WO2022211086A1 - ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法 - Google Patents

ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法 Download PDF

Info

Publication number
WO2022211086A1
WO2022211086A1 PCT/JP2022/016837 JP2022016837W WO2022211086A1 WO 2022211086 A1 WO2022211086 A1 WO 2022211086A1 JP 2022016837 W JP2022016837 W JP 2022016837W WO 2022211086 A1 WO2022211086 A1 WO 2022211086A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
polyimide
polyamic acid
organic group
Prior art date
Application number
PCT/JP2022/016837
Other languages
English (en)
French (fr)
Inventor
聡 加藤
雄太 佐藤
健 柏田
隆行 金田
友裕 頼末
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202280026854.XA priority Critical patent/CN117120516A/zh
Priority to KR1020237032268A priority patent/KR20230147181A/ko
Priority to JP2022528651A priority patent/JP7174199B1/ja
Publication of WO2022211086A1 publication Critical patent/WO2022211086A1/ja
Priority to JP2022176853A priority patent/JP7436606B2/ja
Priority to JP2024017752A priority patent/JP2024036637A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyamic acid-imide, a resin composition containing the same, a polyimide resin film, a resin film, and a method for producing the same, which are used, for example, in the production of substrates for flexible devices.
  • polyimide resin films are used as resin films for applications that require high heat resistance.
  • a general polyimide resin is produced by solution polymerization of an aromatic carboxylic dianhydride and an aromatic diamine to produce a polyimide precursor, which is then thermally imidized at a high temperature, or chemically imidized using a catalyst. It is a highly heat-resistant resin manufactured by
  • Polyimide resin is an insoluble and infusible super heat-resistant resin, and has excellent properties such as thermal oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. Therefore, polyimide resins are used in a wide range of fields including electronic materials. Examples of applications of polyimide resins in the field of electronic materials include insulating coating materials, insulating films, semiconductors, electrode protection films for thin film transistor liquid crystal displays (TFT-LCDs), and the like. Recently, in the field of display materials, adoption of polyimide resin as a flexible substrate that utilizes its lightness and flexibility in place of the conventionally used glass substrate is being studied.
  • a varnish containing a polyimide resin or a precursor thereof and other components is applied onto a suitable support such as a glass substrate, and dried to form a film, After forming elements, circuits, etc. on the film, a step of peeling the film from the glass substrate is widely used.
  • a heat treatment at a high temperature of 250° C. or higher is required for drying and imidizing the polyimide precursor. Due to this heat treatment, residual stress is generated in the laminate, and serious problems such as warping and peeling occur. This is because the coefficient of linear expansion of polyimide is larger than that of the material forming the support.
  • Non-Patent Document 1 a polyimide resin whose thermal expansion coefficient is as small as that of glass has been studied.
  • Polyimides formed from '-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA) and paraphenylenediamine are the most well known. It has been reported that this polyimide exhibits a very low coefficient of linear thermal expansion, although it depends on the film thickness and production conditions (Non-Patent Document 1).
  • polyimide resins including the polyimides described in the above literature, are colored brown or yellow due to high electron density, and therefore have low light transmittance in the visible light region, and therefore fields where transparency is required. It has been difficult to achieve a low enough yellowness index (YI value) for use in
  • YI value yellowness index
  • polyimide which has a low coefficient of linear expansion, is known to tend to cause turbidity and cloudiness in the laminate due to its generally high molecular orientation, which causes deterioration in transmittance (Patent Document 2 ).
  • a solvent-soluble polyimide using a diamine having a trifluoromethyl group for example, a solvent-soluble polyimide using a diamine having a trifluoromethyl group, or a polyimide using an alicyclic tetracarboxylic dianhydride or diamine has an extremely low yellow color. degree (YI value) and residual stress (Patent Literature 3 and Patent Literature 4).
  • Patent Document 1 which is a general polyimide
  • Patent Document 2 shows a coefficient of linear expansion
  • CTE coefficient of linear expansion
  • HZE value the haze
  • Patent Document 4 discloses that storage stability and moldability can be improved by partially coexisting an imide structure and an amide structure in the molecule.
  • the polyamic acid-imide resin composition described in Patent Document 4 has poor heat resistance, and in the heat history of 430 ° C. or higher in the LTPS process, the yellowness index (YI value) and haze It turned out that the degree (HAZE) deteriorates remarkably.
  • the main reason for this is that polyimide and polyamic acid have a common monomer skeleton. It has been difficult to achieve a balance between the conflicting properties of properties and transparency.
  • Patent Document 6 discloses that the imide structure and the amic acid structure can be partially coexisted in the molecule, and the bending structure and transparency can be improved by using an alicyclic diamine.
  • the present inventors have confirmed that the block polyimide described in Patent Document 6 significantly deteriorates in yellowness (YI value) and haze (HAZE) in the heat history of 430 ° C. or higher in the LTPS process. Do you get it.
  • the main reason for this is that an alicyclic diamine is used as the diamine, and while the alicyclic diamine is excellent in bending resistance, the alicyclic is decomposed in a heat history of 430 ° C. or higher. Therefore, it was difficult to achieve both heat resistance and bending resistance.
  • polyimide resins including the polyimides described in Patent Documents 7 to 9 above, are colored brown or yellow due to high electron density, and therefore have low light transmittance in the visible light region, and therefore transparency. It was difficult to use it in the required fields.
  • the fluidity of the resin composition is not sufficient, and the resulting polyimide resin film has a thickness of In-plane uniformity was found to be insufficient.
  • conventional polyimide resin films do not have sufficient properties required for use as colorless transparent substrates for displays, such as in-plane uniformity of film thickness and yellowness index (YI value).
  • the present invention has been made to solve the above problems.
  • block copolymerizing the polyamic acid - imide copolymer resin composition that achieves both transparency and heat resistance, or block copolymerization of polyimide with excellent bending resistance and transparency and polyamic acid with excellent heat resistance A polyamic acid-imide copolymer resin composition that achieves both transparency, heat resistance, and bending resistance, and a polyimide or polyimide copolymer using the same, or a polyimide after infrared (IR) curing.
  • IR infrared
  • An object of the present invention is to provide a device manufacturing method.
  • polyimide films obtained by curing a resin composition containing a polyamic acid-imide copolymer containing a specific structure are excellent. high transparency, haze, heat resistance, and coefficient of linear expansion, low residual stress and bending resistance, or reduced defects in polyimide films upon infrared (IR) curing, and/or
  • IR infrared
  • the resin becomes soft and fluid, and when it is formed into a polyimide resin film, the in-plane uniformity of the film thickness is improved. improved and the YI could also be reduced, and based on these findings, the present invention was completed. That is, the invention is as follows.
  • the imidazole compound is 1-methylimidazole, N-tert-butoxycarbonylimidazole (N-Boc-imidazole), 2-methylimidazole, 2-phenylimidazole, benzimidazole, 2-ethyl-4-methylimidazole, 4-ethyl -2-methylimidazole, 4-methyl-2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1H-imidazole, and 1,2-dimethylimidazole is at least one selected from the group consisting of
  • the pyridine compound is at least one selected from the group consisting of 4-dimethylaminopyridine, 2,2'-bipyridyl, nicotinic acid, isoquinoline, pyridine, and 2-methylpyridine, and/or the tertiary amine
  • the compound is at least one selected from the group
  • X 1 represents a tetravalent organic group
  • X 2 represents a divalent organic group
  • n is a positive integer
  • X 2 in the general formula (3) the following general formula (A-1): (wherein R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; a and b each independently represent an integer of 0 to 4; and * indicates a joint) including the structure indicated by ⁇
  • the content of the (e) imidization catalyst is 10 parts by mass or more with respect to 100 parts by mass of the polyamic acid-imide copolymer or 100 parts by mass of the polyamic acid.
  • X 4 in the general formula (1) or X 2 in (3) is represented by the following general formula (A-4), the following general formula (A-5) and the following general formula (A-6): ⁇ wherein R 8 to R 11 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen, and h to k each independently represent an integer of 0 to 4, Z 2 indicates the linking group and * indicates the linking point ⁇ ⁇ wherein R 12 and R 13 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; l and m each independently represent an integer of 0 to 4; * indicates a joint ⁇ ⁇ wherein R 14 and R 15 each independently represents a monovalent organic group having 1 to 20 carbon atoms or halogen; n and schreib each independently represent an integer of 0 to 4; * indicates a joint ⁇
  • the resin composition according to any one of items 1 to 15, which is at least one selected from the group consisting of structures represented by ⁇ 17> X 3 in the general formula (1) is represented by
  • X 3 is a group derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF), X 2 is 4,4′-diaminodiphenyl sulfone and/or 2 , 2′-bis(trifluoromethyl)benzidine; X 3 is a group derived from norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride ; except for ⁇ and the following general formula (A-1) as X 2 : ⁇ wherein R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; a and b each independently represent an integer of 0 to 4; * indicates a joint ⁇ Or the following general formula (A-2): ⁇ In the formula, R 3 represents a monovalent organic group having 1 to 20 carbon atoms or a
  • X 3 in the general formula (1) is represented by the following general formula (A-3): ⁇ wherein R 4 to R 7 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; d to g each independently represent an integer of 0 to 4; 1 indicates a linking group and * indicates a linking point ⁇ structure represented by, 4,4'-oxydiphthalic dianhydride (ODPA)-derived structure, and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-derived structure selected from the group consisting of Polyamic acid-imide copolymer according to item 19, which is at least one kind of polyamic acid-imide copolymer.
  • ODPA 4,4'-oxydiphthalic dianhydride
  • 6FDA 4,4'-(hexafluoroisopropylidene) diphthalic anhydride
  • X 4 in the general formula (1) is the following general formula (A-4), the following general formula (A-5) and the following general formula (A-6): ⁇ wherein R 8 to R 11 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen, and h to k each independently represent an integer of 0 to 4, Z 2 indicates the linking group and * indicates the linking point ⁇ ⁇ wherein R 12 and R 13 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; l and m each independently represent an integer of 0 to 4; * indicates a bond, provided that when X 3 is a group derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF), the general formula (A- 5) is a group derived from 4,4′-diaminodiphenylsulfone ⁇ ⁇ wherein R 14 and R 15 each independently represents a monovalent organic group having 1 to 20 carbon atoms or hal
  • Polyamic acid-imide copolymer according to item 22 which is at least one selected from the group consisting of structures represented by ⁇ 24>
  • the diamine component constituting X 2 and the diamine component constituting X 4 in the general formula (1) are different in either diamine composition or diamine species, according to any one of items 19 to 23.
  • X 1 in the general formula (1) is a structure derived from biphenyltetracarboxylic dianhydride (BPDA), a structure derived from 4,4'-oxydiphthalic dianhydride (ODPA), and 4,4'-biphenyl
  • BPDA biphenyltetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • TAHQ bis(trimellitic monoester acid anhydride)
  • the molar ratio (X 2 /X 1 ) of X 1 and X 2 contained in the general formula (1) is 0.84 to 1.00, and X 3 and X contained in the general formula (1) 4 Polyamic acid-imide copolymer according to any one of items 19 to 25, wherein the molar ratio of (X 4 /X 3 ) is 1.01 to 2.00.
  • the resin composition according to item 28 wherein the proportion of the polyamic acid structural unit N composed of X 1 and X 2 is 60 to 95 mol % in the total polymer contained in the resin composition. ⁇ 30> 30.
  • X 1 and X 3 represent a tetravalent organic group
  • X 2 and X 4 represent a divalent organic group
  • n and m are positive integers
  • X 1 and X 2 is called structural unit N
  • structural unit M the structural unit made up of X 3 and X 4 is called structural unit M
  • X 2 is 4-amino-3-fluorophenyl-4-aminobenzoate If it is a group derived from, the following structures 1 and 2: 1.
  • X 3 is a group derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF)
  • X 2 is 4,4′-diaminodiphenyl sulfone and/or 2 , 2′-bis(trifluoromethyl)benzidine; and 2.
  • X 3 is a group derived from norbornane-2-spiro- ⁇ -cyclopentanone a- ⁇ '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride be; except for ⁇ and the following general formula (A-1) as X 2 : ⁇ wherein R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; a and b each independently represent an integer of 0 to 4; * indicates a joint ⁇ Or the following general formula (A-2): ⁇ Wherein, R 3 represents a monovalent organic group having 1 to 20 carbon atoms or a halogen, c is an integer of 0 to 4, and * represents a bond ⁇ Polyimide copolymer characterized by having a structure represented by.
  • X 3 in the above general formula (2) is represented by the following general formula (A-3): ⁇ wherein R 4 to R 7 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; d to g each independently represent an integer of 0 to 4; 1 indicates a linking group and * indicates a linking point ⁇ structure represented by, 4,4'-oxydiphthalic dianhydride (ODPA)-derived structure, and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-derived structure selected from the group consisting of 32.
  • ODPA 4,4'-oxydiphthalic dianhydride
  • 6FDA 4,4'-(hexafluoroisopropylidene) diphthalic anhydride
  • the polyimide copolymer according to item 33 which is at least one selected from the group consisting of structures represented by: ⁇ 35> X 1 in the general formula (2) is a structure derived from biphenyltetracarboxylic dianhydride (BPDA), a structure derived from 4,4'-oxydiphthalic dianhydride (ODPA), and 4,4'-biphenyl
  • BPDA biphenyltetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • TAHQ bis(trimellitic monoester acid anhydride)
  • the molar ratio (X 2 /X 1 ) of X 1 and X 2 contained in the general formula (2) is 0.84 to 1.00, and X 3 and X contained in the general formula (2) 4 Polyimide copolymer according to any one of items 31 to 35, wherein the molar ratio of (X 4 /X 3 ) is 1.01 to 2.00.
  • the molar ratio of the polyimide structural unit N composed of X 1 and X 2 and the polyimide structural unit M composed of X 3 and X 4 in the general formula (2) (number of moles of structural unit N: number of structural units M number of moles) is in the range of 60:40 to 95:5, the polyimide copolymer according to any one of items 31 to 36.
  • ⁇ 38> Having a polyimide precursor represented by the following general formula (I), or a polyimide precursor skeleton represented by the following general formula (I) and a polyimide skeleton represented by the following general formula (II), A resin composition comprising an aprotic polar substance having a boiling point of 250° C.
  • a polyamic acid-imide copolymer having both transparency and heat resistance, and a resin composition containing the same are provided, and have excellent transparency, haze, heat resistance and coefficient of linear expansion.
  • a polyimide film and a method for producing the same can also be provided, and/or polyimide having excellent bending resistance and transparency and polyamide having excellent heat resistance using an aromatic dianhydride having a fluorene skeleton as a main component.
  • a polyamic acid-imide copolymer resin composition, polyimide, or polyimide film that can provide block copolymerization with an acid, and thus has both transparency and heat resistance, further low residual stress and bending resistance, and Methods for their manufacture can also be provided.
  • APAB 4-amino-3-fluorophenyl-4-aminobenzoate
  • IR infrared rays
  • a resin composition containing a polymer is provided, and thus a polyimide film with reduced defects and a method for producing the same can be provided.
  • a resin composition, a method for producing a polyimide resin film, and a method for producing a display are capable of obtaining a polyimide resin film having excellent in-plane uniformity of film thickness and a low yellowness index (YI value). , a method for manufacturing a laminate and a method for manufacturing a flexible device.
  • FIG. 1 is a schematic diagram showing the structure above a polyimide substrate of a top emission type flexible organic EL display as an example of a display according to one embodiment of the present invention.
  • the resin composition provided by one aspect of the present invention contains (a) polyamic acid and/or (b) polyimide, (c) polyamic acid-imide copolymer, polyimide or polyamic acid, and (d) organic solvent and may optionally contain other components such as (e) an imidization catalyst.
  • a first embodiment of the present disclosure is The following general formula (1): ⁇ Wherein, X 1 and X 3 represent a tetravalent organic group, X 2 and X 4 represent a divalent organic group, n, m, and l are positive integers, and X 1 and X2 is called a structural unit N , and a structural unit composed of X3 and X4 is called a structural unit M ⁇ and the following general formula (A-1) as X 2 : ⁇ wherein R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; a and b each independently represent an integer of 0 to 4; * indicates a joint ⁇ Or the following general formula (A-2): ⁇ Wherein, R 3 represents a monovalent organic group having 1 to 20 carbon atoms or a halogen, c is an integer of 0 to 4, and * indicates a bond ⁇ A polyamic acid-imide copolymer
  • general formula (A-2) examples include the following general formula (A-2a): ⁇ Wherein, R 3 , c and * are as defined in general formula (A-2) ⁇ can be mentioned.
  • the polyamic acid-imide copolymer according to the first embodiment can be used as a polyimide precursor, and when it is used to form a polyimide film, it has a low coefficient of linear expansion, a low residual stress, and a haze ( Haze value) and yellowness (YI value) are small.
  • the polyamic acid-imide copolymer according to the first embodiment has a small yellowness (YI value) in a high temperature region and a low haze (Haze value) when a polyimide film is formed using it. small.
  • the polyamic acid-imide copolymer according to the first embodiment preferably has a weight average molecular weight of 170,000 or more, and/or X 2 is 4-amino-3-fluorophenyl- When the group is derived from 4-aminobenzoate, the following structures 1 and 2: Configuration 1.
  • X 3 is a group derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF)
  • X 2 is 4,4′-diaminodiphenyl sulfone and/or 2 , a group derived from 2′-bis(trifluoromethyl)benzidine
  • X 3 is a group derived from norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride ; is preferably excluded.
  • a second embodiment of the present disclosure is Including the structural unit L represented by the above general formula (1), and as X 1 and/or X 3 , the following general formula (A-3): ⁇ wherein R 4 to R 7 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; d to g each independently represent an integer of 0 to 4; 1 indicates a linking group and * indicates a linking point ⁇ , a structure derived from 4,4′-oxydiphthalic dianhydride (ODPA), a structure derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), biphenyltetracarboxylic acid di characterized by containing at least one selected from the group consisting of a structure derived from anhydride (BPDA) and a structure derived from 4,4′-biphenylbis(trimellitic acid monoester acid anhydride) (TAHQ)
  • the polyamic acid-imide precursor according to the second embodiment has a low linear expansion coefficient, low residual stress, excellent bending resistance, and high haze (Haze value) and yellowness (YI value) when made into a polyimide film. ) is small.
  • the polyamic acid-imide copolymer according to the second embodiment has a low yellowness (YI value) and a low haze (Haze value) in a high temperature range when formed into a polyimide film.
  • X 3 is at least one selected from the group consisting of a structure represented by general formula (A-3), a structure derived from ODPA, and a structure derived from 6FDA and/or X 4 is 4,4 when X 3 is a group derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF) It is preferred to exclude groups derived from '-diaminodiphenyl sulfone and/or 2,2'-bis(trifluoromethyl)benzidine.
  • the resin composition is a polyimide precursor represented by the following general formula (I), or a polyimide precursor skeleton represented by the following general formula (I) and the following general formula (II ) and contains an aprotic polar substance with a boiling point of 250 ° C. to 350 ° C., or the resin composition is a polyimide represented by the following general formula (II) , a solvent, and an aprotic polar substance having a boiling point of 250°C to 350°C.
  • (polyimide precursor) ⁇ In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer.
  • the polyimide according to the third embodiment is obtained by thermal imidization of a polyimide precursor, and can also be chemically imidized. Thermal imidization is preferred from the viewpoint of the transparency of the resulting polyimide film. Moreover, the resin composition can contain an imidization accelerator.
  • the resin composition according to the third embodiment contains an aprotic polar substance with a boiling point of 250° C. to 350° C., so that in the curing step (heating step), the aprotic polar substance is heated to, for example, 250° C.
  • it plays a role as a plasticizer at high temperatures, and the resin becomes soft and fluid, and when it is made into a polyimide resin film (hereinafter also referred to as a polyimide film), the in-plane uniformity of the film thickness is improved.
  • YI can also be reduced.
  • the resin composition according to the third embodiment may further contain a solvent such as an aprotic solvent.
  • aprotic solvent should be distinguished from the aprotic polar substance with a boiling point of 250°C to 350°C.
  • the P2 groups in general formulas (I) and ( II ) are acid anhydride residues, which may be the same or different.
  • the P 1 groups in general formulas (I) and (II) are diamine residues, which may be the same or different.
  • first, second, third and fourth embodiments may be combined or interchanged. Common configurations, preferred configurations, etc. of the first, second, third and fourth embodiments will be described below.
  • the polyamic acid portion constituting the polyamic acid-imide copolymer of the present invention is the portion represented by the structural unit N in the general formula (1).
  • X 1 is a tetravalent organic group, and multiple X 1 's present in the polyimide precursor may be the same or different.
  • X 1 is exemplified by a tetravalent organic group derived from the following tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydrides include aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms, aliphatic tetracarboxylic dianhydrides having 6 to 50 carbon atoms, and lipids having 6 to 36 carbon atoms.
  • a cyclic tetracarboxylic dianhydride can be exemplified.
  • aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms are preferred from the viewpoint of yellowness in a high temperature range.
  • the number of carbon atoms as used herein also includes the number of carbon atoms contained in the carboxyl group.
  • aromatic tetracarboxylic dianhydride having 8 to 36 carbon atoms examples include 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (hereinafter also referred to as 6FDA), 5-(2, 5-dioxotetrahydro-3-furanyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride, pyromellitic dianhydride (hereinafter also referred to as PMDA), 1,2,3,4-benzenetetracarboxylic Acid dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4' -biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA), 3,3′,4,4′-diphenylsulfonetetracarboxyl
  • aliphatic tetracarboxylic dianhydrides having 6 to 50 carbon atoms include ethylenetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, and the like; Alicyclic tetracarboxylic dianhydrides having 6 to 36 carbon atoms, such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexane-1,2, 3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, cyclopentanonebisspironorbornanetetracarboxylic dianhydride (hereinafter also referred to as CPODA), 3, 3',4,4'-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis(cyclohex
  • X 1 is pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), 4,4′-biphenylbis(trimellitic monoester anhydride) (TAHQ) , 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF), 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4′ - derived from at least one selected from the group consisting of oxydiphthalic anhydride (ODPA) and cyclopentanonebisspironorbornanetetracarboxylic dianhydride (CPODA).
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • TAHQ 4,4′-biphenylbis(trimellitic monoester anhydride)
  • BPAF 9,9-
  • PMDA, BPDA, DSDA, TAHQ, ODPA, and CPODA are preferable from the viewpoint of the balance of linear expansion coefficient (CTE), chemical resistance, glass transition temperature (Tg), and yellowness in a high temperature range, and BPDA, TAHQ, and ODPA are more preferred.
  • CTE linear expansion coefficient
  • Tg glass transition temperature
  • ODPA yellowness in a high temperature range
  • the polyamic acid-imide copolymer for example, as a polyimide precursor, may be obtained by using a dicarboxylic acid in addition to the above-mentioned tetracarboxylic dianhydride within a range that does not impair its performance.
  • a dicarboxylic acid include dicarboxylic acids having aromatic rings and alicyclic dicarboxylic acids. At least one compound selected from the group consisting of aromatic dicarboxylic acids having 8 to 36 carbon atoms and alicyclic dicarboxylic acids having 6 to 34 carbon atoms is particularly preferred.
  • the number of carbon atoms as used herein also includes the number of carbon atoms contained in the carboxyl group. Among these, dicarboxylic acids having an aromatic ring are preferred.
  • dicarboxylic acids include isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, 3,4′-biphenyldicarboxylic acid, 3,3′-biphenyldicarboxylic acid, and 1,4-naphthalenedicarboxylic acid.
  • X 2 is a divalent organic group, preferably a structure represented by the following general formula (A-1) or a structure represented by the following general formula (A-4) , a structure represented by the following general formula (A-5), a structure represented by the following general formula (A-6), and a diamine-derived structure represented by the following general formula (B-1), or BAFL, Structures derived from BFAF, BAOFL, 44DAS, 33DAS, 44ODA, 34ODA, etc. are preferred.
  • X 2 is preferably a structure derived from 4-aminophenyl-4-aminobenzoate from the viewpoint of yellowness (YI value) in a high temperature region, and 4-amino-3- from the viewpoint of haze (HAZE value).
  • YI value yellowness
  • HZE value 4-amino-3- from the viewpoint of haze
  • At least one structure derived from fluorophenyl-4-aminobenzoate (APAB), paraphenylenediamine (pPD), BAFL, and BFAF is preferred.
  • the structure of X 2 in general formula (1) is the following general formula (A-1): ⁇ wherein R 1 and R 2 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; a and b each independently represent an integer of 0 to 4; * indicates a joint ⁇ is represented by
  • hydrogen and / or phenyl groups are preferable, and from the viewpoint of haze (Haze value), hydrogen, methyl group, and the group consisting of fluorine at least one is preferred.
  • a and b are not limited as long as they are integers from 0 to 4.
  • an integer of 0 to 2 is preferable from the viewpoint of yellowness (YI value) and residual stress, and 0 is particularly preferable from the viewpoint of yellowness (YI value) in a high temperature region.
  • the structure of X 2 in general formula (1) is the following general formula (A-6): ⁇ wherein R 14 and R 15 each independently represents a monovalent organic group having 1 to 20 carbon atoms or halogen; n and o each independently represent an integer of 0 to 4; * indicates a joint ⁇ is represented by
  • organic groups include alkyl groups such as methyl group, ethyl group and propyl group, halogen-containing groups such as trifluoromethyl group, alkoxy groups such as methoxy group and ethoxy group, and the like. In the case of 0, it may be hydrogen, and halogens include fluorine and the like.
  • hydrogen and / or phenyl groups are preferable, and from the viewpoint of haze (Haze value), hydrogen, methyl group, and the group consisting of fluorine at least one is preferred.
  • n and и are not limited as long as they are integers from 0 to 4.
  • an integer of 0 to 2 is preferable from the viewpoint of yellowness (YI value) and residual stress, and 0 is particularly preferable from the viewpoint of yellowness (YI value) in a high temperature region.
  • the structure of X 2 in general formula (1) is the following general formula (A-2): ⁇ Wherein, R 3 represents a monovalent organic group having 1 to 20 carbon atoms or a halogen, c is an integer of 0 to 4, and * indicates a bond ⁇ is represented by
  • hydrogen is preferable from the viewpoint of yellowness (YI value) in a high temperature range
  • methyl group and/or fluorine is preferable from the viewpoint of haze (Haze value).
  • c is not limited as long as it is an integer from 0 to 4.
  • an integer of 0 to 2 is preferable from the viewpoint of yellowness (YI value) and residual stress, and 0 is particularly preferable from the viewpoint of yellowness (YI value) in a high temperature region.
  • the structural unit represented by general formula (A-1) has the following general formula (B-1): ⁇ Wherein, R 1 , R 2 , a and b are defined in the same manner as in general formula (A-1) ⁇ Derived from the diamine represented by
  • APAB 4-aminophenyl-4-aminobenzoate
  • 2Me-APAB 2-methyl-4-aminophenyl-4-aminobenzoate
  • 3Me-APAB 3-methyl-4-aminophenyl-4-aminobenzoate
  • 2F -APAB 2-fluoro-4-aminophenyl-4-aminobenzoate
  • 3F-APAB 3-fluoro-4-aminophenyl-4-aminobenzoate
  • 3F-APAB 3-methyl-4-aminophenyl-3-methyl-4-aminobenzoate
  • 3Me-APAB 3-methyl-4-aminophenyl-3-methyl-4-aminobenzoate
  • the structural unit represented by general formula (A-2) has the following general formula (B-2): ⁇ Wherein, R 3 and c are defined in the same manner as in general formula (A-2) ⁇ Derived from the diamine represented by
  • diamine represented by the general formula (B-2) More specific examples of the diamine represented by the general formula (B-2) include p-phenylenediamine (pPD), m-phenylenediamine, 3,5-diaminobenzoic acid, and the like. pPD is preferable from the viewpoint of heat resistance at .
  • diamines include, for example, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl , 3,3′-diaminobiphenyl, 4,4′-diaminobenzophenone, 3,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3 ,3′-diaminodiphenylmethane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, bis[4
  • the content of the other diamines in the total diamine is preferably 20 mol % or less, particularly preferably 10 mol % or less.
  • the diamine used does not contain a silicone diamine. Examples thereof include “X-22-9409” and “X-22-1660B-3” manufactured by Shin-Etsu Chemical Co., Ltd., which are commercially available as silicone-based diamines.
  • the molar ratio (X 2 /X 1 ) between X 1 and X 2 in the polyamic acid moiety contained in the general formula (1) is preferably 0.84 to 1.00 or 0.85 to 1.2, and 0 0.90 to 1.1 is more preferred, and 0.92 to 1,00 is even more preferred.
  • X 1 /X 2 is 0.84 or more or 0.85 or more, the residual stress is low and the YI is low.
  • X 1 /X 2 is 1.2 or less or 1.00 or less, the mechanical properties such as elongation and breaking strength are excellent.
  • the weight average molecular weight (Mw) of the polyamic acid and the polyamic acid part is preferably 1,000 or more, more preferably 1,000 to 300,000 or 2,639 to 300,000, 10,000 to 200,000 or 10 ,000 to 250,000 are more preferred, and 30,000 to 200,000 are particularly preferred.
  • Mw weight average molecular weight
  • the weight average molecular weight is 1,000 or more, the mechanical properties such as elongation and breaking strength are excellent, the residual stress is low, and the YI is low.
  • the weight-average molecular weight is 300,000 or less, the weight-average molecular weight can be easily controlled during the synthesis of the polyamic acid, a resin composition having an appropriate viscosity can be obtained, and the coating properties of the resin composition are improved.
  • the weight average molecular weight is a value obtained as a standard polystyrene conversion value using gel permeation chromatography (hereinafter also referred to as GPC).
  • the polyimide moiety constituting the polyamic acid-imide copolymer of the present invention is the moiety represented by the structural unit M in the general formula (1).
  • X 3 is a tetravalent organic group, preferably the structure represented by the following general formula (A-3), or 4,4'-oxydiphthalic dianhydride (ODPA ), and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), which is a structure derived from at least one selected from tetracarboxylic acid described in ⁇ Embodiment of polyamic acid moiety>
  • a tetravalent organic group derived from an acid dianhydride can be used.
  • a plurality of X 3 present in the polyamic acid-imide copolymer that can be used as a polyimide precursor may be the same or different, and may be the same or different from X 1 . good too.
  • X 3 is preferably a structure derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF) from the viewpoint of yellowness (YI value) in a high temperature region, and residual stress From the point of view, structures derived from ODPA are preferred.
  • BPAF 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride
  • Tetracarboxylic dianhydrides that can be used in addition to or in place of the above BPAF, ODPA and 6FDA include aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms and 6 to 50 carbon atoms. and alicyclic tetracarboxylic dianhydrides having 6 to 36 carbon atoms. Among these, aromatic tetracarboxylic dianhydrides having 8 to 36 carbon atoms are preferred from the viewpoint of yellowness in a high temperature range.
  • the number of carbon atoms as used herein also includes the number of carbon atoms contained in the carboxyl group.
  • aromatic tetracarboxylic dianhydride having 8 to 36 carbon atoms examples include 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (hereinafter also referred to as 6FDA), 5-(2, 5-dioxotetrahydro-3-furanyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride, pyromellitic dianhydride (hereinafter also referred to as PMDA), 1,2,3,4-benzenetetracarboxylic Acid dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4' -biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA), 3,3′,4,4′-diphenylsulfonetetracarboxyl
  • aliphatic tetracarboxylic dianhydrides having 6 to 50 carbon atoms include ethylenetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, and the like; Alicyclic tetracarboxylic dianhydrides having 6 to 36 carbon atoms, such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexane-1,2, 3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, cyclopentanonebisspironorbornanetetracarboxylic dianhydride (hereinafter also referred to as CPODA), 3, 3',4,4'-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis(cyclohex
  • X 1 or X 3 is pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), 4,4′-biphenylbis(trimellitic monoester acid anhydride) (TAHQ), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF), 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4 ,4′-oxydiphthalic anhydride (ODPA) and cyclopentanonebisspironorbornanetetracarboxylic dianhydride (CPODA).
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • TAHQ 4,4′-biphenylbis(trimellitic monoester acid anhydride)
  • BPAF 4,4′-bis(trimellitic monoest
  • PMDA, BPDA, DSDA, TAHQ, and CPODA are preferable, and BPDA and TAHQ are more preferable, from the viewpoint of the balance of linear expansion coefficient (CTE), chemical resistance, glass transition temperature (Tg), and yellowness in a high temperature region. preferable.
  • CTE linear expansion coefficient
  • Tg glass transition temperature
  • yellowness in a high temperature region preferable.
  • the polyamic acid-imide copolymer for example, as a polyimide precursor, may be obtained by using a dicarboxylic acid in addition to the above-mentioned tetracarboxylic dianhydride within a range that does not impair its performance.
  • a dicarboxylic acid include dicarboxylic acids having aromatic rings and alicyclic dicarboxylic acids. At least one compound selected from the group consisting of aromatic dicarboxylic acids having 8 to 36 carbon atoms and alicyclic dicarboxylic acids having 6 to 34 carbon atoms is particularly preferred.
  • the number of carbon atoms as used herein also includes the number of carbon atoms contained in the carboxyl group. Among these, dicarboxylic acids having an aromatic ring are preferred.
  • dicarboxylic acids include isophthalic acid, terephthalic acid, 4,4′-biphenyldicarboxylic acid, 3,4′-biphenyldicarboxylic acid, 3,3′-biphenyldicarboxylic acid, and 1,4-naphthalenedicarboxylic acid.
  • the structure of X 3 in general formula (1) or general formula (2) described later is represented by the following general formula (A-3): ⁇ wherein R 4 to R 7 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; d to g each independently represent an integer of 0 to 4; 1 indicates a linking group and * indicates a linking point ⁇ or derived from 4,4′-oxydiphthalic dianhydride (ODPA) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA).
  • ODPA 4,4′-oxydiphthalic dianhydride
  • 6FDA 4,4′-(hexafluoroisopropylidene)diphthalic anhydride
  • hydrogen is preferable from the viewpoint of yellowness (YI value) in a high temperature range
  • fluorine is preferable from the viewpoint of haze (Haze value).
  • Z1 examples include a single bond, methylene group, ethylene group, ether, ketone, and the like. Among these, a single bond is more preferable from the viewpoint of YI in a high temperature region, and a single bond and an ether are preferable from the viewpoint of residual stress.
  • d to g are not limited as long as they are integers from 0 to 4, respectively.
  • an integer of 0 to 2 is preferable from the viewpoint of yellowness (YI value) and residual stress, and 0 is particularly preferable from the viewpoint of yellowness (YI value) in a high temperature region.
  • the structural unit represented by general formula (A-3) has the following general formula (B-3): ⁇ Wherein, R 4 to R 7 , d to g, and Z 1 are defined in the same manner as in general formula (A-3), and d and e are each independently an integer of 0 to 3.
  • d and e are each independently an integer of 0 to 3.
  • f and g are each independently an integer of 0 to 4 ⁇ Derived from the acid dianhydride represented by.
  • BPAF 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride
  • BPF-PA 9,9- Bis[4-(3,4-dicarboxyphenoxy)phenyl]fluorene dianhydride
  • X 4 is a divalent organic group, preferably at least one of the following general formulas (A-4) to (A-6)
  • a divalent organic group derived from the diamine described in ⁇ Embodiment of polyamic acid moiety> can be used.
  • a plurality of X 4 present in the polyimide or in the polyimide part may be the same or different, but from the viewpoint of achieving both contradictory performances when made into polyimide, they are different from X 2 More preferably, the diamine component that constitutes X2 and the diamine component that constitutes X4 differ in either diamine composition or diamine species.
  • X 4 in general formula (1) or general formula (2) described later is represented by the following general formula (A-4): ⁇ Wherein, R 8 to R 11 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; 2 indicates the linking group and * indicates the linking point ⁇ is represented by
  • organic groups include alkyl groups such as methyl group, ethyl group and propyl group, halogen-containing groups such as trifluoromethyl group, alkoxy groups such as methoxy group and ethoxy group.
  • hydrogen is preferable from the viewpoint of yellowness (YI value) in a high temperature range
  • fluorine is preferable from the viewpoint of haze (Haze value).
  • h to k are not limited as long as they are integers from 0 to 4, respectively.
  • an integer of 0 to 2 is preferable from the viewpoint of yellowness (YI value) and residual stress, and 0 is particularly preferable from the viewpoint of yellowness (YI value) in a high temperature region.
  • Z2 examples include single bond, methylene group, ethylene group, ether, ketone and the like. Among these, a single bond is preferable from the viewpoint of YI in a high temperature region.
  • the structure of X 4 in general formula (1) or general formula (2) described later is represented by the following general formula (A-5): ⁇ wherein R 12 and R 13 each independently represent a monovalent organic group having 1 to 20 carbon atoms or halogen; l and m each independently represent an integer of 0 to 4; * indicates a bond, provided that X 2 in the general formula (1) is a group derived from 4-amino-3-fluorophenyl-4-aminobenzoate, and X 3 is 9,9-bis(3 ,4-dicarboxyphenyl)fluorene dianhydride (BPAF), general formula (A-5) excludes 4,4′-diaminodiphenylsulfone or a group derived therefrom ⁇ is represented by
  • R 12 and R 13 are not limited as long as they are each independently a monovalent organic group having 1 to 20 carbon atoms or a halogen such as fluorine.
  • organic groups include alkyl groups such as methyl group, ethyl group and propyl group; halogen-containing groups such as trifluoromethyl group; aryl groups such as phenyl group and naphthyl group; alkoxy groups such as methoxy group and ethoxy group; etc.
  • a methyl group is preferable from the viewpoint of YI in a high temperature range.
  • l and m are not limited as long as they are integers from 0 to 4.
  • an integer of 0 to 2 is preferable from the viewpoint of YI and residual stress, and 0 is particularly preferable from the viewpoint of YI in a high temperature region.
  • the structure of X 4 in general formula (1) or general formula (2) described later is represented by the following general formula (A-6): ⁇ wherein R 14 and R 15 each independently represents a monovalent organic group having 1 to 20 carbon atoms or halogen; n and o each independently represent an integer of 0 to 4; * indicates a joint ⁇ is represented by
  • R 14 and R 15 are not limited as long as they are each independently a monovalent organic group having 1 to 20 carbon atoms.
  • organic groups examples include alkyl groups such as methyl group, ethyl group and propyl group; halogen-containing groups such as trifluoromethyl group; aryl groups such as phenyl group and naphthyl group; alkoxy groups such as methoxy group and ethoxy group; etc.
  • a methyl group and a phenyl group are preferable from the viewpoint of YI in a high temperature range.
  • n and (7) are not limited as long as they are integers from 0 to 4.
  • an integer of 0 to 2 is preferable from the viewpoint of YI and residual stress, and 0 is particularly preferable from the viewpoint of YI in a high temperature region.
  • the structural unit represented by general formula (A-4) has the following general formula (B-4): ⁇ Wherein, R 8 to R 11 and h to k are defined in the same manner as in general formula (A-4) ⁇ Derived from the diamine represented by
  • BAFL 9,9-bis(4-aminophenyl)fluorene
  • BFAF 9,9-bis(3-fluoro-4-aminophenyl ) fluorene
  • BAOFL 9,9-bis (4- (aminophenoxy) phenyl) fluorene
  • the structural unit represented by general formula (A-5) has the following general formula (B-5-1):
  • diamines represented by general formulas (B-5-1) and (B-5-2) more specifically, 4,4′-diaminodiphenylsulfone (44DAS) and 3,3′-diaminodiphenylsulfone (33 DAS) can be exemplified. More specific examples of other diamines include bis[4-(4-aminophenoxy)phenyl]sulfone and bis[4-(3-aminophenoxy)phenyl]sulfone. 44 DAS is preferable from the viewpoint of yellowness (YI value) at high temperature, and 33 DAS is preferable from the viewpoint of low residual stress.
  • YI value yellowness
  • 33 DAS is preferable from the viewpoint of low residual stress.
  • the structural unit represented by general formula (A-6) has the following general formula (B-6): ⁇ Wherein, R 14 and R 15 , n and schreib are defined in the same manner as in general formula (A-6) ⁇ It is derived from a diamine represented by
  • the diamine represented by the general formula (B-6) includes 4,4'-diaminodiphenyl ether (44ODA), 3,4'-diaminodiphenyl ether (34ODA), 2,3'-diaminodiphenyl ether, and the like.
  • 44ODA 4,4'-diaminodiphenyl ether
  • 34ODA 3,4'-diaminodiphenyl ether
  • 2,3'-diaminodiphenyl ether 2,3'-diaminodiphenyl ether, and the like.
  • YI value yellowness
  • 34ODA is preferred.
  • the weight average molecular weight (Mw) of the polyimide or polyimide portion is preferably 1,000 to 100,000, more preferably 2,000 to 80,000 or 2,639 to 80,000, and 5,000 to 60,000. Especially preferred.
  • the weight average molecular weight is 1,000 or more, the mechanical properties such as elongation and breaking strength are excellent, the residual stress is low, and the YI is low.
  • the weight-average molecular weight is 100,000 or less, phase separation is suppressed when a polyamic acid-imide copolymer film is formed, resulting in a low haze (HAZE value).
  • the weight average molecular weight is a value obtained as a standard polystyrene conversion value using gel permeation chromatography (hereinafter also referred to as GPC).
  • the molar ratio (X 4 /X 3 ) between X 3 and X 4 contained in the general formula (1) is 0.85 to 2.0, or 1.01 to 2.00. It is preferably 0.95 to 1.5, even more preferably 1.01 to 1.25.
  • the molar ratio is 0.85 or more or 1.01 or more, the heat resistance in the high temperature range is excellent and the YI value is low.
  • the molar ratio is 2.00 or less, the reactivity with the polyamic acid moiety is improved, and the strength when formed into a film is increased, resulting in excellent mechanical properties such as elongation and breaking strength.
  • the content of molecules having a molecular weight of less than 1,000 in the polyimide or polyimide portion is preferably less than 5% by mass, and less than 1% by mass, based on the total amount of the polyimide precursor or polyamic acid-imide copolymer. More preferably, less than 0.1% by mass.
  • a polyimide film formed from such a polyimide or a resin composition obtained by using the polyimide part has a low residual stress and a low haze value (haze value) formed on the polyimide film.
  • the content of molecules having a molecular weight of less than 1,000 with respect to the total amount of polyimide or polyimide portion can be calculated from the peak area obtained by GPC measurement using a solution in which the polyimide is dissolved.
  • the polyimide precursor in one aspect of the present disclosure includes the general formulas (B-1) to (B-2) and (B-4) described above within a range that does not impair elongation, strength, stress, yellowness, etc.
  • diamines represented by ⁇ (B-6) or instead of the diamines represented by the general formulas (B-1) ⁇ (B-2) and (B-4) ⁇ (B-6), Other diamines can be used.
  • diamines include, for example, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl , 3,3′-diaminobiphenyl, 4,4′-diaminobenzophenone, 3,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3 ,3′-diaminodiphenylmethane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, bis[4
  • the content of the other diamine in the total diamine is preferably 20 mol % or less, particularly preferably 10 mol % or less. From the viewpoint of heat resistance at high temperatures, it is preferable that X4 and the diamine constituting it do not contain a silicone - based diamine, as with X2, and it is more preferable that they are of the type or composition of an aromatic diamine.
  • the polyamic acid-imide copolymer of the present invention contains a structural unit M that is a polyamic acid moiety and a structural unit L that includes a structural unit N that is a polyimide moiety, represented by the general formula (1). Embodiments are shown below.
  • the diamine (X 2 ) of the polyamic acid portion and the diamine (X 4 ) of the polyimide portion may have the same composition or diamine species, or may have different compositions or diamine species.
  • the term "same composition” as used herein means that, when the diamine used in the polyamic acid portion is composed of one or more types, the diamines in the polyimide portion have exactly the same composition.
  • the "different composition” here means that when the diamine used in the polyamic acid portion is composed of one or more types, the diamine in the polyimide portion does not have exactly the same composition, but is composed of different diamines or the same This means that the ratios would be different even if more diamines were used.
  • the role of the polyamic acid moiety in one aspect of the present invention is to have high thermal stability and excellent dimensional stability in a high temperature range, high molecular planarity, and high heat resistance at high temperatures when made into a polyimide.
  • a high skeleton is preferred.
  • PMDA pyromellitic dianhydride
  • BPDA biphenyltetracarboxylic dianhydride
  • TAHQ 4,4′-biphenylbis(trimellitic monoester anhydride)
  • BPAF 4,4′-b
  • X 1 may be obtained by using a dicarboxylic acid in addition to the above-mentioned tetracarboxylic dianhydride within a range that does not impair its performance.
  • Other tetracarboxylic dianhydrides may be added, but a skeleton derived from an aromatic tetracarboxylic dianhydride or an aromatic dicarboxylic acid is preferred.
  • the ratio of other acid dianhydrides and dicarboxylic acids in X1 is preferably 20 mol % or less, more preferably 10 mol % or less.
  • Examples of the diamine (X 2 ) of the polyamic acid moiety include (4-aminophenyl-4-aminobenzoate (APAB), 2-methyl-4-aminophenyl-4-aminobenzoate, 3-methyl-4-aminophenyl- 4-aminobenzoate, 2-fluoro-4-aminophenyl-4-aminobenzoate (2F-APAB), 3-fluoro-4-aminophenyl-4-aminobenzoate (3F-APAB), 3-methyl-4-amino It is preferably at least one selected from the group consisting of phenyl-3-methyl-4-aminobenzoate and (2-phenyl-4-aminophenyl)-4-aminobenzoate (ph-APAB), and the linear expansion coefficient APAB, 2F-APAB, 3F-APAB, and Ph-APAB are preferred, and APAB is more preferred, from the viewpoint of balance of (CTE), chemical resistance, glass transition temperature (Tg), and yellow
  • X 2 in addition to the acid dianhydrides shown above, other diamines may be added to the extent that their performance is not impaired, but they are aromatic diamines that do not contain a cyclohexane ring or a cyclopentane ring.
  • the ratio of other diamines in X 2 is preferably 20 mol% or less, more preferably 10 mol% or less. Although it is preferable not to contain the structure shown in , this is not the case unless the composition is exactly the same.
  • the role of the imide portion in one aspect of the present invention is to have high thermal stability in a high temperature range, excellent optical properties, and high solubility in solvents, and excellent optical properties and high solubility in solvents. or a skeleton capable of imparting bending resistance when formed into a film is preferred.
  • a tetravalent organic group derived from a tetracarboxylic dianhydride can be used as described in (b) ⁇ Embodiment of polyimide portion>.
  • a plurality of X 3 present in the polyimide precursor or the polyamic acid-imide copolymer may be the same or different from each other, and may be the same or different from X 1 . .
  • X 3 preferably includes a structure derived from BPAF from the viewpoint of excellent yellowness (YI value) and haze (Haze value) in a high-temperature region, and a structure derived from ODPA from the viewpoint of residual stress. preferable.
  • a skeleton selected from PMDA, BPDA, DSDA, TAHQ, ODPA, and CPODA can be used at the same time for the purpose of improving thermal stability in a high temperature range.
  • the proportion of BPAF in X3 is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and may be 100 mol%. From the viewpoint of excellent bending resistance when made into a polyimide film, the higher the proportion of BPAF, the better.
  • a divalent organic group derived from diamine can be used as described in (b) ⁇ Embodiment of polyimide portion>.
  • a plurality of X 4 present in the polyimide precursor or the polyamic acid-imide copolymer may be the same or different from each other, and may be the same or different from X 2 . but must not be exactly the same.
  • X 4 is preferably at least one selected from the group selected from 44BAFL, 33BAFL, BFAF, BAOFL, BAHF, 33DAS, and 44DAS, and has a coefficient of linear expansion (CTE), chemical resistance, glass transition temperature 44BAFL, 33BAFL, BFAF, BAOFL, 33DAS, 44DAS, 44ODA, and 34ODA are more preferable from the viewpoint of balance of (Tg) and yellowness in a high temperature range.
  • CTE coefficient of linear expansion
  • the polyamic acid-imide copolymer contains a polyamic acid portion composed of X 1 and X 2 and a polyimide portion composed of X 3 and X 4 , and the molar ratio of the polyamic acid structural unit to the polyimide structural unit
  • the upper limit of (number of moles of structural unit N: number of moles of structural unit M) may be 95:5, 90:10, 85:15, or 80:20. Haze value), the ratio is preferably 95:5, and yellowness index (YI value) is more preferably 80:20.
  • the lower limit of the molar ratio of the constituent units of the polyamic acid and the constituent units of the polyimide may be 30: 70, 40: 60, or 50: 50. It may be 60:40, but it is preferably 40:60 or 60:40 from the viewpoint of coexistence of residual stress and yellowness (YI value).
  • the weight average molecular weight (Mw) of the polyamic acid-imide copolymer (structural unit L) is preferably 2,639 or more, more preferably 2,639 to 300,000 or 10,000 to 300,000, and 20,000. ⁇ 250,000 is more preferred, and 40,000 to 200,000 is particularly preferred.
  • Mw weight average molecular weight
  • the mechanical properties such as elongation and breaking strength are excellent, the residual stress is low, and the YI is low.
  • the weight average molecular weight is 300,000 or less, the viscosity and concentration of the polyamic acid-imide copolymer varnish are well-balanced, the workability is good, and film unevenness during coating is reduced.
  • the weight average molecular weight (Mw) of the polyamic acid-imide copolymer is preferably 170,000 or more, more preferably 220,000 or more, from the viewpoint of IR (infrared) cure defect evaluation and degassing evaluation.
  • the weight average molecular weight is a value obtained as a standard polystyrene conversion value using gel permeation chromatography (hereinafter also referred to as GPC)
  • X 1 is a tetravalent organic group, and a plurality of X 1 present in the polyimide precursor may be the same or different.
  • X 1 is exemplified by a tetravalent organic group derived from a tetracarboxylic dianhydride, and the tetracarboxylic dianhydride is the tetracarboxylic dianhydride exemplified for the (A) polyamic acid-imide copolymer. Same as anhydride.
  • X 2 is a divalent organic group, and multiple X 2 present in the polyimide precursor may be the same or different.
  • X2 include divalent organic groups derived from diamines, and the diamines are the same as the diamines exemplified for the (A) polyamic acid-imide copolymer.
  • the structural unit represented by the general formula (A-1) for the polyamic acid is the same as the general formula (A-1) exemplified for the above (A) polyamic acid-imide copolymer.
  • the weight average molecular weight (Mw) of the polyamic acid according to the fourth embodiment is preferably 3,000 or more, more preferably 10,000 to 300,000, still more preferably 20,000 to 250,000, and 40,000 ⁇ 200,000 is particularly preferred.
  • Mw weight average molecular weight
  • the mechanical properties such as elongation and breaking strength are excellent, the residual stress is low, and the YI is low.
  • the weight-average molecular weight is 300,000 or less, the viscosity and concentration of the polyamic acid-imide copolymer varnish are well-balanced, workability is good, and film unevenness during coating is reduced.
  • the weight average molecular weight (Mw) of the polyamic acid in the fourth embodiment is preferably 170,000 or more, more preferably 240,000 or more, from the viewpoint of IR (infrared) cure defect evaluation and degassing evaluation.
  • the weight average molecular weight is a value obtained as a standard polystyrene conversion value using gel permeation chromatography (hereinafter also referred to as GPC).
  • Diamines containing a P 1 group in general formulas (I) and (II) include 4,4'-diaminodiphenylsulfone (4,4'-DAS), 3,4'-diaminodiphenylsulfone (3,4' -DAS), 3,3′-diaminodiphenylsulfone (3,3′-DAS), p-phenylenediamine (PDA), m-phenylenediamine, 3,5-diaminobenzoic acid (DABA), 2,2′- Dimethylbenzidine (mTB), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4 ,4'-diaminobenz
  • P 1 preferably contains a structural unit derived from at least one diamine represented by general formulas (3) to (12) below.
  • the content of the structure derived from the diamine compound in all diamines is 20 mol% or more, 40 mol% or more, and 50 mol. % or more, 70 mol % or more, 90 mol % or more, or 95 mol % or more.
  • acid dianhydrides containing P 2 groups include pyromellitic dianhydride (PMDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride.
  • BPDA 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 5-(2,5-dioxo Tetrahydro-3-furanyl)-3-methyl-cyclohexene-1,2dicarboxylic anhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic acid acid dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, methylene-4,4'-diphthal acid dianhydride, 1,1-ethylidene-4,4'-diphthalic dianhydride, 2,2-propylidene-4,4'-diphthalic dian
  • each of R 1 and R 2 if plural, is independently a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms or a monovalent aromatic group having 6 to 10 carbon atoms.
  • m represents an integer from 1 to 200 ⁇ can contain a structure represented by
  • the Rth and residual stress of the obtained polyimide film are improved, which is preferable.
  • the silicon-containing compound represented by the general formula (13) is: 20 mol% or less when the diamine is 100 mol%; or When the acid dianhydride is 100 mol %, it is 20 mol % or less.
  • the silicon-containing compound within the above range is preferable from the viewpoint of filterability of the resulting polyimide precursor or polyimide resin composition. From the viewpoint of further improving filterability, the silicon-containing compound is 20.0 mol% or less, 19.0 mol% or less, 18 0 mol % or less, 17.0 mol % or less, 16.0 mol % or less, 15.0 mol % or less, or 14.0 mol % or less.
  • the silicon-containing compound can exceed 0 mol % when the total diamine or total acid dianhydride in the resin composition is taken as 100 mol %.
  • Each R 1 in formula (13) is independently a single bond or a divalent organic group having 1 to 10 carbon atoms.
  • the divalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • Examples of divalent aliphatic hydrocarbon groups having 1 to 10 carbon atoms include methylene group, ethylene group, n-propylene group, i-propylene group, n-butylene group, s-butylene group, t-butylene group, Linear or branched alkylene groups such as n-pentylene group, neopentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group; cyclopropylene group, cyclobutylene group, Cycloalkylene groups such as a cyclopentylene group, a cyclohexy
  • R 2 and R 3 in formula (13) are each independently a monovalent organic group having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms. .
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl.
  • linear or branched alkyl groups such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; and aromatic groups such as phenyl groups, tolyl groups, xylyl groups, ⁇ -naphthyl groups and ⁇ -naphthyl groups.
  • a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent aliphatic hydrocarbon groups having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, linear or branched alkyl groups such as n-pentyl group and neopentyl group; and cycloalkyl groups such as cyclopropyl group, cyclobutyl group and cyclopentyl group.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably at least one selected from the group consisting of methyl group, ethyl group and n-propyl group.
  • R 4 and R 5 in formula (13) are each independently a monovalent organic group having 1 to 10 carbon atoms, and at least one is a monovalent aromatic group having 6 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl.
  • linear or branched alkyl groups such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; and aromatic groups such as phenyl groups, tolyl groups, xylyl groups, ⁇ -naphthyl groups and ⁇ -naphthyl groups.
  • Examples of monovalent aromatic groups having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group, ⁇ -naphthyl group, ⁇ -naphthyl group and the like. Preferably.
  • R 6 and R 7 in formula (13) are each independently a monovalent organic group having 1 to 10 carbon atoms, at least one of which is an organic group having an unsaturated aliphatic hydrocarbon group. preferable.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched. Examples of monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl.
  • linear or branched alkyl groups such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; and aromatic groups such as phenyl groups, tolyl groups, xylyl groups, ⁇ -naphthyl groups and ⁇ -naphthyl groups.
  • the monovalent organic group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of methyl group, ethyl group and phenyl group.
  • the organic group having an unsaturated aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms, and may be linear, cyclic or branched.
  • Examples of unsaturated aliphatic hydrocarbon groups having 3 to 10 carbon atoms include vinyl group, allyl group, 1-propenyl group, 3-butenyl group, 2-butenyl group, pentenyl group, cyclopentenyl group, hexenyl group, cyclo hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group and the like.
  • the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferably at least one selected from the group consisting of vinyl group, allyl group and 3-butenyl group.
  • R 1 to R 7 in formula (13) may be substituted with substituents such as halogen atoms such as F, Cl and Br, or may be unsubstituted.
  • L 1 and L 2 in formula (13) each independently represent a monovalent organic group containing an acid anhydride structure (also referred to as an acid anhydride group), an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, a carbonyl halide group, a hydroxy group, an epoxy group, or a mercapto group;
  • an acid anhydride structure also referred to as an acid anhydride group
  • an amino group an isocyanate group
  • carboxyl group an alkoxycarbonyl group
  • a carbonyl halide group a hydroxy group
  • an epoxy group or a mercapto group
  • the monovalent organic group containing an acid anhydride structure for example, the following formula: ⁇ In the above formula, "*" represents a bond. ⁇ and a 2,5-dioxotetrahydrofuran-3-yl group.
  • an amino group and an acid anhydride group are preferred, and an amino group is more preferred from the viewpoint of the viscosity stability of the resin composition.
  • the alkoxyl group in the alkoxycarbonyl group may be an alkoxyl group having 1 to 6 carbon atoms, such as methoxyl group, ethoxyl group, n-propoxyl group, i-propoxyl group, n-butoxyl group, i-butoxyl group. , t-butoxyl group and the like.
  • the halogen atom in the halogenated carbonyl group is preferably a halogen atom other than a fluorine atom, more preferably a chlorine atom or an iodine atom.
  • the functional group equivalent of the silicon-containing compound represented by formula (13) is preferably 800 or more, more preferably 1000 or more, even more preferably 1500 or more, from the viewpoint of filterability of the resin composition.
  • the functional group equivalent is 500 or less, filterability may deteriorate.
  • the functional group equivalent is the molecular weight of the silicon-containing compound per 1 mol of functional group (unit: g/mol).
  • the functional group equivalent can be measured by a known method according to existing standards and the like.
  • the functional group equivalent of the silicon-containing compound is 800 or more, the residual stress of the polyimide film under a nitrogen atmosphere is small, which is preferable. The reason for this is thought to be that when the functional group equivalent is a specific value or more, the number of silicone domains increases and the stress is relaxed.
  • i in formula (13) is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 4 to 80, and still more preferably an integer of 8 to 40.
  • j and k are each independently an integer of 0 to 200, j may be an integer of 1 to 200, j and k are preferably integers of 0 to 50, more preferably integers of 0 to 20, and It is preferably an integer of 0-50.
  • the resin in the resin composition has a structure derived from formula (13), since the residual stress of the polyimide film measured in a nitrogen atmosphere is good (small).
  • the reason for measuring in a nitrogen atmosphere is that in the display process, when forming an inorganic film such as SiO, SiN, etc. on a polyimide film, it may be exposed to a nitrogen atmosphere, and the residual stress under the nitrogen atmosphere is small. This is because it is required.
  • L 1 and L 2 in general formula (13) are each independently preferably an amino group from the viewpoint of the type of monomer, the cost, and the molecular weight of the resulting polyimide precursor. That is, the silicon-containing compound of formula (13) is preferably a silicon-containing diamine. Silicon-containing diamines include, for example, the following general formula (15): ⁇ wherein P 5 each independently represents a divalent hydrocarbon group and may be the same or different; Similarly, l represents an integer of 1-200. ⁇ Diamino(poly)siloxane represented by is preferred.
  • Preferable structures of P3 and P4 in the general formula (15) include a methyl group, an ethyl group, a propyl group, a butyl group and a phenyl group. Among these, a methyl group is preferred.
  • l in the general formula (15) is an integer of 1 to 200, and an integer of 3 to 200 from the viewpoint of the heat resistance of the polyimide obtained using the silicon-containing diamine represented by the formula (15). is preferred.
  • the preferred range of the functional group equivalent weight of the compound represented by general formula (15) is the same as that of the silicon-containing compound represented by general formula (13) described above.
  • the content (copolymerization ratio) of the silicon-containing compound represented by the general formula (13) is 0.5% by mass or more and 20% by mass when the total monomer mass (polyimide precursor/total mass of polyimide) is 100% by mass. % or less is preferable.
  • the content of the silicon-containing compound is 0.5% by mass or more, the residual stress generated between the substrate and the support can be effectively reduced.
  • the silicon-containing compound is 20% by mass or less, the obtained polyimide film has good transparency (especially low haze), and is preferable from the viewpoint of realizing high total light transmittance and high glass transition temperature.
  • the silicon-containing compound used as a polyimide precursor/polyimide monomer may be synthesized using the common general knowledge at the time of filing, or may be a commercially available product.
  • Commercially available products include amine-modified methylphenyl silicone oil at both ends (manufactured by Shin-Etsu Chemical Co., Ltd.: X22-1660B-3 (functional group equivalent weight: 2200), X22-9409 (functional group equivalent weight: 670)), acid anhydride-modified methylphenyl at both ends.
  • Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.: X22-168-P5-B (functional group equivalent weight 2100)), both ends epoxy-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.: X22-2000 (functional group equivalent weight 620)), both ends Amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd.: PAM-E (functional group equivalent 130), X22-161A (functional group equivalent 800), X22-161B (functional group equivalent 1500), KF8012 (functional group equivalent 2200), Toray Dow Corning: BY16-853U (functional group equivalent 450), JNC: Silaplane FM3311 (number average molecular weight 1000)), epoxy-modified dimethyl silicone at both ends (Shin-Etsu Chemical: X-22-163A (functional group equivalent 1750 ), both ends alicyclic epoxy-modified dimethyl silicone (man
  • organic solvent is capable of dissolving the above-mentioned (a) polyamic acid, (b) polyimide, (c) polyamic acid-imide copolymer and optionally used other components. There is no particular limit if any. Specific examples of such (d) organic solvents include aprotic solvents, phenolic solvents, ether and glycol solvents, and the like.
  • the aprotic solvent preferably has polarity and/or preferably has a boiling point of 250° C. to 350° C., from the viewpoint of improving the in-plane uniformity of the film thickness and decreasing the YI value.
  • aprotic polar solvents are N-methylpyrrolidone, N-ethylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, 3-methoxy-N,N-dimethylpropanamide, ⁇ -butyrolactone , ⁇ -valerolactone, and sulfolane, and more preferably sulfolane.
  • Phenolic solvents such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5 -xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, etc.; ether and glycol solvents such as 1,2-dimethoxyethane , bis(2-methoxyethyl) ether, 1,2-bis(2-methoxyethoxy)ethane, bis[2-(2-methoxyethoxy)ethyl]ether, tetrahydrofuran, 1,4-dioxane, etc. mentioned.
  • the organic solvent preferably contains at least one selected from NMP, GBL, DMF, and DMAc from the viewpoint of solubility of polyamic acid, polyimide, and polyamic acid-imide copolymer.
  • the resin composition contains (e) an imidization catalyst, an aprotic polar substance, a surfactant, an alkoxysilane compound, etc. Further, it may be contained.
  • an imidization catalyst in the step of obtaining a polyimide resin film from a resin composition by imidization, an imidization catalyst can be added to the resin composition.
  • the resin composition can contain 0.01 to 0.5 mol % of the imidization catalyst per 1 mol of the repeating unit of the (c) polyamic acid-imide copolymer.
  • the content of the imidization catalyst is 0.01 mol % or more per 1 mol of the repeating unit of the polyamic acid-imide copolymer, the yellowness (YI value) of the film can be suppressed.
  • the content of the imidization catalyst is preferably 0.5 mol % or less.
  • the content of the imidization catalyst is more preferably 0.015 to 0.5 mol%, more preferably 0.02 to 0.5 mol%, relative to 1 mol of the repeating unit of the polyamic acid-imide copolymer. is more preferred, and 0.02 to 0.15 mol % is particularly preferred.
  • the content of the imidization catalyst is 5 parts by mass or more with respect to 100 parts by mass of the polyamic acid-imide copolymer or polyamic acid described above, from the viewpoint of the effects of the present invention. is preferred, and 10 parts by mass or more is more preferred.
  • imidization catalysts include, but are not limited to, pyridine, triethylamine, 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, benzimidazole, N-tert-butoxycarbonyl. imidazole (N-Boc-imidazole) and the like.
  • 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, 2-phenylimidazole, imidazole, benzimidazole, or N-tert-butoxy Imidazole compounds such as carbonylimidazole (N-Boc-imidazole) are preferred, 1,2-dimethylimidazole, 1-methylimidazole, 2-methylimidazole, imidazole and the like are more preferred, 1,2-dimethylimidazole, N-tert- Butoxycarbonylimidazole (N-Boc-imidazole), 1-methylimidazole and the like are more preferred, and imidazole compounds containing N-tert-butoxycarbonylimidazole (N-Boc-imidazole) and/or 1-methylimidazole are even more preferred, N-Boc-imidazole is particularly preferred from the viewpoint of storage stability, and
  • the imidization catalyst is not particularly limited, nitrogen-containing compounds can be mentioned, and specific examples include imidazole compounds, pyridine compounds, tertiary amine compounds, and the like.
  • imidazole compounds include 1-methylimidazole, N-tert-butoxycarbonylimidazole (N-Boc-imidazole), 2-methylimidazole, 2-phenylimidazole, benzimidazole, 2-ethyl-4-methylimidazole, 4-ethyl -2-methylimidazole, 4-methyl-2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1H-imidazole, and 1,2-dimethylimidazole is mentioned.
  • Pyridine compounds include 4-dimethylaminopyridine, 2,2'-bipyridyl, nicotinic acid, isoquinoline, pyridine, and 2-methylpyridine.
  • Tertiary amine compounds include 1,8-diazabicyclo[5.4.0]-7-undecene, 1,4-diazabicyclo[2.2.2]octane, N-methylmorpholine, and triethylamine.
  • the content of the imidization catalyst is preferably 1 part by mass or more, preferably 5 parts by mass or more, relative to 100 parts by mass of the polyamic acid-imide copolymer or polyamic acid, from the viewpoint of IR (infrared) cure defect evaluation and degassing evaluation. is more preferable, and 10 parts by mass or more is particularly preferable.
  • the IR (infrared) cure defect evaluation to be described later is based on the following a. can be improved by adopting any one or more of ⁇ c; Using an imidization catalyst as an additive b. Using an aprotic polar substance with a boiling point of 250-350 as an additive c. Increasing the molecular weight of polyamic acid-imide copolymer/polyamic acid thing.
  • the degassing evaluation to be described later is based on the following a. can be improved by adopting any one or more of ⁇ c; Using an imidization catalyst as an additive b. Using an aprotic polar substance with a boiling point of 250-350 as an additive c. Increasing the molecular weight of polyamic acid-imide copolymer/polyamic acid thing.
  • the resin composition according to one aspect of the present disclosure contains an aprotic polar substance with a boiling point of 250 to 350°C.
  • Aprotic polar substances with boiling points of 250° C. to 350° C. that can be preferably used include ketones, esters, carbonates, It is a compound having at least one chemical structure (functional group) selected from amide, nitrile, sulfoxide, and sulfone.
  • compounds that are preferably used include, for example, compounds having a ketone structure with a boiling point of 250° C. to 350° C., such as benzophenone, methylbenzophenone, dimethylbenzophenone, and dodecanedione.
  • Compounds having an ester structure with a boiling point of 250°C to 350°C include dibutyl sebacate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, 2-phenoxyethyl acetate, butyl benzoate, isoamyl benzoate, dibutyl maleate, cinnamon. Ethyl acid, diethylene glycol diacetate, diethyl adipate, etc.
  • a compound having a carbonate structure with a boiling point of 250° C. to 350° C. diphenyl carbonate, etc.
  • compounds having an amide structure with a boiling point of 250° C. to 350° C. benzamide, N,N-dimethylbenzamide, adipamide, etc.
  • a compound having a nitrile structure with a boiling point of 250° C. to 350° C. adiponitrile etc.
  • compounds having a sulfoxide structure with a boiling point of 250° C. to 350° C. dibutyl sulfoxide, diphenyl sulfoxide, etc.
  • compounds having a sulfone structure with a boiling point of 250° C. to 350° C. include sulfolane, 3-methylsulfolane, dibutylsulfone, and benzenesulfonamide. Among these compounds, sulfolane and 3-methylsulfolane are more preferably used.
  • An aprotic polar substance with a boiling point of 250 ° C. to 350 ° C. is added to a polyamic acid-imide copolymer or a polyamide precursor alone or in combination with a solvent, and then coated and cured (heated) to cause IR cure defects. Evaluation and degassing evaluation can be improved. The effect is particularly remarkable when adding 5 wt % or more when (mass of solvent + mass of aprotic polar substance) is 100 wt %.
  • the upper limit of the amount of the aprotic polar substance to be added is 100 wt% when (the mass of the solvent + the mass of the aprotic polar substance) is 100 wt%, and the more preferable addition amount is 30 wt% or less.
  • the resin composition preferably contains an aprotic polar substance with a boiling point of 250°C to 350°C.
  • Aprotic polar substances with boiling points of 250° C. to 350° C. that can be preferably used include ketones, esters, carbonates, It is a compound having at least one chemical structure (functional group) selected from amide, nitrile, sulfoxide and sulfone.
  • the aprotic polar substance may overlap with the aprotic solvent described above as long as its boiling point is between 250°C and 350°C.
  • compounds that are preferably used include, for example, compounds having a ketone structure with a boiling point of 250° C. to 350° C., such as benzophenone, methylbenzophenone, dimethylbenzophenone, and dodecanedione.
  • Compounds having an ester structure with a boiling point of 250°C to 350°C include dibutyl sebacate, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, 2-phenoxyethyl acetate, butyl benzoate, isoamyl benzoate, dibutyl maleate, cinnamon. Ethyl acid, diethylene glycol diacetate, diethyl adipate, etc.
  • a compound having a carbonate structure with a boiling point of 250° C. to 350° C. diphenyl carbonate, etc.
  • compounds having an amide structure with a boiling point of 250° C. to 350° C. benzamide, N,N-dimethylbenzamide, adipamide, etc.
  • a compound having a nitrile structure with a boiling point of 250° C. to 350° C. adiponitrile etc.
  • compounds having a sulfoxide structure with a boiling point of 250° C. to 350° C. dibutyl sulfoxide, diphenyl sulfoxide, etc.
  • compounds having a sulfone structure with a boiling point of 250° C. to 350° C. include sulfolane, 3-methylsulfolane, dibutylsulfone, and benzenesulfonamide. Among these compounds, sulfolane and 3-methylsulfolane are more preferably used.
  • An aprotic polar substance having a boiling point of 250 ° C. to 350 ° C. is added to a polyamide precursor, or a resin having a polyamide precursor and a polyimide structure, or a solvent-soluble polyimide, alone or in combination with a solvent to coat and cure ( heating), the in-plane film thickness uniformity of the cured film can be improved and the YI can be lowered as compared with the case where the cured film is not added.
  • the effect is particularly remarkable when adding 5 wt % or more when (mass of solvent + mass of aprotic polar substance) is 100 wt %.
  • Aprotic polar substances with a boiling point of 250°C to 350°C remain in the film even at temperatures of 250°C or higher in the polyimide curing process (heating to about 400°C), and play a role as a plasticizer at high temperatures. play. For this reason, in the temperature range of 250° C. or higher in the curing process, the resin becomes soft and fluid, which is thought to improve the in-plane uniformity of the film thickness and decrease the YI. On the other hand, if the amount of the aprotic polar substance with a boiling point of 250° C. to 350° C. is large, it cannot be completely volatilized during curing, and a small amount remains in the film after curing.
  • an inorganic film such as silicon nitride is formed on the cured film by CVD, etc., and then a layer of amorphous silicon or low-temperature polysilicon is formed on it, and the same temperature as the curing temperature is applied again. (re-annealing step). If an aprotic polar substance with a boiling point of 250° C. to 350° C. remains in the film after curing, it will volatilize during re-annealing, causing blisters in the inorganic film formed on the film. In order to prevent this, it is necessary to suppress the residual amount of the substance in the film to 1000 ppm or less.
  • the upper limit of the amount of the aprotic polar substance added is, in the case of a polyimide precursor or a resin having a polyimide precursor skeleton and a polyimide skeleton, (mass of solvent + mass of aprotic polar substance) to 100 wt%. is 100 wt%.
  • a solvent-soluble polyimide containing a solvent in addition to the polyimide precursor or the resin having the polyimide precursor skeleton and the polyimide skeleton (the mass of the solvent + the mass of the aprotic polar substance) was set to 100 wt%. is 50 wt%.
  • the addition amount is more preferably 30 wt % or less.
  • sulfolane and 3-methylsulfolane are excellent in improving the in-plane uniformity of the cured film and reducing YI. Similar effects are exhibited with other substances, but the effects are remarkable when sulfolane and 3-methylsulfolane are used.
  • the boiling point of the aprotic polar substance is less than 250° C., the effects of improving the in-plane uniformity of the cured film and reducing the YI are not exhibited. If the boiling point exceeds 350° C., the effect is exhibited, but more than 1000 ppm remains in the cured film, which is not preferable from the viewpoint of degassing.
  • surfactants examples include silicone-based surfactants, fluorine-based surfactants, nonionic surfactants other than these, and the like.
  • silicone surfactants include organosiloxane polymers KF-640, 642, 643, KP341, X-70-092, X-70-093 (trade names, manufactured by Shin-Etsu Chemical Co., Ltd.); SH-28PA, SH -190, SH-193, SZ-6032, SF-8428, DC-57, DC-190 (trade name, manufactured by Dow Corning Toray Silicone Co., Ltd.); SILWET L-77, L-7001, FZ-2105, FZ -2120, FZ-2154, FZ-2164, FZ-2166, L-7604 (trade name, manufactured by Nihon Unicar); DBE-814, DBE-224, DBE-621, CMS-626, CMS-222, KF- 352A, KF-354L, KF-355A, KF-6020, DBE-821, DBE-7
  • fluorine-based surfactants examples include Megafac F171, F173, R-08 (manufactured by Dainippon Ink and Chemicals, Inc., trade names); Florard FC4430, FC4432 (Sumitomo 3M Co., Ltd., trade names).
  • Nonionic surfactants other than these include, for example, polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether and the like.
  • silicone-based surfactants and fluorine-based surfactants are preferable from the viewpoint of coatability (streak suppression) of the resin composition.
  • a silicone-based surfactant is preferable from the viewpoint of reducing the influence on the rate.
  • a surfactant when used, its blending amount is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyimide precursor in the resin composition.
  • the resin composition contains, with respect to 100 parts by mass of the polyimide precursor, An alkoxysilane compound can be contained in an amount of 0.01 to 20 parts by mass.
  • the content of the alkoxysilane compound is 0.01 parts by mass or more relative to 100 parts by mass of the polyimide precursor, good adhesion can be obtained between the support and the polyimide film.
  • the content of the alkoxysilane compound is 20 parts by mass or less from the viewpoint of the storage stability of the resin composition.
  • the content of the alkoxysilane compound is preferably 0.02 to 15 parts by mass, more preferably 0.05 to 10 parts by mass, and still more preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the polyimide precursor. be.
  • alkoxysilane compounds include 3-ureidopropyltriethoxysilane, bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -Aminopropyltripropoxysilane, ⁇ -Aminopropyltributoxysilane, ⁇ -Aminoethyltriethoxysilane, ⁇ -Aminoethyltripropoxysilane, ⁇ -Aminoethyltributoxysilane, ⁇ -Aminobutyltriethoxysilane, ⁇ - Aminobutyltrimethoxysilane, ⁇ -Aminobutyltripropoxysilane, ⁇ -Aminobutyltributoxysilane, Phenylsilanetriol, Trimethoxyphenylsilane,
  • a method for producing a polyamic acid-imide copolymer has the following steps 1 to 3: Step 1: A step of reacting the tetracarboxylic dianhydride component (X 3 ) of the polyamic acid moiety constituting the general formula (1) with the diamine component (X 4 ) to obtain a solvent-soluble polyimide solution; Step 2: A step of dissolving the diamine (X 2 ) of the polyamic acid moiety in the general formula (1) in the polyimide obtained in Step 1; and Step 3: For the solution obtained in Step 2, the A step of reacting the tetracarboxylic dianhydride component (X 1 ) of the polyamic acid moiety constituting the general formula (1) to obtain a polyamic acid-imide copo
  • Step 1 is a step of synthesizing the polyimide portion in the general formula (1). It can be synthesized by subjecting a diamine (eg, 44BAFL) of the polyimide moiety in the general formula (1) and a tetracarboxylic dianhydride (eg, BPAF) to a polycondensation reaction. This reaction is preferably carried out in a solvent capable of dissolving the monomer and the polyimide to be purified, using a reaction vessel from which water generated during imidization is removed.
  • a diamine eg, 44BAFL
  • a tetracarboxylic dianhydride eg, BPAF
  • a predetermined amount of BAFL and NMP are added to a separable flask equipped with a reflux tube and a Dean-Stark tube, and after BAFL is completely dissolved, a predetermined amount of BPAF and toluene as an azeotropic solvent of water are added. is added, heated to 180° C., and stirred. Water generated during heating at 180° C. and toluene as an azeotropic solvent are preferably discharged out of the container as appropriate.
  • reaction with a polyamic acid becomes easy and it is preferable at the point of a haze degree (Haze value) falling.
  • the reaction temperature is preferably 140°C or higher, more preferably 160°C.
  • the reaction temperature is preferably 200° C. or lower, more preferably 190° C. or lower, from the viewpoint of suppressing coloration due to decomposition of the solvent and reaction with the monomer, and the temperature should be quickly reduced to 100° C. or lower after the completion of the reaction. is preferred.
  • the reaction time is preferably 2 hours or longer, preferably 3 hours or longer.
  • the reaction time is preferably 12 hours or less, more preferably 6 hours or less, from the viewpoint of suppressing coloration due to decomposition of the solvent and reaction with the monomer.
  • Step 2 is a step of dissolving the diamine (X 2 ) of the polyamic acid moiety in the general formula (1) in the polyimide obtained in the step 1 above.
  • predetermined amounts of diamine for example, APAB
  • NMP are added and thoroughly stirred to dissolve the diamine.
  • the tetracarboxylic dianhydride of the polyimide part component (X 3 ) derived from the product: component (X 2 and X 4 ) derived from the diamine component of the polyimide part and the polyamic acid part 100: 150 to 100: 3000 (per 1 mol part of tetracarboxylic dianhydride 1.50 to 30 mol parts of diamine), and the range of 100:225 to 100:2000 (2.25 to 20 mol parts of diamine per 1 mol part of tetracarboxylic dianhydride) and More preferably, the molar ratio (diamine/tetracarboxylic dianhydride) is 2.25-20.
  • the reaction uniformity when reacting the tetracarboxylic dianhydride in step 3 is improved, the molecular weight distribution is close to 2.00, and the proportion of oligomers having a molecular weight of 1,000 or less is low Polyamic acid - An imide copolymer is obtained, and the thermal stability in a high-temperature region when made into a film is improved.
  • the temperature for dissolving the diamine is preferably 40°C or higher, more preferably 60°C or higher, from the viewpoint of increasing the solubility of the diamine and improving the uniformity.
  • the temperature is preferably 120° C. or lower, more preferably 100° C. or lower.
  • step 3 a tetracarboxylic dianhydride of the polyamic acid moiety in the general formula (1) is added to the solution in which the polyimide and diamine in step 2 are dissolved, and polycondensation reaction is performed to obtain polyamic acid-imide. Copolymers can be synthesized.
  • the imidization step of step 1 includes a step of simultaneously imidizing the diamine compounds corresponding to X2 and X4 , and a common diamine compound is used for X2 and X4 . I can.
  • the molar ratio (X 2 /X 1 ) of the tetracarboxylic dianhydride component (X 1 ) and the diamine component (X 2 ) of the polyamic acid moiety can be obtained From the viewpoint of controlling the coefficient of linear thermal expansion, residual stress, elongation, and YI of the resin film within a desired range, it is preferably 0.85 to 1.2, more preferably 0.90 to 1.1, and 0.92. ⁇ 1.00 is more preferred.
  • the above range is preferable in that the reaction with polyimide easily occurs and the degree of haze (Haze value) is lowered.
  • the molar ratio (X 4 /X 3 ) of the tetracarboxylic dianhydride component (X 3 ) and the diamine component (X 4 ) in the polyimide part is From the viewpoint of controlling the thermal expansion coefficient, residual stress, elongation, and YI of the resin film to be within the desired range, it is preferably in the range of 0.85 to 2.0, and 0.95 to 1.5. A range is more preferable, and a range of 1.01 to 1.25 is even more preferable. The above range is preferable in that the heat resistance at high temperatures is improved, the decomposition reaction during heating is suppressed, and the yellowness (YI value) and haze (Haze value) are lowered.
  • the molar ratio (Number of moles of X 2 + Number of moles of X 4 ) / (Number of moles of X 1 + Number of moles of X 3 )) is the coefficient of thermal expansion, residual stress, elongation, and YI of the resulting resin film within the desired range From the viewpoint of control, it is preferably in the range of 0.92 to 1.05, more preferably in the range of 0.94 to 1.00.
  • the molecular weight of the polyamic acid-imide copolymer is easily improved, the processability as a resin composition is improved, coating unevenness when producing a film can be suppressed, and the haze (Haze value ) is preferable from the viewpoint of reduction.
  • the terminal amine of the polyamic acid-imide copolymer is reduced, the decomposition reaction during heating is suppressed, the thermal stability in the high temperature range is improved, and the yellowness index (YI value) is lowered.
  • the molecular weight can be controlled by adjusting the ratio of the tetracarboxylic dianhydride component and the diamine component, and by adding a terminal blocking agent. The closer the ratio of the acid dianhydride component to the diamine component is to 1:1 and the less the amount of the terminal blocker used, the higher the molecular weight of the polyimide.
  • the purity is preferably 98% by mass or more, more preferably 99% by mass or more, and even more preferably 99.5% by mass or more.
  • the acid dianhydride component or diamine component as a whole has the above purity, but all types of acid dianhydrides used It is preferred that the component and the diamine component each have the purity specified above.
  • the solvent shown in (d) organic solvent can be used, but it is not limited to this.
  • the compounds described in the above (e) imidization catalyst can be used, but are not limited thereto.
  • the boiling point at normal pressure of the solvent used for polyimide synthesis is preferably 60°C to 300°C, more preferably 140°C to 280°C, and particularly preferably 170°C to 270°C. If the boiling point of the solvent is higher than 300°C, the drying process will take a long time. On the other hand, if the boiling point of the solvent is lower than 60° C., the surface of the resin film may become rough during the drying process, air bubbles may be mixed into the resin film, and a uniform film may not be obtained.
  • a solvent having a boiling point of 170° C. to 270° C. at normal pressure and a vapor pressure of 250 Pa or less at 20° C. from the viewpoint of solubility and edge repellency during coating. More preferred from More specifically, selected from the group consisting of N-methyl-2-pyrrolidone (NMP), ⁇ -butyrolactone (GBL), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF)
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • DMAc N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • the polyamic acid according to the fourth embodiment of the present invention is not limited, but can be produced, for example, by the method described in International Publication No. 2017/051827.
  • ⁇ Polyimide copolymer> Another aspect of the present disclosure provides a film made of a polyimide copolymer obtained by imidizing the (c) polyamic acid-imide copolymer contained in the resin composition. More specifically, general formula (2) below: ⁇ wherein X 1 and X 3 represent a tetravalent organic group, X 2 and X 4 represent a divalent organic group, and n and m are positive integers ⁇ and a polyimide copolymer characterized by having a structure represented by the general formula (A-1) or the general formula (A-2) as X 2 . can be done.
  • the polyimide copolymer preferably satisfies any of the following from the viewpoint of excellent transparency, haze, heat resistance and linear expansion coefficient of the polyimide film containing it:
  • the diamine component constituting X 2 in general formula (2) replaces two * in the structure represented by general formula (A-1) or general formula (A-2) with —NH 2 is a compound that - X 3 in the general formula (2) is at least one selected from the group consisting of the structure represented by the general formula (A-3), the structure derived from ODPA, and the structure derived from 6FDA;
  • - X 1 in general formula (2) is at least one selected from the group consisting of a BPDA-derived structure, an ODPA-derived structure, and a TAHQ-derived structure;
  • - the molar ratio (X 2 /X 1 ) of X 1 and X 2 contained in the general formula (2) is 0.84 to 1.00;
  • X 2 in the general formula (2) is 4-amino-3-fluorophenyl- When it is a group derived from 4-aminobenzoate, the following structures 1 and 2: Configuration 1.
  • X 3 is a group derived from 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF)
  • X 4 is 4,4′-diaminodiphenyl sulfone, and/or 2 , a group derived from 2′-bis(trifluoromethyl)benzidine
  • X 3 is a group derived from norbornane-2-spiro- ⁇ -cyclopentanone a- ⁇ '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride be; is preferably excluded.
  • X 4 in the general formula (2), X 3 is 9,9-bis (3,4-dicarboxyphenyl )
  • BPAF fluorene diacid anhydride
  • ⁇ Resin composition containing polyamic acid> Another aspect of the present disclosure is the following general formula (3): ⁇ wherein X 1 represents a tetravalent organic group, X 2 represents a divalent organic group, and n is a positive integer ⁇ and (d) the organic solvent and (e) the imidization catalyst described above, and (e) the imidization catalyst is N-tert-butoxycarbonylimidazole (N -Boc-imidazole) and / or an imidazole compound containing 1-methylimidazole, or (e) the imidization catalyst is an imidazole compound, and (e) the content of the imidization catalyst is polyamide Provided is a resin composition characterized by containing 5 parts by mass or more of the acid per 100 parts by mass of the acid.
  • the resin composition containing the structural unit represented by general formula (3) preferably contains N-tert-butoxycarbonylimidazole (N-Boc-imidazole) and 1-methylimidazole as (e) imidization catalysts.
  • the content of the imidization catalyst is in the range of 0.02 to 0.15 per 1 mol of the polyamic acid repeating unit having the structural unit represented by the general formula (3). preferable.
  • X 1 , X 2 and n in general formula (3) may be as defined for general formula (1) or (2) above, and X 1 is represented by general formula (A-3) above.
  • structure 4,4′-oxydiphthalic dianhydride (ODPA) derived structure, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) derived structure, biphenyltetracarboxylic dianhydride ( BPDA)-derived structure and 4,4′-biphenylbis(trimellitic acid monoester acid anhydride) (TAHQ)-derived structure is preferable
  • X 2 is preferably at least one selected from the group consisting of the structure derived from A group consisting of structures represented by the general formula (A-1), the general formula (A-2), the general formula (A-4), the general formula (A-5), and the general formula (A-6) At least one selected from is preferable, and the structure represented by the above general formula (A-1) is more preferable.
  • the weight average molecular weight (Mw) of the polyamic acid is preferably 2,639 or more, more preferably 2,639 to 300,000 or 10,000 to 300,000, still more preferably 20,000 to 250,000, 40, 000 to 200,000 are particularly preferred.
  • Mw weight average molecular weight
  • the weight average molecular weight is 2,639 or more, the mechanical properties such as elongation and breaking strength are excellent, the residual stress is low, and the YI is low.
  • the weight-average molecular weight is 300,000 or less, the viscosity and concentration of the polyamic acid-containing varnish are well-balanced, workability is good, and film unevenness during coating is reduced.
  • the Mw of the polyamic acid is 170,000 or more, it tends to be excellent in transparency, haze, heat resistance and coefficient of linear expansion, which is preferable, and Mw of 220,000 or more is more preferable.
  • X 2 in formula (3) has a structure represented by general formula (A-1) above.
  • the weight average molecular weight is a value obtained as a standard polystyrene conversion value using gel permeation chromatography (hereinafter also referred to as GPC).
  • ⁇ Polyimide> Another aspect of the present disclosure is the following general formula (3): ⁇ wherein X 3 represents a tetravalent organic group, X 4 represents a divalent organic group, and m is a positive integer ⁇ Polyimide containing a structural unit M represented by, or the following general formula (16) ⁇ In the formula, P 1 and P 2 are the same as P 1 and P 2 in general formula (I) or (II), and m is a positive integer. ⁇ A polyimide having a structure represented by is provided.
  • the polyimide has a structure represented by the general formula (A-3) described above as X 3 in the general formula (3), a structure derived from 4,4'-oxydiphthalic dianhydride (ODPA), and It is characterized by containing at least one selected from the group consisting of structures derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA).
  • A-3 a structure represented by the general formula (A-3) described above as X 3 in the general formula (3), a structure derived from 4,4'-oxydiphthalic dianhydride (ODPA), and It is characterized by containing at least one selected from the group consisting of structures derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA).
  • X 4 in general formula (3) is as described for X 4 in general formula (1) or (2) above.
  • the diamine component constituting X 4 in general formula (3) preferably differs in either diamine composition or diamine species from the same viewpoint as X 4 in general formula (1) or (2) above. , is more preferably the composition or type of aromatic diamine, and X 4 in general formula (3) is the above-described general formula (A-4), general formula (A-5), and general It is more preferably at least one selected from the group consisting of structures represented by formula (A-6).
  • Preferred P 1 and P 2 in general formula (I) or (II) are also preferred in polyimides of general formula (16) for the same reasons.
  • the number m of repeating units in general formula (16) is not particularly limited, but may be an integer of 2-150.
  • the polyimide obtained from the resin composition preferably does not substantially contain an aprotic polar substance with a boiling point of 250 ° C. to 350 ° C., which was contained in the resin composition, but at 1000 ppm or less. may be included.
  • the method for producing the resin composition described above is not particularly limited, and for example, the following method can be used.
  • the resin composition can be produced by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
  • a method for reducing the total amount of cyclic silicon-containing compounds contained in the resin composition for example, prior to the polycondensation reaction, the silicon-containing compounds are purified to reduce the total amount of cyclic silicon-containing compounds. are mentioned.
  • the resin composition may be purified to reduce the total amount of cyclic silicon-containing compounds.
  • a method for purifying the silicon-containing compound includes, for example, stripping while blowing an inert gas such as nitrogen gas into the silicon-containing compound in an arbitrary container.
  • the stripping temperature is preferably 200° C. or higher and 300° C. or lower, more preferably 220° C. or higher and 300° C. or lower, and still more preferably 240° C. or higher and 300° C. or lower.
  • the vapor pressure for stripping is preferably as low as possible, and is 1000 Pa or less, more preferably 300 Pa or less, still more preferably 200 Pa or less, and still more preferably 133.32 Pa (1 mmHg) or less.
  • the stripping time is preferably 4 hours or more and 12 hours or less, more preferably 6 hours or more and 10 hours or less.
  • a polyimide precursor can be synthesized by a polycondensation reaction of polycondensation components including an acid dianhydride, a diamine, and a silicon-containing compound.
  • any of the following steps - Polycondensation reaction of at least one compound selected from the diamine compounds, at least one compound selected from the acid dianhydride compounds, and other compounds to provide a polyimide precursor and/or polyimide process; - At least one compound selected from the above diamine compounds, at least one compound selected from the above acid dianhydride compounds, a silicon-containing compound represented by the general formula (13), and other compounds are combined condensation reaction to provide a polyimide precursor and/or polyimide;
  • a method for producing a resin composition comprising: Moreover, it is preferable to use the silicon-containing compound that has been purified as described above.
  • the polycondensation components consist of dianhydrides, diamines and silicon-containing compounds.
  • the polycondensation reaction is preferably carried out in a suitable solvent. Specifically, for example, after dissolving predetermined amounts of a diamine component and a silicon-containing compound in a solvent, a predetermined amount of acid dianhydride is added to the obtained diamine solution, followed by stirring.
  • the imidization in synthesizing the polyimide may be thermal imidization or chemical imidization using an imidization catalyst.
  • the molecular weight of the polyimide/polyimide precursor is controlled by adjusting the type of acid dianhydride, diamine and silicon-containing compound, adjusting the molar ratio of acid dianhydride and diamine, adding a terminal blocking agent, adjusting reaction conditions, etc. It is possible. The closer the molar ratio of the acid dianhydride component to the diamine component is to 1:1, and the smaller the amount of the terminal blocking agent used, the higher the molecular weight of the polyimide precursor.
  • the purity is preferably 98% by mass or more, more preferably 99% by mass or more, and still more preferably 99.5% by mass or more. Purification can also be achieved by reducing the water content in the dianhydride component and the diamine component.
  • the acid dianhydride components as a whole and the diamine components as a whole have the above purity, and all types used It is more preferable that the acid dianhydride component and the diamine component of each have the above purity.
  • the solvent for the reaction is not particularly limited as long as it can dissolve the acid dianhydride component and the diamine component, as well as the resulting polyimide/polyimide precursor, and yield a high-molecular-weight polymer.
  • solvents include aprotic solvents, phenolic solvents, ether and glycol solvents, and the like.
  • phenolic solvents examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3, 4-xylenol, 3,5-xylenol and the like.
  • Ether and glycol solvents include, for example, 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, bis[2-(2-methoxyethoxy)ethyl ] ether, tetrahydrofuran, 1,4-dioxane, and the like.
  • solvents may be used alone or in combination of two or more.
  • the boiling point at normal pressure of the solvent used for synthesizing the polyimide/polyimide precursor is preferably 60 to 300°C, more preferably 140 to 280°C, and even more preferably 170 to 270°C. Since the boiling point of the solvent is lower than 300°C, the drying process is shortened. When the boiling point of the solvent is 60° C. or higher, it is difficult for the surface of the resin film to become rough and for bubbles to enter the resin film during the drying process, and a more uniform film can be obtained.
  • NMP N-methyl-2-pyrrolidone
  • the water content in the solvent is preferably, for example, 3,000 ppm by mass or less in order to facilitate the polycondensation reaction.
  • the content of molecules with a molecular weight of less than 1,000 in the resin composition is preferably less than 5% by mass.
  • the presence of molecules with a molecular weight of less than 1,000 in the resin composition is considered to be due to the water content of the solvent and raw materials (acid dianhydride, diamine) used during synthesis. That is, it is thought that the acid anhydride groups of some acid dianhydride monomers are hydrolyzed by water to form carboxyl groups, which remain in a low-molecular state without increasing the molecular weight.
  • the water content of the solvent used in the above polycondensation reaction is as small as possible.
  • the water content of the solvent is preferably 3,000 mass ppm or less, more preferably 1,000 mass ppm or less.
  • the amount of water contained in the raw material is preferably 3,000 ppm by mass or less, more preferably 1,000 ppm by mass or less.
  • the water content of the solvent depends on the grade of the solvent used (dehydration grade, general-purpose grade, etc.), solvent container (bottle, 18L can, canister can, etc.), storage condition of the solvent (presence or absence of rare gas inclusion, etc.), and from opening to use. time (whether to use immediately after opening or after the passage of time after opening, etc.) is considered to be involved. Presumably, replacement of the reactor with rare gas before synthesis, presence or absence of circulation of rare gas during synthesis, etc. also play a role. Therefore, when synthesizing polyimide precursors, it is recommended to use high-purity materials as raw materials, use solvents with low water content, and take measures to prevent water from entering the system before and during the reaction. be done.
  • the reaction temperature during synthesis of the polyimide precursor is preferably 0° C. to 120° C., 40° C. to 100° C., or 60° C. to 100° C.
  • the polymerization time is may preferably be from 1 to 100 hours, or from 2 to 10 hours.
  • a polyimide precursor having a uniform degree of polymerization can be obtained by setting the polymerization time to 1 hour or more, and a polyimide precursor having a high degree of polymerization can be obtained by setting the polymerization time to 100 hours or less.
  • the resin composition may contain other additional polyimide precursors in addition to the polyimides/polyimide precursors described above.
  • the mass ratio of the additional polyimide/polyimide precursor is, relative to the total amount of polyimide/polyimide precursor in the resin composition, It is preferably 30% by mass or less, more preferably 10% by mass or less.
  • the polyimide precursor may be partially imidized (partially imidized).
  • the imidization rate is preferably 5% or more, more preferably 8% or more, from the viewpoint of balancing the solubility of the polyimide precursor in the resin composition and the storage stability of the solution. It is 80% or less, more preferably 70% or less, still more preferably 50% or less.
  • This partial imidization is obtained by heating the polyimide precursor for dehydration and ring closure. This heating is preferably carried out at a temperature of 120 to 200° C., more preferably 150 to 185° C., still more preferably 150 to 180° C., for preferably 15 minutes to 20 hours, more preferably 30 minutes to 10 hours. .
  • Part or all of the carboxylic acid is esterified by adding N,N-dimethylformamide dimethyl acetal or N,N-dimethylformamide diethyl acetal to the polyimide/polyimide precursor obtained by the above reaction and heating.
  • Esterification can improve viscosity stability during storage.
  • These ester-modified polyamic acids are prepared by sequentially reacting the above acid dianhydride component with 1 equivalent of a monohydric alcohol relative to the acid anhydride group, and a dehydration condensation agent such as thionyl chloride or dicyclohexylcarbodiimide, It can also be obtained by a method of condensation reaction with a diamine component.
  • the polyimide varnish is obtained by dissolving the acid dianhydride component and the diamine component in a solvent such as an organic solvent, adding an azeotropic solvent such as toluene, and removing the water generated during imidation outside the system. By removing it, a polyimide solution containing polyimide and a solvent (also referred to as polyimide varnish) can be produced.
  • the reaction conditions are not particularly limited, but for example, the reaction temperature is 0° C. to 180° C. and the reaction time is 3 to 72 hours. In order to sufficiently advance the reaction with the sulfone group-containing diamines, it is preferable to carry out the reaction by heating at 180° C. for about 12 hours.
  • the atmosphere is an inert atmosphere such as argon or nitrogen during the reaction.
  • the synthesized polyimide/polyimide precursor solution can be used as it is as the resin composition.
  • a resin composition is prepared by adding a further solvent and one or more additional components to the polyimide precursor and stirring and mixing. may This stirring and mixing can be performed using an appropriate device such as a three-one motor (manufactured by Shinto Kagaku Co., Ltd.) equipped with stirring blades, a rotation-revolution mixer, or the like. If necessary, the resin composition may be heated to 40°C to 100°C.
  • the solvent in the synthesized polyimide precursor solution is removed by, for example, reprecipitation, solvent distillation, or the like. may be removed by any suitable method to isolate the polyimide/polyimide precursor.
  • a desired solvent and, if necessary, additional components are added to the isolated polyimide precursor at a temperature range of room temperature (25° C.) to 80° C., and mixed with stirring to prepare a resin composition.
  • the preparation of the resin composition it is particularly preferable to finally add an aprotic polar substance with a boiling point of 250°C to 350°C after synthesizing the polyimide/polyimide precursor.
  • an aprotic polar substance with a boiling point of 250°C to 350°C after synthesizing the polyimide/polyimide precursor.
  • the resin composition is heated, for example, at 130 to 200° C. for, for example, 5 minutes to 2 hours, thereby partially reducing the polyimide precursor to such an extent that the polymer does not precipitate.
  • Dehydration imidization may be performed (partial imidization).
  • the imidization rate can be controlled by controlling the heating temperature and heating time.
  • the solution viscosity of the resin composition is preferably 500 to 100,000 mPa ⁇ s, more preferably 1,000 to 50,000 mPa ⁇ s, still more preferably 3,000 to 20,000 mPa ⁇ s. is s.
  • the viscosity is preferably 500 mPa ⁇ s or more, more preferably 1,000 mPa ⁇ s or more, and still more preferably 3,000 mPa ⁇ s or more, in order to prevent leakage from the slit nozzle. It is preferably 100,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less, and still more preferably 20,000 mPa ⁇ s or less, in terms of preventing clogging of the slit nozzle.
  • the solution viscosity of the resin composition during synthesis of the polyimide/polyimide precursor is higher than 200,000 mPa ⁇ s, there is a risk that stirring during synthesis will become difficult. However, even if the solution becomes highly viscous during synthesis, it is possible to obtain a resin composition having a viscosity that is easy to handle by adding a solvent and stirring after the completion of the reaction.
  • the solution viscosity of the resin composition is a value measured at 23° C. using an E-type viscometer (eg, VISCONICEHD, manufactured by Toki Sangyo).
  • the water content of the resin composition is preferably 3,000 mass ppm or less, more preferably 2,500 mass ppm or less, and still more preferably 2,000 mass ppm.
  • the water content of the resin composition is preferably 3,000 mass ppm or less, more preferably 2,500 mass ppm or less, and still more preferably 2,000 mass ppm.
  • more preferably 1,500 mass ppm or less particularly preferably 1,000 mass ppm or less, particularly preferably 500 mass ppm or less, particularly preferably 300 mass ppm or less, particularly preferably 100 mass ppm or less.
  • a polyimide resin film (hereinafter also referred to as a polyimide film) can be provided using the resin composition described above.
  • the method for producing a polyimide film described above includes a coating step of applying a resin composition on the surface of a support, a film forming step of heating the resin composition to form a polyimide resin film, and a polyimide resin film. from the support.
  • the resin composition is coated on the surface of the support.
  • the support is not particularly limited as long as it has heat resistance to the heating temperature in the subsequent film forming step (heating step) and has good peelability in the peeling step.
  • the support include glass substrates such as alkali-free glass substrates; silicon wafers; PET (polyethylene terephthalate), OPP (oriented polypropylene), polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, and polyetherimide. , polyether ether ketone, polyether sulfone, polyphenylene sulfone, polyphenylene sulfide, etc.; metal substrates such as stainless steel, alumina, copper, nickel, etc.;
  • a thin-film polyimide molded body for example, a glass substrate, a silicon wafer, or the like is preferable.
  • OPP oriented polypropylene
  • Coating methods generally include doctor blade knife coater, air knife coater, roll coater, rotary coater, flow coater, die coater, bar coater, etc.; spin coating, spray coating, dip coating, etc.; screen printing. and printing techniques such as gravure printing.
  • Application by slit coating is preferable for the resin composition.
  • the coating thickness should be appropriately adjusted according to the desired thickness of the resin film and the content of the polyimide precursor in the resin composition, and is preferably about 1 to 1,000 ⁇ m.
  • the temperature in the coating step may be room temperature, or the resin composition may be heated to, for example, 40° C. to 80° C. in order to lower the viscosity and improve workability.
  • the coating step may be followed by a drying step, or the drying step may be omitted and the next film-forming step (heating step) may proceed directly.
  • the drying step is performed for the purpose of removing the organic solvent in the resin composition.
  • a hot plate, a box-type dryer, a conveyor-type dryer, or the like can be used.
  • the temperature of the drying step is preferably 80°C to 200°C, more preferably 100°C to 150°C.
  • the duration of the drying step is preferably 1 minute to 10 hours, more preferably 3 minutes to 1 hour.
  • a coating film containing a polyimide precursor is formed on the support.
  • a film forming process (heating process) is performed.
  • the heating step is a step of removing the organic solvent contained in the coating film and advancing the imidization reaction of the polyimide precursor in the coating film to obtain a polyimide resin film.
  • This heating step can be carried out using, for example, an inert gas oven, a hot plate, a box-type dryer, a conveyor-type dryer, or the like. This step may be performed simultaneously with the drying step, or both steps may be performed sequentially.
  • the heating step may be performed in an air atmosphere, but from the viewpoint of safety, good transparency of the resulting polyimide film, low thickness direction retardation (Rth) and low YI value, it is performed in an inert gas atmosphere. preferably. Examples of inert gases include nitrogen and argon.
  • the heating temperature may be appropriately set according to the type of polyimide precursor and the type of solvent in the resin composition, but is preferably 250°C to 550°C, more preferably 300°C to 450°C. If the temperature is 250° C. or higher, the imidization proceeds favorably, and if it is 550° C. or lower, problems such as deterioration of the transparency and heat resistance of the resulting polyimide film can be avoided.
  • the heating time is preferably about 0.1 hour to 10 hours.
  • the resin composition contains an aprotic polar substance with a boiling point of 250° C. to 350° C., it remains in the film even at a temperature of 250° C. or higher in the polyimide heating process. Plays a role as a plasticizer. As a result, the resin becomes soft and fluid, and the resulting polyimide resin film has improved in-plane uniformity of film thickness and reduced YI.
  • the oxygen concentration in the ambient atmosphere in the above heating step is preferably 2,000 mass ppm or less, more preferably 100 mass ppm or less, and still more preferably 10 mass ppm or less, from the viewpoint of the transparency and YI value of the resulting polyimide film. is.
  • the YI value of the resulting polyimide film can be made 30 or less.
  • the polyimide resin film on the support is cooled to, for example, room temperature (25° C.) to about 50° C., and then peeled off.
  • Examples of the peeling process include the following aspects (1) to (4).
  • a laser is irradiated from the support side of the structure to ablate the interface between the support and the polyimide resin film.
  • a method for peeling polyimide resin include solid-state (YAG) lasers, gas (UV excimer) lasers, and the like. It is preferable to use a spectrum with a wavelength of 308 nm or the like (see Japanese Patent Publication No. 2007-512568, Japanese Patent Publication No. 2012-511173, etc.).
  • the release layer include parylene (registered trademark, manufactured by Japan Parylene LLC) and tungsten oxide; vegetable oil-based, silicone-based, fluorine-based, and alkyd-based release agents may be used (JP 2010-067957 A). No. 2013-179306, etc.).
  • This method (2) and the laser irradiation of method (1) may be used in combination.
  • a method of obtaining a polyimide resin film by using an etchable metal substrate as a support to obtain a structure containing a polyimide resin film/support, and then etching the metal with an etchant for example, copper (as a specific example, electrolytic copper foil “DFF” manufactured by Mitsui Mining & Smelting Co., Ltd.), aluminum, and the like can be used.
  • a etchant ferric chloride or the like can be used for copper, and dilute hydrochloric acid or the like can be used for aluminum.
  • an adhesive film is attached to the polyimide resin film surface to separate the adhesive film/polyimide resin film from the support, and then from the adhesive film.
  • method (1) or (2) is preferable from the viewpoint of the front and back refractive index difference, YI value, and elongation of the obtained polyimide resin film.
  • method (1) that is, the irradiation step of irradiating a laser from the support side prior to the peeling step.
  • method (3) when copper is used as the support, the YI value of the resulting polyimide resin film tends to increase and the elongation tends to decrease. This is believed to be the effect of copper ions.
  • the thickness of the resulting polyimide film is not limited, but is preferably 1-200 ⁇ m, more preferably 5-100 ⁇ m.
  • the tensile modulus at 25° C. is 6 GPa or more
  • the tensile modulus at 350° C. is 0.5 GPa or more
  • the yellowness (YI value ) is 12 or less.
  • the polyimide film is preferably prepared using the above-described polyamic acid-imide copolymer and/or polyimide copolymer as raw materials.
  • the haze value (Haze value) of the polyimide film is preferably less than 0.5% from the viewpoint of balancing transparency, heat resistance and linear expansion coefficient, and / or 1 at 430 ° C. of the polyimide film
  • the rate of change in yellowness (YI value) when kept for a period of time is preferably 20% or less from the viewpoint of balancing the haze value, heat resistance, and coefficient of linear expansion.
  • Resin films produced using the polyamic acid-imide copolymer, polyamic acid, polyimide, and resin composition described above are applied, for example, as semiconductor insulating films, TFT-LCD insulating films, electrode protective films, and the like. In addition, it can be used particularly preferably as a substrate in the production of flexible devices.
  • Flexible devices to which the resin film and laminate can be applied include, for example, flexible displays, flexible solar cells, flexible touch panel electrode substrates, flexible lighting, and flexible batteries.
  • the polyimide film obtained from the resin composition described above can be used, for example, as a semiconductor insulating film, a thin film transistor liquid crystal display (TFT-LCD) insulating film, an electrode protective film, a liquid crystal display, an organic electroluminescence display, a field emission display. , as a transparent substrate of a display device such as electronic paper.
  • TFT-LCD thin film transistor liquid crystal display
  • polyimide films can be suitably used as flexible substrates for thin film transistor (TFT) substrates, color filter substrates, touch panel substrates, and transparent conductive films (ITO, Indium Thin Oxide) in the production of flexible devices.
  • TFT thin film transistor
  • ITO Indium Thin Oxide
  • flexible devices to which polyimide films can be applied include TFT devices for flexible displays, flexible solar cells, flexible touch panels, flexible lighting, flexible batteries, flexible printed circuit boards, flexible color filters, and surface cover lenses for smartphones. can.
  • the process of forming TFTs on flexible substrates using polyimide films is typically carried out at a wide temperature range of 150°C to 650°C. Specifically, when fabricating a TFT device using amorphous silicon, a process temperature of 250° C. to 350° C. is generally required, and the polyimide film must be able to withstand that temperature. It is necessary to appropriately select a polymer structure having a glass transition temperature and thermal decomposition initiation temperature higher than the process temperature.
  • a process temperature of 320° C. to 400° C. is generally required, and the polyimide film must be able to withstand that temperature. It is necessary to appropriately select a polymer structure having a glass transition temperature and thermal decomposition initiation temperature higher than the maximum temperature of the fabrication process.
  • LTPS low-temperature polysilicon
  • a process temperature of 380° C. to 520° C. is generally required, and the polyimide film must be able to withstand that temperature. It is necessary to appropriately select a glass transition temperature higher than the maximum temperature and a thermal decomposition initiation temperature.
  • the optical properties of polyimide films in particular, light transmittance, retardation properties and YI value
  • the polyimide obtained from the polyimide precursor has good optical properties even after thermal history.
  • a display manufacturing method includes a coating step of coating a resin composition on the surface of a support, and a film forming step of heating the resin composition to form a polyimide film (polyimide resin film). and an element forming step of forming an element on the polyimide film, and a peeling step of peeling the polyimide film with the element formed thereon from the support.
  • FIG. 1 is a schematic diagram showing a structure above a polyimide substrate of a top-emission flexible organic EL display as an example of a display according to one embodiment of the present disclosure.
  • the organic EL structure section 25 in FIG. 1 will be described.
  • the organic EL element 250a that emits red light, the organic EL element 250b that emits green light, and the organic EL element 250c that emits blue light are arranged as one unit in a matrix.
  • 251 defines the light emitting region of each organic EL element.
  • Each organic EL element is composed of a lower electrode (anode) 252 , a hole transport layer 253 , a light emitting layer 254 and an upper electrode (cathode) 255 .
  • TFTs 256 low-temperature polysilicon (LTPS) or metal oxide film) for driving organic EL elements are formed on the lower layer 2a showing a CVD multilayer film (multi-barrier layer) made of silicon nitride (SiN) or silicon oxide (SiO).
  • an interlayer insulating film 258 having a contact hole 257, and a plurality of lower electrodes 259 are provided.
  • the organic EL elements are enclosed by the sealing substrate 2b, and a hollow portion 261 is formed between each organic EL element and the sealing substrate 2b.
  • the manufacturing process of a flexible organic EL display includes a process of producing a polyimide film on a glass substrate support, manufacturing an organic EL substrate shown in FIG. It includes an assembly step of bonding together and a peeling step of peeling the organic EL display produced on the polyimide film from the glass substrate support.
  • Well-known manufacturing processes can be applied to the organic EL substrate manufacturing process, the sealing substrate manufacturing process, and the assembly process. An example will be given below, but it is not limited to this.
  • the peeling process is the same as the polyimide film peeling process described above.
  • a polyimide film is produced on a glass substrate support by the above method, and a multilayer of silicon nitride (SiN) and silicon oxide (SiO) is formed thereon by a CVD method or a sputtering method.
  • a multi-barrier layer (lower substrate 2a in FIG. 1) having a structure is produced, and a metal wiring layer for driving TFTs is produced thereon using a photoresist or the like.
  • An active buffer layer of SiO or the like is fabricated on top of this using the CVD method, and a TFT device (TFT 256 in FIG. 1) of metal oxide semiconductor (IGZO) or low temperature polysilicon (LTPS) is fabricated thereon.
  • IGZO metal oxide semiconductor
  • LTPS low temperature polysilicon
  • an interlayer insulating film 258 having a contact hole 257 is formed using a photosensitive acrylic resin or the like.
  • An ITO film is formed by a sputtering method or the like, and a lower electrode 259 is formed so as to form a pair with the TFT.
  • partition walls (banks) 251 with photosensitive polyimide or the like, a hole transport layer 253 and a light emitting layer 254 are formed in each space partitioned by the partition walls.
  • An upper electrode (cathode) 255 is formed to cover the light emitting layer 254 and the partition wall (bank) 251 .
  • an organic EL material emitting red light corresponding to the organic EL element 250a emitting red light in FIG. 1
  • an organic EL material emitting green light corresponding to the organic EL element 250a emitting red light in FIG.
  • an organic EL substrate (corresponding to the organic EL element 250b that emits green light) and an organic EL material that emits blue light (corresponding to the organic EL element 250c that emits blue light in FIG. 1) by a known method.
  • a known method to fabricate an organic EL substrate.
  • the top An emission type flexible organic EL display can be produced.
  • a see-through flexible organic EL display can be produced.
  • a bottom emission type flexible organic EL display may be produced by a known method.
  • Polyimide films according to one aspect of the present disclosure can be used to fabricate flexible liquid crystal displays.
  • a polyimide film is produced on a glass substrate support by the above method, and the film is made of amorphous silicon, metal oxide semiconductor (IGZO, etc.), and low-temperature polysilicon using the above method.
  • a TFT substrate is produced.
  • a polyimide film is produced on a glass substrate support, and a color resist or the like is used according to a known method to form a color filter glass substrate equipped with a polyimide film. (CF substrate) is produced.
  • a sealing material made of thermosetting epoxy resin or the like is applied by screen printing in a frame-like pattern omitting the part of the liquid crystal injection port.
  • the TFT substrate and the CF substrate are attached together, and the sealing material is cured.
  • a liquid crystal material is injected into the space surrounded by the TFT substrate, the CF substrate, and the sealing material by a depressurization method, a thermosetting resin is applied to the liquid crystal injection port, and the liquid crystal material is sealed by heating to form a liquid crystal layer. do.
  • the glass substrate on the CF side and the glass substrate on the TFT side are peeled off at the interface between the polyimide film and the glass substrate by a laser peeling method or the like, whereby a flexible liquid crystal display can be produced.
  • a method for producing a laminate according to one aspect of the present disclosure includes a coating step of coating a resin composition on the surface of a support, and a film formation of heating the resin composition to form a polyimide film (polyimide resin film). and a device forming step of forming devices on the polyimide film.
  • Examples of the elements in the laminate include those exemplified for the production of flexible devices such as the flexible display described above.
  • a glass substrate for example, can be used as the support.
  • Preferred specific procedures for the coating step and the film forming step are the same as those described for the method for producing the polyimide film above.
  • the element forming step the element is formed on the polyimide resin film as the flexible substrate formed on the support. Thereafter, optionally, in a peeling step, the polyimide resin film with the element formed thereon and the element may be peeled off from the support.
  • a method for manufacturing a flexible device according to an aspect of the present disclosure includes manufacturing a laminate by the method for manufacturing a laminate described above.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
  • N,N-dimethylformamide manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., for high-performance liquid chromatography, 24.8 mmol / L of lithium bromide monohydrate immediately before measurement (manufactured by FUJIFILM Wako Pure Chemical Industries, purity 99.5%) and 63.2 mmol/L phosphoric acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for high-performance liquid chromatograph) and dissolved therein) were used.
  • a calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (Easical Type PS-1, manufactured by Agilent Technologies).
  • HLC-8220GPC manufactured by Tosoh Corporation
  • Column: 2 Tsk gel Super HM-H manufactured by Tosoh Corporation
  • Tg glass transition temperature
  • the glass transition temperature (Tg) in the temperature range of 50 to 500° C. was measured by thermomechanical analysis using a test piece cut from the polyimide film into a size of 3 mm ⁇ 20 mm. Using Seiko Instruments Inc. (EXSTAR6000) as a measuring device, under the conditions of a tensile load of 49 mN, a temperature increase rate of 10 ° C./min and a nitrogen stream (flow rate of 100 mL/min), the temperature in the range of 50 ° C. to 500 ° C. Measurements of specimen elongation were made. The glass transition temperature of the polyimide film (10 ⁇ m thick) was obtained from the inflection point of the obtained curve. Those in which no inflection point was observed in the range of 50° C. to 500° C. are considered to have a Tg of 500° C. or higher, and are sometimes shown as “-” in the table below.
  • Each resin composition was applied by a spin coater onto a 6-inch silicon wafer having a thickness of 625 ⁇ m ⁇ 25 ⁇ m and pre-baked at 100° C. for 7 minutes. After that, the oxygen concentration in the chamber is adjusted to 10 mass ppm or less, heat curing treatment (curing treatment) is performed at 430 ° C. for 1 hour, and a silicon wafer with a polyimide resin film having a thickness of 10 ⁇ m after curing is attached. was made.
  • the yellowness (YI value) was measured using a D65 light source with a Spectotometer (SE6000) manufactured by Nippon Denshoku Industries Co., Ltd., and a spectrophotometer manufactured by Konica Minolta Co., Ltd. (CM ⁇ 3600 A) using a D65 light source to measure the haze (haze value).
  • SE6000 Spectotometer
  • CM ⁇ 3600 A spectrophotometer manufactured by Konica Minolta Co., Ltd.
  • the prepared sample was immersed in a 10% by mass hydrochloric acid aqueous solution for one day, and the polyimide resin film was peeled off from the silicon wafer.
  • a test piece was prepared by cutting the peeled polyimide film into a size of 15 mm ⁇ 100 mm.
  • MIT-DA MIT-type repeated bending tester
  • a load of 250 g is applied to the prepared test piece, and the bending radius (R) is 2 mm, the bending angle is 135 °, and the speed is 90 times / minute.
  • a 100,000 reciprocating bending test was conducted under the conditions of . After the test, the samples were removed from the apparatus, and visually evaluated as A when there was no damage, and as B when there was damage.
  • the modulus of elasticity was measured by thermomechanical analysis using a test piece obtained by cutting a polyimide film into a size of 3 mm ⁇ 20 mm. Using Seiko Instruments Inc. (EXSTAR6000) as a measuring device, the set temperature is constant at 25 ° C. or 350 ° C., under a nitrogen atmosphere, the load is changed at an initial tensile load of 20 mN and a load change rate of 100 mN / min, and the maximum is 1200 mN. Elongation was measured by applying a load to The elastic modulus of the polyimide film (10 ⁇ m thick) was obtained from the slope of the obtained curve.
  • Seiko Instruments Inc. EXSTAR6000
  • ⁇ Sputter reheating test> An aluminum (Al) film of about 100 nm was sputtered onto a glass substrate with a polyimide resin film prepared in the same manner as ⁇ Evaluation of yellowness index (YI value) and haze value (Haze value)>. The Al film was deposited on the polyimide film.
  • the prepared sample was adjusted so that the oxygen concentration in the chamber was 10 ppm by mass or less, and heat-treated at 430°C for 1 hour to obtain a glass substrate with a polyimide resin film having a thickness of 10 ⁇ m.
  • the Al-sputtered polyimide-coated glass substrate thus obtained was evaluated as "S" when there was no visible swelling or breakage, and as "B” when there was a tear or swelling.
  • the YI value (YI (B)) was measured again using a D65 light source with a Spectotometer (SE6000) manufactured by Nippon Denshoku Industries Co., Ltd., and the rate of change with respect to the YI value before heating was calculated. evaluated.
  • the YI value (change rate) was determined by the following formula.
  • YI value change rate ((YI (B) - YI (A)) / YI (A) x 100 (%))
  • S YI value change rate is 0% or more and 10% or less (YI value (change rate) evaluation "S")
  • B YI value change rate is over 20% (YI value (change rate) evaluation "B")
  • ⁇ IR cure defect evaluation> In this evaluation, assuming mass production, the amount of defects on the surface of the polyimide film was evaluated when the resin composition was continuously subjected to IR (infrared) heat curing (cure) treatment.
  • glass substrate On an alkali-free glass substrate (hereinafter also referred to as “glass substrate” or simply “substrate”) of 100 mm length ⁇ 100 mm width ⁇ 0.5 mm thickness, in an area 5 mm inside from the edge of the glass substrate, The resin composition was applied so that the film thickness after curing was 10 ⁇ m.
  • a slit coater (LC-R300G, manufactured by SCREEN Finetech Solutions) was used for coating.
  • a vacuum dryer manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • the solvent was removed from the resulting coated glass substrate under the conditions of 80° C., 100 Pa, and 30 minutes to obtain a coated film sample.
  • ⁇ Degassing evaluation> When a polyimide resin film is used as a TFT substrate, an inorganic film (for example, SiN) is formed on the obtained polyimide resin film, and the inorganic film is annealed. If degassing occurs during this annealing process, the sample becomes defective, so the higher the degassing start temperature, the better. This degassing start temperature was evaluated by the following method.
  • glass substrate On an alkali-free glass substrate (hereinafter also referred to as “glass substrate” or simply “substrate”) of 100 mm length ⁇ 100 mm width ⁇ 0.5 mm thickness, the glass substrate of the examples and comparative examples was applied in an area 5 mm inside from the edge of the glass substrate.
  • the resin composition was applied so that the film thickness after curing was 10 ⁇ m.
  • a slit coater (LC-R300G, manufactured by SCREEN Finetech Solutions) was used for coating. Using a vacuum dryer (manufactured by Tokyo Ohka Kogyo Co., Ltd.), the solvent was removed from the resulting coated glass substrate under the conditions of 80° C., 100 Pa, and 30 minutes to obtain a coated film sample.
  • a SiN film having a thickness of 100 nm was formed on the obtained polyimide resin film by plasma CVD.
  • the obtained glass substrate on which the laminate of SiN/polyimide resin film was formed was subjected to heat treatment in an IR curing furnace AMK-1707 under the following conditions. a. After heating at 120° C. for 10 minutes in a nitrogen atmosphere, the temperature was raised at a rate of 10° C./min and heated at 480° C. for 60 minutes b. After heating at 120° C. for 10 minutes in a nitrogen atmosphere, the temperature was raised at a rate of 10° C./min and heated at 470° C. for 60 minutes c. After heating at 120° C.
  • SiN film blisters/does not occur under the conditions: A (Hide) above b. SiN film blisters under the conditions: B (excellent) above c. SiN film blisters under the conditions: C (good) above d. Blistering occurs in the SiN film under the conditions of: D (Possible) above e. SiN film blisters under the conditions: E (impossible)
  • the imide had a weight average molecular weight (Mw) of 19,178 and a number average molecular weight (Mn) of 8,283.
  • the resulting polyamic acid-imide copolymer had a weight average molecular weight (Mw) of 155,382 and a number average molecular weight (Mn) of 64,063.
  • a polymerization reaction was carried out at 180° C. for 4 hours under nitrogen flow. One hour after reaching 180° C., a mixture of water and toluene was extracted from the Dean-Stark tube. After 4 hours of reaction, the imide had a weight average molecular weight (Mw) of 19,804 and a number average molecular weight (Mn) of 8,886. After 4 hours of reaction, the inside temperature was cooled to 80° C., and NMP was added to obtain an NMP solution of polyimide having a concentration of 20% by mass (hereinafter also referred to as polyimide varnish).
  • the polyamic acid obtained had a weight average molecular weight (Mw) of 73,044 and a number average molecular weight (Mn) of 34,917.
  • Synthesis Examples 1-2 to 1-11, and 1-13 to 1-30 Polyamic acid-imide copolymerization was carried out in the same manner as in Synthesis Example 1-1-1, except that the types and amounts of raw materials were changed as shown in Table 1. Got varnish.
  • the NMP was added to adjust the solid content to 12% by mass, thereby obtaining an NMP solution of polyamic acid (hereinafter also referred to as polyamic acid varnish).
  • the polyamic acid thus obtained had a weight average molecular weight (Mw) of 63,353 and a number average molecular weight (Mn) of 29,472.
  • polyamic acid varnish After visually confirming that APAB and BAFL were completely dissolved, 32.00 mmol of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 9,9-bis(3,4 -Dicarboxyphenyl)fluorene dianhydride (BPAF) (8.00 mmol) and NMP (22.29 g) were added, stirred at 80°C for 5 hours under nitrogen flow, and then polymerized overnight at room temperature. Thereafter, the NMP was added to adjust the solid content to 12% by mass, thereby obtaining an NMP solution of polyamic acid (hereinafter also referred to as polyamic acid varnish).
  • the polyamic acid thus obtained had a weight average molecular weight (Mw) of 72,118 and a number average molecular weight (Mn) of 33,741.
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic dianhydride
  • BPAF 9,9-bis(3,4-dicarboxyphenyl)fluorenedioic acid
  • TAHQ p-phenylene bis(trimellitate anhydride)
  • BPF-PA 9,9-bis[4-(3,4-dicarboxyphenoxy)phenyl]
  • Fluorene dianhydride 6FDA 4,4'-(hexafluoroisopropylidene) diphthalic anhydride
  • APAB 4-aminophenyl-4'-aminobenzoate
  • pPD p-phenylenediamine 44BAFL: 9,9-bis(4- aminophenyl)fluorene 33BAFL: 9,9-bis(3-aminophenyl)fluorene BFAF:
  • the polyimide film (Comparative Example 1-1) composed only of the structural unit N (polyamic acid) was excellent in residual stress, but had large YI and Haze values. Further, a polyimide film obtained from a polyamic acid synthesized with the same composition as the polyamic acid-imide copolymer described in Comparative Example 1-2 (the same molar ratio of the monomers constituting X 1 to X 4 ) was obtained by YI value and haze value are excellent, but the residual stress is increased and the performance is not sufficient for use as an optical display substrate.
  • polyamide obtained by the method described in Example 1 of WO 2020/138360 pamphlet which does not use general formula (A-1) or (A-2) as X 2 in structural unit N
  • the polyimide film (Comparative Example 1-3) obtained from the acid-imide copolymer was colored yellow in the 430° C. heat treatment step, and had large YI and Haze values.
  • a polyimide film obtained from the polyimide obtained by the method described in Example 1 of WO 2019/188305 pamphlet, which is composed of the structural unit M only (polyimide), is 430
  • the yellowing in the °C heat treatment process was suppressed, the residual stress was high and the performance was not sufficient for use as a substrate for optical displays.
  • the polyimide film obtained from the polyamic acid-imide copolymer has a low yellowness (YI value) of 15 or less and a haze value (Haze value) of 0.5% or less, which is sufficient for use as a substrate for optical displays. had good performance. Moreover, the residual stress was as low as 25 MPa or less, and the mechanical properties were sufficient. From the above, it was confirmed that the polyimide resin film obtained from the resin composition according to the present invention is a resin film with low yellowness, low haze, and low residual stress.
  • a resin film having a residual stress of 25 MPa or less, a yellowness of 15 or less, and a haze of 0.5% or less is obtained.
  • a polyamic acid-imide copolymer varnish can be obtained by synthesizing polyamic acid and polyimide separately and then mixing and reacting them.
  • the polyimide film obtained from this varnish had performance equivalent to that of Example 1-1-1, as shown in Example 1-1-2.
  • polyamic acid-imide copolymer can be obtained by mixing and reacting (a) polyamic acid and (b) polyimide synthesized at a predetermined molar ratio.
  • the molar ratio of the structural unit N of the polyamic acid consisting of X 1 and X 2 and the structural unit M of the polyimide consisting of X 3 and X 4 was 60:40, a transparent film with excellent yellowness and haze was obtained, the residual stress was as low as 25 MPa or less, and the mechanical properties were sufficient.
  • the ratio of X 4 /X 3 is 1.01 to 2 and the ratio of diamine to acid dianhydride.
  • the proportion of amines at the ends of polyimide increases, so that the reactivity of polyamic acid and polyimide improves when reacting with polyamic acid, and the polyimides are well dispersed when forming a film.
  • a transparent film excellent in yellowness (YI value) and haze (Haze value) is obtained.
  • the yellowness index (YI value) of the composition having a ratio of X 4 /X 3 of 1.11 is low, and is particularly preferable.
  • films obtained from polyimide-polyamic acid copolymers containing 1-methylimidazole or N-Boc-imidazole as an imidization catalyst has a low yellowness index (YI value) and can be suitably used as a substrate for displays.
  • the polyimide film obtained from polyamic acid consisting only of the structural unit N has a high elastic modulus at 25 ° C. and 350 ° C. Even after reheating to 430° C. after Al sputtering, no swelling or breakage occurred, but the YI value was high and the performance as a substrate for optical displays was insufficient.
  • the film has a high elastic modulus at 350 ° C. and a haze value (Haze value) of 0.5% or less and does not undergo phase separation. has a small rate of change in YI value in a 430° C. reheating test, and can be suitably used as a substrate for displays.
  • a resin film having an elastic modulus of 6 GPa or more at 25°C, an elastic modulus of 0.5 GPa or more at 350°C, and a haze of 0.5% or less can be obtained.
  • Synthesis Example 1-1-1 was repeated except that the amount of APAB in Synthesis Example 1-1-1 was changed to 83.02 mmol.
  • the weight average molecular weight (Mw) of the obtained polyamic acid-imide copolymer was 173,000.
  • Synthesis Example 1-1-1 was repeated except that BAFL in Synthesis Example 1-1-1 was changed to 33DAS and the amount of APAB was changed to 83.02 mmol.
  • the weight average molecular weight (Mw) of the resulting polyamic acid-imide copolymer was 171,000.
  • Synthesis Example 1-1-1 was repeated except that the amount of APAB in Synthesis Example 1-1-1 was changed to 83.45 mmol.
  • the polyamic acid-imide copolymer thus obtained had a weight average molecular weight (Mw) of 224,000.
  • Synthesis Example 1-34 The procedure was carried out in the same manner as in Synthesis Example 1-1-1 except that BAFL in Synthesis Example 1-1-1 was changed to 33DAS and the amount of APAB was changed to 83.45 mmol.
  • the weight average molecular weight (Mw) of the obtained polyamic acid-imide copolymer was 221,000.
  • a polymerization reaction was carried out with stirring for 5 hours. After that, it was cooled to room temperature and allowed to stand under nitrogen flow for 8 days. By adding the NMP and adjusting the solution viscosity to 10,000 mPa ⁇ s, an NMP solution of polyamic acid (hereinafter also referred to as varnish) was obtained.
  • the weight average molecular weight (Mw) of the obtained polyamic acid was 173,000.
  • Example 4-1 Using the NMP solution of the polyimide-polyamic acid copolymer synthesized in Synthesis Example 1-32, imidization catalyst 1 (1-methylimidazole ) was added and stirred at room temperature for 24 hours to obtain a polyamic acid-imide copolymer varnish. Using this varnish, the above IR cure defect evaluation and degassing evaluation were performed. The results are listed in Table 6.
  • Example 4-2 to 30 Using the NMP solution of the polyimide-polyamic acid copolymer described in Table 6, the imidization catalyst described in Table 5 was added in the amount described in Table 6, and otherwise Example 4-1 Polyamic acid-imide copolymer varnish was obtained in the same manner as above. Using the obtained varnish, the above IR cure defect evaluation and degassing evaluation were performed. The results are listed in Table 6.
  • Example 4-31 Using the NMP solution of the polyimide-polyamic acid copolymer described in Table 6, the imidization catalyst described in Table 5 was added in the amount described in Table 6, and the aproton having a boiling point of 250 to 350 ° C. was added.
  • a polyamic acid-imide copolymer varnish was obtained in the same manner as in Example 4-1 except that 20 parts by mass of sulfolane as a polar substance was added to 100 parts by mass of NMP. Using the obtained varnish, the above IR cure defect evaluation and degassing evaluation were performed. The results are listed in Table 6.
  • Example 5-1 Using the NMP solution of polyamic acid synthesized in Synthesis Example 3-2, 1 part by weight of imidization catalyst 1 (1-methylimidazole) described in Table 5 is added to 100 parts by weight of polyamic acid copolymer, Stirring was performed at room temperature for 24 hours to obtain a polyamic acid varnish. Using this varnish, the above IR cure defect evaluation and degassing evaluation were performed. The results are listed in Table 7.
  • Example 5-2 (Examples 5-2 to 29, Comparative Example 5-2) Using the NMP solution of the polyamic acid described in Table 7, the imidization catalyst described in Table 5 was added in the amount described in Table 7, and otherwise the polyamide was prepared in the same manner as in Example 5-1. An acid varnish was obtained. Using the obtained varnish, the above IR cure defect evaluation and degassing evaluation were performed. The results are listed in Table 7.
  • Example 5-30 Using the polyamic acid NMP solution described in Table 7, the imidization catalyst described in Table 5 was added in the amount described in Table 7, and sulfolane was added as an aprotic polar substance having a boiling point of 250 to 350 ° C. was added in an amount of 20 parts by mass based on 100 parts by mass of NMP, and a polyamic acid varnish was obtained in the same manner as in Example 5-1. Using the obtained varnish, the above IR cure defect evaluation and degassing evaluation were performed. The results are listed in Table 7.
  • the polyimide film (Comparative Example II-1-1) composed only of the structural unit N (polyamic acid) has excellent residual stress, but the YI value and Haze value are large.
  • X 2 in structural unit N general formula (A-1) or (A-2) is not used, obtained by the method described in Example 1 described in WO 2020/138360 pamphlet
  • the polyimide film obtained from the polyamic acid-imide copolymer (Comparative Example II-1-3) was colored yellow in the 430° C. heat treatment step, and had large YI and Haze values.
  • a polyimide film obtained from the polyimide obtained by the method described in Example 1 described in WO 2019/188305 which is composed of the structural unit M only (polyimide) (Comparative Example II-1-4 ) suppressed yellowing in the 430° C. heat treatment process, but had high residual stress and did not have sufficient performance to be used as a substrate for optical displays.
  • Example II-1-1-1 as X 3 , the structure represented by the general formula (A-1) and the structure derived from 4,4'-oxydiphthalic dianhydride (ODPA) , and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) containing at least one selected from the group consisting of structures derived from polyamic acid - polyimide film obtained from an imide copolymer,
  • the yellowness index (YI value) was as low as 15 or less
  • the haze value (Haze value) was 0.5% or less, and had sufficient performance to be used as a substrate for optical displays.
  • the polyimide resin film obtained from the resin composition according to the present invention is a resin film with low yellowness, low haze, and low residual stress.
  • a resin film having a residual stress of 25 MPa or less, a yellowness of 15 or less, a haze of 0.5% or less, and excellent bending resistance can be obtained.
  • a polyamic acid-imide copolymer varnish can be obtained by synthesizing polyamic acid and polyimide separately and then mixing and reacting them.
  • a polyimide film obtained from this varnish had performance equivalent to that of Example II-1-1-1, as shown in Example II-1-1-2.
  • polyamic acid-imide copolymer can be obtained by mixing and reacting (b) polyamic acid and (a) polyimide synthesized at a predetermined molar ratio.
  • the polyimide film obtained from the polyamic acid having only the structural unit N had excellent residual stress but insufficient bending resistance. This is probably because the polyimide film composed only of the structural unit N is very rigid, so that in-plane crystallization progressed during the bending test, resulting in scratches. Therefore, the polyimide copolymer film obtained from the polyamic acid-imide copolymer composed of the structural units N and M has excellent yellowness and haze, low residual stress, and excellent bending resistance.
  • the X 4 /X 3 ratio is 1.01 to 2 and the diamine relative to the dianhydride
  • the ratio of is increased, the proportion of amines at the ends of the polyimide increases, which improves the reactivity of polyamic acid and polyimide when reacting with polyamic acid, and the polyimides are well dispersed when forming a film. Therefore, a transparent film having excellent yellowness (YI value) and haze (Haze value) and excellent folding resistance can be obtained.
  • the yellowness (YI value) of the composition where the ratio of X 4 /X 3 is 1.11 is low. , is particularly preferred.
  • polyimide-polyamic acid copolymer containing 1-methylimidazole or N-Boc-imidazole as an imidization catalyst The film obtained from has a low yellowness index (YI value) and can be suitably used as a substrate for displays.
  • Example III-1 A 500 ml separable flask was replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can was added as a solvent to the separable flask in an amount corresponding to a solid content of 15 wt%. 15.69 g (49.0 mmol) of 2′-bis(trifluoromethyl)benzidine (TFMB) was added and stirred to dissolve TFMB.
  • NMP N-methylpyrrolidone
  • This varnish is spin-coated on a 6-inch silicon wafer and a 10 cm square eagle glass using a Mikasa coater, pre-baked on a hot plate at 100° C. for 6 minutes, placed in a furnace and heated at 380° C. for 1 hour under nitrogen flow. After curing, a polyimide resin film was obtained.
  • For the polyimide resin film formed on the silicon wafer measure the film thickness at 39 points in the plane using Lambda Ace, and average [(film thickness that deviates most from the average value) - (average film thickness)] The value divided by the film thickness (hereinafter also referred to as in-plane film thickness uniformity) was 6.0%.
  • Example III-2 A polyamic acid solution was obtained in the same manner as in Example III-1, except that the amount of sulfolane added was changed from 3 wt % to 20 wt %. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-3 A 500 ml separable flask was replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can was added as a solvent to the separable flask in an amount corresponding to a solid content of 15 wt%. 15.69 g (49.0 mmol) of 2′-bis(trifluoromethyl)benzidine (TFMB) was added and stirred to dissolve TFMB.
  • NMP N-methylpyrrolidone
  • Example III-1 A polyamic acid solution was obtained in the same manner as in Example III-1, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-4 A polyamic acid solution was obtained in the same manner as in Example III-2, except that sulfolane was changed to 3-methylsulfolane. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-5 A polyamic acid solution was obtained in the same manner as in Example III-2, except that benzophenone was used instead of sulfolane. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-6 A polyamic acid solution was obtained in the same manner as in Example III-2, except that sulfolane was changed to 2-phenoxyethyl acetate. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-7 A polyamic acid solution was obtained in the same manner as in Example III-2, except that diphenyl carbonate was used instead of sulfolane. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-8 A polyamic acid solution was obtained in the same manner as in Example III-2, except that sulfolane was changed to adipoamide. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-9 A polyamic acid solution was obtained in the same manner as in Example III-2 except that sulfolane was changed to adiponitrile. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-10 A polyamic acid solution was obtained in the same manner as in Example III-2, except that dibutyl sulfoxide was used instead of sulfolane. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-2 A polyamic acid solution was obtained in the same manner as in Example III-2, except that dimethylsulfone was used instead of sulfolane. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-3 A polyamic acid solution was obtained in the same manner as in Example III-2, except that sulfolane was changed to diphenylsulfone. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-11 A 500 ml separable flask is replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can as a solvent is added to the separable flask in an amount equivalent to a solid content of 20 wt%.
  • NMP N-methylpyrrolidone
  • 8.95 g (39.2 mmol) of 4-aminophenyl aminobenzoate (APAB) and 2.43 g (9.8 mmol) of 4,4′-diaminophenyl sulfone (4,4′-DAS) were added and stirred. Both were dissolved.
  • Example III-4 A polyamic acid solution was obtained in the same manner as in Example III-11 except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-12 A 500 ml separable flask was purged with nitrogen, and 22.2 g of N-methylpyrrolidone (NMP: moisture content: 250 ppm) was added as a solvent to the separable flask immediately after opening the 18 L can. 3′-DAS) was added and dissolved with stirring, then 2.94 g (9.47 mmol) of 4,4′-oxydiphthalic dianhydride (ODPA) and 20 g of toluene were added, A reflux tube and a Dean-Stark tube were attached to the flask, and under nitrogen flow, the reaction was carried out at 180° C. for 2 hours while removing generated water from the Dean-Stark tube, and then heated at 180° C. for 1 hour.
  • NMP N-methylpyrrolidone
  • the Stark tube was drained of all added toluene. After that, the reaction solution was cooled to room temperature, and 81.96 g of N-methylpyrrolidone (NMP: water content: 250 ppm) and 11.77 g (BPDA) of 4,4'-biphthalic dianhydride (BPDA) immediately after opening the 18 L can were used as solvents. 40 mmol) and 8.72 g (38.2 mmol) of 4-aminophenyl 4-aminobenzoate (APAB) were added and dissolved by stirring. Then, under nitrogen flow, react at 80° C.
  • NMP N-methylpyrrolidone
  • BPDA 4,4'-biphthalic dianhydride
  • APAB 4-aminophenyl 4-aminobenzoate
  • varnish A polyamic acid-soluble polyimide solution (hereinafter also referred to as varnish) was obtained. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-5 A polyamic acid-soluble polyimide solution was obtained in the same manner as in Example III-12, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-13 A 500 ml separable flask was replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can was added as a solvent to the separable flask in an amount corresponding to a solid content of 20 wt%, 9, 17.07 g (49 mmol) of 9-bis(4-aminophenyl)fluorene (BAFL) was added and stirred to dissolve BAFL. Then, 22.92 g (50 mmol) of 9,9-bis(3,4-dicarboxyphenyl)fluoric acid dianhydride (BPAF) was added, stirred under nitrogen flow at 80° C.
  • NMP N-methylpyrrolidone
  • varnish a polyamic acid solution
  • This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-6 A polyamideimide solution was obtained in the same manner as in Example III-13, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-14 A 300 ml separable flask was purged with nitrogen, dimethylacetamide (DMAc) as a solvent was put into the separable flask in an amount corresponding to a solid content of 26 wt %, and 4,4'-diaminobenzanilide (DABAN) was added to the flask. 27 g (10 mmol) was added and stirred to dissolve DABAN.
  • DMAc dimethylacetamide
  • DABAN 4,4'-diaminobenzanilide
  • Example III-7 A polyamic acid solution was obtained in the same manner as in Example III-14, except that 3-methylsulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-15 A 500 ml separable flask was replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can was added as a solvent to the separable flask in an amount corresponding to a solid content of 15 wt%.
  • NMP N-methylpyrrolidone
  • BPDA 4,4′-biphthalic dianhydride
  • TMHQ p-phenylenebistrimellitic dianhydride
  • sulfolane mass of solvent + mass of sulfolane
  • varnish also called varnish. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-16 A 500 ml separable flask was replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can was added as a solvent to the separable flask in an amount corresponding to a solid content of 15 wt%.
  • NMP N-methylpyrrolidone
  • BPDA 4,4′-biphthalic dianhydride
  • TMHQ p-phenylenebistrimellitic dianhydride
  • Example III-8 A polyamic acid solution was obtained in the same manner as in Example III-15, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-17 168 g of ⁇ -butyrolactone (GBL) was placed in a 500 ml separable flask, 15.2 g (100 mmol) of 3,5-diaminobenzoic acid (DABA) was added and dissolved with stirring, and then norbornane-2-spiro- ⁇ -cyclopenta. 38.4 g (100 mmol) of non- ⁇ '-spiro-2'-norbornane-5,5',6,6'-tetracarboxylic dianhydride (CpODA) and 30 g of toluene were added.
  • DABA 3,5-diaminobenzoic acid
  • CpODA non- ⁇ '-spiro-2'-norbornane-5,5',6,6'-tetracarboxylic dianhydride
  • a reflux tube and a Dean-Stark tube were attached to the flask, and under nitrogen flow, the reaction was carried out at 180° C. for 2 hours while removing generated water from the Dean-Stark tube, and then heated at 180° C. for 1 hour.
  • the Stark tube was drained of all added toluene.
  • Sulfolane was added so as to be 20 wt % when (mass of solvent + mass of sulfolane) was 100 wt %, and the mixture was further stirred for 1 hour to obtain a soluble polyimide solution (hereinafter also referred to as varnish).
  • This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-18 A polyamic acid solution was obtained in the same manner as in Example III-17, except that the amount of sulfolane added was changed from 20 wt % to 50 wt %. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • a reflux tube and a Dean-Stark tube were attached to the flask, and under nitrogen flow, the reaction was carried out at 180° C. for 2 hours while removing generated water from the Dean-Stark tube, and then heated at 180° C. for 1 hour.
  • the Stark tube was drained of all added toluene. Thereafter, this solution was added dropwise to 6 times the volume of water while stirring to precipitate a polymer. After the polymer was separated by filtration, it was vacuum-dried at 40° C. for 24 hours using a vacuum dryer. The polymer was then dissolved in sulfolane to 15 wt% to obtain a soluble polyimide solution.
  • This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-10 A polyamic acid solution was obtained in the same manner as in Example III-17, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-19 130 g of N-methylpyrrolidone (NMP: water content 250 ppm) was put into a 500 ml separable flask, and 32.858 g (97.7 mmol) of 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether (6FODA) was added. ) was added and dissolved with stirring, and then norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2'-norbornane-5,5',6,6'-tetracarboxylic dianhydride (CpODA) 22.936 g (60 mmol) and 30 g of toluene were added.
  • NMP 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether
  • a reflux tube and a Dean-Stark tube were attached to the flask, and under nitrogen flow, the reaction was carried out at 180° C. for 2 hours while removing generated water from the Dean-Stark tube, and then heated at 180° C. for 1 hour.
  • the Stark tube was drained of all added toluene. After cooling this solution to 50 ° C., add 25 g of NMP, add 11.704 g (40 mmol) of 4,4'-biphthalic dianhydride (BPDA), stir at 50 ° C. for 4 hours, cool to room temperature, further Shin-Etsu 7.723 g (2 mmol) of Silicone Diamine X-22-1660-B-3 manufactured by Kagaku was added and stirred for 1 hour.
  • BPDA 4,4'-biphthalic dianhydride
  • varnish a polyamic acid-soluble polyimide solution
  • sulfolane was added so as to make 20 wt% (mass of solvent + mass of sulfolane) 100 wt%, and further stirred for 1 hour to obtain a polyamic acid-soluble polyimide solution (hereinafter also referred to as varnish).
  • This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-20 130 g of N-methylpyrrolidone (NMP: water content 250 ppm) was put into a 500 ml separable flask, and 32.858 g (97.7 mmol) of 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether (6FODA) was added. ) was added and dissolved with stirring, and then norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2'-norbornane-5,5',6,6'-tetracarboxylic dianhydride (CpODA) 22.936 g (60 mmol) and 30 g of toluene were added.
  • NMP 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether
  • a reflux tube and a Dean-Stark tube were attached to the flask, and under nitrogen flow, the reaction was carried out at 180° C. for 2 hours while removing generated water from the Dean-Stark tube, and then heated at 180° C. for 1 hour.
  • the Stark tube was drained of all added toluene. After cooling this solution to 50 ° C., add 25 g of NMP, add 11.704 g (40 mmol) of 4,4'-biphthalic dianhydride (BPDA), stir at 50 ° C. for 4 hours, cool to room temperature, further Shin-Etsu 7.723 g (2 mmol) of Silicone Diamine X-22-1660-B-3 manufactured by Kagaku was added and stirred for 1 hour.
  • BPDA 4,4'-biphthalic dianhydride
  • Example III-11 A polyamic acid-soluble polyimide solution was obtained in the same manner as in Example III-19, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met.
  • Example III-21 A 500 ml separable flask was replaced with nitrogen, and N-methylpyrrolidone (NMP: water content 250 ppm) immediately after opening the 18 L can was added as a solvent to the separable flask in an amount corresponding to a solid content of 15 wt%. 3.4576 g (30.3 mmol) of 4-cyclohexanediamine (1,4-CHDA) and 26.0326 g (70.7 mmol) of 4,4'-bis(aminophenoxy)biphenyl (BAPB) were added and dissolved by stirring.
  • NMP N-methylpyrrolidone
  • Example III-12 A polyamic acid-soluble polyimide solution was obtained in the same manner as in Example III-21, except that sulfolane was not added. This varnish was cured in the same manner as in Example III-1, and the in-plane film thickness uniformity of the polyimide resin film, YI, and the amount of degassing during reheating were measured. Met. Tables 11 to 13 collectively show the results of the above Examples and Comparative Examples.
  • the resin compositions of the examples are softer and more fluid than the comparative examples, and when formed into a polyimide resin film, the in-plane uniformity of the film thickness is improved. , and YI were also reduced, and the properties required for display applications were excellent.
  • organic EL structure 250a organic EL element emitting red light 250b organic EL element emitting green light 250c organic EL element emitting blue light 251 partition wall (bank) 252 lower electrode (anode) 253 hole transport layer 254 light emitting layer 255 upper electrode (cathode) 256 TFTs 257 contact hole 258 interlayer insulating film 259 lower electrode 261 hollow portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

下記一般式(1)で示される構造単位Lを含み、かつ一般式(1)中のX2として下記一般式(A-1)で表される構造を有するポリアミド酸-イミド共重合体と、有機溶剤と、ピリジン、トリエチルアミン、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、ベンゾイミダゾール及びN-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)から成る群から選択される少なくとも一つのイミド化触媒とを含む樹脂組成物が提供される:{式中、X1~X4、n、m、l、R1~R2、a~b及び*は、明細書で定義されるとおりである}。

Description

ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法
 本発明は、例えば、フレキシブルデバイスのための基板の製造に用いられる、ポリアミド酸-イミドおよびそれを含む樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法に関する。
 一般に、高耐熱性が要求される用途には、樹脂フィルムとしてポリイミド樹脂のフィルムが用いられる。一般的なポリイミド樹脂は、芳香族カルボン酸二無水物と芳香族ジアミンとを溶液重合することによりポリイミド前駆体を製造した後、これを高温で熱イミド化して、又は、触媒を用いて化学イミド化して、製造される高耐熱樹脂である。
 ポリイミド樹脂は、不溶、不融の超耐熱性樹脂であり、耐熱酸化性、耐熱特性、耐放射線性、耐低温性、耐薬品性等に優れた特性を有している。このため、ポリイミド樹脂は、電子材料を含む広範囲な分野で用いられている。電子材料分野におけるポリイミド樹脂の適用例としては、例えば絶縁コーティング材、絶縁膜、半導体、薄膜トランジスタ液晶ディスプレイ(TFT-LCD)の電極保護膜等を挙げることができる。最近は、ディスプレイ材料の分野において従来使用されていたガラス基板に代わり、その軽さ、柔軟性を利用したフレキシブル基板としてもポリイミド樹脂の採用が検討されている。
 ポリイミド樹脂を、フレキシブル基板として用いる場合には、例えばガラス基板等の適当な支持体上に、ポリイミド樹脂又はその前駆体、及びその他の成分を含有するワニスを塗布、乾燥させてフィルムとして形成し、該フィルムに素子、回路等を形成した後に、ガラス基板からフィルムを剥離する工程が広く用いられている。しかしながら、ポリイミド樹脂を有する積層体を製造するときには、ポリイミド前駆体の乾燥及びイミド化のために、250℃以上の高温における加熱処理を有する。この加熱処理により、上記積層体に残留応力が発生し、反り、剥離等の深刻な問題が生じる。これは、上記支持体を構成する材料と比べ、ポリイミドの線膨張係数が大きいためである。
 上記積層体における残留応力を低減させるため、熱膨張係数がガラスと同程度まで小さいポリイミド樹脂を用いることが検討されており、熱膨張係数の小さいポリイミド材料としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAとも記す)とパラフェニレンジアミンとから形成されるポリイミドが最もよく知られている。膜厚及び作製条件に依存するものの、このポリイミドは、非常に低い線熱膨張係数を示すことが報告されている(非特許文献1)。
 しかしながら、上記の文献に記載されたポリイミドを含め、一般的なポリイミド樹脂は、高い電子密度により茶色又は黄色に着色するため、可視光線領域における光透過率が低く、したがって透明性が要求される分野に用いるのに十分に低い黄色度(YI値)を達成することは困難であった。また、線膨張係数の低いポリイミドは、一般的に分子の配向性が高いために積層体に濁り及び曇りが発生し易く、透過率を悪化させる原因となることが知られている(特許文献2)。
 一般的に黄色度(YI値)については、例えばトリフルオロメチル基を有するジアミンを用いた溶媒可溶性のポリイミド、又は脂環式のテトラカルボン酸二無水物もしくはジアミンを用いたポリイミドが、極めて低い黄色度(YI値)および残留応力を示すことが知られている(特許文献3および特許文献4)。
国際公開第2005/113647号 特許第6443579号公報 国際公開第2019/211972号 国際公開第2020/138360号 特許第4303623号公報 特許第5595381号公報 特許第6073528号公報 特開昭63-101424号公報 特開昭63-110219号公報
「最新ポリイミド -基礎と応用-」、日本ポリイミド研究会編
 上述したように、ポリイミド樹脂を無色透明フレキシブル基板として適用するためには、優れた熱特性および透明性という、相反する特性の両立が求められる。特に最近では、TFTのデバイスタイプがLTPS(低温ポリシリコン)になることに伴い、従来の水準以上の熱履歴においても、透明性に優れるポリイミド樹脂の開発が望まれている。
 一般的なポリイミドである、特許文献1に記載されたポリイミド樹脂は、低い線熱膨張係数を示したものの、400℃以上のLTPS工程で使用するには透明性が十分ではない。また、特許文献2に記載されたポリイミドは、特定のテトラカルボン酸二無水物とジアミンを用いることで線膨張係数(以下、「CTE」とも記す。)及び透明性に優れることが報告されているが、400℃以上の加熱において積層体に濁り及び曇りが生じ、透明基板として使用するには曇り度(以下、「HAZE値」とも記す)が十分ではない。
 さらに、公知の技術思想として、透明性を達成するためには、特許文献3に記載されているように、芳香環を持たない脂環式の酸二無水物、若しくはジアミンを用いること、又は、嵩高く分子内のねじれを誘起する官能基を持つジアミン(例えば、2,2’-ビス(トリフルオロメチル)ベンジジン、以下TFMBとも記す)を用いることで、分子内電荷移動(CT)遷移を抑制する方法が知られている。しかしながら、これら透明性に優れるポリイミドは、ポリアミド酸の状態では耐熱性および熱特性が不十分で、高い透明性を得るため、溶液重合時にイミド化を完了した溶媒可溶性のポリイミド樹脂とする必要があるが、これらのポリイミドは、フィルムとした時の線膨張係数が大きく、430℃以上の高温領域での熱安定性に乏しく、溶媒への溶解性も十分とは言えなかった。
 これら相反する性能である熱特性と透明性を両立するため、ポリイミドとポリアミド酸の混合もしくは、共重合化が検討されているが、これらの樹脂同士は単純に混合させても成形加工時に相分離を起こすことが知られており、透明基板としては適切ではなかった(特許文献5)。これは、耐熱性を有するポリイミドは平面性が高く、剛直な骨格を有するため、屈曲基を有する溶解可溶性のポリイミドとはフィルム化時に相溶し難く、相分離してしまうことが原因である。
 特許文献4では、分子内に部分的にイミド構造とアミド構造を共存させることにより、保存安定性と成型加工性が改善できることが開示されている。しかしながら、本発明者らが確認したところ、特許文献4に記載されたポリアミド酸-イミド樹脂組成物は、耐熱性に乏しく、LTPS工程の430℃以上の熱履歴では黄色度(YI値)および曇り度(HAZE)が著しく悪化することが分かった。この主たる原因は、ポリイミド及びポリアミド酸のモノマー骨格が共通していることに由来し、ポリイミドとポリアミド酸において共通するモノマー骨格の割合が多いほど、相分離によるHazeの発生は抑制できる一方で、熱特性および透明性という、相反する特性の両立を達成することは困難であった。
 また、特許文献6では、分子内に部分的にイミド構造とアミド酸構造を共存させ、脂環式のジアミンを用いることで折曲体制と透明性を改善できることが開示されている。しかしながら、本発明者らが確認したところ、特許文献6に記載されたブロックポリイミドは、LTPS工程の430℃以上の熱履歴では黄色度(YI値)および曇り度(HAZE)が著しく悪化することが分かった。この主たる原因は、ジアミンとして脂環式のジアミンを用いていることに由来し、脂環式のジアミンは、折曲耐性に優れる一方で、430℃以上の熱履歴では脂環式が分解してしまい、耐熱性及び折曲耐性の両立を達成することは困難であった。
 さらに、上記の特許文献7~9に記載されたポリイミドを含め、一般的なポリイミド樹脂は、高い電子密度により茶色又は黄色に着色するため、可視光線領域における光透過率が低く、したがって透明性が要求される分野に用いることは困難であった。
 また、従来の樹脂組成物を用いてポリイミド樹脂膜を形成する場合に、キュア工程(400℃程度まで加熱)において、樹脂組成物の流動性が十分ではなく、得られるポリイミド樹脂膜は、膜厚の面内均一性が不十分であることが分かった。
 このように、従来のポリイミド樹脂膜では、ディスプレイ用の無色透明基板として用いるのに求められる特性、例えば、膜厚の面内均一性、黄色度(YI値)が十分ではなかった。
 本発明は、このような状況を鑑みて、上記の課題を解決するために為されたものであり、芳香族エステルジアミンを主成分として用いた熱特性に優れるポリアミド酸と透明性に優れるポリイミドとをブロック共重合することにより、透明性と耐熱性とを両立したポリアミド酸-イミド共重合体樹脂組成物、または折曲耐性及び透明性に優れるポリイミドと耐熱性に優れるポリアミド酸とをブロック共重合することにより、透明性と耐熱性、さらに折曲耐性とを両立したポリアミド酸-イミド共重合体樹脂組成物、およびそれを用いるポリイミドもしくはポリイミド共重合体、または赤外線(IR)キュアした際のポリイミドフィルムの欠陥を低減することが可能となる、4-アミノ-3-フルオロフェニル-4-アミノベンゾエート(APAB)を用いたポリアミド酸又はポリアミド酸-イミド共重合体含む樹脂組成物、もしくは膜厚の面内均一性に優れるとともに、黄色度(YI値)の低いポリイミド樹脂膜を得ることのできる樹脂組成物もしくはポリイミド樹脂膜、並びにそれらの製造方法またはディスプレイの製造方法、積層体の製造方法およびフレキシブルデバイスの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究し実験を重ね、その結果、特定構造を含むポリアミド酸-イミド共重合体を含む樹脂組成物を硬化して得られるポリイミドフィルムは、優れた透明性、曇り度、耐熱性、及び線膨張係数を有し、低残留応力及び折曲耐性を有し、または、赤外線(IR)キュアした際のポリイミドフィルムの欠陥が低減され、かつ/または樹脂組成物中に沸点250℃~350℃の非プロトン性極性物質を含有させることで、樹脂が柔らかく、流動性を持つようになり、ポリイミド樹脂膜とした際に、膜厚の面内均一性が向上すると共に、YIも低減できることを見出し、これらの知見に基づいて本発明を為すに至った。すなわち、発明は、以下のとおりのものである。
<1>
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000039
{式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、およびlは、正の整数であり、かつ
 前記一般式(1)中のXとして、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000040
(式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
で示される構造を含む}
で示される構造単位を含むポリアミド酸-イミド共重合体と、(d)有機溶剤と、(e)イミド化触媒とを含み、かつ前記(e)イミド化触媒が、イミダゾール化合物、ピリジン化合物、及び三級アミン化合物から成る群から選択される少なくとも一つであることを特徴とする樹脂組成物。
<2>
 前記イミダゾール化合物が、1-メチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1H-イミダゾール、及び1,2-ジメチルイミダゾールから成る群から選択される少なくとも一つであり、
 前記ピリジン化合物が、4-ジメチルアミノピリジン、2,2’-ビピリジル、ニコチン酸、イソキノリン、ピリジン、及び2-メチルピリジンから成る群から選択される少なくとも一つであり、かつ/又は
 前記三級アミン化合物が、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、及びトリエチルアミンから成る群から選択される少なくとも一つである、
項目1に記載の樹脂組成物。
<3>
 前記(e)イミド化触媒が、前記イミダゾール化合物である、項目1又は2に記載の樹脂組成物。
<4>
 前記(e)イミド化触媒の含有量が、前記ポリアミド酸-イミド共重合体100質量部に対し、5質量部以上である、項目1~3のいずれか1項に記載の樹脂組成物。
<5>
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000041
{式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、およびlは、正の整数であり、かつ
 前記一般式(1)中のXとして、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000042
(式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
で示される構造を含む}
で示される構造単位を含むポリアミド酸-イミド共重合体と、(d)有機溶剤とを含み、かつ
 前記ポリアミド酸-イミド共重合体の重量平均分子量が170,000以上である、樹脂組成物。
<6>
 前記ポリアミド酸-イミド共重合体の重量平均分子量が170,000以上である、項目1~4のいずれか一項に記載の樹脂組成物。
<7>
 下記一般式(3):
Figure JPOXMLDOC01-appb-C000043
{式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
 前記一般式(3)中のXとして、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000044
(式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
で示される構造を含む}
で示される構造単位を含むポリアミド酸と、(d)有機溶剤と、(e)イミド化触媒とを含み、前記(e)イミド化触媒が、1-メチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1H-イミダゾール、4-ジメチルアミノピリジン、2,2’-ビピリジル、ニコチン酸、イソキノリン、ピリジン、2-メチルピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、及びトリエチルアミンから成る群から選択される少なくとも一つである、樹脂組成物。
<8>
 下記一般式(3):
Figure JPOXMLDOC01-appb-C000045
{式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
 前記一般式(3)中のXとして、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000046
(式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
で示される構造を含む}
で示される構造単位を含むポリアミド酸と、(d)有機溶剤と、(e)イミド化触媒とを含み、前記(e)イミド化触媒が、イミダゾール化合物であり、かつ前記(e)イミド化触媒の含有量が、前記ポリアミド酸100質量部に対し、5質量部以上である、樹脂組成物。
<9>
 下記一般式(3):
Figure JPOXMLDOC01-appb-C000047
{式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
 前記一般式(3)中のXとして、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000048
(式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
で示される構造を含む}
で示される構造単位を含むポリアミド酸と、(d)有機溶剤と、(e)イミド化触媒とを含み、前記(e)イミド化触媒がイミダゾール化合物であり、かつ
 前記ポリアミド酸の重量平均分子量が170,000以上である、樹脂組成物。
<10>
 前記ポリアミド酸の重量平均分子量が170,000以上である、項目7又は8に記載の樹脂組成物。
<11>
 前記(e)イミド化触媒の含有量が、前記ポリアミド酸-イミド共重合体100質量部または前記ポリアミド酸100質量部に対し、10質量部以上である、項目1~10のいずれか一項に記載の樹脂組成物。
<12>
 前記(e)イミド化触媒が、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)及び/又は1-メチルイミダゾールを含むイミダゾール化合物である、項目1~11のいずれか一項に記載の樹脂組成物。
<13>
 前記ポリアミド酸-イミド共重合体又は前記ポリアミド酸の重量平均分子量が、220,000以上である、項目1~12のいずれか一項に記載の樹脂組成物。
<14>
 さらに沸点250℃~350℃の非プロトン性極性物質を含む、項目1~13のいずれか一項に記載の樹脂組成物。
<15>
 前記非プロトン性極性物質がスルホランである、項目14に記載の樹脂組成物。
<16>
 前記一般式(1)中のXまたは(3)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
Figure JPOXMLDOC01-appb-C000049
{式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
Figure JPOXMLDOC01-appb-C000050
{式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、l及びmは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
Figure JPOXMLDOC01-appb-C000051
{式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
で表される構造からなる群から選択される少なくとも1種である、項目1~15のいずれか一項に記載の樹脂組成物。
<17>
 前記一般式(1)中のXが、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000052
{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種である、項目1~6,11~16のいずれか一項に記載の樹脂組成物。
<18>
 前記(e)イミド化触媒の含有量が、前記ポリアミド酸-イミド共重合の繰り返し単位1モルに対して0.02~0.15モル%の範囲である、項目1~6,11~17のいずれか一項に記載の樹脂組成物。
<19>
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000053
{式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、およびlは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、そしてX及びXから構成される構造単位を構造単位Mと呼び、
 Xが4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基である場合は、下記構成1,2:
  1.Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、Xが4,4’-ジアミノジフェニルスルホン、及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基である;および
  2.Xがノルボルナン―2―スピロ―α―シクロペンタノン―α’―スピロ―2’’―ノルボルナン―5,5’’,6,6’’―テトラカルボン酸二無水物に由来する基である;
を除く}
で示される構造単位Lを含み、かつ
 前記Xとして下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000054
{式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
又は下記一般式(A-2):
Figure JPOXMLDOC01-appb-C000055
{式中、Rは、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてcは0~4の整数である。*は結合部を示す}
で表される構造を有することを特徴とするポリアミド酸-イミド共重合体。
<20>
 前記一般式(1)中のXが、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000056
{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種である、項目19に記載のポリアミド酸-イミド共重合体。
<21>
 前記一般式(1)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
Figure JPOXMLDOC01-appb-C000057
{式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
Figure JPOXMLDOC01-appb-C000058
{式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、l及びmは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示し、但し前記Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、前記一般式(A-5)は、4,4’-ジアミノジフェニルスルホンに由来する基である場合を除く}
Figure JPOXMLDOC01-appb-C000059
{式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
で表される構造から成る群から選択される少なくとも1種である、項目19または20に記載のポリアミド酸-イミド共重合体。
<22>
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000060
{式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、及びlは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、X及びXから構成される構造単位を構造単位Mと呼び、かつ
 Xは、4,4’-ジアミノジフェニルスルホン及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基を除く}
で示される構造単位Lを含み、かつ
 前記Xとして、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000061

{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種を含むことを特徴とするポリアミド酸-イミド共重合体。
<23>
 上記一般式(1)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
Figure JPOXMLDOC01-appb-C000062
{式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
Figure JPOXMLDOC01-appb-C000063
{式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、iおよびjは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示し、但し前記Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、前記一般式(A-5)は、4,4’-ジアミノジフェニルスルホンに由来する基である場合を除く}
Figure JPOXMLDOC01-appb-C000064
{式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
で表される構造から成る群から選択される少なくとも1種である、項目22に記載のポリアミド酸-イミド共重合体。
<24>
 上記一般式(1)中のXを構成するジアミン成分とXを構成するジアミン成分とが、ジアミン組成、又はジアミン種のいずれかが異なる、項目19~23のいずれか一項に記載のポリアミド酸-イミド共重合体。
<25>
 上記一般式(1)中のXが、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種である、項目19~24のいずれか一項に記載のポリアミド酸-イミド共重合体。
<26>
 上記一般式(1)中に含まれるXとXのモル比(X/X)が0.84~1.00であり、かつ上記一般式(1)に含まれるXとX(X/X)のモル比が1.01~2.00である、項目19~25のいずれか一項に記載のポリアミド酸-イミド共重合体。
<27>
 上記一般式(1)中のX及びXから構成されるポリアミド酸の構造単位NとX及びXから構成されるポリイミドの構造単位Mのモル比(構造単位Nのモル数:構造単位Mのモル数)が60:40~95:5の範囲である、項目19~26のいずれか一項に記載のポリアミド酸-イミド共重合体。
<28>
 項目19~27のいずれか一項に記載のポリアミド酸-イミド共重合体と、(d)有機溶剤と、を含有する、樹脂組成物。
<29>
 前記樹脂組成物に含まれる全ポリマーのうち、X及びXから構成されるポリアミド酸の構造単位Nの比率が、60~95モル%である、項目28に記載の樹脂組成物。
<30>
 更に、(e)イミド化触媒を含む、項目28又は29に記載の樹脂組成物。
<31>
 下記一般式(2):
Figure JPOXMLDOC01-appb-C000065
{式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、そしてn及びmは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、そしてX及びXから構成される構造単位を構造単位Mと呼び、かつ
 Xが4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基である場合は、下記構成1,2:
  1.Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、Xが4,4’-ジアミノジフェニルスルホン、及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基である;および
  2.Xがノルボルナン―2―スピロ―α―シクロペンタノンa―α’―スピロ―2’’―ノルボルナン―5,5’’,6,6’’―テトラカルボン酸二無水物に由来する基である;
を除く}
で表される構造単位を含み、かつ
 前記Xとして下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000066
{式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
又は下記一般式(A-2):
Figure JPOXMLDOC01-appb-C000067
{式中、Rは、炭素数1~20の1価の有機基、又はハロゲンを表し、cは、0~4の整数であり、そして*は、結合部を示す}
で表される構造を有することを特徴とするポリイミド共重合体。
<32>
 上記一般式(2)中のXが、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000068
{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種である、項目31に記載のポリイミド共重合体。
<33>
 下記一般式(2):
Figure JPOXMLDOC01-appb-C000069
{式中、XおよびXは、4価の有機基を表し、XおよびXは、2価の有機基を表し、n及びmは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、X及びXから構成される構造単位を構造単位Mと呼び、かつ
 Xは、4,4’-ジアミノジフェニルスルホン、2, 2’―ビス(トリフルオロメチル)ベンジジンに由来する基を除く}
で示される構造単位を含み、かつ
 前記Xとして、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000070
{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種を含むことを特徴とするポリイミド共重合体。
<34>
 前記一般式(2)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
Figure JPOXMLDOC01-appb-C000071
{式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
Figure JPOXMLDOC01-appb-C000072
{式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、l及びmは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示し、前記Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、前記一般式(A-5)は、4,4’-ジアミノジフェニルスルホンに由来する基である場合を除く}
Figure JPOXMLDOC01-appb-C000073
{式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
で表される構造から成る群から選択される少なくとも1種である、項目33に記載のポリイミド共重合体。
<35>
 上記一般式(2)中のXが、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種である、項目31~34のいずれか一項に記載のポリイミド共重合体。
<36>
 上記一般式(2)中に含まれるXとXのモル比(X/X)が0.84~1.00であり、かつ上記一般式(2)に含まれるXとX(X/X)のモル比が1.01~2.00である、項目31~35のいずれか一項に記載のポリイミド共重合体。
<37>
 上記一般式(2)中のX及びXから構成されるポリイミドの構成単位NとX及びXから成るポリイミドの構成単位Mのモル比(構成単位Nのモル数:構成単位Mのモル数)が、60:40~95:5の範囲である、項目31~36のいずれか一項に記載のポリイミド共重合体。
<38>
 下記一般式(I)で表されるポリイミド前駆体、もしくは下記一般式(I)で表されるポリイミド前駆体骨格及び下記一般式(II)で表されるポリイミド骨格を有し、
 沸点250℃~350℃の非プロトン性極性物質を含むことを特徴とする樹脂組成物:
Figure JPOXMLDOC01-appb-C000074
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す}
Figure JPOXMLDOC01-appb-C000075
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す}。
<39>
 下記一般式(II)で表されるポリイミドと、溶媒と、沸点250℃~350℃の非プロトン性極性物質とを含む樹脂組成物:
Figure JPOXMLDOC01-appb-C000076
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは、かつ正の整数を示す}。
 本発明によれば、透明性と耐熱性を両立したポリアミド酸-イミド共重合体、及びそれを含む樹脂組成物が提供され、ひいては優れた透明性、曇り度、耐熱性及び線膨張係数を有するポリイミドフィルム、及びその製造方法も提供されることができ、かつ/又はフルオレン骨格を持つ芳香族酸二無水物を主成分として用いて、折曲耐性及び透明性に優れるポリイミドと耐熱性に優れるポリアミド酸とをブロック共重合を提供することができ、ひいては透明性と耐熱性、更に低残留応力及び折曲耐性とを両立したポリアミド酸-イミド共重合体樹脂組成物、ポリイミド、又はポリイミドフィルム、及びそれらの製造方法も提供することができる。そして、赤外線(IR)キュアした際のポリイミドフィルムの欠陥を低減することが可能となる、4-アミノ-3-フルオロフェニル-4-アミノベンゾエート(APAB)を用いたポリアミド酸又はポリアミド酸-イミド共重合体含む樹脂組成物が提供され、ひいては欠陥が低減されたポリイミドフィルム、及びその製造方法も提供されることができる。また、本発明によれば、膜厚の面内均一性に優れるとともに、黄色度(YI値)の低いポリイミド樹脂膜を得ることのできる樹脂組成物、ポリイミド樹脂膜の製造方法、ディスプレイの製造方法、積層体の製造方法およびフレキシブルデバイスの製造方法を提供することもできる。
図1は、本発明の一実施形態のディスプレイの例として、トップエミッション型フレキシブル有機ELディスプレイの、ポリイミド基板より上部の構造を示す模式図である。
 以下、本発明の例示の実施の形態(以下、「実施形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また、本開示で記載する特性値は、特記がない限り、[実施例]の項において記載する方法又はこれと同等であることが当業者に理解される方法で測定される値であることを意図する。
<樹脂組成物>
 本発明の一態様が提供する樹脂組成物は、(a)ポリアミド酸及び/又は(b)ポリイミドを含む、(c)ポリアミド酸-イミド共重合体、ポリイミド又はポリアミド酸、並びに(d)有機溶剤を含み、所望により(e)イミド化触媒などの他の成分を含有してよい。
 以下、各成分を順に説明する。
<第一の実施形態>
(A)ポリアミド酸-イミド共重合体
 本開示の第一の実施形態は、
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000077
{式中、XおよびXは、4価の有機基を表し、XおよびXは、2価の有機基を表し、n、m、及びlは、正の整数であり、X及びXから構成される構造単位を構造単位N、X及びXから構成される構造単位を構造単位Mと呼ぶ}
で示される構造単位Lを含み、かつ、Xとして下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000078
{式中、RおよびRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は結合部を示す}
又は下記一般式(A-2):
Figure JPOXMLDOC01-appb-C000079
{式中、Rは、炭素数1~20の1価の有機基、又はハロゲンを表し、cは、0~4の整数であり、そして*は結合部を示す}
で表される構造を有することを特徴とするポリアミド酸-イミド共重合体を提供する。
 また、一般式(A-2)で表される構造の具体例としては、下記一般式(A-2a):
Figure JPOXMLDOC01-appb-C000080
{式中、Rとcと*は、一般式(A-2)で定義されたとおりである}
を挙げることができる。
 第一の実施形態に係るポリアミド酸-イミド共重合体は、ポリイミド前駆体として利用可能であり、それを用いてポリイミドフィルムを形成したときに線膨張係数が低く、残留応力が低く、曇り度(Haze値)および黄色度(YI値)が小さい。また、第一の実施形態に係るポリアミド酸-イミド共重合体は、それを用いてポリイミドフィルムを形成したときに、高温領域での黄色度(YI値)が小さく、曇り度(Haze値)が小さい。このような観点から、第一の実施形態に係るポリアミド酸-イミド共重合体の重量平均分子量が170,000以上であることが好ましく、かつ/又はXが4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基である場合には、下記構成1,2:
  構成1.Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、Xが4,4’-ジアミノジフェニルスルホン、及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基である;および
  構成2.Xがノルボルナン―2―スピロ―α―シクロペンタノン―α’―スピロ―2’’―ノルボルナン―5,5’’,6,6’’―テトラカルボン酸二無水物に由来する基である;
を除くことが好ましい。
<第二の実施形態>
 本開示の第二の実施形態は、
 上記一般式(1)で示される構造単位Lを含み、かつ、X及び/又はXとして、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000081
{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種を含むことを特徴とするポリアミド酸-イミド共重合体を提供する。
 第二の実施形態に係るポリアミド酸-イミド前駆体は、ポリイミドフィルムとしたときに線膨張係数が低く、残留応力が低く、折曲耐性に優れ、曇り度(Haze値)および黄色度(YI値)が小さい。また、第二の実施形態に係るポリアミド酸-イミド共重合体は、ポリイミドフィルムとしたときに、高温領域での黄色度(YI値)が小さく、曇り度(Haze値)が小さい。第二の実施形態では、このような観点から、Xとして、一般式(A-3)で表される構造、ODPA由来の構造、及び6FDA由来の構造から成る群から選択される少なくとも1種を含むことが好ましく、かつ/又はXは、Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合に、4,4’-ジアミノジフェニルスルホン及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基を除くことが好ましい。
<第三の実施形態>
 本開示の第三の実施形態では、樹脂組成物は、下記一般式(I)で表されるポリイミド前駆体、もしくは下記一般式(I)で表されるポリイミド前駆体骨格及び下記一般式(II)で表されるポリイミド骨格を有し、沸点250℃~350℃の非プロトン性極性物質を含むことを特徴とするか、もしくは、樹脂組成物は、下記一般式(II)で表されるポリイミドと、溶媒と、沸点250℃~350℃の非プロトン性極性物質とを含むことを特徴とする。
(ポリイミド前駆体)
Figure JPOXMLDOC01-appb-C000082
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
(ポリイミド樹脂)
Figure JPOXMLDOC01-appb-C000083
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
 第三の実施形態に係るポリイミドは、ポリイミド前駆体を熱イミド化することで得られ、化学イミド化することもできる。得られるポリイミドフィルムの透明性の観点から、熱イミド化が好ましい。また、樹脂組成物は、イミド化促進剤を含有することができる。
 第三の実施形態に係る樹脂組成物は、沸点250℃~350℃の非プロトン性極性物質を含有していることで、キュア工程(加熱工程)において、該非プロトン性極性物質が、例えば250℃以上といった高温での可塑剤としての役割を果たし、樹脂が柔らかく、流動性を持つようになり、ポリイミド樹脂膜(以下、ポリイミドフィルムともいう)とした際に、膜厚の面内均一性が向上すると共に、YIも低減することができる。
 なお、第三の実施形態に係る樹脂組成物は、さらに溶媒、例えば非プロトン性溶媒を含んでいてもよい。この非プロトン性溶媒は、上記の沸点250℃~350℃の非プロトン性極性物質とは区別されるべきものである。
 ここで、一般式(I)および(II)におけるP基は、酸無水物残基であり、これらは同一であっても異なっていてもよい。また、一般式(I)および(II)におけるP基は、ジアミン残基であり、これらは同一であっても異なっていてもよい。
<第四の実施形態>
(B)ポリアミド酸
 本開示の第四の実施形態では、下記一般式(3):
Figure JPOXMLDOC01-appb-C000084
{式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
 前記一般式(3)中のXとして、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000085
(式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
で示される構造を含む}
で示される構造単位を含むポリアミド酸、又はそれに由来する構成単位を含むポリアミド酸-イミド共重合体であって、特定の(e)イミド化触媒と共に配合されるか、又はポリアミド酸の重量平均分子量が170,000以上であることを特徴とするポリアミド酸、又はそれに由来する構成単位を含むポリアミド酸-イミド共重合体が提供される。第四の実施形態に係るポリアミド酸、又はそれに由来する構成単位を含むポリアミド酸-イミド共重合体は、赤外線(IR)キュアした際のポリイミドフィルムの欠陥を低減することが可能となる。
 第一、第二、第三及び第四の実施形態に係る特徴については、組み合わせ、又は互換を行なってよい。第一、第二、第三及び第四の実施形態について、共通する構成、好ましい構成などを以下に説明する。
(a)<ポリアミド酸部の実施形態>
 本発明のポリアミド酸-イミド共重合体を構成するポリアミド酸部分は、上記一般式(1)中の構造単位Nで示される部分である。
 上記一般式(1)中、Xは、4価の有機基であり、ポリイミド前駆体中に存在する複数のXは互いに同一であっても異なっていてもよい。Xとしては、下記のテトラカルボン酸二無水物に由来する4価の有機基が例示される。
 テトラカルボン酸二無水物としては、炭素数が8~36の芳香族テトラカルボン酸二無水物、炭素数が6~50の脂肪族テトラカルボン酸二無水物、及び炭素数が6~36の脂環式テトラカルボン酸二無水物を例示することができる。この中で、高温領域での黄色度の観点から炭素数が8~36の芳香族テトラカルボン酸二無水物が好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。
 上記の炭素数が8~36の芳香族テトラカルボン酸二無水物としては、例えば、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAとも記す)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物(以下、PMDAとも記す)、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAとも記す)、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物(以下、DSDAとも記す)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物(以下、ODPAとも記す)、P-フェニレンビス(トリメリテート酸無水物)(以下、TAHQとも記す)チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等を例示することができる。
 炭素数が6~50の脂肪族テトラカルボン酸二無水物として、例えばエチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等を;
炭素数が6~36の脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、シクロペンタノンビススピロノルボルナンテトラカルボン酸二無水物(以下、CPODAとも記す)、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-12-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、REL-[1S,5R,6R]-3-オキサビシクロ[3,2]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-3,4-ジカルボン酸無水物フェニル)エーテル等が、それぞれ挙げられる。
 好ましい一態様において、Xは、ピロメリット酸二無水物(PMDA)、ビフェニルテトラカルボン酸二無水物(BPDA)、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-オキシジフタル酸無水物(ODPA)、及びシクロペンタノンビススピロノルボルナンテトラカルボン酸二無水物(CPODA)から成る群から選択される少なくとも1種に由来する。
 線膨張係数(CTE)、耐薬品性、ガラス転移温度(Tg)、及び高温領域での黄色度のバランスの観点から、PMDA、BPDA、DSDA、TAHQ、ODPA、及びCPODAが好ましく、BPDA、TAHQ、及びODPAがより好ましい。
 ポリアミド酸-イミド共重合体は、例えばポリイミド前駆体としては、その性能を損なわない範囲で、前述のテトラカルボン酸二無水物に加えてジカルボン酸を使用して得られたものでもよい。このような前駆体を使用することにより、得られるフィルムにおいて、機械伸度の向上、ガラス転移温度の向上、黄色度の低減等の諸性能を調整することができる。そのようなジカルボン酸として、芳香環を有するジカルボン酸及び脂環式ジカルボン酸が挙げられる。特に炭素数が8~36の芳香族ジカルボン酸、及び炭素数が6~34の脂環式ジカルボン酸から成る群から選択される少なくとも1つの化合物が好ましい。ここでいう炭素数は、カルボキシル基に含まれる炭素の数も含む。これらのうち、芳香環を有するジカルボン酸が好ましい。
 ジカルボン酸としては、具体的には、例えばイソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-スルホニルビス安息香酸、3,4’-スルホニルビス安息香酸、3,3’-スルホニルビス安息香酸、4,4’-オキシビス安息香酸、3,4’-オキシビス安息香酸、3,3’-オキシビス安息香酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2’-ジメチル-4,4’-ビフェニルジカルボン酸、3,3’-ジメチル-4,4’-ビフェニルジカルボン酸、2,2’-ジメチル-3,3’-ビフェニルジカルボン酸、9,9-ビス(4-(4-カルボキシフェノキシ)フェニル)フルオレン、9,9-ビス(4-(3-カルボキシフェノキシ)フェニル)フルオレン、4,4’-ビス(4-カルボキシフェノキシ)ビフェニル、4,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,4’-ビス(4-カルボキシフェノキシ)ビフェニル、3,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,3’-ビス(4-カルボキシフェノキシ)ビフェニル、3,3’-ビス(3―カルボキシフェノキシ)ビフェニル、4,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、1,1-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、1,3-フェニレン二酢酸、1,4-フェニレン二酢酸等;及び国際公開第2005/068535号パンフレットに記載の5-アミノイソフタル酸誘導体等が挙げられる。これらジカルボン酸をポリマーに実際に共重合させる場合には、塩化チオニル等から誘導される酸クロリド体、活性エステル体等の形態で使用してもよい。
 上記一般式(1)中、Xは、2価の有機基であり、好ましくは、下記一般式(A-1)で表される構造、下記一般式(A-4)で表される構造、下記一般式(A-5)で表される構造、下記一般式(A-6)で表される構造、および下記一般式(B-1)で示されるジアミン由来の構造、又は、BAFL、BFAF、BAOFL、44DAS、33DAS、44ODA、34ODA等に由来の構造が好ましい。Xとしては、高温領域での黄色度(YI値)の観点から4-アミノフェニル-4-アミノベンゾエートに由来する構造が好ましく、曇り度(HAZE値)の観点から、4-アミノ-3-フルオロフェニル-4-アミノベンゾエート(APAB)、パラフェニレンジアミン(pPD)、BAFL、及びBFAFに由来する少なくとも1つの構造が好ましい。
 一般式(1)中のXの構造は、一態様において、下記一般式(A-1):
Figure JPOXMLDOC01-appb-C000086
{式中、RおよびRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は結合部を示す}
で表される。
 ここで、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、水素(a及び/又はb=0の場合)、若しくはハロゲンであれば限定されない。このような有機基として、例えば、メチル基、エチル基、プロピル基などのアルキル基、トリフルオロメチル基などのハロゲン含有基、メトキシ基、エトキシ基などのアルコキシ基が挙げられ、a及び/又はb=0の場合には水素でよく、もしくはハロゲンとしてはフッ素などが挙げられる。この中で、高温領域での黄色度(YI値)の観点から、水素、及び/又はフェニル基が好ましく、曇り度(Haze値)の観点から水素、メチル基、及びフッ素から成る群から選択される少なくとも1つが好ましい。
 ここで、a及びbは、それぞれ、0~4の整数であれば限定されない。この中で、黄色度(YI値)、及び残留応力の観点から、0~2の整数が好ましく、高温領域での黄色度(YI値)の観点から、0が特に好ましい。
 一般式(1)中のXの構造は、一態様において、下記一般式(A-6):
Figure JPOXMLDOC01-appb-C000087
{式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
で表される。
 ここで、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、水素(n及びо=0の場合)、若しくはハロゲンであれば限定されない。このような有機基として、例えば、メチル基、エチル基、プロピル基などのアルキル基、トリフルオロメチル基などのハロゲン含有基、メトキシ基、エトキシ基などのアルコキシ基などが挙げられ、n及びо=0の場合には水素でよく、もしくはハロゲンとしてはフッ素などが挙げられる。この中で、高温領域での黄色度(YI値)の観点から、水素、及び/又はフェニル基が好ましく、曇り度(Haze値)の観点から水素、メチル基、及びフッ素から成る群から選択される少なくとも1つが好ましい。
 ここで、n及びоは、それぞれ、0~4の整数であれば限定されない。この中で、黄色度(YI値)、及び残留応力の観点から、0~2の整数が好ましく、高温領域での黄色度(YI値)の観点から、0が特に好ましい。
 一般式(1)中のXの構造は、一態様において、下記一般式(A-2):
Figure JPOXMLDOC01-appb-C000088
{式中、Rは、炭素数1~20の1価の有機基、又はハロゲンを表し、cは、0~4の整数であり、そして*は結合部を示す}
で表される。
 ここで、Rは、それぞれ独立に、炭素数1~20の1価の有機基、水素(c=0の場合)、若しくはハロゲンであれば限定されない。このような有機基として、例えば、メチル基、エチル基、プロピル基などのアルキル基、トリフルオロメチル基などのハロゲン含有基、メトキシ基、エトキシ基などのアルコキシ基が挙げられ、c=0の場合には水素でよく、もしくはハロゲンとしてはフッ素などが挙げられる。この中で、高温領域での黄色度(YI値)の観点から、水素が好ましく、曇り度(Haze値)の観点から、メチル基、及び/又はフッ素が好ましい。
 ここで、cは、それぞれ、0~4の整数であれば限定されない。この中で、黄色度(YI値)、及び残留応力の観点から、0~2の整数が好ましく、高温領域での黄色度(YI値)の観点から、0が特に好ましい。
 一般式(A-1)で表される構造単位は、一態様において、下記一般式(B-1):
Figure JPOXMLDOC01-appb-C000089
{式中、R、R、a及びbは、一般式(A-1)と同様に定義される}
で表されるジアミンに由来する。
 一般式(B-1)で表されるジアミンとして、より具体的には、4-アミノフェニル-4-アミノベンゾエート(以下、APABとも記す)、2-メチル-4-アミノフェニル-4-アミノベンゾエート(以下、2Me-APABとも記す)、3-メチル-4-アミノフェニル-4-アミノベンゾエート(以下、3Me-APABとも記す)、2-フルオロ-4-アミノフェニル-4-アミノベンゾエート(以下、2F-APABとも記す)、3-フルオロ-4-アミノフェニル-4-アミノベンゾエート(以下、3F-APABとも記す)、3-メチル-4-アミノフェニル-3-メチル-4-アミノベンゾエート(以下、3,3Me-APABとも記す)、などを例示することができ、高温領域での黄色度(YI値)の観点から、APABが好ましく、曇り度(Haze値)が小さくなる観点から、APAB、3Me-APAB、及び3F-APABが好ましい。
 一般式(A-2)で表される構造単位は、一態様において、下記一般式(B-2):
Figure JPOXMLDOC01-appb-C000090
{式中、R、及びcは、一般式(A-2)と同様に定義される}
で表されるジアミンに由来する。
 一般式(B-2)で表されるジアミンとして、より具体的には、p-フェニレンジアミン(pPD)、m-フェニレンジアミン、3,5-ジアミノ安息香酸、等を例示することが出来、高温での耐熱性の観点から、pPDが好ましい。
 ポリアミド酸、ポリイミド、ポリアミド酸-イミド共重合体、及びポリイミド共重合体は、それぞれ、黄色度、曇り度、残留応力等を損なわない範囲で、前述した一般式(B-1)および一般式(B-2)で表されるジアミンに加えて、又は一般式(B-1)及び一般式(B-2)で表されるジアミンに替えて、その他のジアミンを用いることができる。
 その他のジアミンとしては、例えば、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン、等を挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。全ジアミン中の、上記その他のジアミンの含有量は、20モル%以下が好ましく、10モル%以下が特に好ましい。一方、使用されるジアミンにシリコーン系ジアミンは含まないことが、高温での耐熱性の観点から好ましい。例えば、シリコーン系ジアミン市販品として入手可能な、信越化学工業株式会社製の「X-22-9409」、「X-22-1660B-3」等が挙げられる。
 上記一般式(1)に含まれるポリアミド酸部中のXとXのモル比(X/X)は、0.84~1.00又は0.85~1.2が好ましく、0.90~1.1がより好ましく、0.92~1,00が更に好ましい。X/Xが0.84以上又は0.85以上であると、残留応力が低く、YIが低くなる。X/Xが1.2以下又は1.00以下であると、伸度、破断強度等の機械的特性に優れる。
 ポリアミド酸及びポリアミド酸部の重量平均分子量(Mw)は、1,000以上が好ましく、1,000~300,000または2,639~300,000がより好ましく、10,000~200,000または10,000~250,000がさらに好ましく、30,000~200,000が特に好ましい。重量平均分子量が1,000以上であると、伸度、破断強度等の機械的特性に優れ、残留応力が低く、YIが低くなる。重量平均分子量が300,000以下であると、ポリアミド酸の合成時に重量平均分子量をコントロールし易くなり、適度な粘度の樹脂組成物を得ることができ、樹脂組成物の塗布性が良くなる。また、ポリアミド酸及びポリアミド酸部のMwが170,000以上であると、透明性、曇り度、耐熱性及び線膨張係数に優れる傾向にあるため好ましく、220,000以上のMwがより好ましく、この傾向は、一般式(1)中のXとして、上記一般式(A-1)で示される構造を有するときに顕著である。本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)を用いて、標準ポリスチレン換算値として求められる値である。
(b)<ポリイミド部の実施形態>
 本発明のポリアミド酸-イミド共重合体を構成するポリイミド部分は、上記一般式(1)中の構造単位Mで示される部分である。
 前記一般式(1)において、Xは、4価の有機基であり、好ましくは、下記一般式(A-3)で表される構造、又は4,4’-オキシジフタル酸二無水物(ODPA)、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)から選択される少なくとも1つに由来する構造であり、前記<ポリアミド酸部の実施形態>で記載されたテトラカルボン酸二無水物に由来する4価の有機基を用いることが出来る。また、ポリイミド前駆体として使用可能なポリアミド酸-イミド共重合体中に存在する複数のXは、互いに同一であっても異なっていてもよく、Xと互いに同一であっても異なっていてもよい。
 Xとしては、高温領域での黄色度(YI値)の観点から、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する構造が好ましく、残留応力の観点から、ODPAに由来する構造が好ましい。
 上記のBPAF、ODPA及び6FDAに加えて、又はそれらに替えて使用可能なテトラカルボン酸二無水物としては、炭素数が8~36の芳香族テトラカルボン酸二無水物、炭素数が6~50の脂肪族テトラカルボン酸二無水物、及び炭素数が6~36の脂環式テトラカルボン酸二無水物を例示することができる。この中で、高温領域での黄色度の観点から炭素数が8~36の芳香族テトラカルボン酸二無水物が好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。
 上記の炭素数が8~36の芳香族テトラカルボン酸二無水物としては、例えば、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAとも記す)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物(以下、PMDAとも記す)、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAとも記す)、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物(以下、DSDAとも記す)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物(以下、ODPAとも記す)、P-フェニレンビス(トリメリテート酸無水物)(以下、TAHQとも記す)チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等を例示することができる。
 炭素数が6~50の脂肪族テトラカルボン酸二無水物として、例えばエチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等を;
炭素数が6~36の脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、シクロペンタノンビススピロノルボルナンテトラカルボン酸二無水物(以下、CPODAとも記す)、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-12-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、REL-[1S,5R,6R]-3-オキサビシクロ[3,2]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-3,4-ジカルボン酸無水物フェニル)エーテル等が、それぞれ挙げられる。
 好ましい一態様において、X又はXは、ピロメリット酸二無水物(PMDA)、ビフェニルテトラカルボン酸二無水物(BPDA)、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-オキシジフタル酸無水物(ODPA)、及びシクロペンタノンビススピロノルボルナンテトラカルボン酸二無水物(CPODA)から成る群から選択される少なくとも1種に由来する。
 線膨張係数(CTE)、耐薬品性、ガラス転移温度(Tg)、及び高温領域での黄色度のバランスの観点から、PMDA、BPDA、DSDA、TAHQ、及びCPODAが好ましく、BPDA、及びTAHQがより好ましい。
 ポリアミド酸-イミド共重合体は、例えばポリイミド前駆体としては、その性能を損なわない範囲で、前述のテトラカルボン酸二無水物に加えてジカルボン酸を使用して得られたものでもよい。このような前駆体を使用することにより、得られるフィルムにおいて、機械伸度の向上、ガラス転移温度の向上、黄色度の低減等の諸性能を調整することができる。そのようなジカルボン酸として、芳香環を有するジカルボン酸及び脂環式ジカルボン酸が挙げられる。特に炭素数が8~36の芳香族ジカルボン酸、及び炭素数が6~34の脂環式ジカルボン酸から成る群から選択される少なくとも1つの化合物が好ましい。ここでいう炭素数は、カルボキシル基に含まれる炭素の数も含む。これらのうち、芳香環を有するジカルボン酸が好ましい。
 ジカルボン酸としては、具体的には、例えばイソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-スルホニルビス安息香酸、3,4’-スルホニルビス安息香酸、3,3’-スルホニルビス安息香酸、4,4’-オキシビス安息香酸、3,4’-オキシビス安息香酸、3,3’-オキシビス安息香酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2’-ジメチル-4,4’-ビフェニルジカルボン酸、3,3’-ジメチル-4,4’-ビフェニルジカルボン酸、2,2’-ジメチル-3,3’-ビフェニルジカルボン酸、9,9-ビス(4-(4-カルボキシフェノキシ)フェニル)フルオレン、9,9-ビス(4-(3-カルボキシフェノキシ)フェニル)フルオレン、4,4’-ビス(4-カルボキシフェノキシ)ビフェニル、4,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,4’-ビス(4-カルボキシフェノキシ)ビフェニル、3,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,3’-ビス(4-カルボキシフェノキシ)ビフェニル、3,3’-ビス(3―カルボキシフェノキシ)ビフェニル、4,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、1,1-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、1,3-フェニレン二酢酸、1,4-フェニレン二酢酸等;及び国際公開第2005/068535号パンフレットに記載の5-アミノイソフタル酸誘導体等が挙げられる。これらジカルボン酸をポリマーに実際に共重合させる場合には、塩化チオニル等から誘導される酸クロリド体、活性エステル体等の形態で使用してもよい。
 一般式(1)又は後述される一般式(2)中のXの構造は、一態様において、下記一般式(A-3):
Figure JPOXMLDOC01-appb-C000091
{式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは結合基を示し、そして*は結合部を示す}
で表されるか、又は、4,4’-オキシジフタル酸二無水物(ODPA)、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)に由来する。
 ここで、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、水素(d~g=0の場合)、若しくはハロゲンであれば限定されない。このような有機基として、メチル基、エチル基、プロピル基などのアルキル基、トリフルオロメチル基などのハロゲン含有基、メトキシ基、エトキシ基などのアルコキシ基が挙げられ、d~g=0の場合には水素でよく、もしくはハロゲンとしてはフッ素などが挙げられる。この中で、高温領域での黄色度(YI値)の観点から、水素が好ましく、曇り度(Haze値)の観点から、フッ素が好ましい。
 ここで、Zとしては、単結合、メチレン基、エチレン基、エーテル、ケトンなどが例示できる。この中で、高温領域でのYIの観点から、単結合がより好ましく、残留応力の観点から単結合及びエーテルが好ましい。
 ここで、d~gは、それぞれ、0~4の整数であれば限定されない。この中で、黄色度(YI値)、及び残留応力の観点から、0~2の整数が好ましく、高温領域での黄色度(YI値)の観点から、0が特に好ましい。
 一般式(A-3)で表される構造単位は、一態様において、下記一般式(B-3):
Figure JPOXMLDOC01-appb-C000092
{式中、R~R、d~g、及びZは、一般式(A-3)と同様に定義され、d及びeは、それぞれ独立に、0~3の整数であることが好ましく、f及びgは、それぞれ独立に、0~4の整数であることが好ましい}
で表される酸二無水物に由来する。
 一般式(B-3)で表される酸二無水物として、より具体的には、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二酸無水物(BPF-PA)などを例示することができ、曇り度(Haze値)が小さくなる観点および高温領から、BPAFが好ましく、残留応力の観点からBPAFおよびBPF-PAが好ましい。
 一般式(1)又は後述される一般式(2)において、Xは、2価の有機基であり、好ましくは、下記一般式(A-4)~(A-6)の少なくとも1つで示される構造であり、前記<ポリアミド酸部の実施形態>で記載されたジアミンに由来する2価の有機基を用いることが出来る。また、ポリイミド中又はポリイミド部中に存在する複数のXは、互いに同一であっても異なっていてもよいが、ポリイミドとした時に相反する性能を両立する観点から、Xとは異なっていることが好ましく、Xを構成するジアミン成分とXを構成するジアミン成分とが、ジアミン組成又はジアミン種のいずれかについて異なることがより好ましい。
 一般式(1)又は後述される一般式(2)中のXの構造は、一態様において、下記一般式(A-4):
Figure JPOXMLDOC01-appb-C000093
{式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、h~kは、それぞれ独立に、0~4の整数であり、Zは結合基を示し、そして*は結合部を示す}
で表される。
 ここで、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、水素(h~k=0の場合)、若しくはハロゲンであれば限定されない。このような有機基として、メチル基、エチル基、プロピル基などのアルキル基、トリフルオロメチル基などのハロゲン含有基、メトキシ基、エトキシ基などのアルコキシ基が挙げられ、h~k=0の場合には水素でよく、もしくはハロゲンとしてはフッ素などが挙げられる。この中で、高温領域での黄色度(YI値)の観点から、水素が好ましく、曇り度(Haze値)の観点から、フッ素が好ましい。
 ここで、h~kは、それぞれ、0~4の整数であれば限定されない。この中で、黄色度(YI値)、及び残留応力の観点から、0~2の整数が好ましく、高温領域での黄色度(YI値)の観点から、0が特に好ましい。
 Zとしては、単結合、メチレン基、エチレン基、エーテル、ケトンなどが例示できる。この中で、高温領域でのYIの観点から、単結合が好ましい。
 一般式(1)又は後述される一般式(2)中のXの構造は、一態様において、下記一般式(A-5):
Figure JPOXMLDOC01-appb-C000094
{式中、R12およびR13は、それぞれ独立に、炭素数1~20の1価の有機基、若しくはハロゲンを表し、lおよびmは、それぞれ独立に、0~4の整数であり、そして*は結合部を示し、但し前記一般式(1)のXが4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基であり、かつ、Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合においては、一般式(A-5)は4,4’-ジアミノジフェニルスルホン又はそれに由来する基を除く}
で表される。
 ここで、R12、R13は、それぞれ独立に、炭素数1~20の1価の有機基、又はフッ素などのハロゲンであれば、限定されない。このような有機基として、メチル基、エチル基、プロピル基などのアルキル基、トリフルオロメチル基などのハロゲン含有基、フェニル基、ナフチル基などのアリール基、メトキシ基、エトキシ基などのアルコキシ基、などが挙げられる。この中で、高温領域でのYIの観点から、メチル基が好ましい。
 ここで、l、mは、0~4の整数であれば限定されない。この中で、YI、残留応力の観点から0~2の整数が好ましく、高温領域でのYIの観点から、0が特に好ましい。
 一般式(1)又は後述される一般式(2)中のXの構造は、一態様において、下記一般式(A-6):
Figure JPOXMLDOC01-appb-C000095
{式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
で表される。ここで、R14、及びR15は、それぞれ独立に、炭素数1~20の1価の有機基であれば限定されない。このような有機基として、メチル基、エチル基、プロピル基などのアルキル基;トリフルオロメチル基などのハロゲン含有基;フェニル基、ナフチル基などのアリール基;メトキシ基、エトキシ基などのアルコキシ基;などが挙げられる。この中で、高温領域でのYIの観点から、メチル基およびフェニル基が好ましい。ここで、n及びоは、0~4の整数であれば限定されない。この中で、YIと残留応力の観点から0~2の整数が好ましく、高温領域でのYIの観点から、0が特に好ましい。
 一般式(A-4)で表される構造単位は、一態様において、下記一般式(B-4):
Figure JPOXMLDOC01-appb-C000096
{式中、R~R11およびh~kは、一般式(A-4)と同様に定義される}
で表されるジアミンに由来する。
 一般式(B-4)で表されるジアミンとして、より具体的には、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン(BFAF)、9,9-ビス(4-(アミノフェノキシ)フェニル)フルオレン(BAOFL)などを例示することができ、高温での黄色度(YI値)の観点から、BFAFが好ましく、曇り度(Haze値)が小さくなる観点から、BAFLが好ましい。
 また、一般式(A-5)で表される構造単位は、一態様において、下記一般式(B-5-1):
Figure JPOXMLDOC01-appb-C000097
もしくは、下記一般式(B-5-2):
Figure JPOXMLDOC01-appb-C000098
{式中、R12およびR13、lおよびmは、一般式(A-5)と同様に定義される}
で表されるジアミンなどに由来する。
 一般式(B-5-1)および(B-5-2)で表されるジアミンとして、より具体的には、4,4’-ジアミノジフェニルスルホン(44DAS)、3,3’-ジアミノジフェニルスルホン(33DAS)を例示することができる。その他のジアミンとして、より具体的には、ビス[4-(4-アミノフェノキシ)フェニル]スルホンおよびビス[4-(3-アミノフェノキシ)フェニル]スルホンなどを例示することができる。高温での黄色度(YI値)の観点から、44DASが好ましく、残留応力が低くなる観点から、33DASが好ましい。
 一般式(A-6)で表される構造単位は、一態様において、下記一般式(B-6):
Figure JPOXMLDOC01-appb-C000099
{式中、R14及びR15、n及びоは、一般式(A-6)と同様に定義される}
で表されるジアミンなどに由来する。
 一般式(B-6)で表されるジアミンとして、より具体的には、4,4’-ジアミノジフェニルエーテル(44ODA)、3,4’-ジアミノジフェニルエーテル(34ODA)、2,3’-ジアミノジフェニルエーテルなどを例示することが出来る。高温での黄色度(YI値)の観点から、44ODAが好ましく、残留応力が低くなる観点から、34ODAが好ましい。
 ポリイミド又はポリイミド部の重量平均分子量(Mw)は、1,000~100,000が好ましく、2,000~80,000又は2,639~80,000がより好ましく、5,000~60,000が特に好ましい。重量平均分子量が1,000以上であると、伸度、破断強度等の機械的特性に優れ、残留応力が低く、YIが低くなる。重量平均分子量が100,000以下であると、ポリアミド酸-イミド共重合フィルムとした時の相分離が抑制され曇り度(HAZE値)が低くなる。本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)を用いて、標準ポリスチレン換算値として求められる値である。
 ポリイミド又はその構造単位について、上記一般式(1)に含まれるXとXのモル比(X/X)は、0.85~2.0、又は1.01~2.00である事が好ましく、0.95~1.5である事がより好ましく、1.01~1.25である事が更に好ましい。モル比が0.85以上又は1.01以上であると、高温領域での耐熱性に優れ、YI値が低くなる。モル比が2.00以下であると、ポリアミド酸部との反応性が向上し、膜とした時の強度が上昇するため、伸度、破断強度等の機械特性に優れる。
 ポリイミド又はポリイミド部の、分子量1,000未満の分子の含有量は、ポリイミド前駆体又はポリアミド酸-イミド共重合体の全量に対して、5質量%未満であることが好ましく、1質量%未満であることがより好ましく、0.1質量%未満が更に好ましい。このようなポリイミド又はポリイミド部を用いて得られる樹脂組成物から形成されるポリイミドフィルムは、残留応力が低く、該ポリイミドフィルム上に形成した曇り度(Haze値)が低くなる。ポリイミド又はポリイミド部の全量に対する分子量1,000未満の分子の含有量は、該ポリイミドを溶解した溶液を用いてGPC測定を行って得られるピーク面積から算出することができる。
 本開示の一態様におけるポリイミド前駆体には、伸度、強度、応力、及び黄色度等を損なわない範囲で、前述した一般式(B-1)~(B-2)及び(B-4)~(B-6)で表されるジアミンに加えて、又は一般式(B-1)~(B-2)及び(B-4)~(B-6)で表されるジアミンに替えて、他のジアミンを用いることができる。その他のジアミンとしては、例えば、4,4’ージアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’―ジアミノベンゾフェノン、3,4’―ジアミノベンゾフェノン、3,3’―ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス〔4-(4ーアミノフェノキシ)フェニル)ヘキサフルオロプロパン、1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン、等を挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。
 全ジアミン中の、上記その他ジアミンの含有量は、20モル%以下が好ましく、10モル%以下が特に好ましい。X及びそれを構成するジアミンもXと同様にシリコーン系ジアミンは含まないことが、高温での耐熱性の観点から好ましく、芳香族ジアミンの種類又は組成であることがより好ましい。
(c)<ポリアミド酸-イミド共重合体の実施形態>
 本発明のポリアミド酸-イミド共重合体は、上記一般式(1)で示される、ポリアミド酸部分である構造単位Mと、ポリイミド部分である構造単位Nを含む構造単位Lを含み、その具体的な実施形態について以下に示す。
 上記ポリアミド酸部のジアミン(X)と上記ポリイミド部のジアミン(X)は、同一の組成、もしくはジアミン種であってもよく、異なる組成、もしくはジアミン種であってもよい。ここでいう「同一の組成」とは、ポリアミド酸部で用いられるジアミンが1種類以上から構成される場合、ポリイミド部のジアミンは全く同一の組成である。一方、ここでいう「異なる組成」とは、ポリアミド酸部で用いられるジアミンが1種類以上から構成される場合、ポリイミド部のジアミンは全く同一の組成ではなく、異なるジアミンから構成されるか、同一のジアミンを用いていたとしても比率は異なることを意味する。
 本発明の一態様におけるポリアミド酸部の役割としては、高温領域での高い熱安定性、優れる寸法安定性を持つことであり、分子平面性が高く、ポリイミドとした時の高温での耐熱性が高い骨格が好ましい。
 上記ポリアミド酸部の酸二無水物(X)としては、(a)<ポリアミド酸部の実施形態>で示したとおり、ピロメリット酸二無水物(PMDA)、ビフェニルテトラカルボン酸二無水物(BPDA)、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-オキシジフタル酸無水物(ODPA)、及びシクロペンタノンビススピロノルボルナンテトラカルボン酸二無水物(CPODA)から成る群から選択される少なくとも1種に由来する。
 線膨張係数(CTE)、耐薬品性、ガラス転移温度(Tg)、及び高温領域での黄色度のバランスの観点から、PMDA、BPDA、DSDA、TAHQ、ODPA、及びCPODAが好ましく、BPDA、TAHQ、及びODPAがより好ましい。Xとしては、上記で示される酸二無水物の他に、その性能を損なわない範囲で、前述のテトラカルボン酸二無水物に加えてジカルボン酸を使用して得られたものでもよい。また、その他のテトラカルボン酸二無水物を加えてもよいが、芳香族テトラカルボン酸二無水物もしくは芳香族ジカルボン酸に由来する骨格であることが好ましい。また、Xにおけるその他の酸二無水物、およびジカルボン酸の割合は、20モル%以下である事が好ましく、10モル%以下であることがより好ましい。
 前記ポリアミド酸部のジアミン(X)としては、(4-アミノフェニル-4-アミノベンゾエート(APAB)、2-メチル-4-アミノフェニル-4-アミノベンゾエート、3-メチル-4-アミノフェニル-4-アミノベンゾエート、2-フルオロ-4-アミノフェニル-4-アミノベンゾエート(2F-APAB)、3-フルオロ-4-アミノフェニル-4-アミノベンゾエート(3F-APAB)、3-メチル-4-アミノフェニル-3-メチル-4-アミノベンゾエート、及び(2-フェニルー4-アミノフェニル)-4-アミノベンゾエート(ph-APAB)から成る群から選択される少なくとも1種であることが好ましく、線膨張係数(CTE)、耐薬品性、ガラス転移温度(Tg)、及び高温領域での黄色度のバランスの観点から、APAB、2F-APAB、3F-APAB、及びPh-APABが好ましく、APABがより好ましい。Xとしては、上記で示される酸二無水物の他に、その性能を損なわない範囲で、その他のジアミンを加えてもよいが、シクロヘキサン環又はシクロペンタン環を含まず、芳香族ジアミンであることが好ましい。Xにおけるその他のジアミンの割合は、20モル%以下である事が好ましく、10モル%以下であることがより好ましい。つまり、前記イミド部分のジアミン(X)としては、上記に示される構造を含まないことが好ましいが、全くの同一組成でなければその限りではない。
 本発明の一態様におけるイミド部の役割としては、高温領域での高い熱安定性、優れる光学特性、及び溶媒への高い溶解性を持つことであり、優れる光学特性、及び溶媒への高い溶解性を有する骨格、又はフィルムとした時の折曲耐性を付与できる骨格が好ましい。
 前記ポリイミド部の酸二無水物(X)としては、(b)<ポリイミド部の実施形態>で示したとおり、テトラカルボン酸二無水物に由来する4価の有機基を用いることが出来る。また、ポリイミド前駆体中又はポリアミド酸-イミド共重合体中に存在する複数のXは、互いに同一であっても異なっていてもよく、Xと互いに同一であっても異なっていてもよい。Xとしては、高温領域での優れる黄色度(YI値)および曇り度(Haze値)の観点から、BPAFに由来する構造を含むことが好ましく、残留応力の観点から、ODPAに由来する構造が好ましい。BPAFに由来する骨格を用いる場合、高温領域での熱安定性を改善することを目的にPMDA、BPDA、DSDA、TAHQ、ODPA、及びCPODAから選ばれる骨格を同時に用いることが出来る。その中でも、BPDA、TAHQ、及びODPAから選ばれる骨格を含むことがより好ましい。XにおけるBPAFの割合は、40モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が更に好ましく、100モル%でもよい。ポリイミドフィルムとした時の折曲耐性が優れる観点から、BPAFの割合が多いほど好ましい。
 前記イミド部のジアミンとしては、(b)<ポリイミド部の実施形態>で示したとおり、ジアミンに由来する2価の有機基を用いることが出来る。また、ポリイミド前駆体中又はポリアミド酸-イミド共重合体中に存在する複数のXは、互いに同一であっても異なっていてもよく、Xと互いに同一であっても異なっていてもよいが、全く同一であってはならない。Xとしては、44BAFL、33BAFL、BFAF、BAOFL、BAHF、33DAS、及び44DASから選ばれる群から選択される少なくとも1種である事が好ましく、線膨張係数(CTE)、耐薬品性、ガラス転移温度(Tg)、及び高温領域での黄色度のバランスの観点から、44BAFL、33BAFL、BFAF、BAOFL、33DAS、44DAS、44ODA、及び34ODAがより好ましい。
 ポリアミド酸-イミド共重合体は、XおよびXから構成されるポリアミド酸部とXおよびXから構成されるポリイミド部を含み、ポリアミド酸の構成単位と前記ポリイミドの構成単位のモル比(構成単位Nのモル数:構成単位Mのモル数)の上限は、95:5でもよく、90:10でもよく、85:15でもよく、80:20でもよいが、残留応力と曇り度(Haze値)の観点から95:5である事が好ましく、黄色度(YI値)の観点から80:20がより好ましい。前記ポリアミド酸の構成単位と前記ポリイミドの構成単位のモル比(構成単位Nのモル数:構成単位Mのモル数)の下限は、30:70でもよく、40:60でもよく、50:50でもよく、60:40でもよいが、残留応力と黄色度(YI値)を共立する観点から40:60又は60:40である事が好ましい。
  ポリアミド酸-イミド共重合体(構造単位L)の重量平均分子量(Mw)は、2,639以上が好ましく、2,639~300,000又は10,000~300,000がより好ましく、20,000~250,000が更に好ましく、40,000~200,000が特に好ましい。重量平均分子量が2,639以上であると、伸度、破断強度等の機械的特性に優れ、残留応力が低く、YIが低くなる。重量平均分子量が300,000以下であると、ポリアミド酸-イミド共重合体ワニスの粘度と濃度のバランスが良く、加工性が良く、塗工時の膜ムラが小さくなる。また、ポリアミド酸-イミド共重合体のMwが170,000以上であると、透明性、曇り度、耐熱性及び線膨張係数に優れる傾向にあるため好ましく、220,000以上のMwがより好ましく、この傾向は、一般式(1)中のXとして、上記一般式(A-1)で示される構造を有するときに顕著である。そして、ポリアミド酸-イミド共重合体の重量平均分子量(Mw)は、IR(赤外線)キュア欠陥評価、脱ガス評価の観点で、170,000以上が好ましく、220,000以上がより好ましい。
 本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)を用いて、標準ポリスチレン換算値として求められる値である
<(B)ポリアミド酸の実施形態>
 上記一般式(3)で示される構造単位を含み、かつ、Xとして上記一般式(A-1)で表される構造を有する第四の実施形態に係るポリアミド酸については、一般式(3)中、Xは、4価の有機基であり、ポリイミド前駆体中に存在する複数のXは互いに同一であっても異なっていてもよい。Xとしては、テトラカルボン酸二無水物に由来する4価の有機基が例示され、当該テトラカルボン酸二無水物は上記(A)ポリアミド酸-イミド共重合体について例示されたテトラカルボン酸二無水物と同じである。
 ポリアミド酸の一態様では、上記一般式(3)中、Xは、2価の有機基であり、ポリイミド前駆体中に存在する複数のXは互いに同一であっても異なっていてもよい。Xとしては、ジアミンに由来する2価の有機基が例示され、当該ジアミンは上記(A)ポリアミド酸-イミド共重合体について例示されたジアミンと同じである。
 ポリアミド酸について一般式(A-1)で表される構造単位は、上記(A)ポリアミド酸-イミド共重合体について例示された一般式(A-1)と同じである。
 第四の実施形態に係るポリアミド酸の重量平均分子量(Mw)は、3,000以上が好ましく、10,000~300,000がより好ましく、20,000~250,000が更に好ましく、40,000~200,000が特に好ましい。重量平均分子量が3,000以上であると、伸度、破断強度等の機械的特性に優れ、残留応力が低く、YIが低くなる。重量平均分子量が300,000以下であると、ポリアミド酸-イミド共重合体ワニスの粘度と濃度のバランスが良く、加工性が良く、塗工時の膜ムラが小さくなる。
 また、第四の実施形態におけるポリアミド酸の重量平均分子量(Mw)は、IR(赤外線)キュア欠陥評価、脱ガス評価の観点で、170,000以上が好ましく、240,000以上がより好ましい。本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)を用いて、標準ポリスチレン換算値として求められる値である。
(ジアミン)
 一般式(I)及び(II)における、P基を含むジアミンとしては、4,4’-ジアミノジフェニルスルホン(4,4‘-DAS)、3,4’-ジアミノジフェニルスルホン(3,4‘-DAS)、3,3’-ジアミノジフェニルスルホン(3,3‘-DAS)、p-フェニレンジアミン(PDA)、m-フェニレンジアミン、3,5-ジアミノ安息香酸(DABA)、2,2’-ジメチルベンジジン(mTB)、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノベンズアニリド(DABAN)、9,9-ビス(4-アミノフェニルフルオレン)(BAFL)、9,9-ビス[4-(4-アミノフェノキシ)フェニル]フルオレン、4-アミノ安息香酸-4-アミノフェニルエステル(APAB)、2-(4-アミノフェニル)-5-アミノベンゾオキサゾール、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル(BAPB)、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン,1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン](BiSAM)、1,4-シクロヘキサンジアミン(CHDA)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(TFOMB)、2,2’’-ビス(トリフロロメチル)[1,1’:4’,1’’-ターフェニル]-4,4’’-ジアミン等が挙げられる。これらのジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記一般式(I)および(II)において、Pが、下記一般式(3)~(12)で表されるジアミンの少なくとも1種に由来する構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
 全ジアミン(後述する一般式(13)においてL1及びL2がアミノ基の化合物を含まない)中の、上記ジアミン化合物に由来する構造の含有量は、20モル%以上、40モル%以上、50モル%以上、70モル%以上、90モル%以上、又は95モル%以上であってよい。
(酸二無水物)
 一般式(I)及び(II)における、P基を含む酸二無水物としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物(ODPA)、p-フェニレンビス(トリメリテート酸無水物)、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、及び1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、ビシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物(CpODA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、等が挙げられる。これらの酸二無水物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
〈ケイ素含有化合物〉
 上記で説明されたポリアミド酸、ポリアミド酸-イミド共重合体、ポリイミド共重合体、ポリイミド前駆体又はポリイミド樹脂は、下記一般式(14):
Figure JPOXMLDOC01-appb-C000110
{式中、R、及びRの各々は、複数ある場合それぞれ独立に、炭素数1~5の1価の脂肪族炭化水素基又は炭素数6~10の1価の芳香族基を示し、そしてmは1~200の整数を示す}
で表される構造を含むことができる。
 一般式(14)の構造を含むと、得られるポリイミドフィルムのRth,残留応力が良好になるため、好ましい。
 樹脂が一般式(14)の構造を有するために、上記一般式(1)及び(2)中のX~X、又は上記一般式(I)および(II)においてP又はPは、下記一般式(13):
Figure JPOXMLDOC01-appb-C000111
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50であり、かつ官能基当量が800以上である。}
で表されるケイ素含有化合物に由来する構成単位を含むことができる。
 樹脂組成物において、前記一般式(13)で表されるケイ素含有化合物は:
  ジアミンを100mol%としたとき、20mol%以下;または、
  酸二無水物を100mol%としたとき、20mol%以下
である。ケイ素含有化合物が上記の範囲であると、得られるポリイミド前駆体又はポリイミド樹脂組成物のろ過性の観点で好ましい。ろ過性をさらに向上させるという観点から、ケイ素含有化合物は、樹脂組成物の全ジアミン又は全酸二無水物を100モル%としたとき、20.0モル%以下、19.0モル%以下、18.0モル%以下、17.0モル%以下、16.0モル%以下、15.0モル%以下、又は14.0モル%以下であることがより好ましい。ケイ素含有化合物は、樹脂組成物の全ジアミン又は全酸二無水物を100モル%としたとき、0モル%を超えることができる。
 式(13)中のRは、それぞれ独立に、単結合又は炭素数1~10の2価の有機基である。炭素数1~10の2価の有機基は、直鎖状、環状、及び分枝状のいずれでもよく、飽和していても不飽和であってもよい。炭素数1~10の2価の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、s-ブチレン基、t-ブチレン基、n-ペンチレン基、ネオペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基等の直鎖又は分岐鎖アルキレン基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基等のシクロアルキレン基が挙げられる。炭素数1~10の2価の脂肪族炭化水素基としては、エチレン基、n-プロピレン基、及びi-プロピレン基からなる群から選択される少なくとも1種であることが好ましい。
 式(13)中のR及びRはそれぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは炭素数1~5の1価の脂肪族炭化水素基である。
 炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。
 炭素数1~5の1価の脂肪族炭化水素基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~5の1価の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基等の直鎖または分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基等のシクロアルキル基等が挙げられる。炭素数1~5の1価の脂肪族炭化水素基としては、メチル基、エチル基、及びn-プロピル基からなる群から選択される少なくとも1種であることが好ましい。
 式(13)中のR及びRは、それぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは炭素数6~10の1価の芳香族基である。炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。炭素数6~10の1価の芳香族基としては、例えば、フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等が挙げられ、フェニル基、トリル基、又はキシリル基であることが好ましい。
 式(13)中のR及びRは、それぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは不飽和脂肪族炭化水素基を有する有機基であることが好ましい。炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよい。炭素数1~10の1価の有機基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。炭素数1~10の1価の有機基としては、メチル基、エチル基、及びフェニル基から成る群から選択される少なくとも1種であることが好ましい。
 不飽和脂肪族炭化水素基を有する有機基は、炭素数3~10の不飽和脂肪族炭化水素基であってよく、直鎖状、環状、分枝状のいずれでもよい。炭素数3~10の不飽和脂肪族炭化水素基としては、例えば、ビニル基、アリル基、1-プロペニル基、3-ブテニル基、2-ブテニル基、ペンテニル基、シクロペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。炭素数3~10の不飽和脂肪族炭化水素基としては、ビニル基、アリル基、及び3-ブテニル基から成る群から選択される少なくとも1種であることが好ましい。
 式(13)中のR~Rの水素原子の一部又は全部は、F、Cl、Br等のハロゲン原子等の置換基で置換されていてもよく、非置換であってもよい。
 式(13)中のL及びLは、それぞれ独立に、酸無水物構造を含む1価の有機基(酸無水物基ともいう)、アミノ基、イソシアネート基、カルボキシル基、アルコキシカルボニル基、ハロゲン化カルボニル基、ヒドロキシ基、エポキシ基、又はメルカプト基である。
 酸無水物構造を含む1価の有機基としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000112
{上記式中、「*」は、結合手を表す。}で表される、2,5-ジオキソテトラヒドロフラン-3-イル基が挙げられる。
 これらの中でもアミノ基、酸無水物基が好ましく、樹脂組成物の粘度安定性の観点から、アミノ基がより好ましい。
 アルコキシカルボニル基におけるアルコキシル基は、炭素数1~6のアルコキシル基であってよく、例えば、メトキシル基、エトキシル基、n-プロポキシル基、i-プロポキシル基、n-ブトキシル基、i-ブトキシル基、t-ブトキシル基等であってよい。
 ハロゲン化カルボニル基におけるハロゲン原子は、フッ素原子以外のハロゲン原子が好ましく、より好ましくは、塩素原子又はヨウ素原子である。
 式(13)で表されるケイ素含有化合物の官能基当量は、樹脂組成物のろ過性の観点から800以上が好ましく、1000以上がより好ましく、1500以上がさらに好ましい。他方、官能基当量が500以下の場合は、ろ過性が悪くなることがある。ここで官能基当量とは、官能基1mol当たりのケイ素含有化合物の分子量である(単位:g/mol)。官能基当量は、既存の規格等に従って、公知の方法によって測定できる。また、ケイ素含有化合物の官能基当量が800以上である場合は、ポリイミドフィルムの窒素雰囲気下の残留応力が小さいため好ましい。この理由としては、官能基当量が特定の値以上の場合、シリコーンドメインが増え、応力緩和されるためと考えられる。
 式(13)中のiは、1~200の整数であり、好ましくは2~100の整数、より好ましくは4~80の整数、更に好ましくは8~40の整数である。j及びkは、それぞれ独立に、0~200の整数であり、jは1~200の整数でもよく、j及びkは、好ましくは0~50の整数、より好ましくは0~20の整数、更に好ましくは0~50の整数である。
 樹脂組成物中の樹脂は、式(13)に由来する構造を有していると、ポリイミドフィルムの窒素雰囲気下で測定した残留応力が良好(小さい)であるため、好ましい。窒素雰囲気下で測定する理由としては、ディスプレイのプロセスにおいて、ポリイミドフィルム上にSiO,SiN等の無機膜を形成する際、窒素雰囲気下に曝される場合があり、窒素雰囲気下の残留応力が小さいことが求められるからである。
 モノマーの種類、コストの観点、および得られるポリイミド前駆体の分子量の観点から、一般式(13)中のL及びLは、それぞれ独立に、アミノ基であることが好ましい。すなわち、一般式(13)の、ケイ素含有化合物は、ケイ素含有ジアミンであることが好ましい。ケイ素含有ジアミンとしては、例えば、下記一般式(15):
Figure JPOXMLDOC01-appb-C000113
{式中、Pは、それぞれ独立に、二価の炭化水素基を示し、同一でも異なっていてもよく、P及びPは、一般式(13)において定義したR、Rと同様であり、lは、1~200の整数を表す。}
で表されるジアミノ(ポリ)シロキサンが好ましい。
 上記一般式(15)中のP及びPの好ましい構造としては、メチル基、エチル基、プロピル基、ブチル基、及びフェニル基等が挙げられる。これらの中でも好ましいのは、メチル基である。
 上記一般式(15)中のlは、1~200の整数であり、式(15)で表されるケイ素含有ジアミンを用いて得られるポリイミドの耐熱性の観点から、3~200の整数であることが好ましい。
 一般式(15)で表される化合物の官能基当量の好ましい範囲は、前述した一般式(13)で表されるケイ素含有化合物と同様である。
 一般式(13)で表されるケイ素含有化合物の含有量(共重合割合)は、全モノマー質量(ポリイミド前駆体/ポリイミドの全質量)を100質量%としたとき、0.5質量%以上20質量%以下であることが好ましい。
 ケイ素含有化合物が0.5質量%以上である場合、支持体との間に発生する残留応力を効果的に低下することができる。ケイ素含有化合物が20質量%以下である場合、得られるポリイミドフィルムの透明性(特に低ヘイズ)が良好であり、高い全光線透過率の実現、及び高いガラス転移温度の観点から好ましい。
 ポリイミド前駆体/ポリイミドに用いる単量体としてのケイ素含有化合物は、上述のとおり、出願時の技術常識を用いて合成してもよいし、市販品を用いてもよい。市販品としては、両末端アミン変性メチルフェニルシリコーンオイル(信越化学社製:X22-1660B-3(官能基当量2200)、X22-9409(官能基当量670))、両末端酸無水物変性メチルフェニルシリコーンオイル(信越化学社製:X22-168-P5-B(官能基当量2100))、両末端エポキシ変性メチルフェニルシリコーンオイル(信越化学社製:X22-2000(官能基当量620))、両末端アミノ変性ジメチルシリコーン(信越化学社製:PAM-E(官能基当量130)、X22-161A(官能基当量800)、X22-161B(官能基当量1500)、KF8012(官能基当量2200)、東レダウコーニング製:BY16-853U(官能基当量450)、JNC社製:サイラプレーンFM3311(数平均分子量1000))、両末端エポキシ変性ジメチルシリコーン(信越化学社製:X-22-163A(官能基当量1750)、両末端脂環式エポキシ変性ジメチルシリコーン(信越化学社製:X-22-169B(官能基当量1700))、両末端ヒドキシ基変性ジメチルシリコーン(信越化学社製:KF-6000)、両末端メルカプト変性ジメチルシリコーン(信越化学社製:X-22-167B(官能基当量1700))、両末端酸無水物変性ジメチルシリコーン(信越化学社製:X-22-168A(官能基当量1000))等が挙げられる。これらの中でも、価格、耐薬品性向上、及びTgの向上の観点から、両末端アミン変性ジメチルシリコーンオイルが好ましい。
(d)有機溶剤
 (d)有機溶剤は、上述した(a)ポリアミド酸、(b)ポリイミド、(c)ポリアミド酸-イミド共重合体及び任意的に使用されるその他の成分を溶解できるものであれば特に制限はない。このような(d)有機溶剤の具体例としては、例えば、非プロトン性溶媒、フェノ-ル系溶媒、エーテル及びグリコ-ル系溶媒等が挙げられる。
 非プロトン性溶媒は、膜厚の面内均一性の向上、およびYI値の低下の観点から、極性を有することが好ましく、かつ/又は250℃~350℃の沸点を有することが好ましく、例えば、後述される沸点250℃~350℃の非プロトン性極性物質でよい。
 非プロトン性溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、N-エチルピロリドン(NEP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素、及び下記一般式のアミド系溶媒:
Figure JPOXMLDOC01-appb-C000114
{式中、R12=メチル基で表される3-メトキシ-N,N-ジメチルプロパンアミド(KJケミカルズ社製、商品名:エクアミドM100)、及び、R12=n-ブチル基で表される3-ブトキシ-N,N-ジメチルプロパンアミド(KJケミカルズ社製、商品名:エクアミドB100)};γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒;ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒またはスルホン構造含有化合物;シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;ピコリン、ピリジン等の3級アミン系溶媒;酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶媒等が挙げられる。
 これらの中でも、非プロトン性極性溶媒は、N-メチルピロリドン、N-エチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、γ-ブチロラクトン、γ-バレロラクトン、スルホランのいずれか1種以上を含むことが好ましく、スルホランであることがより好ましい。
 フェノ-ル系溶媒として、例えば、フェノ-ル、o-クレゾ-ル、m-クレゾ-ル、p-クレゾ-ル、2,3-キシレノ-ル、2,4-キシレノ-ル、2,5-キシレノ-ル、2,6-キシレノ-ル、3,4-キシレノ-ル、3,5-キシレノ-ル等が;エ-テル及びグリコ-ル系溶媒として、例えば、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エ-テル、1,2-ビス(2-メトキシエトキシ)エタン、ビス[2-(2-メトキシエトキシ)エチル]エ-テル、テトラヒドロフラン、1,4-ジオキサンなどが挙げられる。
 (d)有機溶剤は、ポリアミド酸、ポリイミド、及びポリアミド酸-イミド共重合体の溶解性の観点から、NMP、GBL、DMF、及びDMAcから選ばれる少なくとも1種を含むことが好ましい。
[その他の成分]
 樹脂組成物は、上記(a)、(b)、(c)及び(d)成分の他に、(e)イミド化触媒、非プロトン性極性物質、界面活性剤、及びアルコキシシラン化合物等を、更に含有していてもよい。
((e)イミド化触媒)
 樹脂組成物からイミド化によりポリイミド樹脂フィルムを得る工程において、樹脂組成物にイミド化触媒を加えることが出来る。
 当該樹脂組成物は、(c)ポリアミド酸-イミド共重合体の繰り返し単位1モルに対し、イミド化触媒を0.01~0.5モル%を含有することができる。ポリアミド酸-イミド共重合体の繰り返し単位1モルに対するイミド化触媒の含有量が0.01モル%以上であることにより、フィルムの黄色度(YI値)を抑制することが出来る。またイミド化触媒の含有量が0.5モル%以下であることが、樹脂組成物の保存安定性の観点から好ましい。イミド化触媒の含有量は、ポリアミド酸-イミド共重合体の繰り返し単位1モルに対し、0.015~0.5モル%であることがより好ましく、0.02~0.5モル%であることが更に好ましく、0.02~0.15モル%であることが特に好ましい。
 (e)イミド化触媒の含有量は、上記で説明されたポリアミド酸-イミド共重合体またはポリアミド酸の100質量部に対して、本発明の作用効果の観点から、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。
 イミド化触媒としては、特に限定されないが、例えば、ピリジン、トリエチルアミン、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、ベンゾイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)などが挙げられる。また、イミド化触媒としては、本発明の作用効果の観点から、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、イミダゾール、ベンゾイミダゾール、又はN-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)などのイミダゾール化合物が好ましく、1,2-ジメチルイミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、イミダゾールなどがより好ましく、1,2-ジメチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、1-メチルイミダゾールなどが更に好ましく、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)及び/又は1-メチルイミダゾールを含むイミダゾール化合物がより更に好ましく、保存安定性の観点からN-Boc-イミダゾールが特に好ましく、高温での黄色度(YI値)の観点から1-メチルイミダゾールが特に好ましい。
 また、イミド化触媒としては、特に限定されないが、含窒素化合物が挙げられ、具体的には、イミダゾール化合物、ピリジン化合物、3級アミン化合物等が挙げられる。
 イミダゾール化合物としては、1-メチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1H-イミダゾール、及び1,2-ジメチルイミダゾールが挙げられる。
 ピリジン化合物としては、4-ジメチルアミノピリジン、2,2’-ビピリジル、ニコチン酸、イソキノリン、ピリジン、及び2-メチルピリジンが挙げられる。
 3級アミン化合物としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、及びトリエチルアミンが挙げられる。
 これらの化合物は、2種以上を混合して用いることもできる。
 これらの中でも後述するIR(赤外線)キュア欠陥評価、脱ガス評価の観点で、1-メチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、ピリジン化合物としては、4-ジメチルアミノピリジン、2,2'-ビピリジル、ニコチン酸、イソキノリン、2-メチルピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、及びN-メチルモルホリンが好ましく、1-メチルイミダゾール、及びN-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)がより好ましい。
 イミド化触媒の含有量は、ポリアミド酸-イミド共重合体又はポリアミド酸100質量部に対し、IR(赤外線)キュア欠陥評価、脱ガス評価の観点から、1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が特に好ましい。
 後述するIR(赤外線)キュア欠陥評価は、下記a.~c.のいずれか一以上を採用することで良好にすることができる;
a. 添加剤としてイミド化触媒を使用すること
b. 添加剤として沸点250-350の非プロトン性極性物質を使用すること
c. ポリアミド酸-イミド共重合体/ポリアミド酸の分子量を高分子量化すること。
 良好であるメカニズムは定かではないが、イミド化促進と相関があると考えられる。すなわち、IRキュアの欠陥の原因は、オリゴマーが生成し、それが赤外線で分解することと相関があると考えられ、a.b.を採用することでイミド化が促進し、オリゴマーの生成が抑制されるからと考えられる。また、c.についても、高分子量化すれば、結果的にオリゴマー生成が抑制されると考えられる。
 また、後述する脱ガス評価は、下記a.~c.のいずれか一以上を採用することで良好にすることができる;
a. 添加剤としてイミド化触媒を使用すること
b. 添加剤として沸点250-350の非プロトン性極性物質を使用すること
c. ポリアミド酸-イミド共重合体/ポリアミド酸の分子量を高分子量化すること。
 良好であるメカニズムは定かではないが、イミド化促進と相関があると考えられる。すなわち、脱ガスの原因は、硬化後にポリイミドフィルムに低分子量成分・オリゴマーが残ることと相関があると考えられ、a.b.を採用することでイミド化が促進し、低分子量成分・オリゴマーの生成が抑制されるからと考えられる。また、c.についても、高分子量化すれば、結果的に低分子量成分・オリゴマーの残留が抑制されると考えられる。
(f)沸点250-350℃の非プロトン性極性物質
 本開示の一態様に係る樹脂組成物は、沸点250℃~350℃の非プロトン性極性物質を含む。好ましく用いることのできる沸点250℃~350℃の非プロトン性極性物質は、沸点250℃~350℃で、OH基及びNH基、NH基、SH基を含まず、かつケトン、エステル、カーボネート、アミド、ニトリル、スルホキシド、及びスルホンから選ばれる少なくとも1種以上の化学構造(官能基)を有する化合物である。
 好ましく用いられる化合物を具体的に挙げると、例えば、沸点250℃~350℃のケトン構造を有する化合物として、ベンゾフェノン、メチルベンゾフェノン、ジメチルベンゾフェノン、ドデカンジオン等を、
 沸点250℃~350℃のエステル構造を有する化合物として、セバシン酸ジブチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、酢酸2-フェノキシエチル、安息香酸ブチル、安息香酸イソアミル、マレイン酸ジブチル、ケイ皮酸エチル、ジエチレングリコールジアセテート、アジピン酸ジエチル等を、
 沸点250℃~350℃のカーボネート構造を有する化合物として、ジフェニルカーボネート等を、
 沸点250℃~350℃のアミド構造を有する化合物として、ベンズアミド、N,N-ジメチルベンズアミド、アジポアミド等を、
 沸点250℃~350℃のニトリル構造を有する化合物として、アジポニトリル等を、
 沸点250℃~350℃のスルホキシド構造を有する化合物として、ジブチルスルホキシド、ジフェニルスルホキシド等を、
 沸点250℃~350℃のスルホン構造を有する化合物として、スルホラン、3-メチルスルホラン、ジブチルスルホン、ベンゼンスルホンアミド等を挙げることができる。
 これらの化合物の中で、より好ましく用いることができるのは、スルホラン、3-メチルスルホランである。
 沸点250℃~350℃の非プロトン性極性物質を、ポリアミド酸-イミド共重合体もしくは、ポリアミド前駆体に対し、単独で、もしくは溶剤と合わせて加えてコート・キュア(加熱)すると、IRキュア欠陥評価、脱ガス評価を良好にすることができる。その効果は、特に(溶剤の質量+非プロトン性極性物質の質量)を100wt%としたとき、5wt%以上加えた場合に顕著である。非プロトン性極性物質の添加量の上限としては(溶媒の質量+非プロトン性極性物質の質量)を100wt%としたとき、100wt%であり、より好ましい添加量は30wt%以下である。
(沸点250℃~350℃の非プロトン性極性物質)
 樹脂組成物は、沸点250℃~350℃の非プロトン性極性物質を含むことが好ましい。
 好ましく用いることのできる沸点250℃~350℃の非プロトン性極性物質は、沸点250℃~350℃で、OH基及びNH基、NH基、SH基を含まず、かつケトン、エステル、カーボネート、アミド、ニトリル、スルホキシド、スルホンから選ばれる少なくとも1種以上の化学構造(官能基)を有する化合物である。非プロトン性極性物質は、その沸点が250℃~350℃である限り、上記で説明された非プロトン性溶媒と重複してよい。
 好ましく用いられる化合物を具体的に挙げると、例えば、沸点250℃~350℃のケトン構造を有する化合物として、ベンゾフェノン、メチルベンゾフェノン、ジメチルベンゾフェノン、ドデカンジオン等を、
 沸点250℃~350℃のエステル構造を有する化合物として、セバシン酸ジブチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、酢酸2-フェノキシエチル、安息香酸ブチル、安息香酸イソアミル、マレイン酸ジブチル、ケイ皮酸エチル、ジエチレングリコールジアセテート、アジピン酸ジエチル等を、
 沸点250℃~350℃のカーボネート構造を有する化合物として、ジフェニルカーボネート等を、
 沸点250℃~350℃のアミド構造を有する化合物として、ベンズアミド、N,N-ジメチルベンズアミド、アジポアミド等を、
 沸点250℃~350℃のニトリル構造を有する化合物として、アジポニトリル等を、
 沸点250℃~350℃のスルホキシド構造を有する化合物として、ジブチルスルホキシド、ジフェニルスルホキシド等を、
 沸点250℃~350℃のスルホン構造を有する化合物として、スルホラン、3-メチルスルホラン、ジブチルスルホン、ベンゼンスルホンアミド等を挙げることができる。
 これらの化合物の中で、より好ましく用いることができるのは、スルホラン、3-メチルスルホランである。
 沸点250℃~350℃の非プロトン性極性物質を、ポリアミド前駆体、もしくはポリアミド前駆体及びポリイミド構造を有する樹脂、もしくは溶剤可溶性ポリイミドに対し、単独で、もしくは溶剤と合わせて加えてコート・キュア(加熱)すると、加えなかった場合に比べてキュア膜の面内膜厚均一性を上げることができ、YIを下げることができる。その効果は、特に(溶剤の質量+非プロトン性極性物質の質量)を100wt%としたとき、5wt%以上加えた場合に顕著である。
 沸点250℃~350℃の非プロトン性極性物質は、ポリイミドのキュア工程(400℃程度まで加熱)において、250℃以上の温度になってもフィルム中に残存し、高温での可塑剤としての役割を果たしている。そのためにキュア工程の250℃以上の温度領域において、樹脂が柔らかく、流動性を持つようになって膜厚の面内均一性が向上すると共に、YIも低下すると考えられる。一方で、沸点250℃~350℃の非プロトン性極性物質の量が多いと、キュア時にすべて揮発させることができず、キュア後のフィルムに少量残存することになる。フレキシブルディスプレイの製造工程では、キュアしたフィルムの上にCVDなどで窒化ケイ素などの無機膜を形成し、その上にアモルファスシリコンや低温ポリシリコンの層を形成し、再度キュア温度と同様の温度を掛けることがある(再アニール工程)。キュア後のフィルムに沸点250℃~350℃の非プロトン性極性物質が残存していると、その再アニールの際に揮発して、フィルム上に形成された無機膜にフクレを発生させる。これを防ぐには、フィルム中の当該物質の残存量を1000ppm以下に抑える必要がある。
 そのため、非プロトン性極性物質の添加量の上限としては、ポリイミド前駆体、もしくはポリイミド前駆体骨格及びポリイミド骨格を有する樹脂の場合は、(溶媒の質量+非プロトン性極性物質の質量)を100wt%としたとき、100wt%である。
 ポリイミド前駆体、もしくはポリイミド前駆体骨格及びポリイミド骨格を有する樹脂に加えて、さらに溶媒を含有する溶剤可溶性ポリイミドの場合には、(溶媒の質量+非プロトン性極性物質の質量)を100wt%としたとき、50wt%である。
 ポリイミド前駆体、もしくはポリイミド前駆体骨格及びポリイミド骨格を有する樹脂の場合、溶剤可溶性ポリイミドの場合、いずれも更に好ましくは、添加量は30wt%以下である。
 非プロトン性極性物質の中でスルホラン及び3-メチルスルホランが、キュア膜の面内均一性向上及びYI低減効果に優れる。他の物質でも同様の効果は発現するが、スルホラン及び3-メチルスルホランを用いた場合に、その効果が顕著である。
 非プロトン性極性物質の沸点が250℃未満の場合はキュア膜の面内均一性向上及びYI低減という効果が発現しない。沸点が350℃を超える場合は、効果は発現するが、キュア膜中に1000ppmを超えて残存し、脱ガスの観点から好ましくない。
(界面活性剤)
 樹脂組成物に界面活性剤を添加することによって、樹脂組成物の塗布性を向上することができる。具体的には、塗工膜におけるスジの発生を防ぐことができる。
 このような界面活性剤は、例えば、シリコーン系界面活性剤、フッ素系界面活性剤、これら以外の非イオン界面活性剤等を挙げることができる。シリコーン系界面活性剤としては、例えば、オルガノシロキサンポリマーKF-640、642、643、KP341、X-70-092、X-70-093(商品名、信越化学工業社製);SH-28PA、SH-190、SH-193、SZ-6032、SF-8428、DC-57、DC-190(商品名、東レ・ダウコーニング・シリコーン社製);SILWET L-77,L-7001,FZ-2105,FZ-2120,FZ-2154,FZ-2164,FZ-2166,L-7604(商品名、日本ユニカー社製);DBE-814、DBE-224、DBE-621、CMS-626、CMS-222、KF-352A、KF-354L、KF-355A、KF-6020、DBE-821、DBE-712(Gelest)、BYK-307、BYK-310、BYK-378、BYK-333(商品名、ビックケミー・ジャパン製);グラノール(商品名、共栄社化学社製)等が挙げられる。フッ素系界面活性剤としては、例えば、メガファックF171、F173、R-08(大日本インキ化学工業株式会社製、商品名);フロラードFC4430、FC4432(住友スリーエム株式会社、商品名)等が挙げられる。これら以外の非イオン界面活性剤としては、例えば、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられる。
 これらの界面活性剤の中でも、樹脂組成物の塗工性(スジ抑制)の観点から、シリコーン系界面活性剤、フッ素系界面活性剤が好ましく、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響を低減する観点から、シリコーン系界面活性剤が好ましい。界面活性剤を用いる場合、その配合量は、樹脂組成物中のポリイミド前駆体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.01~3質量部である。
(アルコキシシラン化合物)
 樹脂組成物から得られるポリイミドフィルムをフレキシブル基板等に用いる場合、製造プロセスにおける支持体とポリイミドフィルムとの良好な密着性を得る観点から、樹脂組成物は、ポリイミド前駆体100質量部に対して、アルコキシシラン化合物を0.01~20質量部含有することができる。ポリイミド前駆体100質量部に対するアルコキシシラン化合物の含有量が0.01質量部以上であることにより、支持体とポリイミドフィルムとの間に良好な密着性を得ることができる。またアルコキシシラン化合物の含有量が20質量部以下であることが、樹脂組成物の保存安定性の観点から好ましい。アルコキシシラン化合物の含有量は、ポリイミド前駆体100質量部に対して、好ましくは0.02~15質量部、より好ましくは0.05~10質量部、更に好ましくは0.1~8質量部である。アルコキシシラン化合物を用いることにより、上記の密着性の向上に加えて、樹脂組成物の塗工性が向上し(スジムラ抑制)、及びキュア時の酸素濃度によるポリイミドフィルムのYI値への影響を低減することもできる。
 アルコキシシラン化合物としては、例えば、3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール、及び下記構造:
Figure JPOXMLDOC01-appb-C000115
のそれぞれで表されるアルコキシシラン化合物等を挙げることができる。アルコキシシラン化合物は、一種を単独で用いても二種以上を組み合わせて使用してもよい。
[ポリアミド酸-イミド共重合体の製造方法]
 本発明のポリアミド酸、ポリイミド、及びポリアミド酸-イミド共重合体は、以下の工程を含む製造方法により合成することが可能である。例えば、ポリアミド酸-イミド共重合体の製造方法は、下記工程1~工程3を有する:
 工程1:上記一般式(1)を構成するポリアミド酸部のテトラカルボン酸二無水物成分(X)と、ジアミン成分(X)とを反応させ、溶媒可溶性のポリイミド溶液を得る工程;
 工程2:工程1で得られたポリイミドに対し、前記一般式(1)中のポリアミド酸部のジアミン(X)を溶解させる工程;及び
 工程3:工程2で得られた溶液に対し、前記一般式(1)を構成するポリアミド酸部のテトラカルボン酸二無水物成分(X)を反応させ、ポリアミド酸-イミド共重体を得る工程。
 先ず、工程1から順に具体的な実施形態について述べる。工程1においては、上記一般式(1)中のポリイミド部を合成する工程である。上記一般式(1)中のポリイミド部のジアミン(例えば、44BAFL)と、テトラカルボン酸二無水物(例えば、BPAF)とを、重縮合反応させることにより、合成することができる。この反応は、イミド化時に発生する水を除去する反応容器を用い、モノマー及び精製するポリイミドを溶解することが出来る溶媒中で行うことが好ましい。具体的には、例えば、還流管及びディーンスターク管を備えたセパラブルフラスコに所定量のBAFLとNMPを加え、BAFLを完全に溶解させた後、所定量のBPAF、水の共沸溶媒としてトルエンを加え、180℃まで加熱し、攪拌する方法が挙げられる。180℃で加熱中に発生した水および共沸溶媒としてのトルエンは、適宜容器外へ排出することが好ましい。
 上記ポリイミド前駆体を合成する時の、テトラカルボン酸二無水物成分とジアミン成分の比(モル比)は、得られる樹脂フィルムの熱線膨張率、残留応力、伸度、及び黄色度(以下、YIともいう)を所望の範囲にコントロールするとの観点から、テトラカルボン酸二無水物:ジアミン=100:85~100:200(テトラカルボン酸二無水物1モル部に対してジアミン0.85~2.00モル部)の範囲とすることが好ましく、100:101~100:125(酸二無水物1モル部に対してジアミン1.01~1.25モル部)の範囲とすることがより好ましい。上記の範囲とすることにより、ポリアミド酸との反応が起き易くなり、曇り度(Haze値)が低下する点で好ましい。
 反応温度としては、イミド化と水の除去を両立する観点から、140℃以上が好ましく、160℃がより好ましい。また、反応温度は、溶媒の分解による着色、およびモノマーとの反応を抑制する観点から200℃以下が好ましく、190℃以下がより好ましく、そして反応終了後は速やかに温度を100℃以下とすることが好ましい。
 反応時間としては、分子量を増加させる観点から2時間以上が好ましく、3時間以上が好ましい。一方で、反応時間は、溶媒の分解による着色、およびモノマーとの反応を抑制する観点から12時間以下が好ましく、6時間以下がより好ましい。
 次に、工程2について述べる。工程2は、上記工程1で得られたポリイミドに対し、上記一般式(1)中のポリアミド酸部のジアミン(X)を溶解させる工程である。工程1においてポリイミドを合成した後、所定量のジアミン(例えば、APAB)とNMPを加え十分に攪拌し、ジアミンを溶解させる。最終的に得られるポリイミド共重合体フィルムの熱線膨張率、残留応力、伸度、及び黄色度(以下、YIともいう)を所望の範囲にコントロールするとの観点から、ポリイミド部のテトラカルボン酸二無水物に由来する成分(X):ポリイミド部およびポリアミド酸部のジアミン成分に由来する成分(XとX)=100:150~100:3000(テトラカルボン酸二無水物1モル部に対してジアミン1.50~30モル部)の範囲とすることが好ましく、100:225~100:2000(テトラカルボン酸二無水物1モル部に対してジアミン2.25~20モル部)の範囲とすることがより好ましく、モル比(ジアミン/テトラカルボン酸二無水物)が、2.25~20であることが更に好ましい。上記の範囲とすることで、工程3においてテトラカルボン酸二無水物を反応させる際の反応均一性が高まり、分子量分布が2.00に近く、分子量1,000以下のオリゴマーの割合が少ないポリアミド酸-イミド共重合体が得られ、フィルムとした時の高温領域での熱安定性が向上する。
 ジアミンを溶解させる温度としては、ジアミンの溶解性を高め、均一性を向上させる観点から、40℃以上が好ましく、60℃以上がさらに好ましい。一方で、溶媒との副反応による着色を抑制する観点から、120℃以下とすることが好ましく、100℃以下がより好ましい。
 次に、工程3について述べる。工程3は、上記工程2のポリイミドとジアミンが溶解した溶液に対し、上記一般式(1)中のポリアミド酸部のテトラカルボン酸二無水物を加え、重縮合反応させることにより、ポリアミド酸-イミド共重合体を合成することができる。
 上記工程1~3とは異なる工程を含むポリアミド酸-イミド共重合体の製造方法として、国際公開第2020/138360号パンフレットに記載の製造方法が知られている。具体的には、上記工程1のイミド化工程において、XとXに該当するジアミン化合物を同時にイミド化する工程を含み、かつ、XとXにおいて共通のジアミン化合物を使用することが出来る。
 しかしながら、本発明者らが確認したところによると、国際公開第2020/138360号パンフレットと同じ製造方法を用いた場合、つまり工程1のイミド合成時に、一般式(B-1)もしくは(B-2)に該当するジアミンを原料として用いた場合には、分子量が十分に上がらず、評価可能なポリアミド酸-イミド共重合体を得ることが出来なかった。これは、一般式(B-1)および(B-2)で表されるジアミンは反応性が高く、高温溶媒中における熱安定に乏しく、アミンが酸に対し過剰な状態で高温下(約180℃)で加熱されると、ジアミンが溶媒又は酸素などと反応することにより失活してしまい、次の工程でポリアミド酸-イミド共重合体を合成する際に十分に分子量が上がらないためであると考えられる。
 具体的には、国際公開第2020/138360号パンフレットの実施例と同じ条件下で再現試験を行なって、ポリイミド-ポリアミド酸共重合体のNMP溶液(以下、ワニスともいう)を得たところ、得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は2,638、数平均分子量(Mn)は1,326であったことを確認した。したがって、上記工程1~3を含む製造方法は、共重合体の分子量の観点から、国際公開第2020/138360号パンフレットに記載の製造方法よりも好ましい。
 上記ポリアミド酸-イミド共重合体を合成する時の、ポリアミド酸部のテトラカルボン酸二無水物成分(X)とジアミン成分(X)のモル比(X/X)は、得られる樹脂フィルムの熱線膨張率、残留応力、伸度、及びYIを所望の範囲にコントロールするとの観点から、0.85~1.2が好ましく、0.90~1.1がより好ましく、0.92~1.00が更に好ましい。上記の範囲とすることにより、ポリイミドとの反応が起き易くなり、曇り度(Haze値)が低下する点で好ましい。
 また、上記ポリアミド酸-イミド共重合体を合成する時の、ポリイミド部のテトラカルボン酸二無水物成分(X)とジアミン成分(X)のモル比(X/X)は、得られる樹脂フィルムの熱線膨張率、残留応力、伸度、及びYIを所望の範囲にコントロールするとの観点から、0.85~2.0の範囲である事が好ましく、0.95~1.5の範囲である事がより好ましく、1.01~1.25の範囲である事が更に好ましい。上記の範囲とすることにより、高温での耐熱性が向上し、加熱時の分解反応が抑制され、黄色度(YI値)、曇り度(Haze値)が低下する点で好ましい。
 また、上記ポリアミド酸-イミド共重合体を合成する時の、ポリアミド酸およびポリイミド部のテトラカルボン酸二無水物成分(XとX)とジアミン成分(XとX)のモル比((Xのモル数+Xのモル数)/(Xのモル数+Xのモル数))は、得られる樹脂フィルムの熱線膨張率、残留応力、伸度、及びYIを所望の範囲にコントロールするとの観点から、0.92~1.05の範囲とすることが好ましく、0.94~1.00の範囲とすることがより好ましい。上記の範囲とすることにより、ポリアミド酸-イミド共重合体の分子量が向上し易く、樹脂組成物として加工性が向上し、フィルムを作製する際の塗工ムラが抑制でき、曇り度(Haze値)が低下する観点で好ましい。また、上記の範囲では、ポリアミド酸-イミド共重合体の末端アミンが減少し、加熱時の分解反応が抑制され、高温領域での熱安定性が向上し、黄色度(YI値)が低くなる。
 ポリアミド酸-イミド共重合体を合成する際には、分子量を、テトラカルボン酸二無水物成分とジアミン成分との比の調整、及び末端封止剤の添加によってコントロールすることが可能である。酸二無水物成分とジアミン成分との比が1:1に近いほど、及び末端封止剤の使用量が少ないほど、ポリイミドの分子量を大きくすることができる。
 テトラカルボン酸二無水物成分及びジアミン成分として、高純度品を使用することが推奨される。その純度としては、それぞれ、98質量%以上とすることが好ましく、99質量%以上とすることがより好ましく、99.5質量%以上とすることが更に好ましい。複数種類の酸二無水物成分又はジアミン成分を併用する場合には、酸二無水物成分又はジアミン成分の全体として上記の純度を有していれば足りるが、使用する全種類の酸二無水物成分及びジアミン成分が、それぞれ上記の純度を有していることが好ましい。
 反応の溶媒としては、上記(d)有機溶剤中に示した溶媒を用いることが出来るが、その限りではない。
 その他の成分として、上記(e)イミド化触媒に記載の化合物を用いることが出来るが、その限りではない。
 ポリイミドの合成に用いられる溶媒の常圧における沸点は、60℃~300℃が好ましく、140℃~280℃がより好ましく、170℃~270℃が特に好ましい。溶媒の沸点が300℃より高いと、乾燥工程が長時間必要となる。一方で、溶媒の沸点が60℃より低いと、乾燥工程中に、樹脂膜の表面における荒れの発生、樹脂膜中への気泡の混入等が起こり、均一なフィルムが得られない場合がある。
 上述のように、好ましくは溶媒の常圧での沸点が170℃~270℃であり、20℃における蒸気圧が250Pa以下である溶媒を使用することが、溶解性及び塗工時エッジはじきの観点からより好ましい。より具体的には、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)、N,N-ジメチルアセトアミド(DMAc)、及びN,N-ジメチルホルムアミド(DMF)から成る群より選択される1種以上を使用することが好ましく、上記項目「(d)有機溶剤」に記載された溶媒を適宜使用することが出来る。溶媒中の水分含量は、3000質量ppm以下が好ましい。これらの溶媒は、単独で又は2種類以上混合して用いてもよい。
[ポリアミド酸の製造方法]
 本発明の第四の実施形態に係るポリアミド酸は、限定されるものではないが、例えば、国際公開第2017/051827号パンフレットに記載された方法により製造することができる。
<ポリイミド共重合体>
 本開示の別の態様としては、前述の樹脂組成物に含有されていた(c)ポリアミド酸-イミド共重合体がイミド化されたポリイミド共重合体から成るフィルムが提供される。より詳細には、下記一般式(2):
Figure JPOXMLDOC01-appb-C000116
{式中、XおよびXは、4価の有機基を表し、XおよびXは、2価の有機基を表し、そしてn、及びmは正の整数である}
で表される構造単位を含み、かつXとして上記一般式(A-1)又は上記一般式(A-2)で表される構造を有することを特徴とするポリイミド共重合体を提供することが出来る。
 ポリイミド共重合体は、それを含むポリイミドフィルムの透明性、曇り度、耐熱性及び線膨張係数に優れるという観点から、次のいずれかを満たすことが好ましい:
 ・一般式(2)中のXを構成するジアミン成分は、上記一般式(A-1)又は上記一般式(A-2)で表される構造中の2つの*を-NHで置換した化合物である;
 ・一般式(2)中のXが、上記一般式(A-3)で表される構造、ODPA由来の構造、及び6FDA由来の構造から成る群から選択される少なくとも1種である;
 ・一般式(2)中のXが、BPDA由来の構造、ODPA由来の構造、及びTAHQ由来の構造から成る群から選択される少なくとも1種である;
 ・一般式(2)中に含まれるXとXのモル比(X/X)が、0.84~1.00である;
 ・一般式(2)に含まれるXとX(X/X)のモル比が、1.01~2.00である;並びに
 ・一般式(2)中のX及びXから構成されるポリイミドの構成単位とX及びXから成るポリイミドの構成単位のモル比(構成単位Nのモル数:構成単位Mのモル数)が、60:40~95:5の範囲である;
 ・X又はXとして上記一般式(A-3)で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種である;
 ・Xが、上記一般式(A-4)、一般式(A-5)及び一般式(A-6)で表される構造から成る群から選択される少なくとも1種である。
 ポリイミド共重合体は、それを含むポリイミドフィルムの透明性、曇り度、耐熱性及び線膨張係数に優れるという観点から、一般式(2)中のXが、4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基である場合は、下記構成1,2:
  構成1.Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、Xが4,4’-ジアミノジフェニルスルホン、及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基である;および
  構成2.Xがノルボルナン―2―スピロ―α―シクロペンタノンa―α’―スピロ―2’’―ノルボルナン―5,5’’,6,6’’―テトラカルボン酸二無水物に由来する基である;
を除くことが好ましい。
 ポリイミド共重合体は、透明性、耐熱性、低残留応力及び折曲耐性の観点から、一般式(2)中のXは、Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合には、4,4’-ジアミノジフェニルスルホン、2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基を除くことが好ましい。
<ポリアミド酸を含む樹脂組成物>
 本開示の別の態様としては、下記一般式(3):
Figure JPOXMLDOC01-appb-C000117
{式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数である}
で示される構造単位を含むポリアミド酸と、上記で説明された(d)有機溶剤及び(e)イミド化触媒とを含み、かつ(e)イミド化触媒が、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)及び/又は1-メチルイミダゾールを含むイミダゾール化合物であることを特徴とするか、又は(e)イミド化触媒がイミダゾール化合物であり、かつ(e)イミド化触媒の含有量がポリアミド酸100質量部に対して5質量部以上であることを特徴とする樹脂組成物が提供される。
 一般式(3)で示される構造単位を含む樹脂組成物は、(e)イミド化触媒として、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)及び1-メチルイミダゾールを含むことが好ましい。また、(e)イミド化触媒の含有量は、一般式(3)で示される構造単位を有するポリアミド酸の繰り返し単位1モルに対して、0.02~0.15の範囲内にあることが好ましい。
 一般式(3)中のXとXとnは、上記一般式(1)又は(2)について定義されたとおりでよく、Xとしては、上記一般式(A-3)で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種が好ましく、そしてXとしては、上記一般式(A-1)、上記一般式(A―2)、上記一般式(A-4)、一般式(A-5)、及び一般式(A-6)で表される構造から成る群から選択される少なくとも1種が好ましく、上記一般式(A-1)で表される構造がより好ましい。
 ポリアミド酸の重量平均分子量(Mw)は、2,639以上が好ましく、2,639~300,000又は10,000~300,000がより好ましく、20,000~250,000が更に好ましく、40,000~200,000が特に好ましい。重量平均分子量が2,639以上であると、伸度、破断強度等の機械的特性に優れ、残留応力が低く、YIが低くなる。重量平均分子量が300,000以下であると、ポリアミド酸含有ワニスの粘度と濃度のバランスが良く、加工性が良く、塗工時の膜ムラが小さくなる。また、ポリアミド酸のMwが170,000以上であると、透明性、曇り度、耐熱性及び線膨張係数に優れる傾向にあるため好ましく、220,000以上のMwがより好ましく、この傾向は、一般式(3)中のXとして、上記一般式(A-1)で示される構造を有するときに顕著である。本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)を用いて、標準ポリスチレン換算値として求められる値である。
<ポリイミド>
 本開示の別の態様としては、下記一般式(3):
Figure JPOXMLDOC01-appb-C000118
{式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、かつmは、正の整数である}
で示される構造単位Mを含むポリイミド、又は下記一般式(16)
Figure JPOXMLDOC01-appb-C000119
{式中、P及びPは、一般式(I)又は(II)中のP及びPと同じであり、mは正の整数である。}
で表される構造を有するポリイミドが提供される。
 ポリイミドは、一般式(3)中のXとして、上記で説明された一般式(A-3)で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種を含むことを特徴とする。
 一般式(3)中のXは、上記一般式(1)又は(2)中のXとして説明されたとおりである。一般式(3)中のXを構成するジアミン成分は、上記一般式(1)又は(2)中のXと同様の観点から、ジアミン組成、又はジアミン種のいずれかが異なることが好ましく、芳香族ジアミンの組成又は種類であることがより好ましく、そして一般式(3)中のXが、上記で説明された一般式(A-4)、一般式(A-5)、及び一般式(A-6)で表される構造から成る群から選択される少なくとも1種であることが更に好ましい。
 一般式(I)又は(II)中の好ましいP及びPは、同じ理由により、一般式(16)のポリイミドにおいても好ましい。一般式(16)の繰り返し単位数mは、特に限定は無いが、2~150の整数であってもよい。
 なお、樹脂組成物から得られるポリイミドには、樹脂組成物中に含まれていた、沸点250℃~350℃の非プロトン性極性物質は、実質的に含まれないことが好ましいが、1000ppm以下で含まれていてもよい。
《樹脂組成物の製造方法》
 上記で説明された樹脂組成物の製造方法は、特に限定されるものではなく、例えば、以下の方法によることができる。
〈ケイ素含有化合物の精製〉
 樹脂組成物は、酸二無水物、ジアミン、及びケイ素含有化合物を含む重縮合成分を重縮合反応させることにより製造することができる。樹脂組成物中に含まれる、環状のケイ素含有化合物の総量を低減する方法としては、例えば、重縮合反応の前に、ケイ素含有化合物を精製して、環状のケイ素含有化合物の総量を低減することが挙げられる。あるいは、重縮合反応の後に、樹脂組成物を精製して、環状のケイ素含有化合物の総量を低減してもよい。
 ケイ素含有化合物を精製する方法としては、例えば、任意の容器内でケイ素含有化合物に不活性ガス、例えば窒素ガスを吹き込みながらストリッピングを行うことが挙げられる。ストリッピングの温度としては、好ましくは200℃以上300℃以下、より好ましくは220℃以上300℃以下、更に好ましくは240℃以上300℃以下である。ストリッピングの蒸気圧としては、低いほど好ましく、1000Pa以下、より好ましくは300Pa以下、更に好ましくは200Pa以下、より更に好ましくは133.32Pa(1mmHg)Pa以下である。ストリッピングの時間としては、好ましくは4時間以上12時間以下、より好ましくは6時間以上10時間以下である。上記の条件に調整することにより、一環状のケイ素含有化合物を効率的に除去することができ、また、環状のケイ素含有化合物の総量を好ましい範囲に制御することができる。
〈ポリイミド/ポリイミド前駆体の合成〉
 ポリイミド前駆体は、酸二無水物、ジアミン、及びケイ素含有化合物を含む重縮合成分を重縮合反応させることにより合成することができる。ポリイミド/ポリイミド前駆体の合成と関連して、例えば、次のいずれかの工程:
 ・上記ジアミン化合物から選択される少なくとも一つの化合物と、上記酸二無水物化合物から選択される少なくとも一つの化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体及び/又はポリイミドを提供する工程;
 ・上記ジアミン化合物から選択される少なくとも一つの化合物と、上記酸二無水物化合物から選択される少なくとも一つの化合物と、一般式(13)で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体及び/又はポリイミドを提供する工程;
を含む樹脂組成物の製造方法が提供される。
 また、ケイ素含有化合物は、上記の精製したものを用いることが好ましい。好ましい態様において、重縮合成分は、酸二無水物と、ジアミンと、ケイ素含有化合物とからなる。重縮合反応は、適当な溶媒中で行うことが好ましい。具体的には、例えば、溶媒に所定量のジアミン成分及びケイ素含有化合物を溶解させた後、得られたジアミン溶液に、酸二無水物を所定量添加し、撹拌する方法が挙げられる。ポリイミドを合成する際のイミド化は、熱イミド化でも、イミド化触媒を用いた化学イミド化でもよい。
 ポリイミド/ポリイミド前駆体を合成する際の酸二無水物とジアミンとのモル比は、ポリイミド前駆体樹脂の高分子量化、樹脂組成物のスリットコーティング特性の観点から、酸二無水物:ジアミン=100:90~100:110(酸二無水物1モル部に対してジアミン0.90~1.10モル部)の範囲が好ましく、100:95~100:105(酸二無水物1モル部に対してジアミン0.95~1.05モル部)の範囲が更に好ましい。
 ポリイミド/ポリイミド前駆体の分子量は、酸二無水物、ジアミン及びケイ素含有化合物の種類、酸二無水物とジアミンとのモル比の調整、末端封止剤の添加、反応条件の調整等によってコントロールすることが可能である。酸二無水物成分とジアミン成分とのモル比が1:1に近いほど、及び末端封止剤の使用量が少ないほど、ポリイミド前駆体を高分子量化することができる。
 酸二無水物成分及びジアミン成分として、高純度品を使用することが推奨される。その純度としては、それぞれ、好ましくは98質量%以上、より好ましくは99質量%以上、更に好ましくは99.5質量%以上である。酸二無水物成分及びジアミン成分における水分含量を低減することによって高純度化することもできる。複数種類の酸二無水物成分、及び/又は複数種類のジアミン成分を使用する場合には、酸二無水物成分全体として、及びジアミン成分全体として上記の純度を有することが好ましく、使用する全種類の酸二無水物成分及びジアミン成分が、それぞれ上記の純度を有していることがより好ましい。
 反応の溶媒としては、酸二無水物成分及びジアミン成分、並びに生じるポリイミド/ポリイミド前駆体を溶解することができ、高分子量の重合体が得られる溶媒であれば特に限定されない。このような溶媒としては、例えば、非プロトン性溶媒、フェノール系溶媒、エーテル及びグリコール系溶媒等が挙げられる。
 非プロトン性溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素、及び下記一般式のアミド系溶媒:
Figure JPOXMLDOC01-appb-C000120
{式中、R12=メチル基で表されるエクアミドM100(商品名:KJケミカルズ社製)、及び、R12=n-ブチル基で表されるエクアミドB100(商品名:KJケミカルズ社製)};γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒;ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;ピコリン、ピリジン等の3級アミン系溶媒;酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶媒等が挙げられる。
 フェノ-ル系溶媒としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル及びグリコール系溶媒としては、例えば、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 これらの溶媒は、単独で又は2種類以上混合して用いてもよい。
 ポリイミド/ポリイミド前駆体の合成に用いられる溶媒の常圧における沸点は、好ましくは60~300℃、より好ましくは140~280℃、更に好ましくは170~270℃である。溶媒の沸点が300℃より低いことにより、乾燥工程が短時間になる。溶媒の沸点が60℃以上であると、乾燥工程中に、樹脂膜の表面における荒れの発生、樹脂膜中への気泡の混入等が起こり難く、より均一なフィルムを得ることができる。特に、沸点が170~270℃であり、及び/又は20℃における蒸気圧が250Pa以下である溶媒を使用することが、溶解性及び塗工時のエッジ異常の低減の観点から好ましい。より具体的には、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)、及び上記一般式で表される化合物から成る群より選択される1種以上が好ましい。
 溶媒中の水分含量は、重縮合反応を良好に進行させるために、例えば3,000質量ppm以下であることが好ましい。樹脂組成物中、分子量1,000未満の分子の含有量が5質量%未満であることが好ましい。樹脂組成物中に分子量1,000未満の分子が存在するのは、合成時に使用する溶媒や原料(酸二無水物、ジアミン)の水分量が関与しているためと考えられる。すなわち、一部の酸二無水物モノマーの酸無水物基が水分によって加水分解してカルボキシル基になり、高分子量化することなく低分子の状態で残存することによると考えられる。従って、上記の重縮合反応に使用する溶媒の水分量は少ないほど好ましい。溶媒の水分量は、3,000質量ppm以下とすることが好ましく、1,000質量ppm以下とすることがより好ましい。同様に、原料に含まれる水分量についても、3,000質量ppm以下とすることが好ましく、1,000質量ppm以下とすることがより好ましい。
 溶媒の水分量は、使用する溶媒のグレード(脱水グレード、汎用グレード等)、溶媒容器(ビン、18L缶、キャニスター缶等)、溶媒の保管状態(希ガス封入の有無等)、開封から使用までの時間(開封後すぐ使用するか、開封後経時した後に使用するか等)等が関与すると考えられる。合成前の反応器の希ガス置換、合成中の希ガス流通の有無等も関与すると考えられる。従って、ポリイミド前駆体の合成時には、原料として高純度品を用い、水分量の少ない溶媒を用いるとともに、反応前および反応中に系内に環境からの水分が混入しないような措置を講ずることが推奨される。
 溶媒中に各重縮合成分を溶解させるときには、必要に応じて加熱してもよい。重合度の高いポリイミド前駆体を得る観点から、ポリイミド前駆体合成時の反応温度としては、好ましくは0℃~120℃、40℃~100℃、又は60~100℃であってよく、重合時間としては、好ましくは1~100時間、又は2~10時間であってよい。重合時間を1時間以上とすることによって均一な重合度のポリイミド前駆体となり、100時間以下とすることによって重合度の高いポリイミド前駆体を得ることができる。
 樹脂組成物は、上記で説明されたポリイミド/ポリイミド前駆体以外に、他の追加のポリイミド前駆体を含んでもよい。しかしながら、追加のポリイミド/ポリイミド前駆体の質量割合は、ポリイミドフィルムのYI値及び全光線透過率の酸素依存性を低減する観点から、樹脂組成物中のポリイミド/ポリイミド前駆体の総量に対して、好ましくは30質量%以下、更に好ましくは10質量%以下である。
 ポリイミド前駆体は、その一部がイミド化されていてもよい(部分イミド化)。ポリイミド前駆体を部分イミド化することにより、樹脂組成物を保存する際の粘度安定性を向上できる。この場合のイミド化率は、樹脂組成物中のポリイミド前駆体の溶解性と溶液の保存安定性とのバランスをとる観点から、好ましくは5%以上、より好ましくは8%以上であり、好ましくは80%以下、より好ましくは70%以下、更に好ましくは50%以下である。この部分イミド化は、ポリイミド前駆体を加熱して脱水閉環することにより得られる。この加熱は、好ましくは120~200℃、より好ましくは150~185℃、さらに好ましくは150~180℃の温度において、好ましくは15分~20時間、より好ましくは30分~10時間行うことができる。
 上述の反応によって得られたポリイミド/ポリイミド前駆体に、N,N-ジメチルホルムアミドジメチルアセタール又はN,N-ジメチルホルムアミドジエチルアセタールを加えて加熱することでカルボン酸の一部又は全部をエステル化したものを、ポリイミド前駆体として用いてもよい。エステル化によって、保存時の粘度安定性を向上することができる。これらエステル変性ポリアミド酸は、上述の酸二無水物成分を、酸無水物基に対して1当量の1価のアルコール、及び塩化チオニル、ジシクロヘキシルカルボジイミド等の脱水縮合剤と順次に反応させた後、ジアミン成分と縮合反応させる方法によっても得ることができる。
〈ポリイミドの合成〉
 より好ましい様態としては、ポリイミドワニスは、酸二無水物成分及びジアミン成分を、溶媒、例えば有機溶媒に溶解し、トルエンなどの共沸溶媒を加え、イミド化の際に発生する水を系外に除去することでポリイミド及び溶媒を含有するポリイミド溶液(ポリイミドワニスとも言う)として製造することが出来る。ここで、反応時の条件は特に限定されないが、例えば、反応温度は0℃~180℃、反応時間は3~72時間である。スルホン基含有ジアミン類との反応を充分に進めるために、180℃で12時間程度加熱反応させることが好ましい。また、反応時、アルゴンや窒素などの不活性雰囲気であることが好ましい。
〈樹脂組成物の調製〉
 ポリイミド前駆体を合成した際に用いた溶媒と、樹脂組成物に含有させる溶媒とが同一の場合には、合成したポリイミド/ポリイミド前駆体溶液をそのまま樹脂組成物として使用することができる。必要に応じて、室温(25℃)~80℃の温度範囲で、ポリイミド前駆体に更なる溶媒及び追加の成分の1種以上を添加して、攪拌混合することにより、樹脂組成物を調製してもよい。この攪拌混合は、撹拌翼を備えたスリーワンモータ(新東化学株式会社製)、自転公転ミキサー等の適宜の装置を用いて行うことができる。必要に応じて樹脂組成物を40℃~100℃に加熱してもよい。
 他方、ポリイミド/ポリイミド前駆体を合成した際に用いた溶媒と、樹脂組成物に含有させる溶媒とが異なる場合には、合成したポリイミド前駆体溶液中の溶媒を、例えば再沈殿、溶媒留去等の適宜の方法により除去してポリイミド/ポリイミド前駆体を単離してもよい。次いで、室温(25℃)~80℃の温度範囲で、単離したポリイミド前駆体に、所望の溶媒及び必要に応じて追加の成分を添加して、攪拌混合することにより、樹脂組成物を調製してもよい。
 特に、樹脂組成物の調製において、ポリイミド/ポリイミド前駆体を合成した後で、最後に、沸点250℃~350℃の非プロトン性極性物質を添加することが特に好ましい。これにより、得られるポリイミド樹脂膜の膜厚の面内均一性が向上し、黄色度(YI値)も低減させることができる。
 上述のように樹脂組成物を調製した後、樹脂組成物を、例えば130~200℃で、例えば5分~2時間加熱することにより、ポリマーが析出を起こさない程度にポリイミド前駆体の一部を脱水イミド化してもよい(部分イミド化)。加熱温度及び加熱時間をコントロールすることにより、イミド化率を制御することができる。ポリイミド前駆体を部分イミド化することにより、樹脂組成物を保存する際の粘度安定性を向上することができる。
 樹脂組成物の溶液粘度は、スリットコート性能の観点においては、好ましくは500~100,000mPa・s、より好ましくは1,000~50,000mPa・s、更に好ましくは3,000~20,000mPa・sである。具体的には、スリットノズルから液漏れし難い点で、好ましくは500mPa・s以上、より好ましくは1,000mPa・s以上、更に好ましくは3,000mPa・s以上である。スリットノズルが目詰まりし難い点で、好ましくは100,000mPa・s以下、より好ましくは50,000mPa・s以下、更に好ましくは20,000mPa・s以下である。
 ポリイミド/ポリイミド前駆体合成時における樹脂組成物の溶液粘度については、200,000mPa・sより高いと、合成時の撹拌が困難になるという問題が生じるおそれがある。ただし、合成する際に溶液が高粘度になったとしても、反応終了後に溶媒を添加して撹拌することにより、取扱い性のよい粘度の樹脂組成物を得ることが可能である。樹脂組成物の溶液粘度は、E型粘度計(例えばVISCONICEHD、東機産業製)を用い、23℃で測定される値である。
 樹脂組成物の水分量は、樹脂組成物を保存する際の粘度安定性の観点から、好ましくは3,000質量ppm以下、より好ましくは2,500質量ppm以下、更に好ましくは2,000質量ppm以下、より更に好ましくは1,500質量ppm以下、特に好ましくは1,000質量ppm以下、特に好ましくは500質量ppm以下、特に好ましくは300質量ppm以下、特に好ましくは100質量ppm以下である。
《ポリイミド樹脂膜及びその製造方法》
 上記で説明された樹脂組成物を用いて、ポリイミド樹脂膜(以下、ポリイミドフィルムともいう)を提供することができる。上記で説明されたポリイミドフィルムの製造方法は、支持体の表面上に、樹脂組成物を塗布する塗布工程と、樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、ポリイミド樹脂膜を該支持体から剥離する剥離工程と、を含む。
〈塗布工程〉
 塗布工程では、支持体の表面上に樹脂組成物を塗布する。支持体は、その後の膜形成工程(加熱工程)における加熱温度に対する耐熱性を有し、かつ剥離工程における剥離性が良好であれば特に限定されない。支持体としては、例えば、ガラス基板、例えば無アルカリガラス基板;シリコンウェハー;PET(ポリエチレンテレフタレート)、OPP(延伸ポリプロピレン)、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド等の樹脂基板;ステンレス、アルミナ、銅、ニッケル等の金属基板等が挙げられる。
 薄膜状のポリイミド成形体を形成する場合には、例えば、ガラス基板、シリコンウェハー等が好ましく、厚膜状のフィルム状又はシート状のポリイミド成形体を形成する場合には、例えばPET(ポリエチレンテレフタラート)、OPP(延伸ポリプロピレン)等からなる支持体が好ましい。
 塗布方法としては、一般には、ドクターブレードナイフコーター、エアナイフコーター、ロールコーター、ロータリーコーター、フローコーター、ダイコーター、バーコーター等の塗布方法、スピンコート、スプレイコート、ディップコート等の塗布方法;スクリーン印刷及びグラビア印刷等に代表される印刷技術等が挙げられる。樹脂組成物には、スリットコートによる塗布が好ましい。塗布厚は、所望の樹脂フィルムの厚さと樹脂組成物中のポリイミド前駆体の含有量に応じて適宜調整するべきであるが、好ましくは1~1,000μm程度である。塗布工程における温度は室温でもよく、粘度を下げて作業性をよくするために、樹脂組成物を例えば40℃~80℃に加温してもよい。
〈任意の乾燥工程〉
 塗布工程に続いて乾燥工程を行ってもよく、又は乾燥工程を省略して直接次の膜形成工程(加熱工程)に進んでもよい。乾燥工程は、樹脂組成物中の有機溶剤除去の目的で行われる。乾燥工程を行う場合、例えば、ホットプレート、箱型乾燥機、コンベヤー型乾燥機等の適宜の装置を使用することができる。乾燥工程の温度は、好ましくは80℃~200℃、より好ましくは100℃~150℃である。乾燥工程の実施時間は、好ましくは1分~10時間、より好ましくは3分~1時間である。上記のようにして、支持体上にポリイミド前駆体を含有する塗膜が形成される。
〈膜形成工程〉
 続いて、膜形成工程(加熱工程)を行う。加熱工程は、上記の塗膜中に含まれる有機溶剤の除去を行うとともに、塗膜中のポリイミド前駆体のイミド化反応を進行させ、ポリイミド樹脂膜を得る工程である。この加熱工程は、例えば、イナートガスオーブン、ホットプレート、箱型乾燥機、コンベヤー型乾燥機等の装置を用いて行うことができる。この工程は乾燥工程と同時に行っても、両工程を逐次的に行なってもよい。
 加熱工程は、空気雰囲気下で行なってもよいが、安全性と、得られるポリイミドフィルムの良好な透明性、低い厚み方向レタデーション(Rth)及び低いYI値を得る観点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば、窒素、アルゴン等が挙げられる。加熱温度は、ポリイミド前駆体の種類、及び樹脂組成物中の溶媒の種類に応じて適宜に設定されてよいが、好ましくは250℃~550℃、より好ましくは300℃~450℃である。250℃以上であればイミド化が良好に進行し、550℃以下であれば得られるポリイミドフィルムの透明性の低下、耐熱性の悪化等の不都合を回避できる。加熱時間は、好ましくは0.1時間~10時間程度である。
 特に、樹脂組成物が、沸点250℃~350℃の非プロトン性極性物質を含有しているとき、ポリイミドの加熱工程において、250℃以上の温度になってもフィルム中に残存し、高温での可塑剤としての役割を果たしている。そのために樹脂が柔らかく、流動性を持つようになり、その結果得られるポリイミド樹脂膜は、膜厚の面内均一性が向上すると共に、YIも低下する。
 上記の加熱工程における周囲雰囲気の酸素濃度は、得られるポリイミドフィルムの透明性及びYI値の観点から、好ましくは2,000質量ppm以下、より好ましくは100質量ppm以下、更に好ましくは10質量ppm以下である。酸素濃度が2,000質量ppm以下の雰囲気中で加熱を行うことにより、得られるポリイミドフィルムのYI値を30以下にすることができる。
〈剥離工程〉
 剥離工程では、支持体上のポリイミド樹脂膜を、例えば室温(25℃)~50℃程度まで冷却した後に剥離する。この剥離工程としては、例えば下記の(1)~(4)の態様が挙げられる。
 (1)上記の方法によりポリイミド樹脂膜/支持体を含む構成体を作製した後、構造体の支持体側からレーザーを照射して、支持体とポリイミド樹脂膜との界面をアブレーション加工することにより、ポリイミド樹脂を剥離する方法。レーザーの種類としては、固体(YAG)レーザー、ガス(UVエキシマー)レーザー等が挙げられる。波長308nm等のスペクトルを用いることが好ましい(特表2007-512568号公報、特表2012-511173号公報等を参照)。
 (2)支持体に樹脂組成物を塗工する前に、支持体に剥離層を形成し、その後ポリイミド樹脂膜/剥離層/支持体を含む構成体を得て、ポリイミド樹脂膜を剥離する方法。剥離層としては、パリレン(登録商標、日本パリレン合同会社製)、酸化タングステンが挙げられ;植物油系、シリコーン系、フッ素系、アルキッド系等の離型剤を用いてもよい(特開2010-067957号公報、特開2013-179306号公報等を参照)。
 この方法(2)と方法(1)のレーザー照射とを併用してもよい。
 (3)支持体としてエッチング可能な金属基板を用いて、ポリイミド樹脂膜/支持体を含む構成体を得た後、エッチャントで金属をエッチングすることにより、ポリイミド樹脂フィルムを得る方法。金属としては、例えば、銅(具体例としては、三井金属鉱業株式会社製の電解銅箔「DFF」)、アルミニウム等を使用することができる。エッチャントとしては、銅に対しては塩化第二鉄等を、アルミニウムに対しては希塩酸等を使用することができる。
 (4)上記方法によりポリイミド樹脂膜/支持体を含む構成体を得た後、ポリイミド樹脂膜表面に粘着フィルムを貼り付けて、支持体から粘着フィルム/ポリイミド樹脂膜を分離し、その後粘着フィルムからポリイミド樹脂膜を分離する方法。
 これらの剥離方法の中でも、得られるポリイミド樹脂フィルムの表裏の屈折率差、YI値及び伸度の観点から、方法(1)又は(2)が好ましい。得られるポリイミド樹脂フィルムの表裏の屈折率差の観点から方法(1)、すなわち、剥離工程に先立って、支持体側からレ-ザ-を照射する照射工程を行うことがより好ましい。なお、方法(3)において、支持体として銅を用いた場合は、得られるポリイミド樹脂フィルムのYI値が大きくなり、伸度が小さくなる傾向が見られる。これは、銅イオンの影響であると考えられる。
 得られるポリイミドフィルムの厚さは、限定されないが、好ましくは1~200μm、より好ましくは5~100μmである。
<ポリイミドフィルム>
 本開示の別の態様では、フィルム厚が10μmで測定した場合に、25℃における引張弾性率が6GPa以上であり、350℃における引張弾性率が0.5GPa以上であり、かつ黄色度(YI値)が12以下であることを特徴とするポリイミドフィルムが提供される。
 ポリイミドフィルムは、原料として、上記で説明されたポリアミド酸-イミド共重合体、及び/又はポリイミド共重合体を用いて調製されることが好ましい。ポリイミドフィルムの曇り度(Haze値)は、透明性、耐熱性及び線膨張係数とのバランスを取るという観点から、0.5%よりも小さいことが好ましく、かつ/又はポリイミドフィルムの430℃で1時間保持した時の黄色度(YI値)の変化率は、Haze値、耐熱性及び線膨張係数とのバランスを取るという観点から、20%以下であることが好ましい。
 上記で説明されたポリアミド酸-イミド共重合体、ポリアミド酸、ポリイミド、及び樹脂組成物を用いて製造される樹脂フィルムは、例えば、半導体絶縁膜、TFT-LCD絶縁膜、電極保護膜等として適用できる他、フレキシブルデバイスの製造において、特に基板として好適に利用することができる。ここで、樹脂フィルム及び積層体を適用可能なフレキシブルデバイスとしては、例えば、フレキシブルディスプレイ、フレキシブル太陽電池、フレキシブルタッチパネル電極基板、フレキシブル照明、フレキシブルバッテリー等を挙げることができる。
《ポリイミドフィルムの用途》
 上記で説明された樹脂組成物から得られるポリイミドフィルムは、例えば、半導体絶縁膜、薄膜トランジスタ液晶ディスプレイ(TFT-LCD)絶縁膜、電極保護膜として、また、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ、電子ペーパー等の表示装置の透明基板等として適用できる。
 特に、ポリイミドフィルムは、フレキシブルデバイスの製造において、薄膜トランジスタ(TFT)基板、カラーフィルタ基板、タッチパネル基板、透明導電膜(ITO、Indium Thin Oxide)のフレキシブル基板として好適に使用することができる。ポリイミドフィルムを適用可能なフレキシブルデバイスとしては、例えば、フレキシブルディスプレイ用TFTデバイス、フレキシブル太陽電池、フレキシブルタッチパネル、フレキシブル照明、フレキシブルバッテリー、フレキシブルプリント基板、フレキシブルカラーフィルター、スマートフォン向け表面カバーレンズ等を挙げることができる。
 ポリイミドフィルムを使ったフレキシブル基板上にTFTを形成する工程は、典型的には、150℃~650℃の広い範囲の温度で実施される。具体的にはアモルファスシリコンを使用したTFTデバイスを作製する場合には、一般的に250℃~350℃のプロセス温度が必要となり、ポリイミドフィルムは、その温度に耐え得る必要があるため、具体的にはプロセス温度以上のガラス転移温度、熱分解開始温度を有するポリマー構造を適宜選択する必要がある。
 金属酸化物半導体(IGZO等)を使用したTFTデバイスを作製する場合には、一般的に320℃~400℃のプロセス温度が必要となり、ポリイミドフィルムは、その温度に耐え得る必要があるため、TFT作製プロセス最高温度以上のガラス転移温度、熱分解開始温度を有するポリマー構造を適宜選択する必要がある。
 低温ポリシリコン(LTPS)を使用したTFTデバイスを作製する場合には、一般的に380℃~520℃のプロセス温度が必要となり、ポリイミドフィルムは、その温度に耐え得る必要があるため、TFT作製プロセス最高温度以上のガラス転移温度、熱分解開始温度を適宜選択する必要がある。他方で、これら熱履歴により、ポリイミドフィルムの光学特性(特に、光線透過率、レタデーション特性及びYI値)は高温プロセスにさらされるほどに低下する傾向にある。しかし、ポリイミド前駆体から得られるポリイミドは、熱履歴を経ても良好な光学特性を有する。
 以下に、ポリイミドフィルムの用途例として、ディスプレイ及び積層体の製造方法について説明する。
<ディスプレイの製造方法>
 本開示の一態様では、ディスプレイの製造方法は、支持体の表面上に、樹脂組成物を塗布する塗布工程と、樹脂組成物を加熱してポリイミドフィルム(ポリイミド樹脂膜)を形成する膜形成工程と、ポリイミドフィルム上に素子を形成する素子形成工程と、素子が形成されたポリイミドフィルムを支持体から剥離する剥離工程と、を含む。
 フレキシブル有機ELディスプレイの製造例
 図1は、本開示の一態様のディスプレイの例として、トップエミッション型フレキシブル有機ELディスプレイのポリイミド基板より上部の構造を示す模式図である。図1の有機EL構造部25について説明する。例えば、赤色光を発光する有機EL素子250aと、緑色光を発光する有機EL素子250bと、青色光を発光する有機EL素子250cとが1単位として、マトリクス状に配列されており、隔壁(バンク)251により、各有機EL素子の発光領域が画定されている。各有機EL素子は、下部電極(陽極)252、正孔輸送層253、発光層254、上部電極(陰極)255から構成されている。窒化ケイ素(SiN)や酸化ケイ素(SiO)からなるCVD複層膜(マルチバリヤーレイヤー)を示す下部層2a上には、有機EL素子を駆動するためのTFT256(低温ポリシリコン(LTPS)や金属酸化物半導体(IGZO等)から選択される)、コンタクトホール257を備えた層間絶縁膜258、及び下部電極259が複数設けられている。有機EL素子は封止基板2bで封入されており、各有機EL素子と封止基板2bとの間に中空部261が形成されている。
 フレキシブル有機ELディスプレイの製造工程は、ガラス基板支持体上にポリイミドフィルムを作製し、その上部に図1に示される有機EL基板を製造する工程と、封止基板を製造する工程と、両基板を貼り合わせる組み立て工程と、ガラス基板支持体からポリイミドフィルム上に作製された有機ELディスプレイを剥離する剥離工程とを含む。有機EL基板製造工程、封止基板製造工程、及び組み立て工程は、周知の製造工程を適用することができる。以下ではその一例を挙げるが、これに限定されるものではない。剥離工程は、上述したポリイミドフィルムの剥離工程と同一である。
 例えば、図1を参照すれば、まず、上記の方法によりガラス基板支持体上にポリイミドフィルムを作製し、その上部にCVD法やスパッタ法により窒化ケイ素(SiN)と酸化ケイ素(SiO)の複層構造からなるマルチバリアレイヤー(図1中の下部基板2a)を作製し、その上部にTFTを駆動するためのメタル配線層を、フォトレジスト等を使用して作製する。その上部にCVD法を用いてSiO等のアクティブバッファー層を作製し、その上部に金属酸化物半導体(IGZO)や低温ポリシリコン(LTPS)などのTFTデバイス(図1中のTFT256)を作製する。フレキシブルディスプレイ用TFT基板を作製後、感光性アクリル樹脂等でコンタクトホール257を備えた層間絶縁膜258を形成する。スパッタ法等にてITO膜を成膜し、TFTと対をなすように下部電極259を形成する。
 次に、感光性ポリイミド等で隔壁(バンク)251を形成した後、隔壁で区画された各空間内に、正孔輸送層253、発光層254を形成する。発光層254及び隔壁(バンク)251を覆うように上部電極(陰極)255を形成する。その後、ファインメタルマスク等をマスクにして、赤色光を発光する有機EL材料(図1中の、赤色光を発光する有機EL素子250aに対応)、緑色光を発光する有機EL材料(図1中の、緑色光を発光する有機EL素子250bに対応)及び青色光を発光する有機EL材料(図1中の、青色光を発光する有機EL素子250cに対応)を公知の方法にて蒸着することで、有機EL基板を作製する。有機EL基板を封止フィルム等(図1中の封止基板2b)で封止し、ガラス基板支持体からポリイミド基板より上部のデバイスをレーザー剥離等の公知の剥離方法で剥離することで、トップエミッション形フレキシブル有機ELディスプレイを作製することができる。本開示の一態様に係るポリイミドを使用する場合は、シースルー型のフレキシブル有機ELディスプレイを作製することができる。公知の方法でボトムエミッション形のフレキシブル有機ELディスプレイを作製してもよい。
 フレキシブル液晶ディスプレイの製造例
 本開示の一態様に係るポリイミドフィルムを使用してフレキシブル液晶ディスプレイを作製することができる。具体的な作製方法としては、上記の方法でガラス基板支持体上にポリイミドフィルムを作製し、上記の方法を用いて、例えばアモルファスシリコン、金属酸化物半導体(IGZO等)、及び低温ポリシリコンからなるTFT基板を作製する。別途、本開示の一態様に係る塗布工程及び膜形成工程に従って、ガラス基板支持体上にポリイミドフィルムを作製し、公知の方法に従ってカラーレジスト等を使用して、ポリイミドフィルムを備えたカラーフィルターガラス基板(CF基板)を作製する。TFT基板およびCF基板の一方に、スクリーン印刷により、熱硬化性エポキシ樹脂などからなるシール材料を液晶注入口の部分を欠いた枠状パターンに塗布し、他方の基板に液晶層の厚さに相当する直径を持ち、プラスチックまたはシリカからなる球状のスペーサーを散布する。
 次いで、TFT基板とCF基板とを貼り合わせ、シール材料を硬化させる。そして、TFT基板及びCF基板並びにシール材料で囲まれる空間に、減圧法により液晶材料を注入し、液晶注入口に熱硬化樹脂を塗布し、加熱によって液晶材料を封止することで液晶層を形成する。最後に、CF側のガラス基板とTFT側のガラス基板とをレーザー剥離法などでポリイミドフィルムとガラス基板の界面で剥離することで、フレキシブル液晶ディスプレイを作製することができる。
<積層体の製造方法>
 本開示の一態様に係る積層体の製造方法は、支持体の表面上に、樹脂組成物を塗布する塗布工程と、樹脂組成物を加熱してポリイミドフィルム(ポリイミド樹脂膜)を形成する膜形成工程と、ポリイミドフィルム上に素子を形成する素子形成工程と、を含む。
 積層体における素子としては、上記のフレキシブルディスプレイ等のフレキシブルデバイスの製造について例示したものが挙げられる。
 支持体としては、例えばガラス基板を用いることができる。塗布工程及び膜形成工程の好ましい具体的手順は、上記のポリイミドフィルムの製造方法に関して記載したものと同様である。素子形成工程においては、支持体上に形成された、フレキシブル基板としてのポリイミド樹脂膜の上に、上記の素子を形成する。その後、任意に剥離工程において、素子が形成されたポリイミド樹脂膜及び素子を支持体から剥離してもよい。
 また、本開示の一態様に係るフレキシブルデバイスの製造方法は、上記の積層体の製造方法により積層体を製造することを含む。
 以上、本発明の実施形態について説明してきたが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 以下、本発明について、実施例に基づき更に詳述するが、これらは説明のために記述されるものであって、本発明の範囲が下記実施例に限定されるものではない。
 実施例及び比較例における各種評価は次のとおりに行った。
<重量平均分子量及び数平均分子量の測定>
 重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて、下記の条件により測定した。
 溶媒として、N,N-ジメチルホルムアミド(富士フイルム和光純薬社製、高速液体クロマトグラフ用、測定直前に24.8mmol/Lの臭化リチウム一水和物(富士フイルム和光純薬社製、純度99.5%)及び63.2mmol/Lのリン酸(富士フイルム和光純薬社製、高速液体クロマトグラフ用)を加えて溶解したもの)を使用した。重量平均分子量を算出するための検量線は、スタンダードポリスチレン(Easical Type PS-1、アジレント・テクノロジー社製)を用いて作成した。
  装置:HLC-8220GPC(東ソー社製)
  カラム:Tsk gel Super HM-H 2本(東ソー社製)
  流速:0.5mL/分
  カラム温度:40℃
  検出器:UV-8220(UV-VIS:紫外可視吸光計、東ソー社製)
<ガラス転移温度(Tg)の評価>
 温度50~500℃の範囲におけるガラス転移温度(Tg)の測定は、ポリイミドフィルムを3mm×20mmの大きさにカットしたものを試験片として、熱機械分析により行った。測定装置としてセイコーインスツル株式会社製(EXSTAR6000)を用いて、引張荷重49mN、昇温速度10℃/分及び窒素気流下(流量100mL/分)の条件で、温度50℃~500℃の範囲における試験片伸びの測定を行った。得られた曲線の変曲点からポリイミドフィルム(10μm厚)のガラス転移温度を求めた。50℃~500℃の範囲で変曲点が見られなかったもの、Tgが500℃以上と考えられ、「-」として下記表に示すことがある。
<残留応力の評価>
 予め「反り量」を測定しておいた、厚み625μm±25μmの6インチシリコンウェハー上に、各樹脂組成物をスピンコーターにより塗布し、100℃において7分間プリベークした。その後、庫内の酸素濃度が10質量ppm以下になるように調整して、430℃において1時間の加熱硬化処理(キュア処理)を施し、硬化後膜厚10μmのポリイミド樹脂膜の付いたシリコンウェハーを作製した。
 このウェハーの反り量を、残留応力測定装置(テンコール社製、型式名FLX-230)を用いて測定し、シリコンウェハーと樹脂膜との間に生じた残留応力を評価した。
 S:残留応力が-5MPa超15MPa以下(残留応力の評価「優良」)
 A:残留応力が15MPa超25MPa以下(残留応力の評価「良好」)
 B:残留応力が25MPa超(残留応力の評価「不良」)
<黄色度(YI値)及び曇り度(Haze値)の評価>
 100mm角(厚さ0.7mm)のイーグルXGガラス上に、各樹脂組成物をスピンコーターにより塗布し、80℃で30分間プリベークした。その後、庫内の酸素濃度が10質量ppm以下になるように調整して、430℃において1時間の加熱硬化処理(キュア処理)を施し、硬化後膜厚10μmのポリイミド樹脂膜の付いたガラス基板を作製した。得られたポリイミド付きガラス基板につき、日本電色工業(株)製Spectotometer(SE6000)にてD65光源を用いて黄色度(YI値)を測定し、コニカミノルタ(株)製分光測色計(CM-3600A)にてD65光源を用いて曇り度(Haze値)を測定した。
 S:YI値が8以上12以下    (YI値の評価「S」)
 A:YI値が12以上15以下   (YI値の評価「A」)
 B:YI値が15以上   (YI値の評価「B」)
 S:Haze値が0.2%以下       (Haze値の評価「S」)
 A:Haze値が0.2%超0.5%以下 (Haze値の評価「A」)
 B:Haze値が0.5%超       (Haze値の評価「B」)
<折曲耐性の評価>
 予めアルミニウム(Al)を約100nmスパッタした厚み625μm±25μmの6インチシリコンウェハー上に、各樹脂組成物をスピンコーターにより塗布し、100℃において7分間プリベークした。その後、庫内の酸素濃度が10質量ppm以下になるように調整して、430℃において1時間の加熱硬化処理(キュア処理)を施し、硬化後膜厚10μmのポリイミド樹脂膜の付いたAlスパッタ膜付きシリコンウェハーを作製した。作成したサンプルを10質量%塩酸水溶液に1日浸漬し、シリコンウェハー上から、ポリイミド樹脂膜を剥離した。剥離したポリイミドフィルムを15mm×100mmの大きさにカットしたものを試験片とした。
 MIT型繰り返し折り曲げ試験機(MIT-DA、東洋精機製)を用い、作製した試験片に250gの荷重を掛けた状態で、折り曲げ半径(R)2mm、折り曲げ角度135°、及び速度90回/分の条件下で100,000回往復での繰り返し折曲げ試験を行った。試験後サンプルを装置から外し、目視で傷が付いていないものをA、付いているものをBとした。
<保存安定性の評価>
 樹脂組成物を23℃で保存し、1週間後に<黄色度(YI値)及び曇り度(Haze値)の評価>と同様の評価でポリイミド樹脂膜のついたガラス基板を作製し、曇り度(Haze値)が0.5%以下のものを「A」、0.5%以上のものを「B」とした。
<弾性率の評価>
 弾性率の測定は、ポリイミドフィルムを3mm×20mmの大きさにカットしたものを試験片として、熱機械分析により行った。測定装置としてセイコーインスツル株式会社製(EXSTAR6000)を用いて、設定温度を25℃もしくは350℃一定、窒素雰囲気下において、初期引張荷重20mN、荷重変化率100mN/分で荷重を変化させ、最大1200mNまで荷重を掛けて、伸びの測定を行った。得られた曲線の傾きから、ポリイミドフィルム(10μm厚)の弾性率を求めた。フィルムが脆く、測定中に破断、もしくは、Tgが低く途中で破断してしまったものも表4において「B」とした。評価基準は以下のとおりである。
25℃での弾性率
 S:弾性率が6GPa以上 (弾性率の評価「S」)
 B:YI値が6GPa以下 (弾性率の評価「B」)
350℃での弾性率
 S:弾性率が0.5GPa以上   (弾性率の評価「S」)
 B:YI値が0.5GPa以下   (弾性率の評価「B」)
<スパッタ再加熱試験>
 上記、<黄色度(YI値)及び曇り度(Haze値)の評価>と同様の方法で作製したポリイミド樹脂膜付きガラス基板にアルミニウム(Al)膜を約100nmスパッタした。Al膜はポリイミド膜上に成膜した。
 作製したサンプルを庫内の酸素濃度が10質量ppm以下になるように調整して、430℃において1時間の加熱処理を施し、膜厚10μmのポリイミド樹脂膜の付いたガラス基板を得た。得られたAlスパッタされたポリイミド付きガラス基板につき、目視で膨れ又は破れがないものを「S」、破れ又は膨れがあるものを「B」として評価した。
<430℃再加熱試験の評価>
 上記、<黄色度(YI値)及び曇り度(Haze値)の評価>と同様の方法で作製したポリイミド樹脂膜付きガラス基板、および装置により評価を行った。
 430℃において加熱硬化して得られたポリイミド付きガラス基板のYI値(YI(A))を日本電色工業(株)製Spectotometer(SE6000)にてD65光源を用いて測定した後、庫内の酸素濃度が10質量ppm以下になるように調整して、430℃において1時間の加熱処理を施し、膜厚10μmのポリイミド樹脂膜の付いたガラス基板を得た。
 得られたポリイミド付きガラス基板につき、日本電色工業(株)製Spectotometer(SE6000)にてD65光源を用いてYI値(YI(B))を再度測定し、加熱前のYI値に対する変化率を評価した。YI値(変化率)は下記の式で求めた。
 YI値の変化率:((YI(B)―YI(A))/YI(A)×100(%))
 S:YI値の変化率が0%以上10%以下 (YI値(変化率)の評価「S」)
 A:YI値の変化率が10%超20%以下 (YI値(変化率)の評価「A」)
 B:YI値の変化率が20%超  (YI値(変化率)の評価「B」)
<IRキュア欠陥評価>
 この評価では、量産した場合を想定して、樹脂組成物を連続でIR(赤外線)加熱硬化(キュア)処理した場合のポリイミドフィルム表面の欠陥の多寡を評価した。
 縦100mm×横100mm×厚さ0.5mmの無アルカリガラス基板(以下、「ガラス基板」又は単に「基板」ともいう)に、ガラス基板の端から5mm内側のエリアに、実施例及び比較例の樹脂組成物を、硬化後の膜厚が10μmになるように塗布した。塗布はスリットコーター(LC-R300G、SCREENファインテックソリューションズ製)を用いた。得られた塗膜付きガラス基板を、減圧乾燥機(東京応化工業製)を用いて、80℃、100Pa、30分間の条件で溶媒を除去し塗布膜サンプルを得た。
 その後、IRキュア炉AMK-1707(光源:セラミックヒーター、炉の容積50L、AMK製)を用いて、同じ樹脂組成物の塗布膜サンプルを10枚セットし、窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、430℃で60分間加熱した。これを1バッチとして、5バッチ同じ樹脂組成物を用いて加熱処理を行った(10枚*5バッチで、計50枚処理を実施)。なお、別の組成物の処理を行う際は、IRキュア炉を500℃で5時間以上空焼きし、ダクト等の配管を清掃してから使用した。そして、5バッチ目の上段から5枚目のポリイミド樹脂膜を用いて、欠陥検査装置(LCF-5505XU、タカノ(株)製)を用いて、ポリイミド樹脂膜表面の欠陥の評価を行った。10μm以上の欠陥の個数を検出した。下記基準で評価した。
 欠陥の個数が25個未満         :A(秀)
 欠陥の個数が25個以上50個未満    :B(優)
 欠陥の個数が50個以上100個未満   :C(良)
 欠陥の個数が100個以上200個未満  :D(可)
 欠陥の個数が200個以上        :E(不可)
<脱ガス評価>
 ポリイミド樹脂膜をTFTの基板として用いる場合は、得られたポリイミド樹脂膜上に無機膜(例えばSiN)を形成し、無機膜のアニール処理を行う。このアニール処理の際に脱ガスが発生すると不良サンプルになるため、脱ガス開始温度は高いほど良好である。この脱ガス開始温度の評価を下記方法で行った。
 縦100mm×横100mm×厚さ0.5mmの無アルカリガラス基板(以下、「ガラス基板」又は単に「基板」ともいう)に、ガラス基板の端から5mm内側のエリアに、実施例及び比較例の樹脂組成物を、硬化後の膜厚が10μmになるように塗布した。塗布はスリットコーター(LC-R300G、SCREENファインテックソリューションズ製)を用いた。得られた塗膜付きガラス基板を、減圧乾燥機(東京応化工業製)をもちいて、80℃、100Pa、30分間の条件で溶媒を除去し塗布膜サンプルを得た。その後、樹脂組成物の塗布膜サンプルを5枚セットし、IRキュア炉AMK-1707(光源:セラミックヒーター、炉の容積50L、AMK製)を用いて、窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、430℃で60分間加熱し、ガラス基板に形成されたポリイミド樹脂膜を得た。
 得られたポリイミド樹脂膜上にプラズマCVDにより100nm厚のSiN成膜を形成した。得られたSiN/ポリイミド樹脂膜の積層体が形成されたガラス基板を、IRキュア炉AMK-1707を下記条件で加熱処理をおこなった。
 a.窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、480℃で60分間加熱
 b.窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、470℃で60分間加熱
 c.窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、460℃で60分間加熱
 d.窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、450℃で60分間加熱
 e.窒素雰囲気下、120℃で10分間加熱後、10℃/minで昇温し、440℃で60分間加熱
そして、脱ガスの有無を下記基準で評価した;
 上記a.の条件でSiN膜に膨れが発生/発生しない:A(秀)
 上記b.の条件でSiN膜に膨れが発生:      B(優)
 上記c.の条件でSiN膜に膨れが発生:      C(良)
 上記d.の条件でSiN膜に膨れが発生:      D(可)
 上記e.の条件でSiN膜に膨れが発生:      E(不可)
[合成例1及び2]
(合成例1-1-1)
 還流管とディーンスターク管とを備えた500mlの四つ口フラスコを窒素置換した後、N-メチル-2-ピロリドン(NMP)を20g、9,9-ビス(4-アミノフェニル)フルオレン(44BAFL)を22.22mmol入れ、撹拌して44BAFLを溶解させた。その後、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)20.00mmol、N-メチル-2-ピロリドン(NMP)11.41g、トルエン21.76gを40℃で加えた後、窒素フロー下で180℃において4時間重合反応を行った。180℃到達後、1時間後にディーンスターク管から水およびトルエンの混合物を抜き出した。反応4時間経過後のイミドの重量平均分子量(Mw)は19,178、数平均分子量(Mn)は8,283であった。
 反応4時間経過後、内温が80℃となるまで冷却し、4-アミノフェニル-4’-アミノベンゾエート(APAB)82.82mmol、NMPを100g加え、攪拌しながらAPABを完全に溶解させた。目視でAPABが完全に溶解したことを確認した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を86.17mmol加え、窒素フロー下で80℃において1時間、60℃において2時間攪拌した後、室温で終夜重合反応を行った。その後、上記NMPを加えて固形分が12質量%になるように調整することにより、ポリイミド-ポリアミド酸共重合体のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は155,382、数平均分子量(Mn)は64,063であった。
(合成例1-1-2)
(a)ポリイミド合成
 還流管とディーンスターク管とを備えた500mlの四つ口フラスコを窒素置換した後、N-メチル-2-ピロリドン(NMP)を20g、9,9-ビス(4-アミノフェニル)フルオレン(44BAFL)を22.22mmol入れ、撹拌して44BAFLを溶解させた。その後、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)20.00mmol、N-メチル-2-ピロリドン(NMP)11.41g、トルエン21.76gを40℃で加えた後、窒素フロー下で180℃において4時間重合反応を行った。180℃到達後、1時間後にディーンスターク管から水およびトルエンの混合物を抜き出した。反応4時間経過後のイミドの重量平均分子量(Mw)は19,804、数平均分子量(Mn)は8,886であった。反応4時間経過後、内温が80℃となるまで冷却し、NMPを加え、20質量%の濃度としたポリイミドのNMP溶液を得た(以下、ポリイミドワニスともいう)。
(b)ポリアミド酸合成
 500mlの四つ口フラスコを窒素置換した後、4-アミノフェニル-4’-アミノベンゾエート(APAB)82.82mmol、NMPを100g加え、攪拌しながらAPABを完全に溶解させた。目視でAPABが完全に溶解したことを確認した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を86.17mmol加え、窒素フロー下で80℃において5時間攪拌した後、室温で終夜重合反応を行った。その後、上記NMPを加えて固形分が20質量%になるように調整することにより、ポリアミド酸のNMP溶液(以下、ポリアミド酸ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は73,044、数平均分子量(Mn)は34,917であった。
(c)ポリアミド酸-イミド共重合体合成
 (a)で得られたポリイミドワニスと(b)で得られたポリアミド酸ワニスを混合し、室温で24時間攪拌を行い、ポリアミド酸-イミド共重合体のNMP溶液を得た。
(合成例1-12)
 還流管とディーンスターク管とを備えた500mlの四つ口フラスコを窒素置換した後、N-メチル-2-ピロリドン(NMP)を20g、9,9-ビス(4-アミノフェニル)フルオレン(44BAFL)を22.22mmol入れ、撹拌して44BAFLを溶解させた。その後、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)10.00mmol、ビフェニルテトラカルボン酸二無水物10.00mmol、N-メチル-2-ピロリドン(NMP)11.41g、トルエン21.76gを40℃で加えた後、窒素フロー下で180℃において4時間重合反応を行った。180℃到達後、1時間後にディーンスターク管から水およびトルエンの混合物を抜き出した。反応4時間経過後のイミドの重量平均分子量(Mw)は19,342、数平均分子量(Mn)は9,242であった。
 反応4時間経過後、内温が80℃となるまで冷却し、4-アミノフェニル-4’-アミノベンゾエート(APAB)82.82mmol、NMPを100g加え、攪拌しながらAPABを完全に溶解させた。目視でAPABが完全に溶解したことを確認した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を86.17mmol加え、窒素フロー下で80℃において1時間重合反応を行った。その後、上記NMPを加えて固形分が12質量%になるように調整することにより、ポリイミド-ポリアミド酸共重合体のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は40,578、数平均分子量(Mn)は19,128であった。
(合成例1-2~1-11、及び1-13~1-30)
 上記合成例1-1-1において、原料の種類と仕込み量を、それぞれ、表1に記載のとおりに変更した他は、合成例1-1-1と同様にして、ポリアミド酸-イミド共重合ワニスを得た。
(合成例1-1-3)
 上記合成例1-1-1で合成したNMP溶液に、ポリイミド-ポリアミド酸共重合体の繰り返し単位1モルに対し、1-メチルイミダゾールを0.04モル加え、ポリアミド酸-イミド共重合ワニスを得た。
(合成例1-1-4)
 上記合成例1-1-1で合成したNMP溶液に、ポリイミド-ポリアミド酸共重合体の繰り返し単位1モルに対し、1-メチルイミダゾールを0.13モル加え、ポリアミド酸-イミド共重合ワニスを得た。
(合成例1-1-5)
 上記合成例1-1-1で合成したNMP溶液に、ポリイミド-ポリアミド酸共重合体の繰り返し単位1モルに対し、N-Bоc-イミダゾールを0.13モル加え、ポリアミド酸-イミド共重合ワニスを得た。
(合成例1-1-6)
 上記合成例1-1-1で合成したNMP溶液に、ポリイミド-ポリアミド酸共重合体の繰り返し単位1モルに対し、1-メチルイミダゾール0.04モル、N-Bоc-イミダゾールを0.04モル加え、ポリアミド酸-イミド共重合ワニスを得た。
(合成例2-1)
 500mlの四つ口フラスコを窒素置換した後、4-アミノフェニル-4’-アミノベンゾエート(APAB)49.50mmol、NMPを80g加え、攪拌しながらAPABを完全に溶解させた。目視でAPABが完全に溶解したことを確認した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を50.00mmol加え、窒素フロー下で80℃において5時間攪拌した後、室温で終夜重合反応を行った。その後、前記NMPを加えて固形分が12質量%になるように調整することにより、ポリアミド酸のNMP溶液(以下、ポリアミド酸ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は63,353、数平均分子量(Mn)29,472であった。
(合成例2-2)
 500mlの四つ口フラスコを窒素置換した後、4-アミノフェニル-4’-アミノベンゾエート(APAB)31.68mmol、9,9-ビス(アミノフェニル)フルオレン(BAFL)7.92mmol、NMPを70g加え、攪拌しながらAPAB及びBAFLを完全に溶解させた。目視でAPAB及びBAFLが完全に溶解したことを確認した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を32.00mmol、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)8.00mmol、NMP22.29gを加え、窒素フロー下で80℃において5時間攪拌した後、室温で終夜重合反応を行った。その後、前記NMPを加えて固形分が12質量%になるように調整することにより、ポリアミド酸のNMP溶液(以下、ポリアミド酸ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は72,118、数平均分子量(Mn)33,741であった。
(合成例2-3)
 国際公開第2020/138360号パンフレットの実施例1と同様の方法でポリアミド酸-イミド共重合体ワニスを合成した。
(合成例2-4)
 国際公開第2019/188305号の実施例1と同様の方法でポリイミドワニスを合成した。
 下記表における各成分の略称は、それぞれ、以下の意味である。
 BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 ODPA:4,4’-オキシジフタル酸二無水物
 BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物
 TAHQ:p-フェニレンビス(トリメリテート酸無水物)
 BPF-PA:9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]
        フルオレン二酸無水物
 6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
 APAB:4-アミノフェニル-4’-アミノベンゾエート
 pPD:p-フェニレンジアミン
 44BAFL:9,9-ビス(4-アミノフェニル)フルオレン
 33BAFL:9,9-ビス(3-アミノフェニル)フルオレン
 BFAF:9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン
 33DAS:3,3’-ジアミノジフェニルスルホン
 44DAS:4,4’-ジアミノジフェニルスルホン
 44ODA:4,4’-ジアミノジフェニルエーテル
 34ODA:3,4’-ジアミノジフェニルエーテル
 BAOFL:9,9-ビス[4-(アミノフェノキシ)フェニル]フルオレン
 BAHF:9,9-ビス[3-アミノ-4-ヒドロキシフェニル]フルオレン
 NMP:N-メチル-2-ピロリドン
 DMF:N,N-ジメチルホルムアミド
<実施形態I>
 各合成例で得られたワニスを、そのまま樹脂組成物として用い、上述の方法に従って評価を行った。合成結果は表1、評価結果は表2~4に示した。
 表1および表2から明らかなように、構造単位Nのみ(ポリアミド酸)から構成されるポリイミドフィルム(比較例1-1)は、残留応力に優れるものの、YI値、Haze値は大きかった。また、比較例1-2に記載のポリアミド酸-イミド共重合体と同じ組成(X~Xを構成するモノマーのモル比が同じ)で合成されたポリアミド酸から得られるポリイミドフィルムは、YI値、Haze値は優れるものの、残留応力が大きくなってしまい、光学ディスプレイ用基板として用いるのに十分な性能を示していなかった。
 さらに、構造単位N中のXとして、一般式(A-1)もしくは(A-2)を用いていない、国際公開第2020/138360号パンフレットの実施例1に記載の方法で得られたポリアミド酸-イミド共重合体から得られるポリイミドフィルム(比較例1-3)は、430℃加熱処理工程で黄色に着色し、YI値およびHaze値が大きかった。また、構造単位Mのみ(ポリイミド)から構成される、国際公開第2019/188305号パンフレットの実施例1に記載の方法で得られたポリイミドから得られるポリイミドフィルム(比較例1-4)は、430℃加熱処理工程での黄変は抑制される一方で、残留応力が高く、光学ディスプレイ用の基板として用いるのに十分な性能ではなかった。
 一方、実施例1-1~1-30に記載の一般式(1)で示される構造単位と、Xとして、一般式(A-1)もしくは(A-2)で示される構造とを含む、ポリアミド酸-イミド共重合体から得られるポリイミドフィルムは、黄色度(YI値)が15以下と低く、曇り度(Haze値)も0.5%以下と光学ディスプレイ用の基板として用いるのに十分な性能を有していた。また、残留応力も25MPa以下と低く、機械的特性も十分であった。以上のことから、本発明に係る樹脂組成物から得られるポリイミド樹脂フィルムは、黄色度が小さく、曇り度が小さく、残留応力が低い、樹脂フィルムであることが確認された。
 具体的には、本発明では、残留応力が25MPa以下であり、黄色度が15以下であり、曇り度が0.5%以下である樹脂フィルムが得られる。
 また、合成例1-1-2のように、ポリアミド酸とポリイミドを別々に合成した後、各々を混合し、反応させることで得られたポリアミド酸-イミド共重合体ワニスを得ることが出来る。このワニスから得られるポリイミドフィルムは、実施例1-1-2で示すように、実施例1-1-1と同等の性能であった。これは、所定のモル比で合成した(a)ポリアミド酸と(b)ポリイミドを混合、反応させることで、(c)ポリアミド酸-イミド共重合体が得られることを示している。
 また、表2中、XおよびXから成るポリアミド酸の構成単位NとXおよびXから成るポリイミドの構成単位Mのモル比(構成単位Nのモル数:構成単位Mのモル数)が60:40である実施例1-8においては、黄色度及び曇り度に優れる透明なフィルムが得られ、残留応力も25MPa以下と低く、機械的な特性も十分であった。
 また、表2中、実施例1-6、1-14、1-15で示されているとおり、X/X比が、1.01~2と酸二無水物に対してジアミンの比率を高くすると、ポリイミドの末端がアミンとなる割合が高くなることにより、ポリアミド酸と反応させたときにポリアミド酸とポリイミドの反応性が向上し、フィルムを形成する際にポリイミド同士が上手く分散するため、黄色度(YI値)及び曇り度(Haze値)に優れる透明なフィルムが得られる。また、実施例1-6、1-14、1-15から分かるように、X/Xの比が1.11となる組成の黄色度(YI値)が低く、特に好ましい。
 また、表3中、実施例2-2~2-5で示されているとおり、イミド化触媒として1-メチルイミダゾール、もしくはN-Boc-イミダゾールを含むポリイミド-ポリアミド酸共重合体から得られるフィルムは黄色度(YI値)が低く、ディスプレイ用の基板として好適に用いることが出来る。
 また、表4中、比較例2-1(合成例2-1)で示されている通り、構造単位Nのみからなるポリアミド酸から得られるポリイミドフィルムは、25℃、350℃における弾性率が高く、Alスパッタ後430℃に再加熱を行っても、膨れ又は破れが発生しなかったが、YI値が高く、光学ディスプレイ用の基板としての性能は不十分であった。
 また、表4中、比較例2-2(合成例2-2)で示されているとおり、350℃における弾性率が低い場合、Alスパッタ後430℃に再加熱を行うと、膨れ又は破れが発生してしまった。これは、ポリイミド部分の含有量が多く、高温での弾性率が低いため、350℃以上の高温領域においてAlとポリイミドの間での収縮力の差が大きくなり、破れ又は膨れとなったためと考えられる。
 一方で、350℃における弾性率が0.5GPa以上である場合は、高温領域において収縮力の差が大きくとも、膜の強度が高いため、破れ又は膨れが生じず、ディスプレイ用の基板として好適に用いることが出来る。さらに、表4の実施例3-1~3-3で示されているとおり、350℃での弾性率が高く、曇り度(Haze値)が0.5%以下の相分離を起こしていないフィルムは、430℃再加熱試験においてYI値の変化率が小さく、ディスプレイ用の基板として好適に用いることが出来る。
 具体的には、本発明では、25℃における弾性率が6GPa以上であり、350℃における弾性率が0.5GPa以上であり、曇り度が0.5%以下である樹脂フィルムが得られる。
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
<実施形態IV>
(合成例1-31)
 前記合成例1-1-1のAPABの量を83.02mmolに変更したこと以外は、合成例1-1-1と同様に行った。得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は173,000であった。
(合成例1-32)
 前記合成例1-1-1のBAFLを33DASに変更し、APABの量を83.02mmolに変更したこと以外は、合成例1-1-1と同様に行った。得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は171,000であった。
(合成例1-33)
 前記合成例1-1-1のAPABの量を83.45mmolに変更したこと以外は、合成例1-1-1と同様に行った。得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は224,000であった。
(合成例1-34)
 前記合成例1-1-1のBAFLを33DASに変更し、APABの量を83.45mmolに変更したこと以外は、合成例1-1-1と同様に行った。得られたポリアミド酸-イミド共重合体の重量平均分子量(Mw)は221,000であった。
(合成例3-1)
 窒素置換した5Lセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250質量ppm)を、固形分含有量25wt%に相当する量を入れ、4-アミノフェニル-4-アミノベンゾエート(APAB、純度99.5%、日本純良薬品株式会社製)180.77g(800mmol)を入れ、撹拌してAPABを溶解させた。その後、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA、純度99.5%、マナック株式会社製)を235.38g(792mmol)加え、窒素フロー下で70℃において5時間撹拌下に重合反応を行った。その後、室温まで冷却し、窒素フロー下で8日間静置した。前記NMPを加えて溶液粘度が10,000mPa・sになるように調整することにより、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は152,000であった。
(合成例3-2)
窒素置換した5Lセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250質量ppm)を、固形分含有量25wt%に相当する量を入れ、4-アミノフェニル-4-アミノベンゾエート(APAB、純度99.5%、日本純良薬品株式会社製)181.69g(800mmol)を入れ、撹拌してAPABを溶解させた。その後、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA、純度99.5%、マナック株式会社製)を235.38g(796mmol)加え、窒素フロー下で70℃において5時間撹拌下に重合反応を行った。その後、室温まで冷却し、窒素フロー下で8日間静置した。前記NMPを加えて溶液粘度が10,000mPa・sになるように調整することにより、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は175,000であった。
(合成例3-3)
 窒素置換した5Lセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250質量ppm)を、固形分含有量25wt%に相当する量を入れ、4-アミノフェニル-4-アミノベンゾエート(APAB、純度99.5%、日本純良薬品株式会社製)145.35g(637mmol)と、4,4‘―ジアミノジフェニルスルホン(4,4’― DAS、純度99.5%、セイカ株式会社)39.53g(159mmol)を入れ、撹拌してAPABと4,4’― DASを溶解させた。その後、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA、純度99.5%、マナック株式会社製)を235.38g(800mmol)加え、窒素フロー下で70℃において5時間撹拌下に重合反応を行った。その後、室温まで冷却し、窒素フロー下で8日間静置した。前記NMPを加えて溶液粘度が10,000mPa・sになるように調整することにより、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は173,000であった。
(合成例3-4)
 窒素置換した5Lセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250質量ppm)を、固形分含有量25wt%に相当する量を入れ、4-アミノフェニル-4-アミノベンゾエート(APAB、純度99.5%、日本純良薬品株式会社製)181.69g(800mmol)を入れ、撹拌してAPABを溶解させた。その後、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA、純度99.5%、マナック株式会社製)を235.38g(796mmol)加え、窒素フロー下で70℃において5時間撹拌下に重合反応を行った。その後、室温まで冷却し、窒素フロー下で8日間静置した。前記NMPを加えて溶液粘度が10,000mPa・sになるように調整することにより、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は242,000であった。
(合成例3-5)
 窒素置換した5Lセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250質量ppm)を、固形分含有量25wt%に相当する量を入れ、4-アミノフェニル-4-アミノベンゾエート(APAB、純度99.5%、日本純良薬品株式会社製)182.42g(800mmol)を入れ、撹拌してAPABを溶解させた。その後、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物(BPDA、純度99.5%、マナック株式会社製)を235.38g(799mmol)加え、窒素フロー下で70℃において5時間撹拌下に重合反応を行った。その後、室温まで冷却し、窒素フロー下で8日間静置した。前記NMPを加えて溶液粘度が10,000mPa・sになるように調整することにより、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は241,000であった。
(合成例3-6)
 窒素置換した1Lセパラブルフラスコに、18L缶開封直後のN-メチル-2-ピロリドン(NMP)(水分量250質量ppm)を、固形分含有量25wt%に相当する量を入れ、4-アミノフェニル-4-アミノベンゾエート(APAB、純度99.5%、日本純良薬品株式会社製)80mmolを入れ、撹拌してAPABを溶解させた。その後、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’-ジイル(本州化学工業株式会社製)を79.6mmol加え、窒素フロー下で70℃において5時間撹拌下に重合反応を行った。その後、室温まで冷却し、窒素フロー下で8日間静置した。前記NMPを加えて溶液粘度が10,000mPa・sになるように調整することにより、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)は172,000であった。
(参考例4-1)
 合成例1-1-1で合成したポリイミド-ポリアミド酸共重合体(以下PAIともいう)のNMP溶液を用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表6に記載した。
(実施例4-1)
 合成例1-32で合成したポリイミド-ポリアミド酸共重合体のNMP溶液を用いて、ポリイミド-ポリアミド酸共重合体100質量部に対し、表6に記載されたイミド化触媒1(1-メチルイミダゾール)を1質量部加え、室温で24時間攪拌を行い、ポリアミド酸-イミド共重合ワニスを得た。このワニスを用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表6に記載した。
(実施例4-2~30)
 表6に記載されたポリイミド-ポリアミド酸共重合体のNMP溶液を用いて、表5に記載されたイミド化触媒を表6に記載された添加量を加え、それ以外は、実施例4-1と同様にしてポリアミド酸-イミド共重合ワニスを得た。得られたワニスを用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表6に記載した。
(実施例4-31)
 表6に記載されたポリイミド-ポリアミド酸共重合体のNMP溶液を用いて、表5に記載されたイミド化触媒を表6に記載された添加量を加え、さらに沸点250-350℃の非プロトン性極性物質としてスルホランを、NMP100質量部に対し20質量部加え、それ以外は、実施例4-1と同様にしてポリアミド酸-イミド共重合ワニスを得た。得られたワニスを用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表6に記載した。
(比較例5-1)
 合成例3-1で合成したポリアミド酸(以下PAAともいう)のNMP溶液を用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表7に記載した。
(実施例5-1)
 合成例3-2で合成したポリアミド酸のNMP溶液を用いて、ポリアミド酸共重合体100質量部に対し、表5に記載されたイミド化触媒1(1-メチルイミダゾール)を1質量部加え、室温で24時間攪拌を行い、ポリアミド酸ワニスを得た。このワニスを用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表7に記載した。
(実施例5-2~29、比較例5-2)
 表7に記載されたポリアミド酸のNMP溶液を用いて、表5に記載されたイミド化触媒を表7に記載された添加量を加え、それ以外は、実施例5-1と同様にしてポリアミド酸ワニスを得た。得られたワニスを用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表7に記載した。
(実施例5-30)
 表7に記載されたポリアミド酸のNMP溶液を用いて、表5に記載されたイミド化触媒を表7に記載された添加量を加え、さらに沸点250-350℃の非プロトン性極性物質としてスルホランを、NMP100質量部に対し20質量部加え、それ以外は、実施例5-1と同様にしてポリアミド酸ワニスを得た。得られたワニスを用いて上記IRキュア欠点評価、脱ガス評価を行った。結果を表7に記載した。
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
<実施形態II>
 各合成例で得られたワニスを、そのまま樹脂組成物として用い、上述の方法に従って評価を行った。合成結果は表8、評価結果は表9及び10に示した。
 表8および表9から明らかなように、構造単位Nのみ(ポリアミド酸)から構成されるポリイミドフィルム(比較例II-1-1)は、残留応力に優れるものの、YI値、Haze値は大きかった。また、実施例II-1-1に記載のポリアミド酸-イミド共重合体と同じ組成(X~Xを構成するモノマーのモル比が同じ)で合成されたポリアミド酸から得られるポリイミドフィルムは、YI値、Haze値は優れるものの、残留応力が大きくなってしまい、両者とも光学ディスプレイ用基板として用いるのに十分な性能を示していなかった。
 さらに、構造単位N中のXとして、一般式(A-1)もしくは(A-2)を用いていない、国際公開第2020/138360号パンフレットに記載の実施例1に記載の方法で得られたポリアミド酸-イミド共重合体から得られるポリイミドフィルム(比較例II-1-3)は、430℃加熱処理工程で黄色に着色し、YI値およびHaze値が大きかった。また、構造単位Mのみ(ポリイミド)から構成される、国際公開第2019/188305号パンフレットに記載の実施例1に記載の方法で得られたポリイミドから得られるポリイミドフィルム(比較例II-1-4)は、430℃加熱処理工程での黄変は抑制される一方で、残留応力が高く、光学ディスプレイ用の基板として用いるのに十分な性能ではなかった。
 一方、実施例II-1-1-1のように、Xとして、一般式(A-1)、及びで表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種を含む、ポリアミド酸-イミド共重合体から得られるポリイミドフィルムは、黄色度(YI値)が15以下と低く、曇り度(Haze値)も0.5%以下と光学ディスプレイ用の基板として用いるのに十分な性能を有していた。また、残留応力も25MPa以下と低く、かつ折曲耐性もすぐれ、機械的特性も十分であった。以上のことから、本発明に係る樹脂組成物から得られるポリイミド樹脂フィルムは、黄色度が小さく、曇り度が小さく、残留応力が低い、樹脂フィルムであることが確認された。
 具体的には、本発明では、残留応力が25MPa以下であり、黄色度が15以下であり、曇り度が0.5%以下であり、折曲耐性に優れる樹脂フィルムが得られる。
 また、合成例1-1-2のように、ポリアミド酸とポリイミドを別々に合成した後、各々を混合し反応させることで得られたポリアミド酸-イミド共重合体ワニスを得ることが出来る。このワニスから得られるポリイミドフィルムは、実施例II-1-1-2で示すように、実施例II-1-1-1と同等の性能であった。これは、所定のモル比で合成した(b)ポリアミド酸と(a)ポリイミドを混合、反応させることで、(c)ポリアミド酸-イミド共重合体が得られることを示している。
 一方、表9中、比較例II-1-1で示されているとおり、構造単位Nのみのポリアミド酸から得られるポリイミドフィルムは、残留応力に優れる一方で折曲耐性は不十分であった。これは、構造単位Nのみから成るポリイミドフィルムは非常に剛直なため、折曲げ試験時に面内の結晶化が進み、傷が付いたと考えられる。このことから、構造単位Nと構造単位Mから成るポリアミド酸-イミド共重合体から得られるポリイミド共重合フィルムは、黄色度及び曇り度に優れ、残留応力が低く、かつ折曲耐性にも優れる。
 また、実施例II-1-6、II-1-12、及びII-1-13で示されているとおり、X/X比が1.01~2と酸二無水物に対してジアミンの比率を高くすると、ポリイミドの末端がアミンとなる割合が高くなることにより、ポリアミド酸と反応させたときにポリアミド酸とポリイミドの反応性が向上し、フィルムを形成する際にポリイミド同士が上手く分散するため、黄色度(YI値)及び曇り度(Haze値)に優れ、折曲耐性に優れる、透明なフィルムが得られる。また、実施例II-1-6、II-1-12、及びII-1-13から分かるように、X/Xの比が1.11となる組成の黄色度(YI値)が低く、特に好ましい。
 また、表10中、実施例II-2-1~II-2-5で示されているとおり、イミド化触媒として1-メチルイミダゾール、もしくはN-Boc-イミダゾールを含むポリイミド-ポリアミド酸共重合体から得られるフィルムは黄色度(YI値)が低く、ディスプレイ用の基板として好適に用いることが出来る。
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
<実施形態III>
[実施例III-1]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を15.69g(49.0mmol)入れ、攪拌してTFMBを溶解させた。その後、ピロメリット酸二無水物(PMDA)を9.27g(42.5mmol)及び、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を3.33g(7.5mmol)加え、窒素フロー下で80℃4時間攪拌し、室温まで冷却後、沸点250℃~350℃の非プロトン性極性物質として、スルホランを(溶媒の質量+スルホランの質量)を100wt%として3wt%になるように添加し、更に1時間攪拌してポリアミド酸の溶液(以下、ワニスとも言う)を得た。
 このワニスをミカサコーターにより6インチのシリコンウェハ及び10cm角のイーグルガラス上にスピンコートし、ホットプレートで100℃×6分プリベークした後、ファーネス炉に入れて窒素フロー下、380℃で1時間加熱キュアしてポリイミド樹脂膜を得た。シリコンウェハ上に形成されたポリイミド樹脂膜について、ラムダエースを用いて面内の39か所の膜厚を測定し、[(平均値から最も外れた膜厚)-(平均膜厚)]を平均膜厚で割った値(以下、面内膜厚均一性とも言う)は、6.0%であった。
 イーグルガラス上に形成されたポリイミド樹脂膜について、ヘーズメーターを用いてYIを測定した所、膜厚10μm換算で7.9であった。
 また、イーグルガラス上に形成されたポリイミド樹脂膜を400℃まで再加熱し、発生するガス成分をGCMSで分析したが、スルホランは検出されなかった。
[実施例III-2]
 実施例III-1において、添加するスルホランの量を3wt%から20wt%に変えた他は、実施例III-1と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.0%、7.3、0ppmであった。
[実施例III-3]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を15.69g(49.0mmol)入れ、攪拌してTFMBを溶解させた。その後、ピロメリット酸二無水物(PMDA)を9.27g(42.5mmol)及び、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を3.33g(7.5mmol)加え、窒素フロー下で80℃4時間攪拌し、室温まで冷却、更にこの溶液を溶液の6倍量の水に攪拌しながら滴下し、ポリマーを析出させた。このポリマーを濾別した後、真空乾燥機を用い、40℃で24時間真空乾燥した。それからポリマーを15wt%になるようにスルホランに溶解して、ポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.0%、7.3、600ppmであった。
[比較例III-1]
 実施例III-1において、スルホランを添加しなかった他は実施例III-1と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.0%、8.1、0ppmであった。
[実施例III-4]
 実施例III-2において、スルホランを3-メチルスルホランに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.0%、7.6、0ppmであった。
[実施例III-5]
 実施例III-2において、スルホランをベンゾフェノンに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ4.2%、7.4、0ppmであった。
[実施例III-6]
 実施例III-2において、スルホランを酢酸2-フェノキシエチルに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ3.3%、7.6、0ppmであった。
[実施例III-7]
 実施例III-2において、スルホランをジフェニルカーボネートに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ3.0%、7.5、0ppmであった。
[実施例III-8]
 実施例III-2において、スルホランをアジポアミドに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ4.1%、7.6、0ppmであった。
[実施例III-9]
 実施例III-2において、スルホランをアジポニトリルに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ4.0%、7.5、0ppmであった。
[実施例III-10]
 実施例III-2において、スルホランをジブチルスルホキシドに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ3.0%、7.6、0ppmであった。
[比較例III-2]
 実施例III-2において、スルホランをジメチルスルホンに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.0%、8.1、0ppmであった。
[比較例III-3]
 実施例III-2において、スルホランをジフェニルスルホンに変えた他は実施例III-2と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ4.0%、7.5、1500ppmであった。
[実施例III-11]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量20wt%に相当する量を入れ、4-アミノ安息香酸4-アミノフェニル(APAB)を8.95g(39.2mmol)及び4,4’-ジアミノフェニルスルホン(4,4’-DAS)を2.43g(9.8mmol)入れ、攪拌して両者を溶解させた。その後、4,4’-ビフタル酸二無水物(BPDA)を14.71g(50mmol)加え、窒素フロー下で80℃4時間攪拌し、室温まで冷却後、スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸の溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.2%、12.6、0ppmであった。
[比較例III-4]
 実施例11において、スルホランを添加しなかった他は実施例III-11と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ11.0%、13.5、0ppmであった。
[実施例III-12]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)22.2gを入れ、3,3’-ジアミノフェニルスルホン(3,3’-DAS)を2.61g(10.53mmol)入れて攪拌溶解させた後、4,4’-オキシジフタル酸二無水物(ODPA)を2.94g(9.47mmol)、トルエン20gを加え、フラスコにリフラックス管とディーンスターク管を取り付け、窒素フロー下で、180℃で、発生する水をディーンスターク管から抜きながら窒素フロー下で2時間反応させ、更に180℃で1時間加熱してディーンスターク管から、加えたトルエンを全て抜いた。その後、反応液を室温まで冷却し、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)81.96g、4,4’-ビフタル酸二無水物(BPDA)を11.77g(40mmol)、4-アミノ安息香酸4-アミノフェニル(APAB)を8.72g(38.2mmol)入れ、攪拌して溶解させた。それから、窒素フロー下で、80℃で4時間反応させ、室温まで冷却後、スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸-可溶性ポリイミドの溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.3%、12.9、0ppmであった。
[比較例III-5]
 実施例III-12において、スルホランを添加しなかった他は実施例III-12と同様にポリアミド酸-可溶性ポリイミドの溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.0%、13.6、0ppmであった。
[実施例III-13]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量20wt%に相当する量を入れ、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)を17.07g(49mmol)入れ、攪拌してBAFLを溶解させた。その後、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物(BPAF)を22.92g(50mmol)加え、窒素フロー下で80℃4時間攪拌し、室温まで冷却後、スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸の溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.1%、12.8、0ppmであった。
[比較例III-6]
 実施例III-13において、スルホランを添加しなかった他は実施例III-13と同様にポリアミドイミドの溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.0%、13.5、0ppmであった。
[実施例III-14]
 300mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒としてジメチルアセトアミド(DMAc)を固形分含有量26wt%に相当する量だけ入れ、4,4’-ジアミノベンズアニリド(DABAN)を2.27g(10mmol)入れ、攪拌してDABANを溶解させた。その後、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’-ノルボルナン-5,5’,6,6’-テトラカルボン酸二無水物(CpODA)を3.84g(10mmol)加え、窒素フロー下で室温で12時間攪拌後、3-メチルスルホランを(溶媒の質量+3-メチルスルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸の溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.4%、1.5、0ppmであった。
[比較例III-7]
 実施例III-14において、3-メチルスルホランを添加しなかった他は実施例III-14と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ11.0%、2.3、0ppmであった。
[実施例III-15]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、1,4-シクロヘキサンジアミン(1,4-CHDA)を5.6g(49mmol)入れ、攪拌して溶解させた。その後、4,4’-ビフタル酸二無水物(BPDA)を13.8g(47.5mmol)、p-フェニレンビストリメリット酸二無水物(TMHQ)を0.7g(1.5mmol)加え、窒素フロー下で80℃1時間、室温で5時間攪拌後、スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸の溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.2%、1.6、0ppmであった。
[実施例III-16]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、1,4-シクロヘキサンジアミン(1,4-CHDA)を5.6g(49mmol)入れ、攪拌して溶解させた。その後、4,4’-ビフタル酸二無水物(BPDA)を13.8g(47.5mmol)、p-フェニレンビストリメリット酸二無水物(TMHQ)を0.7g(1.5mmol)加え、窒素フロー下で80℃1時間、室温で5時間攪拌後、この溶液を溶液の6倍量の水に攪拌しながら滴下し、ポリマーを析出させた。このポリマーを濾別した後、真空乾燥機を用い、40℃で24時間真空乾燥した。それからポリマーを15wt%になるようにスルホランに溶解させてポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.2%、1.6、600ppmであった。
[比較例III-8]
 実施例III-15において、スルホランを添加しなかった他は実施例III-15と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.0%、2.3、0ppmであった。
[実施例III-17]
 500mlセパラブルフラスコにγ-ブチロラクトン(GBL)を168g入れ、3,5-ジアミノ安息香酸(DABA)を15.2g(100mmol)加えて攪拌溶解させた後、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’-ノルボルナン-5,5’,6,6’-テトラカルボン酸二無水物(CpODA)を38.4g(100mmol)、トルエンを30g加えた。フラスコにリフラックス管とディーンスターク管を取り付け、窒素フロー下で、180℃で、発生する水をディーンスターク管から抜きながら窒素フロー下で2時間反応させ、更に180℃で1時間加熱してディーンスターク管から、加えたトルエンを全て抜いた。スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌して可溶性ポリイミドの溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.5%、1.4、0ppmであった。
[実施例III-18]
 実施例III-17において、添加するスルホランの量を20wt%から50wt%に変えた他は、実施例III-17と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.5%、1.4、600ppmであった。
[比較例III-9]
 500mlセパラブルフラスコにγ-ブチロラクトン(GBL)を168g入れ、3,5-ジアミノ安息香酸(DABA)を15.2g(100mmol)加えて攪拌溶解させた後、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’-ノルボルナン-5,5’,6,6’-テトラカルボン酸二無水物(CpODA)を38.4g(100mmol)、トルエンを30g加えた。フラスコにリフラックス管とディーンスターク管を取り付け、窒素フロー下で、180℃で、発生する水をディーンスターク管から抜きながら窒素フロー下で2時間反応させ、更に180℃で1時間加熱してディーンスターク管から、加えたトルエンを全て抜いた。その後この溶液を溶液の6倍量の水に攪拌しながら滴下し、ポリマーを析出させた。このポリマーを濾別した後、真空乾燥機を用い、40℃で24時間真空乾燥した。それからポリマーを15wt%になるようにスルホランに溶解させて可溶性ポリイミドの溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.5%、1.4、1500ppmであった。
[比較例III-10]
 実施例III-17において、スルホランを添加しなかった他は実施例III-17と同様にポリアミド酸の溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.6%、2.2、0ppmであった。
[実施例III-19]
 500mlセパラブルフラスコにN-メチルピロリドン(NMP:水分量250ppm)を130g入れ、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を32.858g(97.7mmol)加えて攪拌溶解させた後、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’-ノルボルナン-5,5’,6,6’-テトラカルボン酸二無水物(CpODA)を22.936g(60mmol)、トルエンを30g加えた。フラスコにリフラックス管とディーンスターク管を取り付け、窒素フロー下で、180℃で、発生する水をディーンスターク管から抜きながら窒素フロー下で2時間反応させ、更に180℃で1時間加熱してディーンスターク管から、加えたトルエンを全て抜いた。この溶液を50℃まで冷却後、NMPを25g加え、4,4’-ビフタル酸二無水物(BPDA)を11.704g(40mmol)加え50℃で4時間攪拌して室温まで冷却し、更に信越化学製シリコーンジアミンX-22-1660-B-3を7.723g(2mmol)を加えて1時間攪拌した。それから、スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸-可溶性ポリイミドの溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.2%、1.3、0ppmであった。
[実施例III-20]
 500mlセパラブルフラスコにN-メチルピロリドン(NMP:水分量250ppm)を130g入れ、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を32.858g(97.7mmol)加えて攪拌溶解させた後、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’-ノルボルナン-5,5’,6,6’-テトラカルボン酸二無水物(CpODA)を22.936g(60mmol)、トルエンを30g加えた。フラスコにリフラックス管とディーンスターク管を取り付け、窒素フロー下で、180℃で、発生する水をディーンスターク管から抜きながら窒素フロー下で2時間反応させ、更に180℃で1時間加熱してディーンスターク管から、加えたトルエンを全て抜いた。この溶液を50℃まで冷却後、NMPを25g加え、4,4’-ビフタル酸二無水物(BPDA)を11.704g(40mmol)加え50℃で4時間攪拌して室温まで冷却し、更に信越化学製シリコーンジアミンX-22-1660-B-3を7.723g(2mmol)を加えて1時間攪拌した。その後この溶液を溶液の6倍量の水に攪拌しながら滴下し、ポリマーを析出させた。このポリマーを濾別した後、真空乾燥機を用い、40℃で24時間真空乾燥した。それからポリマーを15wt%になるようにスルホランに溶解させてポリアミド酸-可溶性ポリイミドの溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.2%、1.3、500ppmであった。
[比較例III-11]
 実施例III-19において、スルホランを添加しなかった他は実施例III-19と同様にポリアミド酸-可溶性ポリイミドの溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.0%、2.2、0ppmであった。
[実施例III-21]
 500mlセパラブルフラスコを窒素置換し、そのセパラブルフラスコに、溶媒として18L缶開封直後のN-メチルピロリドン(NMP:水分量250ppm)を、固形分含有量15wt%に相当する量を入れ、1,4-シクロヘキサンジアミン(1,4-CHDA)を3.4576g(30.3mmol)、4,4’-ビス(アミノフェノキシ)ビフェニル(BAPB)を26.0326g(70.7mmol)入れ、攪拌して溶解させた。その後、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸二無水物(DNDA)を30.5098g(100.9mmol)加え、窒素フロー下で室温で一晩攪拌後、スルホランを(溶媒の質量+スルホランの質量)を100wt%として20wt%になるように添加し、更に1時間攪拌してポリアミド酸の溶液(以下、ワニスとも言う)を得た。
 このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ2.1%、1.8、0ppmであった。
[比較例III-12]
 実施例III-21において、スルホランを添加しなかった他は実施例III-21と同様にポリアミド酸-可溶性ポリイミドの溶液を得た。このワニスを実施例III-1と同様にキュアし、ポリイミド樹脂膜の面内膜厚均一性、YI、再加熱時の脱ガス量を測定した所、それぞれ12.2%、2.9、0ppmであった。
 上記各実施例および比較例の結果を表11~表13にまとめて示す。
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
 以上のように、実施例の樹脂組成物は、比較例に比べて、樹脂が柔らかく、流動性を持つようになり、ポリイミド樹脂膜とした際に、膜厚の面内均一性が向上すると共に、YIも低減されており、ディスプレイ用途に求められる特性が優れていた。
 2a  下部基板
 2b  封止基板
 25  有機EL構造部
 250a  赤色光を発光する有機EL素子
 250b  緑色光を発光する有機EL素子
 250c  青色光を発光する有機EL素子
 251  隔壁(バンク)
 252  下部電極(陽極)
 253  正孔輸送層
 254  発光層
 255  上部電極(陰極)
 256  TFT
 257  コンタクトホール
 258  層間絶縁膜
 259  下部電極
 261  中空部

Claims (39)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、およびlは、正の整数であり、かつ
     前記一般式(1)中のXとして、下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
    で示される構造を含む}
    で示される構造単位を含むポリアミド酸-イミド共重合体と、(d)有機溶剤と、(e)イミド化触媒とを含み、かつ前記(e)イミド化触媒が、イミダゾール化合物、ピリジン化合物、及び三級アミン化合物から成る群から選択される少なくとも一つであることを特徴とする樹脂組成物。
  2.  前記イミダゾール化合物が、1-メチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1H-イミダゾール、及び1,2-ジメチルイミダゾールから成る群から選択される少なくとも一つであり、
     前記ピリジン化合物が、4-ジメチルアミノピリジン、2,2’-ビピリジル、ニコチン酸、イソキノリン、ピリジン、及び2-メチルピリジンから成る群から選択される少なくとも一つであり、かつ/又は
     前記三級アミン化合物が、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、及びトリエチルアミンから成る群から選択される少なくとも一つである、
    請求項1に記載の樹脂組成物。
  3.  前記(e)イミド化触媒が、前記イミダゾール化合物である、請求項1又は2に記載の樹脂組成物。
  4.  前記(e)イミド化触媒の含有量が、前記ポリアミド酸-イミド共重合体100質量部に対し、5質量部以上である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    {式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、およびlは、正の整数であり、かつ
     前記一般式(1)中のXとして、下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
    で示される構造を含む}
    で示される構造単位を含むポリアミド酸-イミド共重合体と、(d)有機溶剤とを含み、かつ
     前記ポリアミド酸-イミド共重合体の重量平均分子量が170,000以上である、樹脂組成物。
  6.  前記ポリアミド酸-イミド共重合体の重量平均分子量が170,000以上である、請求項1~4のいずれか一項に記載の樹脂組成物。
  7.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000005
    {式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
     前記一般式(3)中のXとして、下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
    で示される構造を含む}
    で示される構造単位を含むポリアミド酸と、(d)有機溶剤と、(e)イミド化触媒とを含み、前記(e)イミド化触媒が、1-メチルイミダゾール、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1H-イミダゾール、4-ジメチルアミノピリジン、2,2’-ビピリジル、ニコチン酸、イソキノリン、ピリジン、2-メチルピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、及びトリエチルアミンから成る群から選択される少なくとも一つである、樹脂組成物。
  8.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000007
    {式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
     前記一般式(3)中のXとして、下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000008
    (式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
    で示される構造を含む}
    で示される構造単位を含むポリアミド酸と、(d)有機溶剤と、(e)イミド化触媒とを含み、前記(e)イミド化触媒が、イミダゾール化合物であり、かつ前記(e)イミド化触媒の含有量が、前記ポリアミド酸100質量部に対し、5質量部以上である、樹脂組成物。
  9.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000009
    {式中、Xは、4価の有機基を表し、Xは、2価の有機基を表し、そしてnは、正の整数であり、かつ
     前記一般式(3)中のXとして、下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000010
    (式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す)
    で示される構造を含む}
    で示される構造単位を含むポリアミド酸と、(d)有機溶剤と、(e)イミド化触媒とを含み、前記(e)イミド化触媒がイミダゾール化合物であり、かつ
     前記ポリアミド酸の重量平均分子量が170,000以上である、樹脂組成物。
  10.  前記ポリアミド酸の重量平均分子量が170,000以上である、請求項7又は8に記載の樹脂組成物。
  11.  前記(e)イミド化触媒の含有量が、前記ポリアミド酸-イミド共重合体100質量部または前記ポリアミド酸100質量部に対し、10質量部以上である、請求項1~10のいずれか一項に記載の樹脂組成物。
  12.  前記(e)イミド化触媒が、N-tert-ブトキシカルボニルイミダゾール(N-Boc-イミダゾール)及び/又は1-メチルイミダゾールを含むイミダゾール化合物である、請求項1~11のいずれか一項に記載の樹脂組成物。
  13.  前記ポリアミド酸-イミド共重合体又は前記ポリアミド酸の重量平均分子量が、220,000以上である、請求項1~12のいずれか一項に記載の樹脂組成物。
  14.  さらに沸点250℃~350℃の非プロトン性極性物質を含む、請求項1~13のいずれか一項に記載の樹脂組成物。
  15.  前記非プロトン性極性物質がスルホランである、請求項14に記載の樹脂組成物。
  16.  前記一般式(1)中のXまたは(3)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
    Figure JPOXMLDOC01-appb-C000011
    {式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    Figure JPOXMLDOC01-appb-C000012
    {式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、l及びmは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    Figure JPOXMLDOC01-appb-C000013
    {式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    で表される構造からなる群から選択される少なくとも1種である、請求項1~15のいずれか一項に記載の樹脂組成物。
  17.  前記一般式(1)中のXが、下記一般式(A-3):
    Figure JPOXMLDOC01-appb-C000014
    {式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種である、請求項1~6,11~16のいずれか一項に記載の樹脂組成物。
  18.  前記(e)イミド化触媒の含有量が、前記ポリアミド酸-イミド共重合の繰り返し単位1モルに対して0.02~0.15モル%の範囲である、請求項1~6,11~17のいずれか一項に記載の樹脂組成物。
  19.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000015
    {式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、およびlは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、そしてX及びXから構成される構造単位を構造単位Mと呼び、
     Xが4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基である場合は、下記構成1,2:
      1.Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、Xが4,4’-ジアミノジフェニルスルホン、及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基である;および
      2.Xがノルボルナン―2―スピロ―α―シクロペンタノン―α’―スピロ―2’’―ノルボルナン―5,5’’,6,6’’―テトラカルボン酸二無水物に由来する基である;
    を除く}
    で示される構造単位Lを含み、かつ
     前記Xとして下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000016
    {式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    又は下記一般式(A-2):
    Figure JPOXMLDOC01-appb-C000017
    {式中、Rは、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてcは0~4の整数である。*は結合部を示す}
    で表される構造を有することを特徴とするポリアミド酸-イミド共重合体。
  20.  前記一般式(1)中のXが、下記一般式(A-3):
    Figure JPOXMLDOC01-appb-C000018
    {式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種である、請求項19に記載のポリアミド酸-イミド共重合体。
  21.  前記一般式(1)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
    Figure JPOXMLDOC01-appb-C000019
    {式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    Figure JPOXMLDOC01-appb-C000020
    {式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、l及びmは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示し、但し前記Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、前記一般式(A-5)は、4,4’-ジアミノジフェニルスルホンに由来する基である場合を除く}
    Figure JPOXMLDOC01-appb-C000021
    {式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    で表される構造から成る群から選択される少なくとも1種である、請求項19または20に記載のポリアミド酸-イミド共重合体。
  22.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000022
    {式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、n、m、及びlは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、X及びXから構成される構造単位を構造単位Mと呼び、かつ
     Xは、4,4’-ジアミノジフェニルスルホン及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基を除く}
    で示される構造単位Lを含み、かつ
     前記Xとして、下記一般式(A-3):
    Figure JPOXMLDOC01-appb-C000023

    {式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種を含むことを特徴とするポリアミド酸-イミド共重合体。
  23.  上記一般式(1)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
    Figure JPOXMLDOC01-appb-C000024
    {式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    Figure JPOXMLDOC01-appb-C000025
    {式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、iおよびjは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示し、但し前記Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、前記一般式(A-5)は、4,4’-ジアミノジフェニルスルホンに由来する基である場合を除く}
    Figure JPOXMLDOC01-appb-C000026
    {式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    で表される構造から成る群から選択される少なくとも1種である、請求項22に記載のポリアミド酸-イミド共重合体。
  24.  上記一般式(1)中のXを構成するジアミン成分とXを構成するジアミン成分とが、ジアミン組成、又はジアミン種のいずれかが異なる、請求項19~23のいずれか一項に記載のポリアミド酸-イミド共重合体。
  25.  上記一般式(1)中のXが、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種である、請求項19~24のいずれか一項に記載のポリアミド酸-イミド共重合体。
  26.  上記一般式(1)中に含まれるXとXのモル比(X/X)が0.84~1.00であり、かつ上記一般式(1)に含まれるXとX(X/X)のモル比が1.01~2.00である、請求項19~25のいずれか一項に記載のポリアミド酸-イミド共重合体。
  27.  上記一般式(1)中のX及びXから構成されるポリアミド酸の構造単位NとX及びXから構成されるポリイミドの構造単位Mのモル比(構造単位Nのモル数:構造単位Mのモル数)が60:40~95:5の範囲である、請求項19~26のいずれか一項に記載のポリアミド酸-イミド共重合体。
  28.  請求項19~27のいずれか一項に記載のポリアミド酸-イミド共重合体と、(d)有機溶剤と、を含有する、樹脂組成物。
  29.  前記樹脂組成物に含まれる全ポリマーのうち、X及びXから構成されるポリアミド酸の構造単位Nの比率が、60~95モル%である、請求項28に記載の樹脂組成物。
  30.  更に、(e)イミド化触媒を含む、請求項28又は29に記載の樹脂組成物。
  31.  下記一般式(2):
    Figure JPOXMLDOC01-appb-C000027
    {式中、X及びXは、4価の有機基を表し、X及びXは、2価の有機基を表し、そしてn及びmは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、そしてX及びXから構成される構造単位を構造単位Mと呼び、かつ
     Xが4-アミノ-3-フルオロフェニル-4-アミノベンゾエートに由来する基である場合は、下記構成1,2:
      1.Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、Xが4,4’-ジアミノジフェニルスルホン、及び/又は2,2’―ビス(トリフルオロメチル)ベンジジンに由来する基である;および
      2.Xがノルボルナン―2―スピロ―α―シクロペンタノンa―α’―スピロ―2’’―ノルボルナン―5,5’’,6,6’’―テトラカルボン酸二無水物に由来する基である;
    を除く}
    で表される構造単位を含み、かつ
     前記Xとして下記一般式(A-1):
    Figure JPOXMLDOC01-appb-C000028
    {式中、R及びRは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、a及びbは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    又は下記一般式(A-2):
    Figure JPOXMLDOC01-appb-C000029
    {式中、Rは、炭素数1~20の1価の有機基、又はハロゲンを表し、cは、0~4の整数であり、そして*は、結合部を示す}
    で表される構造を有することを特徴とするポリイミド共重合体。
  32.  上記一般式(2)中のXが、下記一般式(A-3):
    Figure JPOXMLDOC01-appb-C000030
    {式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種である、請求項31に記載のポリイミド共重合体。
  33.  下記一般式(2):
    Figure JPOXMLDOC01-appb-C000031
    {式中、XおよびXは、4価の有機基を表し、XおよびXは、2価の有機基を表し、n及びmは、正の整数であり、X及びXから構成される構造単位を構造単位Nと呼び、X及びXから構成される構造単位を構造単位Mと呼び、かつ
     Xは、4,4’-ジアミノジフェニルスルホン、2, 2’―ビス(トリフルオロメチル)ベンジジンに由来する基を除く}
    で示される構造単位を含み、かつ
     前記Xとして、下記一般式(A-3):
    Figure JPOXMLDOC01-appb-C000032
    {式中、R~Rは、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、d~gは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    で表される構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)由来の構造から成る群から選択される少なくとも1種を含むことを特徴とするポリイミド共重合体。
  34.  前記一般式(2)中のXが、下記一般式(A-4)、下記一般式(A-5)及び下記一般式(A-6):
    Figure JPOXMLDOC01-appb-C000033
    {式中、R~R11は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、そしてh~kは、それぞれ独立に、0~4の整数であり、Zは、結合基を示し、そして*は、結合部を示す}
    Figure JPOXMLDOC01-appb-C000034
    {式中、R12及びR13は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、l及びmは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示し、前記Xが9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)に由来する基である場合は、前記一般式(A-5)は、4,4’-ジアミノジフェニルスルホンに由来する基である場合を除く}
    Figure JPOXMLDOC01-appb-C000035
    {式中、R14及びR15は、それぞれ独立に、炭素数1~20の1価の有機基、又はハロゲンを表し、n及びоは、それぞれ独立に、0~4の整数であり、そして*は、結合部を示す}
    で表される構造から成る群から選択される少なくとも1種である、請求項33に記載のポリイミド共重合体。
  35.  上記一般式(2)中のXが、ビフェニルテトラカルボン酸二無水物(BPDA)由来の構造、4,4’-オキシジフタル酸二無水物(ODPA)由来の構造、及び4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)(TAHQ)由来の構造から成る群から選択される少なくとも1種である、請求項31~34のいずれか一項に記載のポリイミド共重合体。
  36.  上記一般式(2)中に含まれるXとXのモル比(X/X)が0.84~1.00であり、かつ上記一般式(2)に含まれるXとX(X/X)のモル比が1.01~2.00である、請求項31~35のいずれか一項に記載のポリイミド共重合体。
  37.  上記一般式(2)中のX及びXから構成されるポリイミドの構成単位NとX及びXから成るポリイミドの構成単位Mのモル比(構成単位Nのモル数:構成単位Mのモル数)が、60:40~95:5の範囲である、請求項31~36のいずれか一項に記載のポリイミド共重合体。
  38.  下記一般式(I)で表されるポリイミド前駆体、もしくは下記一般式(I)で表されるポリイミド前駆体骨格及び下記一般式(II)で表されるポリイミド骨格を有し、
     沸点250℃~350℃の非プロトン性極性物質を含むことを特徴とする樹脂組成物:
    Figure JPOXMLDOC01-appb-C000036
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す}
    Figure JPOXMLDOC01-appb-C000037
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す}。
  39.  下記一般式(II)で表されるポリイミドと、溶媒と、沸点250℃~350℃の非プロトン性極性物質とを含む樹脂組成物:
    Figure JPOXMLDOC01-appb-C000038
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは、かつ正の整数を示す}。
PCT/JP2022/016837 2021-04-02 2022-03-31 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法 WO2022211086A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280026854.XA CN117120516A (zh) 2021-04-02 2022-03-31 聚酰亚胺、树脂组合物、聚酰亚胺薄膜和其制造方法
KR1020237032268A KR20230147181A (ko) 2021-04-02 2022-03-31 폴리이미드, 수지 조성물, 폴리이미드 필름, 및, 그 제조 방법
JP2022528651A JP7174199B1 (ja) 2021-04-02 2022-03-31 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法
JP2022176853A JP7436606B2 (ja) 2021-04-02 2022-11-04 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法
JP2024017752A JP2024036637A (ja) 2021-04-02 2024-02-08 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-063358 2021-04-02
JP2021063358 2021-04-02
JP2021-063386 2021-04-02
JP2021063386 2021-04-02
JP2021-196485 2021-12-02
JP2021196485 2021-12-02

Publications (1)

Publication Number Publication Date
WO2022211086A1 true WO2022211086A1 (ja) 2022-10-06

Family

ID=83459655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016837 WO2022211086A1 (ja) 2021-04-02 2022-03-31 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法

Country Status (4)

Country Link
JP (3) JP7174199B1 (ja)
KR (1) KR20230147181A (ja)
TW (1) TW202246391A (ja)
WO (1) WO2022211086A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063202A1 (ja) * 2021-10-12 2023-04-20 株式会社カネカ ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
CN116693911A (zh) * 2023-01-04 2023-09-05 昆山雅森电子材料科技有限公司 复合膜及其制备方法
WO2024048740A1 (ja) * 2022-08-31 2024-03-07 旭化成株式会社 樹脂組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202246391A (zh) 2021-04-02 2022-12-01 日商旭化成股份有限公司 聚醯亞胺、樹脂組合物、聚醯亞胺膜及其製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134116A (ja) * 2008-12-03 2010-06-17 Asahi Kasei E-Materials Corp ポジ型感光性樹脂組成物
JP2010195856A (ja) * 2009-02-23 2010-09-09 Asahi Kasei E-Materials Corp ポリアミド酸ワニス組成物及びそれを用いたポリイミド金属積層板
JP2012173453A (ja) * 2011-02-21 2012-09-10 Jsr Corp 液晶配向剤および液晶表示素子
JP2014152221A (ja) * 2013-02-07 2014-08-25 Ube Ind Ltd ポリイミドフィルムおよびそれを用いたポリイミド金属積層体
JP2017037136A (ja) * 2015-08-07 2017-02-16 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2018031018A (ja) * 2014-02-14 2018-03-01 旭化成株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
WO2019106952A1 (ja) * 2017-11-30 2019-06-06 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子
WO2020138360A1 (ja) * 2018-12-28 2020-07-02 三菱瓦斯化学株式会社 イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム
WO2020148953A1 (ja) * 2019-01-17 2020-07-23 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子
JP2021042381A (ja) * 2019-09-12 2021-03-18 デュポン エレクトロニクス インコーポレイテッド ポリイミドフィルム及び電子デバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595381U (ja) 1979-12-27 1980-07-02
JPS6073528U (ja) 1983-10-27 1985-05-23 許 弼律 居室用キヤビネツト
JPS63101424A (ja) 1986-10-17 1988-05-06 Tosoh Corp ポリイミド樹脂
JPS63110219A (ja) 1986-10-28 1988-05-14 Tosoh Corp ポリイミド樹脂の製造方法
JPS6443579U (ja) 1987-09-09 1989-03-15
WO2005113647A1 (ja) 2004-05-21 2005-12-01 Manac Inc 低線熱膨張係数を有するポリエステルイミドとその前駆体
KR102659377B1 (ko) 2015-09-24 2024-04-19 아사히 가세이 가부시키가이샤 폴리이미드 전구체, 수지 조성물 및 수지 필름의 제조 방법
JP7302595B2 (ja) 2018-05-01 2023-07-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
TW202246391A (zh) 2021-04-02 2022-12-01 日商旭化成股份有限公司 聚醯亞胺、樹脂組合物、聚醯亞胺膜及其製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134116A (ja) * 2008-12-03 2010-06-17 Asahi Kasei E-Materials Corp ポジ型感光性樹脂組成物
JP2010195856A (ja) * 2009-02-23 2010-09-09 Asahi Kasei E-Materials Corp ポリアミド酸ワニス組成物及びそれを用いたポリイミド金属積層板
JP2012173453A (ja) * 2011-02-21 2012-09-10 Jsr Corp 液晶配向剤および液晶表示素子
JP2014152221A (ja) * 2013-02-07 2014-08-25 Ube Ind Ltd ポリイミドフィルムおよびそれを用いたポリイミド金属積層体
JP2018031018A (ja) * 2014-02-14 2018-03-01 旭化成株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
JP2017037136A (ja) * 2015-08-07 2017-02-16 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2019106952A1 (ja) * 2017-11-30 2019-06-06 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子
WO2020138360A1 (ja) * 2018-12-28 2020-07-02 三菱瓦斯化学株式会社 イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム
WO2020148953A1 (ja) * 2019-01-17 2020-07-23 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子
JP2021042381A (ja) * 2019-09-12 2021-03-18 デュポン エレクトロニクス インコーポレイテッド ポリイミドフィルム及び電子デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063202A1 (ja) * 2021-10-12 2023-04-20 株式会社カネカ ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイス
WO2024048740A1 (ja) * 2022-08-31 2024-03-07 旭化成株式会社 樹脂組成物
CN116693911A (zh) * 2023-01-04 2023-09-05 昆山雅森电子材料科技有限公司 复合膜及其制备方法

Also Published As

Publication number Publication date
JP7174199B1 (ja) 2022-11-17
JPWO2022211086A1 (ja) 2022-10-06
TW202246391A (zh) 2022-12-01
JP7436606B2 (ja) 2024-02-21
JP2022190112A (ja) 2022-12-22
JP2024036637A (ja) 2024-03-15
KR20230147181A (ko) 2023-10-20

Similar Documents

Publication Publication Date Title
JP7152381B2 (ja) 樹脂前駆体及びそれを含有する樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
TWI740330B (zh) 聚醯亞胺前驅體、樹脂組合物、樹脂膜及其製造方法
JP6444522B2 (ja) ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
JP7174199B1 (ja) ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法
WO2016167296A1 (ja) 樹脂組成物、ポリイミド樹脂膜、及びその製造方法
JP2024028330A (ja) ポリイミド前駆体樹脂組成物
KR102593077B1 (ko) 폴리이미드 전구체 및 그것을 포함하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법
JP7300504B2 (ja) ポリイミド前駆体及びポリイミド樹脂組成物
JP2023082676A (ja) 樹脂組成物とその製造方法
JPWO2019208590A1 (ja) ケイ素含有化合物
JP7506152B2 (ja) 樹脂組成物
JP7483480B2 (ja) ポリイミド前駆体、ポリイミド樹脂組成物、並びにポリイミド樹脂フィルム及びその製造方法
WO2024048740A1 (ja) 樹脂組成物
CN117120516A (zh) 聚酰亚胺、树脂组合物、聚酰亚胺薄膜和其制造方法
JP2023008992A (ja) 樹脂組成物
JP2023008995A (ja) 樹脂組成物
JP2023008996A (ja) 樹脂組成物
JP2022082450A (ja) 樹脂組成物
JP2024035165A (ja) 樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022528651

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032268

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032268

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781295

Country of ref document: EP

Kind code of ref document: A1