据所述第二频偏预补偿,与所述卫星进行上行通信。
可选地,所述处理单元还用于根据所述第二频偏预补偿,确定终端设备的晶振频偏;并控制所述收发单元根据所述晶振频偏,与所述卫星进行上行通信。
可选地,所述第一指示信息包括所述第一频偏预补偿的参数信息。
可选地,所述方法还包括:根据所述第一指示信息和映射关系信息,确定第一频偏预补偿的参数信息,其中,所述映射关系信息用于指示多个参数组与多个参数信息之间的对应关系,所述第一指示信息用于指示第一参数组,所述第一频偏预补偿的参数信息是所述第一参数组对应的参数信息,其中,每个参数组包括以下至少一个参数:
频偏预补偿、频偏预补偿计算参数或频偏预补偿的参数信息的有效时段。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
可选地,所述第一频偏预补偿的参数信息包括所述第一频偏预补偿在时间单位内的变化量,所述时间单位的大小是可变的。
可选地,所述收发单元还用于接收所述时间单位的大小的信息。
可选地,所述时间单位的大小的信息承载于陆地通信***的***消息中的公共定时提前指示域中。
可选地,所述收发单元还用于接收第一频偏预补偿的参数信息的有效时段的信息;以及所述处理单元还用于控制所述收发单元在所述有效时段根据所述第二频偏预补偿,与所述卫星进行上行通信。
第八方面,提供一种卫星通信的装置,包括:收发单元,用于发送第一指示信息,所述第一指示信息用于指示第一频偏预补偿的参数信息,所述第一频偏预补偿是卫星与所述终端设备进行下行通信时使用的频偏预补偿;处理单元,用于控制所述收发单元根据第二频偏预补偿,与终端设备进行上行通信,所述第二频偏预补偿是所述第一频偏预补偿按所述第一频偏预补偿的参数信息变化后的频偏预补偿。
可选地,所述第二频偏预补偿用于确定所述终端设备的晶振频偏。
可选地,所述第一指示信息显示指示所述第一频偏预补偿的参数信息。
可选地,所述第一指示信息用于指示第一参数组,所述第一频偏预补偿的参数信息是映射关系信息指示的与所第一参数组对应的参数信息,所述映射关系信息用于指示多个参数组与多个参数信息之间的对应关系,其中,每个参数组包括以下至少一个参数:
频偏预补偿、频偏预补偿计算参数或频偏预补偿的参数信息的有效时段。
可选地,所述第一指示信息承载于***消息中的公共定时提前指示域中。
可选地,述第一频偏预补偿的参数信息包括所述第一频偏预补偿在时间单位内的变化量,所述时间单位的大小是可变的。
可选地,所述收发单元还用于发送所述时间单位的大小的信息。
可选地,所述时间单位的大小的信息承载于陆地通信***的***消息中的公共定时提前指示域中。
可选地,所述收发单元还用于发送第一频偏预补偿的参数信息的有效时段的信息;所述处理单元还用于控制所述收发单元在所述有效时段根据所述第二频偏预补偿,与所述终端设备进行上行通信。
第九方面,提供了一种无线通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,提供了一种无线通信装置,包括用于执行第二方面或第二方面中任一种可能实现方式中的方法的各个模块或单元。
第十一方面,提供了一种无线通信装置,包括用于执行第五方面或第五方面中任一种可能实现方式中的方法的各个模块或单元。
第十二方面,提供了一种无线通信装置,包括用于执行第六方面或第六方面中任一种可能实现方式中的方法的各个模块或单元。
第十三方面,提供了一种通信设备,包括处理器,所述处理器与存储器耦合,可用于执行第一方面及其可能实现方式或第五方面及其可能实现方式中的方法。可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信设备为卫星。当该通信设备为卫星时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信设备为芯片或芯片***。当该通信设备为芯片或芯片***时,所述通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十四方面,提供了一种通信设备,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面及其可能实现方式或第六方面及其可能实现方式中的方法。可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在一种实现方式中,该通信设备为终端设备。当该通信设备为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地, 所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信设备为芯片或芯片***。当该通信设备为芯片或芯片***时,所述通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十五方面,提供了一种通信装置,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述第一方面、第二方面、第五方面或第六方面中的任一方面,以及上述各方面的任一种可能实现方式中的方法被实现。
在具体实现过程中,上述通信装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十六方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行所述第一方面、第二方面、第五方面或第六方面中的任一方面,以及上述各方面的任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十六方面中的处理器可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十七方面,提供了一种处理装置,包括通信接口和处理电路,所述通信接口用于获取待处理的数据,所述处理电路用于按照所述第一方面或第五方面中的任一种可能实现方式中的方法处理所述待处理的数据。
第十八方面,提供了一种处理装置,包括:通信接口和处理电路,所述通信接口用于按照所述第二方面或第六方面中的任一种可能实现方式中的方法发送指示信息,所述处理电路用于产生所述指示信息。
第十九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行所述第一方面、第二方面、第五方面或第六方面中的任一方面,以及上述各方面的任一种可能实现方式中的方法。
第二十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述所述第一方面、第二方面、第五方面或第六方面中的任一方面,以及上述各方面的任一种可能实现方式中的方法。
第二十一方面,提供了一种通信***,包括前述的卫星和终端设备。
附图说明
图1是适用本申请的卫星通信的方法的通信***的一例的示意图。
图2是适用本申请的卫星通信的方法的通信***的另一例的示意图。
图3是本申请的卫星***中的公共TA的应用场景的一例的示意图。
图4是本申请的卫星***中的公共TA变化参数的应用场景的一例的示意图。
图5是本申请的卫星***中的公共TA变化参数的应用场景的另一例的示意图。
图6是本申请的卫星通信方法的一例的示意性流程图。
图7是本申请的卫星通信方法的另一例的示意性流程图。
图8是晶振频偏对通信的影响的示意图。
图9是本申请的卫星通信方法的再一例的示意性流程图。
图10是本申请的卫星通信方法的再一例的示意性流程图。
图11是本申请的卫星通信方法的再一例的示意性流程图。
图12是本申请实施例的通信装置的示意性框图。
图13是本申请实施例的通信装置的另一示意性框图。
图14是本申请实施例的终端设备的示意性框图。
图15是本申请实施例的卫星的示意性框图。
具体实施方式
图1示出了适用于本申请实施例的通信***的一种架构的示意图。如图1所示,该通信***可以包括至少一个网络设备,例如图1所示的网络设备;该通信***还可以包括至少一个终端设备,例如图1所示的终端设备。网络设备与终端设备可通过无线链路通信。
应理解,该无线通信***中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)等,还可以为5G***中的基站的一个或一组(包括多个天线面板)天线面板等,或者,还可以为卫星等。
应理解,所述终端设备和所述UE还可以称之为接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。本申请的实施例中的UE可以是手机(mobile phone)、智能手表(smart watch)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual  reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对应用场景不做限定。
下面以卫星通信***为例,详细介绍本申请的技术方案。
在卫星通信***中网络设备可以包括卫星。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***或新无线(new radio,NR)、设备对设备(device-to-device,D2D)通信***、机器通信***、车联网通信***、卫星通信***或者未来的通信***等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)***或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、D2D通信或机器通信中承担基站功能的终端、以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
另外,本申请提供的方案可以应用于卫星通信范畴,例如3GPP各成员融合卫星通信和5G技术,图2示出了该技术的网络应用架构。地面移动终端UE通过5G新空口接入网络,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。图2中的各个网元以及他们的接口说明如下:
终端设备:支持5G新空口的移动设备,典型的比如手机,pad等移动设备。可以通过空口接入卫星网络并发起呼叫,上网等业务。
5G基站:主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
5G核心网:用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(AMF),负责用户接入管理,安全认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计,安全窃听等功能。
地面站:负责转发卫星基站和5G核心网之间的信令和业务数据。
5G新空口:终端和基站之间的无线链路。
Xn接口:5G基站和基站之间的接口,主要用于切换等信令交互。
NG接口:5G基站和5G核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
考虑到卫星基站有高度的问题,小区内的用户与卫星之间有公共往返时延(round trip delay,RTD)。如图3所示,以卫星过顶时为例,若参考点为星下点,小区内的公共RTD对应2*d1的延迟,其余用户在此基础上有额外的RTD,边缘用户有最大的RTD对应2*(d1+Δd)的延迟。针对卫星通信RTD大的问题,考虑终端设备在接入时提前补偿公共的RTD 2*d1,所有终端设备的往返延迟差不超过2*Δd,且该值远远小于公共RTD。其中公共RTD可以采用广播的形式告知终端设备。另外,公共TA除了与RTD相关,还可以与TA误差相关,该误差例如可以是所有用户可能的最大TA误差,该误差也可以包含在公共TA内,也可以单独增加一条参数,用于指示所有用户可能的最大TA误差,该误差也是一种公共TA。在接入之后,卫星的运动会引入很大的TA变化。例如轨道高度600KM的低轨卫星的运动速度可以达到7.56km/s,对于仰角较大或者较小的小区,200ms内的时间偏差最大可以达到158Ts(Ts=64Tc),如果直接用现有的TA调整方式(调整速度和一次最大TA调整的量),完全不能够达到相应的要求。在本申请中,可以采用广播TA变化率的方式,在两次闭环TA调整中间,用户根据广播的TA变化率自行进行一部分的TA跟踪,减少TA调整的误差和闭环的压力。
在本申请中,卫星广播的公共TA和TA变化率可能随着卫星的运动不停的更新。
例如,图4示出了透明转发模式的示意图,如图4所示,卫星通过转发的方式将上行信号转发给地面站,用户与地面站之间的通信距离包括的服务链路和馈电链路,若用户有定位且知道星历,则服务链路侧的TA变化情况可以由用户根据自己和卫星的相对位置得到并进行补偿。若馈电链路的TA等参数也需要用户侧补偿,卫星则需要广播馈电链路部分的TA变化参数,例如广播TA的变化率,用户可以在两次闭环TA调整之间自行进行上行TA的调整。由于卫星的运动,卫星与地面站的距离,地面站的切换都会导致该部分的TA参数随着时间的变化而变化。
再例如,图5示出了凝视模式的示意图,如图5所示,在凝视模式下,波束随着卫星的移动,改变角度,在较长的时间内为地面固定的区域提供服务。
因此,凝视模式无论是透明转发还是非透明转发,服务链路的TA变化参数也需要用户时时去监听广播信号从而进行更新。
在本申请中,定时提前量的参数信息可以包括定时提前量变化率或卫星移动参数等用于确定定时提前量的变化情况的参数信息,以下,为了便于理解和说明,以定时提前量变化率作为定时提前量的参数信息为例,对本申请的方案进行详细说明。
图6示出了本申请提供的卫星通信方法100的示意性流程图,该方法100能够有效降低上述因对公共TA的监听而导致的终端设备的能耗和通信复杂度的增加。
如图6所示,在S110,卫星#A可以向终端设备#A发送指示信息#A(即,第一方面中的第一指示信息的一例)。
首先,对指示信息#A的发送方式进行说明。
作为示例而非限定,卫星#A可以直接将该指示信息#A发送给终端设备#A。
或者,卫星#A可以将该指示信息#A发送给卫星#B,并由卫星#B发送给终端设备#A。
再或者,卫星#A可以将该指示信息#A发送给其他网络设备,例如地面基站,并由地面基站发送给终端设备#A。
再或者,卫星#A可以将该指示信息#A发送给其他终端设备,例如终端设备#B,并由终端设备#B(例如,通过D2D通信等技术)发送给终端设备#A。
该指示信息#A可以指示TA#1(即,第一方面中的第一定时提前量的一例)的有效时段(记做有效时段#1)。
其中,该TA#1可以是卫星#A使用的公共TA,此情况下,该指示信息#A可以承载于广播消息或者组播消息。
或者,该TA#1也可以是卫星#A为该终端设备#A配置的专用TA。
此情况下,例如,该指示信息#A可以承载于广播消息或者组播消息,并且,该指示信息#A可以包括该终端设备#A的专用标识,例如,终端设备#A的设备标识,或者终端设备#A在卫星#A所提供的小区中的标识。从而,小区内的终端设备可以基于该终端设备#A的专用标识,确定该TA#1是该终端设备#A的专用TA。
再例如,该指示信息#A可以承载于终端设备#A的单播消息中。
应理解,当TA#1是卫星#A使用的公共TA时,卫星#A向终端设备#A指示TA#1的参数信息中还可以包括定时误差相关的公共参数,例如TA_margin,该TA_margin表示TA的误差。当卫星#A向终端设备#A指示TA#1的参数信息中包括该TA_margin时,终端设备#A可以按照以下公式对TA进行调整:
TA=(N TA+N TA,offset+X)×T C
其中,N TA表示时间偏移量,终端设备#A可以根据自己的地理位置和卫星#A的位置确定该N TA;N TA,offset是地面通信中的与TDD和FDD相关的公共时间提前量参数(例如,n-TimingAdvanceOffset);T C是时间单位,该T C例如可以是NR中的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的采样间隔,为5.086×10 (-11)s,在上式中,假设X、N TA及N TA,offset的时间单位均为T C;X表示公共定时偏移量,终端设备#A可以根据卫星#A指示的定时偏移量乘默认的时间单位获得该X,或者根据卫星#A的指示直接获得该X的值。
当X采用不同于T C的时间单位时,终端设备#A可以按照以下公式对TA进行调整:
TA=(N TA+N TA,offset)×T C+X
当卫星#A将TA_margin和公共TA分开向终端设备#A指示时,即TA_margin和公共 TA承载在不同的消息中时,终端设备#A可以按照以下公式对TA进行调整:
TA=(N TA+N TA,offset+X+Y)×T C,或者
TA=(N TA+N TA,offset)×T C+X+Y或者
TA=(N TA+N TA,offset+X)×T C+Y或者
TA=(N TA+N TA,offset+Y)×T C+X
其中,Y表示与定时偏移误差相关的参数。终端设备#A可以根据卫星#A指示的定时偏移量乘默认的时间单位获得该X和Y,例如,X1是卫星#A指示的定时偏移量,K1是X默认的单位,则终端设备#A可以计算得到X的值:X=X1·K1;又例如,Y1是卫星#A指示的定时偏移量,K2是Y默认的单位,则终端设备#A可以计算得到Y的值:Y=Y1·K2。其中,K1和K2可以相同,也可以不同,本申请不做具体限定。或者,终端设备#A根据卫星#A的指示直接获得该X和Y的值。或者,终端设备#A根据卫星#A的指示直接获得X和Y中的一个,另一个则根据卫星#A指示的定时偏移量乘默认的时间单位获得。
需要说明的是,当终端设备#A补偿服务链路侧的定时偏移量,卫星#A补偿馈电链路侧的定时偏移量时,X的值有可能等于0,卫星#A可以指示X的值,也可以不指示X的值。当卫星#A不指示X的值得时候,还需要指示Y的值。
下面,对指示信息#A指示的内容进行说明。
作为示例而非限定,在本申请中,该有效时段#1可以包括一个或多个规定的时间周期,此情况下,该指示信息#A可以指示该有效时段#1所包括的时间周期的数量。
其中,该时间周期可以是通信***或通信协议规定的,或者,该时间中期也可以是网络设备(例如,卫星,地面基站或核心网设备)与终端设备协商确定的,本申请并未特别限定。
例如,该时间周期可以是地面通信***中的***消息(system information blocks,SIB)的发送周期。
在本申请中,例如,该指示信息#A可以指示该有效时段#1的起始时刻(或结束时刻)和长度。
再例如,该指示信息#A可以指示该有效时段#1的起始时刻和结束时刻。
或者,该指示信息#A可以仅指示该有效时段#1的长度,此情况下,终端设备#A和卫星#A可以约定该有效时段#1的起始时刻或结束时刻,例如,终端设备#A接收到该指示信息#A的时刻为该有效时段#1的起始时刻,或者,终端设备#A接收到该指示信息#A的时刻所处于的时间周期的起始时刻为该有效时段#1的起始时刻,或者,终端设备#A接收到该指示信息#A的时刻所处于的时间周期的结束时刻为该有效时段#1的结束时刻。
在本申请中,该有效时段#1的大小可以根据实际情况任意确定,本申请并未特别限定,例如卫星#A可以根据其移动速度、服务区域的地理位置等,确定该有效时段#1的大小。
下面对指示信息#A的指示方式进行说明。
在本申请中,该指示信息#A可以显示指示该有效时段#1(即方式1),或者,该指示信息#A可以隐式指示该有效时段#1(即方式2),下面,分别对上述两种方式进行详细说明。
方式1
具体地说,该指示信息#A可以包括有效时段#1对应索引或标识,或者,该指示信息#A可以包括有效时段#1的值(例如,包括的时间周期的数量)对应的比特。
作为示例而非限定,在本申请中,该指示信息#A可以承载于SIB,例如,SIB1中。
在本申请中,该指示信息#A可以与TA#1的指示信息(记做指示信息#C)或TA#1的变化率的指示信息(记做指示信息#D)同时发送,即,指示信息#A可以与指示信息#C和/或指示信息#D承载于同一消息,例如SIB1。
在本申请中,SIB1当中的服务小区配置公共SIB(ServingCellConfigCommonSIB)域包括了小区的公共参数,例如地面通信中的与时分双工(time-division duplex,TDD)和频分双工(frequencye-division duplex,FDD)相关的公共时间提前量参数(例如,n-TimingAdvanceOffset),该参数与卫星通信当中的公共TA类似,需要终端设备做一个公共的TA补偿,因此在本申请中,可以在该ServingCellConfigCommonSIB域中增加与卫星通信相关的字段,即,公共定时提前量(TimingAdvanceCommon)字段,公共定时提前量变化率(TimingAdvanceRateCommon)字段和时域有效时段(TimingAdvanceRateValidPeriod)字段,其中,TimingAdvanceCommon字段可以承载公共定时提前量(例如,TA#1)的信息,TimingAdvanceRateCommon字段可以承载公共定时提前量的变化率(例如,TA#1的变化率)的信息,TimingAdvanceRateValidPeriod字段可以承载公共定时提前量的有效时段(例如,有效时段#1)。
方式2
具体地说,在终端设备#A中可以预先存储映射关系信息(记做,映射关系#A,即,第一方面的映射关系的一例),该映射关系#A可以包括多个参数组与多个时段之间的映射关系。
其中,该映射关系#A可以是通信***或通信协议规定的,或者,该映射关系#A也可以是卫星#A与终端设备#A协商确定的,本申请并未特别限定。
在本申请中,每个参数组可以包括以下一个或多个参数:
定时提前量、定时提前量的索引、定时提前量的计算参数(即,用于计算定时提前量的参数)、定时提前量变化率(即,定时提前量的参数信息的一例)、定时提前量变化率的索引,定时提前量变化率的计算参数(即,用于计算定时提前量变化率的参数)。
此情况下,该指示信息#A可以用于指示参数组#A(即,第一方面中的第一参数组的一例),该有效时段#1可以是该映射关系#A所指示的与该参数组#A对应的时段。
并且,该参数组#A可以是卫星#A为该终端设备#A配置的用于卫星通信的参数,例如,当参数组包括定时提前量时,该参数组#A中的定时提前量可以是终端设备#A实际使用的公共定时提前量,即,上述TA#1。
需要说明的是,在方式2中,参数组中的参数可以承载于上述SIB,例如,SIB1中。例如,可以在上述TimingAdvanceCommon字段中承载定时提前量、定时提前量的索引、定时提前量的计算参数的信息,可以在TimingAdvanceRateCommon字段中承载定时提前量变化率、定时提前量变化率的索引,定时提前量变化率的计算参数的信息。
作为示例而非限定,方式2的映射关系可以如下所示:
Figure PCTCN2021075374-appb-000001
Figure PCTCN2021075374-appb-000002
在S120,终端设备#A在该有效时段#1内,可以使用TA#1与卫星#A进行上行通信,并且,在本申请中,终端设备#A在该有效时段#1内无需监听卫星#A发送的用于更新TA#1的信息或消息。
需要说明的是,在本申请中,在有效时段#1内,尽管终端设备#A不监听用于更新TA#1的信息或消息,但是卫星#A仍然可以发送用于更新TA#1的信息或消息。
或者,在有效时段#1内,卫星#A也可以不再发送用于更新TA#1的信息或消息。
作为示例而非限定,该指示信息#A可以在终端设备#A的接入过程中传输。或者,该指示信息#A也可以在终端设备#A接入之后传输,本申请并未特别限定。
图7示出了本申请提供的卫星通信方法200的示意性流程图,该方法200能够有效降低上述因对TA变化率的监听而导致的终端设备的能耗和通信复杂度的增加。
如图7所示,在S210,卫星#A可以向终端设备#A发送指示信息#B(即,第一方面中的第一指示信息的另一例)。
该指示信息#B的发送方式与上述指示信息#A相似,这里为了避免赘述,省略其详细说明。
该指示信息#B可以指示TA#1(即,第一方面中的第一定时提前量的一例)的变化率(记做,变化率#1,即,第一方面中的参数信息的一例)的有效时段(记做有效时段#2)。
其中,该TA#1可以是卫星#A使用的公共TA,此情况下,该指示信息#B可以承载于广播消息或者组播消息。
或者,该TA#1也可以是卫星#A为该终端设备#A配置的专用TA。
此情况下,例如,该指示信息#B可以承载于广播消息或者组播消息,并且,该指示信息#B可以包括该终端设备#A的专用标识,例如,终端设备#A的设备标识,或者终端设备#A在卫星#A所提供的小区中的标识。从而,小区内的终端设备可以基于该终端设备#A的专用标识,确定该TA#1是该终端设备#A的专用TA。
再例如,该指示信息#B可以承载于终端设备#A的单播消息中。
指示信息#B指示的内容可以与上述指示信息#A相似,例如,该指示信息#B可以指示该有效时段#2所包括的时间周期的数量。
在本申请中,该有效时段#2的大小可以根据实际情况任意确定,本申请并未特别限定,例如卫星#A可以根据其移动速度、服务区域的地理位置等,确定该有效时段#2的大小。
指示信息#B的指示方式可以与上述指示信息#A相似,即,该指示信息#B可以显示指示该有效时段#2,或者,该指示信息#B可以隐式指示该有效时段#2,为了避免赘述, 省略其详细说明。
应理解,当卫星#A向终端设备#A指示变化率#1(记为TA_common_rate),且该变化率#1是公共TA变化率的时候,终端设备#A可以根据自己的地理位置和卫星星历获得服务链路侧的TA变化率(记为TA_UEpecific_rate),来最终确定自己的TA变化率TA_rate:
TA_rate=TA_common_rate+TA_UEpecific_rate
其中,公共TA变化率可以是指示的一个归一化的值。
当引入TA变化率时,终端设备#A在进行上行同步的时候,需要按照以下公式对TA进行调节:
TA_new=TA_old+TA_rate·Δt+TAC
其中,TA_new表示当前时刻经过调节得到的TA,TA_old表示上一时刻综合计算得到的TA,Δt表示上一时刻到当前时刻的时间间隔,TAC表示闭环的定时调整指示,卫星#A可以通过用户级别的信令指示该TAC,假设终端设备#A收到该信令,则终端设备#A会在一个约定时间内进行定时调整,另外终端设备#A还需要根据TA变化率进行定时的调整,所以终端设备#A发送的上行信号所引入的定时提前调整量是开闭环信息结合所计算出来的。
在S220,终端设备#A在该有效时段#2内,可以使用变化率#1和TA#1确定TA#2,并使用TA#2与卫星#A进行上行通信,并且,在本申请中,终端设备#A在该有效时段#2内无需监听卫星#A发送的用于更新变化率#1的信息或消息。
需要说明的是,在本申请中,在有效时段#2内,尽管终端设备#A不监听用于更新变化率#1的信息或消息,但是卫星#A仍然可以发送用于更新变化率#1的信息或消息。
或者,在有效时段#2内,卫星#A也可以不再发送用于更新变化率#1的信息或消息。
作为示例而非限定,该指示信息#B可以在终端设备#A的接入过程中传输。或者,该指示信息#B可以在终端设备#A接入之后传输,本申请并未特别限定。
需要说明的是,方法100和方法200可以单独使用也可以结合使用本申请并未特别限定。例如,在SIB中可以携带公共定时提前量,公共定时提前量的有效时段,公共定时提前量变化率,公共定时提前量变化率的有效时段的信息。
再例如,公共定时提前量的有效时段和公共定时提前量变化率的有效时段可以相同,此情况下,在SIB中可以携带公共定时提前量,公共定时提前量变化率和有效时段的信息。
在本申请中,变化率#1可以指示TA#1在是时间单位#A(即,第一方面中的第一时间单位的一例)内的变化量。
可选地,该时间单位#A是可变地,即,在本申请中,卫星#A可以确定该时间单位#A并将该时间单位#A的大小的信息下发给终端设备#A。
并且,作为示例而非限定,该时间单位#A的大小的信息可以承载于上述SIB,例如SIB1中。这个信息可以与有效时段的信息同时发送,也可以在不同的时刻发送。
根据本申请提供的方案,例如,如果公共TA和TA变化率的有效时段均为3个SIB周期,由于SIB1的周期是160ms,若其他***消息没有变化,意味着在480ms内用户可以根据TA变化率和闭环指示进行公共TA的调整,无需进行广播信号的监听。
另外,现有技术当中若***信息发生变化,会采用加扰的DCI告知用户侧,如果***信息当中只有TA相关的信息发生变化,用户可以根据周期,周期性的监听广播信号,而 不需要DCI额外指示,减少用户侧的复杂度。
公共TA的范围与基站设备类型,参考点的选取,还有公共TA是否包含馈电链路有关。公共TA也可以是一些离散的指示参数。公共TA对应的时间提前量可以包括{2ms,4ms,6ms,8ms,10ms,12ms,…40ms…100ms,…500ms}等值,此处不做限定。假设卫星轨道高度是600km,对应的公共TA是4ms。
以下表1示出了本申请的SIB(例如,ServingCellConfigCommonSIB)的一例。该示例中,(卫星)公共定时提前量包括了与距离相关的公共定时提前量。
表1
Figure PCTCN2021075374-appb-000003
以下表2示出了本申请的SIB(例如,ServingCellConfigCommonSIB)的另一例。该示例中,(卫星)公共定时提前量包括了与距离相关的公共定时提前量和公共误差相关的公共定时提前量。其中,与误差相关的公共定时提前字段TimingAdvanceCommon为单独的字段。
表2
Figure PCTCN2021075374-appb-000004
Figure PCTCN2021075374-appb-000005
以下表3示出了本申请的SIB(例如,ServingCellConfigCommonSIB)的另一例。
表3
Figure PCTCN2021075374-appb-000006
在本申请中,n-TimingAdvanceOffset所携带的信息指示的TA可以是地面通信***中的TA(例如,与TDD和FDD相关的TA)与卫星通信***中的TA(例如,TA#1)之和。此情况下,可以无需指示TA#1。
以下表4示出了上述情况下的SIB(例如,ServingCellConfigCommonSIB)的一例。
表4
字段 所承载信息
downlinkConfigCommon DownlinkConfigCommonSIB
uplinkConfigCommon UplinkConfigCommonSIB
supplementaryUplink UplinkConfigCommonSIB
n-TimingAdvanceOffset 例如{n0,n25600,n39936}
TimingAdvanceRateCommon 例如{B1,B2,B3…}
TimingAdvanceRateValidPeriod 例如{C1,C2,C3…}
…… ……
在本申请中,n-TimingAdvanceOffset字段与频段相关,例如,FR1对应450MHz-6000MHz,FR2对应24250MHz-52600MHz。若该字段缺省,则采用表中的值,若不缺省则按照n-TimingAdvanceOffset中指示的参数。本申请中,若该字段缺省按照约定方式,例如TimingAdvanceOffset按照查表,公共TA为0,或者TimingAdvanceOffset按照查表,公共TA根据网络设备类型采用对应的值。若不缺省,例如A=50000,表示NTA_offset与公共TA的相加的时间提前量是50000Tc,本申请对时间单位不做限定,由于两个分量相加后的TA量级较大,可以采用ms作为单位,此处不做限定。
在本申请中,TimingAdvanceOffset所携带的信息指示的TA可以是地面通信***中的 TA(例如,与TDD和FDD相关的TA)与卫星通信***中的TA(例如,TA#1)之和。此情况下,可以无需n-TimingAdvanceOffset字段。
以下表5示出了上述情况下的SIB(例如,ServingCellConfigCommonSIB)的一例。
表5
字段 所承载信息
downlinkConfigCommon DownlinkConfigCommonSIB
uplinkConfigCommon UplinkConfigCommonSIB
supplementaryUplink UplinkConfigCommonSIB
TimingAdvanceOffset 例如{A1,A2,A3…}
TimingAdvanceRateCommon 例如{B1,B2,B3…}
TimingAdvanceRateValidPeriod 例如{C1,C2,C3…}
…… ……
在卫星通信中,因为卫星与终端之间的距离较大以及卫星的移动,导致卫星通信中出现多普勒频偏,为了降低多普勒频偏的影响,卫星可以预先进行频偏预补偿。当小区切换时,该频偏预补偿会发生突变,导致终端设备的频率同步复杂度增大。因此,本申请中,卫星可以指示终端设备该频偏预补偿(或者说,频偏预补偿)的值。
另外,在下行频率同步过程中,为了减少用户侧的接收到的信号频率,基站侧会首先做一个频率的预补偿。用户根据中心频率会检测到一个频偏,该频偏包括了基站侧补偿后的残留多普勒频偏Fd和终端晶振造成的频偏Fo,用户无法去区分两部分分量。若在发送上行信号的时候,直接采用Fd+Fo的频率进行预补偿,最后在终端侧产生大约两倍晶振的频偏,如图8所示。
若晶振的频偏比较大,基站侧产生的频率偏移也会较大,增加基站侧的信号处理复杂度。若用户可以知道残留多普勒频偏Fd,则可以根据下行频偏得到晶振频偏Fo,并在上行信号发送的时候,进行预补偿,减少基站侧的频偏。
假设信号的原发送频率为Fc,那么最后信号的发送频率为:
Fc-(Fd+Fo)+2Fo=Fc-Fd+Fo
用户可以根据自己的地理位置和星历,获得总的多普勒频偏FDoff,若基站侧广播多普勒预补偿值,假设为Foffset,那么用户可以计算出,Fd=FDoff-Foffset。最后得到晶振频偏Fo。
图9示出了本申请提供的卫星通信方法300的示意性流程图,该方法300能够有效降低因对频偏预补偿的监听而导致的终端设备的能耗和通信复杂度的增加。
如图9所示,在S310,卫星#A可以向终端设备#A发送指示信息#E(即,第一方面中的第一指示信息的再一例)。
该指示信息#E的发送方式与上述指示信息#A相似,这里为了避免赘述,省略其详细说明。
该指示信息#E可以指频偏预补偿#1(即,第一方面中的第一频偏预补偿的一例)的有效时段(记做有效时段#3)。
其中,频偏预补偿也可以称为频率偏差(卫星的发射功率和终端设备的接收功率之间 频率偏差,或者卫星的接收功率和终端设备的发射功率之间的偏差)的预补偿。
其中,该频偏预补偿#1可以是卫星#A使用的公共频偏预补偿,此情况下,该指示信息#E可以承载于广播消息或者组播消息。
或者,该频偏预补偿#1也可以是卫星#A为该终端设备#A配置的专用频偏预补偿。
此情况下,例如,该指示信息#E可以承载于广播消息或者组播消息,并且,该指示信息#E可以包括该终端设备#A的专用标识,例如,终端设备#A的设备标识,或者终端设备#A在卫星#A所提供的小区中的标识。从而,小区内的终端设备可以基于该终端设备#A的专用标识,确定该频偏预补偿#1是该终端设备#A的专用TA。
再例如,该指示信息#E可以承载于终端设备#A的单播消息中。
指示信息#E指示的内容可以与上述指示信息#A相似,例如,该指示信息#E可以指示该有效时段#3所包括的时间周期的数量。
在本申请中,该有效时段#3的大小可以根据实际情况任意确定,本申请并未特别限定,例如卫星#A可以根据其移动速度、服务区域的地理位置等,确定该有效时段#3的大小。
下面对指示信息#E的指示方式进行说明。
在本申请中,该指示信息#E可以显示指示该有效时段#3(即方式3),或者,该指示信息#E可以隐式指示该有效时段#3(即方式4),下面,分别对上述两种方式进行详细说明。
方式3
具体地说,该指示信息#E可以包括有效时段#3对应索引或标识,或者,该指示信息#E可以包括有效时段#3的值(例如,包括的时间周期的数量)对应的比特。
作为示例而非限定,在本申请中,该指示信息#E可以承载于SIB,例如,SIB1中。
在本申请中,该指示信息#E可以与频偏预补偿#1的指示信息(记做指示信息#G)或频偏预补偿#1的变化率的指示信息(记做指示信息#H)同时发送,即,指示信息#E可以与指示信息#G和/或指示信息#H承载于同一消息,例如SIB1。
在本申请中,SIB1当中的服务小区配置公共SIB(ServingCellConfigCommonSIB)域包括了小区的公共参数,因此在本申请中,可以在该ServingCellConfigCommonSIB域中增加与卫星通信相关的字段,即,公共频偏预补偿(FrequencyOffset)字段,公共频偏预补偿变化率(FrequencyOffsetRate)字段和频域有效时段(FrequencyOffsetPeriod)字段,其中,FrequencyOffse字段可以承载公共频偏预补偿(例如,频偏预补偿#1)的信息,FrequencyOffsetRate字段可以承载公共频偏预补偿的变化率(例如,频偏预补偿#1的变化率)的信息,FrequencyOffsetPeriod字段可以承载公共频偏预补偿的有效时段(例如,有效时段#1)。
方式4
具体地说,在终端设备#A中可以预先存储映射关系信息(记做,映射关系#B),该映射关系#B可以包括多个参数组与多个时段之间的映射关系。
其中,该映射关系#B可以是通信***或通信协议规定的,或者,该映射关系#B也可以是卫星#A与终端设备#A协商确定的,本申请并未特别限定。
在本申请中,每个参数组可以包括以下一个或多个参数:
频偏预补偿、频偏预补偿的索引、频偏预补偿的计算参数(即,用于计算频偏预补偿的参数)、频偏预补偿变化率(即,频偏预补偿的参数信息的一例)、频偏预补偿变化率的索引,频偏预补偿变化率的计算参数(即,用于计算频偏预补偿变化率的参数)。
此情况下,该指示信息#E可以用于指示参数组#B(即,第一方面中的第一参数组的一例),该有效时段#3可以是该映射关系#B所指示的与该参数组#B对应的时段。
并且,该参数组#B可以是卫星#A为该终端设备#A配置的用于卫星通信的参数,例如,当参数组包括频偏预补偿时,该参数组#B中的频偏预补偿可以是终端设备#A实际使用的公共频偏预补偿,即,上述频偏预补偿#1。
需要说明的是,在方式4中,参数组中的参数可以承载于上述SIB,例如,SIB1中。例如,可以在上述FrequencyOffset字段中承载频偏预补偿、频偏预补偿的索引、频偏预补偿的计算参数的信息,可以在FrequencyOffsetRate字段中承载频偏预补偿变化率、频偏预补偿变化率的索引,频偏预补偿变化率的计算参数的信息。
在S320,终端设备#A在该有效时段#3内,可以使用频偏预补偿#1与卫星#A进行上行通信,并且,在本申请中,终端设备#A在该有效时段#3内无需监听卫星#A发送的用于更新频偏预补偿#1的信息或消息。需要说明的是,在本申请中,在有效时段#3内,尽管终端设备#A不监听用于更新频偏预补偿#1的信息或消息,但是卫星#A仍然可以发送用于更新频偏预补偿#1的信息或消息。
或者,在有效时段#3内,卫星#A也可以不再发送用于更新频偏预补偿#1的信息或消息。
需要说明的是,方法300与上述方法100可以单独使用也可以结合使用本申请并未特别限定。例如,在SIB中可以携带公共定时提前量,公共定时提前量的有效时段,频偏预补偿,频偏预补偿的有效时段。
再例如,公共定时提前量的有效时段和频偏预补偿的有效时段可以相同,此情况下,在SIB中可以携带公共定时提前量,频偏预补偿和有效时段的信息。
再例如,公共定时提前量的有效时段和频偏预补偿的有效时段可以不相同,此情况下,在SIB中可以携带公共定时提前量,公共定时提前量的有效时段,频偏预补偿和频偏预补偿的有效时段。
以下表6示出了本申请的携带有频偏预补偿的有效时段的SIB(例如,ServingCellConfigCommonSIB)的一例。
表6
ServingCellConfigCommonSIB  
downlinkConfigCommon DownlinkConfigCommonSIB
uplinkConfigCommon UplinkConfigCommonSIB
supplementaryUplink UplinkConfigCommonSIB
n-TimingAdvanceOffset 例如{n0,n25600,n39936}
TimingAdvanceCommon 例如{A1,A2,A3…}
 
FrequencyOffset 例如{F1,F2,F3…}
FrequencyOffsetPeriod 例如{T1,T2,T3…}
…… ……
并且在本申请中,可以采用广播频偏预补偿的参数信息的方式,在两次闭环频偏预补偿调整中间,用户根据广播的频偏预补偿的参数信息自行进行一部分的频偏预补偿跟踪,减少频偏预补偿调整的误差和闭环的压力。随后结合图11,对频偏预补偿的参数信息的传输过程进行详细说明。
在本申请中,频偏预补偿的参数信息可以包括频偏预补偿变化率或卫星移动参数等用于确定频偏预补偿的变化情况的参数信息,以下,为了便于理解和说明,以频偏预补偿变化率作为频偏预补偿的参数信息为例,对本申请的方案进行详细说明。
即,若预补偿的频偏不是固定的,需要随着时间的变化而变化。为了减少用户监听广播信号的频率,可以增加相应的字段指示频偏预补偿的变化参数。例如增加频偏预补偿变化率(FrequencyOffsetRate)域,用户可以根据频偏补偿的变化率估计基站侧补偿的频偏变化。例如,FrequencyOffset域指示的频率偏移为10ppm,FrequencyOffsetRate指示单位时间的频偏补偿变化率为1ppm。那么每过一个时间单位,频率补偿的值会增加1ppm。
图10示出了本申请提供的卫星通信方法400的示意性流程图,该方法400能够有效降低上述因对频偏预补偿变化率的监听而导致的终端设备的能耗和通信复杂度的增加。
如图10所示,在S410,卫星#A可以向终端设备#A发送指示信息#F(即,第一方面中的第一指示信息的另一例)。
该指示信息#F的发送方式与上述指示信息#A相似,这里为了避免赘述,省略其详细说明。
该指示信息#F可以指示频偏预补偿#1(即,第一方面中的第一频偏预补偿的一例)的变化率(记做,变化率#2,即,第一方面中的参数信息的一例)的有效时段(记做有效时段#4)。
其中,该频偏预补偿#1可以是卫星#A使用的公共频偏预补偿#1,此情况下,该指示信息#F可以承载于广播消息或者组播消息。
或者,该频偏预补偿#1也可以是卫星#A为该终端设备#A配置的专用TA。
此情况下,例如,该指示信息#F可以承载于广播消息或者组播消息,并且,该指示信息#F可以包括该终端设备#A的专用标识,例如,终端设备#A的设备标识,或者终端设备#A在卫星#A所提供的小区中的标识。从而,小区内的终端设备可以基于该终端设备#A的专用标识,确定该频偏预补偿#1是该终端设备#A的专用频偏预补偿。
再例如,该指示信息#F可以承载于终端设备#A的单播消息中。
指示信息#F指示的内容可以与上述指示信息#A相似,例如,该指示信息#F可以指示该有效时段#4所包括的时间周期的数量。
在本申请中,该有效时段#4的大小可以根据实际情况任意确定,本申请并未特别限定,例如卫星#A可以根据其移动速度、服务区域的地理位置等,确定该有效时段#4的大小。
指示信息#F的指示方式可以与上述指示信息#E相似,即,该指示信息#F可以显示指示该有效时段#4,或者,该指示信息#F可以隐式指示该有效时段#4,为了避免赘述,省略其详细说明。
在S420,终端设备#A在该有效时段#4内,可以使用变化率#2和频偏预补偿#1确定频偏预补偿#2,并使用频偏预补偿#2与卫星#A进行上行通信,并且,在本申请中,终端设备#A在该有效时段#4内无需监听卫星#A发送的用于更新变化率#2的信息或消息。
需要说明的是,在本申请中,在有效时段#4内,尽管终端设备#A不监听用于更新变化率#2的信息或消息,但是卫星#A仍然可以发送用于更新变化率#2的信息或消息。
或者,在有效时段#4内,卫星#A也可以不再发送用于更新变化率#2的信息或消息。
需要说明的是,方法300和方法400可以单独使用也可以结合使用本申请并未特别限定。例如,在SIB中可以携带公共频偏预补偿,公共频偏预补偿的有效时段,公共频偏预补偿变化率,公共频偏预补偿变化率的有效时段的信息。
再例如,公共频偏预补偿的有效时段和公共频偏预补偿变化率的有效时段可以相同,此情况下,在SIB中可以携带公共频偏预补偿,公共频偏预补偿变化率和有效时段的信息。
在本申请中,变化率#2可以指示频偏预补偿#1在是时间单位#B(即,第一方面中的第二时间单位的一例)内的变化量。
可选地,该时间单位#B是可变地,即,在本申请中,卫星#A可以确定该时间单位#B并将该时间单位#B的大小的信息下发给终端设备#A。
并且,作为示例而非限定,该时间单位#B的大小的信息可以承载于上述SIB,例如SIB1中。这个信息可以与有效时段的信息同时发送,也可以在不同的时刻发送。
图11示出了频偏预补偿变化率传输的方法500的示意图。
如图11所示,在S510,卫星#1向终端设备#1发送频偏预补偿#A的变化率(记做变化率#A)的指示信息(记做,指示信息#1,即,第五方面中的第一指示信息的一例)。
作为示例而非限定,卫星#1可以直接将该指示信息#1发送给终端设备#1。
或者,卫星#1可以将该指示信息#1发送给卫星#2,并由卫星#2发送给终端设备#1。
再或者,卫星#1可以将该指示信息#1发送给其他网络设备,例如地面基站,并由地面基站发送给终端设备#1。
再或者,卫星#A可以将该指示信息#1发送给其他终端设备,例如终端设备#2,并由终端设备#2(例如,通过D2D通信等技术)发送给终端设备#1。
其中,该频偏预补偿#A可以是卫星#1使用的公共频偏预补偿,此情况下,该指示信息#1可以承载于广播消息或者组播消息。
或者,该频偏预补偿#A也可以是卫星#1为该终端设备#1配置的专用TA。
此情况下,例如,该指示信息#1可以承载于广播消息或者组播消息,并且,该指示信息#1可以包括该终端设备#1的专用标识,例如,终端设备#1的设备标识,或者终端设备#1在卫星#1所提供的小区中的标识。从而,小区内的终端设备可以基于该终端设备#1的专用标识,确定该频偏预补偿#A是该终端设备#1的专用频偏预补偿。
再例如,该指示信息#1可以承载于终端设备#1的单播消息中。
下面对指示信息#1的指示方式进行说明。
在本申请中,该指示信息#1可以显示指示该变化率#A(即方式A),或者,该指示信息#1可以隐式指示该变化率#A(即方式B),下面,分别对上述两种方式进行详细说明。
方式A
具体地说,该指示信息#1可以包括变化率#A对应索引或标识,或者,该指示信息#1可以包括变化率#A的值对应的比特。
作为示例而非限定,在本申请中,该指示信息#1可以承载于SIB,例如,SIB1中。
在本申请中,该指示信息#1可以与频偏预补偿#A的指示信息(记做指示信息#2)同时发送,即,指示信息#1可以与指示信息#2承载于同一消息,例如SIB1。
例如,可以在SIB中增加频偏预补偿(FrequencyOffset)域,以承载指示信息#2,并增加频偏预补偿变化率(FrequencyOffsetRate)域,以承载指示信息#1。
以下表7示出了方式A的SIB的一例。
表7
ServingCellConfigCommonSIB  
downlinkConfigCommon DownlinkConfigCommonSIB
uplinkConfigCommon UplinkConfigCommonSIB
supplementaryUplink UplinkConfigCommonSIB
n-TimingAdvanceOffset 例如{n0,n25600,n39936}
TimingAdvanceCommon 例如{A1,A2,A3…}
…… ……
FrequencyOffset 例如{F1,F2,F3…}
FrequencyOffsetRate 例如{R1,R2,R3…}
…… ……
方式B
具体地说,在终端设备#1中可以预先存储映射关系信息(记做,映射关系#1,即第五方面的映射关系信息的一例),该映射关系#1可以包括多个参数组与多个变化率之间的映射关系。
其中,该映射关系#1可以是通信***或通信协议规定的,或者,该映射关系#1也可以是卫星#1与终端设备#1协商确定的,本申请并未特别限定。
在本申请中,每个参数组可以包括以下一个或多个参数:
频偏预补偿、频偏预补偿的索引、频偏预补偿的计算参数(即,用于计算频偏预补偿的参数)、有效时段(或者说,频偏预补偿变化率的有效时段)。
作为示例而非限定,在本申请中,一个效时段可以包括一个或多个规定的时间周期,此情况下,该指示信息#A可以指示该有效时段#A所包括的时间周期的数量。
其中,该时间周期可以是通信***或通信协议规定的,或者,该时间中期也可以是网络设备(例如,卫星,地面基站或核心网设备)与终端设备协商确定的,本申请并未特别限定。例如,该时间周期可以是地面通信***中的***消息(system information blocks,SIB)的发送周期。
此情况下,该指示信息#1可以用于指示参数组#1(即,第五方面中的第一参数组的一例),该变化率#A可以是该映射关系#1所指示的与该参数组#1对应的变化率。
并且,该参数组#1可以是卫星#1为该终端设备#1配置的用于卫星通信的参数,例如,当参数组包括频偏预补偿时,该参数组#1中的频偏预补偿可以是终端设备#1实际使用的 公共频偏预补偿,即,上述频偏预补偿#A。
再例如,当参数组#1包括有效时段(记做有效时段#A)时,该有效时段#A可以是终端设备#1最终确定的变化率#A的有效时段,或者,该有效时段#A可以是的频偏预补偿#A的有效时段。
并且,作为示例而非限定,例如,指示信息#1具体可以指示有效时段#A的起始时刻(或结束时刻)和长度。再例如,该指示信息#1可以指示该有效时段#A的起始时刻和结束时刻。或者,该指示信息#1可以仅指示该有效时段#A的长度,此情况下,终端设备#1和卫星#1可以约定该有效时段#A的起始时刻或结束时刻,例如,终端设备#1接收到该指示信息#1的时刻为该有效时段#A的起始时刻,或者,终端设备#1接收到该指示信息#1的时刻所处于的时间周期的起始时刻为该有效时段#A的起始时刻,或者,终端设备#1接收到该指示信息#1的时刻所处于的时间周期的结束时刻为该有效时段#A的结束时刻。
在本申请中,该有效时段#A的大小可以根据实际情况任意确定,本申请并未特别限定,例如卫星#1可以根据其移动速度、服务区域的地理位置等,确定该有效时段#A的大小。
需要说明的是,在方式B中,参数组中的参数可以承载于上述SIB,例如,SIB1中。例如,可以在上述FrequencyOffset字段中承载频偏预补偿、频偏预补偿的索引、频偏预补偿的计算参数的信息,可以在FrequencyOffsetPeriod字段中承载频偏预补偿的有效时段。
以下表8示出了方式B的SIB的一例。
表8
ServingCellConfigCommonSIB  
downlinkConfigCommon DownlinkConfigCommonSIB
uplinkConfigCommon UplinkConfigCommonSIB
supplementaryUplink UplinkConfigCommonSIB
n-TimingAdvanceOffset 例如,{n0,n25600,n39936}
TimingAdvanceCommon 例如,{A1,A2,A3…}
…… ……
FrequencyOffset 例如,{F1,F2,F3…}
TimingAdvanceRateValidPeriod 例如,{T1,T2,T3…}
…… ……
在S520,终端设备#1可以根据指示信息#1确定变化率#A,并根据频偏预补偿#A和变化率#A确定频偏变化率#B,并基于频偏预补偿#B进行卫星通信,例如,可基于频偏预补偿#B确定晶振频偏,并在上行通信是进行针对该晶振频偏的补偿。
图12是本申请实施例提供的通信装置600的示意性框图。该装置600包括收发单元610和处理单元620。收发单元610可以与外部进行通信,处理单元620用于进行数据处理。收发单元610还可以称为通信接口或通信单元。
可选地,该装置600还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元620可以读取存储单元中的指令或者和/或数据。
该装置600可以用于执行上文方法实施例中卫星所执行的动作,这时,该装置600可 以为卫星或者可配置于卫星的部件,收发单元610用于执行上文方法实施例中卫星侧的收发相关的操作,处理单元620用于执行上文方法实施例中卫星侧的处理相关的操作。
或者,该装置600可以用于执行上文方法实施例中终端设备所执行的动作,这时,该装置600可以为终端设备或者可配置于终端设备的部件,收发单元610用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元620用于执行上文方法实施例中终端设备侧的处理相关的操作。
如图13所示,本申请实施例还提供一种通信装置700。该通信装置700包括处理器710,处理器710与存储器720耦合,存储器720用于存储计算机程序或指令或者和/或数据,处理器710用于执行存储器720存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置700包括的处理器710为一个或多个。
可选地,如图13所示,该通信装置700还可以包括存储器7520。
可选地,该通信装置700包括的存储器720可以为一个或多个。
可选地,该存储器720可以与该处理器710集成在一起,或者分离设置。
可选地,如图13所示,该无线通信装置700还可以包括收发器7530,收发器730用于信号的接收和/或发送。例如,处理器710用于控制收发器730进行信号的接收和/或发送。
作为一种方案,该通信装置700用于实现上文方法实施例中由卫星执行的操作。
例如,处理器710用于实现上文方法实施例中由卫星执行的处理相关的操作,收发器730用于实现上文方法实施例中由卫星执行的收发相关的操作。
作为另一种方案,该通信装置700用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器710用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器730用于实现上文方法实施例中由终端设备执行的收发相关的操作。
本申请实施例还提供一种通信装置800,该通信装置800可以是终端设备也可以是芯片。该通信装置800可以用于执行上述方法实施例中由终端设备所执行的操作。当该通信装置800为终端设备时,图14示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图14中,终端设备以手机作为例子。如图14所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存 在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图14所示,终端设备包括收发单元810和处理单元820。收发单元810也可以称为收发器、收发机、收发装置等。处理单元820也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元810用于执行终端设备的接收操作。处理单元820用于执行终端设备侧的处理动作。
应理解,图14仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图14所示的结构。
当该通信装置800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
本申请实施例还提供一种通信装置900,该通信装置900可以是卫星也可以是芯片。该通信装置900可以用于执行上述方法实施例中由卫星所执行的操作。
当该通信装置900为卫星时,例如为卫星基站。图15示出了一种简化的基站结构示意图。基站包括910部分以及920部分。910部分主要用于射频信号的收发以及射频信号与基带信号的转换;920部分主要用于基带处理,对基站进行控制等。910部分通常可以称为收发单元、收发机、收发电路、或者收发器等。920部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
910部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将910部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即910部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
920部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者 是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,910部分的收发单元用于执行实施例中由卫星执行的收发相关的步骤;920部分用于执行由卫星执行的处理相关的步骤。
应理解,图15仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图15所示的结构。
当该通信装置900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由卫星执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由卫星执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信***,该通信***包括上文实施例中的卫星与终端设备。
作为一个示例,该通信***包括:上文实施例中的卫星与终端设备。
上述提供的任一种无线通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作***层的操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或卫星,或者,是终端设备或卫星中能够调用程序并执行程序的功能模块。
本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable  read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种卫星通信的方法,其特征在于,包括:
    终端设备接收第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:
    第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;
    所述终端设备在所述有效时段,根据所述第一参数信息与卫星进行上行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一指示信息和映射关系信息,确定所述第一参数信息的有效时段,其中,所述映射关系信息用于指示多个参数组与多个时段之间的对应关系,所述第一指示信息用于指示第一参数组,所述有效时段是所述第一参数组对应的时段,其中,每个参数组包括以下至少一个参数:
    定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息还包括所述第一参数信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一指示信息承载于***消息中的公共定时提前指示域中。
  5. 根据权利要求4所述的方法,其特征在于,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
    所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第二指示信息承载于***消息中的公共定时提前指示域中。
  9. 一种卫星通信的方法,其特征在于,包括:
    卫星发送第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:
    第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;
    所述卫星在所述有效时段,根据所述第一参数信息与终端设备进行上行通信。
  10. 根据权利要求9所述的方法,其特征在于,所述第一指示信息用于指示多个参数组中的第一参数组,所述有效时段是映射关系信息指示的所述第一参数组对应的时段,其中,所述映射关系信息用于指示所述多个参数组与多个时段之间的对应关系,每个参数组包括以下至少一个参数:
    定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一指示信息还包括所述第一参数信息。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一指示信息承载于***消息中的公共定时提前指示域中。
  13. 根据权利要求12所述的方法,其特征在于,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
    所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述卫星发送第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第二指示信息承载于***消息中的公共定时提前指示域中。
  17. 一种卫星通信的装置,其特征在于,包括:
    收发单元,用于接收第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:
    第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;
    处理单元,用于控制所述收发单元在所述有效时段,根据所述第一参数信息与卫星进行上行通信。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于根据所述第一指示信息和映射关系信息,确定所述第一参数信息的有效时段,其中,所述映射关系信息用于指示多个参数组与多个时段之间的对应关系,所述第一指示信息用于指示第一参数组,所述有效时段是所述第一参数组对应的时段,其中,每个参数组包括以下至少一个参数:
    定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏 预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第一指示信息还包括所述第一参数信息。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述第一指示信息承载于***消息中的公共定时提前指示域中。
  21. 根据权利要求20所述的装置,其特征在于,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
    所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
  23. 根据权利要求22所述的装置,其特征在于,所述收发单元还用于接收第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
  24. 根据权利要求23所述的装置,其特征在于,所述第二指示信息承载于***消息中的公共定时提前指示域中。
  25. 一种卫星通信的装置,其特征在于,包括:
    收发单元,用于发送第一指示信息,所述第一指示信息用于指示第一参数信息的有效时段,所述第一参数信息包括以下至少一种信息:
    第一定时提前量、第一定时提前量的参数信息、第一频偏预补偿或所述第一频偏预补偿的参数信息;
    处理单元,用于控制所述收发单元在所述有效时段,根据所述第一参数信息与终端设备进行上行通信。
  26. 根据权利要求25所述的装置,其特征在于,所述第一指示信息用于指示多个参数组中的第一参数组,所述有效时段是映射关系信息指示的所述第一参数组对应的时段,其中,所述映射关系信息用于指示所述多个参数组与多个时段之间的对应关系,每个参数组包括以下至少一个参数:
    定时提前量、定时提前量的索引、定时提前量计算参数、定时提前量变化率、定时提前量变化率的索引、定时提前量变化率计算参数、频偏预补偿、频偏预补偿的索引、频偏预补偿计算参数、频偏预补偿变化率、频偏预补偿变化率的索引、频偏预补偿变化率计算参数。
  27. 根据权利要求25或26所述的装置,其特征在于,所述第一指示信息还包括所述第一参数信息。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述第一指示信息承载于***消息中的公共定时提前指示域中。
  29. 根据权利要求28所述的装置,其特征在于,所述公共定时提前指示域中承载的公共定时提前参数是根据所述第一定时提前量确定的。
  30. 根据权利要求25至29中任一项所述的装置,其特征在于,所述第一定时提前量的参数信息包括第一变化率,所述第一变化率为所述第一定时提前量在第一时间单位内的变化量,所述第一时间单位的大小是可变的,或者
    所述第一频偏预补偿的参数信息包括第二变化率,所述第二变化率为所述第一频偏预补偿在第二时间单位内的变化量,所述第二时间单位的大小是可变的。
  31. 根据权利要求30所述的装置,其特征在于,所述收发单元还用于发送第二指示信息,所述第二指示信息包括所述第一时间单位的大小的信息,或者所述第二指示信息包括所述第二时间单位的大小的信息。
  32. 根据权利要求31所述的装置,其特征在于,所述第二指示信息承载于***消息中的公共定时提前指示域中。
  33. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得
    权利要求1至8中任一项所述的方法被执行,或
    权利要求9至16中任一项所述的方法被执行。
  34. 根据权利要求31所述的装置,其特征在于,所述存储器集成于所述处理器中。
  35. 根据权利要求33或34所述的装置,其特征在于,所述通信装置为芯片。
  36. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于实现
    权利要求1至8中任一项所述的方法,或
    权利要求9至16中任一项所述的方法。
  37. 一种芯片***,其特征在于,包括:通信接口和处理电路,所述通信接口用于获取待处理的数据,所述处理电路用于按照权利要求1至8中任意一项所述的方法处理所述待处理的数据。
  38. 一种芯片***,其特征在于,包括:通信接口和处理电路,所述通信接口用于按照权利要求9至16中任意一项所述的方法发送指示信息,所述处理电路用于产生所述指示信息。
PCT/CN2021/075374 2020-02-14 2021-02-05 卫星通信的方法和装置 WO2021160025A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21753546.7A EP4096116A4 (en) 2020-02-14 2021-02-05 SATELLITE COMMUNICATIONS METHOD AND APPARATUS
KR1020227030793A KR20220137096A (ko) 2020-02-14 2021-02-05 위성 통신 방법 및 장치
BR112022015896A BR112022015896A2 (pt) 2020-02-14 2021-02-05 Método e aparelho de comunicação por satélite
US17/819,441 US20220386259A1 (en) 2020-02-14 2022-08-12 Satellite communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093138.6A CN113271135B (zh) 2020-02-14 2020-02-14 卫星通信的方法和装置
CN202010093138.6 2020-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/819,441 Continuation US20220386259A1 (en) 2020-02-14 2022-08-12 Satellite communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021160025A1 true WO2021160025A1 (zh) 2021-08-19

Family

ID=77227242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075374 WO2021160025A1 (zh) 2020-02-14 2021-02-05 卫星通信的方法和装置

Country Status (6)

Country Link
US (1) US20220386259A1 (zh)
EP (1) EP4096116A4 (zh)
KR (1) KR20220137096A (zh)
CN (2) CN113271135B (zh)
BR (1) BR112022015896A2 (zh)
WO (1) WO2021160025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071591A1 (zh) * 2021-10-30 2023-05-04 华为技术有限公司 一种定时提前ta确定方法及通信装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030851A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
US11997630B2 (en) * 2020-08-07 2024-05-28 Qualcomm Incorporated Updating an uplink-downlink timing interaction offset
CN115913313A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种公共ta确定方法及通信装置
CN116886151A (zh) * 2021-11-12 2023-10-13 华为技术有限公司 频偏补偿方法及装置
WO2023082272A1 (zh) * 2021-11-15 2023-05-19 北京小米移动软件有限公司 一种上行同步方法、装置及可读存储介质
CN114095073B (zh) * 2021-11-17 2023-12-19 国家计算机网络与信息安全管理中心 一种5g卫星融合场景中的无缝切换方法
CN114503701B (zh) * 2021-12-31 2024-05-28 北京小米移动软件有限公司 能力指示、确定方法和装置、通信装置和存储介质
CN114868434A (zh) * 2022-03-31 2022-08-05 北京小米移动软件有限公司 生效时间确定方法及装置
CN117793875A (zh) * 2022-09-27 2024-03-29 华为技术有限公司 通信方法和通信装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268850A1 (en) * 2007-04-30 2008-10-30 Motorola, Inc. Method and apparatus for handover in a wireless communication system
CN101465686A (zh) * 2007-12-19 2009-06-24 中兴通讯股份有限公司 一种实现td-scdma基站同步的方法和装置
US20100220713A1 (en) * 2007-11-05 2010-09-02 Tobias Tynderfeldt Random access preamble collision detection
CN102572937A (zh) * 2010-12-23 2012-07-11 普天信息技术研究院有限公司 一种宽带集群***中随机接入的方法、基站及***
WO2013168938A1 (en) * 2012-05-10 2013-11-14 Lg Electronics Inc. A method and apparatus of controlling cell deactivation in a wireless communication system
CN104753833A (zh) * 2013-12-27 2015-07-01 普天信息技术研究院有限公司 一种定时估计方法
CN107889261A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 通信方法、基站和终端设备
WO2020029919A1 (zh) * 2018-08-09 2020-02-13 华为技术有限公司 无线通信的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379435B (zh) * 2012-04-28 2017-02-08 电信科学技术研究院 一种基于卫星移动通信***的广播信息传输方法和设备
CN110062455B (zh) * 2018-01-19 2021-09-03 中兴通讯股份有限公司 上行定时提前量的确定方法及装置、存储介质、电子装置
US11019583B2 (en) * 2018-05-04 2021-05-25 Nokia Technologies Oy Method for network-assisted uplink time advance for extreme range support
US10931365B2 (en) * 2018-05-11 2021-02-23 Dish Network L.L.C. Timing advance for satellite-based communications using a satellite with enhanced processing capabilities
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、***及介质
CN109831821B (zh) * 2019-03-18 2021-06-22 中国电子科技集团公司第五十四研究所 一种卫星移动通信终端
CN110418402B (zh) * 2019-07-16 2021-06-01 东南大学 基于星历广播辅助定位的用户随机接入方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268850A1 (en) * 2007-04-30 2008-10-30 Motorola, Inc. Method and apparatus for handover in a wireless communication system
US20100220713A1 (en) * 2007-11-05 2010-09-02 Tobias Tynderfeldt Random access preamble collision detection
CN101465686A (zh) * 2007-12-19 2009-06-24 中兴通讯股份有限公司 一种实现td-scdma基站同步的方法和装置
CN102572937A (zh) * 2010-12-23 2012-07-11 普天信息技术研究院有限公司 一种宽带集群***中随机接入的方法、基站及***
WO2013168938A1 (en) * 2012-05-10 2013-11-14 Lg Electronics Inc. A method and apparatus of controlling cell deactivation in a wireless communication system
CN104753833A (zh) * 2013-12-27 2015-07-01 普天信息技术研究院有限公司 一种定时估计方法
CN107889261A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 通信方法、基站和终端设备
WO2020029919A1 (zh) * 2018-08-09 2020-02-13 华为技术有限公司 无线通信的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096116A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071591A1 (zh) * 2021-10-30 2023-05-04 华为技术有限公司 一种定时提前ta确定方法及通信装置

Also Published As

Publication number Publication date
EP4096116A4 (en) 2023-06-21
KR20220137096A (ko) 2022-10-11
CN115567092A (zh) 2023-01-03
EP4096116A1 (en) 2022-11-30
BR112022015896A2 (pt) 2022-10-04
US20220386259A1 (en) 2022-12-01
CN113271135A (zh) 2021-08-17
CN113271135B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2021160025A1 (zh) 卫星通信的方法和装置
US20220393957A1 (en) Timing advance determining method and communication apparatus
TW202021323A (zh) 一種訊息傳輸方法及裝置、通信設備
US11290939B2 (en) Method and apparatus for processing data transmission failure
US20230027812A1 (en) Method for determining timing advance and communication apparatus
EP4106422A1 (en) Reception device, transmission device, reception method, and transmission method
WO2022118295A1 (en) Configuring a polarization type
JP2023521544A (ja) 情報伝送方法、端末機器及びネットワーク機器
EP4024736A1 (en) Instruction method and apparatus for hybrid automatic repeat request, and storage medium
CN112740758A (zh) 具有网络信息的切换请求
US20230239875A1 (en) Wireless Communication Method and Terminal Device
EP4271088A1 (en) Parameter transmission method and apparatus
EP4102902A1 (en) Information transmission method and apparatus
CN116918270A (zh) 联合的波束和带宽部分切换
WO2024066921A1 (zh) 通信方法和通信装置
TW201129006A (en) Method and apparatus to support HSDPA ACK/CQI operation during baton handover in TD-SCDMA systems
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
EP4391414A1 (en) Data transmission method and apparatus
WO2022141424A1 (en) Relaying information using one or more relays
US20240022355A1 (en) Harq feedback method and apparatus, and computer-readable storage medium
US20240031964A1 (en) Adjustment method and determination method for transmission timing, and terminal device
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
US20240155704A1 (en) Communication method, terminal device, and network device
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753546

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015896

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021753546

Country of ref document: EP

Effective date: 20220822

ENP Entry into the national phase

Ref document number: 20227030793

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022015896

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220811