WO2023025202A1 - 云台方向的控制方法、装置及终端 - Google Patents

云台方向的控制方法、装置及终端 Download PDF

Info

Publication number
WO2023025202A1
WO2023025202A1 PCT/CN2022/114562 CN2022114562W WO2023025202A1 WO 2023025202 A1 WO2023025202 A1 WO 2023025202A1 CN 2022114562 W CN2022114562 W CN 2022114562W WO 2023025202 A1 WO2023025202 A1 WO 2023025202A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
terminal
pan
tilt
unmanned aerial
Prior art date
Application number
PCT/CN2022/114562
Other languages
English (en)
French (fr)
Inventor
蒙露璐
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2023025202A1 publication Critical patent/WO2023025202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present application relates to the technical field of unmanned aerial vehicles, and in particular to a method, device and terminal for controlling the direction of a pan-tilt.
  • Unmanned aerial vehicles are also gradually gaining popularity.
  • unmanned aerial vehicles usually include a gimbal.
  • the task execution of the unmanned aerial vehicle is mainly controlled by the pilot using the remote control, and the direction of the gimbal often needs to be controlled by the pilot using the remote control.
  • the accuracy of the pilot to adjust the direction of the gimbal by manually controlling the remote control is insufficient, resulting in low efficiency in controlling the direction of the gimbal.
  • the embodiments of the present application provide a method, device, and terminal for controlling the direction of the gimbal, so as to solve the problem of insufficient accuracy for pilots to adjust the direction of the gimbal by manually controlling the remote control, and improve the control efficiency of the gimbal direction.
  • the embodiment of the present application provides a method for controlling the direction of the pan/tilt, which is applied to an unmanned aerial vehicle, the unmanned aerial vehicle includes a pan/tilt, and the unmanned aerial vehicle is connected to a terminal through communication, and the terminal includes an adjustment device , the method includes:
  • a direction control control is generated in response to the first operation of the adjustment device, and the direction of the pan/tilt is adjusted based on the direction control control.
  • the adjusting the direction of the pan/tilt based on the direction control control includes:
  • the direction of the pan/tilt is adjusted in response to a second operation of the adjustment device, wherein the second operation includes a drag operation on the direction control control.
  • the adjusting the direction of the pan/tilt in response to the second operation of the adjusting device includes:
  • the dragging direction of the direction control control is determined, and the direction of the pan/tilt is adjusted.
  • the method also includes:
  • the direction control control After responding to the first operation of the adjusting device, if no operation of the adjusting device is received within a preset time, the direction control control is hidden.
  • the terminal communicates with a plurality of unmanned aerial vehicles, and the method further includes:
  • a first control window corresponding to each unmanned aerial vehicle is generated
  • a second control window is generated, wherein the area of the second control window is larger than the area of the first control window.
  • the method also includes:
  • a direction control control is generated in response to a first operation of the adjusting device, wherein the first operation includes a long press operation.
  • the terminal includes a terminal device, and the adjusting device includes a mouse.
  • a control device for the direction of the pan-tilt is applied to an unmanned aerial vehicle, the unmanned aerial vehicle includes a pan-tilt, the unmanned aerial vehicle is connected to a terminal through communication, the terminal includes an adjustment device, and the pan-tilt Directional controls include:
  • a remote control interface unit configured to control the display interface of the terminal to enter the remote control interface
  • the pan/tilt direction adjustment unit is configured to generate a direction control control in response to the first operation of the adjustment device based on the remote control interface when the unmanned aerial vehicle is in the remote control state of the terminal, and based on the direction control control, Adjust the direction of the gimbal.
  • the embodiment of the present application provides a terminal, including:
  • a memory connected in communication with the at least one processor; wherein, the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor so that the at least one processing
  • the device can be used to implement the method for controlling the direction of the pan-tilt as described in the first aspect.
  • the embodiment of the present application provides a non-volatile computer-readable storage medium, the non-volatile computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to enable a terminal to Execute the method for controlling the direction of the pan/tilt as described in the first aspect.
  • the method for controlling the direction of the pan/tilt is applied to an unmanned aerial vehicle, the unmanned aerial vehicle includes a pan/tilt, and the unmanned aerial vehicle is connected to a terminal for communication, and the terminal includes an adjustment device , the method includes: controlling the display interface of the terminal to enter a remote control interface; when the unmanned aerial vehicle is in the remote control state of the terminal, based on the remote control interface, generating a direction control in response to the first operation of the adjustment device A control is used to adjust the direction of the pan/tilt based on the direction control control.
  • the present application can improve the control efficiency of the pan/tilt direction.
  • FIG. 1 is a schematic diagram of an application environment provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of an interactive process of an unmanned aerial vehicle provided by an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of a method for controlling the direction of a pan/tilt provided in an embodiment of the present application
  • Fig. 4 is a schematic diagram of a remote control interface provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an adjustment device provided in an embodiment of the present application.
  • Fig. 6a is a schematic diagram of a first control window provided by an embodiment of the present application.
  • Fig. 6b is a schematic diagram of a second control window provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of another method for controlling the direction of the pan/tilt provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a control device for a pan-tilt direction provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “outer”, and “bottom” used in this specification is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the The application and simplified description do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the application.
  • the terms “first”, “second”, “third”, etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario includes an unmanned aerial vehicle 100, a remote control terminal 200, and a terminal 300, wherein the unmanned aerial vehicle 100 communicates with the remote control terminal 200 and the terminal 300, and the remote control terminal 200 communicates with the terminal 300, for example:
  • the unmanned aerial vehicle 100 is connected to the remote control terminal 200 and the terminal 300 through the wireless network communication
  • the remote control terminal 200 is connected to the terminal 300 through the wireless network communication
  • the pilot or the user can operate the remote control terminal 200 to operate the unmanned aerial vehicle 100 through the wireless network
  • the user can operate the terminal 200 to control the UAV 100 through the wireless network.
  • the UAV 100 includes: a multi-rotor UAV, a fixed-wing UAV, an unmanned helicopter, and a mixed-wing UAV.
  • the UAV 10 may also be an unmanned aerial vehicle driven by any type of power, including but not limited to a rotary-wing UAV, a fixed-wing UAV, an umbrella-wing UAV, a fluttering Wing drones and helicopter models, etc.
  • a mixed-wing unmanned aerial vehicle is used as an example to make a statement.
  • the unmanned aerial vehicle 100 may have a corresponding volume or power according to the needs of the actual situation, so as to provide a load capacity, flight speed and flight mileage that can meet the needs of use.
  • One or more sensors may also be added to the UAV 100, so that the UAV 100 can collect corresponding data.
  • the UAV 100 is provided with at least one sensor selected from accelerometers, gyroscopes, magnetometers, GPS navigators and vision sensors.
  • the unmanned aerial vehicle 100 also includes a flight controller, which serves as the control core of the flight and data transmission of the unmanned aerial vehicle, and integrates one or more modules to execute corresponding logic control programs.
  • a flight controller which serves as the control core of the flight and data transmission of the unmanned aerial vehicle, and integrates one or more modules to execute corresponding logic control programs.
  • the UAV includes a UAV control system
  • the UAV control system includes a state machine, a flight controller, a UAV power system, and UAV sensors.
  • the UAV control system includes: a state machine, a flight controller, and a UAV power system.
  • the state machine connects the flight controller and the UAV power system.
  • the input of the state machine is navigation data and user interaction commands, and the output
  • the main function of the state machine is to process user interaction commands and use navigation data to realize various functions of the UAV, such as flight mode switching, status monitoring, waypoint flight, return and other upper-level functions.
  • the user interaction command is an interaction command issued by a ground user, for example: remote control stick measurement data, key control commands and other commands.
  • the present application is mainly implemented in a state machine.
  • the control commands and corresponding flags output by the state machine include position commands, speed commands, acceleration commands, altitude commands, climb rate commands, climb acceleration commands, attitude angle commands, heading angle rate commands, and attitude mode flag bits. and positional mode flags.
  • the flight controller is connected to the state machine and the flight controller, and is used to receive the control commands and corresponding flag bits sent by the state machine, and receive the navigation data sent by the power system of the UAV, and output the motor speed control command, wherein,
  • the flight controller includes two flight modes, namely position mode and attitude mode.
  • the main function of the flight controller is to use control commands and navigation data to calculate the motor speed command through a certain algorithm, so that the aircraft can realize position and attitude control. , that is, to make the position and attitude of the aircraft reach the desired state.
  • the battery speed control command takes a common rotorcraft as an example, and the data is pulse width modulation (Pulse Width Modulation, PWM) of the control motor.
  • PWM pulse width modulation
  • the unmanned aerial vehicle power system is connected to the flight controller, and the unmanned aerial vehicle power system includes the execution system and the state monitoring system of the unmanned aerial vehicle, which are used to receive the motor speed control sent by the flight controller. commands to realize the corresponding rotational speed, thereby realizing the corresponding attitude angle and position, processing the sensor data, and calculating the navigation data indirectly or directly.
  • the UAV power system processes the UAV sensor data by using a fusion algorithm to obtain navigation data.
  • the power system of the UAV includes GPS, gyroscope, accelerometer, and magnetometer, and the position, speed, and acceleration data of the UAV can be calculated through GPS, gyroscope, accelerometer, and magnetometer.
  • the drone's position, velocity, and acceleration data can be calculated through binocular vision, gyroscope, accelerometer, and magnetometer.
  • the attitude angle and attitude angle rate of the UAV can be calculated through the gyroscope, accelerometer and magnetometer.
  • the remote control terminal 200 includes a smart terminal, where the smart terminal can be any type of smart device used to establish a communication connection with the UAV 100 , such as a mobile phone, a tablet computer, or a smart remote control.
  • the remote control terminal 200 may be equipped with one or more different user interaction devices for collecting user instructions or displaying and feeding back information to the user.
  • User interaction devices include but are not limited to devices such as buttons, display screens, touch screens, speakers, and remote control joysticks.
  • the remote control terminal 200 can be equipped with a touch display screen, through which the user's remote control command to the UAV 100 is received and the map information is displayed to the user through the touch display screen, that is, a map screen, and displayed to the user.
  • the image information obtained by aerial photography, that is, the image transmission screen, the user can also switch the image information currently displayed on the display screen through the remote control touch screen.
  • the existing image vision processing technology can also be integrated between the unmanned aerial vehicle 100 and the remote control terminal 200 to further provide more intelligent services.
  • the UAV 100 can collect images through a dual-light camera, and the remote controller 200 can analyze the images, so as to realize the user's gesture control on the UAV 100 .
  • the terminal 300 includes a terminal device, wherein the terminal device includes a computer device, a PC terminal and other devices that establish a communication connection with the UAV 100, and the terminal 300 may be equipped with one or more different user interaction devices, It is used to collect user instructions or display and feedback information to users.
  • User interaction devices include, but are not limited to: display screens, touch screens, speakers, mice, keyboards and other devices.
  • the remote control terminal 200 may be equipped with a touch display screen, through which the user's remote control instructions for the UAV 100 are received and map information is displayed to the user through the touch display screen, that is, a map screen, and displayed to the user.
  • the image information obtained by aerial photography that is, the image transmission screen, the user can also control the movement of the unmanned aerial vehicle through the operation of the mouse or the key operation of the keyboard, or control the direction of the gimbal of the unmanned aerial vehicle, the gimbal camera of the unmanned aerial vehicle focal length etc.
  • the remote control terminal 200 is a mobile terminal. Unlike the remote control terminal 200, the terminal 300 is a fixed terminal, and the display screen of the terminal 300 is larger than the display screen of the remote control terminal 200, so that the terminal 300 can provide users with global perspective.
  • the wireless network can be a wireless communication network based on any type of data transmission principle for establishing a data transmission channel between two nodes, such as a Bluetooth network, a WiFi network, a wireless cellular network located in different signal frequency bands or a combination thereof.
  • FIG. 2 is a schematic diagram of an interaction process of an unmanned aerial vehicle provided by an embodiment of the present application
  • the interaction process of the UAV includes:
  • Step S201 the terminal sends a remote control request instruction
  • the terminal sends a remote control request instruction to the remote control terminal, wherein the remote control request instruction is generated by the user inputting an instruction to the terminal, for example: the user clicks on the display screen of the terminal to connect to the remote control terminal, so that the terminal generates a remote control Request instructions, and send remote control request instructions to the remote control.
  • the remote control request instruction is generated by the user inputting an instruction to the terminal, for example: the user clicks on the display screen of the terminal to connect to the remote control terminal, so that the terminal generates a remote control Request instructions, and send remote control request instructions to the remote control.
  • the remote control end before the remote control end receives the remote control request command sent by the terminal, the remote control end establishes a communication connection with the UAV, for example: establishes a first communication channel between the remote control end and the UAV, wherein, The first communication channel is used for message interaction, command interaction or data interaction between the remote controller and the UAV.
  • Step S202 the remote control terminal receives the remote control request command, and generates a remote control confirmation command
  • the remote control terminal receives the remote control request command sent by the terminal, and after receiving the remote control request command, presents a corresponding message on the display interface of the remote control terminal, and the user clicks the corresponding message on the display interface of the remote control terminal.
  • the confirmation button of the button generates a remote control confirmation command.
  • Step S203 the remote controller sends a remote control confirmation command
  • the remote controller sends a remote control confirmation instruction to the terminal, wherein the remote control confirmation instruction is used to confirm that the control right of the UAV is transferred to the terminal, that is, the terminal controls the UAV.
  • Step S204 the terminal receives the remote control confirmation instruction
  • the terminal receives the remote control confirmation command sent by the remote control terminal.
  • the remote control confirmation command is used to establish a communication connection between the terminal and the unmanned aerial vehicle, and the unmanned aerial vehicle releases its control right to the terminal and suspends the control right of the remote control terminal. , until the remote controller regains control of the UAV.
  • Step S205 enter the remote control state of the terminal
  • the remote controller transfers the control right of the UAV to the terminal, that is, enters the remote control state of the terminal, and the terminal controls the UAV.
  • a communication connection has been established between the terminal and the UAV, for example: establishing a second communication channel between the terminal and the UAV, wherein the second communication channel is used for the terminal Message interaction, command interaction or data interaction with UAV.
  • the first communication channel and the second communication channel may be based on the same communication protocol, or may be based on different communication protocols, for example: the first communication channel is based on the TCP network protocol, and the second communication channel is based on the Netty network protocol .
  • Step S206 the terminal enters the remote control interface
  • the terminal After the terminal establishes a communication connection with the UAV and obtains the control right of the UAV, the terminal enters the remote control interface.
  • Step S207 The terminal remotely controls the UAV based on the remote control interface
  • the remote control interface is used to control the unmanned aerial vehicle, for example: control the flight direction of the unmanned aerial vehicle, control the direction of the gimbal of the unmanned aerial vehicle, control the focal length of the gimbal camera of the unmanned aerial vehicle, etc., wherein, A specific control command is generated by the user by manipulating the terminal and sent to the UAV, so that the UAV executes the control command.
  • FIG. 3 is a schematic flowchart of a method for controlling the direction of a pan/tilt provided in an embodiment of the present application
  • the method for controlling the direction of the pan-tilt is applied to an unmanned aerial vehicle
  • the unmanned aerial vehicle includes a pan-tilt
  • the pan-tilt is provided with a pan-tilt camera
  • the unmanned aerial vehicle is connected to a terminal for communication
  • the terminal includes a An adjusting device is used for controlling the focal length of the pan-tilt camera of the unmanned aerial vehicle.
  • the execution subject of the method for controlling the direction of the pan/tilt is a terminal.
  • the terminal includes terminal equipment, such as computer equipment, PC terminals, and other electronic equipment that establishes a communication connection with the UAV.
  • the execution subject of the method for controlling the direction of the pan-tilt is one or more processors of the terminal.
  • the method for controlling the direction of the pan/tilt includes:
  • Step S31 controlling the display interface of the terminal to enter the remote control interface
  • the display interface for controlling the terminal enters the remote control interface from the live broadcast interface, specifically, enters the unmanned aerial vehicle remote control interface.
  • the terminal turns on the screen display, its display interface is in the live broadcast interface.
  • Step S32 When the unmanned aerial vehicle is in the remote control state of the terminal, based on the remote control interface, in response to the first operation of the adjustment device, generate a direction control control, and adjust the pan/tilt based on the direction control control the direction of
  • FIG. 4 is a schematic diagram of a remote control interface provided by an embodiment of the present application.
  • the remote control interface includes a guide interface for the direction of the pan/tilt, wherein the interface for guiding the direction of the pan/tilt includes a direction control control, and the interface for guiding the direction of the pan/tilt is the display interface of the terminal when entering the remote control interface for the first time , an interface automatically generated by the terminal.
  • the gimbal direction guide interface is used to guide the user on how to control the gimbal direction, for example: how to change the gimbal direction through dynamic guidance, for example: press and hold the direction control control position by adjusting the device , and drag the direction control to change the direction of the gimbal.
  • the guide interface of the direction of the pan-tilt also includes a reset control, which is used to reset the direction of the pan-tilt, for example: through the click operation of the cursor corresponding to the adjustment device, the reset control is triggered to generate a reset option, wherein the reset
  • the options include multiple centering methods, such as: centering in the horizontal direction, centering in the vertical direction, centering in the horizontal and vertical directions, etc., the user selects one of the centering methods through the cursor to generate a reset command, and sends the reset command to the UAV to reset The gimbal direction of the UAV.
  • FIG. 5 is a schematic structural diagram of an adjustment device provided in an embodiment of the present application.
  • the adjusting device 50 includes: a left button 51 , a right button 52 and a rolling member 53 , and the rolling member 53 is used to adjust the focal length of the pan/tilt camera.
  • the first operation includes: a movement operation, a gesture operation, a sliding operation, a click operation, a long press operation or a drag operation of the adjustment device, for example: the The adjustment device corresponds to a cursor control in the remote control interface.
  • the cursor control performs the corresponding operation.
  • the terminal For mobile operation, the terminal generates a direction control control on the remote control interface in response to the mobile operation of the adjusting device.
  • the adjusting the direction of the pan/tilt based on the direction control control includes:
  • the direction of the pan/tilt is adjusted in response to a second operation of the adjustment device, wherein the second operation includes a drag operation on the direction control control.
  • the second operation includes a moving operation, a gesture operation, a sliding operation, a clicking operation, a long-pressing operation or a dragging operation of the adjusting device, for example:
  • the second operation includes a dragging operation on the direction control control, for example: drag the direction control control to a preset direction, then generate a direction adjustment command, and send the direction adjustment command to the unmanned aerial vehicle to adjust the direction of the unmanned aircraft. Adjust the direction of the gimbal of the unmanned aerial vehicle to be the same as the preset direction;
  • the second operation includes a click operation on the direction control control, for example: click the first position of the direction control control, determine the first direction corresponding to the first position, generate a direction adjustment instruction, and adjust the direction
  • the adjusting the direction of the pan/tilt in response to the second operation of the adjusting device includes:
  • the dragging direction of the direction control control is determined, and the direction of the pan/tilt is adjusted.
  • the adjustment device corresponds to a cursor control.
  • the adjustment device is a mouse.
  • the terminal When the user presses and holds the left button of the mouse to select the direction control control and drags the direction control control, the direction control is determined.
  • the dragging direction and dragging angle of the control the terminal generates a direction adjustment command, and sends the direction adjustment command to the unmanned aerial vehicle, so that the unmanned aerial vehicle determines the first adjustment direction and the first adjustment angle after receiving the direction adjustment command , and adjust the direction of the gimbal of the UAV based on the first adjustment direction and the first adjustment angle, wherein the first adjustment direction is the same as the dragging direction, and the first adjustment angle is the same as the dragging angle.
  • the method further includes:
  • the direction control control After responding to the first operation of the adjusting device, if no operation of the adjusting device is received within a preset time, the direction control control is hidden. For example: the preset time is 2 seconds. After the terminal responds to the first operation of the adjustment device, within 2 seconds, no operation of the adjustment device is received, and the direction control control is hidden in the remote control interface until Again in response to the first operation of the adjustment device, the directional control control is called out.
  • the terminal communicates with a plurality of unmanned aerial vehicles, and the method further includes:
  • a first control window corresponding to each unmanned aerial vehicle is generated
  • a second control window is generated, wherein the area of the second control window is larger than the area of the first control window.
  • FIG. 6a is a schematic diagram of a first control window provided by an embodiment of the present application.
  • the remote control interface includes a plurality of first control windows, wherein each first control window corresponds to an unmanned aerial vehicle one by one, indicating that the unmanned aerial vehicle establishes a communication connection with the terminal.
  • each first control window includes a window adjustment control, and the window adjustment control is used to convert the first control window into a second control window.
  • the terminal When the terminal responds to an operation on the first control window, it generates a second control window, wherein the operation on the first control window includes a first operation on the window adjustment control, for example, a click operation.
  • the operation on the first control window includes a first operation on the window adjustment control, for example, a click operation.
  • FIG. 6b is a schematic diagram of a second control window provided by an embodiment of the present application.
  • the terminal when the terminal responds to the operation on the first control window, it generates a second control window, wherein the area of the second control window is larger than the area of the first control window, and when the first control window Switching to the second control window indicates that the unmanned aerial vehicle corresponding to the first control window is in the remote control state of the terminal, so that the direction of the gimbal is controlled through the second control window.
  • control the unmanned aerial vehicle to enter the remote control state of the terminal that is, when the terminal responds to the click operation on the window adjustment control, send a remote control request instruction to the unmanned aerial vehicle, so that The UAV enters the remote control state of the terminal.
  • the method further includes:
  • a direction control control is generated in response to a first operation of the adjusting device, wherein the first operation includes a long press operation.
  • a directional control control is generated, and in the second control window, in response to the second operation of the adjustment device, the cloud
  • the first operation includes: adjusting the device’s moving operation, gesture operation, sliding operation, clicking operation, long press operation or dragging operation;
  • the second operation includes: adjusting the device’s moving operation, gesture operation Action, swipe action, tap action, long press action or drag action. Since the area of the second control window is much larger than that of the first control window, the user can adjust the direction of the pan-tilt more conveniently, improving the efficiency of adjusting the direction of the pan-tilt.
  • FIG. 7 is a flow chart of another method for controlling the direction of the pan/tilt provided by the embodiment of the present application.
  • the method for controlling the direction of the pan/tilt includes:
  • Step S701 Enter the live broadcast window
  • the terminal After the terminal is turned on, if the terminal communicates with at least one unmanned aerial vehicle, its display interface enters the live broadcast window, that is, the display interface is in the live broadcast interface.
  • Step S702 Presenting a guide interface for the direction of the gimbal
  • the guide interface of the direction of the gimbal is used to guide the user to adjust the direction, for example: to present the guide information of the quick operation of the gimbal. Adjustment.
  • Step S703 closing the guide interface
  • the guidance interface for the direction of the pan/tilt is closed.
  • Step S704 adjust the direction of the gimbal based on the direction control control
  • the unmanned aerial vehicle includes a pan-tilt, and the unmanned aerial vehicle is connected to a terminal through communication, and the terminal includes an adjustment device.
  • the method Including: when the unmanned aerial vehicle is in the remote control state of the terminal, controlling the display interface of the terminal to enter the remote control interface; based on the remote control interface, in response to the first operation of the adjustment device, generating a direction control control, based on The direction control controls are used to adjust the direction of the pan/tilt.
  • the application can improve the pan tilt direction control efficiency.
  • the embodiment of the present application provides a control device for the direction of the pan-tilt, wherein the control device for the direction of the pan-tilt is applied to an unmanned aerial vehicle, and the unmanned aerial vehicle includes a pan-tilt, so The unmanned aerial vehicle is communicatively connected to a terminal, and the terminal includes an adjustment device.
  • FIG. 8 is a schematic structural diagram of a pan-tilt direction control device provided by an embodiment of the present application.
  • control device 80 of this pan-tilt direction comprises:
  • a remote control interface unit 801 configured to control the display interface of the terminal to enter the remote control interface
  • the pan/tilt direction adjustment unit 802 is configured to generate a direction control control based on the remote control interface in response to the first operation of the adjustment device when the UAV is in the remote control state of the terminal, and generate a direction control control based on the direction control control to adjust the direction of the gimbal.
  • the control device for the direction of the pan/tilt includes: a remote control interface unit, used to control the display interface of the terminal to enter the remote control interface; a pan-tilt direction adjustment unit, used for when the unmanned aerial vehicle is in the remote control state of the terminal, Based on the remote control interface, a direction control control is generated in response to the first operation of the adjusting device, and the direction of the pan/tilt is adjusted based on the direction control control.
  • the present application can improve the control efficiency of the pan/tilt direction.
  • control device for the direction of the pan-tilt can execute the method for controlling the direction of the pan-tilt provided in the embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the method for controlling the direction of the pan-tilt provided in the embodiment of the present application please refer to the method for controlling the direction of the pan-tilt provided in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • the terminal 90 includes: a processor 901 , a memory 902 and a communication module 903 .
  • the processor 901, the memory 902, and the communication module 903 establish any communication connection between them through a bus.
  • the processor 901 may be any type of processor with one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and delivering operation processing results.
  • the memory 902 as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as the program corresponding to the control method of the pan-tilt direction in the embodiment of the present application directive/module.
  • the processor 801 executes the non-transitory software programs, instructions and modules stored in the memory 802 to implement the method for controlling the direction of the pan/tilt in the above method embodiments.
  • the memory 902 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the remote control device, and the like.
  • the memory 902 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 902 may optionally include memory located remotely relative to the processor 901, and these remote memories may be connected to the UAV through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 902 stores instructions executable by the at least one processor 901; the at least one processor 901 is configured to execute the instructions, so as to implement the method for controlling the pan/tilt direction in any of the above method embodiments.
  • the communication module 903 is a functional module for establishing a communication connection and providing a physical channel.
  • the communication module 903 may be any type of wireless or wired communication module, including but not limited to a WiFi module or a Bluetooth module.
  • the embodiment of the present application also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors Execution at 901 may cause the above-mentioned one or more processors 901 to execute the method for controlling the direction of the pan/tilt in any method embodiment above.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Some or all of the modules are selected according to actual needs to realize the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course also by hardware.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by the relevant equipment, the relevant equipment can execute the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the above-mentioned product can execute the method for controlling the direction of the pan-tilt provided by the embodiment of the present application, and has corresponding functional modules and beneficial effects for performing the method for controlling the direction of the pan-tilt.
  • the method for controlling the direction of the pan/tilt provided in the embodiment of this application can execute the method for controlling the direction of the pan/tilt provided in the embodiment of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Selective Calling Equipment (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种云台方向的控制方法、控制装置(80)及终端(90, 300),云台方向的控制方法,应用于无人飞行器(100),无人飞行器(100)包括云台,无人飞行器(100)通信连接一终端(90, 300),终端(90, 300)包括一调节装置(50),云台方向的控制方法包括:在无人飞行器(100)处于终端(90, 300)的远程控制状态时,控制终端(90, 300)的显示界面进入远程控制界面(S31);基于远程控制界面,响应于调节装置(50)的第一操作,生成方向控制控件,基于方向控制控件,调整云台的方向(S32)。通过在无人飞行器(100)处于终端(90, 300)的远程控制状态时,基于远程控制界面,响应于调节装置(50)的第一操作,生成方向控制控件以调整云台的方向,以提高云台方向的控制效率。

Description

云台方向的控制方法、装置及终端
本申请要求于2021年8月25日提交中国专利局、申请号为2021109824100、申请名称为“云台方向的控制方法、装置及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本申请涉及无人机技术领域,尤其涉及一种云台方向的控制方法、装置及终端。
【背景技术】
随着无人飞行器航拍技术的不断发展,越来越多的消费级无人飞行器也正在生产研制。无人飞行器也逐步日趋普及。
目前,无人飞行器通常包括云台,在无人机在飞行过程中,无人飞行器的任务执行主要通过飞手利用遥控器去操控,而云台的方向往往需要通过飞手利用遥控器去操控,而飞手通过手动控制遥控器来调整云台的方向的精确性不足,导致云台方向的控制效率不高。
【发明内容】
本申请实施例提供一种云台方向的控制方法、装置及终端,以解决飞手通过手动控制遥控器来调整云台的方向的精确性不足的问题,提高云台方向的控制效率。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种云台方向的控制方法,应用于无人飞 行器,所述无人飞行器包括云台,所述无人飞行器通信连接一终端,所述终端包括一调节装置,所述方法包括:
控制所述终端的显示界面进入远程控制界面;
在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。
在一些实施例中,所述基于所述方向控制控件,调整所述云台的方向,包括:
响应于所述调节装置的第二操作,调整所述云台的方向,其中,所述第二操作包括对所述方向控制控件的拖动操作。
在一些实施例中,所述响应于所述调节装置的第二操作,调整所述云台的方向,包括:
根据所述方向控制控件的拖动操作,确定所述方向控制控件的拖动方向,调整所述云台的方向。
在一些实施例中,所述方法还包括:
在响应于所述调节装置的第一操作之后,若在预设时间之内,没有接收到所述调节装置的操作,则隐藏所述方向控制控件。
在一些实施例中,所述终端通信连接多个无人飞行器,所述方法还包括:
在所述远程控制界面中,生成与每一无人飞行器一一对应的第一控制窗口;
响应于对第一控制窗口的操作,生成第二控制窗口,其中,所述第二控制窗口的面积大于第一控制窗口的面积。
在一些实施例中,所述方法还包括:
在所述第二控制窗口中,响应于所述调节装置的第一操作,生成方向控制控件,其中,所述第一操作包括长按操作。
在一些实施例中,所述终端包括终端设备,所述调节装置包括鼠标。
第二方面,一种云台方向的控制装置,应用于无人飞行器,所述无人飞行器包括云台,所述无人飞行器通信连接一终端,所述终端包括一调节装置,所述云台方向的控制装置包括:
远程控制界面单元,用于控制所述终端的显示界面进入远程控制界面;
云台方向调整单元,用于在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。
第三方面,本申请实施例提供一种终端,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如第一方面所述的云台方向的控制方法。
第四方面,本申请实施例提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使终端能够执行如第一方面所述的云台方向的控制方法。
与现有技术相比较,本申请实施例的提供的云台方向的控制方法,应用于无人飞行器,该无人飞行器包括云台,该无人飞行器通信连接一终端,该终端包括一调节装置,该方法包括:控制所述终端的显示界面进入远程控制界面;在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。通过在无人飞行器处于终端的远程控制状态时,基于远程控制界面,响应于调节装置的第一操作,生成方向控制控件以调整云台的方向,本申请能够提高云台方向的控制效率。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的一种应用环境的示意图;
图2是本申请实施例提供的一种无人飞行器的交互过程的示意图;
图3是本申请实施例提供的一种云台方向的控制方法的流程示意图;
图4是本申请实施例提供的一种远程控制界面的示意图;
图5是本申请实施例提供的一种调节装置的结构示意图;
图6a是本申请实施例提供的一种第一控制窗口的示意图;
图6b是本申请实施例提供的一种第二控制窗口的示意图;
图7是本申请实施例提供的另一种云台方向的控制方法的流程图;
图8是本申请实施例提供的一种云台方向的控制装置的结构示意图;
图9是本申请实施例提供的一种终端的结构示意图。
【具体实施方式】
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
以下举例说明本申请实施例中的云台方向的控制方法的应用环境。
请参阅图1,图1是本申请实施例提供的一种应用场景的示意图;
如图1所示,该应用场景包括无人飞行器100、遥控器端200以及终端300,其中,无人飞行器100通信连接遥控器端200以及终端300,遥控器端200通信连接终端300,例如:无人飞行器100通过无线网络通信连接遥控器端200以及终端300,遥控器端200通过无线网络通信连接终端300,飞手或用户可操作遥控器端200通过无线网络操作无人飞行器100,或者,用户可操作终端200通过无线网络操控无人飞行器100。
在一些实施例中,所述无人飞行器100包括:多旋翼无人机、固定翼无人机、无人直升机以及混合翼无人机等无人飞行器。在一些实施例中,所述无人机10也可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人机、固定翼无人机、伞翼无人机、扑翼无人机以及直升机模型等。在本实施例中以混合翼无人机为例进行陈述。
进一步地,该无人飞行器100可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人飞行器100上还可以添加有一种或者多种传感器,使得无人飞行器100能够采集相应的数据。
例如,在一些实施例中,该无人飞行器100设置有加速度计、陀螺仪、磁力计、GPS导航仪和视觉传感器中的至少一种传感器。
无人飞行器100还包括飞行控制器,作为无人机飞行和数据传输等的控制核心,整合一个或者多个模块,以执行相应的逻辑控制程序。
在本申请实施例中,所述无人飞行器包括一无人机控制***,所述无人机控制***包括状态机、飞行控制器、无人机动力***以及无人机传感器等。
该无人机控制***包括:状态机、飞行控制器以及无人机动力***,具体的,状态机连接飞行控制器和无人机动力***,状态机的输入为导航数据和用户交互命令,输出为控制指令和相应标志位,所述状态机的主要功能在于处理用户交互命令,采用导航数据,实现无人机各个功能,例如飞行模式切换、状态监控、航点飞行、返航等上层功能。其中,所述用户交互命令为地面用户发出的交互命令,例如:遥控杆量数据、按键控制命令等命令,可以理解的是,本申请主要是在状态机中实现。具体的,所述状态机输出的控制命令和相应标志位,有位置命令、速度命令、加速度命令、高度命令、爬升率命令、爬升加速度命令、姿态角命令、航向角速率命令、姿态模式标志位和位置模式标志位。
具体的,飞行控制器,连接状态机和飞行控制器,用于接收状态机发送的控制命令和相应标志位,以及接收无人机动力***发送的导航数据,并输出电机转速控制命令,其中,所述飞行控制器包括两种飞行模式,分别为位置模式和姿态模式,所述飞行控制器主要功能在于采用控制命令和导航数据通过一定的算法计算出电机转速命令,使得飞机实现位置和姿态控制,即使得飞机的位置和姿态达到期望的状态。具体的,所述电池转速控制命令,以常见的旋翼机为例,该数据为控制电机的脉冲宽度调制(Pulse Width Modulation,PWM)。
具体的,所述无人机动力***,连接所述飞行控制器,所述无人机动力***包括所述无人机的执行***和状态监控***,用于接收飞行控制器发送的电机转速控制命令,实现相应的转速,从而实现相应的姿态角和位置,对传感器数据进行处理,间接或直接计算出导航数据。具体的,所述无人机动 力***通过采用融合算法对无人机传感器数据进行处理,得到导航数据。例如,所述无人机动力***包括GPS、陀螺仪、加速度计、磁力计,可以通过GPS、陀螺仪、加速度计、磁力计解算出无人机的位置、速度、加速度数据。可以通过双目视觉、陀螺仪、加速度计、磁力计解算出无人机的位置、速度、加速度数据。可以通过陀螺仪、加速度计和磁力计解算出无人机的姿态角,姿态角速率。
在一些实施例中,遥控器端200包括智能终端,其中,智能终端可以是任何类型,用以与无人飞行器100建立通信连接的智能装置,例如手机、平板电脑或者智能遥控器等移动终端。该遥控器端200可以装配有一种或者多种不同的用户交互装置,用以采集用户指令或者向用户展示和反馈信息。
用户交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆等装置。例如,遥控器端200可以装配有触控显示屏,通过该触控显示屏接收用户对无人飞行器100的遥控指令并通过触控显示屏向用户展示地图信息,即地图画面,以及向用户展示航拍获得的图像信息,即图传画面,用户还可以通过遥控触摸屏切换显示屏当前显示的图像信息。
在一些实施例中,无人飞行器100与遥控器端200之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如:无人飞行器100可以通过双光相机采集图像的方式,由遥控器端200对图像进行解析,从而实现用户对于无人飞行器100的手势控制。
在一些实施例中,终端300包括终端设备,其中,终端设备包括计算机设备、PC端等与无人飞行器100建立通信连接的设备,该终端300可以装配有一种或者多种不同的用户交互装置,用以采集用户指令或者向用户展示和反馈信息。
用户交互装置包括但不限于:显示屏、触摸屏、扬声器以及鼠标、键盘等装置。例如,遥控器端200可以装配有触控显示屏,通过该触控显示屏接收用户对无人飞行器100的遥控指令并通过触控显示屏向用户展示地图信息, 即地图画面,以及向用户展示航拍获得的图像信息,即图传画面,用户还可以通过鼠标的操作,或者键盘的按键操作来控制无人飞行器的运动,或者,控制无人飞行器的云台方向,无人飞行器的云台相机的焦距等。
在一些实施例中,遥控器端200为移动终端,与遥控器端200不同的是,终端300为固定终端,终端300的显示屏大于遥控器端200的显示屏,使得终端300能够为用户提供全局视角。
在一些实施例中,无线网络可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络,例如位于不同信号频段的蓝牙网络、WiFi网络、无线蜂窝网络或者其结合。
下面结合说明书附图来说明本申请的技术方案:
请参阅图2,图2是本申请实施例提供的一种无人飞行器的交互过程的示意图;
如图2所示,该无人飞行器的交互过程,包括:
步骤S201:终端发送远程控制请求指令;
具体的,终端向遥控器端发送远程控制请求指令,其中,所述远程控制请求指令由用户向终端输入指令生成,例如:用户在终端的显示屏上点击连接遥控器端,使得终端生成远程控制请求指令,并向遥控器端发送远程控制请求指令。
在本申请实施例中,遥控器端在接收终端发送的远程控制请求指令之前,遥控器端与无人飞行器建立通信连接,例如:建立遥控器端与无人飞行器的第一通信管道,其中,所述第一通信管道用于遥控器端和无人飞行器之间的消息交互、命令交互或数据交互。
步骤S202:遥控器端接收远程控制请求指令,生成远程控制确认指令;
具体的,遥控器端接收终端发送的远程控制请求指令,并在接收到所述远程控制请求指令之后,在遥控器端的显示界面中呈现相应的消息,由用户在遥控器端的显示界面中点击相应的确认按钮,生成远程控制确认指令。
步骤S203:遥控器端发送远程控制确认指令;
具体的,遥控器端向终端发送远程控制确认指令,其中,所述远程控制确认指令用于确认将无人飞行器的控制权转让给终端,即由终端对无人飞行器进行控制。
步骤S204:终端接收远程控制确认指令;
具体的,终端接收遥控器端发送的远程控制确认指令,该远程控制确认指令用于终端与无人飞行器建立通信连接,并且,无人飞行器向终端开放其控制权,并暂停遥控器端的控制权,直至遥控器端重新获取无人飞行器的控制权。
步骤S205:进入终端的远程控制状态;
具体的,当终端接收到远程控制确认指令之后,遥控器端将无人飞行器的控制权转移到终端,即进入终端的远程控制状态,由终端控制无人飞行器。
可以理解的是,在接收远程控制确认指令之前,终端与无人飞行器之间已建立通信连接,例如:建立终端与无人飞行器的第二通信管道,其中,所述第二通信管道用于终端和无人飞行器之间的消息交互、命令交互或数据交互。
在本申请实施例中,第一通信管道和第二通信管道可以基于相同的通信协议,也可以基于不同的通信协议,例如:第一通信管道基于TCP网络协议,第二通信管道基于Netty网络协议。
步骤S206:终端进入远程控制界面;
具体的,当终端与无人飞行器建立通信连接,并取得无人飞行器的控制权之后,终端进入远程控制界面。
步骤S207:终端基于远程控制界面,对无人飞行器进行远程控制;
具体的,所述远程控制界面用于对无人飞行器进行操控,例如:控制无人飞行器的飞行方向、控制无人飞行器的云台方向、控制无人飞行器的云台相机的焦距等,其中,具体的控制命令由用户通过操纵所述终端生成,并发 送到无人飞行器,使得无人飞行器执行该控制命令。
下面以终端为PC端为例对本申请实施例进行说明:
请参阅图3,图3是本申请实施例提供的一种云台方向的控制方法的流程示意图;
其中,该云台方向的控制方法,应用于无人飞行器,所述无人飞行器包括云台,所述云台设置有云台相机,所述无人飞行器通信连接一终端,所述终端包括一调节装置,该调节装置用于控制无人飞行器的云台相机的焦距。
其中,该云台方向的控制方法的执行主体为终端,在本申请实施例中,该终端包括终端设备,例如:计算机设备、PC端等与无人飞行器建立通信连接的电子设备。具体的,该云台方向的控制方法的执行主体为终端的一个或多个处理器。
如图3所示,该云台方向的控制方法,包括:
步骤S31:控制所述终端的显示界面进入远程控制界面;
具体的,在终端开启屏幕显示之后,若存在至少一个无人飞行器与所述终端通信连接时,此时控制所述终端的显示界面由直播界面进入远程控制界面,具体的,进入该无人飞行器的远程控制界面。其中,当终端开启屏幕显示之后,其显示界面处于直播界面。
步骤S32:在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向;
具体的,当所述遥控器端将无人飞行器的控制权转移到终端,使得无人飞行器处于终端的远程控制状态时,响应于所述调节装置的操作,生成方向控制控件。具体的,请再参阅图4,图4是本申请实施例提供的一种远程控制界面的示意图;
如图4所示,该远程控制界面包括一云台方向的引导界面,其中,该云台方向引导界面包括一方向控制控件,该云台方向引导界面为终端的显示界 面首次进入远程控制界面时,终端自动生成的界面,该云台方向引导界面用于引导用户如何控制云台方向,例如:通过动态指引的方式,呈现如何改变云台方向,例如:通过调节装置按住方向控制控件所在位置,并拖动该方向控制控件来改变云台方向。
其中,该云台方向的引导界面还包括一复位控件,该复位控件用于复位云台方向,例如:通过调节装置对应的光标的点击操作,触发该复位控件,生成复位选项,其中,该复位选项包括多个居中方式,例如:水平方向居中、垂直方向居中、水平和垂直方向居中等居中方式,用户通过光标选择其中一个居中方式,生成复位指令,向无人飞行器发送该复位指令,以复位该无人飞行器的云台方向。
请再参阅图5,图5是本申请实施例提供的一种调节装置的结构示意图;
如图5所示,该调节装置50,包括:左键51、右键52以及滚动件53,该滚动件53用于调整云台相机的焦距。
具体的,响应于所述调节装置的第一操作,其中,该第一操作,包括:调节装置的移动操作、手势操作、滑动操作、点击操作、长按操作或拖动操作,例如:所述调节装置在远程控制界面中对应一个光标控件,当用户在远程控制界面中对该调节装置进行第一操作时,光标控件相应进行对应操作,例如:当调节装置进行移动操作时,光标控件同步进行移动操作,终端响应该调节装置的移动操作,于远程控制界面中生成方向控制控件。
在本申请实施例中,所述基于所述方向控制控件,调整所述云台的方向,包括:
响应于所述调节装置的第二操作,调整所述云台的方向,其中,所述第二操作包括对所述方向控制控件的拖动操作。
具体的,该第二操作包括调节装置的移动操作、手势操作、滑动操作、点击操作、长按操作或拖动操作,例如:
该第二操作包括对所述方向控制控件的拖动操作,比如:拖动该方向控 制控件至预设方向,则生成方向调整指令,并将该方向调整指令发送到无人飞行器,以调整无人飞行器的云台方向,将该无人飞行器的云台方向调整至与该预设方向相同;
或者,该第二操作包括对所述方向控制控件的点击操作,例如:点击该方向控制控件的第一位置,确定该第一位置对应的第一方向,生成方向调整指令,并将该方向调整指令发送到无人飞行器,以调整无人飞行器的云台方向,将该无人飞行器的云台方向往第一方向进行调整,比如:根据点击操作的次数,调整云台方向的度数,其中,每一点击操作对应一预设度数,则调整的度数=点击次数*预设度数。
具体的,所述响应于所述调节装置的第二操作,调整所述云台的方向,包括:
根据所述方向控制控件的拖动操作,确定所述方向控制控件的拖动方向,调整所述云台的方向。
具体的,该调节装置对应一个光标控件,例如:该调节装置为鼠标,当用户长按鼠标的左键,选中该方向控制控件,并对该方向控制控件进行拖动操作之后,确定该方向控制控件的拖动方向以及拖动角度,终端生成方向调整指令,并向无人飞行器发送方向调整指令,以使无人飞行器在接收到该方向调整指令之后,确定第一调整方向以及第一调整角度,并基于第一调整方向以及第一调整角度,调整无人飞行器的云台方向,其中,第一调整方向与拖动方向相同,第一调整角度与拖动角度相同。
在本申请实施例中,所述方法还包括:
在响应于所述调节装置的第一操作之后,若在预设时间之内,没有接收到所述调节装置的操作,则隐藏所述方向控制控件。例如:预设时间为2秒,当终端响应于调节装置的第一操作之后,在2秒时间之内,没有接收到调节装置的操作,则于远程控制界面中隐藏所述方向控制控件,直至再次响应调节装置的第一操作,呼出该方向控制控件。
在本申请实施例中,所述终端通信连接多个无人飞行器,所述方法还包括:
在所述远程控制界面中,生成与每一无人飞行器一一对应的第一控制窗口;
响应于对第一控制窗口的操作,生成第二控制窗口,其中,所述第二控制窗口的面积大于第一控制窗口的面积。
具体的,请参阅图6a,图6a是本申请实施例提供的一种第一控制窗口的示意图;
如图6a所示,该远程控制界面中包括多个第一控制窗口,其中,每一第一控制窗口一一对应一个无人飞行器,表征该无人飞行器与终端建立通信连接。其中,每一第一控制窗口均包括一个窗口调整控件,该窗口调整控件用于将第一控制窗口转换为第二控制窗口。
当终端响应于对第一控制窗口的操作,则生成第二控制窗口,其中,第一控制窗口的操作包括对窗口调整控件的第一操作,例如:点击操作。
请再参阅图6b,图6b是本申请实施例提供的一种第二控制窗口的示意图;
如图6b所示,当终端响应于对第一控制窗口的操作,则生成第二控制窗口,其中,所述第二控制窗口的面积大于第一控制窗口的面积,并且,当第一控制窗口转换为第二控制窗口,则表征该第一控制窗口对应的无人飞行器处于终端的远程控制状态,以此,通过第二控制窗口来控制云台方向。例如:在生成第二控制窗口的同时,控制无人飞行器进入终端的远程控制状态,也就是说,当终端响应于对窗口调整控件的点击操作,向无人飞行器发送远程控制请求指令,以使无人飞行器进入终端的远程控制状态。
在本申请实施例中,所述方法还包括:
在所述第二控制窗口中,响应于所述调节装置的第一操作,生成方向控制控件,其中,所述第一操作包括长按操作。
具体的,在第二控制窗口中,响应于所述调整装置的第一操作,生成方 向控制控件,并且,在第二控制窗口中,响应于所述调节装置的第二操作,调整所述云台的方向,其中,该第一操作,包括:调节装置的移动操作、手势操作、滑动操作、点击操作、长按操作或拖动操作;该第二操作,包括:调节装置的移动操作、手势操作、滑动操作、点击操作、长按操作或拖动操作。由于第二控制窗口的面积远大于第一控制窗口,并且,使得用户可以更为便捷地调整云台的方向,提高云台方向的调整效率。
请再参阅图7,图7是本申请实施例提供的另一种云台方向的控制方法的流程图;
如图7所示,该云台方向的控制方法,包括:
步骤S701:进入直播窗口;
具体的,当终端开启之后,若终端通信连接至少一个无人飞行器,则其显示界面进入直播窗口,即显示界面处于直播界面。
步骤S702:呈现云台方向的引导界面;
其中,该云台方向的引导界面用于引导用户进行方向调整,例如:呈现云台快捷操作引导信息,该引导信息通过采用上下左右缓慢移动的微动效方式,以更好地引导用户进行方向调整。
步骤S703:关闭引导界面;
具体的,当接收到关闭指令之后,关闭该云台方向的引导界面。
步骤S704:基于方向控制控件,调整云台方向;
结束。
在本申请实施例中,通过提供一种云台方向的控制方法,应用于无人飞行器,该无人飞行器包括云台,该无人飞行器通信连接一终端,该终端包括一调节装置,该方法包括:在无人飞行器处于终端的远程控制状态时,控制所述终端的显示界面进入远程控制界面;基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。通过控制与无人飞行器通信连接的终端的显示界面进入远 程控制界面,并基于远程控制界面,响应于调节装置的第一操作,生成方向控制控件以调整云台的方向,本申请能够提高云台方向的控制效率。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行,亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种云台方向的控制装置,其中,该云台方向的控制装置,应用于无人飞行器,所述无人飞行器包括云台,所述无人飞行器通信连接一终端,所述终端包括一调节装置。
请参阅图8,图8是本申请实施例提供的一种云台方向的控制装置的结构示意图;
如图8所示,该云台方向的控制装置80,包括:
远程控制界面单元801,用于控制所述终端的显示界面进入远程控制界面;
云台方向调整单元802,用于在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。
在本申请实施例中,通过提供一种云台方向的控制装置,应用于无人飞行器,所述无人飞行器包括云台,所述无人飞行器通信连接一终端,所述终端包括一调节装置,所述云台方向的控制装置包括:远程控制界面单元,用于控制所述终端的显示界面进入远程控制界面;云台方向调整单元,用于在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。通过在无人飞行器处于终端的远程控制状态时,基于远程控制界面,响应于调节装置的第一操作,生成方向控制控件以调整云台的方向,本申请能够提高云台方向的控制效率。
需要说明的是,上述云台方向的控制装置可执行本申请实施例所提供的 云台方向的控制方法,具备执行方法相应的功能模块和有益效果。未在云台方向的控制装置实施例中详尽描述的技术细节,可参见本申请实施例所提供的云台方向的控制方法。
请参阅图9,图9是本申请实施例提供的一种终端的结构示意图;
如图9所示,该终端90,包括:处理器901、存储器902和通信模块903。其中,所述处理器901、存储器902以及通信模块903之间通过总线的方式,建立任意两者之间的通信连接。
处理器901可以为任何类型,具备一个或者多个处理核心的处理器。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器902作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本申请实施例中的云台方向的控制方法对应的程序指令/模块。处理器801通过运行存储在存储器802中的非暂态软件程序、指令以及模块,从而实现上述方法实施例中的云台方向的控制方法。
存储器902可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据远程控制装置的使用所创建的数据等。此外,存储器902可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器902可选包括相对于处理器901远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器902存储有可被所述至少一个处理器901执行的指令;所述至少一个处理器901用于执行所述指令,以实现上述任意方法实施例中的云台方向的控制方法。
通信模块903是用于建立通信连接,提供物理信道的功能模块。通信模块903以是任何类型的无线或者有线通信模块,包括但不限于WiFi模块或者蓝牙模块等。
进一步地,本申请实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器901执行,可使得上述一个或多个处理器901执行上述任意方法实施例中的云台方向的控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本申请实施例所提供的云台方向的控制方法,具备执行云台方向的控制方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的云台方向的控制方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其 限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种云台方向的控制方法,其特征在于,应用于无人飞行器,所述无人飞行器包括云台,所述无人飞行器通信连接一终端,所述终端包括一调节装置,所述方法包括:
    控制所述终端的显示界面进入远程控制界面;
    在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述方向控制控件,调整所述云台的方向,包括:
    响应于所述调节装置的第二操作,调整所述云台的方向,其中,所述第二操作包括对所述方向控制控件的拖动操作。
  3. 根据权利要求2所述的方法,其特征在于,所述响应于所述调节装置的第二操作,调整所述云台的方向,包括:
    根据所述方向控制控件的拖动操作,确定所述方向控制控件的拖动方向,调整所述云台的方向。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在响应于所述调节装置的第一操作之后,若在预设时间之内,没有接收到所述调节装置的操作,则隐藏所述方向控制控件。
  5. 根据权利要求1所述的方法,其特征在于,所述终端通信连接多个无人飞行器,所述方法还包括:
    在所述远程控制界面中,生成与每一无人飞行器一一对应的第一控制窗口;
    响应于对第一控制窗口的操作,生成第二控制窗口,其中,所述第二控制窗口的面积大于第一控制窗口的面积。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述第二控制窗口中,响应于所述调节装置的第一操作,生成方向控制控件,其中,所述第一操作包括长按操作。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述终端包括终端设备,所述调节装置包括鼠标。
  8. 一种云台方向的控制装置,其特征在于,应用于无人飞行器,所述无人飞行器包括云台,所述无人飞行器通信连接一终端,所述终端包括一调节装置,所述云台方向的控制装置包括:
    远程控制界面单元,用于控制所述终端的显示界面进入远程控制界面;
    云台方向调整单元,用于在无人飞行器处于终端的远程控制状态时,基于所述远程控制界面,响应于所述调节装置的第一操作,生成方向控制控件,基于所述方向控制控件,调整所述云台的方向。
  9. 一种终端,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1-7中任一项所述的云台方向的控制方法。
  10. 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使终端能够执行如权利要求1-7中任一项所述的云台方向的控制方法。
PCT/CN2022/114562 2021-08-25 2022-08-24 云台方向的控制方法、装置及终端 WO2023025202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110982410.0 2021-08-25
CN202110982410.0A CN113741497A (zh) 2021-08-25 2021-08-25 云台方向的控制方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2023025202A1 true WO2023025202A1 (zh) 2023-03-02

Family

ID=78732773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114562 WO2023025202A1 (zh) 2021-08-25 2022-08-24 云台方向的控制方法、装置及终端

Country Status (2)

Country Link
CN (1) CN113741497A (zh)
WO (1) WO2023025202A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741497A (zh) * 2021-08-25 2021-12-03 深圳市道通智能航空技术股份有限公司 云台方向的控制方法、装置及终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812736A (zh) * 2016-03-21 2016-07-27 北京工业大学 自调节式云台摄像头远程智能控制***及其控制方法
CN106125924A (zh) * 2016-06-22 2016-11-16 北京博瑞爱飞科技发展有限公司 遥控方法、装置及***
WO2018142470A1 (ja) * 2017-01-31 2018-08-09 勝一 野瀬 カメラ制御装置及びカメラ制御装置用プログラム
CN108513649A (zh) * 2017-05-24 2018-09-07 深圳市大疆创新科技有限公司 飞行控制方法、设备、机器可读存储介质以及***
CN108780331A (zh) * 2017-12-21 2018-11-09 深圳市大疆创新科技有限公司 云台控制方法和设备、云台以及无人机
CN110083180A (zh) * 2019-05-22 2019-08-02 深圳市道通智能航空技术有限公司 云台控制方法、装置、控制终端及飞行器***
CN111328387A (zh) * 2019-07-19 2020-06-23 深圳市大疆创新科技有限公司 云台控制方法、设备和计算机可读存储介质
CN113741497A (zh) * 2021-08-25 2021-12-03 深圳市道通智能航空技术股份有限公司 云台方向的控制方法、装置及终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787987B1 (ko) * 2006-04-28 2007-12-26 주식회사 프로브 팬틸트 카메라의 제어장치 및 그 기록매체
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
WO2016132864A1 (ja) * 2015-02-18 2016-08-25 株式会社日立国際電気 映像監視システムおよび映像監視方法
CN105260095A (zh) * 2015-09-21 2016-01-20 北京元心科技有限公司 一种在交互设备中快速切换应用的方法和装置
KR20180064148A (ko) * 2016-12-05 2018-06-14 삼성전자주식회사 전자 장치 및 전자 장치 제어 방법
CN109690439A (zh) * 2017-02-27 2019-04-26 深圳市大疆创新科技有限公司 无人机控制方法及***
CN109032190A (zh) * 2018-07-05 2018-12-18 北京淳中科技股份有限公司 云台转向控制方法、装置、电子设备及存储介质
CN110568867A (zh) * 2019-09-10 2019-12-13 天津市高速公路科技发展有限公司 云台的控制方法、装置和设备
CN111752652A (zh) * 2019-12-17 2020-10-09 广州极飞科技有限公司 监控数据显示方法和相关装置
CN111970443A (zh) * 2020-08-13 2020-11-20 深圳市阳日电子有限公司 一种云台控制方法及设备、计算机可读存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812736A (zh) * 2016-03-21 2016-07-27 北京工业大学 自调节式云台摄像头远程智能控制***及其控制方法
CN106125924A (zh) * 2016-06-22 2016-11-16 北京博瑞爱飞科技发展有限公司 遥控方法、装置及***
WO2018142470A1 (ja) * 2017-01-31 2018-08-09 勝一 野瀬 カメラ制御装置及びカメラ制御装置用プログラム
CN108513649A (zh) * 2017-05-24 2018-09-07 深圳市大疆创新科技有限公司 飞行控制方法、设备、机器可读存储介质以及***
CN108780331A (zh) * 2017-12-21 2018-11-09 深圳市大疆创新科技有限公司 云台控制方法和设备、云台以及无人机
CN110083180A (zh) * 2019-05-22 2019-08-02 深圳市道通智能航空技术有限公司 云台控制方法、装置、控制终端及飞行器***
CN111328387A (zh) * 2019-07-19 2020-06-23 深圳市大疆创新科技有限公司 云台控制方法、设备和计算机可读存储介质
CN113741497A (zh) * 2021-08-25 2021-12-03 深圳市道通智能航空技术股份有限公司 云台方向的控制方法、装置及终端

Also Published As

Publication number Publication date
CN113741497A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
US10587790B2 (en) Control method for photographing using unmanned aerial vehicle, photographing method using unmanned aerial vehicle, mobile terminal, and unmanned aerial vehicle
US20210141518A1 (en) Graphical user interface customization in a movable object environment
WO2021018050A1 (zh) 风速测算方法、风速估算器及无人机
EP3345832B1 (en) Unmanned aerial vehicle and method for controlling the same
US20200389593A1 (en) Gimbal servo control method and control device
US20210333807A1 (en) Method and system for controlling aircraft
WO2021259252A1 (zh) 飞行模拟方法、装置、电子设备及无人机
WO2021088684A1 (zh) 全向避障方法及无人飞行器
US20200169666A1 (en) Target observation method, related device and system
CN107450573B (zh) 飞行拍摄控制***和方法、智能移动通信终端、飞行器
WO2023193604A1 (zh) 航线任务的在线规划方法及相关装置
Zhao et al. Web-based interactive drone control using hand gesture
WO2023025202A1 (zh) 云台方向的控制方法、装置及终端
WO2023025203A1 (zh) 云台相机的变焦控制方法、装置及终端
WO2021135823A1 (zh) 飞行控制方法及装置、无人机
WO2023025204A1 (zh) 远程控制方法、装置及第一、第二控制端
US11620913B2 (en) Movable object application framework
WO2019140695A1 (zh) 控制飞行器飞行的方法及设备
WO2023193611A1 (zh) 无人飞行器及其控制方法、装置、***
WO2022188151A1 (zh) 影像拍摄方法、控制装置、可移动平台和计算机存储介质
US20240237095A9 (en) Unmanned aerial vehicle and pairing method and system thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE