WO2023013684A1 - セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法 - Google Patents

セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法 Download PDF

Info

Publication number
WO2023013684A1
WO2023013684A1 PCT/JP2022/029822 JP2022029822W WO2023013684A1 WO 2023013684 A1 WO2023013684 A1 WO 2023013684A1 JP 2022029822 W JP2022029822 W JP 2022029822W WO 2023013684 A1 WO2023013684 A1 WO 2023013684A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
ceramic sintered
content
ceramic
terms
Prior art date
Application number
PCT/JP2022/029822
Other languages
English (en)
French (fr)
Inventor
淑人 谷
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023534915A priority Critical patent/JP7336626B2/ja
Priority to CN202280053813.XA priority patent/CN117794881A/zh
Priority to EP22853103.4A priority patent/EP4382503A1/en
Publication of WO2023013684A1 publication Critical patent/WO2023013684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the disclosed embodiments relate to ceramic sintered bodies, ceramic substrates, mounting substrates, electronic devices, and methods for manufacturing ceramic sintered bodies.
  • Patent Document 1 discloses a ceramic substrate containing Al 2 O 3 (alumina) as a main component and TiO 2 (titanium oxide) as an additive.
  • Cited Document 1 also describes that Al 2 O 3 powder having a particle size of 120 nm to 500 nm is used and has a particle size of 1 ⁇ m or less.
  • Patent Document 2 describes a mounting substrate in which a copper plate and an alumina substrate that are in contact with each other are heated in an inert atmosphere, and the copper plate is arranged on the alumina substrate.
  • the method disclosed in Patent Document 2 is called an AMB (Active Metal Bonding) method.
  • Patent Document 3 describes a mounting board manufactured by using a method of directly bonding ceramic and copper.
  • the method disclosed in Patent Document 3 is called a DCB (Direct Copper Bonding) method.
  • Patent Document 4 describes a method of manufacturing a circuit board in which a metal plate made of copper or a copper alloy is bonded to the surface of a board made of alumina or the like using a hot press process.
  • a ceramic sintered body contains Al 2 O 3 (alumina) and an additive, and is composed of a ceramic sintered body having an Al 2 O 3 content of 94% by mass or more.
  • Additives include SiO 2 (silica), CaO (calcia), MgO (magnesia), TiO 2 (titanium oxide) and Fe 2 O 3 (iron oxide).
  • the content of Ti (titanium) in terms of TiO 2 in the ceramic sintered body is 120 ppm or more, and the content of Fe (iron) in terms of Fe 2 O 3 is 180 ppm or more.
  • FIG. 1 is a side view showing an outline of a mounting substrate according to an embodiment.
  • FIG. 2 is a TEM photograph of the surface of the ceramic sintered body according to the embodiment.
  • FIG. 3 is an EDX image showing the analysis results of the distribution of specific elements at the same location as the TEM photograph shown in FIG.
  • FIG. 4 is an EDX image showing the analysis results of the distribution of specific elements at the same location as the TEM photograph shown in FIG.
  • FIG. 5 is an EDX image showing the analysis results of the distribution of specific elements at the same location as the TEM photograph shown in FIG.
  • FIG. 6 is an EDX image showing the analysis result of the distribution of the specific element at the same location as the TEM photograph shown in FIG.
  • FIG. 1 is a side view showing an outline of a mounting substrate according to an embodiment.
  • FIG. 2 is a TEM photograph of the surface of the ceramic sintered body according to the embodiment.
  • FIG. 3 is an EDX image showing the analysis results of the distribution of specific elements at the
  • FIG. 7 is an EDX image showing the analysis result of the distribution of the specific element at the same location as the TEM photograph shown in FIG.
  • FIG. 8 is an EDX image showing the analysis results of the distribution of the specific element at the same location as the TEM photograph shown in FIG.
  • FIG. 9 is an EDX image showing the analysis results of the distribution of the specific element at the same location as the TEM photograph shown in FIG.
  • FIG. 10 is a side view showing an example of the electronic device according to the embodiment;
  • FIG. 11 is a diagram showing an example of an approximation function showing the relationship between the blended content and the ICP content.
  • FIG. 1 is a side view schematically showing a mounting board 1 according to an embodiment.
  • a mounting substrate 1 shown in FIG. 1 includes a ceramic substrate 2 made of a ceramic sintered body and a metal layer 3 . Since the ceramic sintered body is substantially the same as the ceramic substrate 2, reference numerals in the figure are omitted. In other words, the reference numeral 2 in the drawing indicates the ceramic sintered body.
  • the ceramic sintered body may be used, for example, for structural members such as rod-shaped bodies, block bodies, and hollow members.
  • the ceramic substrate 2 contains Al 2 O 3 (alumina) and an additive, and is made of a ceramic sintered body with an Al 2 O 3 content of 94% by mass or more, and has a thickness of, for example, about 0.2 to 1 mm. is a plate member.
  • Additives include SiO 2 (silica), CaO (calcia), MgO (magnesia), TiO 2 (titanium oxide) and Fe 2 O 3 (iron oxide).
  • the content of Ti (titanium) in terms of TiO 2 in the ceramic sintered body is 120 ppm or more, and the content of Fe (iron) in terms of Fe 2 O 3 is 180 ppm. That's it. Accordingly, the ceramic substrate 2 using the ceramic sintered body according to the embodiment has high mechanical strength. Moreover, the ceramic sintered body according to the embodiment is excellent in thermal shock resistance.
  • the content of Ti in terms of TiO 2 and the content of Fe in terms of Fe 2 O 3 in the ceramic sintered body can be confirmed, for example, by the following methods.
  • quantitative analysis of Ti and Fe in the ceramic sintered body is performed using an ICP emission spectrometer (ICP).
  • ICP ICP emission spectrometer
  • the content (ICP content) converted from the Ti content measured by ICP to TiO 2 , which is an oxide, is obtained, and the content of Fe measured by ICP is converted to Fe 2 O 3 , which is an oxide. Calculate the content (ICP content).
  • the reason why the ceramic substrate 2 using the ceramic sintered body according to the embodiment can improve the mechanical strength is considered as follows, for example. That is, by including TiO 2 in the ceramic sintered body forming the ceramic substrate 2 , TiO 2 is located at the grain boundaries of the ceramic sintered body. When the content of TiO 2 in the ceramic sintered body is 120 ppm or more, TiO 2 located at the grain boundaries of the ceramic sintered body functions as a resistor that prevents the progress of cracks that are likely to occur at the grain boundaries. . In addition, TiO 2 located at the grain boundaries of the ceramic sintered body becomes crystal nuclei for sintering aid components (e.g., SiO 2 , CaO and MgO), so that the grain boundaries become polycrystalline and tough. It is possible to suppress the occurrence of cracks. Therefore, the mechanical strength of the ceramic substrate 2 can be improved by adding an appropriate amount of TiO 2 to the ceramic sintered body.
  • sintering aid components e.g., SiO 2 , CaO and MgO
  • Fe 2 O 3 is located at the grain boundaries of the ceramic sintered body.
  • the content of Fe 2 O 3 in the ceramic sintered body is 180 ppm or more
  • Fe 2 O 3 located at the grain boundaries of the ceramic sintered body moves the grain boundaries and moves the grain boundaries. causes the phenomenon of moving TiO2 . Therefore, the crystal grain boundaries and TiO 2 can be appropriately dispersed by adding an appropriate amount of Fe 2 O 3 to the ceramic sintered body.
  • the mechanical strength of the ceramic substrate 2 improves as the grain boundaries and TiO 2 dispersion progress. Therefore, according to the ceramic substrate 2 according to the embodiment, the mechanical strength of the ceramic substrate 2 can be improved.
  • the ceramic sintered body constituting the ceramic substrate 2 according to the embodiment may contain 96% by mass or more and 98% by mass or less of Al 2 O 3 . If the content of Al 2 O 3 is less than 96% by mass, the proportion of sintering aid components (e.g., SiO 2 , CaO and MgO) in the ceramic sintered body increases. Sintering of 2 O 3 to each other can be brittle. If the content of Al 2 O 3 exceeds 98% by mass, it becomes difficult to densify the crystals of Al 2 O 3 , which may reduce the mechanical strength of the ceramic substrate 2 .
  • sintering aid components e.g., SiO 2 , CaO and MgO
  • the content of Ti in the ceramic sintered body constituting the ceramic substrate 2 according to the embodiment is preferably 350 ppm or less in terms of TiO 2 . If the TiO 2 content exceeds 350 ppm, the distribution of TiO 2 located at the grain boundaries of the ceramic sintered body becomes uneven, which may reduce the mechanical strength of the ceramic substrate 2 .
  • the content of Fe in terms of Fe 2 O 3 in the ceramic sintered body constituting the ceramic substrate 2 according to the embodiment is larger than the content of Ti in terms of TiO 2 . If the content of TiO 2 is higher than the content of Fe, the distribution of TiO 2 located at the grain boundaries of the ceramic sintered body becomes uneven, which may reduce the mechanical strength of the ceramic substrate 2. be.
  • the content of Fe in the ceramic sintered body that constitutes the ceramic substrate 2 is preferably 410 ppm or less in terms of Fe 2 O 3 .
  • the ceramic sintered body constituting the ceramic substrate 2 according to the embodiment does not contain ZrO 2 (zirconia).
  • ZrO 2 (zirconia) is relatively expensive. Therefore, since the ceramic sintered body does not contain ZrO 2 , raw material costs can be suppressed.
  • the ceramic substrate 2 according to the embodiment can improve thermal conductivity and reduce dielectric loss.
  • the thermal conductivity is 23 W/m ⁇ K and the frequency is 1 MHz.
  • the dielectric loss at 2 ⁇ 10 ⁇ 4 is 2 ⁇ 10 ⁇ 4 .
  • the thermal conductivity is 25 W/m ⁇ K and the dielectric loss at 1 MHz is 0.4 ⁇ 10 ⁇ 4 .
  • effective characteristic values are obtained also from the viewpoint of such thermal conductivity and dielectric loss.
  • TiO 2 and Fe 2 O 3 in the ceramic sintered body forming the ceramic substrate 2 according to the embodiment are located at grain boundaries.
  • the positions of TiO 2 and Fe 2 O 3 in the ceramic sintered body can be determined, for example, by examining the surface of the ceramic substrate 2 with a SEM (scanning electron microscope) or a TEM (transmission electron microscope) with an EDX (energy dispersive X-ray analyzer). ) can be confirmed by observing using
  • FIG. 2 is a TEM photograph of the surface of the ceramic substrate 2 according to the embodiment.
  • 3 to 9 are EDX images showing analysis results of the distribution of specific elements at the same locations as the TEM photographs shown in FIG.
  • the EDX image in FIG. 3 is a composite image showing the analysis results of the distribution of O (oxygen).
  • the EDX image in FIG. 4 is a composite image showing the analysis results of the distribution of Mg (magnesium).
  • the EDX image in FIG. 5 is a composite image showing the analysis results of Al (aluminum) distribution.
  • the EDX image in FIG. 6 is a composite image showing the analysis results of Si (silicon) distribution.
  • the EDX image in FIG. 7 is a composite image showing the analysis results of Ca (calcium) distribution.
  • the EDX image in FIG. 8 is a composite image showing the analysis results of Ti (titanium) distribution.
  • the EDX image in FIG. 9 is a composite image showing the analysis results of Fe (iron) distribution.
  • regions rich in specific elements ie O, Mg, Al, Si, Ca, Ti or Fe are shown in white.
  • TiO 2 and Fe 2 O 3 are positioned at the grain boundaries of the ceramic sintered body, thereby suppressing the occurrence and progression of cracks at the grain boundaries. Therefore, according to the ceramic substrate 2 according to the embodiment, it is possible to further improve the mechanical strength.
  • a metal layer 3 is located on the ceramic substrate 2 .
  • the metal layer 3 is, for example, a metal plate.
  • the thickness of the metal plate can be, for example, about 0.1 to 5 mm. Copper or aluminum, for example, can be used as the material of the metal plate.
  • the metal plate is, for example, the AMB (Active Metal Bonding) method disclosed in Patent Document 2, the DCB (Direct Copper Bonding) method disclosed in Patent Document 3, or the hot press method disclosed in Patent Document 4, etc. can be used to bond onto a ceramic substrate.
  • the conditions for bonding the ceramic substrate 2 and the metal plate 3 are not limited to the conditions within the range disclosed in Patent Documents 2-4.
  • the metal layer 3 may be a metal paste containing a noble metal such as copper, silver, or platinum as a main component, for example.
  • the thickness of the metal paste can be, for example, about 1 to 40 ⁇ m.
  • the metal layer 3 may contain Ti and Fe at least on the ceramic substrate 2 side. Since the ceramic substrate 2 contains Fe and Ti, the bonding strength between the ceramic substrate 2 and the metal layer 3 is increased by diffusing Ti and Fe from the ceramic substrate 2 to the metal layer 3 during bonding. Also, an alloy or compound containing Ti, Fe, or Cu may be located in the metal layer 3 .
  • the metal layers 3 may be located on both sides of the ceramic substrate 2 .
  • the metal plate 3 may be positioned on one side of the ceramic substrate 2, and the heat dissipation member may be positioned on the other side.
  • FIG. 10 is a side view showing an example of the electronic device 10 according to the embodiment.
  • the electronic device 10 includes a mounting board 1 and an electronic component 4 positioned on the metal layer 3 of the mounting board 1 .
  • a heat sink or flow path member for dissipating heat from the electronic component 4 may be positioned on the surface of the mounting substrate 1 opposite to the surface on which the metal layer 3 is positioned.
  • a light emitting diode (LED) element for example, a light emitting diode (LED) element, an insulated gate bipolar transistor (IGBT) element, an intelligent power module (IPM) element, a metal oxide field effect transistor (MOSFET) element, a free wheel
  • semiconductor elements such as ring diode (FWD) elements, giant transistor (GTR) elements, Schottky barrier diodes (SBD), sublimation type thermal printer head elements, thermal ink jet printer head elements and heating elements such as Peltier elements be able to.
  • Al 2 O 3 (alumina) powder is prepared as a main raw material. Powders of SiO 2 (silica), CaO (calcia), MgO (magnesia), TiO 2 (titanium oxide) and Fe 2 O 3 (iron oxide) are prepared as additives.
  • Al 2 O 3 powder and additive powder are mixed to obtain a mixed powder so that the content of Al 2 O 3 is 94% by mass or more.
  • the formulation composition at this time is the following composition.
  • Al contained in the ceramic substrate 2 is 94% by mass or more in terms of Al 2 O 3 .
  • the sum of the values obtained by converting Si to SiO 2 , Ca to CaO, Mg to MgO, Ti to TiO 2 , and Fe to Fe 2 O 3 (that is, additives contained in the ceramic substrate 2) is 1.0% by mass or more6 0% by mass or less.
  • the mass ratio of SiO 2 in the additive is, for example, 38% by mass or more and 60% by mass or less.
  • the mass ratio of CaO in the additive is, for example, 20% by mass or more and 43% by mass or less.
  • the mass ratio of MgO in the additive is, for example, 14% by mass or more and 37% by mass or less.
  • the content of Fe contained as an impurity in the Al 2 O 3 powder is 100 to 300 ppm in terms of Fe 2 O 3 .
  • the content of Ti in terms of TiO 2 in the additive is 0.48% by mass or more and 1.18% by mass or less
  • the content of Fe in terms of Fe 2 O 3 (preparation content) is preferably 0.48% by mass or more.
  • the mixture is mixed and pulverized with, for example, a ball mill to prepare a slurry.
  • the slurry is spray-dried using a spray dryer to produce granules.
  • the granules are molded by a press molding method or a roll compaction molding method, etc. to produce a molded body of the desired shape.
  • a sheet-like compact may be produced by molding the slurry by a doctor blade method without producing granules.
  • notches, holes, recesses, or the like may be formed in the formed body by drilling, laser, or the like.
  • the compact is degreased by heat treatment, and then the compact is fired.
  • the firing temperature is, for example, within the range of 1500° C. or higher and 1600° C. or lower.
  • the composition after firing is the same as the formulation composition except for TiO 2 and Fe 2 O 3 .
  • the ceramic sintered body obtained by sintering the compact may optionally be subjected to polishing, grinding, drilling, laser processing, blasting, or the like. As described above, the ceramic substrate 2 using the ceramic sintered body according to the embodiment is obtained.
  • Ceramic sintered bodies (Sample Nos. 3 to 8) of Example 1 were produced as follows. Al 2 O 3 powder and additive powder were mixed so that the respective contents (% by mass) of Al 2 O 3 and additives contained in the ceramic sintered body were the contents shown in Table 1, and a mixed powder was prepared. was made. Next, after adding a solvent and a binder to the prepared powder, granules were produced through a slurry, and the granules were shaped into a desired shape by press molding to produce a compact. Then, after removing the binder component by degreasing, the molded bodies were fired to obtain ceramic sintered bodies (Sample Nos. 3 to 8).
  • the underlined ICP contents are the compounded contents (that is, the contents of Ti and Fe in the additive in terms of TiO 2 and Fe 2 O 3 ). and the ICP content.
  • FIG. 11 is a diagram showing an example of an approximation function showing the relationship between the blended content and the ICP content.
  • FIG. 11 shows an approximation function showing the relationship between the TiO 2 content and the ICP content, and an approximation function showing the relationship between the formulation content and the ICP content for Fe 2 O 3 .
  • Each approximation function is created based on each measurement of ICP content versus formulation content.
  • the underlined ICP contents numbers can be estimated by applying each formulation content to each approximation function shown in FIG.
  • the underlined ICP content values are values obtained by rounding to the nearest whole number.
  • JIS piece 3 mm ⁇ 4 mm ⁇ 40 mm test piece
  • a JIS piece was produced by a press molding method. Using this JIS piece, a three-point bending strength test and a thermal shock test were performed. The results of the thermal shock test will be described later.
  • the three-point bending strength was measured according to JIS R1601-2008.
  • the crosshead speed used for measuring the 3-point bending strength was 0.5 mm/min.
  • the results of the three-point bending strength test obtained are shown in Table 1.
  • the thermal shock test was conducted in accordance with JIS R1648-2002.
  • the crosshead speed for the thermal shock test is also 0.5 mm/min.
  • Comparative Example 1 A ceramic sintered body (Sample No. 1) of Comparative Example 1 was produced under the same conditions as in Example 1, except that TiO 2 powder was not added as an additive to the Al 2 O 3 powder.
  • the ICP content of the metal elements (Ti, Fe) in the obtained ceramic sintered body was measured and estimated in the same manner as described above. Table 1 shows the numerical value of each ICP content obtained. In addition, in Table 1, the ICP content of TiO 2 in the ceramic sintered body is not zero. This is because the Al 2 O 3 powder to be prepared contains TiO 2 as an impurity.
  • Example 1 Also, the same three-point bending strength test as in Example 1 was performed on the obtained ceramic sintered body. Table 1 shows the results of the three-point bending strength test.
  • Example No. 2 A ceramic sintered body (Sample No. 2) of Comparative Example 2 was produced under the same conditions as in Example 1, except that the Fe 2 O 3 powder was not added as an additive to the Al 2 O 3 powder.
  • the ICP content was measured and estimated in the same manner as in Example 1 for the metal elements (Ti, Fe) in the obtained ceramic sintered body.
  • Table 1 shows the numerical value of each ICP content obtained.
  • the ICP content of Fe 2 O 3 in the ceramic sintered body is not zero. This is because the Al 2 O 3 powder to be prepared contains Fe 2 O 3 as an impurity.
  • Example 1 Further, the same three-point bending strength test as in Example 1 was performed on the obtained ceramic sintered body. Table 1 shows the results of the three-point bending strength test.
  • the content of Ti (titanium) in terms of TiO 2 in the ceramic sintered body is 120 ppm or more, and the content of Fe (iron) in terms of Fe 2 O 3 is 180 ppm or more. is preferred.
  • Ceramic sintered bodies (Sample Nos. 9 to 12) were produced by changing the respective contents (% by mass) of Al 2 O 3 and additives. The conditions were the same as in Example 1 except that the contents (% by mass) of Al 2 O 3 and additives contained in the ceramic sintered body were changed to the contents shown in Table 2. In addition, sample no. 9, 10 and 12 are sample Nos. Same sample as 7, 5 and 8.
  • Example 2 shows the numerical value of each ICP content obtained.
  • Table 2 shows the results of the three-point bending strength test.
  • Sample Nos. 10 and 11 have an Al 2 O 3 content of less than 96% by mass. 9 and sample no .
  • the 3-point bending strength was greater than that of 12.
  • the ceramic sintered body constituting the ceramic substrate 2 contains 96% by mass or more and 98% by mass or less of Al 2 O 3 .
  • the content of Ti in the ceramic sintered body constituting the ceramic substrate 2 is 350 ppm or less in terms of TiO2.
  • Ceramic sintered bodies (Sample Nos. 13 and 14) were produced by changing the content of Fe in terms of Fe 2 O 3 and the content of Ti in terms of TiO 2 in the ceramic sintered bodies.
  • the content of Fe converted to Fe 2 O 3 and the content of Ti converted to TiO 2 in the ceramic sintered body were changed to the ICP contents shown in Table 3, and the Al 2 contained in the ceramic sintered body
  • the conditions are the same as in Example 1 except that the contents (% by mass) of O3 and additives were changed to the contents shown in Table 3.
  • Example 1 In addition, the same ICP content as in Example 1 was measured and estimated. Table 3 shows the numerical value of each ICP content obtained.
  • test substrate 24 mm x 40 mm x 0.32 mm
  • Sample No. 14 has a difference of 20 ppm or less between the ICP content of Fe 2 O 3 and the ICP content of TiO 2 .
  • the 3-point bending strength was greater than that of No. 13.
  • the content of Fe in the ceramic sintered body that constitutes the ceramic substrate 2 in terms of Fe 2 O 3 is higher than the content of Ti in terms of TiO 2 .
  • Example 4 Ceramic sintered bodies of Example 4 (Sample Nos. 18 to 20, 22 and 23) were produced as follows. Al 2 O 3 powder and additive powder were mixed so that the respective contents (% by mass) of Al 2 O 3 and additives contained in the ceramic sintered body were the contents shown in Table 4 to obtain a mixed powder. was made. Here, the content of Ti in terms of TiO 2 and the content of Fe in terms of Fe 2 O 3 in the additive were the blended contents shown in Table 4, respectively. Next, after adding a solvent and a binder to the prepared powder, granules were produced through a slurry, and the granules were shaped into a desired shape by press molding to produce a compact.
  • sample Nos. 18 to 20, 22 and 23 are sample Nos. Same sample as 3, 5, 6, 7, 11.
  • Example 4 shows the results of the three-point bending strength test.
  • Example No. 16 A ceramic sintered body of Comparative Example 3 (Sample No. 16) was produced under the same conditions as in Example 4, except that TiO2 powder was not added as an additive to the Al2O3 powder. In addition, sample no. 16 is sample no. It is the same sample as No.1.
  • Example 4 the same three-point bending strength test as in Example 4 was performed on the obtained ceramic sintered body. Table 4 shows the results of the three-point bending strength test.
  • Example No. 17 A ceramic sintered body of Comparative Example 4 (Sample No. 17) was produced under the same conditions as in Example 4, except that the Fe 2 O 3 powder was not added as an additive to the Al 2 O 3 powder.
  • sample no. 17 is sample no. 2 is the same sample.
  • Example 4 the same three-point bending strength test as in Example 4 was performed on the obtained ceramic sintered body. Table 4 shows the results of the three-point bending strength test.
  • Comparative Example 5 The ceramic sintered body (Sample No. 21) of Comparative Example 5 was subjected to the same conditions as in Example 4, except that the content of Ti in the additive in terms of TiO2 was changed to the blended content shown in Table 4. made by
  • Example 4 the same three-point bending strength test as in Example 4 was performed on the obtained ceramic sintered body. Table 4 shows the results of the three-point bending strength test.
  • the content of Ti in terms of TiO 2 in the additive is 0.48% by mass or more and 1.18% by mass or less, and Fe is Fe 2 O 3
  • the converted content is preferably 0.48% by mass or more.
  • Sample No. in Example 1; 1, 2 and 8 were used to conduct a thermal shock test.
  • the results of the thermal shock test are shown in Table 5.
  • Sample no. 1 and 2 are comparative examples, and sample Nos. 8 is an example.
  • Table 5 also shows the results of evaluating the 3-point bending strength of the JIS pieces without conducting a thermal shock test. The 3-point bending strength of the JIS pieces that were not subjected to the thermal shock test does not indicate the temperature.
  • Table 5 after heating the JIS piece to 190°C, 240°C, 265°C, and 290°C, the JIS piece was dropped into water at a water temperature of 10°C and rapidly cooled, and then a three-point bending test was performed for measurement. 3-point bending strength of a JIS piece is shown.
  • Sample No. which is a comparative example. 1 and sample no. In No. 2, the three-point bending strength deteriorated by about 30% at 265°C, and the three-point bending strength deteriorated by about 80% at 290°C.
  • sample no. In No. 8 the strength deterioration at 265°C was only about 4%, and the three-point bending strength deteriorated by about 61% at 290°C.
  • the content of Ti (titanium) in the ceramic sintered body in terms of TiO 2 is 120 ppm or more
  • the content of Fe (iron) in terms of Fe 2 O 3 is 120 ppm or more.
  • the content is preferably 180 ppm or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

セラミック焼結体は、Al2O3(アルミナ)及び添加剤を含有し、Al2O3の含有量が94質量%以上であるセラミック焼結体からなる。添加剤は、SiO2(シリカ)、CaO(カルシア)、MgO(マグネシア)、TiO2(酸化チタン)及びFe2O3(酸化鉄)を含有する。セラミック焼結体におけるTi(チタン)のTiO2換算での含有量が120ppm以上であり、且つ、Fe(鉄)のFe2O3換算での含有量が180ppm以上である。

Description

セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法
 開示の実施形態は、セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法に関する。
 従来、セラミック焼結体を基板として用いたセラミック基板は、優れた絶縁性及び熱伝導性を有することから、電子部品を実装するための実装用基板として利用される場合がある。例えば、特許文献1には、Al(アルミナ)を主成分としTiO(酸化チタン)を添加剤として含有するセラミック基板が開示されている。また、引用文献1には、120nm~500nmの粒子サイズのAl粉末を用い、1μm以下の粒子サイズを有することも記載されている。
 特許文献2には、相互に接触した銅板とアルミナ基板とを不活性雰囲気中において、加熱して、アルミナ基板上に銅板が配置された実装用基板が記載されている。特許文献2に開示された方法は、AMB(Active Metal Bonding)法と言われている。また、特許文献3には、セラミックと銅の直接接合法を用いて作製した実装用基板が記載されている。特許文献3に開示された方法は、DCB(Direct Copper Bonding)法と言われている。また、引用文献4には、アルミナ等の基板の表面に銅や銅合金で構成された金属板を、ホットプレス工程を用いて接合する回路基板の製造方法が記載されている。
特開2017-218368号公報 特開昭63-166774号公報 特開平5-243725号公報 特開2020-145335号公報
 実施形態の一態様によるセラミック焼結体は、Al(アルミナ)及び添加材を含有し、Alの含有量が94質量%以上であるセラミック焼結体からなる。添加剤は、SiO(シリカ)、CaO(カルシア)、MgO(マグネシア)、TiO(酸化チタン)及びFe(酸化鉄)を含有する。セラミック焼結体におけるTi(チタン)のTiO換算での含有量が120ppm以上であり、且つ、Fe(鉄)のFe換算での含有量が180ppm以上である。
図1は、実施形態に係る実装用基板の概略を示す側面図である。 図2は、実施形態に係るセラミック焼結体の表面のTEM写真である。 図3は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図4は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図5は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図6は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図7は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図8は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図9は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。 図10は、実施形態に係る電子装置の一例を示す側面図である。 図11は、調合含有量とICP含有量の関係を示す近似関数の一例を示す図である。
 以下、添付図面を参照して、本願の開示するセラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法の実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、たとえば製造精度、設置精度などのずれを許容するものとする。
(実装用基板)
 図1は、実施形態に係る実装用基板1の概略を示す側面図である。図1に示す実装用基板1は、セラミック焼結体からなるセラミック基板2と、金属層3とを備える。なお、セラミック焼結体はセラミック基板2と実質的に同じであるため、図中における符号は省略する。言い換えるとセラミック焼結体の図中の符号は2である。セラミック焼結体は、例えば、棒状体やブロック体や中空部材などの構造部材に用いてもよい。
 セラミック基板2は、Al(アルミナ)及び添加剤を含有し、Alの含有量が94質量%以上であるセラミック焼結体からなる、厚さが例えば0.2~1mm程度の板状部材である。添加剤は、SiO(シリカ)、CaO(カルシア)、MgO(マグネシア)、TiO(酸化チタン)及びFe(酸化鉄)を含有する。
 実施形態に係るセラミック基板2において、セラミック焼結体におけるTi(チタン)のTiO換算での含有量が120ppm以上であり、且つ、Fe(鉄)のFe換算での含有量が180ppm以上である。これにより、実施形態に係るセラミック焼結体を用いたセラミック基板2は、機械的強度が高い。また、実施形態に係るセラミック焼結体は、耐熱衝撃性に優れる。
 セラミック焼結体におけるTiのTiO換算での含有量、及びFeのFe換算での含有量は、例えば以下の方法により確認することができる。まず、ICP発光分光分析装置(ICP)を用いて、セラミック焼結体におけるTi及びFeの定量分析を行う。そして、ICPで測定したTiの含有量から酸化物であるTiOに換算した含有量(ICP含有量)を求めるとともに、ICPで測定したFeの含有量から酸化物であるFeに換算した含有量(ICP含有量)を求める。
 実施形態に係るセラミック焼結体を用いたセラミック基板2が機械的強度を向上させることができる理由は、例えば以下のように考えられる。すなわち、セラミック基板2を構成するセラミック焼結体にTiOを含有させることで、セラミック焼結体の結晶粒界にTiOが位置することとなる。セラミック焼結体におけるTiOの含有量が120ppm以上であると、セラミック焼結体の結晶粒界に位置するTiOは、結晶粒界において発生し易い亀裂の進行を阻止する抵抗体として機能する。また、セラミック焼結体の結晶粒界に位置するTiOは、焼結助剤成分(例えば、SiO、CaO及びMgO)に対する結晶核となることから、結晶粒界を多結晶化且つ強靭化することができ、亀裂の発生を抑止することができる。したがって、セラミック焼結体にTiOを適切な含有量で含有させることで、セラミック基板2の機械的強度を向上させることができる。
 また、セラミック基板2を構成するセラミック焼結体にFeを含有させることで、セラミック焼結体の結晶粒界にFeが位置することとなる。セラミック焼結体におけるFeの含有量が180ppm以上であると、セラミック焼結体の結晶粒界に位置するFeは、結晶粒界を移動させるとともに、結晶粒界に位置するTiOを移動させる現象を引き起こす。したがって、セラミック焼結体にFeを適切な含有量で含有させることで、結晶粒界及びTiOを適度に分散させることができる。セラミック基板2の機械的強度は、結晶粒界及びTiOの分散が進行するほど、向上する。したがって、実施形態に係るセラミック基板2によれば、セラミック基板2の機械的強度を向上させることができる。
 また、実施形態に係るセラミック基板2を構成するセラミック焼結体は、96質量%以上98質量%以下のAlを含有してもよい。Alの含有量が96質量%よりも少ないと、セラミック焼結体に占める焼結助剤成分(例えば、SiO、CaO及びMgO)の割合が大きくなることから、主成分であるAlどうしの焼結が脆弱となる可能性がある。Alの含有量が98質量%を超えると、Alの結晶が緻密化し難くなるため、セラミック基板2の機械的強度が低下する可能性がある。
 また、実施形態に係るセラミック基板2を構成するセラミック焼結体におけるTiのTiO換算での含有量は、350ppm以下であることが好ましい。TiOの含有量が350ppmを超えると、セラミック焼結体の結晶粒界に位置するTiOの分布に偏りが生じることから、セラミック基板2の機械的強度が低下する可能性がある。
 また、実施形態に係るセラミック基板2を構成するセラミック焼結体におけるFeのFe換算での含有量は、TiのTiO換算での含有量よりも多いことが好ましい。TiOの含有量がFeの含有量よりも多いと、セラミック焼結体の結晶粒界に位置するTiOの分布に偏りが生じることから、セラミック基板2の機械的強度が低下する可能性がある。なお、セラミック基板2を構成するセラミック焼結体におけるFeのFe換算での含有量は、410ppm以下であることが好ましい。
 また、実施形態に係るセラミック基板2を構成するセラミック焼結体は、ZrO(ジルコニア)を含有しない。ZrO(ジルコニア)は比較的に高価である。このため、セラミック焼結体がZrOを含有しないことで、原料価格を抑えることができる。
 また、ZrOを含有しないことにより、実施形態に係るセラミック基板2は、熱伝導率を向上させ且つ誘電損失を低減させることができる。例えば、Al:ZrO(Y(イットリア)を含む)=90:10の割合でZrOを含有するセラミック基板においては、熱伝導率が23W/m・Kであり、1MHzにおける誘電損失が2×10-4である。これに対し、実施形態に係るセラミック基板2においては、例えば、熱伝導率が25W/m・Kであり、1MHzにおける誘電損失が0.4×10-4である。実施形態に係るセラミック基板2によれば、かかる熱伝導率及び誘電損失の観点からも有効な特性値が得られる。
 また、実施形態に係るセラミック基板2を構成するセラミック焼結体におけるTiO及びFeは、結晶粒界に位置している。セラミック焼結体におけるTiO及びFeの位置は、例えば、セラミック基板2の表面をSEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)付属のEDX(エネルギー分散型X線分析装置)を用いて観察することで確認することができる。
 図2は、実施形態に係るセラミック基板2の表面のTEM写真である。また、図3~図9は、図2に示すTEM写真と同一の箇所における特定元素の分布の分析結果を示すEDX画像である。
 TEM及びEDXによる観察は、倍率500000倍で行った。図2のTEM写真において、セラミック焼結体の結晶粒界は、白色の領域で示される。
 図3のEDX画像は、O(酸素)の分布の分析結果を示す複合画像である。図4のEDX画像は、Mg(マグネシウム)の分布の分析結果を示す複合画像である。図5のEDX画像は、Al(アルミニウム)の分布の分析結果を示す複合画像である。図6のEDX画像は、Si(シリコン)の分布の分析結果を示す複合画像である。図7のEDX画像は、Ca(カルシウム)の分布の分析結果を示す複合画像である。図8のEDX画像は、Ti(チタン)の分布の分析結果を示す複合画像である。図9のEDX画像は、Fe(鉄)の分布の分析結果を示す複合画像である。図4~図9に示すEDX画像において、特定元素(つまり、O、Mg、Al、Si、Ca、Ti又はFe)が多い領域は、白色で示される。
 図2のTEM写真及び図4~図9のEDX画像から、セラミック基板2を構成するセラミック焼結体におけるTiO及びFeは、焼結助剤成分(例えば、SiO、CaO及びMgO)と同様にセラミック焼結体の結晶粒界に位置することが分かる。
 このように、TiO及びFeがセラミック焼結体の結晶粒界に位置することにより、結晶粒界における亀裂の発生及び進行を抑制することができる。したがって、実施形態に係るセラミック基板2によれば、機械的強度をより向上させることができる。
 図1の説明に戻る。金属層3は、セラミック基板2上に位置している。金属層3は、例えば、金属板である。金属板の厚さは、例えば0.1~5mm程度とすることができる。金属板の材料としては、例えば銅又はアルミニウムを用いることができる。金属板は、例えば、特許文献2に開示されたAMB(Active Metal Bonding)法又は特許文献3に開示されたDCB(Direct Copper Bonding)法又は特許文献4に開示されたホットプレスを利用する方法等を用いてセラミック基板上に接合することができる。なお、セラミック基板2と金属板3との接合条件は、特許文献2~4に開示された範囲の条件に限定されるものではない。また、金属層3は、例えば、銅、銀又は白金等の貴金属を主成分とする金属ペーストであってもよい。この場合、金属ペーストの厚さは、例えば1~40μm程度とすることができる。金属層3は、少なくともセラミック基板2側において、TiおよびFeを含有していてもよい。セラミック基板2には、FeおよびTiが含まれているため、接合時にセラミック基板2から金属層3にTiやFeが拡散することによって、セラミック基板2と金属層3との接合強度が高まる。また、金属層3には、TiやFe、Cuを含有する合金や化合物が位置していてもよい。金属層3は、セラミック基板2の両面に位置していてもよい。また、金属板3は、セラミック基板2の片面に位置しており、他の面に放熱部材が位置していてもよい。
(電子装置)
 次に、上述した実装用基板1を備えた電子装置10の構成について図10を参照して説明する。図10は、実施形態に係る電子装置10の一例を示す側面図である。
 図10に示すように、電子装置10は、実装用基板1と、実装用基板1の金属層3上に位置する電子部品4とを備える。なお、実装用基板1の金属層3が位置する面とは反対側の面に、電子部品4からの放熱を行うためのヒートシンクや流路部材が位置してもよい。
 電子部品4としては、例えば、発光ダイオード(LED)素子、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子、インテリジェント・パワー・モジュール(IPM)素子、金属酸化膜型電界効果トランジスタ(MOSFET)素子、フリーホイーリングダイオード(FWD)素子、ジャイアント・トランジスタ(GTR)素子、ショットキー・バリア・ダイオード(SBD)等の半導体素子、昇華型サーマルプリンタヘッド素子、サーマルインクジェットプリンタヘッド素子及びペルチェ素子等の発熱素子を用いることができる。
(製造方法)
 次に、実施形態に係る実装用基板1が備えるセラミック基板2の製造方法について説明する。
 主原料としてAl(アルミナ)の粉末を準備する。また、添加剤として、SiO(シリカ)、CaO(カルシア)、MgO(マグネシア)、TiO(酸化チタン)及びFe(酸化鉄)の各粉末を準備する。
 まず、Alの含有量が94質量%以上となるように、Alの粉末及び添加剤の粉末を調合して調合粉末を得る。このときの調合組成は、次の組成とする。セラミック基板2に含まれるAlがAl換算で94質量%以上である。SiをSiO、CaをCaO、MgをMgO、TiをTiO、FeをFeに換算した値の合計(つまり、セラミック基板2に含まれる添加剤)が1.0質量%以上6.0質量%以下である。添加剤におけるSiOの質量比率は、例えば38質量%以上60質量%以下である。添加剤におけるCaOの質量比率は、例えば20質量%以上43質量%以下である。添加剤におけるMgOの質量比率は、例えば14質量%以上37質量%以下である。また、Alの粉末に不純物として含まれるFeのFe換算での含有量は100~300ppmである。
 また、添加剤におけるTiのTiO換算での含有量(調合含有量)は0.48質量%以上1.18質量%以下であり、且つ、FeのFe換算での含有量(調合含有量)は0.48質量%以上であることが好ましい。
 次に、Alの粉末及び添加剤の粉末を調合して得られた調合粉末に溶剤及びバインダーを添加した後、これらを例えばボールミル等で混合及び粉砕することでスラリーを作製する。
 次に、スラリーをスプレードライヤーを用いて噴霧乾燥することで顆粒を作製する。
 その後、顆粒をプレス成形法又はロールコンパクション成形法等により成形して、所望の形状の成形体を作製する。なお、顆粒を作製せずに、スラリーをドクターブレード法により成形して、シート状の成形体を作製してもよい。また、必要に応じて、作製した成形体にドリル又はレーザ等により切欠き、穴又は凹部等を形成してもよい。
 次に、成形体を熱処理することで脱脂を行った後、成形体を焼成する。焼成温度は、例えば、1500℃以上1600℃以下の範囲内である。焼成後の組成は、TiO及びFeを除き、調合組成と同じである。なお、成形体の焼成により得られるセラミック焼結体に、必要に応じて、研磨、研削、ドリル加工、レーザ加工又はブラスト加工等を施してもよい。以上により、実施形態に係るセラミック焼結体を用いたセラミック基板2が得られる。
 以下に、実施形態に係るセラミック基板2の実施例を具体的に説明する。
<実施例1>
 実施例1のセラミック焼結体(試料No.3~8)を、以下のように作製した。セラミック焼結体に含まれるAl及び添加剤の各含有量(質量%)が表1に示す含有量となるようにAlの粉末及び添加剤の粉末を調合して調合粉末を作製した。次に、調合粉末に溶剤及びバインダーを添加した後、スラリーを経て顆粒を作製し、顆粒をプレス成形によって所望の形状に整え、成形体を作製した。その後、バインダー成分を脱脂により除去した後、成形体を焼成し、セラミック焼結体(試料No.3~8)を得た。
(ICP含有量について)
 次に、得られたセラミック焼結体における金属元素(Ti、Fe)の含有量をICPにより測定し、酸化物(TiO、Fe)に換算した含有量(ICP含有量)を求めた。得られた各ICP含有量の数値を表1に示す。
 なお、表1に示すICP含有量のうち、下線が付されたICP含有量の数値は、調合含有量(すなわち、添加剤におけるTi、FeのTiO、Fe換算での含有量)とICP含有量の関係を示す近似関数を用いて推定された値である。
 図11は、調合含有量とICP含有量の関係を示す近似関数の一例を示す図である。図11においては、TiOに関する調合含有量とICP含有量の関係を示す近似関数と、Feに関する調合含有量とICP含有量の関係を示す近似関数とが示される。各近似関数は、調合含有量に対するICP含有量の各測定値に基づき、作成される。表1に示すICP含有量のうち、下線が付されたICP含有量の数値は、図11に示す各近似関数に各調合含有量を適用することにより、推定することができる。なお、表1において、下線が付されたICP含有量の数値(つまり、推定値)は、小数点以下を四捨五入して得られる数値である。
(3点曲げ強度試験、耐熱衝撃試験について)
 また、得られたセラミック焼結体の各試料の試料形状は、3mm×4mm×40mmの試験片(以下「JIS片」とも呼ぶ。)とした。JIS片は、プレス成形法により作製した。このJIS片を用いて、3点曲げ強度試験および耐熱衝撃試験を行った。耐熱衝撃試験の結果は後述する。
 各試料について、JIS R1601-2008に準拠して3点曲げ強度を測定した。3点曲げ強度の測定に用いるクロスヘッド速度は、0.5mm/minとした。得られた3点曲げ強度試験の結果は、表1に示す通りである。耐熱衝撃試験は、JIS R1648-2002に準拠して行った。耐熱衝撃試験のクロスヘッド速度も0.5mm/minである。
<比較例1>
 比較例1のセラミック焼結体(試料No.1)を、Alの粉末に添加剤としてTiOの粉末を調合しない点を除き、実施例1と同様の条件により作製した。
 得られたセラミック焼結体における金属元素(Ti、Fe)について、上記と同様のICP含有量の測定及び推定を行った。得られた各ICP含有量の数値を表1に示す。なお、表1において、セラミック焼結体におけるTiOのICP含有量は、0ではない。これは、調合されるAlの粉末にTiOが不純物として含まれているためである。
 また、得られたセラミック焼結体について、実施例1と同様の3点曲げ強度試験を行った。3点曲げ強度試験の結果は、表1に示す通りである。
<比較例2>
 比較例2のセラミック焼結体(試料No.2)を、Alの粉末に添加剤としてFeの粉末を調合しない点を除き、実施例1と同様の条件により作製した。
 得られたセラミック焼結体における金属元素(Ti、Fe)について、実施例1と同様のICP含有量の測定及び推定を行った。得られた各ICP含有量の数値を表1に示す。なお、表1において、セラミック焼結体におけるFeのICP含有量は、0ではない。これは、調合されるAlの粉末にFeが不純物として含まれているためである。
 また、得られたセラミック焼結体について、実施例1と同様の3点曲げ強度試験を行った。3点曲げ強度試験の結果は、表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 Alの粉末に添加剤としてTiOの粉末又はFeの粉末を添加しない試料No.1、2は、3点曲げ強度が490MPa未満であった。これに対し、実施例1のセラミック焼結体である試料No.3~8は、3点曲げ強度が490MPa以上であった。
 以上の結果から、セラミック焼結体におけるTi(チタン)のTiO換算での含有量が120ppm以上であり、且つ、Fe(鉄)のFe換算での含有量が180ppm以上であることが好ましい。
<実施例2>
 Al及び添加剤の各含有量(質量%)を変更してセラミック焼結体(試料No.9~12)を作製した。セラミック焼結体に含まれるAl及び添加剤の各含有量(質量%)を表2に示す含有量に変更した点以外の条件は、実施例1と同じである。なお、試料No.9、10、12は、それぞれ試料No.7、5、8と同じ試料である。
 また、実施例1と同様のICP含有量の測定及び推定、並びに、実施例1と同様の3点曲げ強度試験を行った。得られた各ICP含有量の数値を表2に示す。また、得られた3点曲げ強度試験の結果は、表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 Alの含有量が96質量%以上98質量%以下である試料No.10、11は、Alの含有量が96質量%未満である試料No.9及びAlの含有量が98質量%を超える試料No.12よりも3点曲げ強度が大きかった。
 以上の結果から、セラミック基板2を構成するセラミック焼結体は、96質量%以上98質量%以下のAlを含有することが好ましい。
 TiOのICP含有量が350ppm以下である試料No.10~12は、TiOのICP含有量が350ppmを超える試料No.9よりも3点曲げ強度が大きかった。
 以上の結果から、セラミック基板2を構成するセラミック焼結体におけるTiのTiO換算での含有量は、350ppm以下であることが好ましい。
<実施例3>
 セラミック焼結体におけるFeのFe換算での含有量とTiのTiO換算での含有量とを変更してセラミック焼結体(試料No.13、14)を作製した。セラミック焼結体におけるFeのFe換算での含有量とTiのTiO換算での含有量とを表3に示すICP含有量に変更した点、及びセラミック焼結体に含まれるAl及び添加剤の各含有量(質量%)を表3に示す含有量に変更した点以外の条件は、実施例1と同じである。
 また、実施例1と同様のICP含有量の測定及び推定を行った。得られた各ICP含有量の数値を表3に示す。
(3点曲げ強度試験について)
 また、得られたセラミック焼結体の各試料の試料形状は、24mm×40mm×0.32mmの試験片(以下「テスト基板」と呼ぶ。)とした。テスト基板は、ロールコンパクション成形法により作製した。
 各試料について、JIS R1601-2008に準拠して3点曲げ強度を測定した。3点曲げ強度の測定に用いるクロスヘッド速度は、5mm/minとした。得られた3点曲げ強度試験の結果は、表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
 FeのICP含有量がTiOのICP含有量よりも200ppm以上大きい試料No.14は、FeのICP含有量とTiOのICP含有量との差が20ppm以下である試料No.13よりも3点曲げ強度が大きかった。
 以上の結果から、セラミック基板2を構成するセラミック焼結体におけるFeのFe換算での含有量は、TiのTiO換算での含有量よりも多いことが好ましい。
<実施例4>
 実施例4のセラミック焼結体(試料No.18~20、22、23)を、以下のように作製した。セラミック焼結体に含まれるAl及び添加剤の各含有量(質量%)が表4に示す含有量となるようにAlの粉末及び添加剤の粉末を調合して調合粉末を作製した。ここで、添加剤におけるTiのTiO換算での含有量とFeのFe換算での含有量とは、それぞれ表4に示す調合含有量であった。次に、調合粉末に溶剤及びバインダーを添加した後、スラリーを経て顆粒を作製し、顆粒をプレス成形によって所望の形状に整え、成形体を作製した。その後、バインダー成分を脱脂により除去した後、成形体を焼成し、セラミック焼結体(試料No.18~20、22、23)を得た。なお、試料No.18~20、22、23は、それぞれ試料No.3、5、6、7、11と同じ試料である。
 また、得られた各試料について、実施例1と同様の3点曲げ強度試験を行った。3点曲げ強度試験の結果は、表4に示す通りである。
<比較例3>
 比較例3のセラミック焼結体(試料No.16)を、Alの粉末に添加剤としてTiO2の粉末を調合しない点を除き、実施例4と同様の条件により作製した。なお、試料No.16は、試料No.1と同じ試料である。
 また、得られたセラミック焼結体について、実施例4と同様の3点曲げ強度試験を行った。3点曲げ強度試験の結果は、表4に示す通りである。
<比較例4>
 比較例4のセラミック焼結体(試料No.17)を、Alの粉末に添加剤としてFeの粉末を調合しない点を除き、実施例4と同様の条件により作製した。なお、試料No.17は、試料No.2と同じ試料である。
 また、得られたセラミック焼結体について、実施例4と同様の3点曲げ強度試験を行った。3点曲げ強度試験の結果は、表4に示す通りである。
<比較例5>
 比較例5のセラミック焼結体(試料No.21)を、添加剤におけるTiのTiO換算での含有量を表4に示す調合含有量に変更した点を除き、実施例4と同様の条件により作製した。
 また、得られたセラミック焼結体について、実施例4と同様の3点曲げ強度試験を行った。3点曲げ強度試験の結果は、表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 Alの粉末に添加剤としてTiOの粉末又はFeの粉末を添加しない試料No.16、17及びTiOの調合含有量が1.18質量%を超える試料No.21は、3点曲げ強度が490MPa未満であった。これに対し、実施例4のセラミック焼結体である試料No.18~20、22、23は、3点曲げ強度が490MPa以上であった。
 以上の結果から、調合粉末を作製する際には、添加剤におけるTiのTiO換算での含有量が0.48質量%以上1.18質量%以下であり、且つ、FeのFe換算での含有量が0.48質量%以上であることが好ましい。
 実施例1における試料No.1、2、8を用いて耐熱衝撃試験を行った。耐熱衝撃試験の結果は、表5に示す通りである。試料No.1、2は比較例であり、試料No.8は実施例である。表5には、耐熱衝撃試験を行わなずにJIS片の3点曲げ強度を評価した結果も示している。耐熱衝撃試験を行わなかったJIS片の3点曲げ強度は、温度の記載のないものである。また、表5に、JIS片を190℃、240℃、265℃、290℃に加熱した後、JIS片を水温が10℃の水中に投下して急冷した後に3点曲げ試験を行って測定したJIS片の3点曲げ強度を示す。
Figure JPOXMLDOC01-appb-T000005
 比較例である試料No.1および試料No.2は、265℃で、30%ほど3点曲げ強度が劣化し、290℃では80%ほど3点曲げ強度が劣化した。一方、実施例である試料No.8は、265℃における強度劣化は4%程度にとどまり、290℃では61%ほど3点曲げ強度が劣化した。以上より、耐熱衝撃性の観点から見ても、セラミック焼結体におけるTi(チタン)のTiO換算での含有量が120ppm以上であり、且つ、Fe(鉄)のFe換算での含有量が180ppm以上であることが好ましい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1 実装用基板
2 セラミック基板
3 金属層
4 電子部品
10 電子装置

Claims (13)

  1.  Al及び添加剤を含有し、前記Alの含有量が94質量%以上であるセラミック焼結体からなり、
     前記添加剤は、SiO、CaO、MgO、TiO及びFeを含有し、
     前記セラミック焼結体におけるTiのTiO換算での含有量は120ppm以上であり、且つ、FeのFe換算での含有量は180ppm以上である、セラミック焼結体。
  2.  前記セラミック焼結体は、96質量%以上98質量%以下の前記Alを含有する、請求項1に記載のセラミック焼結体。
  3.  前記セラミック焼結体におけるTiのTiO換算での含有量は350ppm以下である、請求項1又は2に記載のセラミック焼結体。
  4.  前記セラミック焼結体におけるFeのFe換算での含有量は、TiのTiO換算での含有量よりも多い、請求項1~3のいずれか一つに記載のセラミック焼結体。
  5.  前記セラミック焼結体におけるFeのFe換算での含有量は410ppm以下である、請求項1~4のいずれか一つに記載のセラミック焼結体。
  6.  前記セラミック焼結体は、ZrOを含有しない、請求項1~5のいずれか一つに記載のセラミック焼結体。
  7.  前記セラミック焼結体におけるTiO及びFeは、結晶粒界に位置している、請求項1~6のいずれか一つに記載のセラミック焼結体。
  8.  請求項1~7のいずれか一つに記載のセラミック焼結体を板状としたセラミック基板。
  9.  請求項8に記載のセラミック基板と、
     前記セラミック基板上に位置する金属層と
     を備える、実装用基板。
  10.  前記金属層は、少なくとも前記セラミック基板側において、TiおよびFeを含有する、請求項9に記載の実装用基板。
  11.  請求項9又は10に記載の実装用基板と、
     前記実装用基板における前記金属層上に位置する電子部品と
     を備える、電子装置。
  12.  Alの含有量が94質量%以上となるように、Alの粉末及び添加剤の粉末を調合して調合粉末を作製する工程と、
     前記調合粉末を用いて成形体を作製する工程と、
     前記成形体を焼成する工程と
     を含み、
     前記調合粉末を作製する工程において、前記Alの粉末に、前記添加剤として、SiO、CaO、MgO、TiO及びFeの各粉末を調合して前記調合粉末を作製し、
     前記添加剤におけるTiのTiO換算での含有量が0.48質量%以上1.18質量%以下であり、且つ、FeのFe換算での含有量が0.48質量%以上である、セラミック焼結体の製造方法。
  13.  前記Alの粉末に不純物として含まれるFeのFe換算での含有量は100~300ppmである、請求項12に記載のセラミック焼結体の製造方法。
PCT/JP2022/029822 2021-08-03 2022-08-03 セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法 WO2023013684A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023534915A JP7336626B2 (ja) 2021-08-03 2022-08-03 セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法
CN202280053813.XA CN117794881A (zh) 2021-08-03 2022-08-03 陶瓷烧结体、陶瓷基板、安装用基板、电子设备及陶瓷烧结体的制造方法
EP22853103.4A EP4382503A1 (en) 2021-08-03 2022-08-03 Ceramic sintered body, ceramic substrate, mounting substrate, electronic device, and method for manufacturing ceramic sintered body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021127812 2021-08-03
JP2021-127812 2021-08-03
JP2021177914 2021-10-29
JP2021-177914 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023013684A1 true WO2023013684A1 (ja) 2023-02-09

Family

ID=85155826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029822 WO2023013684A1 (ja) 2021-08-03 2022-08-03 セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法

Country Status (3)

Country Link
EP (1) EP4382503A1 (ja)
JP (1) JP7336626B2 (ja)
WO (1) WO2023013684A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110053A (ja) * 1984-06-13 1986-01-17 サボワ リフラクテール 高アルミナ含量を有する新規耐火物およびその製法
JPS63166774A (ja) 1986-12-27 1988-07-09 同和鉱業株式会社 銅板とアルミナ基板との接合体の製造方法
JPH05243725A (ja) 1992-03-03 1993-09-21 Toshiba Corp セラミック基板と銅の直接接合法
JP2016112576A (ja) * 2014-12-12 2016-06-23 品川リフラクトリーズ株式会社 スライドプレート及びその製造方法
JP2016176988A (ja) * 2015-03-18 2016-10-06 京セラ株式会社 低反射部材
JP2016532623A (ja) * 2013-07-26 2016-10-20 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン 高アルミナ含量を有する製品
JP2016188170A (ja) * 2012-01-11 2016-11-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 耐火物及び耐火物を使用したガラス板の形成方法
JP2017218368A (ja) 2016-06-07 2017-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 絶縁体組成物及びこれを用いた電子部品の製造方法
JP2020145335A (ja) 2019-03-07 2020-09-10 株式会社Fjコンポジット 回路基板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110053A (ja) * 1984-06-13 1986-01-17 サボワ リフラクテール 高アルミナ含量を有する新規耐火物およびその製法
JPS63166774A (ja) 1986-12-27 1988-07-09 同和鉱業株式会社 銅板とアルミナ基板との接合体の製造方法
JPH05243725A (ja) 1992-03-03 1993-09-21 Toshiba Corp セラミック基板と銅の直接接合法
JP2016188170A (ja) * 2012-01-11 2016-11-04 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 耐火物及び耐火物を使用したガラス板の形成方法
JP2016532623A (ja) * 2013-07-26 2016-10-20 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン 高アルミナ含量を有する製品
JP2016112576A (ja) * 2014-12-12 2016-06-23 品川リフラクトリーズ株式会社 スライドプレート及びその製造方法
JP2016176988A (ja) * 2015-03-18 2016-10-06 京セラ株式会社 低反射部材
JP2017218368A (ja) 2016-06-07 2017-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 絶縁体組成物及びこれを用いた電子部品の製造方法
JP2020145335A (ja) 2019-03-07 2020-09-10 株式会社Fjコンポジット 回路基板の製造方法

Also Published As

Publication number Publication date
EP4382503A1 (en) 2024-06-12
JPWO2023013684A1 (ja) 2023-02-09
JP7336626B2 (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
US8858865B2 (en) Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
KR101522807B1 (ko) 세라믹스 회로 기판
JP5850031B2 (ja) 窒化珪素質焼結体、窒化珪素回路基板及び半導体モジュール
JP2018184333A (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
WO2016208766A1 (ja) セラミック基板およびこれを用いた実装用基板ならびに電子装置
WO2015147071A1 (ja) 流路部材および半導体モジュール
US10566264B2 (en) Flow path member and semiconductor module
JP5481137B2 (ja) 窒化珪素・メリライト複合焼結体
JP5804838B2 (ja) セラミック接合体
WO2023013684A1 (ja) セラミック焼結体、セラミック基板、実装用基板、電子装置及びセラミック焼結体の製造方法
WO2018062373A1 (ja) 抵抗体およびこれを備える回路基板ならびに電子装置
CN112041286B (zh) 陶瓷基板和使用了该陶瓷基板的安装用基板以及电子装置
JP2000128654A (ja) 窒化ケイ素複合基板
JP2009215142A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP5611554B2 (ja) 高熱伝導性窒化アルミニウム焼結体、これを用いた基板、回路基板、および半導体装置、ならびに高熱伝導性窒化アルミニウム焼結体の製造方法
JP5031541B2 (ja) 窒化珪素質焼結体および回路基板ならびにパワー半導体モジュール
JP2004262756A (ja) 窒化ケイ素質粉末、窒化ケイ素質焼結体及びこれを用いた電子部品用回路基板
CN117794881A (zh) 陶瓷烧结体、陶瓷基板、安装用基板、电子设备及陶瓷烧结体的制造方法
JP7035220B2 (ja) セラミックス焼結体及び半導体装置用基板
JPH0524930A (ja) AlN焼結体およびその製造方法
JP2002293641A (ja) 窒化ケイ素質焼結体
JP4868641B2 (ja) 窒化アルミニウム基板の製造方法
JPH11100273A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JP2021130595A (ja) 窒化珪素基板及びパワーモジュール
JP5142889B2 (ja) 窒化珪素質焼結体およびその製法ならびに回路基板、パワー半導体モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023534915

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280053813.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022853103

Country of ref document: EP

Effective date: 20240304