WO2023065974A1 - 一种电芯、电池及用电装置 - Google Patents

一种电芯、电池及用电装置 Download PDF

Info

Publication number
WO2023065974A1
WO2023065974A1 PCT/CN2022/121103 CN2022121103W WO2023065974A1 WO 2023065974 A1 WO2023065974 A1 WO 2023065974A1 CN 2022121103 W CN2022121103 W CN 2022121103W WO 2023065974 A1 WO2023065974 A1 WO 2023065974A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
liquid injection
injection hole
electrolyte
hole
Prior art date
Application number
PCT/CN2022/121103
Other languages
English (en)
French (fr)
Inventor
洪宗汉
石胜云
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22882585.7A priority Critical patent/EP4277013A1/en
Publication of WO2023065974A1 publication Critical patent/WO2023065974A1/zh
Priority to US18/451,770 priority patent/US20230395957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery cell, a battery and an electric device.
  • Lithium-ion battery is an efficient energy storage device. Due to its high energy density, low self-discharge, and long cycle life, it has become the main solution for mobile energy and is widely used in mobile phones, computers, electric vehicles, and household storage. Can wait for many fields.
  • Electrolyte infiltration is an important production process in the production of lithium batteries, which directly affects the cycle life of batteries.
  • existing batteries have difficulties in cell infiltration, interface problems, and difficulties in cell injection and exhaust.
  • the present application provides a battery cell, a battery and an electrical device to solve the difficulties in the battery cell infiltration in the process of electrolyte solution infiltration, easy interface problems, liquid injection and exhaust of the battery cell in the existing battery.
  • the application provides an electric core, which includes an outer shell, an electric core body, an upper cover and a conduit, the outer shell has a top end and a bottom end; the electric core body is installed in the outer shell; the outer wall of the electric core body and the inner wall of the outer shell There is a gap between them; the upper cover is set on the top; the upper cover is provided with a liquid injection hole and an exhaust hole; both the liquid injection hole and the exhaust hole are connected with the gap; one end of the conduit is connected with the liquid injection hole, and the other end Extend into the gap and extend towards the bottom end.
  • the cell of this solution includes an outer casing, a cell body, an upper cover and a conduit, and a gap is designed between the outer wall of the cell body and the inner wall of the outer casing to accommodate the electrolyte.
  • a liquid injection hole and a vent hole on the upper cover both the liquid injection hole and the vent hole are connected to the gap.
  • the electrolyte can enter the gap from the liquid injection hole to realize the infiltration of the electrolyte.
  • the gas generated during the infiltration process can be discharged from the vent hole under negative pressure to reduce the air pressure in the gap and make the injection of the electrolyte smoother, which is beneficial to the improvement of the injection efficiency.
  • One end of the catheter is connected to the liquid injection hole, and the other end extends into the gap and extends to the bottom. It is introduced from the bottom to the bottom of the gap, and then the electrolyte can infiltrate from the bottom to the top of the gap, so as to realize the infiltration of the electrolyte from the bottom to the top, which can effectively avoid the problem of the middle interface caused by the infiltration of the electrolyte from the top to the bottom, and improve the wetting At the same time, this infiltration method is relatively more convenient and safer.
  • both the liquid injection hole and the exhaust hole are opened in alignment with the gap.
  • the liquid injection hole and the exhaust hole are aligned with the gap, so that during the liquid injection process, the electrolyte can directly enter the gap from the liquid injection hole, and the gas generated in the gap during the liquid injection process can be more convenient and effective. It is discharged from the vent hole, which improves the efficiency of liquid injection.
  • the liquid injection hole is opened at one end of the upper cover, and the exhaust hole is opened at the end of the upper cover away from the liquid injection hole.
  • the liquid injection hole is opened at one end of the upper cover, and the exhaust hole is opened at the end of the upper cover away from the liquid injection hole.
  • the position of the liquid injection hole is staggered from the center position of the cell body. The interface in the middle of the cell body will not interfere, which can avoid the problem of the interface in the middle of the cell.
  • the gap includes a first gap and a second gap
  • One side of the cell body has a first arc protrusion and a second arc protrusion, the outer wall of the first arc protrusion, the outer wall of the second arc protrusion and the outer shell There is the first gap between the inner walls; the liquid injection hole is aligned with the first gap;
  • the side of the cell body away from the first arc protrusion has a third arc protrusion and a fourth arc protrusion, the outer wall of the third arc protrusion and the fourth arc protrusion
  • the gap includes a first gap and a second gap.
  • the first gap is formed by the outer wall of the first arc protrusion and the second arc protrusion on one side of the cell body and the inner wall of the outer casing.
  • the gap is formed by the outer wall of the third arc protrusion and the fourth arc protrusion on the side of the cell body away from the first arc protrusion and the inner wall of the outer casing, wherein the liquid injection hole is aligned with the first gap , align the vent hole with the second gap, make full use of the structure of the cell body to design the position of the liquid injection hole and the vent hole, facilitate the layout of the conduit, and facilitate the negative pressure exhaust in the gap, making the structure of the entire cell
  • the design is more compact, and at the same time, the electrolyte will not interfere with the center of the cell body during the liquid injection process, avoiding the occurrence of interface problems in the middle of the cell.
  • the limited distance a is greater than or equal to 5mm and less than or equal to 7mm, so that the electrolyte in the conduit can quickly reach the bottom end, effectively realizing the infiltration of the electrolyte from bottom to top.
  • the diameters of the liquid injection hole and the vent hole are both greater than or equal to 2mm and less than or equal to 4mm.
  • the electrolyte can be more effectively entered into the gap through the liquid injection hole, and the gas in the gap can be more effectively It is discharged from the exhaust hole, so as to improve the efficiency of liquid injection more effectively.
  • the cell further includes an insulating bottom support plate, and the insulating bottom support plate is installed at the bottom end.
  • the insulating bottom support plate can be used to support the battery core body, and can also separate the battery core body from the bottom end of the outer casing to play an insulating role.
  • the battery cell further includes a first seal, and the first seal is detachably installed in the liquid injection hole.
  • the liquid injection hole is sealed by the first sealing member.
  • the battery cell further includes a second seal, and the second seal is detachably installed in the air vent.
  • the present application provides a battery, which includes the cell in the above embodiment.
  • the present application provides an electric device, which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • a battery cell of the present application includes an outer shell, a battery core body, an upper cover and a conduit. There is a gap between the outer wall of the battery core body and the inner wall of the outer shell, and the gap is used for accommodating electrolyte.
  • the upper cover is arranged on the outer casing to play a sealing role and prevent the electrolyte from overflowing.
  • One end of the conduit is connected to the liquid injection hole, and the other end extends into the gap and extends toward the bottom.
  • the electrolyte enters through the liquid injection hole and is introduced to the bottom of the gap under the guidance of the conduit. In this way, the infiltration of the electrolyte from the bottom to the top can be realized, which can effectively avoid the problem of the middle interface caused by the infiltration of the electrolyte from the top to the bottom.
  • FIG. 1 is a schematic structural view of a battery provided by the present application
  • FIG. 2 is a schematic diagram of an explosion of a cell provided by the present application.
  • Fig. 3 is a top view of an angle of a battery provided by the present application.
  • Fig. 4 is the sectional view of A-A direction in Fig. 3;
  • Figure 5 is an enlarged view at E in Figure 4.
  • Figure 6 is an enlarged view at B in Figure 4.
  • Fig. 7 is a top view from another angle of a battery provided by the present application.
  • Fig. 8 is a sectional view of C-C direction in Fig. 7;
  • Figure 9 is an enlarged view at D in Figure 8.
  • Lithium-ion battery is a highly efficient electrochemical energy storage device. Due to its high energy density, low self-discharge, long cycle life and other advantages, it has become the main solution for mobile energy and is widely used in mobile phones, computers, electric vehicles and Household energy storage and other fields.
  • the production process of lithium-ion batteries includes pulping, coating, calendering, slitting, cutting, lamination, tab welding, heat sealing, liquid injection, electrolyte impregnation, chemical composition and other processes.
  • Electrolyte infiltration is the process of lithium ion An important production process of battery production, which takes the longest time, because sufficient standing can ensure that the electrolyte undergoes a thorough micro-reaction on the electrode surface, forming a firm SEI (solid electrolyte interface, solid electrolyte interface) film, and avoiding large groups Embedded inside the electrode causes the active material to fall off and the battery capacity to drop, thus ensuring the cycle life of the battery.
  • SEI solid electrolyte interface, solid electrolyte interface
  • the cells of lithium-ion batteries generally include an outer casing, a cell body and an upper cover.
  • the liquid injection hole injects the electrolyte into the casing to realize the infiltration of the electrolyte from top to bottom. Since the liquid injection hole is designed in the middle of the upper cover, the electrolyte is injected into the middle of the cell body during the liquid injection process. It is easy to cause damage to the middle interface of the cell body, causing the problem of the middle interface, and then affecting the performance of the cell.
  • a bottom-up electrolyte infiltration method can be designed, so that the electrolyte During the infiltration process, the infiltration is carried out from the bottom of the cell body to the top, which makes the infiltration more convenient and more efficient.
  • the position of the liquid injection hole is changed so that the middle position between the electrolyte and the cell body does not occur during the liquid injection process.
  • the gas generated during the liquid injection process can be discharged in time by designing the vent hole, and the liquid injection efficiency can be further improved.
  • the inventor in order to solve the problems of the existing battery cells such as difficulty in wetting in the process of electrolyte infiltration, easy interface problems, liquid injection and exhaust, the inventor has designed a battery cell after in-depth research, which includes the outer shell 1.
  • a cell body, an upper cover and a conduit, the outer casing has a top end and a bottom end, and the cell body is installed in the outer casing.
  • the upper cover is arranged on the top.
  • a liquid injection hole and an exhaust hole are opened on the upper cover. Both the liquid injection hole and the exhaust hole communicate with the gap.
  • One end of the conduit is connected to the liquid injection hole, and the other end extends into the gap and extends toward the bottom end.
  • Such a battery core is provided with a liquid injection hole and an exhaust hole on the upper cover, both of which are connected to the gap, and the electrolyte enters the gap from the liquid injection hole to realize the infiltration of the electrolyte, and the infiltration process
  • the gas generated in the process is discharged from the vent hole under negative pressure, which can improve the efficiency of liquid injection.
  • One end of the conduit is connected to the liquid injection hole, and the other end extends into the gap and extends toward the bottom.
  • the electrolyte enters through the liquid injection hole and is introduced to the bottom of the gap under the guidance of the conduit. In this way, the infiltration of the electrolyte from the bottom to the top can be realized, which can effectively avoid the problem of the middle interface caused by the infiltration of the electrolyte from the top to the bottom.
  • the battery cells disclosed in the embodiments of the present application can be used in, but not limited to, energy storage devices such as lithium-ion batteries, which is beneficial to improving the wetting efficiency of the electrolyte and improving the stability and cycle life of the energy storage device.
  • FIG. 1 is a schematic perspective view of a three-dimensional structure of a battery cell according to some embodiments of the present application
  • FIG. 2 is an exploded view of a battery cell according to some embodiments of the present application.
  • the present application provides a battery cell, and the battery cell may be a battery cell combined in a winding manner and a stacking manner, which is not limited in the present application.
  • the cell includes an outer casing 1 , a cell body 2 , an upper cover 3 and a conduit 4 .
  • the outer housing 1 has a top end 11 and a bottom end 12 .
  • the cell body 2 is installed in the outer casing 1 .
  • the upper cover 3 is located on the top 11 .
  • the upper cover 3 is provided with a liquid injection hole 31 and an exhaust hole 32 . Both the liquid injection hole 31 and the exhaust hole 32 communicate with the gap 20 .
  • One end of the conduit 4 is connected to the liquid injection hole 31 , and the other end extends into the gap 20 and extends toward the bottom end 12 .
  • the outer casing 1 protects the cell body 2 and provides a wetting space for the electrolyte. It can be made of steel or aluminum, but not limited to these materials.
  • the cross section of the outer casing 1 can be square, circular, etc., but It is not limited to these shapes, and corresponding shapes can be designed according to specific design requirements.
  • the outer casing 1 has a top end 11 and a bottom end 12. In some embodiments, the top end 11 can be designed to have an opening, and the bottom end 12 is designed to be a sealed structure.
  • the cell body 2 is composed of cathode and anode materials and a diaphragm, which is used to store electric energy.
  • the free electrons move to the cathode, so that all the charges on the positive electrode move to the cathode plate, forming a voltage difference.
  • the electrons move from The cathode flows out and returns to the anode through the electrical equipment, and the voltage difference gradually decreases until all the electrons return to the anode, and the voltage is zero.
  • the cell body can be made into a column, or a soft bag or a cube. There is a gap 20 between the outer wall of the cell body 2 and the inner wall of the outer casing 1, and the gap 20 is used to accommodate the electrolyte.
  • the upper cover 3 is arranged on the outer casing 1 to seal the outer casing 1 and prevent the electrolyte from overflowing.
  • the connection mode of the upper cover 3 and the outer shell 1 can be integrally formed, or can be detachable, and the detachable mode can be clamping, plugging and other ways.
  • the upper cover 3 is provided with a liquid injection hole 31 and a vent hole 32, both of which are connected to the gap 20.
  • the electrolyte can enter the gap 20 from the liquid injection hole 31 to The infiltration of the electrolyte is realized, and the gas generated in the infiltration process can be discharged from the negative pressure of the vent hole 32 to reduce the air pressure in the gap 20, so that the injection of the electrolyte is smoother, which is beneficial to the improvement of the injection efficiency.
  • the conduit 4 plays the role of diversion.
  • One end of the conduit 4 is connected to the liquid injection hole 31, and the other end extends into the gap 20 and extends toward the bottom end 12.
  • the electrolyte enters through the liquid injection hole 31. , introduced into the bottom of the gap 20 under the guidance of the conduit 4, and then the electrolyte can infiltrate from the bottom to the top of the gap 20, thereby realizing the infiltration of the electrolyte from bottom to top.
  • the conduit 4 is made of high-temperature-resistant and corrosion-resistant materials to prevent the electrolyte from damaging it. Plastic materials such as PVC and PP can be used, but not limited to these materials.
  • the electrolyte By opening the liquid injection hole 31 and the exhaust hole 32 on the upper cover 3, which are all connected to the gap 20, during the liquid injection process, the electrolyte can enter the gap 20 from the liquid injection hole 31 to realize the infiltration of the electrolyte, and the infiltration
  • the gas generated during the process can be discharged from the exhaust hole 32 under negative pressure to reduce the air pressure in the gap 20 and make the injection of the electrolyte smoother, which is beneficial to the improvement of the injection efficiency.
  • the conduit 4 on the liquid injection hole 31 By connecting the conduit 4 on the liquid injection hole 31, the end of the conduit away from the liquid injection hole 31 extends into the gap 20 and extends toward the bottom end 12. In this way, during the electrolyte infiltration process, the electrolyte enters through the liquid injection hole 31.
  • both the liquid injection hole 31 and the exhaust hole 32 are aligned with the gap 20 .
  • Both the liquid injection hole 31 and the exhaust hole 32 are opened in alignment with the gap 20 , which means that the outlets of the liquid injection hole 31 and the exhaust hole 32 are aligned with the opening direction of the gap 20 .
  • the electrolyte can directly enter the gap 20 from the liquid injection hole 31 during the liquid injection process, thereby improving the liquid injection efficiency.
  • the vent hole 32 By aligning the vent hole 32 with the gap 20, the gas generated in the gap 20 can be more conveniently and effectively discharged from the vent hole 32 during the liquid injection process, thereby further improving the liquid injection efficiency.
  • the liquid injection hole 31 is opened at one end of the upper cover 3
  • the exhaust hole 32 is opened at the end of the upper cover 3 away from the liquid injection hole 31 .
  • One end of the upper cover 3 ” and “an end of the upper cover 3 facing away from the liquid injection hole 31 ” refer to two ends along the lengthwise direction of the upper cover 3 away from the center of the upper cover 3 .
  • the liquid injection hole 31 is opened at one end of the upper cover 3
  • the exhaust hole 32 is opened at the end of the upper cover 3 away from the liquid injection hole 31.
  • the position of the hole 31 is staggered from the center of the cell body 2, so that the electrolyte will not interfere with the middle interface of the cell body 2 during liquid injection, which can avoid the problem of the middle interface of the cell.
  • the gap 20 includes a first gap 201 and a second gap 202 .
  • One side of the cell body 2 has a first arc protrusion 21 and a second arc protrusion 22, the outer wall of the first arc protrusion 21, the outer wall of the second arc protrusion 22 and the inner wall of the outer shell 1 There is a first gap 201 between them.
  • the liquid injection hole 31 is aligned with the first gap 201 .
  • the side of the cell body 2 away from the first arc protrusion 21 has a third arc protrusion 23 and a fourth arc protrusion 24, the outer wall of the third arc protrusion 23 and the fourth arc protrusion 24
  • the exhaust hole 32 is aligned with the second gap 202 .
  • the first arc protrusion 21 , the second arc protrusion 22 , the third arc protrusion 23 and the fourth arc protrusion 24 are all extended from the cell body 2 to the outer casing 1 along the width direction of the cell body 2 .
  • the direction of the inner wall protrudes in an arc shape.
  • first arc protrusion 21 and the second arc protrusion 22 can be connected end to end, or can be arranged at intervals
  • third arc protrusion 23 and the fourth arc protrusion 24 can be connected end to end, or can be arranged at intervals
  • the first gap 201 is surrounded by the outer wall of the first arc protrusion 21, the outer wall of the second arc protrusion 22, and the inner wall of the outer casing 1
  • the second gap 202 is surrounded by the outer wall of the third arc protrusion 23, the second arc protrusion 23, and the outer wall of the second arc protrusion 22.
  • the outer wall of the four arc protrusions 24 is surrounded by the inner wall of the outer casing 1 .
  • the positions of the liquid injection hole 31 and the vent hole 32 are designed by making full use of the structure of the cell body 2, which facilitates the installation of the catheter 4.
  • the layout is conducive to the negative pressure exhaust in the gap 20, which makes the structural design of the entire cell more compact, and at the same time prevents the electrolyte from interfering with the center of the cell body 2 during the liquid injection process, avoiding the middle interface of the cell problem occurs.
  • the distance a there is a distance a between the end of the conduit 4 facing away from the liquid injection hole 31 and the bottom end 12 .
  • the distance a satisfies: 5mm ⁇ a ⁇ 7mm.
  • the distance a can be selected from 5mm, 5.5mm, 6mm, 6.5mm or 7mm, etc., of course, can also be other values within the above range, which is not limited here.
  • the electrolyte solution can be smoothly exported from the conduit 4 .
  • the limited distance a is greater than or equal to 5mm and less than or equal to 7mm, so that the electrolyte in the conduit 4 can quickly reach the bottom 12, effectively realizing the infiltration of the electrolyte from bottom to top. If the distance a is less than 5mm, the conduit 4 deviates from the injector. The distance between one end of the liquid hole 31 and the bottom end 12 is too close, and the electrolytic solution will be impacted by the bottom end 12 when it is exported from the conduit 4, which will reduce the export efficiency of the electrolyte solution. If the distance between one end and the bottom end 12 is too far, splashing is likely to occur when the electrolyte is exported from the conduit 4 , and the probability of gas generation will also be increased, thereby affecting the infiltration efficiency.
  • the diameters of the liquid injection hole 31 and the exhaust hole 32 are both greater than or equal to 2 mm and less than or equal to 4 mm.
  • Aperture refers to the diameter of the hole
  • the aperture of the liquid injection hole 31 can be selected from 2mm, 2.5mm, 3mm, 3.5mm or 4mm, etc.
  • the aperture of the exhaust hole 32 can be selected from 2mm, 2.5mm, 3mm, 3.5mm or 4mm etc.
  • other values within the above range can also be used, which are not limited here.
  • the electrolyte can be more effectively entered into the gap 20 through the liquid injection hole 31, and the diameter of the liquid injection hole 31 is less than 2mm.
  • the injection volume of the electrolyte per unit time is too small, which will affect the injection speed, and then reduce the infiltration efficiency of the electrolyte.
  • the aperture of the injection hole 31 is greater than 4mm, and the injection volume of the electrolyte per unit time is too large, so Conducive to operation.
  • the aperture of the exhaust hole 32 By limiting the aperture of the exhaust hole 32 to be greater than or equal to 2mm and less than or equal to 4mm, the gas in the gap 20 can be more effectively discharged from the exhaust hole 32, thereby improving the liquid injection efficiency more effectively.
  • the aperture of the exhaust hole 32 When it is less than 2mm, the aperture of the vent hole 32 is too small, so that the gas generated during the liquid injection process cannot be discharged in time and effectively, which will affect the infiltration efficiency.
  • the aperture of the vent hole 32 is greater than 4mm, the aperture of the vent hole 32 is too large , will increase the difficulty of sealing and increase the risk of electrolyte overflow.
  • the cell further includes an insulating bottom support 5 , and the insulating bottom support 5 is installed at the bottom end 12 .
  • the insulating bottom support plate 5 is specifically arranged between the battery core body 2 and the bottom end 12, and is made of insulating material. It can be fixedly connected to the bottom end 12 by clipping, plugging, bonding, etc., or it can be movable. 12 at the bottom end.
  • the insulating bottom support plate 5 By installing the insulating bottom support plate 5 on the bottom end 12, on the one hand, it can be used to support the cell body 2, and on the other hand, the insulating bottom support plate 5 can separate the cell body 2 from the bottom end 12 of the outer casing 1. , play an insulating role.
  • the battery cell further includes a first sealing member 6 , and the first sealing member 6 is detachably installed in the liquid injection hole 31 .
  • the first sealing member 6 refers to a part used to seal the liquid injection hole 31 , which can be made of high temperature resistant and corrosion resistant materials to prevent the electrolyte from damaging it.
  • the detachable installation method may be thread installation, buckle installation and the like.
  • the first sealing member 6 By detachably installing the first sealing member 6 on the liquid injection hole 31, it is used to seal the liquid injection hole 31.
  • the liquid injection hole 31 When liquid injection is required, the liquid injection hole 31 is opened for liquid injection, and no liquid injection is required or the liquid injection is completed. Finally, the liquid injection hole 31 is sealed by the first sealing member 6 to prevent the electrolyte from overflowing.
  • the battery cell further includes a second sealing member 7 , and the second sealing member 7 is detachably installed in the vent hole 32 .
  • the second seal 7 refers to a part used to seal the exhaust hole 32, which can be made of high temperature resistant and corrosion resistant materials to prevent the electrolyte from damaging it.
  • the detachable installation method may be thread installation, buckle installation and the like.
  • the second seal 7 By detachably installing the second seal 7 on the vent hole 32, it is used to seal the vent hole 32.
  • the vent hole 32 When liquid injection is required, the vent hole 32 is opened to facilitate the gas generated during the liquid injection process from exhausting. The hole 32 discharges, reduces the air pressure in the gap 20, makes the infiltration smoother, and improves the infiltration efficiency. No liquid injection is required or after the liquid injection is completed, the vent hole 32 is sealed by the second sealing member 7 to prevent the electrolyte from overflowing.
  • the present application provides a battery cell
  • the outer shell 1 has a top end 11 and a bottom end 12
  • the upper cover 3 is detachably covered on the top end 11, and the bottom end 12
  • An insulating base plate 5 is installed.
  • the cell body 2 is installed in the outer casing 1, and one side of the cell body 2 has a first arc protrusion 21 and a second arc protrusion 22, and the side of the cell body 2 away from the first arc protrusion 21
  • the third arc protrusion 23 and the fourth arc protrusion 24 there is a gap 20 between the outer wall of the cell body 2 and the inner wall of the outer shell 1 .
  • the gap 20 includes a first gap 201 and a second gap 202, the first gap 201 is surrounded by the outer wall of the first arc protrusion 21, the outer wall of the second arc protrusion 22 and the inner wall of the outer shell 1, the second The gap 202 is surrounded by the outer wall of the third arc protrusion 23 , the outer wall of the fourth arc protrusion 24 and the inner wall of the outer casing 1 .
  • the upper cover 3 is provided with a liquid injection hole 31 and an exhaust hole 32, the liquid injection hole 31 is sealed by the first seal 6, the exhaust hole 32 is sealed by the second seal 7, the liquid injection hole 31 and the exhaust hole 32
  • the hole diameters are all 3 mm, the liquid injection hole 31 is aligned with the first gap 201 , and the exhaust hole 32 is aligned with the second gap 202 .
  • One end of the conduit 4 is connected to the liquid injection hole 31 , and the other end extends into the first gap 201 and extends toward the bottom end 12 .
  • the distance a between the end of the conduit 4 facing away from the liquid injection hole 31 and the bottom end 12 is 6 mm.
  • the electrolyte enters the first gap 201 from the liquid injection hole 31, and is introduced to the bottom of the first gap 201 under the guidance of the conduit 4, so as to achieve infiltration from the bottom to the top of the gap 20, thereby realizing electrolysis.
  • the infiltration of liquid from bottom to top can effectively avoid the middle interface problem caused by the infiltration of electrolyte from top to bottom, and improve the infiltration effect.
  • this infiltration method is relatively more convenient and safe.
  • the gas generated during the wetting process is discharged from the exhaust hole 32, which can reduce the air pressure in the gap 20 and make the injection of the electrolyte smoother, which is beneficial to the improvement of the liquid injection efficiency.
  • the present application also provides a battery, including the cell described in any one of the solutions above.
  • the present application also provides an electric device, including the battery described in any of the above schemes, and the battery is used to provide electric energy for the electric device.
  • the electric device may be any of the aforementioned devices or systems using batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请涉及电池技术领域,尤其涉及一种电芯、电池及用电装置,电芯包括外壳体,外壳体具有顶端和底端;电芯本体,安装于外壳体内;电芯本体的外壁与外壳体的内壁之间具有间隙;上盖,盖设于顶端;上盖上开设有注液孔和排气孔;注液孔和排气孔均与间隙连通;导管,导管的一端与注液孔连接,另一端伸入至间隙内且向底端延伸。本申请的电芯在上盖上开设注液孔和排气孔,注液孔和排气孔均与间隙连通,电解液从注液孔进入间隙,以实现电解液的浸润,浸润过程中产生的气体从排气孔处负压排出,这样能提高注液效率。在注液孔上连接导管,导管伸入至间隙内且向底端延伸,通过导管能实现电解液从下至上的浸润,从而有效避免了电芯的中部界面问题。

Description

一种电芯、电池及用电装置 技术领域
本申请涉及电池技术领域,尤其涉及一种电芯、电池及用电装置。
背景技术
锂离子电池是一种高效的储能器件,由于其具有能量密度高,自放电低,长循环寿命等优点已经成为移动能源的主要解决方案,并广泛应用于手机,电脑,电动汽车以及家庭储能等多个领域。
电解液浸润是锂电池生产的重要生产工序,直接影响电池的循环寿命。现有的电池在电解液浸润过程中存在电芯浸润困难,界面问题易发,电芯注液排气等困难。
发明内容
本申请提供了一种电芯、电池及用电装置,以解决现有的电池在电解液浸润过程中存在电芯浸润困难,界面问题易发,电芯注液排气等困难。
本申请提供一种电芯,该电芯包括外壳体、电芯本体、上盖和导管,外壳体具有顶端和底端;电芯本体安装于外壳体内;电芯本体的外壁与外壳体的内壁之间具有间隙;上盖盖设于所述顶端;上盖上开设有注液孔和排气孔;注液孔和排气孔均与间隙连通;导管的一端与注液孔连接,另一端伸入至间隙内且向底端延伸。
本方案的电芯包括外壳体、电芯本体、上盖和导管,通过在电芯本体的外壁与外壳体的内壁之间设计间隙,用于容置电解液。通过在上盖上开设注液孔和排气孔,注液孔和排气孔均与间隙连通,注液过程中,电解液可以从注液孔进入间隙内,以实现电解 液的浸润,而浸润过程中产生的气体可以从排气孔处负压排出,以降低间隙内的气压,使得电解液的注入更加顺畅,这样有利于注液效率的提高。导管的一端与注液孔连接,另一端伸入至间隙内且向底端延伸,导管起到导流作用,在进行电解液浸润过程中,电解液经注液孔进入,在导管的导流下导入至间隙的底部,进而电解液能从间隙的底部向顶部进行浸润,从而实现电解液从下至上的浸润,这样就能有效避免电解液从上之下浸润导致的中部界面问题,提高浸润效果,同时这样的浸润方式相对更加便捷,安全。
在一种可能的设计中,注液孔和排气孔均对准间隙开设。
本方案中,将注液孔和排气孔均对准间隙开设,这样注液过程中,电解液从注液孔能直接进入间隙内,注液过程中间隙内产生的气体能更便捷有效地从排气孔排出,提高了注液效率。
在一种可能的设计中,注液孔开设于上盖的一端,排气孔开设于上盖背离注液孔的一端。
本方案中,将注液孔开设于上盖的一端,排气孔开设于上盖背离注液孔的一端,注液孔的位置与电芯本体的中心位置错开,注液过程中电解液与电芯本体中部界面不会产生干涉,能避免电芯中部界面问题的发生。
在一种可能的设计中,间隙包括第一间隙和第二间隙;
所述电芯本体的一侧具有第一圆弧突出部和第二圆弧突出部,所述第一圆弧突出部的外壁、所述第二圆弧突出部的外壁和所述外壳体的内壁之间具有所述第一间隙;所述注液孔对准所述第一间隙;
所述电芯本体背离所述第一圆弧突出部的一侧具有第三圆弧突出部和第四圆弧突出部,所述第三圆弧突出部的外壁、所述第四圆弧突出部的外壁和所述外壳体的内壁之间具有所述第二间隙;所述排气孔对准所述第二间隙。
本方案中,间隙包括第一间隙和第二间隙,第一间隙是由电 芯本体的一侧的第一圆弧突出部和第二圆弧突出部的外壁与外壳体的内壁形成,第二间隙是由电芯本体背离第一圆弧突出部的一侧的第三圆弧突出部和第四圆弧突出部的外壁与外壳体的内壁形成,其中,将注液孔对准第一间隙,将排气孔对准第二间隙,充分利用电芯本体的结构设计注液孔和排气孔的位置,方便导管的布置,有利于间隙内的负压排气,使得整个电芯的结构设计更加紧凑,同时使得电解液在注液过程中与电芯本体的中心部位不会发生干涉,避免电芯中部界面问题的发生。
在一种可能的设计中,导管背离注液孔的一端与底端之间具有距离a;距离a满足:5mm≤a≤7mm。
本方案中,导管背离注液孔的一端与底端之间具有距离a,距离a的存在能使电解液顺利地从导管中导出。另外,限定距离a大于等于5mm,且小于等于7mm,能使导管内的电解液快速地到达底端,有效地实现电解液从下至上的浸润。
在一种可能的设计中,注液孔和排气孔的孔径均大于等于2mm,且小于等于4mm。
本方案中,通过将注液孔和排气孔的孔径均限定为大于等于2mm,且小于等于4mm,能够使电解液更有效地通过注液孔进入到间隙中,使间隙内的气体更有效地从排气孔排出,从而更有效地提高注液效率。
在一种可能的设计中,该电芯还包括绝缘底托板,绝缘底托板安装于底端。
本方案中,绝缘底托板可以用于承托电芯本体,还可以将电芯本体与外壳体的底端隔开,起到绝缘作用。
在一种可能的设计中,该电芯还包括第一密封件,第一密封件可拆卸地安装于注液孔。
本方案中,通过第一密封件实现对注液孔的密封。
在一种可能的设计中,该电芯还包括第二密封件,第二密封件可拆卸地安装于排气孔。
本方案中,通过第二密封件实现对排气孔的密封。
本申请提供了一种电池,其包括上述实施例中的电芯。
本申请提供了一种用电装置,其包括上述实施例中的电池,所述电池用于提供电能。
本申请技术方案的优点:
本申请一种电芯包括外壳体、电芯本体、上盖和导管,电芯本体的外壁与外壳体的内壁之间具有间隙,间隙用于容置电解液。上盖盖设于外壳体上,起到密封作用,能防止电解液外溢。上盖上开设有注液孔和排气孔,注液孔和排气孔均与间隙连通,电解液从注液孔进入间隙内,以实现电解液的浸润,浸润过程中产生的气体从排气孔处负压排出,这样能提高注液效率。导管的一端与注液孔连接,另一端伸入至间隙内且向底端延伸,在进行电解液浸润过程中,电解液经注液孔进入,在导管的导流下导入至间隙的底部,从而实现电解液从下至上的浸润,这样就能有效避免电解液从上之下浸润导致的中部界面问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请所提供的一种电芯的结构示意图;
图2为本申请所提供的一种电芯的***示意图;
图3为本申请所提供的一种电芯的一个角度的俯视图;
图4为图3中A-A方向剖视图;
图5为图4中E处放大图;
图6为图4中B处放大图;
图7为本申请所提供的一种电芯的另一个角度的俯视图;
图8为图7中C-C方向剖视图;
图9为图8中D处放大图;
在附图中,附图未必按照实际的比例绘制。
附图标记:
1-外壳体;
11-顶端;
12-底端;
2-电芯本体;
20-间隙;
201-第一间隙;
202-第二间隙;
21-第一圆弧突出部;
22-第二圆弧突出部;
23-第三圆弧突出部;
24-第四圆弧突出部;
3-上盖;
31-注液孔;
32-排气孔;
4-导管;
5-绝缘底托板;
6-第一密封件;
7-第二密封件。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属 于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
近年,随着世界各国对节能环保的重视和对新能源行业的支持,电化学储能器件得到了快速的发展。锂离子电池是一种高效的电化学储能器件,由于其具有能量密度高,自放电低,长循环寿命等优点已经成为移动能源的主要解决方案,并广泛应用于手机,电脑,电动汽车以及家庭储能等多个领域。
锂离子电池的生产过程包括制浆、涂布、压延、分条、裁片、叠片、极耳焊接、热封、注液、电解液含浸、化成分容等工序,电解液浸润是锂离子电池生产的重要生产工序,其耗费时间最长,因为充分的静置可以保证电解液在电极表面进行彻底的微反应,形成牢固的SEI(solid electrolyte interface,固体电解质界面)膜,避免大基团嵌入电极内部造成活性物质脱落和电池容量跳水,从而保证电池的循环寿命。充分的静置还能全面浸润电极表面,减小电极无效面积,提高电池容量。因此,保证电解液浸润的浸润效率对于提升锂离子的性能非常重要。相关技术中,锂离子电池的 电芯一般包括外壳体、电芯本体和上盖,电芯本体安装在外壳体内,为了向外壳体内注入电解液,会在上盖中部开设注液孔,通过该注液孔将电解液注入到外壳体内,以实现电解液从上至下的浸润,由于注液孔设计在上盖中部,其在注液过程中电解液对准电芯本体的中间位置注入,容易对电芯本体的中部界面造成损伤,引发中部界面问题,进而影响电芯的性能,同时,这种从上至下的电解液浸润方式无法对注液过程中产生的气体进行排放,这样会直接影响到电解液的浸润效率,另外,对于高度较高的电芯来说这样的浸润方式存在浸润困难的问题。
针对现有电芯存在的在电解液浸润过程中浸润困难,界面问题易发,注液排气等问题,申请人研究发现,可以设计一种从下至上的电解液浸润方式,这样,电解液在浸润过程中,从电芯本体的底部向顶部进行浸润,使得浸润更加方便,效率更高,同时改变注液孔的位置,使得注液过程中,电解液与电芯本体的中间位置不发生干涉,避免中间界面问题的发生,为了解决排气问题,可以通过设计排气孔,以将注液过程中产生的气体及时排出,进一步地提高注液效率。
基于以上考虑,为了解决现有电芯存在的在电解液浸润过程中浸润困难,界面问题易发,注液排气等问题,发明人经过深入研究,设计了一种电芯,该包括外壳体、电芯本体、上盖和导管,所述外壳体具有顶端和底端,电芯本体安装于所述外壳体内。所述电芯本体的外壁与所述外壳体的内壁之间具有间隙,间隙用于容置电解液。上盖盖设于所述顶端。所述上盖上开设有注液孔和排气孔。所述注液孔和所述排气孔均与所述间隙连通。所述导管的一端与所述注液孔连接,另一端伸入至所述间隙内且向所述底端延伸。
这样的电芯通过在上盖上开设有注液孔和排气孔,注液孔和排气孔均与间隙连通,电解液从注液孔进入间隙内,以实现电解液的浸润,浸润过程中产生的气体从排气孔处负压排出,这样能 提高注液效率。导管的一端与注液孔连接,另一端伸入至间隙内且向底端延伸,在进行电解液浸润过程中,电解液经注液孔进入,在导管的导流下导入至间隙的底部,从而实现电解液从下至上的浸润,这样就能有效避免电解液从上之下浸润导致的中部界面问题。
本申请实施例公开的电芯可以但不限用于锂离子电池等储能器件中,有利于电解液的浸润效率的提升,提高储能器件的稳定性和循环寿命。
根据本申请的一些实施例,如图1和图2所示,图1为根据本申请一些实施例的电芯的立体结构示意图,图2为根据本申请一些实施例的电芯的***图。本申请提供一种电芯,电芯可以是通过卷绕方式与堆叠方式组合而成的电芯,本申请对此不进行限定。电芯包括外壳体1、电芯本体2、上盖3和导管4。外壳体1具有顶端11和底端12。电芯本体2安装于外壳体1内。电芯本体2的外壁与外壳体1的内壁之间具有间隙20。上盖3盖设于顶端11。上盖3上开设有注液孔31和排气孔32。注液孔31和排气孔32均与间隙20连通。导管4的一端与注液孔31连接,另一端伸入至间隙20内且向底端12延伸。
外壳体1对电芯本体2起到保护作用,为电解液提供浸润空间,可以由钢材或铝材制备而成,但不仅限于这些材料,外壳体1的截面可以为方形、圆形等,但也不仅限于这些形状,可以根据具体的设计需要设计相应的形状。外壳体1具有顶端11和底端12,在一些实施例中,顶端11可以设计成具有开口,底端12设计密封结构。
电芯本体2由阴阳极材料和隔膜构成,用于储存电能,充电时在电压的作用下,游离电子往阴极移动,这样正极的电荷全部移动到阴极板上,形成电压差,放电时电子从阴极流出,通过用电设备回到阳极,电压差逐渐减小,直至电子全部回到阳极,电压为零。电芯本体可以做成柱状,也可以做成软包或者方块。电 芯本体2的外壁与外壳体1的内壁之间具有间隙20,间隙20用于容置电解液。
上盖3盖设于外壳体1上,对外壳体1起到密封作用,能防止电解液外溢。上盖3与外壳体1的连接方式可以是一体成型,也可以是可拆卸方式,可拆卸方式可以为卡接、插接等方式。上盖3上开设有注液孔31和排气孔32,注液孔31和排气孔32均与间隙20连通,注液过程中,电解液可以从注液孔31进入间隙20内,以实现电解液的浸润,而浸润过程中产生的气体可以从排气孔32处负压排出,以降低间隙20内的气压,使得电解液的注入更加顺畅,这样有利于注液效率的提高。
导管4起到导流作用,导管4的一端与注液孔31连接,另一端伸入至间隙20内且向底端12延伸,在进行电解液浸润过程中,电解液经注液孔31进入,在导管4的导流下导入至间隙20的底部,进而电解液能从间隙20的底部向顶部进行浸润,从而实现电解液从下至上的浸润。导管4采用耐高温、耐腐蚀材料制备而成,以防止电解液对其造成损坏,可以选用PVC、PP等塑料材质,但不仅限于这些材质。
通过在上盖3上开设均与间隙20连通的注液孔31和排气孔32,注液过程中,电解液可以从注液孔31进入间隙20内,以实现电解液的浸润,而浸润过程中产生的气体可以从排气孔32处负压排出,以降低间隙20内的气压,使得电解液的注入更加顺畅,这样有利于注液效率的提高。通过在注液孔31上连接导管4,导管背离注液孔31的一端伸入至间隙20内且向底端12延伸,这样,在进行电解液浸润过程中,电解液经注液孔31进入,在导管4的导流下导入至间隙20的底部,进而能从间隙20的底部向顶部进行浸润,从而实现电解液从下至上的浸润,这样就能有效避免电解液从上之下浸润导致的中部界面问题,提高浸润效果,同时这样的浸润方式相对更加便捷,安全。
根据本申请的一些具体实施例,如图2-图6所示,注液孔31 和排气孔32均对准间隙20开设。
注液孔31和排气孔32均对准间隙20开设,是指注液孔31和排气孔32的出口对准间隙20的开口方向。
通过将注液孔31对准间隙20开设,这样注液过程中,电解液从注液孔31能直接进入间隙20内,提高注液效率。将排气孔32对准间隙20开设,注液过程中间隙20内产生的气体能更便捷有效地从排气孔32排出,从而能进一步地提高注液效率。
根据本申请的一些具体实施例,如图2-图6所示,注液孔31开设于上盖3的一端,排气孔32开设于上盖3背离注液孔31的一端。
“上盖3的一端”、“上盖3背离注液孔31的一端”分别是指避开上盖3的中心位置,沿着上盖3长度方向的两端。
相比于注液孔31开设于上盖3的中间部位的方案,将注液孔31开设于上盖3的一端,排气孔32开设于上盖3背离注液孔31的一端,注液孔31的位置与电芯本体2的中心位置错开,注液过程中电解液与电芯本体2中部界面不会产生干涉,能避免电芯中部界面问题的发生。
根据本申请的一些具体实施例,如图2-图9所示,间隙20包括第一间隙201和第二间隙202。
电芯本体2的一侧具有第一圆弧突出部21和第二圆弧突出部22,第一圆弧突出部21的外壁、第二圆弧突出部22的外壁和外壳体1的内壁之间具有第一间隙201。注液孔31对准第一间隙201。
电芯本体2背离第一圆弧突出部21的一侧具有第三圆弧突出部23和第四圆弧突出部24,第三圆弧突出部23的外壁、第四圆弧突出部24的外壁和外壳体1的内壁之间具有第二间隙202。排气孔32对准第二间隙202。
第一圆弧突出部21、第二圆弧突出部22、第三圆弧突出部23和第四圆弧突出部24均由电芯本体2沿着电芯本体2的宽度方向向外壳体1内壁方向呈圆弧状突出形成。其中,第一圆弧突出部 21和第二圆弧突出部22可以首尾连接,也可以间隔设置,第三圆弧突出部23和第四圆弧突出部24可以首尾连接,也可以间隔设置,第一间隙201是由第一圆弧突出部21的外壁、第二圆弧突出部22的外壁和外壳体1的内壁围成,第二间隙202由第三圆弧突出部23的外壁、第四圆弧突出部24的外壁和外壳体1的内壁围成。
通过将注液孔31对准第一间隙201,将排气孔32对准第二间隙202,充分利用电芯本体2的结构设计注液孔31和排气孔32的位置,方便导管4的布置,有利于间隙20内的负压排气,使得整个电芯的结构设计更加紧凑,同时使得电解液在注液过程中与电芯本体2的中心部位不会发生干涉,避免电芯中部界面问题的发生。
根据本申请的一些具体实施例,如图4所示,导管4背离注液孔31的一端与底端12之间具有距离a。具体地,距离a满足:5mm≤a≤7mm。
距离a可以选自5mm、5.5mm、6mm、6.5mm或7mm等,当然也可以是上述范围内的其他值,在此不做限定。
通过使导管4背离注液孔31的一端与底端12之间形成距离a,能使电解液顺利地从导管4中导出。另外,限定距离a大于等于5mm,且小于等于7mm,能使导管4内的电解液快速地到达底端12,有效地实现电解液从下至上的浸润,如果距离a小于5mm,导管4背离注液孔31的一端与底端12距离太近,电解液从导管4中导出时会受到底端12的冲击,降低电解液的导出效率,如果距离a大于7mm,导管4背离注液孔31的一端与底端12距离太远,电解液从导管4中导出时易发生飞溅问题,同时也会增大气体产生的概率,从而影响浸润效率。
根据本申请的一些具体实施例,注液孔31和排气孔32的孔径均大于等于2mm,且小于等于4mm。
孔径是指孔的直径大小,注液孔31的孔径可以选自2mm、 2.5mm、3mm、3.5mm或4mm等,排气孔32的孔径可以选自2mm、2.5mm、3mm、3.5mm或4mm等,当然也可以是上述范围内的其他值,在此不做限定。
通过将注液孔31的孔径限定为大于等于2mm,且小于等于4mm,能够使电解液更有效地通过注液孔31进入到间隙20中,注液孔31的孔径小于2mm,注液过程中,单位时间内电解液的注液量太小,会影响注液速度,进而会降低电解液的浸润效率,注液孔31的孔径大于4mm,单位时间内电解液的注液量太大,不利于操作。通过将排气孔32的孔径限定为大于等于2mm,且小于等于4mm,使间隙20内的气体更有效地从排气孔32排出,从而更有效地提高注液效率,排气孔32的孔径小于2mm时,排气孔32的孔径过小,这样注液过程中产生的气体不能及时有效地排出,会影响浸润效率,排气孔32的孔径大于4mm时,排气孔32的孔径过大,会增大密封难度,增大电解液外溢的风险。
根据本申请的一些具体实施例,如图2所示,该电芯还包括绝缘底托板5,绝缘底托板5安装于底端12。
绝缘底托板5具体设置于电芯本体2与底端12之间,采用绝缘材质制备而成,其可以通过卡接、插接、粘结等方式固定连接在底端12,也可以活动设置在底端12。
通过将绝缘底托板5安装于底端12,一方面可以用于承托电芯本体2,另一方面,绝缘底托板5可以将电芯本体2与外壳体1的底端12隔开,起到绝缘作用。
根据本申请的一些具体实施例,如图2、图3、图7所示,电芯还包括第一密封件6,第一密封件6可拆卸地安装于注液孔31。
第一密封件6是指用于密封注液孔31的零件,可以采用耐高温、耐腐蚀材料制备而成,以防止电解液对其造成损坏。可拆卸地安装方式可以是螺纹安装、卡扣安装等方式。
通过将第一密封件6可拆卸地安装于注液孔31,用于对注液孔31进行密封,需要进行注液时,打开注液孔31进行注液,不 需要注液或者注液完成后,通过第一密封件6将注液孔31进行密封,防止电解液发生外溢。
根据本申请的一些具体实施例,如图2、图3、图7所示,电芯还包括第二密封件7,第二密封件7可拆卸地安装于排气孔32。
第二密封件7是指用于密封排气孔32的零件,可以采用耐高温、耐腐蚀材料制备而成,以防止电解液对其造成损坏。可拆卸地安装方式可以是螺纹安装、卡扣安装等方式。
通过将第二密封件7可拆卸地安装于排气孔32,用于对排气孔32进行密封,需要进行注液时,打开排气孔32,方便注液过程中产生的气体从排气孔32排出,减少间隙20的气压,使浸润更加顺畅,提升浸润效率。不需要注液或者注液完成后,通过第二密封件7将排气孔32进行密封,防止电解液发生外溢。
根据本申请的一些实施例,参见图1至图4,本申请提供了一种电芯,外壳体1具有顶端11和底端12,上盖3可拆卸地盖设于顶端11,底端12安装有绝缘底托板5。电芯本体2安装于外壳体1内,电芯本体2的一侧具有第一圆弧突出部21和第二圆弧突出部22,电芯本体2背离第一圆弧突出部21的一侧具有第三圆弧突出部23和第四圆弧突出部24,电芯本体2的外壁与外壳体1的内壁之间具有间隙20。间隙20包括第一间隙201和第二间隙202,第一间隙201由第一圆弧突出部21的外壁、所述第二圆弧突出部22的外壁和外壳体1的内壁围成,第二间隙202由第三圆弧突出部23的外壁、第四圆弧突出部24的外壁和外壳体1的内壁围成。上盖3上开设有注液孔31和排气孔32,注液孔31通过第一密封件6密封,排气孔32通过第二密封件7密封,注液孔31和排气孔32的孔径均为3mm,注液孔31对准第一间隙201,排气孔32对准第二间隙202。导管4的一端与注液孔31连接,另一端伸入至第一间隙201内且向底端12延伸。导管4背离注液孔31的一端与底端12之间的距离a为6mm。
进行注液时,电解液从注液孔31进入第一间隙201内,在导 管4的导流下导入至第一间隙201的底部,实现从间隙20的底部向顶部进行浸润,从而实现了电解液从下至上的浸润,这样就能有效避免电解液从上之下浸润导致的中部界面问题,提高浸润效果,同时这样的浸润方式相对更加便捷,安全。浸润过程中产生的气体从排气孔32处排出,能降低间隙20内的气压,使得电解液的注入更加顺畅,这样有利于注液效率的提高。
根据本申请的一些实施例,本申请还提供了一种电池,包括以上任一方案所述的电芯。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案所述的电池,并且电池用于为用电装置提供电能。
用电装置可以是前述任一应用电池的设备或***。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种电芯,其特征在于,包括:
    外壳体(1),所述外壳体(1)具有顶端(11)和底端(12);
    电芯本体(2),安装于所述外壳体(1)内;所述电芯本体(2)的外壁与所述外壳体(1)的内壁之间具有间隙(20);
    上盖(3),盖设于所述顶端(11);所述上盖(3)上开设有注液孔(31)和排气孔(32);所述注液孔(31)和所述排气孔(32)均与所述间隙(20)连通;
    导管(4),所述导管(4)的一端与所述注液孔(31)连接,另一端伸入至所述间隙(20)内且向所述底端(12)延伸。
  2. 如权利要求1所述的电芯,其特征在于,所述注液孔(31)和所述排气孔(32)均对准所述间隙(20)开设。
  3. 如权利要求1或2所述的电芯,其特征在于,所述注液孔(31)开设于所述上盖(3)的一端,所述排气孔(32)开设于所述上盖(3)背离所述注液孔(31)的一端。
  4. 如权利要求1至3中任一项所述的电芯,其特征在于,所述间隙(20)包括第一间隙(201)和第二间隙(202);
    所述电芯本体(2)的一侧具有第一圆弧突出部(21)和第二圆弧突出部(22),所述第一圆弧突出部(21)的外壁、所述第二圆弧突出部(22)的外壁和所述外壳体(1)的内壁之间具有所述第一间隙(201);所述注液孔(31)对准所述第一间隙(201);
    所述电芯本体(2)背离所述第一圆弧突出部(21)的一侧具有第三圆弧突出部(23)和第四圆弧突出部(24),所述第三圆弧突出部(23)的外壁、所述第四圆弧突出部(24)的外壁和所述外壳体(1)的内壁之间具有所述第二间隙(202);所述排气孔(32)对准所述第二间隙(202)。
  5. 如权利要求1至4中任一项所述的电芯,其特征在于,所述导管(4)背离所述注液孔(31)的一端与所述底端(12)之间 具有距离a;所述距离a满足:5mm≤a≤7mm。
  6. 如权利要求1至5中任一项所述的电芯,其特征在于,所述注液孔(31)和所述排气孔(32)的孔径均大于等于2mm,且小于等于4mm。
  7. 如权利要求1所述的电芯,其特征在于,包括:
    绝缘底托板(5),安装于所述底端(12)。
  8. 如权利要求1所述的电芯,其特征在于,包括:
    第一密封件(6),可拆卸地安装于所述注液孔(31)。
  9. 如权利要求1所述的电芯,其特征在于,包括:
    第二密封件(7),可拆卸地安装于所述排气孔(32)。
  10. 一种电池,其特征在于,包括:如权利要求1至9中任一项所述的电芯。
  11. 一种用电装置,其特征在于,所述用电装置包括如权利要求10所述的电池,所述电池用于提供电能。
PCT/CN2022/121103 2021-10-20 2022-09-23 一种电芯、电池及用电装置 WO2023065974A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22882585.7A EP4277013A1 (en) 2021-10-20 2022-09-23 Battery cell, battery and electric device
US18/451,770 US20230395957A1 (en) 2021-10-20 2023-08-17 Battery cell, battery, and electric apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122529597.7 2021-10-20
CN202122529597.7U CN216354676U (zh) 2021-10-20 2021-10-20 一种电芯

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/451,770 Continuation US20230395957A1 (en) 2021-10-20 2023-08-17 Battery cell, battery, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2023065974A1 true WO2023065974A1 (zh) 2023-04-27

Family

ID=81179023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121103 WO2023065974A1 (zh) 2021-10-20 2022-09-23 一种电芯、电池及用电装置

Country Status (4)

Country Link
US (1) US20230395957A1 (zh)
EP (1) EP4277013A1 (zh)
CN (1) CN216354676U (zh)
WO (1) WO2023065974A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116454566A (zh) * 2023-06-16 2023-07-18 深圳海辰储能控制技术有限公司 一种绝缘板、端盖组件、电池及储能装置
CN116937026A (zh) * 2023-09-15 2023-10-24 厦门海辰储能科技股份有限公司 下塑胶、顶盖组件及电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216354676U (zh) * 2021-10-20 2022-04-19 宁德时代新能源科技股份有限公司 一种电芯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273884A (ja) * 2000-03-28 2001-10-05 Yuasa Corp 密閉形電池およびその製造方法
JP2010062163A (ja) * 2009-12-15 2010-03-18 Sharp Corp 二次電池の製造方法
US20160133914A1 (en) * 2013-07-29 2016-05-12 Lg Chem, Ltd. Battery including gas discharging member and electrolyte injection member
CN209389151U (zh) * 2019-01-10 2019-09-13 合肥国轩高科动力能源有限公司 一种优化内部空间的方形锂离子电池结构
CN213989005U (zh) * 2020-12-07 2021-08-17 厦门海辰新能源科技有限公司 一种电芯Mylar膜及锂电池
CN214043803U (zh) * 2020-12-10 2021-08-24 湖北亿纬动力有限公司 电池的盖板组件及电池
CN216354676U (zh) * 2021-10-20 2022-04-19 宁德时代新能源科技股份有限公司 一种电芯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273884A (ja) * 2000-03-28 2001-10-05 Yuasa Corp 密閉形電池およびその製造方法
JP2010062163A (ja) * 2009-12-15 2010-03-18 Sharp Corp 二次電池の製造方法
US20160133914A1 (en) * 2013-07-29 2016-05-12 Lg Chem, Ltd. Battery including gas discharging member and electrolyte injection member
CN209389151U (zh) * 2019-01-10 2019-09-13 合肥国轩高科动力能源有限公司 一种优化内部空间的方形锂离子电池结构
CN213989005U (zh) * 2020-12-07 2021-08-17 厦门海辰新能源科技有限公司 一种电芯Mylar膜及锂电池
CN214043803U (zh) * 2020-12-10 2021-08-24 湖北亿纬动力有限公司 电池的盖板组件及电池
CN216354676U (zh) * 2021-10-20 2022-04-19 宁德时代新能源科技股份有限公司 一种电芯

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116454566A (zh) * 2023-06-16 2023-07-18 深圳海辰储能控制技术有限公司 一种绝缘板、端盖组件、电池及储能装置
CN116454566B (zh) * 2023-06-16 2023-08-11 深圳海辰储能控制技术有限公司 一种绝缘板、端盖组件、电池及储能装置
CN116937026A (zh) * 2023-09-15 2023-10-24 厦门海辰储能科技股份有限公司 下塑胶、顶盖组件及电池
CN116937026B (zh) * 2023-09-15 2023-12-29 厦门海辰储能科技股份有限公司 下塑胶、顶盖组件及电池

Also Published As

Publication number Publication date
EP4277013A1 (en) 2023-11-15
CN216354676U (zh) 2022-04-19
US20230395957A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
KR102327289B1 (ko) 배터리
WO2023065974A1 (zh) 一种电芯、电池及用电装置
JP2010153379A (ja) 2次電池
WO2022228091A1 (zh) 锂电池及其制备方法
CN116470197B (zh) 端盖组件、储能装置及用电设备
CN210576090U (zh) 一种电池外壳及电池
JP2006108096A (ja) リチウム二次電池
WO2022037128A1 (zh) 一种二次电池及电池包
WO2023217226A1 (zh) 单体电池、电池包和车辆
WO2023217212A1 (zh) 单体电池、电池包和车辆
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
CN217086795U (zh) 排气装置及化成设备
CN116365132A (zh) 电池、电池模组以及用电设备
WO2023060715A1 (zh) 电池、用电装置、制备电池的方法和装置
CN215869580U (zh) 一种圆柱锂电池结构
CN115051122A (zh) 电池
KR20150051467A (ko) 자가 밀봉성의 밀봉부재를 포함하는 이차전지
CN210403786U (zh) 一种改良结构的极板式锂电池盖板
CN208955082U (zh) 一种负压化成锂离子电池
CN217214954U (zh) 一种电池封装壳体及电池
CN218996884U (zh) 一种电池壳体和二次电池
CN218602669U (zh) 二次电池及电池包
CN216928890U (zh) 一种锂电池盖板及锂电池
CN220324497U (zh) 电池
CN216120671U (zh) 注液装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882585

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882585

Country of ref document: EP

Effective date: 20230810

NENP Non-entry into the national phase

Ref country code: DE