WO2022230589A1 - フルオロアルキン化合物の製造方法 - Google Patents

フルオロアルキン化合物の製造方法 Download PDF

Info

Publication number
WO2022230589A1
WO2022230589A1 PCT/JP2022/016193 JP2022016193W WO2022230589A1 WO 2022230589 A1 WO2022230589 A1 WO 2022230589A1 JP 2022016193 W JP2022016193 W JP 2022016193W WO 2022230589 A1 WO2022230589 A1 WO 2022230589A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
ether
general formula
fluoroalkyne
compound represented
Prior art date
Application number
PCT/JP2022/016193
Other languages
English (en)
French (fr)
Inventor
友亮 江藤
新吾 中村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280031498.0A priority Critical patent/CN117222613A/zh
Priority to EP22795505.1A priority patent/EP4332078A1/en
Priority to KR1020237040559A priority patent/KR20240000592A/ko
Publication of WO2022230589A1 publication Critical patent/WO2022230589A1/ja
Priority to US18/384,497 priority patent/US20240076253A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/22Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions

Definitions

  • the present disclosure relates to a method for producing a fluoroalkyne compound.
  • Fluoroalkyne compounds are expected to be used as cleaning gases, etching gases, refrigerants, heat transfer media, building blocks for organic synthesis, etc.
  • a fluoroalkyne compound is obtained from a fluoroalkane compound by a dehydrofluorination reaction using a base such as lithium diisopropylamide (LDA). shown to be
  • An object of the present disclosure is to provide a method for efficiently synthesizing a fluoroalkyne compound from a fluoroalkane compound.
  • the present disclosure includes the following configurations.
  • R 1 C ⁇ CR 2 (1)
  • R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group.
  • X 1 and X 2 X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • a fluoroalkane compound represented by a step of dehydrofluorinating in the presence of a solvent containing ether (I) the fluoroalkyl group is a fluoroalkyl group having 1 to 4 carbon atoms, or (II) the ether is a chain ether, and the dehydrofluorination reaction is performed with a solvent containing the chain ether, at least one of performing in the presence of a base containing hydroxides and/or alkoxides of alkali metals and/or alkaline earth metals.
  • Section 2. The production method according to Item 1, wherein the water concentration of the solvent is 0.01 to 500 ppm by mass when the total amount of the solvent is 100% by mass.
  • Item 3 The production method according to Item 1 or 2, wherein the ether has 1 to 10 ether bonds.
  • Item 4. The production method according to any one of items 1 to 3, which satisfies the above (I).
  • the fluoroalkyl group has the general formula (3): —CF 2 R 3 (3) [In the formula, R 3 represents a fluorine atom or a fluoroalkyl group having 1 to 3 carbon atoms. ]
  • Item 6. The production method according to Item 4 or 5, wherein the dehydrofluorination reaction is performed in the presence of a base.
  • Item 7. The production method according to Item 6, wherein the base is hydroxide and/or alkoxide of alkali metal and/or alkaline earth metal.
  • Item 8. The production method according to any one of items 1 to 3, which satisfies the above (II).
  • Item 9 The production method according to Item 8, wherein the fluoroalkyl group has 1 to 10 carbon atoms.
  • the fluoroalkyl group has the general formula (3): —CF 2 R 3 (3) [In the formula, R 3 represents a fluorine atom or a fluoroalkyl group having 1 to 9 carbon atoms. ]
  • Item 11 The production method according to any one of Items 1 to 10, wherein the reaction temperature in the dehydrofluorination reaction is 0 to 300°C.
  • Item 13 A composition according to Item 12 for use as a cleaning gas, an etching gas, a refrigerant, a heat transfer medium or a building block for organic synthesis.
  • Item 14 Use of the composition according to Item 12 as a cleaning gas, an etching gas, a refrigerant, a heat transfer medium or a building block for organic synthesis.
  • selectivity means the ratio (mol%) of the total molar amount of the target compound contained in the outflow gas to the total molar amount of compounds other than the raw material compounds in the outflow gas from the reactor outlet. do.
  • the conversion rate refers to the ratio (mol%) of the total molar amount of compounds other than the raw material compound contained in the outflow gas from the reactor outlet to the molar amount of the raw material compound supplied to the reactor. means.
  • yield means the ratio (mol%) of the total molar amount of the target compound contained in the outflow gas from the reactor outlet to the molar amount of the raw material compound supplied to the reactor.
  • Non-Patent Document 1 using lithium diisopropylamide (LDA) as a base, in a solvent such as hexane, diethyl ether, monoethylene glycol dimethyl ether, in a single dehydrofluorination reaction, a fluoroalkane compound was obtained. It is also known to obtain fluoroalkyne compounds from In this method, KOC(CH 3 ) 3 is used as a base to obtain a fluoroalkyne compound from a fluoroalkane compound in a single dehydrofluorination reaction even in a solvent such as tetrahydrofuran or dimethylsulfoxide.
  • LDA lithium diisopropylamide
  • Method for producing fluoroalkyne compound (first aspect)
  • the method for producing a fluoroalkyne compound in the first aspect of the present disclosure comprises General formula (1): R 1 C ⁇ CR 2 (1) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group. ]
  • X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • the method for producing a fluoroalkyne compound in the first aspect of the present disclosure includes General formula (1): R 1 C ⁇ CR 2 (1) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group having 1 to 4 carbon atoms. ]
  • X 1 and X 2 X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • a fluoroalkane compound represented by is subjected to a dehydrofluorination reaction in the presence of an ether solvent.
  • the fluoroalkane compound as a substrate that can be used in the production method (first aspect) of the present disclosure has the general formula (2) as described above: R1CHX1CFX2R2 ( 2 )
  • R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group having 1 to 4 carbon atoms.
  • X 1 and X 2 X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • X 1 is a fluorine atom and X 2 is a hydrogen atom
  • X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • ] is a fluoroalkane compound represented by
  • the fluoroalkane compound represented by general formula (2) is represented by general formulas (2A) and (2B): R 1 CFHCFHR 2 (2A) R1CH2CF2R2 ( 2B ) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group having 1 to 4 carbon atoms. ] includes any of
  • the fluoroalkyl group represented by R 1 and R 2 means a group in which one or more hydrogen atoms in the alkyl group are substituted with fluorine atoms, and all hydrogen atoms in the alkyl group are substituted Also included are perfluoroalkyl groups containing As such a fluoroalkyl group, both a linear fluoroalkyl group and a branched fluoroalkyl group can be employed.
  • both R 1 and R 2 are preferably fluoroalkyl groups, and perfluoro An alkyl group is more preferred, and a trifluoromethyl group is even more preferred.
  • R 1 and R 2 described above may be the same or different.
  • fluoroalkane compounds as substrates satisfying the above conditions include CF2HCF2H , CF3CFHCF2H , CF3CFHCFHCF3 , CF3CF2CFHCFHCF3 , CF3CF2CFHCFHCF . 2CF3 , CFH2CF3 , CF3CH2CF3 , CF3CH2CF2CF3 , CF3CF2CH2CF2CF3 , CF3CF2CH2CF2CF3 , etc.
  • reaction equation CF3CFHCFHCF3 ⁇ CF3C ⁇ CCF3 + 2HF CF3CH2CF2CF3 ⁇ CF3C [ identical to] CCF3 + 2HF , it is preferably a dehydrofluorination reaction in which 2 mol of hydrogen fluoride is eliminated per 1 mol of CF 3 CFHCFHCF 3 or CF 3 CH 2 CF 2 CF 3 .
  • the step of dehydrofluorinating a fluoroalkane compound in the present disclosure is performed in the presence of an ether-containing solvent, that is, in a liquid phase using an ether-containing solvent, from the viewpoint of conversion rate, selectivity and yield. If the reaction is carried out in a gas phase without using a solvent, or if a liquid phase reaction is carried out using a solvent other than a solvent containing ether, the dehydrofluorination reaction from the fluoroalkene compound does not proceed, and the fluoroalkane compound is converted to the fluoroalkane compound in one step. Alkyne compounds cannot be obtained efficiently.
  • the yield of the target compound can be further improved by increasing the amount of the liquid phase by applying pressure and raising the boiling point of the raw material by using, for example, a metal container.
  • reaction is preferably carried out in one step in the presence of an ether-containing solvent to obtain a fluoroalkyne compound by dehydrofluorination from a fluoroalkane compound.
  • the amount of water is small so that the fluoroalkyne compound can be easily obtained from the fluoroalkane compound by dehydrofluorination reaction.
  • the water concentration of the ether-containing solvent is preferably 500 mass ppm or less, more preferably 400 mass ppm or less, and even more preferably 300 mass ppm or less, where the total amount of the ether-containing solvent is 100% by mass.
  • the lower limit of the water concentration of the ether-containing solvent is not particularly limited, it is preferably 0.01 ppm by mass or more from the viewpoint of easy technical achievement.
  • the ether has as few ether bonds as possible so that the fluoroalkyne compound can be easily obtained from the fluoroalkane compound by the dehydrofluorination reaction.
  • the number of ether bonds possessed by the ether is preferably 1 to 10, more preferably 1 to 5, still more preferably 1 to 3, and particularly preferably 1 to 2.
  • chain ethers are preferable as the ether in the ether-containing solvent that satisfies the above conditions.
  • the chain ether includes not only ether compounds having no cyclic structure, but also ether compounds containing a cyclic structure without an ether bond.
  • the chain ether does not include ether compounds in which ether bonds form a cyclic structure, such as tetrahydrofuran, but also includes ether compounds containing a cyclic structure that does not include ether bonds, such as diphenyl ether. is. If an ether compound having no cyclic structure is used, the yield of the target fluoroalkyne compound can be particularly improved.
  • ethers are preferably diethyl ether, diisopropyl ether, di(n-butyl) ether, diphenyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, diglyme and the like.
  • Ether solvents can be used alone or in combination of two or more.
  • diethyl ether, diisopropyl ether, di(n-butyl) ether, diphenyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane and the like are preferable from the viewpoint of conversion rate, selectivity and yield.
  • Ether, diisopropyl ether, di(n-butyl) ether, diphenyl ether and the like are more preferred, and diisopropyl ether, di(n-butyl) ether, diphenyl ether and the like are even more preferred.
  • ethers other solvents such as carbonate solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate; ethyl acetate, propyl acetate, butyl acetate; , methyl propionate, ethyl propionate, butyl propionate, etc.; ketone solvents, such as acetone, ethyl methyl ketone, diethyl ketone; lactone solvents, such as ⁇ -butyrolactone, ⁇ -valerolactone, tetrahydrofuran, tetrahydropyran; tetrahydrofuran, etc.
  • carbonate solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate
  • ketone solvents such as acetone, eth
  • nitrile solvents such as acetonitrile, propionitrile and benzonitrile; amide solvents such as N,N-dimethylformamide; sulfone solvents such as dimethylsulfoxide and sulfolane;
  • the amount of the ether used is 80 to 100% by volume (especially 90 to 100% by volume) when the total amount of the solvent used in the reaction is 100% by volume.
  • the amount of these other solvents used is 0 to 20% by volume (especially 0 to 10% by volume).
  • At least one selected from the group consisting of hydroxides and alkoxides of alkali metals and alkaline earth metals that is, alkali metal at least one selected from the group consisting of hydroxides, alkaline earth metal hydroxides, alkali metal alkoxides and alkaline earth metal alkoxides), alkali metal and alkaline earth metal hydroxides and alkoxide alkali metal salts
  • At least one selected from the group consisting of that is, at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides and alkali metal alkoxides
  • alkali metal hydroxides and More preferred are/or alkoxides (that is, alkali metal hydroxides and/or alkali metal alkoxides), with alkali metal hydroxides being particularly preferred.
  • Such bases include sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, sodium methoxide, potassium tert-butoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, Potassium ethoxide, potassium tert-butoxide, magnesium methoxide, magnesium ethoxide, magnesium tert-butoxide, calcium methoxide, calcium ethoxide, calcium tert-butoxide and the like.
  • potassium methoxide, potassium ethoxide, potassium tert-butoxide and the like are preferred, and sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide, potassium tert-butoxide. etc. are more preferable, and sodium hydroxide, potassium hydroxide and the like are more preferable.
  • the amount of the base used is not particularly limited, but is preferably 1.0 to 10.0 mol, more preferably 1.5 to 5.0 mol, per 1 mol of the fluoroalkane compound represented by the general formula (2). Preferably, 2.0 to 3.0 mol is more preferable.
  • the fluoroalkyne compound represented by the general formula (1), which is the target compound has a low boiling point and exists as a gas at room temperature. Therefore, in the step of performing the dehydrofluorination reaction in the present disclosure, by making the reaction system a closed reaction system, the pressure in the closed reaction system naturally rises, and the reaction can be performed under pressurized conditions. Therefore, the fluoroalkyne compound represented by the general formula (1), which is the target compound, can be obtained with higher selectivity and higher conversion.
  • the closed reaction system is pressurized due to the low boiling point of the target compound, and the concentration of the substrate (raw material compound) in the above-mentioned ether solvent increases, making it possible to improve the reactivity.
  • a pressure vessel such as an autoclave is charged with a raw material compound, an ether solvent and, if necessary, a base, etc., heated to an appropriate reaction temperature with a heater, and stirred for a certain period of time. It is preferred to react.
  • an inert gas such as nitrogen, helium, or carbon dioxide gas.
  • the reaction temperature in the closed pressure reaction system is usually preferably 0 to 400° C. from the viewpoint of the conversion rate of the reaction and the selectivity and yield of the halogenated alkyne compound. ⁇ 300°C is more preferred, and 50 to 200°C is even more preferred.
  • the reaction temperature in the closed pressure reaction system may vary depending on the conversion rate of the reaction and the selection of the halogenated alkyne compound. From the viewpoint of efficiency and yield, the temperature is generally preferably 25 to 400°C, more preferably 50 to 300°C, and even more preferably 100 to 200°C.
  • the reaction temperature in the closed pressure reaction system is usually preferably 0 to 200° C., more preferably 25 to 150° C., more preferably 50 to 100°C is more preferred.
  • the reaction time is not particularly limited, and can be set to a time that allows the reaction to proceed sufficiently. Specifically, the reaction can be allowed to proceed until there is no change in the composition within the reaction system.
  • the dehydrofluorination reaction step can be performed in a pressurized reaction system by setting the reaction temperature to 0° C. or higher and the reaction pressure to be higher than 0 kPa.
  • the fluoroalkyne compound represented by the general formula (1) which is the target compound, can be obtained with higher selectivity and higher conversion.
  • the reaction system is pressurized in this way, the concentration of the substrate (raw material compound) in the ether solvent increases, and the reactivity can be improved.
  • it is preferable to carry out the reaction by sealing the reaction system using a batch-type pressure-resistant reaction vessel.
  • a pressure vessel such as an autoclave is charged with a raw material compound, an ether solvent and, if necessary, a base, etc., heated to an appropriate reaction temperature with a heater, and stirred for a certain period of time. It is preferred to react.
  • the reaction pressure is preferably higher than 0 kPa, more preferably 5 kPa or higher, even more preferably 10 kPa or higher, and particularly preferably 15 kPa or higher.
  • the upper limit of the reaction pressure is not particularly limited, and is usually about 2 MPa.
  • pressure is assumed to be gauge pressure unless otherwise specified.
  • the reaction pressure in the case of employing a pressurized reaction system is described here, the reaction can be allowed to proceed under reduced pressure or normal pressure, for example, when the pressurized reaction system is not employed.
  • the pressure inside the reaction system can be increased by feeding an inert gas such as nitrogen, helium, or carbon dioxide into the reaction system.
  • an inert gas such as nitrogen, helium, or carbon dioxide
  • the reaction temperature in the pressurized reaction system allows the elimination reaction to proceed more efficiently, and the target compound can be obtained with higher selectivity.
  • the temperature is usually preferably 0 to 400°C, more preferably 25 to 300°C, and even more preferably 100 to 200°C.
  • the reaction temperature in the pressurized reaction system may vary depending on the conversion rate of the reaction and the selection of the halogenated alkyne compound. From the viewpoint of efficiency and yield, the temperature is generally preferably 25 to 400°C, more preferably 50 to 300°C, and even more preferably 100 to 200°C.
  • the reaction temperature in the pressurized reaction system is usually preferably 0 to 200° C., more preferably 25 to 150° C., more preferably 50 to 100°C is more preferred.
  • purification treatment can be performed according to a conventional method as necessary to obtain the fluoroalkyne compound represented by the general formula (1).
  • Target compound (1-6) Target compound (halogenated alkyne compound)
  • the object compound of the present disclosure thus obtained has the general formula (1): R 1 C ⁇ CR 2 (1) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group. ] is a fluoroalkyne compound represented by
  • R 1 and R 2 in general formula (1) correspond to R 1 and R 2 in general formula (2) described above. Therefore, the fluoroalkyne compound represented by the general formula (1) to be produced is, for example, specifically CF ⁇ CF, CF 3 C ⁇ CF, CF 3 C ⁇ CCF 3 , CF 3 CF 2 C ⁇ CCF 3 , CF 3 CF 2 C ⁇ CCF 2 CF 3 and the like.
  • the yield in the first step is Assuming that the ratio is 100 mol %, the yield in the second step is 49.9 mol % as described above, so in the two steps, 49.9 mol % of CF 3 CFHCFHCF 3 as a raw material C.ident.CCF3 .
  • a predetermined fluoroalkyne compound can be obtained in only one step, and in addition, when the dehydrofluorination reaction is repeated multiple times, can improve the yield of fluoroalkyne compounds compared to conventional methods. In any case, it can be understood that the manufacturing method of the present disclosure is useful.
  • the fluoroalkyne compounds thus obtained are used in various applications such as etching gases, cleaning gases, deposit gases, refrigerants, heat transfer media, building blocks for organic synthesis, etc., for forming state-of-the-art microstructures such as semiconductors and liquid crystals. It can be used effectively for various purposes.
  • Deposit gases and building blocks for organic synthesis are described below.
  • the method for producing a fluoroalkyne compound in the second aspect of the present disclosure comprises General formula (1): R 1 C ⁇ CR 2 (1) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group. ]
  • X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • the method for producing a fluoroalkyne compound in the second aspect of the present disclosure includes General formula (1): R 1 C ⁇ CR 2 (1) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group. ]
  • X 1 and X 2 X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom.
  • a step of dehydrofluorinating a fluoroalkane compound represented by in the presence of a solvent containing a chain ether and a base containing hydroxides and/or alkoxides of alkali metals and/or alkaline earth metals Prepare.
  • the fluoroalkane compound as a substrate that can be used in the production method (second aspect) of the present disclosure, as described above, has the general formula (2): R1CHX1CFX2R2 ( 2 ) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group. As for X 1 and X 2 , X 1 is a fluorine atom and X 2 is a hydrogen atom, or X 1 is a hydrogen atom and X 2 is a fluorine atom. ] is a fluoroalkane compound represented by
  • the fluoroalkane compound represented by general formula (2) is represented by general formulas (2A) and (2B): R 1 CFHCFHR 2 (2A) R1CH2CF2R2 ( 2B ) [In the formula, R 1 and R 2 are the same or different and represent a fluorine atom or a fluoroalkyl group. ] includes any of
  • the fluoroalkyl group represented by R 1 and R 2 means a group in which one or more hydrogen atoms in the alkyl group are substituted with fluorine atoms, and all hydrogen atoms in the alkyl group are substituted Also included are perfluoroalkyl groups containing As such a fluoroalkyl group, both a linear fluoroalkyl group and a branched fluoroalkyl group can be employed.
  • both R 1 and R 2 are preferably fluoroalkyl groups, and perfluoro An alkyl group is more preferred, and a trifluoromethyl group is even more preferred.
  • R 1 and R 2 described above may be the same or different.
  • fluoroalkane compounds as substrates satisfying the above conditions include CF2HCF2H , CF3CFHCF2H , CF3CFHCFHCF3 , CF3CF2CFHCFHCF3 , CF3CF2CFHCFHCF . 2CF3 , CFH2CF3 , CF3CH2CF3 , CF3CH2CF2CF3 , CF3CF2CH2CF2CF3 , CF3CF2CH2CF2CF3 , etc.
  • Dehydrofluorination reaction can be the same as “(1-2) Dehydrofluorination reaction” described above.
  • Various conditions can also be the same as those described above.
  • the amount of water is small so that the fluoroalkyne compound can be easily obtained from the fluoroalkane compound by dehydrofluorination reaction.
  • the water concentration of the solvent containing the chain ether is preferably 500 mass ppm or less, more preferably 400 mass ppm or less, and 300 mass ppm or less when the total amount of the solvent containing the chain ether is 100% by mass. is more preferred.
  • the lower limit of the water concentration of the solvent containing the chain ether is not particularly limited, it is preferably 0.01 ppm by mass or more from the viewpoint of easy technical achievement.
  • the chain ether has as few ether bonds as possible so that the fluoroalkyne compound can be easily obtained from the fluoroalkane compound by the dehydrofluorination reaction.
  • the number of ether bonds possessed by the chain ether is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 3, and particularly preferably 1 to 2.
  • a chain ether in a solvent containing a chain ether that satisfies the above conditions includes not only ether compounds that do not have any cyclic structure, but also ether compounds that contain a cyclic structure that does not contain an ether bond.
  • the chain ether does not include ether compounds in which ether bonds form a cyclic structure, such as tetrahydrofuran, but also includes ether compounds containing a cyclic structure that does not include ether bonds, such as diphenyl ether. is. If an ether compound having no cyclic structure is used, the yield of the target fluoroalkyne compound can be particularly improved.
  • chain ethers are preferably diethyl ether, diisopropyl ether, di(n-butyl) ether, diphenyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, diglyme and the like.
  • a chain ether solvent can also be used individually and can also be used in combination of 2 or more type.
  • diethyl ether, diisopropyl ether, di(n-butyl) ether, diphenyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane and the like are preferable from the viewpoint of conversion rate, selectivity and yield.
  • Ether, diisopropyl ether, di(n-butyl) ether, diphenyl ether and the like are more preferred, and diisopropyl ether, di(n-butyl) ether, diphenyl ether and the like are even more preferred.
  • chain ethers other solvents such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and other carbonate solvents; ethyl acetate, propyl acetate, ester solvents such as butyl acetate, methyl propionate, ethyl propionate and butyl propionate; ketone solvents such as acetone, ethyl methyl ketone and diethyl ketone; lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, tetrahydrofuran and tetrahydropyran; Cyclic ether solvents such as tetrahydrofuran; nitrile solvents such as acetonitrile, propionitrile and benzonitrile; amide solvents such as N,N-dimethylformamide; sulfone
  • the amount of these other solvents is small.
  • the amount of ether used is preferably 80 to 100% by volume (especially 90 to 100% by volume), and the amount of these other solvents to be used is preferably 0 to 20% by volume (especially 0 to 10% by volume).
  • At least one selected from the group consisting of hydroxides and alkoxides of alkali metals and alkaline earth metals that is, alkali metal at least one selected from the group consisting of hydroxides, alkaline earth metal hydroxides, alkali metal alkoxides and alkaline earth metal alkoxides), preferably alkali metal and alkaline earth metal hydroxides and alkoxide alkali metal salts
  • At least one selected from the group consisting of that is, at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides and alkali metal alkoxides
  • more preferably alkali metal hydroxides and/or alkoxides that is, alkali metal hydroxides and/or alkali metal alkoxides
  • alkali metal hydroxides and/or alkali metal alkoxides more preferably alkali metal hydroxides.
  • Such bases include sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, sodium methoxide, potassium tert-butoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, Potassium ethoxide, potassium tert-butoxide, magnesium methoxide, magnesium ethoxide, magnesium tert-butoxide, calcium methoxide, calcium ethoxide, calcium tert-butoxide and the like.
  • potassium methoxide, potassium ethoxide, potassium tert-butoxide and the like are preferred, and sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide, potassium tert-butoxide. etc. are more preferable, and sodium hydroxide, potassium hydroxide and the like are more preferable.
  • the amount of the base used is not particularly limited, but it is preferably around 1 mol per 1 mol of the fluoroalkane compound represented by general formula (2). Specifically, the amount of the base used is preferably 1.0 to 10.0 mol, more preferably 1.5 to 5.0 mol, per 1 mol of the fluoroalkane compound represented by the general formula (2). Preferably, 2.0 to 3.0 mol is more preferable.
  • (2-5) Reaction Conditions and Target Compound “Reaction conditions” can be the same as “(1-5) Reaction conditions” described above.
  • the “target compound” can be the same as “(1-6) target compound” described above.
  • Various conditions can also be the same as those described above.
  • a fluoroalkyne compound can be obtained from a fluoroalkane compound, preferably in one step, but may also be obtained in the form of a composition containing the fluoroalkyne compound.
  • a fluoroalkyne compound represented by the general formula (1) and the fluoroalkane compound represented by the general formula (2).
  • Eliminated general formula (4): R 1 CF CHR 2 (4) [In the formula, R 1 and R 2 are the same as above. ]
  • a composition containing a fluoroalkene compound represented by can be produced.
  • the fluoroalkyne compound represented by the general formula (1) and the fluoroalkene compound represented by the general formula (4) are contained in approximately the same amount, and other components A composition with a low content tends to be easily manufactured. Therefore, in the composition containing the fluoroalkyne compound in the present disclosure, the content of the fluoroalkyne compound represented by the general formula (1) is preferably 25.00 mol% or more when the total amount of the composition is 100 mol%. 30.00 mol % or more is more preferable, and 35.00 mol % or more is even more preferable.
  • the content of the fluoroalkyne compound represented by the general formula (1) is, for example, 75.00 mol% or less when the total amount of the composition is 100 mol%. may be present, may be 70.00 mol % or less, or may be 65.00 mol % or less.
  • the content of the fluoroalkene compound represented by the general formula (4) is 25.00 mol% or more when the total amount of the composition is 100 mol%. Well, it may be 30.00 mol % or more, or 35.00 mol % or more.
  • the content of the fluoroalkene compound represented by the general formula (4) is preferably 75.00 mol% or less when the total amount of the composition is 100 mol%. 70.00 mol % or less is more preferable, and 65.00 mol % or less is even more preferable.
  • the composition containing the fluoroalkyne compound in the present disclosure is a mixture of the fluoroalkyne compound represented by the general formula (1) and the fluoroalkene compound represented by the general formula (4), with the total amount of the composition being 100 mol%.
  • the total content is preferably 90.00 mol% or more, more preferably 91.00 mol% or more, and even more preferably 92.00 mol% or more.
  • the composition containing the fluoroalkyne compound in the present disclosure is composed of the fluoroalkyne compound represented by the general formula (1) and the fluoroalkene compound represented by the general formula (4), with the total amount of the composition being 100 mol%. may be 100.00 mol % or less, 99.99 mol % or less, or 99.98 mol % or less.
  • trifluoromethane (R23), difluoromethane (R32), tetrafluoromethane (R14), monofluoromethane (R41), 1,2-difluoroethylene (R1132), 1,1,2-trifluoroethylene (R1123), etc. of hydrofluorocarbon compounds may be included.
  • the composition containing the fluoroalkyne compound in the present disclosure may have a content of these other hydrofluorocarbon compounds of 0.00 mol% or more, with the total amount of the composition being 100 mol%. It may be mol % or more, or may be 0.02 mol % or more.
  • the content of these other hydrofluorocarbon compounds is preferably 10.00 mol% or less, and 7.50 mol% or less, with the total amount of the composition being 100 mol%. is more preferable, and 5.00 mol % or less is even more preferable.
  • a fluoroalkyne compound can be obtained with a particularly high selectivity and yield as compared with conventional methods for obtaining a fluoroalkyne compound from a fluoroalkane compound, and as a result, a fluoroalkyne compound Purification for obtaining can be performed efficiently.
  • composition containing the fluoroalkyne compound of the present disclosure can be used not only as an etching gas for forming state-of-the-art fine structures such as semiconductors and liquid crystals, but also as a cleaning gas, a deposit gas, a coolant, It can be effectively used for various purposes such as a heat transfer medium and a building block for organic synthesis.
  • the deposit gas is a gas that deposits an etching-resistant polymer layer.
  • the building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton.
  • a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3
  • a fluoroalkyl group such as a CF 3 group is introduced to form a detergent or a fluorine-containing pharmaceutical intermediate. It is possible to transform into possible substances.
  • the raw material compound was a fluoroalkane compound represented by the general formula (2), R 1 and R 3 were trifluoromethyl groups, and the following Reaction formula: CF3CFHCFHCF3 ⁇ CF3C ⁇ CCF3 + 2HF
  • a fluoroalkyne compound was obtained by a dehydrofluorination reaction according to .
  • Examples 1 to 6 and Comparative Example 1 An autoclave was charged with sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium tert-butoxide (t-BuONa) or potassium tert-butoxide (t-BuOK) as a base and di(n-butyl) ether ( Bu 2 O), diphenyl ether (Ph 2 O), diglyme or water were added, and the raw material compound (CF 3 CFHCFHCF 3 ) was added, and the system was sealed with a lid. The concentration of the base in the added solvent was 2.5 mol/L. At this time, the amount of the base used was adjusted to 2 mol per 1 mol of the raw material compound. The pressure at that time was 0 kPa.
  • the pressure at the end of the reaction was 500 kPa.
  • Example 7 and Comparative Example 2 Example 1 under the etching conditions of ICP (Inductive Coupled Plasma) discharge power of 800 W, bias power of 100 W, pressure of 3 mm Torr (0.399 Pa), electron density of 8 ⁇ 10 10 to 2 ⁇ 10 11 cm ⁇ 3 , and electron temperature of 5 to 7 eV. using the composition (containing 51.00 mol % of CF 3 C ⁇ CCF 3 and 42.62 mol % of CF 3 CF CHCF 3 ) obtained in 1. above, when etching the SiO 2 film and the resist film. The etch rate and resist selectivity ratio (SiO 2 film etch rate/resist etch rate) were measured (Example 7). Further, the same experiment was conducted by changing the gas used to only CF 3 C ⁇ CCF 3 (Comparative Example 2).
  • ICP Inductive Coupled Plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一般式(1): RC≡CR (1) [式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。] で表されるフルオロアルキン化合物の製造方法であって、 一般式(2): RCHXCFX (2) [式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。] で表されるフルオロアルカン化合物を、エーテル溶媒の存在下に脱フッ化水素反応する工程を備え、 (I)前記フルオロアルキル基が炭素数1~4のフルオロアルキル基である、又は (II)前記エーテル溶媒が鎖状エーテル化合物であり、前記脱フッ化水素反応を、前記鎖状エーテルを含む溶媒と、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドを含む塩基との存在下で行う の少なくとも1つを満たす、製造方法により、フルオロアルカン化合物から、効率的にフルオロアルキン化合物を合成することができる。

Description

フルオロアルキン化合物の製造方法
 本開示は、フルオロアルキン化合物の製造方法に関する。
 フルオロアルキン化合物は、クリーニングガス、エッチングガス、冷媒、熱移動媒体、有機合成用ビルディングブロック等として期待されている。
 このようなフルオロアルキン化合物の製造方法としては、例えば、非特許文献1には、リチウムジイソプロピルアミド(LDA)等の塩基を用いて、脱フッ化水素反応で、フルオロアルカン化合物からフルオロアルキン化合物が得られることが示されている。
Tetrahedron, 1988, vol. 44, No. 10, p. 2865-2874
 本開示は、フルオロアルカン化合物から、効率的にフルオロアルキン化合物を合成する方法を提供することを目的とする。
 本開示は、以下の構成を包含する。
 項1.一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物の製造方法であって、
一般式(2):
CHXCFX   (2)
[式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物を、エーテルを含む溶媒の存在下に脱フッ化水素反応する工程を備え、
(I)前記フルオロアルキル基が炭素数1~4のフルオロアルキル基である、又は
(II)前記エーテルが鎖状エーテルであり、前記脱フッ化水素反応を、前記鎖状エーテルを含む溶媒と、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドを含む塩基との存在下で行う
の少なくとも1つを満たす、製造方法。
 項2.前記溶媒の総量を100質量%として、前記溶媒の水分濃度が、0.01~500質量ppmである、項1に記載の製造方法。
 項3.前記エーテルが有するエーテル結合の数が、1~10個である、項1又は2に記載の製造方法。
 項4.前記(I)を満たす、項1~3のいずれか1項に記載の製造方法。
 項5.前記フルオロアルキル基が、一般式(3):
-CF   (3)
[式中、Rはフッ素原子又は炭素数1~3のフルオロアルキル基を示す。]
で表される、項4に記載の製造方法。
 項6.前記脱フッ化水素反応を塩基の存在下で行う、項4又は5に記載の製造方法。
 項7.前記塩基が、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドである、項6に記載の製造方法。
 項8.前記(II)を満たす、項1~3のいずれか1項に記載の製造方法。
 項9.前記フルオロアルキル基の炭素数が1~10である、項8に記載の製造方法。
 項10.前記フルオロアルキル基が、一般式(3):
-CF   (3)
[式中、Rはフッ素原子又は炭素数1~9のフルオロアルキル基を示す。]
で表される、項8又は9に記載の製造方法。
 項11.前記脱フッ化水素反応における反応温度が、0~300℃である、項1~10のいずれか1項に記載の製造方法。
 項12.一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物と、
一般式(4):
CF=CHR   (4)
[式中、R及びRは前記に同じである。]
で表されるフルオロアルケン化合物とを含有する組成物であって、
組成物全量を100モル%として、前記フルオロアルキン化合物の含有量が25.00~75.00モル%であり、前記フルオロアルケン化合物の含有量が25.00~75.00モル%であり、且つ、前記フルオロアルキン化合物と前記フルオロアルケン化合物の合計含有量が、90.00~100.00モル%である、組成物。
 項13.クリーニングガス、エッチングガス、冷媒、熱移動媒体又は有機合成用ビルディングブロックとして用いられる、項12に記載の組成物。
 項14.項12に記載の組成物の、クリーニングガス、エッチングガス、冷媒、熱移動媒体又は有機合成用ビルディングブロックへの使用。
 本開示によれば、フルオロアルカン化合物から、効率的にフルオロアルカン化合物を合成する方法を提供することができる。
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。
 本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物の合計モル量に対する、当該流出ガスに含まれる目的化合物の合計モル量の割合(モル%)を意味する。
 本開示において、「転化率」とは、反応器に供給される原料化合物のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物の合計モル量の割合(モル%)を意味する。
 本開示において、「収率」とは、反応器に供給される原料化合物のモル量に対する、反応器出口からの流出ガスに含まれる目的化合物の合計モル量の割合(モル%)を意味する。
 フルオロアルキン化合物の製造方法としては、CFCFHCFHCF等のフルオロアルカン化合物から、脱フッ化水素反応を行ってCFCF=CHCF等のフルオロアルケン化合物を合成し、そこからさらに、脱フッ化水素反応を行って合成することが知られている。この方法では、脱フッ化水素反応を2回施す必要があり、製造工程が長くなっていた。
 また、非特許文献1のような、リチウムジイソプロピルアミド(LDA)を塩基として用いて、ヘキサン、ジエチルエーテル、モノエチレングリコールジメチルエーテル等の溶媒中で、1回の脱フッ化水素反応で、フルオロアルカン化合物からフルオロアルキン化合物を得る方法も知られている。この方法では、KOC(CHを塩基として用いて、テトラヒドロフラン、ジメチルスルホキシド等の溶媒中でも、1回の脱フッ化水素反応で、フルオロアルカン化合物からフルオロアルキン化合物が得られている。しかしながら、この方法においては、リチウムジイソプロピルアミド(LDA)を使用する場合は、リチウムジイソプロピルアミド(LDA)は高価であるため効率的な方法ではないうえに、収率は最大でも41%(高価なLDAを使用しない場合は最大で24%)であり、有効な製造方法とは言えない。
 本開示の製造方法によれば、従来と比較しても、フルオロアルカン化合物から、効率的にフルオロアルカン化合物を高収率で合成する方法を提供することができる。
 1.フルオロアルキン化合物の製造方法(第1の態様)
 本開示の第1の態様におけるフルオロアルキン化合物の製造方法は、
一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物の製造方法であって、
一般式(2):
CHXCFX   (2)
[式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物を、エーテルを含む溶媒の存在下に脱フッ化水素反応する工程を備え、
(I)前記フルオロアルキル基が炭素数1~4のフルオロアルキル基である
を満たす。
 つまり、本開示の第1の態様におけるフルオロアルキン化合物の製造方法は、
一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又は炭素数1~4のフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物の製造方法であって、
一般式(2):
CHXCFX   (2)
[式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物を、エーテル溶媒の存在下に脱フッ化水素反応する工程を備える。
 本開示によれば、上記した一般式(2)で表されるフルオロアルカン化合物の脱フッ化水素反応を行うことで、一般式(2)で表されるフルオロアルカン化合物1モルに対して2モルのフッ化水素が脱離した一般式(1)で表されるフルオロアルキン化合物を1ステップのみで得ることができる。
 (1-1)原料化合物(フルオロアルカン化合物)
 本開示の製造方法(第1の態様)において使用できる基質としてのフルオロアルカン化合物は、上記のとおり、一般式(2):
CHXCFX   (2)
[式中、R及びRは同一又は異なって、フッ素原子又は炭素数1~4のフルオロアルキル基を示す。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物である。
 つまり、一般式(2)で表されるフルオロアルカン化合物は、一般式(2A)及び(2B):
CFHCFHR   (2A)
CHCF   (2B)
[式中、R及びRは同一又は異なって、フッ素原子又は炭素数1~4のフルオロアルキル基を示す。]
のいずれも包含する。
 一般式(2)において、R及びRで示されるフルオロアルキル基は、アルキル基における1個以上の水素原子がフッ素原子に置換された基を意味し、アルキル基の全ての水素原子が置換されたパーフルオロアルキル基も包含する。このようなフルオロアルキル基としては、直鎖状フルオロアルキル基及び分岐鎖状フルオロアルキル基のいずれも採用することができ、例えば、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、モノフルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチルフルオロエチル基、モノフルオロプロピル基、ジフルオロプロピル基、トリフルオロプロピル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、ヘキサフルオロプロピル基、ヘプタフルオロプロピル基、モノフルオロブチル基、ジフルオロブチル基、トリフルオロブチル基、テトラフルオロブチル基、ヘプタフルオロブチル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロブチル基、ノナフルオロブチル基等の炭素数1~4のフルオロアルキル基が挙げられ、フルオロアルキン化合物を特に、高い転化率、収率及び選択率で製造することができる観点から、炭素数1~3のフルオロアルキル基が好ましい。また、これらフルオロアルキル基は、副反応を抑制しやすい観点からは水素原子が少ないことが好ましく、パーフルオロアルキル基が特に好ましい。
 基質であるフルオロアルカン化合物としては、フルオロアルキン化合物を特に、高い転化率、収率及び選択率で製造することができる観点において、R及びRはいずれも、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましく、トリフルオロメチル基がさらに好ましい。
 上記したR及びRは、それぞれ同一でもよいし、異なっていてもよい。
 上記のような条件を満たす基質としてのフルオロアルカン化合物としては、具体的には、CFHCFH、CFCFHCFH、CFCFHCFHCF、CFCFCFHCFHCF、CFCFCFHCFHCFCF、CFHCF、CFCHCF、CFCHCFCF、CFCFCHCFCF、CFCFCHCFCFCF等が挙げられる。これらのフルオロアルカン化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなフルオロアルカン化合物は、公知又は市販品を採用することができる。
 (1-2)脱フッ化水素反応
 本開示におけるフルオロアルカン化合物から脱フッ化水素反応させる工程では、例えば、基質として、一般式(2)で表されるフルオロアルカン化合物では、R及びRは、トリフルオロメチル基であることがより好ましい。
 つまり、以下の反応式: 
CFCFHCFHCF → CFC≡CCF + 2HF
CFCHCFCF → CFC≡CCF + 2HF
に従い、CFCFHCFHCF又はCFCHCFCF1モルに対して2モルのフッ化水素が脱離した脱フッ化水素反応であることが好ましい。
 本開示におけるフルオロアルカン化合物から脱フッ化水素反応させる工程は、転化率、選択率及び収率の観点から、エーテルを含む溶媒の存在下、つまり、エーテルを含む溶媒を用いた液相で行う。溶媒を使用しない気相で行ったり、エーテルを含む溶媒以外の溶媒を用いた液相反応を行ったりすると、フルオロアルケン化合物からの脱フッ化水素反応が進まず、1ステップでフルオロアルカン化合物からフルオロアルキン化合物を効率よく得ることができない。
 本開示においては、例えば金属容器を用いることにより、圧力をかけ、原料の沸点を上げることによって液相の量を多くすることで、目的化合物の収率をより向上させることができる。
 また、本開示においては、まず、上記した一般式(2)で表されるフルオロアルカン化合物の溶液を準備し、次いで、塩基の存在下に反応を進行させることが好ましい。
 (1-3)エーテルを含む溶媒
 本開示では、好ましくは1ステップで、フルオロアルカン化合物から脱フッ化水素反応によりフルオロアルキン化合物を得るためにエーテルを含む溶媒の存在下で反応を行う。
 ただし、フルオロアルカン化合物から脱フッ化水素反応によりフルオロアルキン化合物を得られやすいように、水分量は少ないことが好ましい。このような観点から、エーテルを含む溶媒の総量を100質量%として、エーテルを含む溶媒の水分濃度は、500質量ppm以下が好ましく、400質量ppm以下がより好ましく、300質量ppm以下がさらに好ましい。なお、エーテルを含む溶媒の水分濃度の下限値は特に制限されるわけではないが、技術的に達成しやすい観点から0.01質量ppm以上が好ましい。
 また、フルオロアルカン化合物から脱フッ化水素反応によりフルオロアルキン化合物を得られやすいように、エーテルが有するエーテル結合の数は極力少ないことが好ましい。このような観点から、エーテルが有するエーテル結合の数は、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1~2が特に好ましい。
 以上のような条件を満たすエーテルを含む溶媒におけるエーテルとしては、転化率、選択率及び収率の観点から、鎖状エーテルが好ましい。なお、鎖状エーテルとは、環状構造を一切有しないエーテル化合物のみならず、エーテル結合を含まない環状構造を含むエーテル化合物も包含される。つまり、鎖状エーテルとは、テトラヒドロフランのように、エーテル結合が環状構造を構成しているエーテル化合物は包含しないが、ジフェニルエーテルのように、エーテル結合を含まない環状構造を含むエーテル化合物も包含する概念である。なお、環状構造を一切有しないエーテル化合物を使用すれば、目的物であるフルオロアルキン化合物の収率を特に向上させることができ、エーテル結合を含まない環状構造を含むエーテル化合物を使用すれば、不純物(フルオロアルカン化合物、フルオロアルケン化合物及びフルオロアルキン化合物以外のハイドロフルオロカーボン化合物)の収率を特に低減することができる。このようなエーテルとしては、具体的には、ジエチルエーテル、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム等が好ましい。エーテル溶媒は、単独で使用することもでき、2種以上を組合せて用いることもできる。なかでも、転化率、選択率及び収率の観点から、ジエチルエーテル、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン等が好ましく、ジエチルエーテル、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル等がより好ましく、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル等がさらに好ましい。
 本開示においては、エーテルを使用していれば、その他の溶媒、例えば、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピル、炭酸エチルプロピル等の炭酸エステル溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル等のエステル溶媒;アセトン、エチルメチルケトン、ジエチルケトン等のケトン溶媒;γ-ブチロラクトン、γ-バレロラクトン、テトラヒドロフラン、テトラヒドロピラン等のラクトン溶媒;テトラヒドロフラン等の環状エーテル溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル溶媒;N,N-ジメチルホルムアミド等のアミド溶媒;ジメチルスルホキシド、スルホラン等のスルホン溶媒等と併用することを妨げるものではない。ただし、反応の転化率、選択率、収率等の観点から、反応に使用する溶媒の総量を100体積%として、上記エーテルの使用量は80~100体積%(特に90~100体積%)が好ましく、これら他の溶媒の使用量は0~20体積%(特に0~10体積%)が好ましい。
 (1-4)塩基
 本開示におけるフルオロアルカン化合物から脱フッ化水素反応させてフルオロアルキン化合物を得る工程は、転化率、選択率及び収率の観点から、塩基の存在下で行うことが好ましい。
 塩基としては、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、アルカリ金属及びアルカリ土類金属の水酸化物及びアルコキシドよりなる群から選ばれる少なくとも1種(つまり、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属アルコキシド及びアルカリ土類金属アルコキシドよりなる群から選ばれる少なくとも1種)が好ましく、アルカリ金属及びアルカリ土類金属の水酸化物並びにアルコキシドアルカリ金属塩よりなる群から選ばれる少なくとも1種(つまり、アルカリ金属水酸化物、アルカリ土類金属水酸化物及びアルカリ金属アルコキシドよりなる群から選ばれる少なくとも1種)がより好ましく、アルカリ金属の水酸化物及び/又はアルコキシド(つまり、アルカリ金属水酸化物及び/又はアルカリ金属アルコキシド)がさらに好ましく、アルカリ金属水酸化物が特に好ましい。このような塩基としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、ナトリウムメトキシド、カリウムtert-ブトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド、マグネシウムメトキシド、マグネシウムエトキシド、マグネシウムtert-ブトキシド、カルシウムメトキシド、カルシウムエトキシド、カルシウムtert-ブトキシド等が挙げられる。なかでも、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド等が好ましく、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド等がより好ましく、水酸化ナトリウム、水酸化カリウム等がさらに好ましい。
 塩基の使用量は、特に制限されないが、一般式(2)で表されるフルオロアルカン化合物1モルに対して、1.0~10.0モルが好ましく、1.5~5.0モルがより好ましく、2.0~3.0モルがさらに好ましい。
 (1-5)反応条件
 密閉反応系
 本開示において、目的化合物の一般式(1)で表されるフルオロアルキン化合物は、その沸点が低く、室温で気体(ガス)として存在する。そのため、本開示における脱フッ化水素反応する工程では、反応系を密閉反応系とすることで、自然と密閉反応系内の圧力は上昇し、加圧条件下で反応を行うことができる。このため、目的化合物である一般式(1)で表されるフルオロアルキン化合物をより高い選択率及びより高い転化率で得ることができる。
 このように、目的化合物の沸点が低いことにより密閉反応系は加圧され、上記したエーテル溶媒中の基質(原料化合物)濃度が上昇し反応性を向上させることが可能である。密閉反応系とするためには、バッチ式の耐圧反応容器を用いて反応系を密閉して、反応を行うことが好ましい。バッチ式で反応を行う場合には、例えば、オートクレーブ等の圧力容器に原料化合物、エーテル溶媒及び必要に応じて塩基等を仕込み、ヒーターにて適切な反応温度まで昇温させ、撹拌下に一定時間反応することが好ましい。反応雰囲気としては、窒素、ヘリウム、炭酸ガス等の不活性ガスの雰囲気中で反応を行うことが好ましい。
 本開示における脱フッ化水素反応する工程では、密閉圧反応系での反応温度は、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、通常0~400℃が好ましく、25~300℃がより好ましく、50~200℃がさらに好ましい。
 なお、塩基を使用しない場合又は塩基としてアルカリ金属及び/又はアルカリ土類金属の水酸化物を使用する場合は、密閉圧反応系での反応温度は、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、通常25~400℃が好ましく、50~300℃がより好ましく、100~200℃がさらに好ましい。
 一方、塩基としてアルカリ金属及び/又はアルカリ土類金属のアルコキシドを使用する場合は、反応温度が高すぎるとアルコキシドの二重結合への付加反応が進行するため、反応温度は低めとすることが好ましい。このため、密閉圧反応系での反応温度は、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、通常0~200℃が好ましく、25~150℃がより好ましく、50~100℃がさらに好ましい。
 なお、反応時間は特に制限はなく、反応を十分に進行させることができる時間とすることができ、具体的には、反応系内で組成に変化がなくなるまで反応を進行させることができる。
 加圧反応系
 本開示において、脱フッ化水素反応する工程は、反応温度を0℃以上とし、反応圧力を0kPaより大きくすることで、加圧反応系にて反応を行うこともできる。これにより、目的化合物である一般式(1)で表されるフルオロアルキン化合物をより高い選択率及びより高い転化率で得ることができる。このように反応系が加圧されると、エーテル溶媒中の基質(原料化合物)濃度が上昇し反応性を向上させることが可能である。前記加圧反応系は、バッチ式の耐圧反応容器を用いて反応系を密閉させて、反応を行うことが好ましい。バッチ式で反応を行う場合には、例えば、オートクレーブ等の圧力容器に原料化合物、エーテル溶媒及び必要に応じて塩基等を仕込み、ヒーターにて適切な反応温度まで昇温させ、撹拌下に一定時間反応することが好ましい。
 本開示における脱フッ化水素反応する工程では、反応圧力を0kPaより大きくすることが好ましい。本開示における脱フッ化水素反応する工程では、反応圧力は、0kPaより大きくすることが好ましく、5kPa以上がより好ましく、10kPa以上がさらに好ましく、15kPa以上が特に好ましい。反応圧力の上限は特に制限はなく、通常、2MPa程度である。なお、本開示において、圧力については特に表記が無い場合はゲージ圧とする。また、ここでは、加圧反応系を採用する場合の反応圧力について記載したが、加圧反応系を採用しない場合は、例えば、減圧下又は常圧下においても反応を進行させることができる。
 加圧には、反応系に、窒素、ヘリウム、炭酸ガス等の不活性ガスを送り込むことで、反応系内の圧力を上昇させることができる。
 本開示における脱フッ化水素反応する工程では、加圧反応系での反応温度は、より効率的に脱離反応を進行させ、目的化合物をより高い選択率で得ることができる観点、転化率の低下を抑制する観点から、通常0~400℃が好ましく、25~300℃がより好ましく、100~200℃がさらに好ましい。
 なお、塩基を使用しない場合又は塩基としてアルカリ金属及び/又はアルカリ土類金属の水酸化物を使用する場合は、加圧反応系での反応温度は、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、通常25~400℃が好ましく、50~300℃がより好ましく、100~200℃がさらに好ましい。
 一方、塩基としてアルカリ金属及び/又はアルカリ土類金属のアルコキシドを使用する場合は、反応温度が高すぎるとアルコキシドの二重結合への付加反応が進行するため、反応温度は低めとすることが好ましい。このため、加圧反応系での反応温度は、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、通常0~200℃が好ましく、25~150℃がより好ましく、50~100℃がさらに好ましい。
 密閉反応系と加圧反応系との組合せ
 本開示における脱フッ化水素反応する工程では、また、連続相槽型反応器(CSTR)に背圧弁を接続する等の方法により、液を抜き出しながら、若しくは生成物をガス化させて抜き出しながら、連続且つ加圧での反応形態で行うこともできる。
 脱フッ化水素反応終了後は、必要に応じて常法にしたがって精製処理を行い、一般式(1)で表されるフルオロアルキン化合物を得ることができる。
 (1-6)目的化合物(ハロゲン化アルキン化合物)
 このようにして得られる本開示の目的化合物は、一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物である。
 一般式(1)におけるR及びRは、上記した一般式(2)におけるR及びRと対応している。このため、製造しようとする一般式(1)で表されるフルオロアルキン化合物は、例えば、具体的には、CF≡CF、CFC≡CF、CFC≡CCF、CFCFC≡CCF、CFCFC≡CCFCF等が挙げられる。
 なお、本発明の製造方法によれば、上記した一般式(1)で表されるフルオロアルキン化合物が単独で得られるのではなく、一般式(1)で表されるフルオロアルキン化合物を含む組成物の形で得られることもある。この場合であっても、一般式(1)で表されるフルオロアルキン化合物以外に含まれるのは、大部分が、一般式(2)で表されるフルオロアルカン化合物から、1モルのフッ化水素のみが脱離した一般式(4):
CF=CHR   (4)
[式中、R及びRは前記に同じである。]
で表されるフルオロアルケン化合物であるため、上記の脱フッ化水素反応する工程を繰り返すことにより、さらに、一般式(1)で表されるフルオロアルキン化合物の選択率及び収率を向上させることが可能である。
 例えば、後述の実施例1では、原料化合物としてCFCFHCFHCFを用い、CFC≡CCFを収率49.9モル%(転化率97.9%×選択率51.00%)、CFCF=CHCFを収率41.7モル%(転化率97.9%×選択率42.62%)で得られている。
 本開示では、脱フッ化水素反応する工程を繰り返す、つまり、工程数を増やした場合には、不純物として得られたCFCF=CHCFを原料物質として、同様に脱フッ化水素反応することになる。このため、2工程目のCFCF=CHCF→CFC≡CCFの収率も同様に49.9モル%とすると、2工程で合計して、原料であるCFCFHCFHCFの70.7モル%のCFC≡CCFが得られる。
 一方、従来の方法のように、1工程目をCFCFHCFHCF→CFCF=CHCF、2工程目をCFCF=CHCF→CFC≡CCFとすると、1工程目の収率が仮に100モル%であるとすると、2工程目の収率は上記のとおり49.9モル%であるため、2工程で、原料であるCFCFHCFHCFの49.9モル%のCFC≡CCFとなる。
 以上から、本開示によれば、所定のフルオロアルカン化合物を原料化合物として用いて、1ステップのみで所定のフルオロアルキン化合物を得ることができるうえに、脱フッ化水素反応を複数回繰り返した場合には、従来の方法と比較してフルオロアルキン化合物の収率を向上させることが可能である。いずれにしても、本開示の製造方法が有用であることが理解できる。
 このようにして得られたフルオロアルキン化合物は、半導体、液晶等の最先端の微細構造を形成するためのエッチングガス、クリーニングガス、デポジットガス、冷媒、熱移動媒体、有機合成用ビルディングブロック等の各種用途に有効利用できる。デポジットガス及び有機合成用ビルディングブロックについては後述する。
 2.フルオロアルキン化合物の製造方法(第2の態様)
 本開示の第2の態様におけるフルオロアルキン化合物の製造方法は、
一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物の製造方法であって、
一般式(2):
CHXCFX   (2)
[式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物を、エーテルを含む溶媒の存在下に脱フッ化水素反応する工程を備え、
(II)前記エーテルが鎖状エーテルであり、前記脱フッ化水素反応を、前記鎖状エーテルを含む溶媒と、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドを含む塩基との存在下で行う。
 つまり、本開示の第2の態様におけるフルオロアルキン化合物の製造方法は、
一般式(1):
C≡CR   (1)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
で表されるフルオロアルキン化合物の製造方法であって、
一般式(2):
CHXCFX   (2)
[式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物を、鎖状エーテルを含む溶媒と、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドを含む塩基との存在下に脱フッ化水素反応する工程を備える。
 本開示によれば、上記した一般式(2)で表されるフルオロアルカン化合物の脱フッ化水素反応を行うことで、一般式(2)で表されるフルオロアルカン化合物1モルに対して2モルのフッ化水素が脱離した一般式(1)で表されるフルオロアルキン化合物を1ステップのみで得ることができる。
 (2-1)原料化合物(フルオロアルカン化合物)
 本開示の製造方法(第2の態様)において使用できる基質としてのフルオロアルカン化合物は、上記のとおり、一般式(2):
CHXCFX   (2)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
で表されるフルオロアルカン化合物である。
 つまり、一般式(2)で表されるフルオロアルカン化合物は、一般式(2A)及び(2B):
CFHCFHR   (2A)
CHCF   (2B)
[式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
のいずれも包含する。
 一般式(2)において、R及びRで示されるフルオロアルキル基は、アルキル基における1個以上の水素原子がフッ素原子に置換された基を意味し、アルキル基の全ての水素原子が置換されたパーフルオロアルキル基も包含する。このようなフルオロアルキル基としては、直鎖状フルオロアルキル基及び分岐鎖状フルオロアルキル基のいずれも採用することができ、例えば、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、モノフルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチルフルオロエチル基、モノフルオロプロピル基、ジフルオロプロピル基、トリフルオロプロピル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、ヘキサフルオロプロピル基、ヘプタフルオロプロピル基等の炭素数1~10のフルオロアルキル基が挙げられ、フルオロアルキン化合物を特に、高い転化率、収率及び選択率で製造することができる観点から、炭素数1~4のフルオロアルキル基が好ましく、炭素数1~3のフルオロアルキル基がより好ましい。
 基質であるフルオロアルカン化合物としては、フルオロアルキン化合物を特に、高い転化率、収率及び選択率で製造することができる観点において、R及びRはいずれも、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましく、トリフルオロメチル基がさらに好ましい。
 上記したR及びRは、それぞれ同一でもよいし、異なっていてもよい。
 上記のような条件を満たす基質としてのフルオロアルカン化合物としては、具体的には、CFHCFH、CFCFHCFH、CFCFHCFHCF、CFCFCFHCFHCF、CFCFCFHCFHCFCF、CFHCF、CFCHCF、CFCHCFCF、CFCFCHCFCF、CFCFCHCFCFCF等が挙げられる。これらのフルオロアルカン化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなフルオロアルカン化合物は、公知又は市販品を採用することができる。
 (2-2)脱フッ化水素反応
 「脱フッ化水素反応」については、上記した「(1-2)脱フッ化水素反応」と同様とすることができる。各種条件も、上記したものと同様とすることができる。
 (2-3)鎖状エーテルを含む溶媒
 本開示では、好ましくは1ステップで、フルオロアルカン化合物から脱フッ化水素反応によりフルオロアルキン化合物を得るために鎖状エーテルを含む溶媒の存在下で反応を行う。
 ただし、フルオロアルカン化合物から脱フッ化水素反応によりフルオロアルキン化合物を得られやすいように、水分量は少ないことが好ましい。このような観点から、鎖状エーテルを含む溶媒の総量を100質量%として、鎖状エーテルを含む溶媒の水分濃度は、500質量ppm以下が好ましく、400質量ppm以下がより好ましく、300質量ppm以下がさらに好ましい。なお、鎖状エーテルを含む溶媒の水分濃度の下限値は特に制限されるわけではないが、技術的に達成しやすい観点から0.01質量ppm以上が好ましい。
 また、フルオロアルカン化合物から脱フッ化水素反応によりフルオロアルキン化合物を得られやすいように、鎖状エーテルが有するエーテル結合の数は極力少ないことが好ましい。このような観点から、鎖状エーテルが有するエーテル結合の数は、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、1~2が特に好ましい。
 以上のような条件を満たす鎖状エーテルを含む溶媒における鎖状エーテルとは、環状構造を一切有しないエーテル化合物のみならず、エーテル結合を含まない環状構造を含むエーテル化合物も包含される。つまり、鎖状エーテルとは、テトラヒドロフランのように、エーテル結合が環状構造を構成しているエーテル化合物は包含しないが、ジフェニルエーテルのように、エーテル結合を含まない環状構造を含むエーテル化合物も包含する概念である。なお、環状構造を一切有しないエーテル化合物を使用すれば、目的物であるフルオロアルキン化合物の収率を特に向上させることができ、エーテル結合を含まない環状構造を含むエーテル化合物を使用すれば、不純物(フルオロアルカン化合物、フルオロアルケン化合物及びフルオロアルキン化合物以外のハイドロフルオロカーボン化合物)の収率を特に低減することができる。このような鎖状エーテルとしては、具体的には、ジエチルエーテル、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム等が好ましい。鎖状エーテル溶媒は、単独で使用することもでき、2種以上を組合せて用いることもできる。なかでも、転化率、選択率及び収率の観点から、ジエチルエーテル、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン等が好ましく、ジエチルエーテル、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル等がより好ましく、ジイソプロピルエーテル、ジ(n-ブチル)エーテル、ジフェニルエーテル等がさらに好ましい。
 本開示においては、鎖状エーテルを使用していれば、その他の溶媒、例えば、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸メチルプロピル、炭酸エチルプロピル等の炭酸エステル溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル等のエステル溶媒;アセトン、エチルメチルケトン、ジエチルケトン等のケトン溶媒;γ-ブチロラクトン、γ-バレロラクトン、テトラヒドロフラン、テトラヒドロピラン等のラクトン溶媒;テトラヒドロフラン等の環状エーテル溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル溶媒;N,N-ジメチルホルムアミド等のアミド溶媒;ジメチルスルホキシド、スルホラン等のスルホン溶媒等と併用することを妨げるものではない。ただし、反応の転化率、選択率、収率等の観点から、これら他の溶媒の使用量は少ないほうが好ましく、具体的には、反応に使用する溶媒の総量を100体積%として、上記鎖状エーテルの使用量は80~100体積%(特に90~100体積%)が好ましく、これら他の溶媒の使用量は0~20体積%(特に0~10体積%)が好ましい。
 (2-4)塩基
 本開示におけるフルオロアルカン化合物から脱フッ化水素反応させてフルオロアルキン化合物を得る工程は、転化率、選択率及び収率の観点から、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドを含む塩基の存在下で行う。
 塩基としては、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、アルカリ金属及びアルカリ土類金属の水酸化物及びアルコキシドよりなる群から選ばれる少なくとも1種(つまり、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属アルコキシド及びアルカリ土類金属アルコキシドよりなる群から選ばれる少なくとも1種)、好ましくはアルカリ金属及びアルカリ土類金属の水酸化物並びにアルコキシドアルカリ金属塩よりなる群から選ばれる少なくとも1種(つまり、アルカリ金属水酸化物、アルカリ土類金属水酸化物及びアルカリ金属アルコキシドよりなる群から選ばれる少なくとも1種)、より好ましくは、アルカリ金属の水酸化物及び/又はアルコキシド(つまり、アルカリ金属水酸化物及び/又はアルカリ金属アルコキシド)、さらに好ましくはアルカリ金属水酸化物である。このような塩基としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、ナトリウムメトキシド、カリウムtert-ブトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド、マグネシウムメトキシド、マグネシウムエトキシド、マグネシウムtert-ブトキシド、カルシウムメトキシド、カルシウムエトキシド、カルシウムtert-ブトキシド等が挙げられる。なかでも、反応の転化率やハロゲン化アルキン化合物の選択率及び収率の観点から、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド等が好ましく、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド等がより好ましく、水酸化ナトリウム、水酸化カリウム等がさらに好ましい。
 塩基の使用量は、特に制限されないが、一般式(2)で表されるフルオロアルカン化合物1モルに対して1モル前後であることが好ましい。具体的には、塩基の使用量は、一般式(2)で表されるフルオロアルカン化合物1モルに対して、1.0~10.0モルが好ましく、1.5~5.0モルがより好ましく、2.0~3.0モルがさらに好ましい。
 (2-5)反応条件及び目的化合物
 「反応条件」については、上記した「(1-5)反応条件」と同様とすることができる。また、「目的化合物」については、上記した「(1-6)目的化合物」と同様とすることができる。各種条件も、上記したものと同様とすることができる。
 3.組成物
 以上のようにして、フルオロアルカン化合物から好ましくは1ステップで、フルオロアルキン化合物を得ることができるが、フルオロアルキン化合物を含む組成物の形で得られることもある。特に、本開示の製造方法によれば、例えば、前記一般式(1)で表されるフルオロアルキン化合物と、一般式(2)で表されるフルオロアルカン化合物から、1モルのフッ化水素のみが脱離した一般式(4):
CF=CHR   (4)
[式中、R及びRは前記に同じである。]
で表されるフルオロアルケン化合物とを含有する組成物が生成され得る。
 一般式(4)におけるR及びRは、上記した一般式(2)におけるR及びRと対応している。このため、一般式(4)で表されるフルオロアルケン化合物は、例えば、具体的には、CF=CFH、CFCF=CFH、CFCH=CFH、CFCF=CHCF、CFCFCF=CHCF、CFCFCH=CFCF、CFCFCF=CHCFCF等が挙げられる。これらのフルオロアルケン化合物は、単独であってもよく、2種以上を組合せであってもよい。
 本開示の製造方法によれば、前記一般式(1)で表されるフルオロアルキン化合物と、前記一般式(4)で表されるフルオロアルケン化合物とを、同程度の量含み、他の成分の含有量が少ない組成物が製造されやすい傾向にある。このため、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、一般式(1)で表されるフルオロアルキン化合物の含有量は、25.00モル%以上が好ましく、30.00モル%以上がより好ましく、35.00モル%以上がさらに好ましい。同様に、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、一般式(1)で表されるフルオロアルキン化合物の含有量は、例えば、75.00モル%以下であってもよく、70.00モル%以下であってもよく、65.00モル%以下であってもよい。また、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、一般式(4)で表されるフルオロアルケン化合物の含有量は、25.00モル%以上であってもよく、30.00モル%以上であってもよく、35.00モル%以上であってもよい。同様に、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、一般式(4)で表されるフルオロアルケン化合物の含有量は、75.00モル%以下が好ましく、70.00モル%以下がより好ましく、65.00モル%以下がさらに好ましい。さらに、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、一般式(1)で表されるフルオロアルキン化合物と一般式(4)で表されるフルオロアルケン化合物との合計含有量は、90.00モル%以上が好ましく、91.00モル%以上がより好ましく、92.00モル%以上がさらに好ましい。同様に、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、一般式(1)で表されるフルオロアルキン化合物と一般式(4)で表されるフルオロアルケン化合物との合計含有量は、100.00モル%以下であってもよく、99.99モル%以下であってもよく、99.98モル%以下であってもよい。
 上記のとおり、本開示の製造方法によれば、得られる組成物中に含まれる一般式(1)で表されるフルオロアルキン化合物及び一般式(4)で表されるフルオロアルケン化合物以外の成分として、トリフルオロメタン(R23)、ジフルオロメタン(R32)、テトラフルオロメタン(R14)、モノフルオロメタン(R41)、1,2-ジフルオロエチレン(R1132)、1,1,2-トリフルオロエチレン(R1123)等のハイドロフルオロカーボン化合物が含まれていてもよい。この場合、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、これら他のハイドロフルオロカーボン化合物の含有量は、0.00モル%以上であってもよく、0.01モル%以上であってもよく、0.02モル%以上であってもよい。同様に、本開示におけるフルオロアルキン化合物を含む組成物は、組成物全量を100モル%として、これら他のハイドロフルオロカーボン化合物の含有量は、10.00モル%以下が好ましく、7.50モル%以下がより好ましく、5.00モル%以下がさらに好ましい。
 本開示の製造方法によれば、フルオロアルカン化合物からフルオロアルキン化合物を得ようとする従来の方法よりも、フルオロアルキン化合物を特に高い選択率及び収率で得ることができ、その結果、フルオロアルキン化合物を得る為の精製を効率よく行うことができる。
 本開示のフルオロアルキン化合物を含む組成物は、フルオロアルキン化合物単独の場合と同様に、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスの他、クリーニングガス、デポジットガス、冷媒、熱移動媒体、有機合成用ビルディングブロック等の各種用途に有効利用できる。
 前記デポジットガスとは、エッチング耐性ポリマー層を堆積させるガスである。
 前記有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示の組成物とCFSi(CH等の含フッ素有機ケイ素化合物とを反応させると、CF3基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体と成り得る物質に変換することが可能である。
 以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。
 以下に実施例を示し、本開示の特徴を明確にする。本開示はこれら実施例に限定されるものではない。
 実施例1~6及び比較例1のフルオロアルキン化合物の製造方法では、原料化合物は、一般式(2)で表されるフルオロアルカン化合物において、R及びRはトリフルオロメチル基とし、以下の反応式:
CFCFHCFHCF → CF3C≡CCF + 2HF
に従って、脱フッ化水素反応により、フルオロアルキン化合物を得た。
 実施例1~6及び比較例1
 オートクレーブに、塩基として水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、ナトリウムtert-ブトキシド(t-BuONa)又はカリウムtert-ブトキシド(t-BuOK)と、溶媒としてジ(n-ブチル)エーテル(BuO)、ジフェニルエーテル(PhO)、ジグライム又は水とを加え、さらに原料化合物(CFCFHCFHCF)を加え、蓋をして密閉系にした。加えた溶媒中の塩基の濃度は、2.5モル/Lとした。この際、塩基の使用量は、原料化合物1モルに対して2モルとなるように調整した。その時の圧力は0kPaであった。その後、100℃又は150℃まで昇温して撹拌し、反応を進行させた。脱フッ化水素反応を開始してから、適宜サンプリングを行い、反応系内で組成に変化がなくなった時を反応終了とした。反応終了時の圧力は500kPaであった。
 撹拌停止後、室温まで冷却し、ガスクロマトグラフィー((株)島津製作所製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(日本電子(株)製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。質量分析及び構造解析の結果から、目的化合物としてCFC≡CCFが生成したことが確認された。結果を表1に示す。なお、表1において、R23はトリフルオロメタン、R1132は1,2-ジフルオロエチレン、PF2Bは目的化合物であるCFC≡CCF、1327myzはCFCF=CHCFを意味する。
Figure JPOXMLDOC01-appb-T000001
 実施例7及び比較例2
 ICP(Inductive Coupled Plasma)放電電力800W、バイアス電力100W、圧力3mmTorr(0.399Pa)、電子密度8×1010~2×1011cm-3、電子温度5~7eVのエッチング条件で、実施例1で得られた組成物(CFC≡CCFを51.00モル%、CFCF=CHCFを42.62モル%含む)を用いて、SiO膜とレジスト膜とをエッチングしたときのエッチング速度及び対レジスト選択比(SiO膜のエッチング速度/レジストのエッチング速度)を測定した(実施例7)。また用いたガスをCFC≡CCFのみに変更して同様の実験を行った(比較例2)。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1. 一般式(1):
    C≡CR   (1)
    [式中、R及びRは同一又は異なって、フッ素原子又はフルオロアルキル基を示す。]
    で表されるフルオロアルキン化合物の製造方法であって、
    一般式(2):
    CHXCFX   (2)
    [式中、R及びRは前記に同じである。X及びXは、Xがフッ素原子でXが水素原子であるか、又は、Xが水素原子でXがフッ素原子である。]
    で表されるフルオロアルカン化合物を、エーテルを含む溶媒の存在下に脱フッ化水素反応する工程を備え、
    (I)前記フルオロアルキル基が炭素数1~4のフルオロアルキル基である、又は
    (II)前記エーテルが鎖状エーテルであり、前記脱フッ化水素反応を、前記鎖状エーテルを含む溶媒と、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドを含む塩基との存在下で行う
    の少なくとも1つを満たす、製造方法。
  2. 前記エーテルを含む溶媒の総量を100質量%として、前記エーテルを含む溶媒の水分濃度が、0.01~500質量ppmである、請求項1に記載の製造方法。
  3. 前記エーテルが有するエーテル結合の数が、1~10個である、請求項1又は2に記載の製造方法。
  4. 前記(I)を満たす、請求項1~3のいずれか1項に記載の製造方法。
  5. 前記フルオロアルキル基が、一般式(3):
    -CF   (3)
    [式中、Rはフッ素原子又は炭素数1~3のフルオロアルキル基を示す。]
    で表される、請求項4に記載の製造方法。
  6. 前記脱フッ化水素反応を塩基の存在下で行う、請求項4又は5に記載の製造方法。
  7. 前記塩基が、アルカリ金属及び/又はアルカリ土類金属の水酸化物及び/又はアルコキシドである、請求項6に記載の製造方法。
  8. 前記(II)を満たす、請求項1~3のいずれか1項に記載の製造方法。
  9. 前記フルオロアルキル基の炭素数が1~10である、請求項8に記載の製造方法。
  10. 前記フルオロアルキル基が、一般式(3):
    -CF   (3)
    [式中、Rはフッ素原子又は炭素数1~9のフルオロアルキル基を示す。]
    で表される、請求項8又は9に記載の製造方法。
  11. 前記脱フッ化水素反応における反応温度が、0~300℃である、請求項1~10のいずれか1項に記載の製造方法。
  12. 一般式(1):
    C≡CR   (1)
    [式中、R及びRは同一又は異なって、フッ素原子又は炭素数1~4のフルオロアルキル基を示す。]
    で表されるフルオロアルキン化合物と、
    一般式(4):
    CF=CHR   (4)
    [式中、R及びRは前記に同じである。]
    で表されるフルオロアルケン化合物とを含有する組成物であって、
    組成物全量を100モル%として、前記一般式(1)で表されるフルオロアルキン化合物の含有量が25.00~75.00モル%であり、前記一般式(4)で表されるフルオロアルケン化合物の含有量が25.00~75.00モル%であり、且つ、前記一般式(1)で表されるフルオロアルキン化合物と前記一般式(4)で表されるフルオロアルケン化合物の合計含有量が、90.00~100.00モル%である、組成物。
  13. クリーニングガス、エッチングガス、冷媒、熱移動媒体又は有機合成用ビルディングブロックとして用いられる、請求項12に記載の組成物。
PCT/JP2022/016193 2021-04-27 2022-03-30 フルオロアルキン化合物の製造方法 WO2022230589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280031498.0A CN117222613A (zh) 2021-04-27 2022-03-30 氟代炔烃化合物的制造方法
EP22795505.1A EP4332078A1 (en) 2021-04-27 2022-03-30 Method for producing fluoroalkyne compound
KR1020237040559A KR20240000592A (ko) 2021-04-27 2022-03-30 플루오로알킨 화합물의 제조 방법
US18/384,497 US20240076253A1 (en) 2021-04-27 2023-10-27 Method for producing fluoroalkyne compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021075321A JP7343796B2 (ja) 2021-04-27 2021-04-27 フルオロアルキン化合物の製造方法
JP2021-075321 2021-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/384,497 Continuation US20240076253A1 (en) 2021-04-27 2023-10-27 Method for producing fluoroalkyne compound

Publications (1)

Publication Number Publication Date
WO2022230589A1 true WO2022230589A1 (ja) 2022-11-03

Family

ID=83847419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016193 WO2022230589A1 (ja) 2021-04-27 2022-03-30 フルオロアルキン化合物の製造方法

Country Status (7)

Country Link
US (1) US20240076253A1 (ja)
EP (1) EP4332078A1 (ja)
JP (2) JP7343796B2 (ja)
KR (1) KR20240000592A (ja)
CN (1) CN117222613A (ja)
TW (1) TW202308970A (ja)
WO (1) WO2022230589A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120149B (zh) * 2023-04-04 2023-07-14 北京宇极科技发展有限公司 饱和卤代烃脱卤化氢制备含氟炔的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132964A1 (ja) * 2007-04-17 2008-11-06 Central Glass Company, Limited 3,3,3-トリフルオロプロピンの製造方法
JP2019172659A (ja) * 2018-03-29 2019-10-10 東ソー・ファインケム株式会社 含フッ素アルキン化合物及びその製造方法、並びに製造用中間体
WO2020171011A1 (ja) * 2019-02-21 2020-08-27 ダイキン工業株式会社 ハロゲン化アルケン化合物及びフッ化アルキン化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132964A1 (ja) * 2007-04-17 2008-11-06 Central Glass Company, Limited 3,3,3-トリフルオロプロピンの製造方法
JP2019172659A (ja) * 2018-03-29 2019-10-10 東ソー・ファインケム株式会社 含フッ素アルキン化合物及びその製造方法、並びに製造用中間体
WO2020171011A1 (ja) * 2019-02-21 2020-08-27 ダイキン工業株式会社 ハロゲン化アルケン化合物及びフッ化アルキン化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON, vol. 44, no. 10, 1988, pages 2865 - 2874

Also Published As

Publication number Publication date
JP2023096010A (ja) 2023-07-06
US20240076253A1 (en) 2024-03-07
KR20240000592A (ko) 2024-01-02
CN117222613A (zh) 2023-12-12
TW202308970A (zh) 2023-03-01
JP2022169343A (ja) 2022-11-09
JP7343796B2 (ja) 2023-09-13
EP4332078A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
TWI787567B (zh) 環丁烯之製造方法
JP5082520B2 (ja) 含フッ素ジオール化合物の製造方法
JP2023096010A (ja) フルオロアルキン化合物の製造方法
US11655199B2 (en) Methods for producing halogenated alkene compound and fluorinated alkyne compound
CN111936455B (zh) 氟代烯烃的制造方法
US20230242466A1 (en) Methods for producing halogenated alkene compound and fluorinated alkyne compound
JP5345357B2 (ja) 1,3−アダマンタンジメタノールモノビニルエーテル及び1,3−アダマンタンジメタノールジビニルエーテル並びにその製法
WO2017028442A1 (zh) 一种用甲基氯化镁制备2,3,3,3-四氟丙烯的方法
JP2004043465A (ja) フッ化アシルの製造方法
TWI328577B (ja)
JP3301037B2 (ja) パーフルオロエタンの製造方法
JP7208542B2 (ja) フルオロアルカン化合物の製造方法
JP2006232704A (ja) 新規なフルオロスルホニル基含有化合物
RU2793785C2 (ru) Способ производства галогенированного алкенового соединения и фторированного алкинового соединения
JPH09263559A (ja) 含フッ素アルキルエーテルの製造方法
KR100353491B1 (ko) 퍼플르오로에탄의 제조방법
JP2006001925A (ja) 3,4,5−トリフルオロベンジルアルコールの製造方法
JP2001261605A (ja) モノフルオロエチル−1,1,2,2−テトラフルオロエチルエーテル及びその製造方法
JP2008208040A (ja) ペルフルオロトリアジン化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280031498.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237040559

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040559

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023130662

Country of ref document: RU

Ref document number: 2022795505

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795505

Country of ref document: EP

Effective date: 20231127