WO2023054301A1 - 弾性波フィルタ装置およびマルチプレクサ - Google Patents

弾性波フィルタ装置およびマルチプレクサ Download PDF

Info

Publication number
WO2023054301A1
WO2023054301A1 PCT/JP2022/035820 JP2022035820W WO2023054301A1 WO 2023054301 A1 WO2023054301 A1 WO 2023054301A1 JP 2022035820 W JP2022035820 W JP 2022035820W WO 2023054301 A1 WO2023054301 A1 WO 2023054301A1
Authority
WO
WIPO (PCT)
Prior art keywords
idt
elastic wave
reflector
parallel arm
filter device
Prior art date
Application number
PCT/JP2022/035820
Other languages
English (en)
French (fr)
Inventor
健一 上坂
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280064396.9A priority Critical patent/CN117981222A/zh
Publication of WO2023054301A1 publication Critical patent/WO2023054301A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to elastic wave filter devices and multiplexers.
  • multi-band systems have been used to improve the data transmission speed of mobile phones.
  • transmission and reception may be performed in a plurality of frequency bands
  • a plurality of filter devices that pass high-frequency signals of different frequency bands are arranged in the front-end circuit of the mobile phone.
  • the plurality of filter devices are required to be small, have high isolation from adjacent bands, and have low loss in the passband.
  • Patent Document 1 discloses the configuration of a surface acoustic wave device that improves transmission characteristics. More specifically, the surface acoustic wave device has a circuit configuration including a plurality of surface acoustic wave resonators having IDT electrodes and reflectors.
  • the center-to-center distance between the electrode finger of the reflector closest to the IDT electrode and the electrode finger of the IDT electrode closest to the reflector is 0.5 times or less the IDT wavelength, and , the reflector wavelength is greater than the IDT wavelength.
  • the unnecessary response generated on the high frequency side of the pass band of the acoustic wave filter device can be moved away to the high frequency side, but the attenuation characteristic on the low frequency side of the pass band is variability can be large.
  • an object of the present invention to provide an elastic wave filter device or the like capable of suppressing an increase in variation in attenuation characteristics on the low-frequency side of the passband.
  • an elastic wave filter device having a plurality of elastic wave resonators, the plurality of elastic wave resonators having two inputs and outputs. a series arm resonator arranged on a first path connecting terminals; and a plurality of parallel arm resonators connected between the first path and ground, wherein the plurality of parallel arm resonators an IDT electrode formed on a piezoelectric substrate and having a pair of comb-like electrodes facing each other; and a reflector arranged adjacent to the IDT electrode in an elastic wave propagation direction, the pair of combs
  • Each of the comb-shaped electrodes constituting the tooth-shaped electrode includes a plurality of electrode fingers arranged to extend in a direction intersecting the acoustic wave propagation direction, and a bus bar connecting one end of each of the plurality of electrode fingers.
  • the reflector has a plurality of reflective electrode fingers arranged so as to extend in a direction intersecting with the elastic wave propagation direction, and the pitch of the plurality of reflective electrode fingers is twice the arrangement pitch of the reflective electrode fingers.
  • the reflector wavelength is set to twice the arrangement pitch of the plurality of electrode fingers included in the IDT electrode, and the IDT wavelength is set to the electrode finger closest to the reflector among the plurality of electrode fingers and the plurality of reflective electrode fingers.
  • the parallel arm resonance having the highest resonance frequency when the center-to-center distance in the acoustic wave propagation direction between the reflective electrode finger closest to the IDT electrode and the IDT-reflector gap is the reflector wavelength is the same as the IDT wavelength
  • the IDT-reflector gap is 0.5 times the reflector wavelength
  • the resonance frequency is the highest.
  • At least one of the other parallel arm resonators, excluding the parallel arm resonator with the higher IDT has the reflector wavelength greater than the IDT wavelength
  • the IDT-reflector gap is 0.5 times the reflector wavelength. less than
  • an elastic wave filter device is an elastic wave filter device having a plurality of elastic wave resonators, wherein the plurality of elastic wave resonators is a first path connecting two input/output terminals. and a plurality of parallel arm resonators connected between the first path and ground, wherein the plurality of parallel arm resonators are disposed on a piezoelectric substrate.
  • An IDT electrode having a pair of comb-shaped electrodes formed and opposed to each other, and a reflector arranged adjacent to the IDT electrode in an elastic wave propagation direction, constituting the pair of comb-shaped electrodes.
  • Each comb-shaped electrode has a plurality of electrode fingers arranged to extend in a direction intersecting with the acoustic wave propagation direction, and a busbar electrode connecting one ends of the plurality of electrode fingers to each other.
  • the reflector has a plurality of reflective electrode fingers arranged to extend in a direction intersecting with the elastic wave propagation direction, and an arrangement pitch of the plurality of electrode fingers included in the IDT electrode is defined as an electrode finger pitch.
  • an array pitch of the plurality of reflective electrode fingers is defined as a reflective electrode finger pitch, and among the plurality of electrode fingers, an electrode finger closest to the reflector and among the plurality of reflective electrode fingers, a reflective electrode finger closest to the IDT electrode.
  • the parallel arm resonator having the smallest electrode finger pitch among the plurality of parallel arm resonators has the reflective electrode finger pitch is the same as the electrode finger pitch, and the IDT-reflector gap is the same as the reflective electrode finger pitch, and among the plurality of parallel arm resonators, a parallel arm resonator having the smallest electrode finger pitch At least one of the other parallel arm resonators has the reflective electrode finger pitch larger than the electrode finger pitch and the IDT-reflector gap smaller than the reflective electrode finger pitch.
  • a multiplexer includes a plurality of filters including the above acoustic wave filter device, input/output terminals of each of the plurality of filters being directly or indirectly connected to a common terminal, Of the plurality of filters, at least one of the filters other than the elastic wave filter device has a passband lower than the frequency of the passband of the elastic wave filter device.
  • a multiplexer includes a plurality of filters including the above acoustic wave filter device, input/output terminals of each of the plurality of filters being directly or indirectly connected to a common terminal, Of the plurality of filters, at least one of the filters other than the elastic wave filter device has a passband higher than the frequency of the passband of the elastic wave filter device.
  • the acoustic wave filter device and the like according to the present invention it is possible to suppress an increase in variation in attenuation characteristics on the low-frequency side of the passband.
  • FIG. 1 is a diagram showing a circuit configuration of an acoustic wave filter device according to Embodiment 1.
  • FIG. FIG. 2 is a plan view and a cross-sectional view schematically showing the electrode configuration of the acoustic wave resonators included in the acoustic wave filter device.
  • FIG. 3 is a diagram showing electrode parameters of series arm resonators and parallel arm resonators of the elastic wave filter device according to the first embodiment.
  • FIG. 4 is a diagram showing impedance characteristics of the parallel arm resonators of the first embodiment and the comparative example.
  • FIG. 5 is a diagram showing return losses of the parallel arm resonators of the first embodiment and the comparative example.
  • FIG. 1 is a diagram showing a circuit configuration of an acoustic wave filter device according to Embodiment 1.
  • FIG. FIG. 2 is a plan view and a cross-sectional view schematically showing the electrode configuration of the acoustic wave resonators included in the acou
  • FIG. 6 is a diagram showing pass characteristics of the elastic wave filter devices of the first embodiment and the comparative example.
  • FIG. 7 is an enlarged view of part of the pass characteristic shown in FIG.
  • FIG. 8 is a diagram showing pass characteristics of an elastic wave filter device when the widths of electrode fingers of IDT electrodes are different in a comparative example.
  • FIG. 9 is a diagram showing pass characteristics of the acoustic wave filter device when the widths of the electrode fingers of the IDT electrodes are different in the first embodiment.
  • FIG. 10 is a circuit configuration diagram of a multiplexer and its peripheral circuits according to the second embodiment.
  • the parallel arm resonator has a resonance frequency frp at which impedance
  • the series arm resonator has a resonance frequency frs at which impedance
  • the anti-resonance frequency fap of the parallel arm resonator and the resonance frequency frs of the series arm resonator are brought close to each other.
  • the vicinity of the resonance frequency frp where the impedance of the parallel arm resonator approaches 0 becomes a low-frequency stopband.
  • the impedance of the parallel arm resonator increases near the anti-resonance frequency fap, and the impedance of the series arm resonator approaches zero near the resonance frequency frs.
  • the vicinity of the anti-resonance frequency fap to the resonance frequency frs becomes a signal passband.
  • the impedance of the series arm resonator becomes higher, and the high-frequency side stopband occurs. That is, the anti-resonance frequency fap of the parallel arm resonator and the resonance frequency frs of the series arm resonator constitute the passband, and the resonance frequency frp of the parallel arm resonator constitutes the attenuation pole on the lower side of the passband.
  • the anti-resonance frequency fas of the resonator constitutes an attenuation pole on the high side of the passband.
  • FIG. 1 is a diagram showing a circuit configuration of an elastic wave filter device 1 according to Embodiment 1.
  • FIG. 1 is a diagram showing a circuit configuration of an elastic wave filter device 1 according to Embodiment 1.
  • the acoustic wave filter device 1 includes series arm resonators S1, S2, S3 and S4, parallel arm resonators P1, P2, P3 and P4, and input/output terminals 50 and 60. .
  • the series arm resonators S1 to S4 are arranged in series on the first path r1 connecting the input/output terminal 50 and the input/output terminal 60.
  • the parallel arm resonators P1 to P4 are connected between the first path r1 and the ground (reference terminal).
  • Each of the series arm resonators S1 to S4 is composed of two divided resonators connected in series with each other.
  • the parallel arm resonator P3 is composed of two split resonators connected in series with each other.
  • the elastic wave filter device 1 constitutes a ladder-type bandpass filter due to the connection configuration of the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4.
  • the circuit configuration shown in FIG. 1 is just an example, and the number of series arm resonators, the number of parallel arm resonators, etc. are not limited to the configuration of FIG.
  • FIG. 2A and 2B are a plan view and a sectional view schematically showing the electrode configuration of the elastic wave resonator 10 included in the elastic wave filter device 1.
  • FIG. 2A and 2B are a plan view and a sectional view schematically showing the electrode configuration of the elastic wave resonator 10 included in the elastic wave filter device 1.
  • the acoustic wave resonator 10 according to the present embodiment is a surface acoustic wave (SAW) resonator composed of an IDT electrode 11 , a reflector 12 and a piezoelectric substrate 100 .
  • SAW surface acoustic wave
  • the elastic wave resonator 10 shown in FIG. 2 is for explaining its typical structure, and the number and length of the electrode fingers constituting the electrodes are not limited to this.
  • the electrode 110 constituting the IDT electrode 11 and the reflector 12 has a laminated structure of an adhesion layer 111 and a main electrode layer 112, as shown in the cross-sectional view of FIG.
  • the adhesion layer 111 is a layer for improving adhesion between the piezoelectric substrate 100 and the main electrode layer 112, and is made of Ti, for example.
  • the material of the main electrode layer 112 is, for example, Al containing 1% Cu.
  • the protective film 113 is formed to cover electrode 110 .
  • the protective film 113 is a layer for the purpose of protecting the main electrode layer 112 from the external environment, adjusting frequency temperature characteristics, and increasing moisture resistance . It is a membrane that
  • the materials forming the adhesion layer 111, the main electrode layer 112, and the protective film 113 are not limited to the materials described above. Furthermore, the electrode 110 does not have to have the laminated structure described above.
  • the electrode 110 may be composed of metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, and Pd, for example, and may be composed of a plurality of laminates composed of the above metals or alloys. good too. Also, the protective film 113 may not be formed.
  • the piezoelectric substrate 100 is, for example, a ⁇ ° Y-cut X-propagating LiNbO 3 piezoelectric single crystal or piezoelectric ceramic (cut along a plane normal to an axis rotated ⁇ ° from the Y-axis in the Z-axis direction with the X-axis as the central axis). Lithium niobate single crystal or ceramics, which allows surface acoustic waves to propagate in the X-axis direction).
  • the piezoelectric substrate 100 may be a substrate having a piezoelectric layer at least partially, or may have a laminated structure having a piezoelectric layer.
  • the piezoelectric substrate 100 includes, for example, a high acoustic velocity supporting substrate, a low acoustic velocity film, and a piezoelectric layer, and has a structure in which the high acoustic velocity supporting substrate, low acoustic velocity film, and piezoelectric layer are laminated in this order.
  • the IDT electrode 11 has a pair of comb-like electrodes 11A and 11B facing each other.
  • the comb-shaped electrode 11A is composed of a plurality of electrode fingers 11a arranged to extend in a direction intersecting the elastic wave propagation direction, and a busbar electrode 11c connecting one end of each of the plurality of electrode fingers 11a.
  • the comb-shaped electrode 11B is composed of a plurality of electrode fingers 11b arranged to extend in a direction intersecting the elastic wave propagation direction, and a busbar electrode 11c connecting one ends of the plurality of electrode fingers 11b.
  • the plurality of electrode fingers 11a and 11b are alternately arranged along the elastic wave propagation direction.
  • the elastic wave propagation direction is a direction that intersects the direction in which the electrode fingers 11a and 11b extend, and in this example, is a direction that is orthogonal to the direction in which the electrode fingers 11a and 11b extend.
  • the reflector 12 is arranged adjacent to the IDT electrode 11 in the elastic wave propagation direction.
  • the reflector 12 is composed of a plurality of electrode fingers arranged to extend in a direction intersecting the elastic wave propagation direction, and a bus bar electrode connecting one ends of the plurality of electrode fingers.
  • the electrode fingers forming the reflector are referred to as "reflective electrode fingers”.
  • a plurality of reflectors 12 are provided and arranged one each on both sides of the IDT electrode 11 in the elastic wave propagation direction.
  • the electrode finger for example, 11a
  • the center-to-center distance in the elastic wave propagation direction between the electrode fingers 12a and the reflective electrode finger 12a closest to the IDT electrode 11 (hereinafter, the distance between the centers in the elastic wave propagation direction between two electrode fingers is simply referred to as the "center is defined as the IDT-Reflector Gap (IRGAP).
  • the IDT wavelength ( ⁇ IDT ) is defined as twice the electrode finger pitch pi, which is the arrangement pitch of the plurality of electrode fingers 11a and 11b included in the IDT electrode 11 .
  • a pitch that is twice the reflective electrode finger pitch pr that is the arrangement pitch of the plurality of reflective electrode fingers 12a is defined as the reflector wavelength ( ⁇ REF ).
  • the electrode finger pitch pi is the center-to-center distance between the electrode fingers 11a and 11b adjacent to each other in the acoustic wave propagation direction among the plurality of electrode fingers 11a and 11b included in the IDT electrode 11 .
  • All the arrangement pitches of the plurality of electrode fingers 11a and 11b in the IDT electrode 11 may be the same, or some or all of the arrangement pitches may be different.
  • the electrode finger pitch pi can be derived as follows.
  • the total number of electrode fingers 11a and 11b included in the IDT electrode 11 is Ni.
  • Di be the center-to-center distance between the electrode finger positioned at one end and the electrode finger positioned at the other end of the IDT electrode 11 in the elastic wave propagation direction.
  • the electrode finger pitch pi is the center between the electrode fingers positioned at both ends of each IDT electrode included in each split resonator in the elastic wave propagation direction. It is obtained by dividing the total value of the inter-distances by the total value of the total number of gaps formed by adjacent electrode fingers in each IDT electrode.
  • the reflective electrode finger pitch pr is the center-to-center distance between the reflective electrode fingers 12a adjacent to each other in the acoustic wave propagation direction among the plurality of reflective electrode fingers 12a included in the reflector 12. All the arrangement pitches of the plurality of reflective electrode fingers 12a in the reflector 12 may be the same, or some or all of the arrangement pitches may be different.
  • the reflective electrode finger pitch pr can be derived as follows.
  • the total number of reflective electrode fingers 12a included in the reflector 12 is Nr.
  • Dr be the center-to-center distance between the reflective electrode finger positioned at one end and the reflective electrode finger positioned at the other end of the reflector 12 in the elastic wave propagation direction.
  • FIG. 3 is a diagram showing electrode parameters of the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4 of the elastic wave filter device 1.
  • FIG. 3(a) shows the IDT wavelength ⁇ IDT of the series arm resonators S1 to S4, the reflector wavelength ⁇ REF , the IDT-reflector gap IRGAP, and the like.
  • FIG. 3(b) shows the IDT wavelength ⁇ IDT of the parallel arm resonators P1 to P4, the reflector wavelength ⁇ REF and the IDT-reflector gap IRGAP.
  • the IDT wavelength ⁇ IDT of the parallel arm resonator P3 is the smallest among the plurality of parallel arm resonators P1 to P4. That is, in this example, among the parallel arm resonators P1 to P4, the resonance frequency frp of the parallel arm resonator P3 is the highest.
  • Increasing the resonance frequency frp means, for example, narrowing the electrode finger pitch pi as in the present embodiment, narrowing the width of the electrode fingers 11a and 11b, and increasing the film thickness of the electrode fingers 11a and 11b. or by changing the thickness of the protective film 113 on the electrode fingers 11a and 11b.
  • the reflector wavelength ⁇ REF is the same as the IDT wavelength ⁇ IDT
  • the IDT-reflector gap IRGAP is 0.5 times the reflector wavelength ⁇ REF .
  • ⁇ REF ⁇ IDT
  • IRGAP 0.5 ⁇ REF .
  • that the reflector wavelength ⁇ REF and the IDT wavelength ⁇ IDT are the same means that both values (reflector wavelength ⁇ REF value and IDT wavelength ⁇ IDT value) are the same to at least three significant digits.
  • both values match to at least three significant digits.
  • At least one of the parallel arm resonators P1, P2 and P4 other than the parallel arm resonator P3 having the highest resonance frequency frp has a reflector wavelength ⁇ REF . is greater than the IDT wavelength ⁇ IDT and the IDT-reflector gap IRGAP is less than 0.5 times the reflector wavelength ⁇ REF .
  • the reflector wavelength ⁇ REF is greater than the IDT wavelength ⁇ IDT and the IDT-reflector gap IRGAP is 0 of the reflector wavelength ⁇ REF . .5 times smaller ( ⁇ REF > ⁇ IDT , IRGAP ⁇ 0.5 ⁇ REF ).
  • the parallel arm resonator P3 is 1.000, and the parallel arm resonators P1, P2 and P3 are larger than 1.000.
  • the reflector wavelength/IDT wavelength of the parallel arm resonators P1, P2 and P3 is 1.010 or more and 1.020 or less.
  • the reflector wavelength ⁇ REF and the IDT wavelength ⁇ IDT have the above relationship, in the elastic wave filter device 1, attenuation on the lower frequency side than the pass band It is possible to suppress an increase in variation in characteristics.
  • the relationships among the plurality of parallel arm resonators P1 to P4 are indicated by wavelengths and frequencies in the above description, they are not limited to these, and can also be indicated by the arrangement pitch of the electrode fingers.
  • twice the electrode finger pitch pi corresponds to the IDT wavelength ⁇ IDT
  • twice the reflective electrode finger pitch pr corresponds to the reflector wavelength ⁇ REF
  • the frequency corresponding to the IDT wavelength ⁇ IDT is the resonance frequency frp. Therefore, the relationship among the plurality of parallel arm resonators P1 to P4 can also be expressed as follows.
  • the electrode finger pitch pi of the IDT electrode 11 of the parallel arm resonator P3 is the smallest among the plurality of parallel arm resonators P1 to P4.
  • the reflective electrode finger pitch pr is the same as the electrode finger pitch pi
  • the statement that the reflective electrode finger pitch pr is the same as the electrode finger pitch pi means that both values (value of the reflective electrode finger pitch pr and value of the electrode finger pitch pi) are the same up to at least three significant digits.
  • the two values are equal to at least three significant digits.
  • At least one of the parallel arm resonators P1, P2 and P4 other than the parallel arm resonator P3 having the smallest electrode finger pitch pi has a reflective electrode finger pitch pr is larger than the electrode finger pitch pi, and the IDT-reflector gap IRGAP is smaller than the reflective electrode finger pitch pr.
  • the reflective electrode finger pitch pr is larger than the electrode finger pitch pi
  • the IDT-reflector gap IRGAP is larger than the reflective electrode finger pitch pr. smaller (pr>pi, IRGAP ⁇ pr).
  • the acoustic wave filter device 1 Since the electrode finger pitch pi of the plurality of parallel arm resonators P1 to P4, the reflective electrode finger pitch pr, and the IDT-reflector gap IRGAP have the above relationship, the acoustic wave filter device 1 has It is possible to suppress the increase in the variation of the attenuation characteristics of the .
  • the elastic wave filter device of the comparative example differs from the elastic wave filter device 1 of the first embodiment in the electrode parameters of the parallel arm resonator P3.
  • the reflector wavelength ⁇ REF is greater than the IDT wavelength ⁇ IDT
  • the IDT-reflector gap IRGAP is equal to the reflector wavelength ⁇ REF . is smaller than 0.5 times (not shown).
  • the parallel arm resonators P1, P2, P3, and P4 shown here are resonators whose anti-resonance frequency fap exists within the passband of the elastic wave filter device. That is, the parallel arm resonators P1 to P4 are resonators for forming the passband of the ladder filter. Not included in children P1-P4.
  • the passband is a band in which the value of the insertion loss is within 3 dB from the peak value (minimum value) of the insertion loss when the peak value (the smallest value) of the insertion loss is used as a reference.
  • FIG. 4 is a diagram showing impedance characteristics of the parallel arm resonator P3 of the first embodiment and the comparative example.
  • FIG. 5 is a diagram showing the return loss of the parallel arm resonators P3 of the first embodiment and the comparative example.
  • the waveform indicating the resonance frequency frp is disturbed in the range of 2570 MHz to 2580 MHz, which is on the lower frequency side than the pass band, and the impedance value becomes sufficiently low.
  • the unnecessary response generated on the high frequency side of the passband can be moved away from the passband, but the response between 2570 MHz and 2580 MHz A slightly large ripple occurs at
  • FIG. 6 is a diagram showing pass characteristics of the elastic wave filter devices of the first embodiment and the comparative example.
  • the first embodiment is indicated by a solid line and the comparative example is indicated by a dashed line.
  • the solid line and the dashed line almost overlap.
  • the pass band of the elastic wave filter device is, for example, 2595 MHz or more and 2722 MHz or less.
  • the resonance frequency frp of the parallel arm resonator P3 overlaps the attenuation slope, which is the slope curve between the passband and the attenuation pole of the low-frequency side stopband.
  • FIG. 7 is an enlarged view of part of the pass characteristics shown in FIG. FIG. 7 shows the insertion loss on the lower frequency side than the passband of the acoustic wave filter device.
  • a parallel arm having a configuration in which the reflector wavelength ⁇ REF is greater than the IDT wavelength ⁇ IDT and the IDT-reflector gap IRGAP is less than 0.5 times the reflector wavelength ⁇ REF Resonators P1, P2 and P4 can be used to reduce this unwanted response. Therefore, in the acoustic wave filter device 1 of Embodiment 1, it is possible to suppress the occurrence of a large loss on the high frequency side of the passband.
  • FIG. 8 is a diagram showing pass characteristics of an acoustic wave filter device in a comparative example when the widths of the electrode fingers 11a and 11b of the IDT electrode 11 are different.
  • the solid line in FIG. 8 is the same example as the elastic wave filter device of the comparative example shown in FIG. is an example in which the width of the electrode fingers 11a and 11b is 20 nm thicker than the comparative example shown in FIG.
  • FIG. 9 is a diagram showing pass characteristics of the elastic wave filter device 1 when the electrode fingers 11a and 11b of the IDT electrode 11 have different widths in the first embodiment.
  • the solid line in FIG. 9 is the same example as the elastic wave filter device 1 of the first embodiment shown in FIG.
  • the dashed line is an example in which the width of the electrode fingers 11a and 11b is 20 nm thicker than that in the first embodiment shown in FIG.
  • Embodiment 1 even if the widths of the electrode fingers 11a and 11b are different, the attenuation slope does not have a stepped bump and the inclination of the attenuation slope is constant. Therefore, in Embodiment 1, even if the width dimension of the electrode fingers 11a and 11b varies in manufacturing, it is possible to suppress the variation in the attenuation characteristics on the low frequency side from the passband from increasing.
  • FIG. 10 is a circuit diagram of the multiplexer 5 and its peripheral circuit (antenna 4) according to the second embodiment.
  • the multiplexer 5 shown in the figure includes an elastic wave filter device 1, another filter 3 different from the elastic wave filter device 1, a common terminal 70, and input/output terminals 81 and 82.
  • FIG. 10 is a circuit diagram of the multiplexer 5 and its peripheral circuit (antenna 4) according to the second embodiment.
  • the multiplexer 5 shown in the figure includes an elastic wave filter device 1, another filter 3 different from the elastic wave filter device 1, a common terminal 70, and input/output terminals 81 and 82.
  • the elastic wave filter device 1 is the elastic wave filter device 1 according to Embodiment 1.
  • the input/output terminal 50 of the elastic wave filter device 1 is connected to the input/output terminal 81, and the input/output terminal of the elastic wave filter device 1 is connected to the input/output terminal 81.
  • 60 is connected to common terminal 70 .
  • the other filters 3 are connected to the common terminal 70 and the input/output terminal 82 .
  • the other filter 3 is, for example, a ladder-type elastic wave filter device having parallel arm resonators and series arm resonators, but may be an LC filter or the like, and its circuit configuration is not particularly limited.
  • the passband of the acoustic wave filter device 1 is located on the higher frequency side than the passbands of the other filters 3 . That is, at least one of the filters 3 other than the elastic wave filter device 1 has a passband lower than the frequency of the passband of the elastic wave filter device 1 . According to this, in the multiplexer 5 including the elastic wave filter device 1 and the other filter 3 having a passband lower than that of the elastic wave filter device 1, the insertion loss in the passband of the other filter 3 becomes large. can be suppressed.
  • the passband of the elastic wave filter device 1 is located on the lower frequency side than the passbands of the other filters 3 . That is, at least one of the filters 3 other than the elastic wave filter device 1 has a passband higher than the frequency of the passband of the elastic wave filter device 1 among the plurality of filters.
  • multiplexer 5 has a circuit configuration in which two filters are connected to common terminal 70, but the number of filters connected to common terminal 70 is not limited to two, and may be three or more. There may be.
  • An elastic wave filter device 1 is an elastic wave filter device having a plurality of elastic wave resonators 10 .
  • a plurality of elastic wave resonators 10 are connected between series arm resonators S1 to S4 arranged on a first path r1 connecting two input/output terminals 50 and 60 and between the first path r1 and the ground. and a plurality of parallel arm resonators P1 to P4.
  • a plurality of parallel arm resonators P1 to P4 are formed on a piezoelectric substrate 100, and an IDT electrode 11 having a pair of comb-shaped electrodes 11A and 11B facing each other and adjacent to the IDT electrode 11 in the elastic wave propagation direction. and a reflector 12 positioned.
  • Each comb-shaped electrode (11A or 11B) constituting the pair of comb-shaped electrodes 11A and 11B has a plurality of electrode fingers (11a or 11b) arranged so as to extend in a direction intersecting the elastic wave propagation direction. , and a busbar electrode 11c connecting one ends of each of the plurality of electrode fingers (11a or 11b).
  • the reflector 12 has a plurality of reflective electrode fingers 12a arranged so as to extend in a direction intersecting the elastic wave propagation direction.
  • the reflector wavelength ⁇ REF is twice the arrangement pitch of the plurality of reflective electrode fingers 12a
  • the IDT wavelength ⁇ IDT is twice the arrangement pitch of the plurality of electrode fingers 11a and 11b included in the IDT electrode 11
  • IDT-reflection is the center-to-center distance in the acoustic wave propagation direction between the electrode finger closest to the reflector 12 among the plurality of electrode fingers 11a and 11b and the reflective electrode finger closest to the IDT electrode 11 among the plurality of reflective electrode fingers 12a.
  • the parallel arm resonator (for example, P3) having the highest resonance frequency frp has the same reflector wavelength ⁇ REF as the IDT wavelength ⁇ IDT , and the IDT-reflector gap IRGAP is 0.5 times the reflector wavelength ⁇ REF .
  • at least one of the parallel arm resonators (for example P1, P2 and P4) other than the parallel arm resonator (for example P3) having the highest resonance frequency frp is a reflector.
  • the wavelength ⁇ REF is greater than the IDT wavelength ⁇ IDT and the IDT-reflector gap IRGAP is less than 0.5 times the reflector wavelength ⁇ REF .
  • the reflector wavelength ⁇ REF is the same as the IDT wavelength ⁇ IDT , and the IDT-reflector gap IRGAP is 0.5 times the reflector wavelength ⁇ REF .
  • the acoustic wave filter device 1 it is possible to suppress the variation in the attenuation characteristic on the low frequency side from the passband from increasing.
  • the reflector wavelength ⁇ REF is made larger than the IDT wavelength ⁇ IDT , and the IDT-reflector gap IRGAP is By making it smaller than 0.5 times the reflector wavelength ⁇ REF , it is possible to reduce unnecessary responses that occur on the high frequency side of the passband. Therefore, it is possible to suppress the occurrence of a large loss on the high frequency side of the passband.
  • All of the other parallel arm resonators P1, P2 and P4 have a reflector wavelength ⁇ REF greater than the IDT wavelength ⁇ IDT and an IDT-reflector gap IRGAP of 0.5 times the reflector wavelength ⁇ REF . may be smaller than
  • the reflector wavelength ⁇ REF is made greater than the IDT wavelength ⁇ IDT and the IDT-reflector gap IRGAP is set to 0 of the reflector wavelength ⁇ REF .
  • An elastic wave filter device 1 is an elastic wave filter device 1 having a plurality of elastic wave resonators 10 .
  • a plurality of elastic wave resonators 10 are connected between series arm resonators S1 to S4 arranged on a first path r1 connecting two input/output terminals 50 and 60 and between the first path r1 and the ground. and a plurality of parallel arm resonators P1 to P4.
  • a plurality of parallel arm resonators P1 to P4 are formed on a piezoelectric substrate 100, and an IDT electrode 11 having a pair of comb-shaped electrodes 11A and 11B facing each other and adjacent to the IDT electrode 11 in the elastic wave propagation direction. and a reflector 12 positioned.
  • Each comb-shaped electrode (11A or 11B) constituting the pair of comb-shaped electrodes 11A and 11B has a plurality of electrode fingers (11a or 11b) arranged so as to extend in a direction intersecting the elastic wave propagation direction. , and a busbar electrode 11c connecting one ends of each of the plurality of electrode fingers (11a or 11b).
  • the reflector 12 has a plurality of reflective electrode fingers 12a arranged so as to extend in a direction intersecting the elastic wave propagation direction.
  • the arrangement pitch of the plurality of electrode fingers 11a and 11b included in the IDT electrode 11 is defined as an electrode finger pitch pi
  • the arrangement pitch of the plurality of reflective electrode fingers 12a is defined as a reflective electrode finger pitch pr
  • the plurality of electrode fingers 11a and 11b When the IDT-reflector gap IRGAP is the center-to-center distance in the elastic wave propagation direction between the electrode finger closest to the reflector 12 and the reflective electrode finger 12a among the plurality of reflective electrode fingers 12a closest to the IDT electrode 11, , having the relationship shown below.
  • the parallel arm resonator having the smallest electrode finger pitch pi (for example, P3) has the same reflective electrode finger pitch pr as the electrode finger pitch pi, and the IDT-reflector gap IRGAP is the same as the reflective electrode finger pitch pr.
  • at least one of the parallel arm resonators (eg P1, P2 or P4) other than the parallel arm resonator (eg P3) having the smallest electrode finger pitch pi is a reflective
  • the electrode finger pitch pr is larger than the electrode finger pitch pi
  • the IDT-reflector gap IRGAP is smaller than the reflective electrode finger pitch pr.
  • the reflective electrode finger pitch pr is set to be the same as the electrode finger pitch pi
  • the IDT-reflector gap IRGAP is set to be the same as the reflective electrode finger pitch pr.
  • the reflective electrode finger pitch pr is made larger than the electrode finger pitch pi, and the IDT-reflector gap IRGAP is By making it smaller than the reflective electrode finger pitch pr, it is possible to reduce unnecessary responses that occur on the high frequency side of the passband. Therefore, it is possible to suppress the occurrence of a large loss on the high frequency side of the passband.
  • all of the other parallel arm resonators P1, P2 and P4 have the reflective electrode finger pitch pr larger than the electrode finger pitch pi and the IDT-reflector gap IRGAP smaller than the reflective electrode finger pitch pr. good.
  • the reflective electrode finger pitch pr is made larger than the electrode finger pitch pi, and the IDT-reflector gap IRGAP is made larger than the reflective electrode finger pitch pr.
  • a multiplexer 5 includes a plurality of filters including the elastic wave filter device 1 described above.
  • the input/output terminals 81 and 82 of each of the filters are directly or indirectly connected to the common terminal 70 .
  • At least one of the filters 3 other than the elastic wave filter device 1 has a passband lower than the frequency of the passband of the elastic wave filter device 1 .
  • the multiplexer 5 including the elastic wave filter device 1 and the other filter 3 having a passband lower than that of the elastic wave filter device 1 the insertion loss in the passband of the other filter 3 becomes large. can be suppressed.
  • a multiplexer 5 includes a plurality of filters including the elastic wave filter device 1 described above.
  • the input/output terminals 81 and 82 of each of the filters are directly or indirectly connected to the common terminal 70 .
  • At least one of the filters 3 other than the acoustic wave filter device 1 has a passband higher than the frequency of the passband of the acoustic wave filter device 1 among the plurality of filters.
  • the multiplexer 5 including the elastic wave filter device 1 and another filter 3 having a pass band higher than that of the elastic wave filter device 1 it is possible to prevent the insertion loss in the pass band of the other filter 3 from increasing. can be suppressed.
  • the elastic wave filter device and the multiplexer according to the embodiment of the present invention have been described above with reference to the embodiment and examples. It is not limited. Other embodiments realized by combining arbitrary components in the above-described embodiments and examples, and various modifications that can be made by those skilled in the art within the scope of the present invention without departing from the scope of the above-described embodiments.
  • the present invention also includes various devices incorporating the obtained embodiments and the elastic wave filter device and multiplexer of the present disclosure.
  • the resonance frequency frp of the parallel arm resonator P3 among the plurality of parallel arm resonators P1 to P4 was the highest, but the present invention is not limited to this.
  • any one of the parallel arm resonators P1, P2 and P4 may have the highest resonance frequency frp.
  • the reflector wavelength ⁇ REF is the same as the IDT wavelength ⁇ IDT
  • the IDT-reflector gap IRGAP is equal to the reflector wavelength ⁇ REF 0.5 times.
  • At least one of the parallel arm resonators other than the parallel arm resonator (P1, P2 or P4) having the highest resonance frequency frp has a reflector wavelength ⁇ REF greater than the IDT wavelength ⁇ IDT and -
  • the reflector gap IRGAP should be less than 0.5 times the reflector wavelength ⁇ REF .
  • the parallel arm resonator P3 having the highest resonance frequency frp is not arranged closest to the common terminal 70 on the first path r1.
  • Other parallel arm resonators (for example, P1) may be arranged closest to the common terminal 70 on the first path r1.
  • the elastic wave filter device 1 has a relationship that the reflector wavelength/IDT wavelength of each of the parallel arm resonators P1 to P4 is smaller than the reflector wavelength/IDT wavelength of each of the series arm resonators S1 to S4. may be
  • the elastic wave filter device 1 may further include circuit elements such as inductors and capacitors.
  • the elastic wave resonator according to the present invention may not be a surface acoustic wave resonator as in Embodiment 1, but may be an elastic wave resonator using boundary acoustic waves.
  • the piezoelectric substrate 100 may be a substrate having a piezoelectric layer at least partially, or may have a laminated structure having a piezoelectric layer.
  • the piezoelectric substrate 100 includes, for example, a high acoustic velocity supporting substrate, a low acoustic velocity film, and a piezoelectric layer, and has a structure in which the high acoustic velocity supporting substrate, low acoustic velocity film, and piezoelectric layer are laminated in this order. may
  • the configurations of the high acoustic velocity supporting substrate, the low acoustic velocity film and the piezoelectric layer will be described below.
  • the piezoelectric layer is, for example, a ⁇ ° Y-cut X-propagation LiNbO 3 piezoelectric single crystal or piezoelectric ceramics (niobium cut along a plane normal to an axis rotated ⁇ ° from the Y-axis in the Z-axis direction with the X-axis as the central axis). It consists of a lithium oxide single crystal or ceramics in which a surface acoustic wave propagates in the X-axis direction.
  • the high acoustic velocity support substrate is a substrate that supports the low acoustic velocity film, the piezoelectric layer and the electrode 110 . Further, the high acoustic velocity support substrate is a substrate in which the sound velocity of the bulk wave in the high acoustic velocity support substrate is faster than the acoustic waves of the surface waves and the boundary waves propagating through the piezoelectric layer. And the low acoustic velocity film is confined in the laminated portion, and functions so as not to leak below the high acoustic velocity support substrate.
  • the high acoustic velocity support substrate is, for example, a silicon substrate.
  • the high sonic velocity support substrate includes (1) a piezoelectric material such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, or quartz, and (2) alumina, zirconia, cordage.
  • a piezoelectric material such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, or quartz
  • alumina, zirconia, cordage such as lite, mullite, steatite, or forsterite, (3) magnesia diamond, (4) materials containing the above materials as main components, and (5) materials containing mixtures of the above materials as main components , or
  • the low sound velocity film is a film in which the sound velocity of the bulk wave in the low sound velocity film is lower than the sound velocity of the elastic wave propagating through the piezoelectric layer, and is arranged between the piezoelectric layer and the high sound velocity support substrate. .
  • This structure and the nature of the elastic wave to concentrate its energy in a low-temperature medium suppresses leakage of the surface acoustic wave energy to the outside of the IDT electrode.
  • the low sound velocity film is, for example, a film whose main component is silicon dioxide (SiO 2 ).
  • the Q value of the acoustic wave resonator at the resonance frequency and the anti-resonance frequency can be significantly increased compared to the structure using the piezoelectric substrate 100 as a single layer. It becomes possible. That is, since a surface acoustic wave resonator with a high Q value can be constructed, it is possible to construct a filter with a small insertion loss using the surface acoustic wave resonator.
  • the high acoustic velocity support substrate has a structure in which a support substrate and a high acoustic velocity film are laminated such that the acoustic velocity of a bulk wave propagating through the piezoelectric layer is higher than that of an elastic wave such as a surface wave or a boundary wave.
  • the support substrate may be a piezoelectric material such as sapphire, lithium tantalate, lithium niobate, quartz crystal, etc.; Dielectrics such as various ceramics and glasses, semiconductors such as silicon and gallium nitride, and resin substrates can be used.
  • the high acoustic velocity film can be made of various materials such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, media mainly composed of the above materials, and media mainly composed of mixtures of the above materials. high acoustic velocity materials can be used.
  • each layer exemplified in the above laminated structure of the piezoelectric substrate 100 is only examples, and are changed according to, for example, the characteristics to be emphasized among the required high-frequency propagation characteristics.
  • the present invention can be widely used in communication equipment such as mobile phones as a multiband and multimode low-loss acoustic wave filter device and multiplexer.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波フィルタ装置(1)は、直列腕共振子(S1~S4)と複数の並列腕共振子(P1~P4)とを有する。複数の並列腕共振子(P1~P4)のうち、最も共振周波数(frp)が高い並列腕共振子(P3)は、反射器波長(λREF)がIDT波長(λIDT)と同じで、かつ、IDT-反射器ギャップ(IRGAP)が反射器波長(λREF)の0.5倍である。並列腕共振子(P3)を除く他の並列腕共振子(P1、P2およびP4)は、反射器波長(λREF)がIDT波長(λIDT)よりも大きく、かつ、IDT-反射器ギャップ(IRGAP)が反射器波長(λREF)の0.5倍よりも小さい。

Description

弾性波フィルタ装置およびマルチプレクサ
 本発明は、弾性波フィルタ装置およびマルチプレクサに関する。
 近年、携帯電話のデータ伝送速度を向上させるために、マルチバンドシステムが用いられている。その際、複数の周波数帯域の送受信を行う場合があるため、携帯電話のフロントエンド回路には、異なる周波数帯域の高周波信号を通過させる複数のフィルタ装置が配置される。この場合、上記フロントエンド回路に許容される実装スペースには制約があるため、上記複数のフィルタ装置には、小型化、隣接バンドとの高アイソレーションおよび通過帯域の低損失性が要求される。
 特許文献1には、伝送特性を改善する弾性表面波装置の構成が開示されている。より具体的には、上記弾性表面波装置は、IDT電極および反射器を有する複数の弾性表面波共振子を備えた回路構成を有している。特許文献1の表7には、IDT電極に最も近い反射器の電極指と、反射器に最も近いIDT電極の電極指との中心間距離が、IDT波長の0.5倍以下であり、かつ、反射器波長がIDT波長よりも大きい例が示されている。
国際公開第2018/168836号
 特許文献1に記載された弾性表面波装置では、弾性波フィルタ装置の通過帯域よりも高周波側に発生する不要なレスポンスを高周波側に遠ざけることができるが、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることがある。
 そこで、本発明は、上記課題を解決するためになされたものであって、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる弾性波フィルタ装置等を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタ装置は、複数の弾性波共振子を有する弾性波フィルタ装置であって、前記複数の弾性波共振子は、2つの入出力端子を結ぶ第1経路上に配置された直列腕共振子と、前記第1経路とグランドとの間に接続された複数の並列腕共振子と、を有し、前記複数の並列腕共振子は、圧電性基板上に形成され、対向する一対の櫛歯状電極を有するIDT電極と、前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、を有し、前記一対の櫛歯状電極を構成する各々の櫛歯状電極は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指と、前記複数の電極指のそれぞれの一端同士を接続するバスバー電極と、を有し、前記反射器は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指を有し、前記複数の反射電極指の配列ピッチの2倍を反射器波長とし、前記IDT電極に含まれる前記複数の電極指の配列ピッチの2倍をIDT波長とし、前記複数の電極指のうち前記反射器に最近接する電極指と前記複数の反射電極指のうち前記IDT電極に最近接する反射電極指との、弾性波伝搬方向における中心間距離をIDT-反射器ギャップとした場合に、前記複数の並列腕共振子のうち、最も共振周波数が高い並列腕共振子は、前記反射器波長が前記IDT波長と同じで、かつ、前記IDT-反射器ギャップが前記反射器波長の0.5倍であり、前記複数の並列腕共振子のうち、前記最も共振周波数が高い並列腕共振子を除く他の並列腕共振子の少なくとも1つは、前記反射器波長が前記IDT波長よりも大きく、かつ、前記IDT-反射器ギャップが前記反射器波長の0.5倍よりも小さい。
 また、本発明の一態様に係る弾性波フィルタ装置は、複数の弾性波共振子を有する弾性波フィルタ装置であって、前記複数の弾性波共振子は、2つの入出力端子を結ぶ第1経路上に配置された直列腕共振子と、前記第1経路とグランドとの間に接続された複数の並列腕共振子と、を有し、前記複数の並列腕共振子は、圧電性基板上に形成され、対向する一対の櫛歯状電極を有するIDT電極と、前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、を有し、前記一対の櫛歯状電極を構成する各々の櫛歯状電極は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指と、前記複数の電極指のそれぞれの一端同士を接続するバスバー電極と、を有し、前記反射器は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指を有し、前記IDT電極に含まれる前記複数の電極指の配列ピッチを電極指ピッチとし、前記複数の反射電極指の配列ピッチを反射電極指ピッチとし、前記複数の電極指のうち前記反射器に最近接する電極指と前記複数の反射電極指のうち前記IDT電極に最近接する反射電極指との、弾性波伝搬方向における中心間距離をIDT-反射器ギャップとした場合に、前記複数の並列腕共振子のうち、前記電極指ピッチが最も小さい並列腕共振子は、前記反射電極指ピッチが前記電極指ピッチと同じで、かつ、前記IDT-反射器ギャップが前記反射電極指ピッチと同じであり、前記複数の並列腕共振子のうち、前記電極指ピッチが最も小さい並列腕共振子を除く他の並列腕共振子の少なくとも1つは、前記反射電極指ピッチが前記電極指ピッチよりも大きく、かつ、前記IDT-反射器ギャップが前記反射電極指ピッチよりも小さい。
 また、本発明の一態様に係るマルチプレクサは、上記の弾性波フィルタ装置を含む複数のフィルタを備え、前記複数のフィルタのそれぞれの入出力端子は、共通端子に直接的または間接的に接続され、前記複数のフィルタのうち、前記弾性波フィルタ装置を除く他のフィルタの少なくとも1つは、前記弾性波フィルタ装置の通過帯域の周波数より低い通過帯域を有する。
 また、本発明の一態様に係るマルチプレクサは、上記の弾性波フィルタ装置を含む複数のフィルタを備え、前記複数のフィルタのそれぞれの入出力端子は、共通端子に直接的または間接的に接続され、前記複数のフィルタのうち、前記弾性波フィルタ装置を除く他のフィルタの少なくとも1つは、前記弾性波フィルタ装置の通過帯域の周波数より高い通過帯域を有する。
 本発明に係る弾性波フィルタ装置等によれば、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
図1は、実施の形態1に係る弾性波フィルタ装置の回路構成を示す図である。 図2は、弾性波フィルタ装置に含まれる係る弾性波共振子の電極構成を模式的に表す平面図および断面図である。 図3は、実施の形態1に係る弾性波フィルタ装置の直列腕共振子および並列腕共振子の電極パラメータを示す図である。 図4は、実施の形態1および比較例の並列腕共振子のインピーダンス特性を示す図である。 図5は、実施の形態1および比較例の並列腕共振子のリターンロスを示す図である。 図6は、実施の形態1および比較例の弾性波フィルタ装置の通過特性を示す図である。 図7は、図6に示す通過特性の一部を拡大した図である。 図8は、比較例において、IDT電極の電極指の幅が異なる場合の弾性波フィルタ装置の通過特性を示す図である。 図9は、実施の形態1において、IDT電極の電極指の幅が異なる場合の弾性波フィルタ装置の通過特性を示す図である。 図10は、実施の形態2に係るマルチプレクサおよびその周辺回路の回路構成図である。
 以下、本発明の実施の形態について図表を用いて詳細に説明する。なお、以下で説明する実施例は、いずれも包括的または具体的な例を示すものである。以下の実施例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [弾性波フィルタ装置の概略構成]
 実施の形態1に係る弾性波フィルタ装置1の概略構成について説明する。
 まず、直列腕共振子および並列腕共振子で構成されるラダー型弾性波フィルタ装置の基本動作原理を説明しておく。並列腕共振子は、インピーダンス|Z|が極小となる共振周波数frpおよびインピーダンス|Z|が極大となる***振周波数fap(>frp)を有する。また、直列腕共振子は、インピーダンス|Z|が極小となる共振周波数frsおよびインピーダンス|Z|が極大となる***振周波数fas(>frs>frp)を有する。ラダー型の共振子によりバンドパスフィルタを構成するにあたり、並列腕共振子の***振周波数fapと直列腕共振子の共振周波数frsとを近接させる。これにより、並列腕共振子のインピーダンスが0に近づく共振周波数frp近傍は、低周波側阻止域となる。また、これより周波数が高くなると、***振周波数fap近傍で並列腕共振子のインピーダンスが高くなり、かつ、共振周波数frs近傍で直列腕共振子のインピーダンスが0に近づく。これにより、***振周波数fap~共振周波数frsの近傍では信号通過域となる。さらに、周波数が高くなり、***振周波数fas近傍になると、直列腕共振子のインピーダンスが高くなり、高周波側阻止域となる。つまり、並列腕共振子の***振周波数fapおよび直列腕共振子の共振周波数frsによって通過帯域が構成され、並列腕共振子の共振周波数frpによって通過帯域低域側の減衰極が構成され、直列腕共振子の***振周波数fasによって通過帯域高域側の減衰極が構成される。
 図1は、実施の形態1に係る弾性波フィルタ装置1の回路構成を示す図である。
 同図に示すように、弾性波フィルタ装置1は、直列腕共振子S1、S2、S3およびS4と、並列腕共振子P1、P2、P3およびP4と、入出力端子50および60と、を備える。
 直列腕共振子S1~S4は、入出力端子50と入出力端子60とを結ぶ第1経路r1上に直列に配置されている。並列腕共振子P1~P4は、第1経路r1とグランド(基準端子)との間に接続されている。なお、直列腕共振子S1~S4のそれぞれは、互いに直列接続された2つの分割共振子によって構成されている。また、並列腕共振子P3は、互いに直列接続された2つの分割共振子によって構成されている。
 直列腕共振子S1~S4および並列腕共振子P1~P4の上記接続構成により、弾性波フィルタ装置1は、ラダー型のバンドパスフィルタを構成している。なお、図1に示された回路構成は、その一例であって、直列腕共振子の数、並列腕共振子の数などは、図1の構成に限定されない。
 [弾性波共振子の構造]
 弾性波フィルタ装置1に含まれる弾性波共振子10の構造について説明する。前述した各直列腕共振子S1~S4および各並列腕共振子P1~P4は、弾性波共振子10と同様の構造を有している。
 図2は、弾性波フィルタ装置1に含まれる弾性波共振子10の電極構成を模式的に表す平面図および断面図である。
 同図に示された弾性波共振子10は、圧電性基板100と、電極110と、保護膜113とで形成され、これらの構成要素で構成されたIDT(InterDigital Transducer)電極11と、反射器12と、を備える。本実施の形態に係る弾性波共振子10は、IDT電極11、反射器12、および圧電性基板100で構成された弾性表面波(SAW:Surface Acoustic Wave)共振子である。
 なお、図2に示された弾性波共振子10は、その典型的な構造を説明するためのものであって、電極を構成する電極指の本数や長さなどは、これに限定されない。
 IDT電極11および反射器12を構成する電極110は、図2の断面図に示すように、密着層111と主電極層112との積層構造となっている。
 密着層111は、圧電性基板100と主電極層112との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。
 主電極層112は、材料として、例えば、Cuを1%含有したAlが用いられる。
 保護膜113は、電極110を覆うように形成されている。保護膜113は、主電極層112を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素(SiO)を主成分とする膜である。
 なお、密着層111、主電極層112および保護膜113を構成する材料は、上述した材料に限定されない。さらに、電極110は、上記積層構造でなくてもよい。電極110は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護膜113は、形成されていなくてもよい。
 圧電性基板100は、例えば、θ°YカットX伝搬LiNbO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸からZ軸方向にθ°回転した軸を法線とする面で切断したニオブ酸リチウム単結晶またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。
 なお、圧電性基板100は、少なくとも一部に圧電体層を有する基板であってもよく、圧電体層を有する積層構造であってもよい。圧電性基板100は、例えば、高音速支持基板と、低音速膜と、圧電体層とを備え、高音速支持基板、低音速膜および圧電体層がこの順で積層された構造を有していてもよい。
 図2の平面図に示すように、IDT電極11は、互いに対向する一対の櫛歯状電極11Aおよび11Bを有している。櫛歯状電極11Aは、弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指11aと、複数の電極指11aのそれぞれの一端同士を接続するバスバー電極11cとで構成されている。櫛歯状電極11Bは、弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指11bと、複数の電極指11bのそれぞれの一端同士を接続するバスバー電極11cとで構成されている。複数の電極指11a、11bは、弾性波伝搬方向に沿って交互に配列されている。なお、弾性波伝搬方向とは、電極指11a、11bが延びる方向に交差する方向であり、この例では、電極指11a、11bが延びる方向に直交する方向である。
 反射器12は、IDT電極11と上記弾性波伝搬方向に隣り合って配置されている。反射器12は、上記弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指と、複数の電極指の一端同士を接続するバスバー電極とで構成されている。なお、本明細書においては、反射器を構成する電極指を、「反射電極指」、と呼称する。反射器12は、複数設けられ、弾性波伝搬方向におけるIDT電極11の両外側に1つずつ配置されている。
 ここで、図2に示すように、IDT電極11と反射器12との間の領域において、複数の電極指11aおよび11bのうち反射器12に最近接する電極指(例えば11a)と、複数の反射電極指12aのうちIDT電極11に最近接する反射電極指12aとの、弾性波伝搬方向における中心同士の距離(以下、2つの電極指間の弾性波伝搬方向における中心同士の距離を、単に「中心間距離」と称することがある)を、IDT-反射器ギャップ(IRGAP)と定義する。また、IDT電極11に含まれる複数の電極指11a、11bの配列ピッチである電極指ピッチpiの2倍の長さをIDT波長(λIDT)と定義する。また、複数の反射電極指12aの配列ピッチである反射電極指ピッチprの2倍のピッチを、反射器波長(λREF)と定義する。
 なお、電極指ピッチpiとは、IDT電極11に含まれる複数の電極指11a、11bにおいて、弾性波伝搬方向に隣り合う電極指11a、11b同士の中心間距離である。IDT電極11内における複数の電極指11a、11bの全ての配列ピッチは同じであってもよく、一部もしくは全ての配列ピッチが異なっていてもよい。
 電極指ピッチpiは、次のように導出できる。例えば、IDT電極11に含まれる電極指11a、11bの総本数をNi本とする。そして、IDT電極11の、弾性波伝搬方向における一方端に位置する電極指と、他方端に位置する電極指との中心間距離をDiとする。すると、電極指ピッチpiは、pi=Di/(Ni-1)という式で表せる。なお、(Ni-1)は、IDT電極11における、隣接する電極指が作るギャップの総個数ともいえる。
 弾性波共振子10が複数の分割共振子で構成されている場合、電極指ピッチpiは、各分割共振子に含まれる各IDT電極の、弾性波伝搬方向における両端に位置する電極指同士の中心間距離の合計値を、各IDT電極における隣接する電極指が作るギャップの総個数の合計値、で除算することで得られる。
 反射電極指ピッチprとは、反射器12に含まれる複数の反射電極指12aにおいて、弾性波伝搬方向に隣り合う反射電極指12a同士の中心間距離である。反射器12内における複数の反射電極指12aの全ての配列ピッチは同じであってもよく、一部もしくは全ての配列ピッチが異なっていてもよい。
 反射電極指ピッチprは、次のように導出できる。例えば、反射器12に含まれる反射電極指12aの総本数をNr本とする。そして、反射器12の、弾性波伝搬方向における一方端に位置する反射電極指と、他方端に位置する反射電極指との中心間距離をDrとする。すると、反射電極指ピッチprは、pr=Dr/(Nr-1)という式で表せる。なお、(Nr-1)は、反射器12における、隣接する反射電極指が作るギャップの総個数ともいえる。
 [複数の並列腕共振子の関係]
 図3は、弾性波フィルタ装置1の直列腕共振子S1~S4および並列腕共振子P1~P4の電極パラメータを示す図である。図3の(a)には、直列腕共振子S1~S4のIDT波長λIDT、反射器波長λREFおよびIDT-反射器ギャップIRGAP等が示されている。図3の(b)には、並列腕共振子P1~P4のIDT波長λIDT、反射器波長λREFおよびIDT-反射器ギャップIRGAP等が示されている。
 図3の(b)に示す例では、複数の並列腕共振子P1~P4のうち、並列腕共振子P3のIDT波長λIDTが、最も小さくなっている。すなわちこの例では、複数の並列腕共振子P1~P4のうち、並列腕共振子P3の共振周波数frpが、最も高くなっている。共振周波数frpを高くすることは、例えば、本実施の形態のように電極指ピッチpiを狭くする、ことの他に、電極指11a、11bの幅を細くする、電極指11a、11bの膜厚を薄くする、または、電極指11a、11b上の保護膜113の厚みを変えることで実現される。
 また、共振周波数frpの最も高い並列腕共振子P3では、反射器波長λREFがIDT波長λIDTと同じであり、IDT-反射器ギャップIRGAPが、反射器波長λREFの0.5倍となっている(λREF=λIDT、IRGAP=0.5×λREF)。本実施の形態において、反射器波長λREFがIDT波長λIDTと同じであるとは、両者の値(反射器波長λREFの値およびIDT波長λIDTの値)が少なくとも有効数字3桁まで一致していることを示す。また、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍であるとは、両者の値(IDT-反射器ギャップIRGAPの値および反射器波長λREFの0.5倍の値)が少なくとも有効数字3桁まで一致していることを示す。
 一方、複数の並列腕共振子P1~P4のうち、最も共振周波数frpが高い並列腕共振子P3を除く他の並列腕共振子P1、P2およびP4の少なくとも1つは、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さくなっている。具体的には、他の並列腕共振子P1、P2およびP4の全部において、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さくなっている(λREF>λIDT、IRGAP<0.5×λREF)。
 また、反射器波長/IDT波長で比べると、並列腕共振子P3は1.000であり、並列腕共振子P1、P2およびP3は、1.000よりも大きくなっている。具体的には、並列腕共振子P1、P2およびP3の反射器波長/IDT波長は、1.010以上1.020以下となっている。
 複数の並列腕共振子P1~P4のIDT波長λIDT、反射器波長λREFおよびIDT波長λIDTが上記の関係を有することで、弾性波フィルタ装置1において、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
 なお、上記では複数の並列腕共振子P1~P4の関係を、波長および周波数で示したが、それに限られず、電極指の配列ピッチで示すこともできる。例えば、電極指ピッチpiの2倍がIDT波長λIDTに相当し、反射電極指ピッチprの2倍が反射器波長λREFに相当し、IDT波長λIDTに対応する周波数が共振周波数frpとなるので、複数の並列腕共振子P1~P4の関係は、以下のようにも表せる。
 すなわち、弾性波フィルタ装置1では、複数の並列腕共振子P1~P4のうち、並列腕共振子P3のIDT電極11の電極指ピッチpiが、最も小さくなっている。
 また、電極指ピッチpiの最も小さい並列腕共振子P3では、反射電極指ピッチprが電極指ピッチpiと同じであり、IDT-反射器ギャップIRGAPが、反射電極指ピッチprと同じになっている(pr=pi、IRGAP=pr)。本実施の形態において、反射電極指ピッチprが電極指ピッチpiと同じであるとは、両者の値(反射電極指ピッチprの値および電極指ピッチpiの値)が少なくとも有効数字3桁まで一致していることを示す。また、IDT-反射器ギャップIRGAPが反射電極指ピッチprと同じであるとは、両者の値(IDT-反射器ギャップIRGAPの値および反射電極指ピッチprの値)が少なくとも有効数字3桁まで一致していることを示す。
 一方、複数の並列腕共振子P1~P4のうち、電極指ピッチpiの最も小さい並列腕共振子P3を除く他の並列腕共振子P1、P2およびP4の少なくとも1つは、反射電極指ピッチprが電極指ピッチpiよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射電極指ピッチprよりも小さくなっている。具体的には、他の並列腕共振子P1、P2およびP4の全部において、反射電極指ピッチprが電極指ピッチpiよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射電極指ピッチprよりも小さくなっている(pr>pi、IRGAP<pr)。
 複数の並列腕共振子P1~P4の電極指ピッチpi、反射電極指ピッチprおよびIDT-反射器ギャップIRGAPが上記の関係を有することで、弾性波フィルタ装置1において、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
 [弾性波フィルタ装置の通過特性等]
 上記構成を有する弾性波フィルタ装置1の通過特性等について、比較例の弾性波フィルタ装置と比べながら説明する。
 比較例の弾性波フィルタ装置は、実施の形態1の弾性波フィルタ装置1とは並列腕共振子P3の電極パラメータが異なっている。比較例では、並列腕共振子P3を含む全ての並列腕共振子P1~P4について、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さくなっている(図示省略)。
 なお、ここで示す並列腕共振子P1、P2、P3およびP4は、***振周波数fapが弾性波フィルタ装置の通過帯域内に存在する共振子である。すなわち、並列腕共振子P1~P4はラダーフィルタの通過帯域を形成するための共振子であり、通過帯域を形成する以外の目的で設けられた並列腕共振子は、ここで説明する並列腕共振子P1~P4に含まれない。
 以下では、複数の並列腕共振子P1~P4のうち、並列腕共振子P3が最も高い共振周波数frpを有する例について説明する。また、弾性波フィルタ装置の通過帯域が、2595MHz以上2722MHz以下である場合について説明する。通過帯域とは、挿入損失のピーク値(最も小さな値)を基準とした場合に、挿入損失の値がピーク値から3dB以内となる帯域のことである。
 図4は、実施の形態1および比較例の並列腕共振子P3のインピーダンス特性を示す図である。図5は、実施の形態1および比較例の並列腕共振子P3のリターンロスを示す図である。
 図4に示すように、比較例の並列腕共振子P3では、通過帯域よりも低周波側である2570MHz~2580MHzの間において、共振周波数frpを示す波形が乱れ、インピーダンスの値が十分に低くなっていない。また、図5に示すように、比較例の並列腕共振子P3では、通過帯域よりも高周波側に発生する不要なレスポンスを通過帯域から離れた位置に遠ざけることができるが、2570MHz~2580MHzの間に少し大きなリップルが発生している。
 それに対し、図4に示すように、実施の形態1の並列腕共振子P3では、2570MHz~2580MHzの間において、共振周波数frpの波形が整っており、インピーダンスの値も十分に低くなっている。また、図5に示すように、実施の形態1の並列腕共振子P3では、2570MHz~2580MHzの間において、比較例のようなリップルが発生していない。
 図6は、実施の形態1および比較例の弾性波フィルタ装置の通過特性を示す図である。図6には実施の形態1が実線で、比較例は破線で示されているが、同図のように広い周波数帯域で見ると、実線および破線は、ほとんど重なって見える。
 前述したように弾性波フィルタ装置の通過帯域は、例えば、2595MHz以上2722MHz以下である。この例では、並列腕共振子P3の共振周波数frpが、通過帯域と低周波側阻止域の減衰極との間の傾斜曲線である減衰スロープに重なっている。
 図7は、図6に示す通過特性の一部を拡大した図である。図7には、弾性波フィルタ装置の通過帯域よりも低周波側における挿入損失が示されている。
 図7に示すように、比較例の並列腕共振子P3を含む弾性波フィルタ装置では、通過帯域よりも低周波側に位置する減衰スロープに段状のこぶが発生している。それに対し、実施の形態1の並列腕共振子P3を含む弾性波フィルタ装置1では、減衰スロープの傾きが一定であり、通過帯域と低周波側阻止域との間の挿入損失の変化が滑らかになっている。これにより、弾性波フィルタ装置1において、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
 なお、実施の形態1の並列腕共振子P3では、図5に示すように、通過帯域よりも高周波側である2850MHz~2880MHzにおける不要なレスポンスが通過帯域側に近づきかつリターンロスが大きくなっている。しかしながら、実施の形態1では、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さいという構成を有する並列腕共振子P1、P2およびP4を用いてこの不要なレスポンスを低減することが可能である。そのため、実施の形態1の弾性波フィルタ装置1では、通過帯域よりも高周波側において大きな損失が発生することを抑制できる。
 [弾性波フィルタ装置の通過特性の他の例]
 次に、IDT電極11の電極指の幅が異なる場合の弾性波フィルタ装置の通過特性ついて例について説明する。
 図8は、比較例において、IDT電極11の電極指11a、11bの幅が異なる場合の弾性波フィルタ装置の通過特性を示す図である。図8の実線は、図7に示す比較例の弾性波フィルタ装置と同じ例であり、細線は、電極指11a、11bの幅を図7に示す比較例よりも20nm細くした例であり、破線は、電極指11a、11bの幅を図7に示す比較例よりも20nm太くした例である。
 図8に示すように、比較例では、電極指11a、11bの幅が異なると、減衰スロープにおける段状のこぶの発生位置が異なる。そのため比較例の弾性波フィルタ装置では、例えば、電極指11a、11bの幅寸法に製造ばらつきがあると、通過帯域よりも低周波側の減衰特性のばらつきが大きくなる。
 図9は、実施の形態1において、IDT電極11の電極指11a、11bの幅が異なる場合の弾性波フィルタ装置1の通過特性を示す図である。図9の実線は、図7に示す実施の形態1の弾性波フィルタ装置1と同じ例であり、細線は、電極指11a、11bの幅を図7に示す実施の形態1よりも20nm細くした例であり、破線は、電極指11a、11bの幅を図7に示す実施の形態1よりも20nm太くした例である。
 図9に示すように、実施の形態1では、電極指11a、11bの幅が異なっていても、減衰スロープに段状のこぶは発生せず、減衰スロープの傾きは一定である。そのため実施の形態1では、電極指11a、11bの幅寸法に製造ばらつきがあっても、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
 (実施の形態2)
 本実施の形態では、弾性波フィルタ装置1を含む複数のフィルタが、共通端子に直接的または間接的に接続されている構成を有するマルチプレクサについて示す。
 図10は、実施の形態2に係るマルチプレクサ5およびその周辺回路(アンテナ4)の回路構成図である。同図に示されたマルチプレクサ5は、弾性波フィルタ装置1と、弾性波フィルタ装置1とは異なる他のフィルタ3と、共通端子70と、入出力端子81および82と、を備える。
 弾性波フィルタ装置1は、実施の形態1に係る弾性波フィルタ装置1であって、弾性波フィルタ装置1の入出力端子50が入出力端子81に接続され、弾性波フィルタ装置1の入出力端子60が共通端子70に接続されている。
 他のフィルタ3は、共通端子70および入出力端子82に接続されている。他のフィルタ3は、例えば、並列腕共振子および直列腕共振子を有するラダー型の弾性波フィルタ装置であるが、LCフィルタなどであってもよく、その回路構成は特に限定されない。
 ここで、弾性波フィルタ装置1の通過帯域は、他のフィルタ3の通過帯域よりも高周波側に位置する。すなわち、複数のフィルタのうち、弾性波フィルタ装置1を除く他のフィルタ3の少なくとも1つは、弾性波フィルタ装置1の通過帯域の周波数より低い通過帯域を有する。これによれば、弾性波フィルタ装置1と、弾性波フィルタ装置1よりも低い通過帯域を有する他のフィルタ3とを備えるマルチプレクサ5において、他のフィルタ3の通過帯域における挿入損失が大きくなることを抑制できる。
 あるいは、弾性波フィルタ装置1の通過帯域は、他のフィルタ3の通過帯域よりも低周波側に位置する。すなわち、複数のフィルタのうち、弾性波フィルタ装置1を除く他のフィルタ3の少なくとも1つは、弾性波フィルタ装置1の通過帯域の周波数より高い通過帯域を有する。弾性波フィルタ装置1と、弾性波フィルタ装置1よりも高い通過帯域を有する他のフィルタ3とを備えるマルチプレクサ5において、他のフィルタ3の通過帯域における挿入損失が大きくなることを抑制できる。
 なお、弾性波フィルタ装置1および他のフィルタ3は、図10に示すように共通端子70に直接接続されていなくてもよく、例えば、インピーダンス整合回路、移相器、サーキュレータ、または、2以上のフィルタを選択可能なスイッチ素子、を介して共通端子70に間接的に接続されていてもよい。また、本実施の形態では、マルチプレクサ5として、2つのフィルタが共通端子70に接続された回路構成としたが、共通端子70に接続されるフィルタの数は2つに限定されず、3以上であってもよい。
 (まとめ)
 本実施の形態に係る弾性波フィルタ装置1は、複数の弾性波共振子10を有する弾性波フィルタ装置である。複数の弾性波共振子10は、2つの入出力端子50、60を結ぶ第1経路r1上に配置された直列腕共振子S1~S4と、第1経路r1とグランドとの間に接続された複数の並列腕共振子P1~P4と、を有する。複数の並列腕共振子P1~P4は、圧電性基板100上に形成され、対向する一対の櫛歯状電極11Aおよび11Bを有するIDT電極11と、IDT電極11と弾性波伝搬方向に隣り合って配置された反射器12と、を有する。一対の櫛歯状電極11A、11Bを構成する各々の櫛歯状電極(11Aまたは11B)は、弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指(11aまたは11b)と、複数の電極指(11aまたは11b)のそれぞれの一端同士を接続するバスバー電極11cと、を有する。反射器12は、弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指12aを有する。
 ここで、複数の反射電極指12aの配列ピッチの2倍を反射器波長λREFとし、IDT電極11に含まれる複数の電極指11a、11bの配列ピッチの2倍であるIDT波長λIDTとし、複数の電極指11a、11bのうち反射器12に最近接する電極指と複数の反射電極指12aのうちIDT電極11に最近接する反射電極指との、弾性波伝搬方向における中心間距離をIDT-反射器ギャップIRGAPとした場合に、以下に示す関係を有する。
 複数の並列腕共振子P1~P4のうち、最も共振周波数frpが高い並列腕共振子(例えばP3)は、反射器波長λREFがIDT波長λIDTと同じで、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍である。複数の並列腕共振子P1~P4のうち、最も共振周波数frpが高い並列腕共振子(例えばP3)を除く他の並列腕共振子(例えばP1、P2およびP4)の少なくとも1つは、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さい。
 このように、共振周波数frpの最も高い並列腕共振子P3において、反射器波長λREFをIDT波長λIDTと同じとし、IDT-反射器ギャップIRGAPを反射器波長λREFの0.5倍とすることで、弾性波フィルタ装置1において、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
 また、並列腕共振子P3を除く他の並列腕共振子P1、P2およびP4の少なくとも1つにおいて、反射器波長λREFをIDT波長λIDTよりも大きくし、かつ、IDT-反射器ギャップIRGAPを反射器波長λREFの0.5倍よりも小さくすることで、通過帯域よりも高周波側に発生する不要なレスポンスを低減することができる。そのため、通過帯域よりも高周波側において大きな損失が発生することを抑制できる。
 また、他の並列腕共振子P1、P2およびP4の全部は、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さくてもよい。
 このように、他の並列腕共振子P1、P2およびP4の全部において、反射器波長λREFをIDT波長λIDTよりも大きくし、かつ、IDT-反射器ギャップIRGAPを反射器波長λREFの0.5倍よりも小さくすることで、通過帯域よりも高周波側に発生する不要なレスポンスをさらに低減することができる。そのため、通過帯域よりも高周波側において大きな損失が発生することを抑制できる。
 本実施の形態に係る弾性波フィルタ装置1は、複数の弾性波共振子10を有する弾性波フィルタ装置1である。複数の弾性波共振子10は、2つの入出力端子50、60を結ぶ第1経路r1上に配置された直列腕共振子S1~S4と、第1経路r1とグランドとの間に接続された複数の並列腕共振子P1~P4と、を有する。複数の並列腕共振子P1~P4は、圧電性基板100上に形成され、対向する一対の櫛歯状電極11Aおよび11Bを有するIDT電極11と、IDT電極11と弾性波伝搬方向に隣り合って配置された反射器12と、を有する。一対の櫛歯状電極11A、11Bを構成する各々の櫛歯状電極(11Aまたは11B)は、弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指(11aまたは11b)と、複数の電極指(11aまたは11b)のそれぞれの一端同士を接続するバスバー電極11cと、を有する。反射器12は、弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指12aを有する。
 ここで、IDT電極11に含まれる複数の電極指11a、11bの配列ピッチを電極指ピッチpiとし、複数の反射電極指12aの配列ピッチを反射電極指ピッチprとし、複数の電極指11a、11bのうち反射器12に最近接する電極指と複数の反射電極指12aのうちIDT電極11に最近接する反射電極指との、弾性波伝搬方向における中心間距離をIDT-反射器ギャップIRGAPとした場合に、以下に示す関係を有する。
 複数の並列腕共振子P1~P4のうち、電極指ピッチpiが最も小さい並列腕共振子(例えばP3)は、反射電極指ピッチprが電極指ピッチpiと同じで、かつ、IDT-反射器ギャップIRGAPが反射電極指ピッチprと同じである。複数の並列腕共振子P1~P4のうち、電極指ピッチpiが最も小さい並列腕共振子(例えばP3)を除く他の並列腕共振子(例えばP1、P2またはP4)の少なくとも1つは、反射電極指ピッチprが電極指ピッチpiよりも大きく、IDT-反射器ギャップIRGAPが反射電極指ピッチprよりも小さい。
 このように、電極指ピッチpiの最も小さい並列腕共振子P3において、反射電極指ピッチprを電極指ピッチpiと同じとし、IDT-反射器ギャップIRGAPを反射電極指ピッチprと同じとすることで、弾性波フィルタ装置1において、通過帯域よりも低周波側の減衰特性のばらつきが大きくなることを抑制できる。
 また、並列腕共振子P3を除く他の並列腕共振子P1、P2およびP4の少なくとも1つにおいて、反射電極指ピッチprを電極指ピッチpiよりも大きくし、かつ、IDT-反射器ギャップIRGAPを反射電極指ピッチprよりも小さくすることで、通過帯域よりも高周波側に発生する不要なレスポンスを低減することができる。そのため、通過帯域よりも高周波側において大きな損失が発生することを抑制できる。
 また、他の並列腕共振子P1、P2およびP4の全部は、反射電極指ピッチprが電極指ピッチpiよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射電極指ピッチprよりも小さくてもよい。
 このように、他の並列腕共振子P1、P2およびP4の全部において、反射電極指ピッチprを電極指ピッチpiよりも大きくし、かつ、IDT-反射器ギャップIRGAPを反射電極指ピッチprよりも小さくすることで、通過帯域よりも高周波側に発生する不要なレスポンスをさらに低減することができる。そのため、通過帯域よりも高周波側において大きな損失が発生することを抑制できる。
 本実施の形態に係るマルチプレクサ5は、上記の弾性波フィルタ装置1を含む複数のフィルタを備える。複数のフィルタのそれぞれの入出力端子81、82は、共通端子70に直接的または間接的に接続されている。複数のフィルタのうち、弾性波フィルタ装置1を除く他のフィルタ3の少なくとも1つは、弾性波フィルタ装置1の通過帯域の周波数より低い通過帯域を有する。
 これによれば、弾性波フィルタ装置1と、弾性波フィルタ装置1よりも低い通過帯域を有する他のフィルタ3とを備えるマルチプレクサ5において、他のフィルタ3の通過帯域における挿入損失が大きくなることを抑制できる。
 本実施の形態に係るマルチプレクサ5は、上記の弾性波フィルタ装置1を含む複数のフィルタを備える。複数のフィルタのそれぞれの入出力端子81、82は、共通端子70に直接的または間接的に接続されている。複数のフィルタのうち、弾性波フィルタ装置1を除く他のフィルタ3の少なくとも1つは、弾性波フィルタ装置1の通過帯域の周波数より高い通過帯域を有する。
 これによれば、弾性波フィルタ装置1と、弾性波フィルタ装置1よりも高い通過帯域を有する他のフィルタ3とを備えるマルチプレクサ5において、他のフィルタ3の通過帯域における挿入損失が大きくなることを抑制できる。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る弾性波フィルタ装置およびマルチプレクサについて、実施の形態および実施例を挙げて説明したが、本発明の弾性波フィルタ装置およびマルチプレクサは、上記実施の形態および実施例に限定されるものではない。上記実施の形態および実施例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる実施例や、本開示の弾性波フィルタ装置およびマルチプレクサを内蔵した各種機器も本発明に含まれる。
 上記の実施の形態1では、複数の並列腕共振子P1~P4のうち、並列腕共振子P3の共振周波数frpが最も高くなっている例を示したが、それに限られない。例えば、複数の並列腕共振子P1~P4のうち、並列腕共振子P1、P2およびP4のいずれか1つの並列腕共振子の共振周波数frpが最も高くなっていてもよい。その場合、共振周波数frpの最も高い並列腕共振子(P1、P2またはP4)では、反射器波長λREFがIDT波長λIDTと同じであり、IDT-反射器ギャップIRGAPが、反射器波長λREFの0.5倍となっていればよい。一方、最も共振周波数frpが高い並列腕共振子(P1、P2またはP4)を除く他の並列腕共振子の少なくとも1つは、反射器波長λREFがIDT波長λIDTよりも大きく、かつ、IDT-反射器ギャップIRGAPが反射器波長λREFの0.5倍よりも小さくなっていればよい。
 また、複数の並列腕共振子P1~P4のうち、共振周波数frpの最も高い並列腕共振子P3は、第1経路r1上において共通端子70の最も近くに配置されず、並列腕共振子P3を除く他の並列腕共振子(例えばP1)が、第1経路r1上において共通端子70の最も近くに配置されていてもよい。
 また、上記の実施の形態1では、並列腕共振子P3の反射器波長/IDT波長と、並列腕共振子P1、P2およびP4の反射器波長/IDT波長とを比べた例を示したが、さらに、弾性波フィルタ装置1は、各並列腕共振子P1~P4の反射器波長/IDT波長が、各直列腕共振子S1~S4の反射器波長/IDT波長よりも小さい、という関係を有していてもよい。
 例えば、本発明に係る弾性波フィルタ装置1は、さらに、インダクタおよびキャパシタなどの回路素子を備えてもよい。
 また、本発明に係る弾性波共振子は、実施の形態1のような弾性表面波共振子でなくてもよく、弾性境界波を利用した弾性波共振子であってもよい。
 また、前述したように、圧電性基板100は、少なくとも一部に圧電体層を有する基板であってもよく、圧電体層を有する積層構造であってもよい。圧電性基板100は、例えば、高音速支持基板と、低音速膜と、圧電体層とを備え、高音速支持基板、低音速膜および圧電体層がこの順で積層された構造を有していてもよい。以下、高音速支持基板、低音速膜および圧電体層の構成について説明する。
 圧電体層は、例えば、θ°YカットX伝搬LiNbO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸からZ軸方向にθ°回転した軸を法線とする面で切断したニオブ酸リチウム単結晶またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。
 高音速支持基板は、低音速膜、圧電体層ならびに電極110を支持する基板である。高音速支持基板は、さらに、圧電体層を伝搬する表面波や境界波の弾性波よりも、高音速支持基板中のバルク波の音速が高速となる基板であり、弾性表面波を圧電体層および低音速膜が積層されている部分に閉じ込め、高音速支持基板より下方に漏れないように機能する。高音速支持基板は、例えば、シリコン基板である。なお、高音速支持基板は、(1)窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、または水晶等の圧電体、(2)アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、またはフォルステライト等の各種セラミック、(3)マグネシアダイヤモンド、(4)上記各材料を主成分とする材料、ならびに、(5)上記各材料の混合物を主成分とする材料、のいずれかで構成されていてもよい。
 低音速膜は、圧電体層を伝搬する弾性波の音速よりも、低音速膜中のバルク波の音速が低速となる膜であり、圧電体層と高音速支持基板との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜は、例えば、二酸化ケイ素(SiO)を主成分とする膜である。
 圧電性基板100の上記積層構造によれば、圧電性基板100を単層で使用している構造と比較して、共振周波数および***振周波数における弾性波共振子のQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
 なお、高音速支持基板は、支持基板と、圧電体層を伝搬する表面波や境界波の弾性波よりも伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体及び樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
 なお、圧電性基板100の上記積層構造において例示した各層の材料などは一例であり、例えば、要求される高周波伝搬特性のうち重視すべき特性に応じて変更されるものである。
 本発明は、マルチバンド化およびマルチモード化された低損失の弾性波フィルタ装置およびマルチプレクサとして、携帯電話などの通信機器に広く利用できる。
 1   弾性波フィルタ装置
 3   他のフィルタ
 4   アンテナ
 5   マルチプレクサ
 10  弾性波共振子
 11  IDT電極
 11A、11B 櫛歯状電極
 11a、11b 電極指
 11c、12c バスバー電極
 12  反射器
 12a 反射電極指
 50、60 入出力端子
 70  共通端子
 81、82 入出力端子
 100 圧電性基板
 110 電極
 111 密着層
 112 主電極層
 113 保護膜
 IRGAP IDT-反射器ギャップ
 pi  電極指ピッチ(電極指の配列ピッチ)
 pr  反射電極指ピッチ(反射電極指の配列ピッチ)
 P1、P2、P3、P4 並列腕共振子
 r1  第1経路
 S1、S2、S3、S4 直列腕共振子
 λIDT IDT波長
 λREF 反射器波長

Claims (6)

  1.  複数の弾性波共振子を有する弾性波フィルタ装置であって、
     前記複数の弾性波共振子は、2つの入出力端子を結ぶ第1経路上に配置された直列腕共振子と、前記第1経路とグランドとの間に接続された複数の並列腕共振子と、を有し、
     前記複数の並列腕共振子は、圧電性基板上に形成され、対向する一対の櫛歯状電極を有するIDT電極と、前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、を有し、
     前記一対の櫛歯状電極を構成する各々の櫛歯状電極は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指と、前記複数の電極指のそれぞれの一端同士を接続するバスバー電極と、を有し、
     前記反射器は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指を有し、
     前記複数の反射電極指の配列ピッチの2倍を反射器波長とし、
     前記IDT電極に含まれる前記複数の電極指の配列ピッチの2倍をIDT波長とし、
     前記複数の電極指のうち前記反射器に最近接する電極指と前記複数の反射電極指のうち前記IDT電極に最近接する反射電極指との、弾性波伝搬方向における中心間距離をIDT-反射器ギャップとした場合に、
     前記複数の並列腕共振子のうち、最も共振周波数が高い並列腕共振子は、前記反射器波長が前記IDT波長と同じで、かつ、前記IDT-反射器ギャップが前記反射器波長の0.5倍であり、
     前記複数の並列腕共振子のうち、前記最も共振周波数が高い並列腕共振子を除く他の並列腕共振子の少なくとも1つは、前記反射器波長が前記IDT波長よりも大きく、かつ、前記IDT-反射器ギャップが前記反射器波長の0.5倍よりも小さい、
     弾性波フィルタ装置。
  2.  前記他の並列腕共振子の全部は、前記反射器波長が前記IDT波長よりも大きく、かつ、前記IDT-反射器ギャップが前記反射器波長の0.5倍よりも小さい、
     請求項1に記載の弾性波フィルタ装置。
  3.  複数の弾性波共振子を有する弾性波フィルタ装置であって、
     前記複数の弾性波共振子は、2つの入出力端子を結ぶ第1経路上に配置された直列腕共振子と、前記第1経路とグランドとの間に接続された複数の並列腕共振子と、を有し、
     前記複数の並列腕共振子は、圧電性基板上に形成され、対向する一対の櫛歯状電極を有するIDT電極と、前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、を有し、
     前記一対の櫛歯状電極を構成する各々の櫛歯状電極は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の電極指と、前記複数の電極指のそれぞれの一端同士を接続するバスバー電極と、を有し、
     前記反射器は、前記弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指を有し、
     前記IDT電極に含まれる前記複数の電極指の配列ピッチを電極指ピッチとし、
     前記複数の反射電極指の配列ピッチを反射電極指ピッチとし、
     前記複数の電極指のうち前記反射器に最近接する電極指と前記複数の反射電極指のうち前記IDT電極に最近接する反射電極指との、弾性波伝搬方向における中心間距離をIDT-反射器ギャップとした場合に、
     前記複数の並列腕共振子のうち、前記電極指ピッチが最も小さい並列腕共振子は、前記反射電極指ピッチが前記電極指ピッチと同じで、かつ、前記IDT-反射器ギャップが前記反射電極指ピッチと同じであり、
     前記複数の並列腕共振子のうち、前記電極指ピッチが最も小さい並列腕共振子を除く他の並列腕共振子の少なくとも1つは、前記反射電極指ピッチが前記電極指ピッチよりも大きく、かつ、前記IDT-反射器ギャップが前記反射電極指ピッチよりも小さい、
     弾性波フィルタ装置。
  4.  前記他の並列腕共振子の全部は、前記反射電極指ピッチが前記電極指ピッチよりも大きく、かつ、前記IDT-反射器ギャップが前記反射電極指ピッチよりも小さい、
     請求項3に記載の弾性波フィルタ装置。
  5.  請求項1~4のいずれか1項に記載の弾性波フィルタ装置を含む複数のフィルタを備え、
     前記複数のフィルタのそれぞれの入出力端子は、共通端子に直接的または間接的に接続され、
     前記複数のフィルタのうち、前記弾性波フィルタ装置を除く他のフィルタの少なくとも1つは、前記弾性波フィルタ装置の通過帯域の周波数より低い通過帯域を有する、
     マルチプレクサ。
  6.  請求項1~4のいずれか1項に記載の弾性波フィルタ装置を含む複数のフィルタを備え、
     前記複数のフィルタのそれぞれの入出力端子は、共通端子に直接的または間接的に接続され、
     前記複数のフィルタのうち、前記弾性波フィルタ装置を除く他のフィルタの少なくとも1つは、前記弾性波フィルタ装置の通過帯域の周波数より高い通過帯域を有する、
     マルチプレクサ。
PCT/JP2022/035820 2021-09-29 2022-09-27 弾性波フィルタ装置およびマルチプレクサ WO2023054301A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280064396.9A CN117981222A (zh) 2021-09-29 2022-09-27 弹性波滤波器装置以及多工器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159713 2021-09-29
JP2021159713 2021-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/607,633 Continuation US20240223157A1 (en) 2021-09-29 2024-03-18 Acoustic wave filter device and multiplexer

Publications (1)

Publication Number Publication Date
WO2023054301A1 true WO2023054301A1 (ja) 2023-04-06

Family

ID=85782659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035820 WO2023054301A1 (ja) 2021-09-29 2022-09-27 弾性波フィルタ装置およびマルチプレクサ

Country Status (2)

Country Link
CN (1) CN117981222A (ja)
WO (1) WO2023054301A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955640A (ja) * 1995-08-14 1997-02-25 Murata Mfg Co Ltd 弾性表面波フィルタ
JPH09232906A (ja) * 1996-02-23 1997-09-05 Oki Electric Ind Co Ltd 弾性表面波フィルタ
WO2019021983A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2019177028A1 (ja) * 2018-03-14 2019-09-19 株式会社村田製作所 弾性波装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955640A (ja) * 1995-08-14 1997-02-25 Murata Mfg Co Ltd 弾性表面波フィルタ
JPH09232906A (ja) * 1996-02-23 1997-09-05 Oki Electric Ind Co Ltd 弾性表面波フィルタ
WO2019021983A1 (ja) * 2017-07-25 2019-01-31 株式会社村田製作所 高周波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2019177028A1 (ja) * 2018-03-14 2019-09-19 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN117981222A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2018168836A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
JP6590069B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
KR102429897B1 (ko) 멀티플렉서, 고주파 프론트엔드 회로 및 통신 장치
JP6683256B2 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019017422A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JP6760480B2 (ja) エクストラクタ
WO2021002321A1 (ja) 弾性波フィルタおよびマルチプレクサ
US11863159B2 (en) Acoustic wave filter
US10715111B2 (en) Elastic wave filter device and duplexer
US11855605B2 (en) Acoustic wave filter device and multiplexer
WO2020036100A1 (ja) 弾性波フィルタ
WO2022158470A1 (ja) 弾性波フィルタおよびマルチプレクサ
JP7231007B2 (ja) フィルタ、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2023054301A1 (ja) 弾性波フィルタ装置およびマルチプレクサ
CN110809858B (zh) 多工器
WO2023074373A1 (ja) 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ
WO2018212105A1 (ja) マルチプレクサ、送信装置および受信装置
WO2023282328A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
WO2023068206A1 (ja) マルチプレクサ
WO2023282330A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
WO2023090238A1 (ja) マルチプレクサ
US20240223157A1 (en) Acoustic wave filter device and multiplexer
WO2022181578A1 (ja) 弾性波フィルタ
US20240235524A9 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
US20240235523A9 (en) Acoustic wave element, acoustic wave filter device, and multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280064396.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE