WO2022210441A1 - 予備電源装置及び予備電源装置の制御方法 - Google Patents

予備電源装置及び予備電源装置の制御方法 Download PDF

Info

Publication number
WO2022210441A1
WO2022210441A1 PCT/JP2022/014725 JP2022014725W WO2022210441A1 WO 2022210441 A1 WO2022210441 A1 WO 2022210441A1 JP 2022014725 W JP2022014725 W JP 2022014725W WO 2022210441 A1 WO2022210441 A1 WO 2022210441A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
node
switch element
power supply
voltage value
Prior art date
Application number
PCT/JP2022/014725
Other languages
English (en)
French (fr)
Inventor
進 大澤
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to DE112022001803.8T priority Critical patent/DE112022001803T5/de
Priority to CN202280025040.4A priority patent/CN117063371A/zh
Priority to US18/549,732 priority patent/US20240170999A1/en
Publication of WO2022210441A1 publication Critical patent/WO2022210441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present disclosure relates to a standby power supply and a control method for the standby power supply.
  • backup power supplies are known which are provided to replace or supplement the main power supply in the event of failure or interruption of the main power supply (see, for example, US Pat. ).
  • Patent Document 1 discloses that a supercapacitor is used as a backup power supply.
  • an electric double layer capacitor such as a supercapacitor as a backup power supply, it is necessary to monitor the state of deterioration of the electric double layer capacitor.
  • the present disclosure provides a standby power supply device capable of monitoring the state of deterioration of an electric double layer capacitor of a backup power supply.
  • a first electric double layer capacitor having a first node connected to a power supply and a second node grounded, and connected in series between the first node and the second node and a second electric double layer capacitor, a first terminal connected to the first node, and a second terminal, wherein the first terminal and the second terminal are connected or a first switch element to be opened; a first discharge resistor provided between the second terminal and a fourth node; a second discharge resistor provided between the fourth node and ground; a third terminal connected to a third node between the double layer capacitor and the second electric double layer capacitor; and a fourth terminal connected to the fourth node, wherein the third terminal and the a second switch element that connects or disconnects with a fourth terminal; and a measurement control unit that measures the voltage of the first node and controls the first switch element and the second switch element, As a first process, the measurement control section opens between the third terminal and the fourth terminal by the second switching element, and opens between the first terminal and the second terminal by the first switching
  • the standby power supply device of the present disclosure it is possible to monitor the deterioration state of the electric double layer capacitor of the backup power supply.
  • FIG. 1 is a diagram showing a configuration example of a standby power supply device according to this embodiment.
  • FIG. 2 is a diagram showing a configuration example of the equalization/discharge circuit of the standby power supply device according to the present embodiment.
  • FIG. 3 is an equivalent circuit diagram for measuring the capacitance value and the equivalent series resistance value of the storage circuit in the standby power supply device according to the present embodiment.
  • FIG. 4 is a flow chart for measuring the capacitance value of the storage circuit in the standby power supply device according to the present embodiment.
  • FIG. 5 is a flow chart for measuring the equivalent series resistance value of the storage circuit in the standby power supply device according to the present embodiment.
  • FIG. 6 is a flow chart for measuring the capacitance value and the equivalent series resistance value of the storage circuit in the standby power supply device according to the present embodiment.
  • FIG. 7 is a circuit diagram of a circuit that performs equalization processing of the storage circuit and measurement of the capacitance value and the equivalent series resistance value in the standby power supply device according to the present embodiment.
  • FIG. 8 is a flow chart for performing equalization processing of the storage circuit and measurement of the capacitance value and the equivalent series resistance value in the standby power supply device according to the present embodiment.
  • a standby power supply device according to an embodiment of the present disclosure will be described below in detail with reference to the drawings.
  • FIG. 1 is a diagram showing a configuration example of a standby power supply device 1 according to this embodiment.
  • a latch mechanism which is a mechanical locking mechanism for automobile doors
  • a system in which a motor is used to operate the locking portion of the latch has been adopted as an electric latch system.
  • Automobile doors must be able to be unlocked even in an emergency such as an accident. Therefore, the electric latch system must be able to continue operating for a certain period of time even if the battery power source is lost due to accidental destruction or the like.
  • the standby power supply device 1 according to this embodiment is used as a backup power supply for an electric latch system.
  • the standby power supply 1 stores power supplied from the power supply 100 . Moreover, the standby power supply device 1 supplies power to the load device 200 when the power from the power supply 100 is interrupted. Power source 100 is also directly connected to load device 200 . Power supply 100 is connected to load device 200 via diode 71 to prevent reverse current flow.
  • the power supply 100 is, for example, an in-vehicle battery.
  • the load device 200 includes a load 210 and a load drive circuit 220 that drives the load 210 .
  • the load 210 is, for example, a motor in an automotive door motorized latch system.
  • the standby power supply device 1 includes a power storage circuit 10 , a charging circuit 20 , a boosting circuit 30 , an equalization/discharging circuit 40 , and a measurement control section 50 . Each component constituting the standby power supply device 1 will be described.
  • the storage circuit 10 is a circuit that stores electricity.
  • the storage circuit 10 includes at least one electric double layer capacitor, a so-called supercapacitor.
  • a power storage circuit 10 of a standby power supply device 1 according to this embodiment includes an electric double layer capacitor 11 and an electric double layer capacitor 12 connected in series.
  • the charging circuit 20 charges the power storage circuit 10 with power supplied from the power supply 100 .
  • the charging circuit 20 performs charging based on the charging control signal CTL1 from the measurement control section 50. FIG.
  • Booster circuit 30 The booster circuit 30 boosts the power supplied from the power storage circuit 10 and supplies the power to the load device 200 .
  • the booster circuit 30 supplies power based on the boost control signal CTL2 from the measurement controller 50 .
  • Booster circuit 30 is connected to load device 200 via diode 72 in order to prevent reverse current flow. Note that the diode 72 may be omitted.
  • the equalization/discharge circuit 40 equalizes the power storage circuit 10 . Also, the equalization/discharge circuit 40 discharges the storage circuit 10 .
  • FIG. 2 is a diagram showing a configuration example of the equalization/discharge circuit 40 of the standby power supply device 1 according to this embodiment.
  • an imbalance may occur in the voltage sharing of each capacitor due to individual leak current variations. If there is an imbalance in the voltage sharing of each capacitor, even within the overall rated voltage that is the sum of the rated voltages of the individual capacitors, when looking at each capacitor, the rating or set value for one of the capacitors will change. Excessive voltage may be applied.
  • the equalization/discharge circuit 40 eliminates the voltage sharing imbalance and reduces the voltage applied to each capacitor in order to prevent the voltage exceeding the rated or set value from being applied to the electric double layer capacitor 11 or the electric double layer capacitor 12. Equalization processing is performed.
  • the equalization/discharge circuit 40 performs equalization processing of the electric storage circuit 10 based on the equalization control signal CTL3. Also, the equalization/discharge circuit 40 performs discharge processing based on the discharge control signal CTL4. Furthermore, equalization/discharge circuit 40 outputs voltage signal SIGV1 of electric double layer capacitor 11 and voltage signal SIGV2 of electric double layer capacitor 12 to measurement control section 50 .
  • the equalization/discharge circuit 40 includes switches 41 and 42 and resistors 45 and 46 .
  • the storage circuit 10 includes an electric double layer capacitor 11 between the node N1 and the node N3.
  • the storage circuit 10 also includes an electric double layer capacitor 12 between the node N3 and the node N2.
  • Node N1 is connected to power supply 100 and load device 200 .
  • Node N2 is grounded.
  • the switch 41 has a first terminal 41a and a second terminal 41b.
  • the switch 41 connects or disconnects between the first terminal 41a and the second terminal 41b.
  • Switch 41 is provided between node N1 and resistor 45 .
  • the switch 41 is opened and closed based on the equalization control signal CTL3 and the discharge control signal CTL4. Note that the switch 41 may be referred to as a switch SW1 in the following description.
  • a resistor 45 is provided between the switch 41 and the node N4. Note that resistors 45 and 46 are connected in series at node N4. Resistor 45 has a resistance value R1.
  • the switch 42 has a first terminal 42a and a second terminal 42b.
  • the switch 42 connects or disconnects between the first terminal 42a and the second terminal 42b.
  • Switch 42 is provided between node N3 and node N4.
  • the switch 42 is opened and closed based on the equalization control signal CTL3 and the discharge control signal CTL4. Note that the switch 42 may be referred to as a switch SW2 in the following description.
  • a resistor 46 is provided between the node N4 and the node N2. Resistor 46 has a resistance value R2. Note that the resistance value R2 may be equal to the resistance value R1. It should be noted that the equal resistance value is not limited to a complete match, and includes, for example, equality within a manufacturing error range.
  • the equalization/discharge circuit 40 outputs the voltage value Vsc1 at the node N1 to the measurement control section 50 as the voltage signal SIGV1. Equalization/discharge circuit 40 also outputs voltage value Vsc2 at node N3 to measurement control section 50 as voltage signal SIGV2. Note that the voltage at the node N1 may be referred to as the terminal voltage Vsc of the storage circuit 10 .
  • the first terminal 42a of the switch 42 is an example of a third terminal
  • the second terminal 42b of the switch 42 is an example of a fourth terminal
  • the node N1 is an example of a first node
  • the node N2 is an example of a second node
  • the node N3 is an example of a third node
  • the node N4 is an example of a fourth node.
  • the measurement control unit 50 controls charging, power supply, and discharging of the storage circuit 10 . Also, the measurement control unit 50 measures the characteristics of the storage circuit 10 .
  • the measurement control unit 50 is configured by, for example, an electronic control unit (ECU).
  • the measurement control unit 50 controls charging of the charging circuit 20 to the storage circuit 10 by the charging control signal CTL1.
  • the measurement control section 50 controls power supply from the booster circuit 30 to the load device 200 by the boost control signal CTL2.
  • the measurement control section 50 controls the equalization processing of the equalization/discharge circuit 40 by the equalization control signal CTL3.
  • the measurement control unit 50 controls the discharge processing of the equalization/discharge circuit 40 by the discharge control signal CTL4.
  • the measurement control section 50 controls the load drive circuit 220 by the drive control signal CTL5.
  • the measurement control unit 50 has a timer for measuring time.
  • the measurement control unit 50 calculates the time by using the number of counts from when the timer starts until it stops.
  • Measurement of the characteristics of the storage circuit 10 in the measurement control unit 50 of the standby power supply device 1 according to this embodiment will be described.
  • the characteristics of the storage circuit 10 are obtained from the capacitance value and the equivalent series resistance value of the storage circuit 10 .
  • FIG. 3 is an equivalent circuit diagram for measuring the capacitance value and the equivalent series resistance value of the storage circuit in the standby power supply device 1 according to the present embodiment.
  • the electric double layer capacitor 11 and the electric double layer capacitor 12 connected in series are equivalently connected to one capacitor having a capacitance value Csc, and the capacitor is connected in series to Consider one resistor with resistance value ESRsc. Then, the characteristics of the storage circuit 10 are evaluated using the capacitance value Csc and the resistance value ESRsc.
  • FIG. 4 is a flowchart for measuring the capacitance value of the storage circuit 10 in the standby power supply device 1 according to this embodiment. Note that when performing this process, the charging circuit 20 and the boosting circuit 30 stop operating. In other words, the power storage circuit 10 is not being charged by the power source 100 . In addition, the power storage circuit 10 is in a state of not supplying power to the load device 200 . Also, when performing this process, the storage circuit 10 is in a state of being charged to some extent, for example, a state of being charged to 50% or more of full charge, preferably 80% or more.
  • Step S10 First, the measurement control section 50 turns on (closes) the switch SW1.
  • the switch SW1 When the switch SW1 is turned on (closed), the discharge resistor R_discharge is connected to the storage circuit 10 .
  • the discharge resistor R_discharge When the discharge resistor R_discharge is connected to the power storage circuit 10, the power stored in the power storage circuit 10 flows to the ground at the current I_R via the discharge resistor R_discharge.
  • the terminal voltage Vsc of the storage circuit 10 gradually decreases.
  • Step S20 the measurement control unit 50 measures the terminal voltage Vsc of the storage circuit 10 . Then, the measurement control unit 50 records (acquires) the voltage value of the measured terminal voltage Vsc as the starting voltage value V1. Also, start the timer count.
  • Step S30 the measurement control unit 50 determines whether or not the voltage value of the terminal voltage Vsc of the storage circuit 10 has become equal to or less than the end voltage value V2 set to a predetermined value. If the voltage value of the terminal voltage Vsc of the storage circuit 10 is greater than the predetermined end voltage value V2 (No in step S30), step S30 is repeated again. When the voltage value of the terminal voltage Vsc of the storage circuit 10 is equal to or less than the predetermined end voltage value V2 (Yes in step S30), the measurement control unit 50 advances the process to step S40. The end voltage value V2 is set to a value lower than the start voltage value V1.
  • Step S40 Next, the measurement control section 50 stops the timer count and records the count value. Then, the measurement control unit 50 calculates the time T from the start of the timer count to the stop from the count value.
  • the process of step S40 is desirably performed simultaneously with step S30 or after step S30 is performed as quickly as possible within the range that the measurement control unit 50 can perform.
  • Step S50 the measurement control section 50 turns off (opens) the switch SW1.
  • the switch SW1 is turned off (opened)
  • the discharge resistor R_discharge is disconnected from the storage circuit 10 .
  • the measurement control unit 50 uses the measured start voltage value V1 and end voltage value V2 and the time T to calculate the capacitance value Csc by Equation (1).
  • the resistance value R is the resistance value of the discharge resistance R_discharge.
  • Ln represents the natural logarithm.
  • Step S70 the measurement control unit 50 determines whether or not the storage circuit 10 is normal (whether or not it has deteriorated) based on the calculated capacitance value Csc. For example, when the capacitance value Csc is smaller than a predetermined capacitance value, the measurement control unit 50 determines that the storage circuit 10 is abnormal (deteriorated).
  • step S30 when the voltage value of the terminal voltage Vsc of the storage circuit 10 becomes, for example, the end voltage value V2 or less, the terminal voltage Vsc may be measured again and set as the end voltage value V2.
  • the set time Ts may be set first, and the voltage value of the terminal voltage Vsc of the storage circuit 10 after the time Ts has elapsed after the switch SW1 is turned on may be measured as the end voltage value V2.
  • the standby power supply device 1 of the present embodiment can measure the capacitance value of the storage circuit 10 during discharge when the storage circuit 10 discharges current.
  • the standby power supply device 1 of the present embodiment can monitor the characteristic deterioration of the electric double layer capacitor included in the storage circuit 10 by measuring the capacitance value of the storage circuit 10 .
  • the equalization/discharge circuit 40 of the standby power supply device 1 of this embodiment also operates as a discharge circuit that discharges the energy stored in the storage circuit 10 . Therefore, the standby power supply device 1 of the present embodiment can check the operation of the discharge circuit by measuring the capacitance value of the storage circuit 10 .
  • the start voltage value V1 is an example of the first voltage value
  • the end voltage value V2 is an example of the second voltage value.
  • FIG. 5 is a flowchart for measuring the equivalent series resistance value of the storage circuit 10 in the standby power supply device 1 according to this embodiment.
  • the charging circuit 20 and the boosting circuit 30 stop operating.
  • the power storage circuit 10 is not being charged by the power source 100 .
  • the power storage circuit 10 is in a state of not supplying power to the load device 200 .
  • the storage circuit 10 is in a state of being charged to some extent, for example, a state of being charged to 50% or more of full charge, preferably 80% or more.
  • Step S110 First, the measurement control section 50 turns on (closes) the switch SW1.
  • the switch SW1 When the switch SW1 is turned on (closed), the discharge resistor R_discharge is connected to the storage circuit 10 .
  • the discharge resistor R_discharge When the discharge resistor R_discharge is connected to the power storage circuit 10, the power stored in the power storage circuit 10 flows to the ground at the current I_R via the discharge resistor R_discharge.
  • the terminal voltage Vsc of the storage circuit 10 gradually decreases.
  • Step S120 the measurement control section 50 waits for a certain period of time. For example, the measurement control unit 50 waits for a certain period of time until the current I_R stabilizes.
  • Step S130 the measurement control unit 50 measures the terminal voltage Vsc of the storage circuit 10 . Then, the measurement control unit 50 stores (obtains) the measured voltage value of the terminal voltage Vsc as the conduction voltage value Vsc_on.
  • Step S140 the measurement control unit 50 turns off (opens) the switch SW1 immediately after measuring the terminal voltage Vsc of the storage circuit 10 in step S130.
  • the switch SW1 is turned off (opened)
  • the discharge resistor R_discharge is disconnected from the storage circuit 10 .
  • the process of step S140 is desirably performed simultaneously with step S130 or after step S130 is performed as quickly as possible within the range that the measurement control unit 50 can perform.
  • Step S150 the measurement control unit 50 measures the terminal voltage Vsc of the storage circuit 10 after the switch SW1 is turned off (opened). Then, the measurement control unit 50 stores (obtains) the measured voltage value of the terminal voltage Vsc as the non-conducting voltage value Vsc_off.
  • the measurement control unit 50 calculates the equivalent series resistance value ESR by Equation 2 using the measured voltage value Vsc_on during conduction and voltage value Vsc_off during non-conduction.
  • the resistance value R is the resistance value of the discharge resistance R_discharge.
  • Step S170 the measurement control unit 50 determines whether the storage circuit 10 is normal (whether it has deteriorated) based on the calculated equivalent series resistance value ESR. For example, when the equivalent series resistance value ESR is greater than a predetermined resistance value, the measurement control unit 50 determines that the storage circuit 10 is abnormal (deteriorated).
  • the standby power supply device 1 of the present embodiment can measure the equivalent series resistance value of the storage circuit 10 during discharge when current is released from the storage circuit 10 .
  • the standby power supply device 1 of the present embodiment can monitor characteristic deterioration of the electric double layer capacitor included in the storage circuit 10 by measuring the equivalent series resistance value of the storage circuit 10 .
  • the equalization/discharge circuit 40 of the standby power supply device 1 of this embodiment also operates as a discharge circuit that discharges the energy stored in the storage circuit 10 . Therefore, the standby power supply device 1 of the present embodiment can check the operation of the discharge circuit by measuring the equivalent series resistance value of the storage circuit 10 .
  • the voltage value Vsc_on during conduction is an example of the first voltage value
  • the voltage value Vsc_off during non-conduction is an example of the second voltage value
  • the standby power supply device 1 can simultaneously measure the capacitance value and the equivalent series resistance value of the electric double layer capacitor at any time and simultaneously monitor the capacitance value and the equivalent series resistance value.
  • FIG. 6 is a flowchart for simultaneously measuring the capacitance value and the equivalent series resistance value of the storage circuit 10 in the standby power supply device 1 according to this embodiment.
  • the charging circuit 20 and the boosting circuit 30 stop operating.
  • the power storage circuit 10 is not being charged by the power source 100 .
  • the power storage circuit 10 is in a state of not supplying power to the load device 200 .
  • the storage circuit 10 is in a state of being charged to some extent, for example, a state of being charged to 50% or more of full charge, preferably 80% or more.
  • Step S210 First, the measurement control section 50 turns on (closes) the switch SW1.
  • the switch SW1 When the switch SW1 is turned on (closed), the discharge resistor R_discharge is connected to the storage circuit 10 .
  • the discharge resistor R_discharge When the discharge resistor R_discharge is connected to the power storage circuit 10, the power stored in the power storage circuit 10 flows to the ground at the current I_R via the discharge resistor R_discharge.
  • the terminal voltage Vsc of the storage circuit 10 gradually decreases.
  • Step S220 the measurement control unit 50 measures the terminal voltage Vsc of the storage circuit 10 . Then, the measurement control unit 50 records (acquires) the voltage value of the measured terminal voltage Vsc as the starting voltage value V1. Also, start the timer count.
  • Step S230 the measurement control unit 50 determines whether or not the voltage value of the terminal voltage Vsc of the storage circuit 10 has become equal to or less than the end voltage value V2 set to a predetermined value. If the voltage value of the terminal voltage Vsc of the storage circuit 10 is greater than the predetermined end voltage value V2 (No in step S230), step S230 is repeated again. When the voltage value of the terminal voltage Vsc of the storage circuit 10 is equal to or less than the predetermined end voltage value V2 (Yes in step S230), the measurement control unit 50 advances the process to step S240. The end voltage value V2 is set to a value lower than the start voltage value V1.
  • Step S240 the measurement control section 50 stops the timer count and records the count value. Then, the measurement control unit 50 calculates the time T from the start of the timer count to the stop from the count value.
  • the process of step S240 is desirably performed simultaneously with step S230 or after step S230 is performed as quickly as possible within the range that the measurement control unit 50 can perform.
  • Step S250 the measurement control section 50 turns off (opens) the switch SW1 immediately after step S240.
  • the switch SW1 is turned off (opened)
  • the discharge resistor R_discharge is disconnected from the storage circuit 10 .
  • the process of step S250 is desirably performed simultaneously with step S240 or after step S240 is performed as quickly as possible within the range that the measurement control unit 50 can perform.
  • Step S260 the measurement control unit 50 measures the voltage value of the terminal voltage Vsc of the storage circuit 10 after the switch SW1 is turned off (opened). Then, the measurement control unit 50 stores the measured voltage value of the terminal voltage Vsc as the non-conducting voltage value V3.
  • Step S270 the measurement control unit 50 uses the measured start voltage value V1 and end voltage value V2 and the time T to calculate the capacitance value Csc by Equation (1).
  • the resistance value R is the resistance value of the discharge resistance R_discharge.
  • Step S280 the measurement control unit 50 calculates the equivalent series resistance value ESR according to Equation 3 using the end voltage value V2 and the measured non-conducting voltage value V3.
  • the resistance value R is the resistance value of the discharge resistance R_discharge.
  • Step S290 the measurement control unit 50 determines whether or not the storage circuit 10 is normal (whether or not it has deteriorated) based on the calculated capacitance value Csc. For example, when the capacitance value Csc is smaller than a predetermined capacitance value, the measurement control unit 50 determines that the storage circuit 10 is abnormal (deteriorated).
  • the measurement control unit 50 determines whether the storage circuit 10 is normal (whether it has deteriorated) based on the calculated equivalent series resistance value ESR. For example, when the equivalent series resistance value ESR is greater than a predetermined resistance value, the measurement control unit 50 determines that the storage circuit 10 is abnormal (deteriorated).
  • the standby power supply device 1 of the present embodiment can measure the capacitance value and the equivalent series resistance value of the storage circuit 10 during discharge when current is released from the storage circuit 10 .
  • the standby power supply device 1 of the present embodiment can monitor the characteristic deterioration of the electric double layer capacitor included in the storage circuit 10 by measuring the capacitance value and the equivalent series resistance value of the storage circuit 10 .
  • the start voltage value V1 is an example of a first voltage value
  • the end voltage value V2 is an example of a second voltage value
  • the non-conducting voltage value V3 is an example of a third voltage value.
  • the equalization/discharge circuit 40 measures the capacitance value and the equivalent series resistance value, and equalizes the electric double layer capacitor.
  • FIG. 7 is a circuit diagram of a circuit that performs equalization processing of the storage circuit and measurement of the capacitance value and the equivalent series resistance value in the standby power supply device according to the present embodiment.
  • FIG. 8 is a flow chart for performing equalization processing and measurement of the capacitance value and the equivalent series resistance value of the storage circuit 10 in the standby power supply device 1 according to the present embodiment.
  • the measurement control unit 50 determines whether it is normal operation (step S310). When the measurement control unit 50 determines that the operation is normal (Yes in step S310), the measurement control unit 50 opens the switches SW1 and SW2.
  • step S310 determines whether or not the equivalent series resistance value or capacitance value is to be measured.
  • the measurement control unit 50 determines that the equivalent series resistance value or the capacitance value is to be measured (Yes in step S330)
  • the measurement control unit 50 opens (opens)/closes (closes) only the switch SW1, thereby Equivalent series resistance or capacitance is measured (step S340).
  • the equivalent series resistance value or capacitance value is measured according to the procedure described above.
  • the switch SW1 is opened (step S350).
  • step S340 the capacitance value of the storage circuit 10 may be measured, or the equivalent series resistance value of the storage circuit 10 may be measured. Further, in step S340, simultaneous measurement of the capacitance value and the equivalent series resistance value of the storage circuit 10 may be performed.
  • step S340 is an example of the first process.
  • step S330 when the measurement control unit 50 determines that the measurement is not the equivalent series resistance value or the capacitance value (No in step S330), the measurement control unit 50 simultaneously closes the switches SW1 and SW2. , performs an equalization operation (step S360). After the equalization operation in step S360 is completed, the switches SW1 and SW2 are opened (step S370).
  • step S360 is an example of the second process.
  • the standby power supply device 1 according to the present embodiment can measure the capacitance value and the equivalent series resistance value and equalize the electric double layer capacitor with one circuit configuration.
  • the standby power supply device 1 according to the present embodiment reduces the complexity of the standby power supply device 1 by measuring the capacitance value and equivalent series resistance value and equalizing the electric double layer capacitor with one circuit configuration. It can be simplified.
  • the switch 41 is an example of a switch element. Also, the switch 41 is an example of a first switch element, and the switch 42 is an example of a second switch element.
  • the electric double layer capacitor 11 is an example of a first electric double layer capacitor, and the electric double layer capacitor 12 is an example of a second electric double layer capacitor.
  • a resistor 45 is an example of a first discharge resistor, and a resistor 46 is an example of a second discharge resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

第1ノードと第2ノードとの間に直列に接続される第1電気二重層コンデンサ及び第2電気二重層コンデンサを備える蓄電回路と、前記第1ノードに接続される第1端子と、第2端子と、を有する第1スイッチ素子と、前記第2端子と第4ノードとの間に設けられる第1放電抵抗と、前記第4ノードと接地との間に設けられる第2放電抵抗と、前記第1電気二重層コンデンサ及び前記第2電気二重層コンデンサとの間の第3ノードに接続される第3端子と前記第4ノードに接続される第4端子とを有する第2スイッチ素子と、測定制御部と、を備え、前記測定制御部は、第1処理として前記蓄電回路の容量値を算出する手順とを実行し、第2処理として前記第1スイッチ素子を接続し及び前記第2スイッチ素子を接続する手順とを実行する予備電源装置。

Description

予備電源装置及び予備電源装置の制御方法
 本開示は、予備電源装置及び予備電源装置の制御方法に関する。
 自動車において、主電源の故障又は中断の場合に、主電源に代わって電気エネルギーを供給したり、主電源を補助したりするために備えられるバックアップ電源が知られている(例えば、特許文献1参照)。
特許第6675874号公報
 特許文献1には、バックアップ電源としてスーパーキャパシタが使用されることが開示されている。バックアップ電源としてスーパーキャパシタ等の電気二重層コンデンサを使用する際には、電気二重層コンデンサの劣化状態を監視する必要がある。
 本開示は、バックアップ電源の電気二重層コンデンサの劣化状態を監視可能な予備電源装置を提供する。
 本開示の一態様では、電源に接続される第1ノード及び接地される第2ノードを有し、前記第1ノードと前記第2ノードとの間に直列に接続される第1電気二重層コンデンサ及び第2電気二重層コンデンサを備える蓄電回路と、前記第1ノードに接続される第1端子と、第2端子と、を有し、前記第1端子と前記第2端子との間を接続又は開放する第1スイッチ素子と、前記第2端子と第4ノードとの間に設けられる第1放電抵抗と、前記第4ノードと接地との間に設けられる第2放電抵抗と、前記第1電気二重層コンデンサ及び前記第2電気二重層コンデンサとの間の第3ノードに接続される第3端子と、前記第4ノードに接続される第4端子と、を有し、前記第3端子と前記第4端子との間を接続又は開放する第2スイッチ素子と、前記第1ノードの電圧を測定し、前記第1スイッチ素子及び前記第2スイッチ素子を制御する測定制御部と、を備え、前記測定制御部は、第1処理として、前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放し、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続する手順と、前記第1ノードの電圧を測定し、第1電圧値を取得する手順と、前記第1ノードの電圧が、前記第1電圧値よりも低い第2電圧値以下であるか判定する手順と、前記第1ノードの電圧が前記第2電圧値以下である場合に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放する手順と、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続してから開放するまでの時間を算出する手順と、前記時間と、前記第1電圧値及び前記第2電圧値に基づいて、前記蓄電回路の容量値を算出する手順と、を実行し、第2処理として、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により接続する手順と、所定の時間が経過した後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放する手順と、を実行する予備電源装置が提供される。
 本開示の予備電源装置によれば、バックアップ電源の電気二重層コンデンサの劣化状態を監視できる。
図1は、本実施形態に係る予備電源装置の構成例を示す図である。 図2は、本実施形態に係る予備電源装置の等化/放電回路の構成例を示す図である。 図3は、本実施形態に係る予備電源装置における蓄電回路の容量値と等価直列抵抗値を測定する際の等価回路図である。 図4は、本実施形態に係る予備電源装置における蓄電回路の容量値を測定する際のフローチャートである。 図5は、本実施形態に係る予備電源装置における蓄電回路の等価直列抵抗値を測定する際のフローチャートである。 図6は、本実施形態に係る予備電源装置における蓄電回路の容量値及び等価直列抵抗値を測定する際のフローチャートである。 図7は、本実施形態に係る予備電源装置における蓄電回路の等化処理及び容量値と等価直列抵抗値の測定を行う回路の回路図である。 図8は、本実施形態に係る予備電源装置における蓄電回路の等化処理及び容量値と等価直列抵抗値の測定を行う際のフローチャートである。
 以下、図面を参照して、本開示の実施の形態に係る予備電源装置について詳細に説明する。
 <予備電源装置1>
 図1は、本実施形態に係る予備電源装置1の構成例を示す図である。近年、自動車ドアの機械的ロック機構であるラッチ機構において、ラッチのロック部分の動作をモータで行うシステムが電動ラッチシステムとして採用されている。自動車ドアは、事故等の緊急時にも解除出来ることが必須である。そのため、事故の破壊等によりバッテリ電源が喪失した場合でも、電動ラッチシステムは一定時間動作を継続できる必要がある。本実施形態に係る予備電源装置1は、電動ラッチシステムのバックアップ電源として用いられる。
 予備電源装置1は、電源100から供給される電力を蓄電する。また、予備電源装置1は、電源100からの電力が遮断されたときに、負荷装置200に電源を供給する。なお、電源100は、負荷装置200にも直接接続される。電源100は、電流の逆流を防止するために、ダイオード71を介して、負荷装置200に接続される。
 電源100は、例えば、車載バッテリである。負荷装置200は、負荷210と、負荷210を駆動する負荷駆動回路220と、を備える。負荷210は、例えば、自動車ドアの電動ラッチシステムにおけるモータである。
 予備電源装置1は、蓄電回路10と、充電回路20と、昇圧回路30と、等化/放電回路40と、測定制御部50と、を備える。予備電源装置1を構成する各構成要素について説明する。
 [蓄電回路10]
 蓄電回路10は、電気を蓄電する回路である。蓄電回路10は、少なくとも1つの電気二重層コンデンサ、いわゆる、スーパーキャパシタ、を備える。本実施形態に係る予備電源装置1の蓄電回路10は、直列に接続された電気二重層コンデンサ11及び電気二重層コンデンサ12を備える。
 [充電回路20]
 充電回路20は、電源100から供給される電力により、蓄電回路10を充電する。充電回路20は、測定制御部50の充電制御信号CTL1に基づいて、充電を行う。
 [昇圧回路30]
 昇圧回路30は、蓄電回路10から供給される電力を昇圧して、負荷装置200に給電する。昇圧回路30は、測定制御部50の昇圧制御信号CTL2に基づいて、給電を行う。なお、昇圧回路30は、電流の逆流を防止するために、ダイオード72を介して負荷装置200に接続される。なお、ダイオード72は、省略してもよい。
 [等化/放電回路40]
 等化/放電回路40は、蓄電回路10の等化処理を行う。また、等化/放電回路40は、蓄電回路10の放電処理を行う。図2は、本実施形態に係る予備電源装置1の等化/放電回路40の構成例を示す図である。
 スーパーキャパシタ等の電気二重層コンデンサを直列に接続する場合、個々のリーク電流バラつき等に起因する各コンデンサの電圧分担にアンバランスが生じる場合がある。各コンデンサの電圧分担にアンバランスが生じると、個々のコンデンサの定格電圧を加算した全体としての定格電圧内であっても、各コンデンサで見た場合にどちらかのコンデンサに定格や設定した値を超えた電圧がかかる可能性がある。等化/放電回路40は、定格や設定した値を超えた電圧が電気二重層コンデンサ11又は電気二重層コンデンサ12にかかることを防ぐために、電圧分担アンバランスを解消しそれぞれのコンデンサにかかる電圧を等しくする等化処理を行う。
 等化/放電回路40は、等化制御信号CTL3に基づいて、蓄電回路10の等化処理を行う。また、等化/放電回路40は、放電制御信号CTL4に基づいて、放電処理を行う。さらに、等化/放電回路40は、電気二重層コンデンサ11の電圧信号SIGV1と、電気二重層コンデンサ12の電圧信号SIGV2と、を測定制御部50に出力する。
 等化/放電回路40は、スイッチ41及びスイッチ42と、抵抗45及び抵抗46と、を備える。なお、蓄電回路10は、ノードN1とノードN3との間に電気二重層コンデンサ11を備える。また、蓄電回路10は、ノードN3とノードN2との間に電気二重層コンデンサ12を備える。ノードN1は、電源100及び負荷装置200に接続される。ノードN2は接地される。
 スイッチ41は、第1端子41a及び第2端子41bを有する。スイッチ41は、第1端子41aと第2端子41bとの間を接続又は開放する。スイッチ41は、ノードN1と抵抗45との間に設けられる。スイッチ41は、等化制御信号CTL3及び放電制御信号CTL4に基づいて開閉される。なお、以下の説明においてスイッチ41をスイッチSW1という場合がある。
 抵抗45は、スイッチ41とノードN4との間に設けられる。なお、抵抗45及び抵抗46は、ノードN4で直列に接続される。抵抗45は、抵抗値R1を有する。
 スイッチ42は、第1端子42a及び第2端子42bを有する。スイッチ42は、第1端子42aと第2端子42bとの間を接続又は開放する。スイッチ42は、ノードN3とノードN4との間に設けられる。スイッチ42は、等化制御信号CTL3及び放電制御信号CTL4に基づいて開閉される。なお、以下の説明においてスイッチ42をスイッチSW2という場合がある。
 抵抗46は、ノードN4とノードN2との間に設けられる。抵抗46は、抵抗値R2を有する。なお、抵抗値R2は、抵抗値R1と等しくてもよい。なお、抵抗値が等しいという場合には、完全に一致する場合に限らず、例えば、製造誤差範囲内で等しい場合も含まれる。
 等化/放電回路40は、ノードN1における電圧値Vsc1を、電圧信号SIGV1として、測定制御部50に出力する。また、等化/放電回路40は、ノードN3における電圧値Vsc2を、電圧信号SIGV2として、測定制御部50に出力する。なお、ノードN1における電圧を、蓄電回路10の端子電圧Vscという場合がある。
 なお、スイッチ42の第1端子42aは第3端子の一例、スイッチ42の第2端子42bは第4端子の一例である。また、ノードN1は第1ノードの一例、ノードN2は第2ノードの一例、ノードN3は第3ノードの一例、ノードN4は第4ノードの一例である。
 [測定制御部50]
 測定制御部50は、蓄電回路10の充電、給電、放電を制御する。また、測定制御部50は、蓄電回路10の特性を測定する。測定制御部50は、例えば、エレクトロニックコントロールユニット(Electronic Control Unit:ECU)により構成される。
 測定制御部50は、充電制御信号CTL1により、充電回路20の蓄電回路10への充電を制御する。また、測定制御部50は、昇圧制御信号CTL2により、昇圧回路30の負荷装置200への給電を制御する。測定制御部50は、等化制御信号CTL3により、等化/放電回路40の等化処理を制御する。
 また、測定制御部50は、放電制御信号CTL4により、等化/放電回路40の放電処理を制御する。測定制御部50は、駆動制御信号CTL5により、負荷駆動回路220を制御する。
 測定制御部50は、時間を測定するためにタイマーを備える。測定制御部50は、当該タイマーによりタイマーカウントを開始して停止するまでのカウント数を用いて、時間を算出する。
 <測定制御部50における蓄電回路10の特性の測定>
 本実施形態に係る予備電源装置1の測定制御部50における蓄電回路10の特性の測定について説明する。蓄電回路10の特性は、蓄電回路10の容量値及び等価直列抵抗値により求められる。
 [蓄電回路10の容量値及び等価直列抵抗値]
 本実施形態に係る予備電源装置1における蓄電回路10の特性について説明する。図3は、本実施形態に係る予備電源装置1における蓄電回路の容量値と等価直列抵抗値を測定する際の等価回路図である。
 本実施形態に係る蓄電回路10について、直列に接続している電気二重層コンデンサ11及び電気二重層コンデンサ12を、等価的に容量値Cscを有する一つのコンデンサと、当該コンデンサに直列に接続された抵抗値ESRscを有する一つ抵抗と見なす。そして、容量値Csc及び抵抗値ESRscを用いて蓄電回路10の特性を評価する。
 また、直列に接続された抵抗45及び抵抗46は、抵抗値R(=抵抗値R1+抵抗値R2)の放電抵抗R_dischargeと見なして評価を行う。すなわち、抵抗45の抵抗値R1と抵抗46の抵抗値R2とを加算した抵抗値Rを放電抵抗R_dischargeの抵抗値とする。
 [蓄電回路10の容量値の測定]
 電気二重層コンデンサは使用により特性劣化が進行する。電気二重層コンデンサの劣化が進行して、容量値が低下していった場合、例えば、モータへの供給電流に支障が生じて、バックアップ電源として使用可能な時間が短くなったり、ラッチの解除ができなかったりする場合が想定される。したがって、本実施形態に係る予備電源装置1では、電気二重層コンデンサの容量値を随時測定して容量値の監視を行う。
 図4は、本実施形態に係る予備電源装置1における蓄電回路10の容量値を測定する際のフローチャートである。なお、本処理を行う場合は、充電回路20及び昇圧回路30は、動作を停止する。すなわち、蓄電回路10は、電源100から充電は行われていない状態である。また、蓄電回路10は、負荷装置200への給電は行っていない状態である。また、蓄電回路10は、本処理を行う場合は、ある程度充電されている状態、例えば、満充電の50%以上、好ましくは80%以上充電されている状態、である。
 図4のフローチャートに沿って、本実施形態に係る予備電源装置1の測定制御部50の処理手順及び予備電源装置1の制御方法の工程について説明する。
 (ステップS10)
 最初に、測定制御部50は、スイッチSW1をオン(閉)にする。スイッチSW1がオン(閉)になると、放電抵抗R_dischargeが蓄電回路10に接続される。放電抵抗R_dischargeが蓄電回路10に接続されると、蓄電回路10に蓄えられた電力が、放電抵抗R_dischargeを経由して、電流I_Rで接地に流れる。蓄電回路10に蓄えられた電力が電流I_Rで接地に流れると、蓄電回路10の端子電圧Vscが徐々に低下する。
 (ステップS20)
 次に、測定制御部50は、蓄電回路10の端子電圧Vscを測定する。そして、測定制御部50は、測定した端子電圧Vscの電圧値を開始電圧値V1として記録(取得)する。また、タイマーカウントを開始する。
 (ステップS30)
 次に、測定制御部50は、蓄電回路10の端子電圧Vscの電圧値が、所定値に設定された終了電圧値V2以下になったかどうかを判定する。蓄電回路10の端子電圧Vscの電圧値が、所定の終了電圧値V2より大きい場合(ステップS30のNo)は、ステップS30を再度繰り返す。蓄電回路10の端子電圧Vscの電圧値が所定の終了電圧値V2以下の場合(ステップS30のYes)は、測定制御部50は、ステップS40に処理を進める。終了電圧値V2は、開始電圧値V1よりも低い値に設定される。
 (ステップS40)
 次に、測定制御部50は、タイマーカウントを停止して、カウント値を記録する。そして、測定制御部50は、カウント値からタイマーカウントを開始してから停止するまでの時間Tを算出する。ステップS40の処理は、ステップS30と同時に又はステップS30を実行してから測定制御部50が実行可能な範囲でできるだけ速く実行することが望ましい。
 (ステップS50)
 次に、測定制御部50は、スイッチSW1をオフ(開)にする。スイッチSW1がオフ(開)になると、放電抵抗R_dischargeは蓄電回路10から切り離される。
 (ステップS60)
 次に、測定制御部50は、測定した開始電圧値V1及び終了電圧値V2と、時間Tと、を用いて、式1により容量値Cscを計算する。なお、抵抗値Rは、放電抵抗R_dischargeの抵抗値である。Lnは、自然対数を表す。
Figure JPOXMLDOC01-appb-M000003
 (ステップS70)
 次に、測定制御部50は、算出した容量値Cscに基づいて、蓄電回路10が正常かどうか(劣化しているかどうか)判断する。例えば、容量値Cscが所定の容量値より小さくなっている場合は、測定制御部50は蓄電回路10が異常である(劣化している)と判断する。
 なお、例えば、ステップS30において、蓄電回路10の端子電圧Vscの電圧値が、例えば終了電圧値V2以下になったとき、改めて端子電圧Vscを測定して終了電圧値V2としてもよい。また、設定した時間Tsを先に設定し、スイッチSW1オン後、時間Tsを経過した時の蓄電回路10の端子電圧Vscの電圧値を終了電圧値V2として測定してもよい。
 本実施形態の予備電源装置1は、蓄電回路10から電流が放出される放電において、蓄電回路10の容量値を測定することができる。また、本実施形態の予備電源装置1は、蓄電回路10の容量値を測定することにより、蓄電回路10が備える電気二重層コンデンサの特性劣化を監視することができる。
 本実施形態の予備電源装置1の等化/放電回路40は、蓄電回路10に蓄電されたエネルギーを放電する放電回路としても動作する。したがって、本実施形態の予備電源装置1は、蓄電回路10の容量値を測定することにより、放電回路の動作の確認を行うことができる。
 なお、開始電圧値V1が第1電圧値の一例、終了電圧値V2が第2電圧値の一例である。
 [蓄電回路10の等価直列抵抗値の測定]
 電気二重層コンデンサは使用により特性劣化が進行する。電気二重層コンデンサの劣化が進行して、等価直列抵抗値が増加していった場合、例えば、モータへの供給電流に支障が生じて、ラッチの解除ができない場合が想定される。したがって、本実施形態に係る予備電源装置1では、電気二重層コンデンサの等価直列抵抗値を随時測定して等価直列抵抗値の監視を行う。
 図5は、本実施形態に係る予備電源装置1における蓄電回路10の等価直列抵抗値を測定する際のフローチャートである。なお、本処理を行う場合は、充電回路20及び昇圧回路30は、動作を停止する。すなわち、蓄電回路10は、電源100から充電は行われていない状態である。また、蓄電回路10は、負荷装置200への給電は行っていない状態である。また、蓄電回路10は、本処理を行う場合は、ある程度充電されている状態、例えば、満充電の50%以上、好ましくは80%以上充電されている状態、である。
 図5のフローチャートに沿って、本実施形態に係る予備電源装置1の測定制御部50の処理手順及び予備電源装置1の制御方法の工程について説明する。
 (ステップS110)
 最初に、測定制御部50は、スイッチSW1をオン(閉)にする。スイッチSW1がオン(閉)になると、放電抵抗R_dischargeが蓄電回路10に接続される。放電抵抗R_dischargeが蓄電回路10に接続されると、蓄電回路10に蓄えられた電力が、放電抵抗R_dischargeを経由して、電流I_Rで接地に流れる。蓄電回路10に蓄えられた電力が電流I_Rで接地に流れると、蓄電回路10の端子電圧Vscが徐々に低下する。
 (ステップS120)
 次に、測定制御部50は、一定期間待機する。例えば、電流I_Rが安定するまで、測定制御部50は、一定期間待機する。
 (ステップS130)
 次に、測定制御部50は、蓄電回路10の端子電圧Vscを測定する。そして、測定制御部50は、測定した端子電圧Vscの電圧値を導通時電圧値Vsc_onとして記憶(取得)する。
 (ステップS140)
 次に、測定制御部50は、ステップS130で蓄電回路10の端子電圧Vscを測定した直後に、スイッチSW1をオフ(開)にする。スイッチSW1がオフ(開)になると、放電抵抗R_dischargeは蓄電回路10から切り離される。ステップS140の処理は、ステップS130と同時に又はステップS130を実行してから測定制御部50が実行可能な範囲でできるだけ速く実行することが望ましい。
 (ステップS150)
 次に、測定制御部50は、スイッチSW1がオフ(開)になった後に、蓄電回路10の端子電圧Vscを測定する。そして、測定制御部50は、測定した端子電圧Vscの電圧値を非導通時電圧値Vsc_offとして記憶(取得)する。
 (ステップS160)
 次に、測定制御部50は、測定した導通時電圧値Vsc_on及び非導通時電圧値Vsc_offと、を用いて、式2により等価直列抵抗値ESRを計算する。なお、抵抗値Rは、放電抵抗R_dischargeの抵抗値である。
Figure JPOXMLDOC01-appb-M000004
 (ステップS170)
 次に、測定制御部50は、算出した等価直列抵抗値ESRに基づいて、蓄電回路10が正常かどうか(劣化しているかどうか)判断する。例えば、等価直列抵抗値ESRが所定の抵抗値より大きくなっている場合は、測定制御部50は蓄電回路10が異常である(劣化している)と判断する。
 本実施形態の予備電源装置1は、蓄電回路10から電流が放出される放電において、蓄電回路10の等価直列抵抗値を測定することができる。また、本実施形態の予備電源装置1は、蓄電回路10の等価直列抵抗値を測定することにより、蓄電回路10が備える電気二重層コンデンサの特性劣化を監視することができる。
 また、本実施形態の予備電源装置1の等化/放電回路40は、蓄電回路10に蓄電されたエネルギーを放電する放電回路としても動作する。したがって、本実施形態の予備電源装置1は、蓄電回路10の等価直列抵抗値を測定することにより、放電回路の動作の確認を行うことができる。
 なお、導通時電圧値Vsc_onが第1電圧値の一例、非導通時電圧値Vsc_offが第2電圧値の一例である。
 [蓄電回路10の容量値と等価直列抵抗値の同時測定]
 本実施形態に係る予備電源装置1は、電気二重層コンデンサの容量値及び等価直列抵抗値を同時に随時測定して容量値及び等価直列抵抗値を同時に監視できる。
 図6は、本実施形態に係る予備電源装置1における蓄電回路10の容量値及び等価直列抵抗値を同時測定する際のフローチャートである。なお、本処理を行う場合は、充電回路20及び昇圧回路30は、動作を停止する。すなわち、蓄電回路10は、電源100から充電は行われていない状態である。また、蓄電回路10は、負荷装置200への給電は行っていない状態である。また、蓄電回路10は、本処理を行う場合は、ある程度充電されている状態、例えば、満充電の50%以上、好ましくは80%以上充電されている状態、である。
 図6のフローチャートに沿って、本実施形態に係る予備電源装置1の測定制御部50の処理手順及び予備電源装置1の制御方法の工程について説明する。
 (ステップS210)
 最初に、測定制御部50は、スイッチSW1をオン(閉)にする。スイッチSW1がオン(閉)になると、放電抵抗R_dischargeが蓄電回路10に接続される。放電抵抗R_dischargeが蓄電回路10に接続されると、蓄電回路10に蓄えられた電力が、放電抵抗R_dischargeを経由して、電流I_Rで接地に流れる。蓄電回路10に蓄えられた電力が電流I_Rで接地に流れると、蓄電回路10の端子電圧Vscが徐々に低下する。
 (ステップS220)
 次に、測定制御部50は、蓄電回路10の端子電圧Vscを測定する。そして、測定制御部50は、測定した端子電圧Vscの電圧値を開始電圧値V1として記録(取得)する。また、タイマーカウントを開始する。
 (ステップS230)
 次に、測定制御部50は、蓄電回路10の端子電圧Vscの電圧値が、所定値に設定された終了電圧値V2以下になったかどうかを判定する。蓄電回路10の端子電圧Vscの電圧値が、所定の終了電圧値V2より大きい場合(ステップS230のNo)は、ステップS230を再度繰り返す。蓄電回路10の端子電圧Vscの電圧値が所定の終了電圧値V2以下の場合(ステップS230のYes)は、測定制御部50は、ステップS240に処理を進める。終了電圧値V2は、開始電圧値V1よりも低い値に設定される。
 (ステップS240)
 次に、測定制御部50は、タイマーカウントを停止して、カウント値を記録する。そして、測定制御部50は、カウント値からタイマーカウントを開始してから停止するまでの時間Tを算出する。ステップS240の処理は、ステップS230と同時に又はステップS230を実行してから測定制御部50が実行可能な範囲でできるだけ速く実行することが望ましい。
 (ステップS250)
 次に、測定制御部50は、ステップS240の直後に、スイッチSW1をオフ(開)にする。スイッチSW1がオフ(開)になると、放電抵抗R_dischargeは蓄電回路10から切り離される。ステップS250の処理は、ステップS240と同時に又はステップS240を実行してから測定制御部50が実行可能な範囲でできるだけ速く実行することが望ましい。
 (ステップS260)
 次に、測定制御部50は、スイッチSW1がオフ(開)になった後に、蓄電回路10の端子電圧Vscの電圧値を測定する。そして、測定制御部50は、測定した端子電圧Vscの電圧値を非導通時電圧値V3として記憶する。
 (ステップS270)
 次に、測定制御部50は、測定した開始電圧値V1及び終了電圧値V2と、時間Tと、を用いて、式1により容量値Cscを計算する。なお、抵抗値Rは、放電抵抗R_dischargeの抵抗値である。
 (ステップS280)
 次に、測定制御部50は、終了電圧値V2及び測定した非導通時電圧値V3と、を用いて、式3により等価直列抵抗値ESRを計算する。なお、抵抗値Rは、放電抵抗R_dischargeの抵抗値である。
Figure JPOXMLDOC01-appb-M000005
 (ステップS290)
 次に、測定制御部50は、算出した容量値Cscに基づいて、蓄電回路10が正常かどうか(劣化しているかどうか)判断する。例えば、容量値Cscが所定の容量値より小さくなっている場合は、測定制御部50は蓄電回路10が異常である(劣化している)と判断する。
 また、測定制御部50は、算出した等価直列抵抗値ESRに基づいて、蓄電回路10が正常かどうか(劣化しているかどうか)判断する。例えば、等価直列抵抗値ESRが所定の抵抗値より大きくなっている場合は、測定制御部50は蓄電回路10が異常である(劣化している)と判断する。
 本実施形態の予備電源装置1は、蓄電回路10から電流が放出される放電において、蓄電回路10の容量値及び等価直列抵抗値を測定することができる。また、本実施形態の予備電源装置1は、蓄電回路10の容量値及び等価直列抵抗値を測定することにより、蓄電回路10が備える電気二重層コンデンサの特性劣化を監視することができる。
 なお、開始電圧値V1が第1電圧値の一例、終了電圧値V2が第2電圧値の一例、非導通時電圧値V3が第3電圧値の一例である。
 <予備電源装置における蓄電回路の等化処理及び容量値と等価直列抵抗値の測定>
 次に、予備電源装置1における蓄電回路10の等化処理及び容量値と等価直列抵抗値の測定について説明する。
 上述のように、自動車システムのバックアップエネルギ源としての電気二重層コンデンサを用いる場合は、実際の使用状態での電気二重層コンデンサの劣化管理のため容量値及び等価直列抵抗値の監視が必要である。したがって、車両実装状態において容量値及び等価直列抵抗値を測定する回路が必要である。
 また、電気二重層コンデンサを直列に接続した回路では、電圧分担アンバランスを解消するための等化回路が必要である。本実施形態に係る予備電源装置1では、等化/放電回路40により、容量値及び等価直列抵抗値の測定と、電気二重層コンデンサの等化処理を行う。
 図7は、本実施形態に係る予備電源装置における蓄電回路の等化処理及び容量値と等価直列抵抗値の測定を行う回路の回路図である。図8は、本実施形態に係る予備電源装置1における蓄電回路10の等化処理及び容量値と等価直列抵抗値の測定を行う際のフローチャートである。
 図8のフローチャートに沿って、本実施形態に係る予備電源装置1の測定制御部50の処理手順及び予備電源装置1の制御方法の工程について説明する。
 測定制御部50は、通常動作か判定を行う(ステップS310)。測定制御部50が通常動作と判断した場合(ステップS310のYes)の場合は、測定制御部50は、スイッチSW1及びスイッチSW2をオープン(開)にする。
 ステップS10において、測定制御部50が通常動作でないと判断した場合(ステップS310のNo)は、測定制御部50は、等価直列抵抗値又は容量値の測定かどうか判断を行う(ステップS330)。
 測定制御部50が等価直列抵抗値又は容量値の測定と判断した場合(ステップS330のYes)は、測定制御部50はスイッチSW1のみをオープン(開)/クローズ(閉)動作を行うことにより、等価直列抵抗値又は容量値の測定を実施する(ステップS340)。等価直列抵抗値又は容量値の測定は、前述の手順に基づいて行う。そして、ステップS340の測定終了後は、スイッチSW1をオープン(開)にする(ステップS350)。
 なお、ステップS340において、蓄電回路10の容量値の測定を行ってもよいし、蓄電回路10の等価直列抵抗値の測定を行ってよい。また、ステップS340において、蓄電回路10の容量値と等価直列抵抗値の同時測定を行ってもよい。
 なお、ステップS340の等価直列抵抗値又は容量値の測定を実施する処理が、第1処理の一例である。
 一方、測定制御部50が等価直列抵抗値又は容量値の測定ではないと判断した場合(ステップS330のNo)は、測定制御部50はスイッチSW1及びスイッチSW2を同時にクローズ(閉)にすることにより、等化動作を実行する(ステップS360)。そして、ステップS360の等化動作終了後は、スイッチSW1及びスイッチSW2をオープン(開)にする(ステップS370)。
 なお、ステップS360の等化動作の処理が、第2処理の一例である。
 本実施形態に係る予備電源装置1は、一つの回路構成により、容量値及び等価直列抵抗値の測定と、電気二重層コンデンサの等化処理を行うことができる。本実施形態に係る予備電源装置1は、一つの回路構成により容量値及び等価直列抵抗値の測定と、電気二重層コンデンサの等化処理を行うことにより、予備電源装置1の複雑さを低減し簡素化できる。
 なお、スイッチ41は、スイッチ素子の一例である。また、スイッチ41は第1スイッチ素子の一例、スイッチ42は第2スイッチ素子の一例である。電気二重層コンデンサ11は第1電気二重層コンデンサの一例、電気二重層コンデンサ12は第2電気二重層コンデンサの一例である。抵抗45は第1放電抵抗の一例、抵抗46は第2放電抵抗の一例である。
 以上、予備電源装置を実施形態により説明したが、本発明は上記の実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 本願は、日本特許庁に2021年3月30日に出願された基礎特許出願2021-056570号の優先権を主張するものであり、その全内容を参照によりここに援用する。
1 予備電源装置
10 蓄電回路
11 電気二重層コンデンサ
12 電気二重層コンデンサ
20 充電回路
30 昇圧回路
40 放電回路
41、42 スイッチ
41a 第1端子
41b 第2端子
45、46 抵抗
50 測定制御部
100 電源
200 負荷装置
210 負荷
220 負荷駆動回路
N1 ノード
N2 ノード
N3 ノード

Claims (9)

  1.  電源に接続される第1ノード及び接地される第2ノードを有し、前記第1ノードと前記第2ノードとの間に直列に接続される第1電気二重層コンデンサ及び第2電気二重層コンデンサを備える蓄電回路と、
     前記第1ノードに接続される第1端子と、第2端子と、を有し、前記第1端子と前記第2端子との間を接続又は開放する第1スイッチ素子と、
     前記第2端子と第4ノードとの間に設けられる第1放電抵抗と、
     前記第4ノードと接地との間に設けられる第2放電抵抗と、
     前記第1電気二重層コンデンサ及び前記第2電気二重層コンデンサとの間の第3ノードに接続される第3端子と、前記第4ノードに接続される第4端子と、を有し、前記第3端子と前記第4端子との間を接続又は開放する第2スイッチ素子と、
     前記第1ノードの電圧を測定し、前記第1スイッチ素子及び前記第2スイッチ素子を制御する測定制御部と、を備え、
     前記測定制御部は、
      第1処理として、
      前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放し、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続する手順と、
      前記第1ノードの電圧を測定し、第1電圧値を取得する手順と、
      前記第1ノードの電圧が、前記第1電圧値よりも低い第2電圧値以下であるか判定する手順と、
      前記第1ノードの電圧が前記第2電圧値以下である場合に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放する手順と、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続してから開放するまでの時間を算出する手順と、
      前記時間と、前記第1電圧値及び前記第2電圧値に基づいて、前記蓄電回路の容量値を算出する手順と、を実行し、
      第2処理として、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により接続する手順と、
      所定の時間が経過した後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放する手順と、を実行する、
    予備電源装置。
  2.  前記測定制御部は、
      前記第1電圧値をV1、前記第2電圧値をV2、前記時間をT、前記第1放電抵抗の抵抗値と前記第2放電抵抗の抵抗値との加算した抵抗値をR、前記容量値をCscとすると、前記容量値を、
    Figure JPOXMLDOC01-appb-M000001
    により算出する、
    請求項1に記載の予備電源装置。
  3.  前記測定制御部は、
      算出した前記容量値に基づいて、前記蓄電回路の劣化を判定する手順を、実行する、
    請求項1又は請求項2のいずれかに記載の予備電源装置。
  4.  前記測定制御部は、
      前記第1スイッチ素子により前記第1端子と前記第2端子との間を開放する手順の後に、前記第1ノードの電圧を測定し、第3電圧値を取得する手順と、
      前記第2電圧値及び前記第3電圧値に基づいて、前記蓄電回路の等価直列抵抗値を算出する手順と、を実行する、
    請求項1から請求項3のいずれか一項に記載の予備電源装置。
  5.  電源に接続される第1ノード及び接地される第2ノードを有し、前記第1ノードと前記第2ノードとの間に直列に接続される第1電気二重層コンデンサ及び第2電気二重層コンデンサを備える蓄電回路と、
     前記第1ノードに接続される第1端子と、第2端子と、を有し、前記第1端子と前記第2端子との間を接続又は開放する第1スイッチ素子と、
     前記第2端子と第4ノードとの間に設けられる第1放電抵抗と、
     前記第4ノードと接地との間に設けられる第2放電抵抗と、
     前記第1電気二重層コンデンサ及び前記第2電気二重層コンデンサとの間の第3ノードに接続される第3端子と、前記第4ノードに接続される第4端子と、を有し、前記第3端子と前記第4端子との間を接続又は開放する第2スイッチ素子と、を備える予備電源装置の制御方法であって、
     第1処理として、
      前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放し、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続する工程と、
      前記第1ノードの電圧を測定し、第1電圧値を取得する工程と、
      前記第1ノードの電圧が、前記第1電圧値よりも低い第2電圧値以下であるか判定する工程と、
      前記第1ノードの電圧が前記第2電圧値以下である場合に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放する工程と、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続してから開放するまでの時間を算出する工程と、
      前記時間と、前記第1電圧値及び前記第2電圧値に基づいて、前記蓄電回路の容量値を算出する工程と、を備え、
     第2処理として、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により接続する工程と、
      所定の時間が経過した後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子より開放し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放する工程と、を備える、
    予備電源装置の制御方法。
  6.  電源に接続される第1ノード及び接地される第2ノードを有し、前記第1ノードと前記第2ノードとの間に直列に接続される第1電気二重層コンデンサ及び第2電気二重層コンデンサを備える蓄電回路と、
     前記第1ノードに接続される第1端子と、第2端子と、を有し、前記第1端子と前記第2端子との間を接続又は開放する第1スイッチ素子と、
     前記第2端子と第4ノードとの間に設けられる第1放電抵抗と、
     前記第4ノードと接地との間に設けられる第2放電抵抗と、
     前記第1電気二重層コンデンサ及び前記第2電気二重層コンデンサとの間の第3ノードに接続される第3端子と、前記第4ノードに接続される第4端子と、を有し、前記第3端子と前記第4端子との間を接続又は開放する第2スイッチ素子と、
     前記第1ノードの電圧を測定し、前記第1スイッチ素子及び前記第2スイッチ素子を制御する測定制御部と、を備え、
     前記測定制御部は、
      第1処理として、
      前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放し、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続する手順と、
      前記第1ノードの電圧を測定し、第1電圧値を取得する手順と、
      前記第1ノードの電圧を測定した直後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放する手順と、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放した後に、前記第1ノードの電圧を測定し、前記第1電圧値よりも低い第2電圧値を取得する手順と、
      前記第1電圧値及び前記第2電圧値に基づいて、前記蓄電回路の等価直列抵抗値を算出する手順と、を実行し、
      第2処理として、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により接続する手順と、
      所定の時間が経過した後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放する手順と、を実行する、
    予備電源装置。
  7.  前記測定制御部は、
      前記第1電圧値をV1、前記第2電圧値をV2、前記第1放電抵抗の抵抗値と前記第2放電抵抗の抵抗値との加算した抵抗値をR、前記等価直列抵抗値をESRとすると、前記等価直列抵抗値を、
    Figure JPOXMLDOC01-appb-M000002
    により算出する、
    請求項6に記載の予備電源装置。
  8.  前記測定制御部は、算出した前記等価直列抵抗値に基づいて、前記蓄電回路の劣化を判定する手順を、実行する、
    請求項6又は請求項7のいずれかに記載の予備電源装置。
  9.  電源に接続される第1ノード及び接地される第2ノードを有し、前記第1ノードと前記第2ノードとの間に直列に接続される第1電気二重層コンデンサ及び第2電気二重層コンデンサを備える蓄電回路と、
     前記第1ノードに接続される第1端子と、第2端子と、を有し、前記第1端子と前記第2端子との間を接続又は開放する第1スイッチ素子と、
     前記第2端子と第4ノードとの間に設けられる第1放電抵抗と、
     前記第4ノードと接地との間に設けられる第2放電抵抗と、
     前記第1電気二重層コンデンサ及び前記第2電気二重層コンデンサとの間の第3ノードに接続される第3端子と、前記第4ノードに接続される第4端子と、を有し、前記第3端子と前記第4端子との間を接続又は開放する第2スイッチ素子と、を備える予備電源装置の制御方法であって、
     第1処理として、
      前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放し、前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続する工程と、
      前記第1ノードの電圧を測定し、第1電圧値を取得する工程と、
      前記第1ノードの電圧を測定した直後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放する工程と、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放した後に、前記第1ノードの電圧を測定し、前記第1電圧値よりも低い第2電圧値を取得する工程と、
      前記第1電圧値及び前記第2電圧値に基づいて、前記蓄電回路の等価直列抵抗値を算出する工程と、を備え、
      第2処理として、
      前記第1端子と前記第2端子との間を前記第1スイッチ素子により接続し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により接続する工程と、
      所定の時間が経過した後に、前記第1端子と前記第2端子との間を前記第1スイッチ素子により開放し及び前記第3端子と前記第4端子との間を前記第2スイッチ素子により開放する工程と、を備える、
    予備電源装置の制御方法。
PCT/JP2022/014725 2021-03-30 2022-03-25 予備電源装置及び予備電源装置の制御方法 WO2022210441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022001803.8T DE112022001803T5 (de) 2021-03-30 2022-03-25 Hilfsstromversorgungsvorrichtung und Verfahren zum Steuern einer Hilfsstromversorgungsvorrichtung
CN202280025040.4A CN117063371A (zh) 2021-03-30 2022-03-25 备用电源装置及备用电源装置的控制方法
US18/549,732 US20240170999A1 (en) 2021-03-30 2022-03-25 Auxiliary power supply device and method for controlling auxiliary power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021056570A JP2022153839A (ja) 2021-03-30 2021-03-30 予備電源装置及び予備電源装置の制御方法
JP2021-056570 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210441A1 true WO2022210441A1 (ja) 2022-10-06

Family

ID=83456184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014725 WO2022210441A1 (ja) 2021-03-30 2022-03-25 予備電源装置及び予備電源装置の制御方法

Country Status (5)

Country Link
US (1) US20240170999A1 (ja)
JP (1) JP2022153839A (ja)
CN (1) CN117063371A (ja)
DE (1) DE112022001803T5 (ja)
WO (1) WO2022210441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054607A1 (ja) * 2021-09-30 2023-04-06 ミネベアミツミ株式会社 電源装置及び電源装置の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201091A (ja) * 1996-12-27 1998-07-31 Fuji Heavy Ind Ltd 電気二重層コンデンサを用いた車両用電源装置
JP2005028908A (ja) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd 車両用電源装置
JP2012100517A (ja) * 2010-10-07 2012-05-24 Toshiba Corp バックアップ電源装置及び計算機システム
JP2012137341A (ja) * 2010-12-24 2012-07-19 Toshiba Corp 電子機器、及び同電子機器における蓄電器静電容量検出方法
JP2014187734A (ja) * 2013-03-21 2014-10-02 Sumitomo (Shi) Construction Machinery Co Ltd ショベル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956565B (zh) 2012-12-24 2019-05-07 麦格纳覆盖件有限公司 用于汽车***的备用能量源及相关控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201091A (ja) * 1996-12-27 1998-07-31 Fuji Heavy Ind Ltd 電気二重層コンデンサを用いた車両用電源装置
JP2005028908A (ja) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd 車両用電源装置
JP2012100517A (ja) * 2010-10-07 2012-05-24 Toshiba Corp バックアップ電源装置及び計算機システム
JP2012137341A (ja) * 2010-12-24 2012-07-19 Toshiba Corp 電子機器、及び同電子機器における蓄電器静電容量検出方法
JP2014187734A (ja) * 2013-03-21 2014-10-02 Sumitomo (Shi) Construction Machinery Co Ltd ショベル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054607A1 (ja) * 2021-09-30 2023-04-06 ミネベアミツミ株式会社 電源装置及び電源装置の制御方法

Also Published As

Publication number Publication date
CN117063371A (zh) 2023-11-14
US20240170999A1 (en) 2024-05-23
DE112022001803T5 (de) 2024-01-11
JP2022153839A (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
KR101024138B1 (ko) 축전 장치
US20150219720A1 (en) Relay Control System and Method for Controlling Same
CN112041200B (zh) 车载用的备用电路及车载用的备用装置
US6777917B2 (en) Supercapacitor balancing method and system
US20090102434A1 (en) Auxiliary power supply device for vehicle, power supply device for vehicle, having the auxiliary power supply device, and automobile
CN111902308B (zh) 用于运行机动车的方法和设备
JP7117378B2 (ja) 電池管理装置
WO2022210441A1 (ja) 予備電源装置及び予備電源装置の制御方法
WO2017094620A1 (ja) 電圧測定装置、電圧測定システム
KR102186488B1 (ko) 자동차 배터리 비상 충전 장치 및 방법
WO2020003582A1 (ja) 電池システム、電池管理装置
US20170288424A1 (en) Charge-discharge control circuit
JP5304279B2 (ja) 蓄電装置
Saponara et al. Thermal, electric and durability characterization of supercaps for energy back-up of automotive ECU
CN112290608B (zh) 电源的控制方法
CN113447829B (zh) 电池诊断装置、方法、存储介质以及车辆
JP2016174475A (ja) 蓄電システム
JP4735523B2 (ja) 蓄電装置
JP6520665B2 (ja) 電圧測定装置、電圧測定システム
WO2024004193A1 (ja) 車載用のバックアップ制御装置
WO2023054604A1 (ja) 電源装置及び電源装置の制御方法
WO2023054607A1 (ja) 電源装置及び電源装置の制御方法
KR20220151962A (ko) 차량 비상 시동 장치, 그 제어 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
JP7234907B2 (ja) 車載用電源制御装置、及び車載用電源装置
WO2023054606A1 (ja) 電源装置及び電源装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549732

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280025040.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001803

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780653

Country of ref document: EP

Kind code of ref document: A1