WO2019106952A1 - 液晶配向剤、液晶配向膜及び液晶素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶素子 Download PDF

Info

Publication number
WO2019106952A1
WO2019106952A1 PCT/JP2018/037081 JP2018037081W WO2019106952A1 WO 2019106952 A1 WO2019106952 A1 WO 2019106952A1 JP 2018037081 W JP2018037081 W JP 2018037081W WO 2019106952 A1 WO2019106952 A1 WO 2019106952A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
solvent
carbon atoms
aligning agent
Prior art date
Application number
PCT/JP2018/037081
Other languages
English (en)
French (fr)
Inventor
哲 平野
幸志 樫下
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201880062309.XA priority Critical patent/CN111164501B/zh
Priority to KR1020207009464A priority patent/KR102341987B1/ko
Priority to JP2019557039A priority patent/JP6897791B2/ja
Publication of WO2019106952A1 publication Critical patent/WO2019106952A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present disclosure relates to a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal element.
  • Liquid crystal elements are used in various applications including display devices such as televisions, personal computers, and smartphones. These liquid crystal elements have a liquid crystal alignment film having a function of aligning liquid crystal molecules in a predetermined direction.
  • the liquid crystal alignment film is generally formed on a substrate by applying a liquid crystal alignment agent in which a polymer component is dissolved in an organic solvent onto the substrate, and preferably by heating.
  • a liquid crystal alignment agent in which a polymer component is dissolved in an organic solvent onto the substrate, and preferably by heating.
  • polyamic acids and soluble polyimides are widely used because they are excellent in mechanical strength, liquid crystal alignment property, and affinity with liquid crystals.
  • a solvent having high solubility in a polymer such as polyamic acid or soluble polyimide for example, a good solvent such as N-methyl-2-pyrrolidone or ⁇ -butyrolactone
  • a mixed solvent with a solvent having high spreadability eg, poor solvent such as butyl cellosolve is generally used (see, for example, Patent Documents 1 and 2).
  • volatilization of the solvent from above the printing machine can be suppressed at the time of printing of the liquid crystal alignment agent on the substrate, and even when printing is performed continuously, it is heavy on the printing machine It is required that coalescence does not easily precipitate, that is, good continuous printability.
  • the present disclosure has been made in view of the above problems, and is a liquid crystal which has good coatability and continuous printability with respect to a fine concavo-convex structure, is less susceptible to temperature unevenness at the time of film formation, and has good afterimage characteristics. It aims at providing a liquid crystal aligning agent which can obtain a display element.
  • the present inventors have intensively studied to solve the above problems, and found that the above problems can be solved by using a specific lactone or lactam as a solvent component of a liquid crystal aligning agent. Specifically, the present disclosure adopts the following means in order to solve the problems.
  • a polymer component and a solvent component wherein the solvent component is at least one selected from the group consisting of 5-membered ring lactones, 6-membered ring lactones and 7-membered ring lactams, and having 2 carbon atoms
  • the liquid crystal aligning agent is at least one selected from the group consisting of carbon-carbon double bonds forming part of a ring [A ], The liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present disclosure has good wettability and spreadability even when applied to a substrate surface having a fine uneven structure, and can form a liquid crystal alignment film uniformly on the substrate surface. Moreover, when printing is continuously performed in a manufacturing process, it can be made hard to precipitate a polymer on a printer. In addition, the liquid crystal aligning agent of the present disclosure is not susceptible to temperature unevenness at the time of film formation heating, and thus it is possible to obtain a liquid crystal alignment film in which characteristic variation due to temperature unevenness is suppressed. An excellent liquid crystal display element can be obtained.
  • FIG. 1 is a view showing a schematic configuration of an ITO electrode substrate for evaluation.
  • A is a top view
  • (b) is a sectional view which expanded a part.
  • the liquid crystal aligning agent is a liquid polymer composition which contains a polymer component and a solvent component, and the polymer component is dissolved in the solvent component.
  • the main skeleton of the polymer component contained in the liquid crystal aligning agent is not particularly limited.
  • polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamide imide, polybenzoxazole precursor, polybenzo Main skeletons such as oxazole, cellulose derivative, polyacetal, styrene-maleimide copolymer, poly (meth) acrylate and the like can be mentioned.
  • (meth) acrylate is meant to include acrylate and methacrylate.
  • polymer [P It is preferable to include] At least one polymer selected from the group consisting of polyamic acid, polyamic acid ester and polyimide among the above.
  • the polyamic acid can be obtained by reacting tetracarboxylic acid dianhydride with a diamine compound.
  • tetracarboxylic acid dianhydride examples include aliphatic tetracarboxylic acid dianhydrides, alicyclic tetracarboxylic acid dianhydrides, and aromatic tetracarboxylic acid dianhydrides. .
  • aliphatic tetracarboxylic acid dianhydride for example, 1,2,3,4-butanetetracarboxylic acid dianhydride etc .
  • alicyclic tetracarboxylic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-Tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-dioxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1 , 3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-
  • Diamine compound As a diamine compound used for the synthesis
  • combination of a polyamic acid, an aliphatic diamine, an alicyclic diamine, aromatic diamine, a diamino organosiloxane etc. can be mentioned, for example.
  • these diamines include, as aliphatic diamines, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like; as alicyclic diamines, for example, 1,4 -Diaminocyclohexane, 4,4'- methylenebis (cyclohexylamine) and the like;
  • an aromatic diamine for example, dodecanoxy-2,4-diaminobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanoxy-2,4-diaminobenzene, pentadecanoxy-2,5-diamino Benzene, octadecanoxy-2,5-diaminobenzene, cholestanyloxy-3,5-diamin
  • side chain type diamines such as diamines having a cinnamic acid structure in the side chain:
  • a polyamic acid can be obtained by reacting the above-described tetracarboxylic acid dianhydride and a diamine compound, as necessary, together with a molecular weight modifier.
  • the use ratio of the tetracarboxylic acid dianhydride and the diamine compound to be subjected to the synthesis reaction of the polyamic acid is such that the acid anhydride group of the tetracarboxylic acid dianhydride is 0.2 with respect to 1 equivalent of the amino group of the diamine compound. A ratio of ⁇ 2 equivalents is preferred.
  • the molecular weight modifier examples include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenyl isocyanate and naphthyl isocyanate. It can be mentioned.
  • the use ratio of the molecular weight modifier is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the tetracarboxylic acid dianhydride used and the diamine compound.
  • the synthesis reaction of polyamic acid is preferably carried out in an organic solvent.
  • the reaction temperature at this time is preferably -20 ° C to 150 ° C, and the reaction time is preferably 0.1 to 24 hours.
  • the organic solvent used for the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like.
  • organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol And using one or more selected from the group consisting of and halogenated phenols as a solvent, or using a mixture of one or more of these and another organic solvent (eg, butyl cellosolve, diethylene glycol diethyl ether, etc.) preferable.
  • organic solvent eg, butyl cellosolve, diethylene glycol diethyl ether, etc.
  • the amount (a) of the organic solvent used is such that the total amount (b) of the tetracarboxylic acid dianhydride and the diamine is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution. Is preferred.
  • a reaction solution in which the polyamic acid is dissolved is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparation of a liquid crystal aligning agent after the polyamic acid contained in the reaction solution is isolated.
  • the polyamic acid ester is, for example, [I] a method of reacting a polyamic acid obtained by the above synthesis reaction with an esterifying agent, [II] tetracarboxylic acid diester These compounds can be obtained by a method of reacting a diamine compound with a diamine compound, a method of reacting a [III] tetracarboxylic acid diester dihalide with a diamine compound, or the like.
  • the polyamic acid ester to be contained in the liquid crystal aligning agent may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist.
  • the reaction solution obtained by dissolving the polyamic acid ester may be used as it is for preparation of a liquid crystal aligning agent, or the polyamic acid ester contained in the reaction solution may be isolated and then provided for preparation of a liquid crystal aligning agent. Good.
  • the polyimide can be obtained, for example, by dehydration ring closure and imidization of the polyamic acid synthesized as described above.
  • the polyimide may be a completely imidized product obtained by dehydrating and ring closing all of the amic acid structure of the precursor polyamic acid, and only a part of the amic acid structure may be dehydrating and ring closing, and the amic acid structure and the imide. It may be a partial imidate coexisting with a ring structure.
  • the polyimide used for the reaction preferably has an imidation ratio of 20 to 99%, more preferably 30 to 96%.
  • the imidation ratio is a percentage representing the ratio of the number of imide ring structures to the total number of amic acid structures of polyimide and the number of imide ring structures.
  • part of the imide ring may be an isoimide ring.
  • the dehydration ring closure of the polyamic acid is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary.
  • a dehydrating agent for example, an acid anhydride such as acetic anhydride, propionic anhydride, trifluoroacetic anhydride and the like can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 moles relative to 1 mole of the polyamic acid's amic acid structure.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used.
  • the amount of the dehydrating ring-closing catalyst used is preferably 0.01 to 10 moles relative to 1 mole of the dehydrating agent used.
  • an organic solvent used for a dehydration ring-closing reaction the organic solvent illustrated as what is used for the synthesis
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C.
  • the reaction time is preferably 1.0 to 120 hours.
  • a reaction solution containing a polyimide is obtained. This reaction solution may be used as it is for preparation of a liquid crystal aligning agent, or may be used for preparing a liquid crystal aligning agent after isolating the polyimide.
  • Polyimides can also be obtained by imidization of polyamic acid esters.
  • the polyamic acid, polyamic acid ester and polyimide obtained as described above preferably have a solution viscosity of 10 to 800 mPa ⁇ s when this is made into a solution with a concentration of 10% by mass, preferably 15 to 500 mPa. More preferably, it has a solution viscosity of s.
  • the solution viscosity (mPa ⁇ s) of the polyamic acid, polyamic acid ester and polyimide is 10% by mass of a solution prepared using a good solvent of these polymers (eg, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.)
  • the polymer solution of the above was a value measured at 25.degree. C. using an E-type rotational viscometer.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, and more preferably 2,000 to 500 It is 300,000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the content ratio of the polymer [P] (in the case of containing two or more, the total amount thereof) is the total amount of the polymer components contained in the liquid crystal aligning agent from the viewpoint of making the quality of the liquid crystal element obtained better.
  • the content is preferably 20% by mass or more, more preferably 30% by mass or more, and still more preferably 50% by mass or more.
  • the liquid crystal aligning agent of the present disclosure is at least one member selected from the group consisting of 5-membered ring lactones, 6-membered ring lactones and 7-membered ring lactams as at least a part of the solvent component, and an alkyl having 2 to 10 carbon atoms.
  • an alkoxy group having 2 to 10 carbon atoms an alkoxyalkyl group having 2 to 10 carbon atoms, an alkoxyalkoxyalkyl group having 2 to 10 carbon atoms, an alkoxyalkoxy group having 2 to 10 carbon atoms, a group “—COR 12 ” (wherein , R 12 is an alkyl group having 1 to 3 carbon atoms) and at least one partial structure selected from the group consisting of carbon-carbon double bonds forming part of a ring (hereinafter also referred to as “specific partial structure”) Containing a solvent [A].
  • the solvent [A] has a structure in which one hydrogen atom bonded to the ring of a specific cyclic ester ( ⁇ -butyrolactone, ⁇ -valerolactone or ⁇ -caprolactam) is substituted with a group consisting of a chain structure, or a specific It has a structure in which one ethylene group constituting the ring of the cyclic ester is substituted by a group having a carbon-carbon double bond.
  • the coatability (printability) of the liquid crystal aligning agent to the substrate surface which has an electrode structure of fine concavo-convex shape can be improved.
  • the boiling point of the solvent component of the liquid crystal aligning agent can be adjusted to an appropriate height, and the influence of temperature unevenness can be made less at the time of film formation.
  • the solvent [A] is preferably an alkyl group having 2 to 10 carbon atoms, an alkoxy group having 2 to 10 carbon atoms, or an alkoxyalkyl group having 2 to 10 carbon atoms in the ring part of ⁇ -butyrolactone or ⁇ -valerolactone.
  • R 13 -OR 14 alkoxyalkoxyalkyl group (-R 13 -OR 15 -OR 14 2 to 10 carbon atoms), a compound having an alkoxyalkoxy group having 2 to 10 carbon atoms (-OR 13 -OR 14) ( a-1) a compound (a-2) in which one ethylene group constituting the ring of substituted or unsubstituted ⁇ -butyrolactone is replaced with a carbon-carbon double bond, and a nitrogen in the ring of ⁇ -caprolactam It is a compound (a-3) in which "-COR 12 " is bonded to an atom.
  • R 13 represents an alkanediyl group
  • R 14 represents an alkyl group
  • R 15 represents an alkanediyl group
  • R 1 represents an alkyl group having 2 to 10 carbon atoms, an alkoxy group having 2 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, an alkoxyalkoxyalkyl group having 2 to 10 carbon atoms or It is a C2-C10 alkoxy alkoxy group, n is 1 or 2.
  • R 2 is a divalent group represented by the following formula (4-1) or formula (4-2).
  • R 4 to R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • “* 1” represents an oxygen atom Indicates that it is a bond with
  • R 3 is an alkyl group having 1 to 3 carbon atoms.
  • R 1 may be linear or branched.
  • R 1 include, as an alkyl group, for example, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, 3-pentyl group, tert-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group etc.
  • each of the substituted alkyl groups is an oxygen atom or the like as an alkoxyalkyl group, for example, a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, a propoxymethyl group, a propoxyethyl group, a butoxyethyl group etc .;
  • an alkoxy alkoxy alkyl group of -10 for example, methoxy methoxymethyl group, ethoxy methoxy group
  • an alkoxy alkoxy group for example, a methoxy ethoxy group, an ethoxy ethoxy group, an ethoxy propoxy group, a propoxy propoxy group etc. can be mentioned as an alkoxy alkoxy group.
  • R 1 is preferably linear, more preferably a linear alkyl group having 3 or more carbon atoms, still more preferably a linear alkyl group having 3 to 8 carbon atoms, and having 5 to 8 carbon atoms Particularly preferred is a linear alkyl group of R 1 may be bonded to any position of the ⁇ -butyrolactone ring or the ⁇ -valerolactone ring, but is preferably bonded to the position ⁇ to the oxygen atom in the ring.
  • the alkyl group of R 4 to R 11 in the above formulas (4-1) and (4-2) may be linear or branched and, for example, a methyl group, an ethyl group, n And -propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl and the like.
  • R 8 to R 11 is preferably an alkyl group, and the alkyl group is bonded to the alpha position to the oxygen atom in the ring More preferable.
  • R 4 and R 8 be a methyl group or an ethyl group
  • R 5 to R 7 and R 9 to R 11 be a hydrogen atom.
  • Specific examples of the compound represented by the above formula (2) include ⁇ -angelica lactone, ⁇ -angelica lactone and the like.
  • the compound represented by the said Formula (2) can be used individually by 1 type or in combination of 2 or more types.
  • R 3 may be linear or branched, and examples thereof include a methyl group, an ethyl group, an n-propyl group and an isopropyl group.
  • R 3 is preferably a methyl group or an ethyl group, more preferably a methyl group.
  • Specific examples of the compound represented by the above formula (3) include, for example, N-acetyl- ⁇ -caprolactam, N-propionyl- ⁇ -caprolactam and the like. Preferably, it is N-acetyl- ⁇ -caprolactam.
  • the compound represented by the said Formula (3) can be used individually by 1 type or in combination of 2 or more types.
  • the solvent [A] preferably has a substituent at the ring portion of the cyclic ester in that the coating property on the substrate surface having a fine uneven electrode structure can be made better, More preferred is at least one selected from the group consisting of a compound represented by the formula (1) and a compound represented by the above formula (2).
  • the solvent component is at least one selected from the group consisting of alcohol solvents, chain ester solvents, ether solvents and ketone solvents together with the solvent [A] in that the wettability of the liquid crystal aligning agent can be further enhanced. It is preferable to further include a solvent which is different from the solvent [A] (hereinafter, also referred to as “solvent [B]”).
  • solvent [B] examples include alcohol solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol, and the like.
  • chain ester solvents include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxy propionate, diethyl oxalate, diethyl malonate, isoamyl propionate, Isoamyl isobutyrate etc;
  • ether solvents for example, diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol n-propyl ether, ethylene glycol i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl Ether acetate, diethylene glycol dimethyl ether, di
  • the solvent [B] is preferably at least one selected from the group consisting of alcohol solvents, chain ester solvents and ether solvents, from the viewpoint of a higher effect of improving the coating properties, and ethylene, ethylene Glycol monobutyl ether (butyl cellosolve), diacetone alcohol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and one selected from the group consisting of 3-methoxy-1-butanol It is more preferable that
  • 1 type can be used individually or in combination of 2 or more types.
  • solvent component secures the solubility of the polymer in the solvent component, and for the purpose of suppressing the reduction in product yield caused by the precipitation of the polymer in the coating step, together with the solvent [A], the boiling point at 1 atmospheric pressure is 200 ° C. or higher It is preferable to further include a solvent different from the solvent [A] (hereinafter, also referred to as “solvent [C]”).
  • the solvent [C] is preferably at least one selected from the group consisting of aprotic polar solvents and phenols, and is more preferably aprotic polar solvents.
  • aprotic polar solvents from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, gamma butyrolactone, propylene carbonate and a compound represented by the following formula (5)
  • Particularly preferred is at least one selected from the group consisting of (In the formula (5), R 21 and R 22 are each independently a hydrogen atom, or a monovalent hydrocarbon group which has carbon atoms 1 be ⁇ 6 have an ether bond, R 21 and R 22 may combine with each other to form a ring, and R 23 is an alkyl group having 1 to 4 carbon atoms.
  • examples of the monovalent hydrocarbon group having 1 to 6 carbon atoms as R 21 and R 22 include, for example, a chain hydrocarbon group having 1 to 6 carbon atoms, and an alicyclic having 3 to 6 carbon atoms.
  • a hydrocarbon group, an aromatic hydrocarbon group having 5 or 6 carbon atoms and the like can be mentioned.
  • the monovalent group having an ether bond includes, for example, an alkoxyalkyl group having 2 to 6 carbon atoms.
  • the ring R 21, R 22 is bonded to R 21 and R 22 are formed together with the nitrogen atom bonded with each other, such as pyrrolidine ring, and a nitrogen-containing heterocyclic ring such as a piperidine ring.
  • a monovalent chain hydrocarbon group such as a methyl group may be bonded to these nitrogen-containing heterocycles.
  • R 21 and R 22 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, still more preferably a hydrogen atom or a methyl group .
  • the alkyl group having 1 to 4 carbon atoms of R 23 may be linear or branched.
  • R 23 is preferably a methyl group or an ethyl group.
  • the compound represented by the above formula (5) include, for example, 3-butoxy-N, N-dimethylpropanamide, 3-methoxy-N, N-dimethylpropanamide, 3-hexyloxy-N, N- Dimethylpropanamide, isopropoxy-N-isopropyl-propionamide, n-butoxy-N-isopropyl-propionamide and the like.
  • the compound represented by the said Formula (5) can be used individually by 1 type or in combination of 2 or more types.
  • the content rate of solvent [A] is 10 mass% or more with respect to the whole quantity of the solvent component contained in a liquid crystal aligning agent among solvent components.
  • the content ratio of the solvent [A] is more preferably 10 to 85% by mass, and still more preferably 15 to 15%, since the balance between the solubility of the polymer component and the wettability of the liquid crystal aligning agent can be improved. It is 75% by mass, particularly preferably 15 to 60% by mass.
  • the content ratio of the solvent [B] is preferably 10 to 80% by mass with respect to the total amount of the solvent component contained in the liquid crystal aligning agent, in that the wettability of the liquid crystal aligning agent can be further enhanced. It is more preferable to set it to 70% by mass, and it is further preferable to set it to 20 to 50% by mass.
  • the content ratio of the solvent [C] is preferably 70% by mass or less in order to lower the heating temperature at the time of film formation.
  • the content ratio of the solvent [C] is more preferably 1 to 70% by mass with respect to the total amount of the solvent component contained in the liquid crystal aligning agent It is more preferably 5 to 65% by mass, and particularly preferably 10 to 60% by mass.
  • the liquid crystal aligning agent may contain only the solvent [A] as a solvent component, but the solvent component consists of the solvent [A] and the solvent [B], or the solvent [A] and the solvent [B] and the solvent It is particularly preferable to consist of [C].
  • the solvent component consists of the solvent [A] and the solvent [B]” and “the solvent component is composed of the solvent [A], the solvent [B] and the solvent [C]” It is acceptable to contain solvents [B] and other solvents other than the solvent [C] to such an extent that they do not interfere with the effects of the present invention.
  • other solvents include halogenated hydrocarbon solvents, hydrocarbon solvents and the like.
  • halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene and the like; hydrocarbon solvents such as hexane, heptane and octane , Benzene, toluene, xylene and the like can be mentioned respectively.
  • the content ratio of the other solvent is preferably 1% by mass or less, more preferably 0.5% by mass or less, and more preferably 0.2% by mass or less based on the total amount of the solvent component in the liquid crystal aligning agent. It is further preferred that
  • the liquid crystal aligning agent contains a polymer component and a solvent component, but may contain other components as needed.
  • examples of such other components include epoxy group-containing compounds (for example, N, N, N ', N'- tetraglycidyl-m-xylene diamine, N, N, N', N'- tetraglycidyl-4, 4 Functional amino compounds (eg, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, etc.), antioxidants, metal chelate compounds, curing A catalyst, a hardening accelerator, surfactant, a filler, a dispersing agent, a photosensitizer, etc. are mentioned.
  • the blend ratio of the other components can be appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass.
  • the solid content concentration is less than 1% by mass, the film thickness of the coating film becomes too small, and it becomes difficult to obtain a good liquid crystal alignment film.
  • the solid content concentration exceeds 10% by mass, the film thickness of the coating film becomes too large to obtain a good liquid crystal alignment film, and the viscosity of the liquid crystal alignment agent increases and the coatability decreases. There is a tendency.
  • the liquid crystal element of the present disclosure includes a liquid crystal alignment film formed using the liquid crystal alignment agent described above.
  • Liquid crystal elements can be effectively applied to various applications. For example, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors, liquid crystal televisions It can be used as various display devices such as information display, light control film, retardation film and the like.
  • the operation mode of the liquid crystal is not particularly limited.
  • TN type For example, TN type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB
  • IPS type For example, TN type, STN type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), IPS type, FFS type, OCB
  • OCB Optically Compensated Bend
  • a method of manufacturing a liquid crystal element will be described by taking a liquid crystal display element as an example.
  • the liquid crystal display element can be manufactured, for example, by a method including the following steps 1 to 3.
  • Step 1 differs in the substrate used according to the desired operation mode.
  • Steps 2 and 3 are common to each operation mode.
  • a liquid crystal aligning agent is applied on a substrate, and preferably a coated surface is formed to form a coating film on the substrate.
  • the substrate for example, glass such as float glass and soda glass; transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate and poly (alicyclic olefin) can be used.
  • a transparent conductive film provided on one side of the substrate an NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ) Etc. can be used.
  • a TN type, STN type or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate not provided with an electrode Use
  • a film made of a metal such as chromium can be used as the metal film.
  • the application of the liquid crystal aligning agent to the substrate is preferably performed by an offset printing method, a spin coating method, a roll coater method, a flexographic printing method, or an ink jet printing method on the electrode formation surface.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal alignment agent.
  • the prebake temperature is preferably 30 to 200 ° C., and the prebake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is carried out to completely remove the solvent and, if necessary, thermally imidize the amic acid structure present in the polymer.
  • the baking temperature (post-baking temperature) at this time is preferably 80 to 300 ° C., and the post-baking time is preferably 5 to 200 minutes.
  • the film thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • Step 2 orientation treatment
  • a treatment for imparting liquid crystal alignment ability to the coating film formed in the above step 1 is carried out.
  • the alignment ability of the liquid crystal molecules is imparted to the coating film to form a liquid crystal alignment film.
  • rubbing treatment is performed by rubbing the coating film in a fixed direction with a roll wound with a cloth made of fibers such as nylon, rayon and cotton, or light irradiation to the coating film formed on the substrate using a liquid crystal alignment agent.
  • the optical alignment processing etc. which carry out and provide liquid crystal aligning ability to a coating film are mentioned.
  • the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to alignment treatment.
  • the liquid crystal aligning agent suitable for a liquid crystal display element of a vertical alignment type can also be used suitably also for a liquid crystal display element of a PSA (Polymer sustained alignment) type.
  • Step 3 Construction of Liquid Crystal Cell
  • Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and a liquid crystal is disposed between two substrates disposed opposite to each other to manufacture a liquid crystal cell.
  • a liquid crystal cell for example, (1) two substrates are disposed opposite to each other with a spacer between them so that the liquid crystal alignment film faces each other, and peripheral portions of the two substrates are sealed using a sealing agent.
  • Liquid crystal is injected and filled into a cell gap separated by a substrate surface and a sealing agent, and then the injection hole is sealed, (2) a seal is made at a predetermined place on one substrate on which a liquid crystal alignment film is formed.
  • Liquid crystal is applied onto the surface of the liquid crystal alignment film, and then the other substrate is bonded so that the liquid crystal alignment film faces each other and the liquid crystal is spread over the entire surface of the substrate (ODF method Etc.).
  • the liquid crystal cell produced is preferably further heated to a temperature at which the liquid crystal used has an isotropic phase, and then gradually cooled to room temperature to remove the flow alignment at the time of liquid crystal filling.
  • an epoxy resin containing a hardening agent and aluminum oxide spheres as a spacer can be used as a spacer.
  • a photo spacer, a bead spacer, etc. can be used as a spacer.
  • liquid crystals include nematic liquid crystals and smectic liquid crystals, among which nematic liquid crystals are preferred.
  • cholesteric liquid crystals, chiral agents, ferroelectric liquid crystals, etc. may be added to nematic liquid crystals or smectic liquid crystals, for example.
  • a polarizing plate is attached to the outer surface of the liquid crystal cell as required.
  • the polarizing plate include a polarizing plate called a “H film” obtained by absorbing iodine while stretching and orienting polyvinyl alcohol, sandwiched by a cellulose acetate protective film, or a polarizing plate consisting of the H film itself.
  • a liquid crystal display element is obtained.
  • the weight average molecular weight Mw of the polymer, the imidation ratio of the polyimide in the polymer solution, the solution viscosity of the polymer solution, and the epoxy equivalent were measured by the following methods.
  • the necessary amounts of the raw material compounds and the polymers used in the following examples were secured by repeating the synthesis on the synthesis scale shown in the following synthesis examples as necessary.
  • the weight average molecular weight Mw is a polystyrene conversion value measured by GPC under the following conditions.
  • Imidation rate of polyimide The solution of the polyimide was poured into pure water, and the obtained precipitate was sufficiently dried under reduced pressure at room temperature, then dissolved in deuterated dimethyl sulfoxide, and 1 H-NMR was measured at room temperature using tetramethylsilane as a reference substance.
  • the imidation ratio [%] was determined from the obtained 1 H-NMR spectrum by the following formula (1).
  • Imidation ratio [%] (1 ⁇ (A 1 / (A 2 ⁇ ⁇ ))) ⁇ 100 (1)
  • a 1 is a proton-derived peak area of an NH group appearing in the vicinity of a chemical shift of 10 ppm
  • a 2 is a peak area derived from other protons
  • is a precursor of a polymer (polyamic acid It is the number ratio of other protons to one proton of NH group in).
  • Solution viscosity of polymer solution The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer. [Epoxy equivalent] The epoxy equivalent was measured by the hydrochloric acid-methyl ethyl ketone method described in JIS C 2105.
  • Synthesis of Polyimide (PI-1) 22.4 g (0.1 mol) of 2,3,5-tricarboxycyclopentylacetic acid dianhydride (TCA) as tetracarboxylic acid dianhydride, 8.6 g (0.08 mol) of p-phenylenediamine (PDA) as diamine ) And 10.5 g (0.02 mol) of cholestanyl 3,5-diaminobenzoate (HCDA) are dissolved in 166 g of N-methyl-2-pyrrolidone (NMP) and reacted at 60 ° C.
  • TCA 2,3,5-tricarboxycyclopentylacetic acid dianhydride
  • PDA p-phenylenediamine
  • HCDA cholestanyl 3,5-diaminobenzoate
  • the solvent in the system is solvent-substituted with fresh NMP (pyridine and acetic anhydride used for dehydration ring closure reaction are removed out of the system by this operation.
  • NMP pyridine and acetic anhydride used for dehydration ring closure reaction are removed out of the system by this operation.
  • the imidization rate is about 68.
  • a solution containing 26% by weight of polyimide (PI-1) was obtained. A small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 45 mPa ⁇ s.
  • the reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyimide (PI-1).
  • Synthesis Example 2 Synthesis of Polyimide (PI-2) 110 g (0.50 mol) of TCA and 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) naphtho as tetracarboxylic acid dianhydride 160 g (0.50 mol) of [1,2-c] furan-1,3-dione, 91 g (0.85 mol) of PDA as a diamine, 25 g of 1,3-bis (3-aminopropyl) tetramethyldisiloxane 0.10 mol) and 25 g (0.040 mol) of 3,6-bis (4-aminobenzoyloxy) cholestane and 1.4 g (0.015 mol) of aniline as a monoamine are dissolved in 960 g of NMP at 60 ° C.
  • the reaction was carried out for 6 hours to obtain a solution containing polyamic acid.
  • a small amount of the obtained polyamic acid solution was fractionated, NMP was added, and the solution viscosity measured as a solution of 10 mass% of polyamic acid concentration was 60 mPa ⁇ s.
  • 2,700 g of NMP was added to the obtained polyamic acid solution, 390 g of pyridine and 410 g of acetic anhydride were added, and dehydration ring closure reaction was carried out at 110 ° C. for 4 hours.
  • Synthesis Example 3 Synthesis of Polyimide (PI-3) The above-mentioned Synthesis Example 1 and Example 2 were changed except that the diamine used was changed to 0.08 moles of 3,5-diaminobenzoic acid (3,5DAB) and 0.02 moles of cholestanyloxy-2,4-diaminobenzene (HCODA).
  • a polyamic acid solution was obtained by the same method. A small amount of the obtained polyamic acid solution was fractionated, NMP was added, and the solution viscosity measured as a solution of 10 mass% of polyamic acid concentration was 80 mPa ⁇ s.
  • Synthesis Example 4 Synthesis of Polyimide (PI-4) The above-mentioned Synthesis Example 1 was repeated except that the diamine used was changed to 0.06 mol of 4,4'-diaminodiphenylmethane, 0.02 mol of compound (DA-1) and 0.02 mol of compound (DA-2). A polyamic acid solution was obtained by the same method. A small amount of the obtained polyamic acid solution was fractionated, NMP was added, and the solution viscosity measured as a solution of 10 mass% of polyamic acid concentration was 60 mPa ⁇ s.
  • Synthesis Example 5 Synthesis of Polyimide (PI-5) While changing the tetracarboxylic acid dianhydride used to 0.08 moles of 1,2,3,4-cyclobutane tetracarboxylic acid dianhydride and 0.02 moles of pyromellitic dianhydride, the diamine used is Other than 0.098 mol of 4-aminophenyl 4-aminobenzoate (compound represented by the above formula (DA-6)) and 0.002 mol of 3,6-bis (4-aminobenzoyloxy) cholestane A polyamic acid solution was obtained in the same manner as in Synthesis Example 1 above.
  • a small amount of the obtained polyamic acid solution was fractionated, NMP was added, and the solution viscosity measured as a solution of 10 mass% of polyamic acid concentration was 80 mPa ⁇ s.
  • imidization was performed by the same method as in Synthesis Example 1 to obtain a solution containing 26% by mass of polyimide (PI-5) having an imidization rate of about 75%.
  • a small amount of the obtained polyimide solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyimide concentration of 10% by mass was 41 mPa ⁇ s.
  • the reaction solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried at 40 ° C. under reduced pressure for 15 hours to obtain polyimide (PI-5).
  • Synthesis Example 6 Synthesis of Polyamic Acid (PA-1) 200 g (1.0 mol) of 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CB) as tetracarboxylic acid dianhydride, 210 g of 2,2'-dimethyl-4,4'-diaminobiphenyl as diamine (1.0 mol) was dissolved in a mixed solvent of NMP 370 g and GBL 3, 300 g and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution having a solid concentration of 10 mass% and a solution viscosity of 160 mPa ⁇ s. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried at 40 ° C. under reduced pressure for 15 hours to obtain polyamic acid (PA-1).
  • PA-1 Polyamic Acid
  • Synthesis Example 7 Synthesis of Polyamic Acid (PA-2) 7.0 g (0.031 mol) of TCA as tetracarboxylic acid dianhydride, 13 g of a compound (DA-5) (corresponding to 1 mol per 1 mol of TCA) as a diamine are dissolved in 80 g of NMP and 4 at 60 ° C. By performing the reaction for time, a solution containing 20% by mass of polyamic acid (PA-3) was obtained. The solution viscosity of this polyamic acid solution was 2,000 mPa ⁇ s.
  • Compound (DA-5) was synthesized according to the description in JP-A-2011-100099. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried at 40 ° C. under reduced pressure for 15 hours to obtain polyamic acid (PA-2).
  • Synthesis Example 8 Synthesis of Polyamic Acid (PA-3) Polyamic acid solution in the same manner as in Synthesis Example 6 except that the diamine used was changed to 0.7 mol of 1,3-bis (4-aminophenethyl) urea and 0.3 mol of compound (DA-2) I got A small amount of the obtained polyamic acid solution was fractionated, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 70 mPa ⁇ s. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried at 40 ° C. under reduced pressure for 15 hours to obtain polyamic acid (PA-3).
  • PA-3 Polyamic acid
  • Synthesis Example 10 Synthesis of Polyamic Acid (PA-5) Except that the diamine used was changed to 0.2 mol of 2,4-diamino-N, N-diallylaniline, 0.2 mol of 4,4'-diaminodiphenylamine and 0.6 mol of 4,4'-diaminodiphenylmethane A polyamic acid solution was obtained in the same manner as in Synthesis Example 6 above. A small amount of the obtained polyamic acid solution was fractionated, NMP was added, and the solution viscosity measured as a solution of 10 mass% of polyamic acid concentration was 95 mPa ⁇ s. The polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain polyamic acid (PA-5).
  • PA-5 Polyamic acid
  • the weight average molecular weight Mw of the obtained polyamic acid ester (PAE-1) was 34,000.
  • Synthesis Example 12 Synthesis of Polyorganosiloxane (APS-1) In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100.0 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECETS), 500 g of methyl isobutyl ketone and 10.0 g of triethylamine Charge and mix at room temperature. Next, 100 g of deionized water was added dropwise over 30 minutes from the dropping funnel, and then reaction was performed at 80 ° C. for 6 hours while stirring under reflux.
  • EETS 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • EPS-1 reactive polyorganosiloxane
  • EPS-1 was obtained as a viscous transparent liquid.
  • the weight average molecular weight Mw of the obtained reactive polyorganosiloxane was 3,500, and the epoxy equivalent was 180 g / mol.
  • Example 1 Preparation of Liquid Crystal Alignment Agent
  • ⁇ HL ⁇ -heptanolactone
  • NMP N-methyl-2-pyrrolidone
  • BC butyl cellosolve
  • the solution was sufficiently stirred and then filtered through a filter with a pore size of 1 ⁇ m to prepare a liquid crystal aligning agent (S-1).
  • the liquid crystal aligning agent (S-1) is mainly for the production of a vertical alignment type liquid crystal display element.
  • the liquid crystal aligning agent (S-1) is dispensed (one-way) on the anilox roll at one-minute intervals, and each time, the operation (hereinafter referred to as idle operation) of bringing the anilox roll and printing plate into contact It did (it does not print on a glass substrate during this time).
  • This idle operation is an operation carried out to intentionally carry out the printing of the liquid crystal alignment agent under severe conditions.
  • main printing was subsequently performed using a glass substrate. In this printing, after idle operation, five substrates are loaded at intervals of 30 seconds, each substrate after printing is heated (prebaked) at 80 ° C. for 1 minute to remove the solvent, and then heated at 200 ° C.
  • the printability was evaluated by observing the coating film with a microscope with a magnification of 20 times. In the evaluation, continuous printability “good ( ⁇ )” is observed when precipitation of the polymer is not observed from the first printing after idling, while precipitation of the polymer is observed at the first printing after idling. Continuous printability is "Available ( ⁇ )” when precipitation of the polymer is not observed during 5 times of actual printing, and continuous precipitation is observed when precipitation of the polymer is observed even after repeating 5 times of actual printing. Printability was "bad (x)".
  • the liquid crystal aligning agent (S-1) prepared in the above was dropped to evaluate the easiness of the substrate to the uneven surface.
  • the coating property of the liquid crystal aligning agent on the fine uneven surface is better, the larger the wetting and spreading of the droplets (specifically, the larger the wetting spread area S (mm 2 / ⁇ L) of the droplets with respect to the liquid amount). You can say that.
  • the liquid crystal aligning agent (S-1) prepared in the above was treated with a liquid crystal alignment film printing machine (Nippon Photo Printing Co., Ltd.), a glass substrate with a transparent electrode having a fine slit ITO electrode structure, and a patterned ITO electrode structure. It apply
  • pre-baking on an 80 ° C. hot plate for 1 minute to remove the solvent
  • Each coated substrate was subjected to ultrasonic cleaning for 1 minute in ultrapure water and then dried in a clean oven at 100 ° C. for 10 minutes. Thus, a pair of substrates (two sheets) having a liquid crystal alignment film was obtained. Next, an aluminum oxide sphere-containing epoxy resin adhesive having a diameter of 5.5 ⁇ m is applied to the outer edge of the surface having the liquid crystal alignment film, and then a pair of substrates are superposed and pressure bonded so that the liquid crystal alignment film faces each other. The agent was allowed to cure.
  • nematic liquid crystal (MLC-6608, manufactured by Merck & Co., Ltd.) was filled between the pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an acrylic photo-curing adhesive to manufacture a liquid crystal cell. Further, a liquid crystal cell was manufactured by the same method as described above except that the post-baking temperature was changed from 180 ° C. to 120 ° C. or 230 ° C., respectively. The obtained liquid crystal cell is as described in 6. below. Used in the evaluation of
  • the measurement of the pretilt angle is based on the method described in Non-patent document (T. J. Scheffer et. Al. J. Appl. Phys. Vo. 19, p. 2013 (1980)), He-Ne laser light
  • the value of the inclination angle of the liquid crystal molecules from the substrate surface measured by the crystal rotation method using the above was taken as the pretilt angle [°].
  • the evaluation is “good ( ⁇ )” when ⁇ is 0.2 ° or less, “good ( ⁇ )” when it is greater than 0.2 ° and less than 0.5 °, 0.5 °
  • the case where it is above was made into “defect (x).”
  • the post-baking margin was evaluated as “good” and when it was 120 ° C., it was evaluated as “good”.
  • the AC residual image characteristic is “good ( ⁇ )”, and when it is 2% or more and less than 3%, “good ( ⁇ )”, 3% or more It evaluated as “defect (x).” As a result, it was an evaluation of "good” in this example.
  • Examples 2 to 10 and Comparative Examples 1 to 8 Liquid crystal aligning agents (S-2 to S-10, SR-1 to SR-8) in the same manner as in Example 1 except that the type and blending amount of the polymer, and the solvent composition were as described in Table 1 below, respectively. Were prepared. Further, various evaluations were performed in the same manner as in Example 1 using the prepared liquid crystal aligning agent. The evaluation results are shown in Tables 2 and 3 below.
  • Example 11 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-11) was prepared in the same manner as in Example 1 except that the polymer components and the solvent composition were changed as described in Table 1 below.
  • the liquid crystal aligning agent (S-11) is mainly for the production of a horizontal alignment type liquid crystal display element. 2. Evaluation of Liquid Crystal Alignment Agent The surface asperity, the continuous printability, and the coating property on the fine asperity surface were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-11) was used. The results are shown in Table 2 below.
  • the coating film surface was rubbed at a roll rotational speed of 400 rpm, a stage moving speed of 3 cm / sec, and a hair-foot push-in length of 0.1 mm by a rubbing machine having a roll wound with rayon cloth. Then, ultrasonic cleaning was performed in ultrapure water for 1 minute, and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a substrate having a liquid crystal alignment film. Next, a pair of substrates having a liquid crystal alignment film is screen-printed with an epoxy resin adhesive containing an aluminum oxide sphere having a diameter of 5.5 ⁇ m, leaving a liquid crystal injection port on the edge of the surface on which the liquid crystal alignment film is formed.
  • Example 12 and 13 Liquid crystal aligning agents (S-12) and (S-13) were respectively prepared in the same manner as in Example 1 except that the polymer component and the solvent composition were changed as described in Table 1 below. Moreover, while evaluating the surface asperity, continuous printability, and coating property on fine asperity surface in the same manner as in Example 1 except that the liquid crystal aligning agents (S-12) and (S-13) were used, respectively, In the same manner as in Example 11, a rubbing FFS type liquid crystal cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
  • Example 14 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-14) was prepared in the same manner as in Example 1 except that the polymer components and the solvent composition were changed as described in Table 1 below.
  • the liquid crystal aligning agent (S-14) is mainly for the production of a PSA type liquid crystal display element. 2. Evaluation of Liquid Crystal Alignment Agent The surface asperity, the continuous printability, and the coating property on the fine asperity surface were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-14) was used. The results are shown in Table 2 below.
  • liquid crystal compound represented by the following formula (L1-1) was represented by 5% by mass with respect to 10 g of nematic liquid crystal (MLC-6608 manufactured by Merck Ltd.), and by the following formula (L2-1)
  • the liquid crystal composition LC1 was obtained by adding 0.3 mass% of the photopolymerizable compounds and mixing them.
  • a liquid crystal alignment film printing machine (Nippon Photography printing (A) was carried out on each electrode surface of two glass substrates each having a conductive film consisting of an ITO electrode and the liquid crystal alignment agent (S-14) prepared above. (Pre-baking) on a hot plate at 80 ° C. for 2 minutes to remove the solvent, and then heating (post-baking) on a hot plate at 150 ° C. for 10 minutes to obtain an average film. A coating of 0.06 ⁇ m in thickness was formed. The coated films were subjected to ultrasonic cleaning in ultrapure water for 1 minute and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a pair (two sheets) of substrates having a liquid crystal alignment film.
  • the pattern of the used electrode is the same pattern as the electrode pattern in the PSA mode.
  • an aluminum oxide sphere-containing epoxy resin adhesive having a diameter of 5.5 ⁇ m is applied to the outer edge of the surface of the one of the pair of substrates having the liquid crystal alignment film, and then the liquid crystal alignment film faces one another. It was pressure-bonded together and the adhesive was cured.
  • the liquid crystal composition LC1 prepared above was filled between a pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an acrylic photo-curing adhesive to manufacture a liquid crystal cell.
  • Examples 15 to 17, 27, 28 Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the polymer component and the solvent composition were changed as described in Table 1 below. Moreover, while evaluating surface asperity, continuous printability, and coating property on fine asperity surface in the same manner as in Example 1 except that each liquid crystal aligning agent was used, in the same manner as in Example 14, a PSA type liquid crystal cell was obtained. It manufactured and performed various evaluations. The results are shown in Tables 2 and 3 below.
  • Example 18 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-18) was prepared in the same manner as in Example 1 except that the polymer components and the solvent composition were changed as described in Table 1 below.
  • the liquid crystal aligning agent (S-18) is mainly for the production of a liquid crystal display element of the light vertical alignment type.
  • the surface asperity, the continuous printability, and the coating property on the fine asperity surface were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-18) was used. The results are shown in Table 2 below.
  • the liquid crystal aligning agent (S-18) prepared above is applied on a transparent electrode surface of a glass substrate with a transparent electrode made of an ITO film using a spinner, and a hot plate at 80 ° C. Pre-baked for 1 minute. Thereafter, the inside of the chamber was heated at 230 ° C. for 1 hour in an oven purged with nitrogen to form a coating having a thickness of 0.1 ⁇ m.
  • this coated film surface is irradiated with polarized ultraviolet light of 1,000 J / m 2 containing an emission line of 313 nm from a direction inclined 40 ° from the substrate normal to obtain liquid crystal alignment ability. Granted. The same operation was repeated to form a pair (two sheets) of substrates having a liquid crystal alignment film.
  • An epoxy resin adhesive containing aluminum oxide spheres having a diameter of 3.5 ⁇ m is applied by screen printing to the outer periphery of the surface having a liquid crystal alignment film of one of the above substrates, and then the liquid crystal alignment film surfaces of a pair of substrates are made to face each other.
  • Example 19 and 20 Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the polymer component and the solvent composition were changed as described in Table 1 below. Moreover, while evaluating surface asperity, continuous printability, and coating property on fine asperity surface in the same manner as in Example 1 except that each liquid crystal aligning agent was used, optical vertical alignment liquid crystal as in Example 18 The cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
  • Example 21 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-21) was prepared in the same manner as in Example 1 except that the polymer components and the solvent composition were changed as described in Table 1 below.
  • the liquid crystal aligning agent (S-21) is mainly for producing a light horizontal alignment type liquid crystal display element. 2. Evaluation of Liquid Crystal Alignment Agent The surface asperity, the continuous printability, and the coating property on the fine asperity surface were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-21) was used. The results are shown in Table 2 below.
  • the coating film surface is irradiated with ultraviolet light of 1,000 J / m 2 including a linearly polarized light emission line of 254 nm from the normal direction of the substrate using an Hg-Xe lamp to perform photoalignment treatment, and liquid crystal alignment on the substrate A film was formed.
  • a pair of substrates having a liquid crystal alignment film is screen-printed with an epoxy resin adhesive containing an aluminum oxide sphere having a diameter of 5.5 ⁇ m, leaving a liquid crystal injection port at the edge of the surface on which the liquid crystal alignment film is formed.
  • the substrates were superposed and pressure-bonded so that the projection directions of the polarization axes on the substrate surface at this time were antiparallel, and the adhesive was thermally cured at 150 ° C. for 1 hour.
  • nematic liquid crystal manufactured by Merck, MLC-7028
  • nematic liquid crystal manufactured by Merck, MLC-7028
  • this was heated at 120 ° C. and then gradually cooled to room temperature to manufacture a liquid crystal cell.
  • the postbake margin, the AC afterimage characteristics and the DC afterimage characteristics were evaluated in the same manner as in Example 1 except that the light horizontal alignment type liquid crystal cell obtained in 1. above was used. The results are shown in Table 2 below.
  • Example 22 to 26 Liquid crystal aligning agents were prepared in the same manner as in Example 1 except that the polymer component and the solvent composition were changed as described in Table 1 below. Moreover, while evaluating surface asperity, continuous printability, and coating property on fine asperity surface in the same manner as in Example 1 except that each liquid crystal aligning agent was used, in the same manner as in Example 21, a light horizontal alignment type liquid crystal The cell was manufactured and various evaluations were performed. The results are shown in Table 2 below.
  • Example 29 Preparation of Liquid Crystal Alignment Agent A liquid crystal alignment agent (S-29) was prepared in the same manner as in Example 1 except that the polymer components and the solvent composition were changed as described in Table 1 below.
  • the liquid crystal aligning agent (S-29) is mainly for the production of a TN mode liquid crystal display element. 2. Evaluation of Liquid Crystal Alignment Agent The surface asperity, the continuous printability, and the coating property on the fine asperity surface were evaluated in the same manner as in Example 1 except that the liquid crystal alignment agent (S-29) was used. The results are shown in Table 3 below.
  • the liquid crystal aligning agent (S-29) prepared in the above was applied using a spinner, and prebaked for 1 minute on a hot plate at 80.degree. Thereafter, the inside of the chamber was heated at 230 ° C. for 1 hour in an oven purged with nitrogen to form a coating having a thickness of 0.1 ⁇ m.
  • the coating film was rubbed at a roll rotational speed of 400 rpm, a stage moving speed of 3 cm / sec, and a hair-foot push-in length of 0.1 mm by a rubbing machine having a roll wound with rayon cloth.
  • ultrasonic cleaning was performed in ultrapure water for 1 minute, and then dried in a clean oven at 100 ° C. for 10 minutes to obtain a substrate having a liquid crystal alignment film.
  • a pair (two sheets) of substrates having a liquid crystal alignment film was formed.
  • An epoxy resin adhesive containing aluminum oxide spheres with a diameter of 3.5 ⁇ m is applied by screen printing to the outer periphery of the surface of one of the above substrates having a liquid crystal alignment film, and then the liquid crystal alignment film surfaces are superimposed to face each other. It was pressure-bonded together and the adhesive was cured.
  • nematic liquid crystal manufactured by Merck, MLC-6221
  • MLC-62211 was filled between a pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port was sealed with an acrylic photo-curing adhesive.
  • the postbake margin, the AC afterimage characteristics and the DC afterimage characteristics were evaluated in the same manner as in Example 1 except that the TN type liquid crystal cell obtained in 1. above was used. The results are shown in Table 3 below.
  • the numerical value of a polymer component shows the compounding ratio (mass part) of each polymer with respect to a total of 100 mass parts of the polymer component used for preparation of a liquid crystal aligning agent.
  • the numerical value of the solvent composition indicates the blending ratio (parts by mass) of each solvent to 100 parts by mass in total of the solvent components used for the preparation of the liquid crystal aligning agent.
  • Abbreviations of the compounds are as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

液晶配向剤は、重合体成分と溶剤成分とを含有する。溶剤成分は、5員環ラクトン、6員環ラクトン及び7員環ラクタムよりなる群から選ばれる少なくとも一種であって、かつ炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基、炭素数2~10のアルコキシアルコキシアルキル基、炭素数2~10のアルコキシアルコキシ基、基「-COR12」(ただし、R12は炭素数1~3のアルキル基である。)及び環の一部を形成する炭素-炭素二重結合よりなる群から選ばれる少なくとも一種の部分構造を有する溶剤[A]を含む。

Description

液晶配向剤、液晶配向膜及び液晶素子 関連出願の相互参照
 本出願は、2017年11月30日に出願された日本出願番号2017-229974号に基づくもので、ここにその記載内容を援用する。
 本開示は、液晶配向剤、液晶配向膜及び液晶素子に関する。
 液晶素子は、テレビやパーソナルコンピュータ、スマートフォンなどの表示装置をはじめとする各種用途に用いられている。これら液晶素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。液晶配向膜は一般に、重合体成分が有機溶媒に溶解されてなる液晶配向剤を基板上に塗布し、好ましくは加熱することにより基板上に形成される。液晶配向剤の重合体成分としては、機械的強度や液晶配向性、液晶との親和性に優れていることから、ポリアミック酸や可溶性ポリイミドが広く使用されている。また、液晶配向剤の溶剤成分としては、ポリアミック酸や可溶性ポリイミド等の重合体に対する溶解性が高い溶媒(例えば、N-メチル-2-ピロリドンやγ-ブチロラクトン等の良溶媒)と、基板に対する濡れ広がり性が高い溶媒(例えば、ブチルセロソルブ等の貧溶媒)との混合溶媒が一般に使用されている(例えば、特許文献1、2参照)。
特開2017-198975号公報 特開2016-206645号公報
 液晶テレビでは、近年、さらなる表示品位の向上による臨場感を得るべく、4K(例えば3840画素×2160画素)や8K(例えば7680画素×4320画素)といった、画素数を増やした表示装置の規格が作られている。表示装置の画素数が増えて画素サイズが小さくなると画素電極はさらに微細な構造となる。そのため、画素電極の形成面においては、単位面積当たりの凹凸密度がより高くなる。かかる場合、画素電極の形成面に液晶配向剤を塗布して配向膜を形成する場合に、画素電極の微細な凹凸構造に対して液晶配向剤が濡れ広がりにくく、基板に対する塗布性を十分に確保できないことが懸念される。微細な凹凸構造に液晶配向剤を塗布する場合にも良好な塗布性が得られるようにするためには、液晶配向剤の溶剤成分としては、重合体に対する溶解性の低下を抑制しつつ、基板に対する濡れ広がり性を高めることが必要である。
 また、工業的な生産の観点からは、液晶配向剤の基板への印刷時において印刷機上からの溶剤の揮発を抑えることができ、連続して印刷を行った場合にも印刷機上に重合体が析出しにくいこと、つまり連続印刷性が良好であることが求められる。
 また近年では、大画面の液晶パネルの普及が進み、従来よりも大型のラインが稼動するようになり、基板の大型化が進んでいる。基板を大型化するメリットとしては、基板一枚から複数枚のパネルが取れるため、工程時間及びコストの低減を図ることができる点や、液晶パネル自体の大型化に対応可能である点などが挙げられる。その一方で、大型基板上に液晶配向膜を形成する場合、従来に比べてポストベーク時に温度ムラが生じやすく、この温度ムラに起因して液晶配向膜のプレチルト角にばらつきが生じ、表示品位の低下を招くことが懸念される。
 液晶表示装置においては、液晶配向膜中の残留電荷(残留DC)が大きいと、画像を切り替えた後に先に表示されていた画像の影響が残ってしまう、いわゆる残像(これをDC残像ともいう。)が発生する原因となる。また、液晶表示装置を長時間動作させた場合、初期配向の方向が液晶表示装置の製造当初からの方向とずれてきてしまうと、AC残像と称する焼き付きが発生することがある。表示品位を確保するためには、こうしたDC残像やAC残像ができるだけ低減された液晶表示装置が求められる。
 本開示は上記課題に鑑みなされたものであり、微細な凹凸構造に対する塗布性及び連続印刷性が良好であり、膜形成時の加熱に際し温度ムラの影響を受けにくく、かつ残像特性が良好な液晶表示素子を得ることができる液晶配向剤を提供することを一つの目的とする。
 上記課題を解決するべく鋭意検討し、液晶配向剤の溶剤成分として特定のラクトン又はラクタムを用いることにより上記課題を解決可能であることを見出した。具体的には、本開示は上記課題を解決するために以下の手段を採用した。
<1> 重合体成分と、溶剤成分とを含有し、前記溶剤成分は、5員環ラクトン、6員環ラクトン及び7員環ラクタムよりなる群から選ばれる少なくとも一種であって、かつ炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基、炭素数2~10のアルコキシアルコキシアルキル基、炭素数2~10のアルコキシアルコキシ基、基「-COR12」(ただし、R12は炭素数1~3のアルキル基である。)及び環の一部を形成する炭素-炭素二重結合よりなる群から選ばれる少なくとも一種の部分構造を有する溶剤[A]を含む、液晶配向剤。
<2> 上記<1>の液晶配向剤を用いて液晶配向膜を形成する、液晶素子の製造方法。
<3> 上記<1>の液晶配向剤を用いて形成された液晶配向膜。
<4> 上記<2>の液晶配向膜を具備する液晶素子。
 本開示の液晶配向剤は、微細な凹凸構造を有する基板面に塗布した場合にも濡れ広がり性が良好であり、基板面に対し均一に液晶配向膜を形成することができる。また、製造プロセスにおいて連続して印刷を行った場合にも印刷機上に重合体が析出しにくくすることができる。しかも、本開示の液晶配向剤は、膜形成の加熱の際に温度ムラの影響を受けにくく、よって温度ムラに起因する特性ばらつきが抑制された液晶配向膜を得ることができるとともに、残像特性に優れた液晶表示素子を得ることができる。
図1は、評価用ITO電極基板の概略構成を示す図である。(a)は平面図であり、(b)は一部を拡大した断面図である。
 以下に、本開示の液晶配向剤に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。液晶配向剤は、重合体成分と溶剤成分とを含有し、重合体成分が溶剤成分に溶解されてなる液状の重合体組成物である。
≪重合体成分≫
 液晶配向剤に含有される重合体成分は、その主骨格は特に限定されないが、例えばポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリオルガノシロキサン、ポリエステル、ポリアミド、ポリアミドイミド、ポリベンゾオキサゾール前駆体、ポリベンゾオキサゾール、セルロース誘導体、ポリアセタール、スチレン-マレイミド系共重合体、ポリ(メタ)アクリレート等の主骨格が挙げられる。なお、(メタ)アクリレートは、アクリレート及びメタクリレートを含むことを意味する。液晶素子の性能を十分に確保する等の観点から、重合体成分としては、上記の中でもポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種の重合体(以下、「重合体[P]」ともいう。)を含むことが好ましい。
<ポリアミック酸>
 ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得ることができる。
(テトラカルボン酸二無水物)
 ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物などを;
 脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオン、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物などを;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物などを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、上記テトラカルボン酸二無水物は、1種を単独で又は2種以上組み合わせて使用することができる。
(ジアミン化合物)
 ポリアミック酸の合成に使用するジアミン化合物としては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。これらジアミンの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどを;脂環式ジアミンとして、例えば1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などを;
 芳香族ジアミンとして、例えば、ドデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,4-ジアミノベンゼン、ヘキサデカノキシ-2,4-ジアミノベンゼン、オクタデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,5-ジアミノベンゼン、オクタデカノキシ-2,5-ジアミノベンゼン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、コレステニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、2,4-ジアミノ-N,N-ジアリルアニリン、4-(4’-トリフルオロメトキシベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、3,5-ジアミノ安息香酸=5ξ-コレスタン-3-イル、下記式(E-1)
Figure JPOXMLDOC01-appb-C000005
(式(E-1)中、XI及びXIIは、それぞれ独立に、単結合、-O-、*-COO-又は*-OCO-(ただし、「*」はXとの結合手を示す。)であり、Rは炭素数1~3のアルカンジイル基であり、RIIは単結合又は炭素数1~3のアルカンジイル基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、dは0又は1である。但し、a及びbが同時に0になることはない。)
で表される化合物、桂皮酸構造を側鎖に有するジアミンなどの側鎖型ジアミン:
p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,5-ビス(4-アミノフェノキシ)ペンタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,10-ビス(4-アミノフェノキシ)デカン、1,2-ビス(4-アミノフェニル)エタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,4-ビス(4-アミノフェニルスルファニル)ブタン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、N,N-ビス(4-アミノフェニル)メチルアミン、2,6-ジアミノピリジン、1,4-ビス-(4-アミノフェニル)-ピペラジン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン、4,4’-ジアミノベンズアニリド、4,4’-ジアミノスチルベンゼン、4,4’-ジアミノジフェニルアミン、1,3-ビス(4-アミノフェネチル)ウレア、1,3-ビス(4-アミノベンジル)ウレア、1,4-ビス(4-アミノフェニル)-ピペラジン、N-(4-アミノフェニルエチル)-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン等の主鎖型ジアミンなどを;ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミンを用いることができる。
(ポリアミック酸の合成)
 ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤とともに反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸などの酸一無水物、アニリン、シクロヘキシルアミン、n-ブチルアミンなどのモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等を挙げることができる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミン化合物の合計100質量部に対して、20質量部以下とすることが好ましい。
 ポリアミック酸の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。
 反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを挙げることができる。特に好ましい有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m-クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と、他の有機溶媒(例えばブチルセロソルブ、ジエチレングリコールジエチルエーテルなど)との混合物を使用することが好ましい。有機溶媒の使用量(a)は、テトラカルボン酸二無水物及びジアミンの合計量(b)が、反応溶液の全量(a+b)に対して、0.1~50質量%になる量とすることが好ましい。
 以上のようにして、ポリアミック酸を溶解してなる反応溶液が得られる。この反応溶液はそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸を単離したうえで液晶配向剤の調製に供してもよい。
<ポリアミック酸エステル>
 重合体[P]がポリアミック酸エステルである場合、当該ポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミン化合物とを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミン化合物とを反応させる方法、などによって得ることができる。液晶配向剤に含有させるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
<ポリイミド>
 重合体[P]がポリイミドの場合、当該ポリイミドは、例えば上記の如くして合成されたポリアミック酸を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。反応に使用するポリイミドは、そのイミド化率が20~99%であることが好ましく、30~96%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
 ポリアミック酸の脱水閉環は、好ましくはポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。この方法において、脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0~180℃である。反応時間は、好ましくは1.0~120時間である。このようにしてポリイミドを含有する反応溶液が得られる。この反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。ポリイミドは、ポリアミック酸エステルのイミド化により得ることもできる。
 以上のようにして得られるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10質量%の溶液としたときに、10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、ポリアミック酸、ポリアミック酸エステル及びポリイミドの溶液粘度(mPa・s)は、これら重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶素子の良好な配向性及び安定性を確保することができる。
 重合体[P]の含有割合(2種以上含有する場合にはその合計量)は、得られる液晶素子の品質をより良好にする観点から、液晶配向剤に含有される重合体成分の全量に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%超であることがさらに好ましい。
≪溶剤成分≫
 本開示の液晶配向剤は、溶剤成分の少なくとも一部として、5員環ラクトン、6員環ラクトン及び7員環ラクタムよりなる群から選ばれる少なくとも一種であって、かつ炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基、炭素数2~10のアルコキシアルコキシアルキル基、炭素数2~10のアルコキシアルコキシ基、基「-COR12」(ただし、R12は炭素数1~3のアルキル基)及び環の一部を形成する炭素-炭素二重結合よりなる群から選ばれる少なくとも一種の部分構造(以下、「特定部分構造」ともいう。)を有する溶剤[A]を含む。
<溶剤[A]>
 溶剤[A]は、特定の環状エステル(γ-ブチロラクトン、δ-バレロラクトン又はε-カプロラクタム)の環に結合する1個の水素原子が鎖状構造からなる基で置換された構造、又は特定の環状エステルの環を構成する1個のエチレン基が炭素-炭素二重結合を有する基で置換された構造を有する。こうした構造を有する化合物を溶剤成分の少なくとも一部に用いることにより、重合体成分の溶剤に対する溶解性、及び液晶配向剤の濡れ広がり性がバランス良く発現される。これにより、微細な凹凸形状の電極構造を有する基板表面に対する液晶配向剤の塗布性(印刷性)を改善することができる。また、液晶配向剤の溶剤成分の沸点を適度な高さに調整することができ、膜形成時の加熱に際し温度ムラの影響を受けにくくすることができる。
 溶剤[A]は、好ましくは、γ-ブチロラクトン又はδ-バレロラクトンの環部分に炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基(-R13-OR14)、炭素数2~10のアルコキシアルコキシアルキル基(-R13-OR15-OR14)、炭素数2~10のアルコキシアルコキシ基(-OR13-OR14)を有する化合物(a-1)、置換又は無置換のγ-ブチロラクトンの環を構成する1個のエチレン基が炭素-炭素二重結合で置き換えられた化合物(a-2)、及びε-カプロラクタムの環内の窒素原子に「-COR12」が結合された化合物(a-3)である。具体的には、下記式(1)で表される化合物、下記式(2)で表される化合物、及び下記式(3)で表される化合物よりなる群から選ばれる少なくとも一種であることが好ましい。なお、R13はアルカンジイル基、R14はアルキル基、R15はアルカンジイル基をそれぞれ表す。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは、炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基、炭素数2~10のアルコキシアルコキシアルキル基又は炭素数2~10のアルコキシアルコキシ基である。nは1又は2である。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、Rは、下記式(4-1)又は式(4-2)で表される2価の基である。)
Figure JPOXMLDOC01-appb-C000008
(式(4-1)及び式(4-2)中、R~R11は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基である。「*1」は、酸素原子との結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000009
(式(3)中、Rは、炭素数1~3のアルキル基である。)
(式(1)で表される化合物)
 上記式(1)において、Rは直鎖状でも分岐状でもよい。Rの具体例としては、アルキル基として、例えばエチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、3-ペンチル基、tert-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等を;アルコキシ基として、例えば上記で例示したアルキル基のそれぞれが酸素原子に結合した基等を;アルコキシアルキル基として、例えばメトキシメチル基、メトキシエチル基、エトキシメチル基、プロポキシメチル基、プロポキシエチル基、ブトキシエチル基等を;炭素数2~10のアルコキシアルコキシアルキル基として、例えばメトキシメトキシメチル基、エトキシメトキシメチル基、エトキシエトキシエチル基、プロポキシエトキシエチル基等を;アルコキシアルコキシ基として、例えばメトキシエトキシ基、エトキシエトキシ基、エトキシプロポキシ基、プロポキシプロポキシ基等を、それぞれ挙げることができる。
 Rは、好ましくは直鎖状であり、より好ましくは炭素数3以上の直鎖状アルキル基であり、さらに好ましくは炭素数3~8の直鎖状アルキル基であり、炭素数5~8の直鎖状アルキル基であることが特に好ましい。Rは、γ-ブチロラクトン環又はδ-バレロラクトン環のいずれの位置に結合していてもよいが、環内の酸素原子に対してα位に結合していることが好ましい。
 上記式(1)で表される化合物の具体例としては、nが1である化合物(γ-ブチロラクトン類)として、例えばγ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-ノナノラクトン、γ-デカノラクトン、γ-ウンデカノラクトン、γ-ドデカノラクトン、γ-トリデカノラクトン、γ-テトラデカノラクトン、α-プロピル-γ-ブチロラクトン、α-ブチル-γ-ブチロラクトン、α-ペンチル-γ-ブチロラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-オクチル-γ-ブチロラクトン、α-デシル-γ-ブチロラクトン等を;
nが2である化合物(δ-カプロラクトン類)として、例えばδ-ヘプタノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトン、δ-ペンタデカノラクトン等を、それぞれ挙げることができる。なお、上記式(1)で表される化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
(式(2)で表される化合物)
 上記式(2)において、上記式(4-1)及び式(4-2)中のR~R11のアルキル基は、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基等が挙げられる。重合体の溶解性をより高くできる点で、上記式(4-1)においては、R~Rのうち少なくとも1個がアルキル基であることが好ましく、当該アルキル基が環内の酸素原子に対してα位に結合していることがより好ましい。上記式(4-2)においては、R~R11のうち少なくとも1個がアルキル基であることが好ましく、当該アルキル基が環内の酸素原子に対してα位に結合していることがより好ましい。これらのうち、R及びRがメチル基又はエチル基であって、R~R及びR~R11が水素原子であることが特に好ましい。
 上記式(2)で表される化合物の具体例としては、α-アンゲリカラクトン、β-アンゲリカラクトン等が挙げられる。なお、上記式(2)で表される化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
(式(3)で表される化合物)
 上記式(3)において、Rは、直鎖状でも分岐状でもよく、例えばメチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。Rは、好ましくはメチル基又はエチル基であり、より好ましくはメチル基である。
 上記式(3)で表される化合物の具体例としては、例えばN-アセチル-ε-カプロラクタム、N-プロピオニル-ε-カプロラクタム等が挙げられる。好ましくは、N-アセチル-ε-カプロラクタムである。なお、上記式(3)で表される化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶剤[A]としては、微細な凹凸の電極構造を有する基板表面に対する塗布性をより良好にできる点で、上記のうち、環状エステルの環部分に置換基を有していることが好ましく、上記式(1)で表される化合物及び上記式(2)で表される化合物よりなる群から選ばれる少なくとも一種がより好ましい。特に好ましくは、γ-へプタノラクトン、γ-オクタノラクトン、γ-ノナノラクトン、γ-デカノラクトン、γ-ウンデカノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、α-アンゲリカラクトン及びβ-アンゲリカラクトンよりなる群から選ばれる少なくとも一種である。
<溶剤[B]>
 溶剤成分は、液晶配向剤の濡れ広がり性をより高くできる点で、溶剤[A]と共に、アルコール系溶剤、鎖状エステル系溶剤、エーテル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種であって溶剤[A]とは異なる溶剤(以下、「溶剤[B]」ともいう。)を更に含むことが好ましい。
 溶剤[B]の具体例としては、アルコール系溶剤として、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、ダイアセトンアルコール、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、ベンジルアルコール等を;
 鎖状エステル系溶剤として、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、シュウ酸ジエチル、マロン酸ジエチル、イソアミルプロピオネート、イソアミルイソブチレート等を;
 エーテル系溶剤として、例えばジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、テトラヒドロフラン、ジイソペンチルエーテル等を;
 ケトン系溶剤として、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロヘプタノン、シクロペンタノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、ジイソブチルケトン等を、それぞれ挙げることができる。
 溶剤[B]としては、塗布性の改善効果がより高い点で、上記のうち、アルコール系溶剤、鎖状エステル系溶剤及びエーテル系溶剤よりなる群から選ばれる少なくとも一種であることが好ましく、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ダイアセトンアルコール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、及び3-メトキシ-1-ブタノールよりなる群から選ばれる一種であることがより好ましい。なお、溶剤[B]としては1種を単独で又は2種以上を組み合わせて使用することができる。
<溶剤[C]>
 溶剤成分は、溶剤成分に対する重合体の溶解性を担保し、塗布工程における重合体の析出に伴う製品歩留まり低下を抑制することを目的として、溶剤[A]と共に、1気圧における沸点が200℃以上であって溶剤[A]とは異なる溶剤(以下、「溶剤[C]」ともいう。)を更に含むことが好ましい。
 溶剤[C]は、非プロトン性極性溶媒及びフェノール類よりなる群から選ばれる少なくとも一種であることが好ましく、非プロトン性極性溶媒であることがより好ましい。具体的には、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ガンマブチロラクトン、プロピレンカーボネート及び下記式(5)で表される化合物よりなる群から選ばれる少なくとも一種であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(5)中、R21及びR22は、それぞれ独立に、水素原子、又はエーテル結合を有していてもよい炭素数1~6の1価の炭化水素基であり、R21とR22とが結合して環を形成していてもよい。R23は、炭素数1~4のアルキル基である。)
(式(5)で表される化合物)
 上記式(5)において、R21及びR22の炭素数1~6の1価の炭化水素基としては、例えば炭素数1~6の鎖状炭化水素基、炭素数3~6の脂環式炭化水素基、炭素数5又は6の芳香族炭化水素基などが挙げられる。また、エーテル結合を有する1価の基としては、例えば炭素数2~6のアルコキシアルキル基等が挙げられる。R21,R22が互いに結合してR21及びR22が結合する窒素原子と共に形成される環としては、例えばピロリジン環、ピペリジン環等の窒素含有複素環が挙げられる。これらの窒素含有複素環には、メチル基等の1価の鎖状炭化水素基が結合されていてもよい。
 R21及びR22は、好ましくは水素原子又は炭素数1~6のアルキル基であり、より好ましくは水素原子又は炭素数1~3のアルキル基であり、更に好ましくは水素原子又はメチル基である。R23の炭素数1~4のアルキル基は、直鎖状でも分岐状でもよい。R23は、好ましくはメチル基又はエチル基である。
 上記式(5)で表される化合物の具体例としては、例えば3-ブトキシ-N,N-ジメチルプロパンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ヘキシルオキシ-N,N-ジメチルプロパンアミド、イソプロポキシ-N-イソプロピル-プロピオンアミド、n-ブトキシ-N-イソプロピル-プロピオンアミドなどが挙げられる。なお、上記式(5)で表される化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 溶剤成分のうち、溶剤[A]の含有割合は、液晶配向剤に含有される溶剤成分の全量に対して、10質量%以上とすることが好ましい。10質量%未満とした場合、液晶配向剤の塗布性の改善効果が十分に得られにくくなる傾向がある。重合体成分の溶解性と液晶配向剤の濡れ広がり性とのバランスをより良好にできる点で、溶剤[A]の含有割合は、より好ましくは10~85質量%であり、さらに好ましくは15~75質量%であり、特に好ましくは15~60質量%である。
 溶剤[B]の含有割合は、液晶配向剤の濡れ広がり性をより高くできる点で、液晶配向剤に含有される溶剤成分の全量に対して、10~80質量%とすることが好ましく、15~70質量%とすることがより好ましく、20~50質量%とすることがさらに好ましい。
 溶剤[C]の含有割合は、膜形成時の加熱温度をより低温とするために、70質量%以下とすることが好ましい。重合体成分の溶剤に対する溶解性を担保する観点から、溶剤[C]の含有割合は、液晶配向剤に含有される溶剤成分の全量に対して、1~70質量%とすることがより好ましく、5~65質量%とすることが更に好ましく、10~60質量%とすることが特に好ましい。
 液晶配向剤は、溶剤成分として溶剤[A]のみを含んでいてもよいが、溶剤成分が溶剤[A]と溶剤[B]とからなるか、又は溶剤[A]と溶剤[B]と溶剤[C]とからなることが特に好ましい。ただし、本明細書において「溶剤[A]と溶剤[B]とからなる」及び「溶剤成分が溶剤[A]と溶剤[B]と溶剤[C]とからなる」とは、溶剤[A]、溶剤[B]及び溶剤[C]以外のその他の溶剤を、本発明の効果の妨げにならない程度に含有することは許容される。
 その他の溶剤としては、例えばハロゲン化炭化水素系溶剤、炭化水素系溶剤等が挙げられる。これらの具体例としては、ハロゲン化炭化水素系溶剤として、例えばジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、トリクロロエタン、クロルベンゼン等を;炭化水素系溶剤として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等を、それぞれ挙げることができる。その他の溶剤の含有割合は、液晶配向剤中の溶剤成分の全量に対して、1質量%以下とすることが好ましく、0.5質量%以下とすることがより好ましく、0.2質量%以下とすることがさらに好ましい。
≪その他の成分≫
 液晶配向剤は、重合体成分及び溶剤成分を含有するが、必要に応じてその他の成分を含有していてもよい。かかるその他の成分としては、例えば、エポキシ基含有化合物(例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等)、官能性シラン化合物(例えば、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン等)、酸化防止剤、金属キレート化合物、硬化触媒、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤等が挙げられる。その他の成分の配合割合は本開示の効果を損なわない範囲で各化合物に応じて適宜選択できる。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。
≪液晶配向膜及び液晶素子≫
 本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム、位相差フィルム等として用いることができる。液晶表示装置として用いる場合、液晶の動作モードは特に限定されず、例えばTN型、STN型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、IPS型、FFS型、OCB(Optically Compensated Bend)型など種々の動作モードに適用することができる。
 液晶素子の製造方法について液晶表示素子を一例に挙げて説明する。液晶表示素子は、例えば以下の工程1~工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。
(工程1:塗膜の形成)
 先ず、基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一方の面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、スピンコート法、ロールコーター法、フレキソ印刷法又はインクジェット印刷法により行う。
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜又は液晶配向膜となる塗膜が形成される。
(工程2:配向処理)
 TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで塗膜を一定方向に擦るラビング処理や、液晶配向剤を用いて基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理等が挙げられる。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理を施してもよい。垂直配向型の液晶表示素子に好適な液晶配向剤は、PSA(Polymer sustained alignment)型の液晶表示素子にも好適に用いることができる。
(工程3:液晶セルの構築)
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、(1)液晶配向膜が対向するように間隙(スペーサー)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法、(2)液晶配向膜を形成した一方の基板上の所定の場所にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げる方法(ODF方式)等が挙げられる。製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。スペーサーとしては、フォトスペーサー、ビーズスペーサー等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。また、ネマチック液晶又はスメクチック液晶に、例えばコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板が挙げられる。こうして液晶表示素子が得られる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
 以下の例において、重合体の重量平均分子量Mw、重合体溶液中のポリイミドのイミド化率、重合体溶液の溶液粘度、及びエポキシ当量は以下の方法により測定した。以下の実施例で用いた原料化合物及び重合体の必要量は、下記の合成例に示す合成スケールでの合成を必要に応じて繰り返すことにより確保した。
[重合体の重量平均分子量Mw]
 重量平均分子量Mwは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
 カラム:東ソー(株)製、TSKgelGRCXLII
 溶剤:テトラヒドロフラン
 温度:40℃
 圧力:68kgf/cm
[ポリイミドのイミド化率]
 ポリイミドの溶液を純水に投入し、得られた沈殿を室温で十分に減圧乾燥した後、重水素化ジメチルスルホキシドに溶解し、テトラメチルシランを基準物質として室温でH-NMRを測定した。得られたH-NMRスペクトルから、下記数式(1)によりイミド化率[%]を求めた。
  イミド化率[%]=(1-(A/(A×α)))×100   …(1)
(数式(1)中、Aは化学シフト10ppm付近に現れるNH基のプロトン由来のピーク面積であり、Aはその他のプロトン由来のピーク面積であり、αは重合体の前駆体(ポリアミック酸)におけるNH基のプロトン1個に対するその他のプロトンの個数割合である。)
[重合体溶液の溶液粘度]
 重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
[エポキシ当量]
 エポキシ当量は、JIS C 2105に記載の塩酸-メチルエチルケトン法により測定した。
 化合物の略号は以下の通りである。なお、以下では、式(DA-X)で表される化合物(ただし、Xは1~6の整数)を単に「化合物(DA-X)」と示すことがある。
(ジアミン化合物)
Figure JPOXMLDOC01-appb-C000011
(溶剤)
Figure JPOXMLDOC01-appb-C000012
<重合体の合成>
[合成例1:ポリイミド(PI-1)の合成]
 テトラカルボン酸二無水物として2,3,5-トリカルボキシシクロペンチル酢酸二無水物(TCA)22.4g(0.1モル)、ジアミンとしてp-フェニレンジアミン(PDA)8.6g(0.08モル)及び3,5-ジアミノ安息香酸コレスタニル(HCDA)10.5g(0.02モル)を、N-メチル-2-ピロリドン(NMP)166gに溶解し、60℃で6時間反応を行い、ポリアミック酸を20質量%含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は90mPa・sであった。
 次いで、得られたポリアミック酸溶液に、NMPを追加してポリアミック酸濃度7質量%の溶液とし、ピリジン11.9g及び無水酢酸15.3gを添加して110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなNMPで溶媒置換(本操作によって脱水閉環反応に使用したピリジン及び無水酢酸を系外に除去した。以下同じ。)することにより、イミド化率約68%のポリイミド(PI-1)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は45mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-1)を得た。
[合成例2:ポリイミド(PI-2)の合成]
 テトラカルボン酸二無水物として、TCA110g(0.50モル)及び1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン160g(0.50モル)、ジアミンとして、PDA91g(0.85モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン25g(0.10モル)及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン25g(0.040モル)、並びにモノアミンとしてアニリン1.4g(0.015モル)を、NMP960gに溶解し、60℃で6時間反応を行うことにより、ポリアミック酸を含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は60mPa・sであった。
 次いで、得られたポリアミック酸溶液にNMP2,700gを追加し、ピリジン390g及び無水酢酸410gを添加して110℃で4時間脱水閉環反応を行った。脱水閉環反応後、系内の溶媒を新たなγ-ブチロラクトン(GBL)で溶媒置換することにより、イミド化率約95%のポリイミド(PI-2)を15質量%含有する溶液約2,500gを得た。この溶液を少量分取し、NMPを加え、ポリイミド濃度10質量%の溶液として測定した溶液粘度は70mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-2)を得た。
[合成例3:ポリイミド(PI-3)の合成]
 使用するジアミンを、3,5-ジアミノ安息香酸(3,5DAB)0.08モル及びコレスタニルオキシ-2,4-ジアミノベンゼン(HCODA)0.02モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は80mPa・sであった。
 次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI-3)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は40mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-3)を得た。
[合成例4:ポリイミド(PI-4)の合成]
 使用するジアミンを、4,4’-ジアミノジフェニルメタン0.06モル、化合物(DA-1) 0.02モル、及び化合物(DA-2) 0.02モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は60mPa・sであった。
 次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約65%のポリイミド(PI-4)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は33mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-4)を得た。
[合成例5:ポリイミド(PI-5)の合成]
 使用するテトラカルボン酸二無水物を、1,2,3,4-シクロブタンテトラカルボン酸二無水物0.08モル及びピロメリット酸二無水物0.02モルに変更するとともに、使用するジアミンを、4-アミノフェニル-4-アミノベンゾエート(上記式(DA-6)で表される化合物)0.098モル、及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン0.002モルに変更した以外は、上記合成例1と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は80mPa・sであった。
 次いで、上記合成例1と同様の方法によりイミド化を行い、イミド化率約75%のポリイミド(PI-5)を26質量%含有する溶液を得た。得られたポリイミド溶液を少量分取し、NMPを加えてポリイミド濃度10質量%の溶液として測定した溶液粘度は41mPa・sであった。次いで、反応溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリイミド(PI-5)を得た。
[合成例6:ポリアミック酸(PA-1)の合成]
 テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物(CB)200g(1.0モル)、ジアミンとして2,2’-ジメチル-4,4’-ジアミノビフェニル210g(1.0モル)を、NMP370g及びGBL3,300gの混合溶媒に溶解し、40℃で3時間反応を行い、固形分濃度10質量%、溶液粘度160mPa・sのポリアミック酸溶液を得た。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-1)を得た。
[合成例7:ポリアミック酸(PA-2)の合成]
 テトラカルボン酸二無水物としてTCA7.0g(0.031モル)、ジアミンとして化合物(DA-5)13g(TCA1モルに対して1モルに相当する。)を、NMP80gに溶解し、60℃で4時間反応を行うことにより、ポリアミック酸(PA-3)を20質量%含有する溶液を得た。このポリアミック酸溶液の溶液粘度は2,000mPa・sであった。なお、化合物(DA-5)は、特開2011-100099号公報の記載に従って合成した。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-2)を得た。
[合成例8:ポリアミック酸(PA-3)の合成]
 使用するジアミンを、1,3-ビス(4-アミノフェネチル)ウレア0.7モル及び化合物(DA-2)0.3モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は70mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-3)を得た。
[合成例9:ポリアミック酸(PA-4)の合成]
 使用するテトラカルボン酸二無水物を、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物1.0モルに変更するとともに、使用するジアミンを、p-フェニレンジアミン0.3モル、化合物(DA-3)0.2モル、及び1,2-ビス(4-アミノフェノキシ)エタン0.5モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は90mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-4)を得た。
[合成例10:ポリアミック酸(PA-5)の合成]
 使用するジアミンを、2,4-ジアミノ-N,N-ジアリルアニリン0.2モル、4,4’-ジアミノジフェニルアミン0.2モル、及び4,4’-ジアミノジフェニルメタン0.6モルに変更した以外は、上記合成例6と同様の方法によりポリアミック酸溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は95mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(PA-5)を得た。
[合成例11:ポリアミック酸エステル(PAE-1)の合成]
 2,4-ビス(メトキシカルボニル)-1,3-ジメチルシクロブタン-1,3-ジカルボン酸0.035モルを塩化チオニル20mlに加え、N,N-ジメチルホルムアミドを触媒量添加し、その後80℃にて1時間攪拌した。その後、反応液を濃縮し、残留物をγ-ブチロラクトン(GBL)113gに溶解した(この溶液を反応液Aとした。)。別途、p-フェニレンジアミン0.01モル、1,2-ビス(4-アミノフェノキシ)エタン0.01モル、及び化合物(DA-4)0.014モルをピリジン6.9g、NMP44.5g及びGBL33.5gに加えて溶解させ、これを0℃に冷却した。次いで、この溶液へ反応液Aを1時間かけてゆっくりと滴下し、滴下終了後、室温にて4時間撹拌した。得られたポリアミック酸エステルの溶液を800mlの純水に撹拌しながら滴下し、析出した沈殿物をろ過した。続いて、400mlのイソプロピルアルコール(IPA)で5回洗浄し、乾燥することでポリマー粉末15.5gを得た。得られたポリアミック酸エステル(PAE-1)の重量平均分子量Mwは34,000であった。
[合成例12:ポリオルガノシロキサン(APS-1)の合成]
 撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(ECETS)100.0g、メチルイソブチルケトン500g及びトリエチルアミン10.0gを仕込み、室温で混合した。次いで、脱イオン水100gを滴下漏斗より30分かけて滴下した後、還流下で撹拌しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により、洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することにより、反応性ポリオルガノシロキサン(EPS-1)を粘調な透明液体として得た。この反応性ポリオルガノシロキサン(EPS-1)について、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にエポキシ基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。得られた反応性ポリオルガノシロキサンの重量平均分子量Mwは3,500、エポキシ当量は180g/モルであった。
 次いで、200mLの三口フラスコに、反応性ポリオルガノシロキサン(EPS-1)を10.0g、溶媒としてメチルイソブチルケトン30.28g、反応性化合物として4-ドデシルオキシ安息香酸3.98g、及び触媒としてUCAT 18X(商品名、サンアプロ(株)製)0.10gを仕込み、100℃で48時間撹拌下に反応を行った。反応終了後、反応混合物に酢酸エチルを加えて得た溶液を3回水洗し、有機層を硫酸マグネシウムを用いて乾燥した後、溶剤を留去することにより、液晶配向性ポリオルガノシロキサン(APS-1)を9.0g得た。得られた重合体の重量平均分子量Mwは9,900であった。
[実施例1]
1.液晶配向剤の調製
 上記合成例1で得たポリイミド(PI-1)100質量部に、溶剤としてγ-ヘプタノラクトン(γHL)、N-メチル-2-ピロリドン(NMP)及びブチルセロソルブ(BC)を加えて、固形分濃度6.5質量%、溶剤の混合比がγHL:NMP:BC=40:30:30(質量比)の溶液とした。この溶液を十分に撹拌した後、孔径1μmのフィルターで濾過することにより液晶配向剤(S-1)を調製した。なお、液晶配向剤(S-1)は、主に垂直配向型の液晶表示素子の製造用である。
2.表面凹凸性(印刷性)の評価
 上記1.で調製した液晶配向剤(S-1)を、ガラス基板上にスピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った後、庫内を窒素置換した200℃のオーブンで1時間加熱(ポストベーク)することにより平均膜厚0.1μmの塗膜を形成した。得られた塗膜の表面を原子間力顕微鏡(AFM)にて観察し、中心平均粗さ(Ra)を測定した。Raが5nm以下の場合を印刷性「良好(○)」、5nmよりも大きく10nm未満であった場合を「可(△)」、10nm以上の場合を「不良(×)」と評価した。その結果、本実施例では印刷性「良好」の評価であった。
3.連続印刷性の評価
 上記で調製した液晶配向剤(S-1)について、基板への印刷を連続して行った場合の印刷性(連続印刷性)を評価した。評価は以下のようにして行った。まず、液晶配向膜印刷機(日本写真印刷機(株)製、オングストローマー形式「S40L-532」)を用いて、アニロックスロールへの液晶配向剤(S-1)の滴下量を往復20滴(約0.2g)の条件にて、ITO膜からなる透明電極付きガラス基板の透明電極面に印刷した。基板への印刷は、1分間隔で新しい基板を用いながら20回実施した。
 続いて、液晶配向剤(S-1)を1分間隔でアニロックスロール上にディスペンス(片道)し、その都度、アニロックスロールと印刷版とを接触させる作業(以下、空運転という)を合計10回行った(この間、ガラス基板への印刷は行わない)。なお、この空運転は、液晶配向剤の印刷を意図的に過酷な状況下で実施するようにするために行った操作である。
 10回の空運転の後、続いてガラス基板を用いて本印刷を行った。本印刷では、空運転後、基板を30秒間隔で5枚投入し、印刷後のそれぞれの基板を80℃で1分間加熱(プレベーク)して溶媒を除去した後、200℃で10分間加熱(ポストベーク)して、膜厚約0.08μmの塗膜を形成した。この塗膜を倍率20倍の顕微鏡で観察することにより印刷性(連続印刷性)を評価した。評価は、空運転後の本印刷1回目から重合体の析出が観察されない場合を連続印刷性「良好(○)」、空運転後の本印刷1回目では重合体の析出が観察されるが、本印刷を5回実施する間に重合体の析出が観察されなくなる場合を連続印刷性「可(△)」、本印刷を5回繰り返した後においても重合体の析出が観察される場合を連続印刷性「不良(×)」とした。その結果、この実施例では連続印刷性「良好(○)」であった。なお、印刷性が良好な液晶配向剤では、連続で基板を投入している間に重合体の析出が良化(消失)することが実験により分かっている。また更に、空運転の回数を15回、20回、25回に変更し、それぞれについて上記と同様にして液晶配向剤の印刷性を評価したところ、この実施例では、空運転を15回及び20回としたときには「良好(○)」、25回のときには「可(△)」であった。
4.微細凹凸表面への塗布性評価
 図1に示す評価用ITO電極基板10を用いて、微細凹凸表面に対する液晶配向剤の塗布性を評価した。評価用ITO電極基板10としては、ガラス基板11の一方の表面に、ストライプ形状のITO電極12が所定間隔をあけて複数配置されたものを使用した(図1参照)。なお、電極幅Aは50μm、電極間距離Bは2μm、電極高さCは0.2μmとした。この評価用ITO電極基板10の電極形成面に、濡れ性評価装置LSE-A100T(ニック社製)を用いて、上記1.で調製した液晶配向剤(S-1)を滴下し、基板の凹凸表面への馴染みやすさを評価した。このとき、液滴の濡れ広がりが大きいほど(具体的には、液量に対する液滴の濡れ広がり面積S(mm/μL)が大きいほど)、微細凹凸表面に対する液晶配向剤の塗布性が良好であるといえる。
 評価は、面積Sが15mm/μL以上である場合に「優良(◎)」、面積Sが10mm/μL以上15mm/μL未満である場合に「良好(○)」、面積Sが5mm/μLよりも大きく10mm/μL未満である場合に「可(△)」、面積Sが5mm/μL以下である場合に「不良(×)」とした。その結果、本実施例では面積Sは10mm/μLであり、微細凹凸表面への塗布性は「良好」と判断された。
5.垂直配向型液晶セルの製造
 上記1.で調製した液晶配向剤(S-1)を、液晶配向膜印刷機(日本写真印刷(株)製)を用いて、ファインスリットITO電極構造を有する透明電極付きガラス基板、及びパターンITO電極構造を有する透明電極付きガラス基板の透明電極面にそれぞれ塗布した。次いで、80℃のホットプレート上で1分間加熱(プレベーク)して溶剤を除去した後、180℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚0.8μmの塗膜を形成した。塗膜形成後の各基板に対し、超純水中で1分間超音波洗浄を行い、次いで100℃クリーンオーブン中で10分間乾燥した。これにより、液晶配向膜を有する基板を一対(2枚)得た。
 次に、液晶配向膜を有する面の外縁に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、一対の基板を液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化させた。次いで、液晶注入口より一対の基板間にネマチック液晶(メルク社製、MLC-6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより液晶セルを製造した。
 また、ポストベーク温度を180℃から120℃又は230℃にそれぞれ変更した以外は上記と同様の方法により液晶セルを製造した。得られた液晶セルは以下の6.の評価に用いた。
6.ポストベークの温度ムラに対するプレチルト角のばらつき特性(ポストベークマージン)の評価
 異なるポストベーク温度(120℃、180℃及び230℃)で液晶配向膜を作製して得られた液晶セルのプレチルト角をそれぞれ測定した。そして、ポストベーク温度を230℃とした液晶セルのプレチルト角測定値を基準プレチルト角θpとし、ポストベーク温度を120℃又は180℃とした液晶セルのプレチルト角測定値θaと基準プレチルト角θpとの差Δθ(=θp-θa)により、ポストベークの温度ムラに対するプレチルト角のばらつき特性を評価した。なお、Δθが小さいほど、ポストベークの温度ムラに対するプレチルト角のばらつきが小さく優れていると言える。プレチルト角の測定は、非特許文献(T. J. Scheffer et.al. J.Appl.Phys. vo.19, p.2013(1980))に記載の方法に準拠して、He-Neレーザー光を用いる結晶回転法により測定した液晶分子の基板面からの傾き角の値をプレチルト角[°]とした。評価は、Δθが0.2°以下であった場合を「良好(○)」、0.2°よりも大きく0.5°未満であった場合を「可(△)」、0.5°以上であった場合を「不良(×)」とした。その結果、この実施例では、ポストベーク温度が180℃の場合にはポストベークマージン「良好」、120℃の場合には「可」の評価であった。
7.AC残像特性の評価
 電極構造を、電圧の印加/無印加を別個に切替可能な2系統のITO電極(電極1及び電極2)とした以外は上記5.と同様にして評価用液晶セルを作製した。この評価用液晶セルを60℃下に置き、電極2には電圧をかけずに、電極1に交流電圧10Vを300時間印加した。300時間が経過した後、直ちに電極1及び電極2の双方に交流3Vの電圧を印加して、両電極間の光透過率の差ΔT[%]を測定した。このとき、ΔTが2%未満であった場合をAC残像特性「良好(○)」、2%以上3%未満であった場合を「可(△)」、3%以上であった場合を「不良(×)」と評価した。その結果、この実施例では「良好」の評価であった。
8.DC残像特性の評価
 評価用液晶セルを60℃下に置き、電極1に直流0.5Vの電圧を24時間印加し、直流電圧を切った直後の電極1に残留した電圧(残留DC電圧)をフリッカー消去法により求めた。このとき、残留DC電圧が100mV未満であった場合をDC残像特性「良好(○)」、100mV以上300mV未満であった場合を「可(△)」、300mV以上であった場合を「不良(×)」と評価した。その結果、この実施例では「良好」の評価であった。
[実施例2~実施例10及び比較例1~8]
 重合体の種類及び配合量、並びに溶剤組成をそれぞれ下記表1に記載の通りとしたほかは実施例1と同様にして液晶配向剤(S-2~S-10、SR-1~SR-8)を調製した。また、調製した液晶配向剤を用いて実施例1と同様にして各種評価を行った。評価結果は下記表2、3に示した。
[実施例11]
1.液晶配向剤の調製
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤(S-11)を調製した。なお、液晶配向剤(S-11)は、主に水平配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-11)を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
3.ラビングFFS型液晶セルの製造
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記1.で調製した液晶配向剤(S-11)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間加熱(プレベーク)した。その後、庫内を窒素置換した230℃のオーブンで30分間乾燥(ポストベーク)を行い、平均膜厚0.1μmの塗膜を形成した。この塗膜表面に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数400rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.1mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行い、次いで100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。
 次いで、液晶配向膜を有する一対の基板につき、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷し、液晶セルを製造した。
4.液晶セルの評価
 上記3.で得られたラビングFFS型液晶セルを使用した以外は実施例1と同様にしてポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
[実施例12及び13]
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤(S-12)、(S-13)をそれぞれ調製した。また、液晶配向剤(S-12)、(S-13)をそれぞれ使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価するとともに、実施例11と同様にしてラビングFFS型液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[実施例14]
1.液晶配向剤の調製
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤(S-14)を調製した。なお、液晶配向剤(S-14)は、主にPSA型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-14)を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
3.液晶組成物の調製
 ネマチック液晶(メルク社製、MLC-6608)10gに対し、下記式(L1-1) で表される液晶性化合物を5質量%、及び下記式(L2-1)で表される光重合性化合物 を0.3質量%添加して混合することにより液晶組成物LC1を得た。
Figure JPOXMLDOC01-appb-C000013
4.PSA型液晶セルの製造
 上記で調製した液晶配向剤(S-14)を、ITO電極からなる導電膜をそれぞれ有するガラス基板2枚の各電極面上に、液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で2分間加熱(プレベーク)して溶媒を除去した後、150℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚0.06μmの塗膜を形成した。これら塗膜につき、超純水中で1分間超音波洗浄を行った後、100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を一対(2枚)得た。なお、使用した電極のパターンは、PSAモードにおける電極パターンと同種のパターンである。
 次いで、上記一対の基板のうち一方の基板の液晶配向膜を有する面の外縁に、直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、上記で調製した液晶組成物LC1を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、液晶セルを製造した。その後、液晶セルの導電膜間に周波数60Hzの交流10Vを印加し、液晶が駆動している状態で、光源にメタルハライドランプを使用した紫外線照射装置を用いて、100,000J/mの照射量にて紫外線を照射した。なお、この照射量は、波長365nm基準で計測される光量計を用いて測定した値である。
5.液晶セルの評価
 上記4.で得られたPSA型液晶セルを使用した以外は実施例1と同様にしてポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
[実施例15~17、27、28]
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価するとともに、実施例14と同様にしてPSA型液晶セルを製造して各種評価を行った。それらの結果を下記表2、3に示した。
[実施例18]
1.液晶配向剤の調製
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤(S-18)を調製した。なお、液晶配向剤(S-18)は、主に光垂直配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-18)を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
3.光垂直配向型液晶セルの製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記で調製した液晶配向剤(S-18)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。次いで、この塗膜表面に、Hg-Xeランプ及びグランテーラープリズムを用いて313nmの輝線を含む偏光紫外線1,000J/mを、基板法線から40°傾いた方向から照射して液晶配向能を付与した。同じ操作を繰り返して、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうちの1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、一対の基板の液晶配向膜面を対向させ、各基板の紫外線の光軸の基板面への投影方向が逆平行となるように圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、液晶注入口より基板間の間隙にネガ型液晶(メルク社製、MLC-6608)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを130℃で加熱してから室温まで徐冷した。
4.液晶セルの評価
 上記3.で得られた光垂直配向型液晶セルを使用した以外は実施例1と同様にしてポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
[実施例19及び20]
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価するとともに、実施例18と同様にして光垂直配向型液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[実施例21]
1.液晶配向剤の調製
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤(S-21)を調製した。なお、液晶配向剤(S-21)は、主に光水平配向型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-21)を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表2に示した。
3.光水平配向型液晶セルの製造
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記で調製した液晶配向剤(S-21)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間加熱(プレベーク)した。その後、庫内を窒素置換した230℃のオーブンで30分間乾燥(ポストベーク)を行い、平均膜厚0.1μmの塗膜を形成した。この塗膜表面に、Hg-Xeランプを用いて、直線偏光された254nmの輝線を含む紫外線1,000J/mを基板法線方向から照射して光配向処理を行い、基板上に液晶配向膜を形成した。
 次いで、液晶配向膜を有する一対の基板につき、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、光照射時の偏光軸の基板面への投影方向が逆平行となるように基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷し、液晶セルを製造した。
4.液晶セルの評価
 上記3.で得られた光水平配向型液晶セルを使用した以外は実施例1と同様にしてポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表2に示した。
[実施例22~26]
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤をそれぞれ調製した。また、各液晶配向剤を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価するとともに、実施例21と同様にして光水平配向型液晶セルを製造して各種評価を行った。それらの結果を下記表2に示した。
[実施例29]
1.液晶配向剤の調製
 重合体成分及び溶剤組成を下記表1に記載のとおりに変更した以外は実施例1と同様にして液晶配向剤(S-29)を調製した。なお、液晶配向剤(S-29)は、主にTNモード型の液晶表示素子の製造用である。
2.液晶配向剤の評価
 液晶配向剤(S-29)を使用した以外は実施例1と同様にして表面凹凸性、連続印刷性及び微細凹凸表面への塗布性を評価した。それらの結果を下記表3に示した。
3.TN型液晶セルの製造
 ITO膜からなる透明電極付きガラス基板の透明電極面上に、上記1.で調製した液晶配向剤(S-29)を、スピンナーを用いて塗布し、80℃のホットプレートで1分間プレベークを行った。その後、庫内を窒素置換したオーブン中、230℃で1時間加熱して膜厚0.1μmの塗膜を形成した。この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数400rpm、ステージ移動速度3cm/秒、毛足押し込み長さ0.1mmでラビング処理を行った。その後、超純水中で1分間超音波洗浄を行い、次いで100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。この一連の操作を繰り返すことにより、液晶配向膜を有する基板を一対(2枚)作成した。
 上記基板のうち1枚の液晶配向膜を有する面の外周に、直径3.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷により塗布した後、それぞれの液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より、一対の基板間にネマチック液晶(メルク社製、MLC-6221)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止した。
4.液晶セルの評価
 上記3.で得られたTN型液晶セルを使用した以外は実施例1と同様にしてポストベークマージン、AC残像特性及びDC残像特性を評価した。それらの結果を下記表3に示した。
Figure JPOXMLDOC01-appb-T000014
 表1中、重合体成分の数値は、液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体の配合割合(質量部)を示す。溶剤組成の数値は、液晶配向剤の調製に使用した溶剤成分の合計100質量部に対する各溶剤の配合割合(質量部)を示す。化合物の略号は以下の通りである。
<溶剤>
 a:γ-ヘプタノラクトン
 b:γ-オクタノラクトン
 c:γ-ノナノラクトン
 d:γ-ウンデカノラクトン
 e:δ-オクタノラクトン
 f:δ-デカノラクトン
 g:δ-ドデカノラクトン
 h:δ-トリデカノラクトン
 i:α-アンゲリカラクトン
 j:β-アンゲリカラクトン
 k:N-アセチル-ε-カプロラクタム
 L:γ-ブチロラクトン
 m:γ-バレロラクトン
 n:γ,γ-ジメチル-γ-ブチロラクトン
 o:δ-バレロラクトン
 p:N-メチルカプロラクタム
 q:1,3-ジメチル-2-イミダゾリジノン
 r:N-メチル-2-ピロリドン
 s:ブチルセロソルブ
 t:ダイアセトンアルコール
 u:ジエチレングリコールジエチルエーテル
 v:N-エチル-2-ピロリドン
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表2、3から明らかなように、溶剤[A]を含む実施例1~29では、表面凹凸性、連続印刷性、及び微細凹凸表面に対する塗布性のいずれも、「優良」、「良好」又は「可」の評価であった。また、ポストベークマージンも小さく、得られた液晶表示素子のAC残像特性及びDC残像特性は「良好」又は「可」の評価であった。これに対し、溶剤[A]を含まない比較例1~8では、微細凹凸表面に対する塗布性が実施例よりも劣っていた。また、比較例1~3では重合体が析出しやすく、連続印刷性についても劣っていた。
10…評価用ITO電極基板、11…ガラス基板、12…ITO電極

Claims (11)

  1.  重合体成分と、溶剤成分とを含有し、
     前記溶剤成分は、5員環ラクトン、6員環ラクトン及び7員環ラクタムよりなる群から選ばれる少なくとも一種であって、かつ炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基、炭素数2~10のアルコキシアルコキシアルキル基、炭素数2~10のアルコキシアルコキシ基、基「-COR12」(ただし、R12は炭素数1~3のアルキル基である。)及び環の一部を形成する炭素-炭素二重結合よりなる群から選ばれる少なくとも一種の部分構造を有する溶剤[A]を含む、液晶配向剤。
  2.  前記溶剤[A]は、下記式(1)で表される化合物、下記式(2)で表される化合物、及び下記式(3)で表される化合物よりなる群から選ばれる少なくとも一種である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、炭素数2~10のアルキル基、炭素数2~10のアルコキシ基、炭素数2~10のアルコキシアルキル基、炭素数2~10のアルコキシアルコキシアルキル基又は炭素数2~10のアルコキシアルコキシ基である。nは1又は2である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、下記式(4-1)又は式(4-2)で表される2価の基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(4-1)及び式(4-2)中、R~R11は、それぞれ独立して、水素原子又は炭素数1~5のアルキル基である。「*1」は、酸素原子との結合手であることを示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(3)中、Rは、炭素数1~3のアルキル基である。)
  3.  前記溶剤[A]の含有割合は、前記溶剤成分の全量に対して10質量%以上である、請求項1又は2に記載の液晶配向剤。
  4.  前記溶剤成分は、アルコール系溶剤、鎖状エステル系溶剤、エーテル系溶剤及びケトン系溶剤よりなる群から選ばれる少なくとも一種である溶剤[B]を更に含む、請求項1~3のいずれか一項に記載の液晶配向剤。
  5.  前記溶剤[B]の含有割合は、前記溶剤成分の全量に対して20~90質量%である、請求項4に記載の液晶配向剤。
  6.  前記溶剤成分は、1気圧における沸点が200℃以上である溶剤[C]を更に含む、請求項4に記載の液晶配向剤。
  7.  前記溶剤[B]の含有割合は、前記溶剤成分の全量に対して20~80質量%であり、
     前記溶剤[C]の含有割合は、前記溶剤成分の全量に対して10~70質量%である、請求項6に記載の液晶配向剤。
  8.  前記重合体成分として、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種を含む、請求項1~7のいずれか一項に記載の液晶配向剤。
  9.  請求項1~8のいずれか一項に記載の液晶配向剤を用いて液晶配向膜を形成する、液晶素子の製造方法。
  10.  請求項1~8のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。
  11.  請求項10に記載の液晶配向膜を具備する液晶素子。
PCT/JP2018/037081 2017-11-30 2018-10-03 液晶配向剤、液晶配向膜及び液晶素子 WO2019106952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880062309.XA CN111164501B (zh) 2017-11-30 2018-10-03 液晶取向剂、液晶元件的制造方法、液晶取向膜及液晶元件
KR1020207009464A KR102341987B1 (ko) 2017-11-30 2018-10-03 액정 배향제, 액정 배향막, 그리고 액정 소자 및 그의 제조 방법
JP2019557039A JP6897791B2 (ja) 2017-11-30 2018-10-03 液晶配向剤、液晶配向膜及び液晶素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229974 2017-11-30
JP2017-229974 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019106952A1 true WO2019106952A1 (ja) 2019-06-06

Family

ID=66664914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037081 WO2019106952A1 (ja) 2017-11-30 2018-10-03 液晶配向剤、液晶配向膜及び液晶素子

Country Status (5)

Country Link
JP (1) JP6897791B2 (ja)
KR (1) KR102341987B1 (ja)
CN (1) CN111164501B (ja)
TW (1) TWI786195B (ja)
WO (1) WO2019106952A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176713A1 (ja) * 2021-02-16 2022-08-25 日産化学株式会社 液晶配向剤、液晶配向膜、及び高分子分散型液晶素子
WO2022211086A1 (ja) * 2021-04-02 2022-10-06 旭化成株式会社 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872924A (ja) * 1981-10-28 1983-05-02 Hitachi Ltd 液晶表示素子
JP2004245869A (ja) * 2003-02-10 2004-09-02 Hitachi Cable Ltd 液晶配向膜および液晶表示素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007186A (ko) * 2001-07-17 2003-01-23 미쯔이카가쿠 가부시기가이샤 광 양이온성 경화가능 수지 조성물 및 그 용도
KR20060017138A (ko) * 2004-08-20 2006-02-23 삼성전자주식회사 배향막의 형성방법 및 안정화 방법
JP6421412B2 (ja) * 2013-03-19 2018-11-14 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP6057075B2 (ja) * 2013-04-18 2017-01-11 Jsr株式会社 液晶配向剤
JP6672821B2 (ja) * 2015-04-16 2020-03-25 Jsr株式会社 液晶配向剤及び液晶配向膜の製造方法
JP6870377B2 (ja) 2016-04-25 2021-05-12 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872924A (ja) * 1981-10-28 1983-05-02 Hitachi Ltd 液晶表示素子
JP2004245869A (ja) * 2003-02-10 2004-09-02 Hitachi Cable Ltd 液晶配向膜および液晶表示素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176713A1 (ja) * 2021-02-16 2022-08-25 日産化学株式会社 液晶配向剤、液晶配向膜、及び高分子分散型液晶素子
WO2022211086A1 (ja) * 2021-04-02 2022-10-06 旭化成株式会社 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法
JP7174199B1 (ja) * 2021-04-02 2022-11-17 旭化成株式会社 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法
JP7436606B2 (ja) 2021-04-02 2024-02-21 旭化成株式会社 ポリイミド、樹脂組成物、ポリイミドフィルム、及び、その製造方法

Also Published As

Publication number Publication date
CN111164501B (zh) 2022-10-04
CN111164501A (zh) 2020-05-15
TWI786195B (zh) 2022-12-11
KR20200046093A (ko) 2020-05-06
JPWO2019106952A1 (ja) 2020-07-30
KR102341987B1 (ko) 2021-12-21
JP6897791B2 (ja) 2021-07-07
TW201925183A (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
TWI608278B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
KR20130054126A (ko) 막 형성 재료의 제조 방법, 막 및 액정 표시 소자
KR101823949B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
TWI582147B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP6477039B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR20140102117A (ko) 액정 표시 소자 및 그의 제조 방법
WO2019106952A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP7409325B2 (ja) 液晶配向剤及び液晶素子の製造方法
TWI510520B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP6962440B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
CN110383156B (zh) 液晶取向剂及其应用、液晶元件及聚合物
KR20210125901A (ko) 액정 배향제, 액정 배향막 및 그의 제조 방법, 그리고 액정 소자
JP6682795B2 (ja) 液晶配向膜の製造方法、液晶素子の製造方法及び光配向用重合体組成物
JP6962449B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP2022191063A (ja) 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
JP2018155920A (ja) 液晶配向剤、液晶配向膜およびそれを用いた液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557039

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009464

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883851

Country of ref document: EP

Kind code of ref document: A1