WO2022179383A1 - 一种隧道结构多维空间加载火灾试验***及其实施方法 - Google Patents

一种隧道结构多维空间加载火灾试验***及其实施方法 Download PDF

Info

Publication number
WO2022179383A1
WO2022179383A1 PCT/CN2022/074548 CN2022074548W WO2022179383A1 WO 2022179383 A1 WO2022179383 A1 WO 2022179383A1 CN 2022074548 W CN2022074548 W CN 2022074548W WO 2022179383 A1 WO2022179383 A1 WO 2022179383A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
tunnel
loading
fixed
rod
Prior art date
Application number
PCT/CN2022/074548
Other languages
English (en)
French (fr)
Inventor
陈伟
叶继红
姜健
李�瑞
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US17/923,645 priority Critical patent/US11650135B2/en
Publication of WO2022179383A1 publication Critical patent/WO2022179383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0081Training methods or equipment for fire-fighting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • G01M5/0058Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/02Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires
    • A62C3/0221Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires for tunnels

Definitions

  • the invention relates to the field of tunnel structure fire test systems, in particular to a tunnel structure multi-dimensional space loading fire test system and an implementation method thereof.
  • tunnel traffic has brought us convenience.
  • the reaction force loading system can be used to determine the bearing capacity of the tunnel test model.
  • the shape of the tunnel section is constantly updated (circle, rectangle, horseshoe, oval, polygon, double-circle combined section, etc.).
  • the existing loading reaction force loading system is usually only suitable for the loading of circular section tunnel models, and it is difficult to adapt to the test requirements of tunnel structures with different section shapes.
  • the common fire test of tunnel structure often ignites a car that is about to be scrapped to carry out the experiment. On the one hand, this test method wastes resources and pollutes a lot. On the other hand, the test combustion process is uncontrollable, and it is difficult to simulate the impact of a mobile fire.
  • the camera and thermal imaging devices need to be used to obtain test data and image data during the fire test.
  • Common high-temperature cameras and thermal imagers are generally placed outside the high-temperature environment of the fire (that is, usually at room temperature), and indirectly image through the lens assembly extending into the high-temperature environment of the fire.
  • the disadvantage of the instrument is that the imaging angle of view is narrow, and it is difficult to have both thermal imaging and ranging, and it cannot well meet the requirements of the high temperature environment of tunnel fires.
  • the purpose of the present invention is to provide a tunnel structure multi-dimensional space loading fire test system and its implementation method, which can load tunnel models of different shapes and sections, and can be suitable for the test requirements of tunnel structures with different cross-section shapes , especially for the tunnel structure fire test, the camera has a large imaging angle, good heat resistance, thermal imaging and ranging, and can well meet the requirements of the high temperature environment of tunnel fires.
  • the present invention adopts the following technical solutions:
  • the invention provides a multi-dimensional space loading fire test system for a tunnel structure, including a multi-point loading self-balancing reaction force system provided with a rigid platform, the rigid platform is provided with a track groove and a track is laid, and the track is provided with a A sliding model splicing device and two furnace body side sealing devices, the upper end of the model splicing device is used to place the tunnel model, and the two furnace body side sealing devices are respectively used to seal the two ports of the tunnel model, the said
  • the inner wall of the tunnel model is provided with steel rails, and the steel rails are provided with tower combustion vehicles capable of spraying flames to the outside.
  • reaction force frames are annular It is composed of multi-section steel members connected by bolts;
  • side sealing device of the furnace body is provided with an air inlet pipe, an air inlet pipe, a water inlet pipe and a water outlet pipe;
  • the self-adaptive loading device includes a distribution beam, and the upper end surface of the distribution beam is hinged with a number of hydraulic cylinders that are evenly distributed, and one end of the hydraulic cylinder away from the distribution beam is fixed to the bottom of the adjustment platform, and the top surface of the adjustment platform is fixed with an electric push rod. and two fixed rods symmetrically arranged on both sides of the electric push rod, the fixed rod and the electric push rod are slidably connected with the rotating block, two rotating rods are symmetrically fixed at both ends of the rotating block, and the two rotating rods are One end away from the rotating block is respectively connected with the preset pin holes on the two reaction frames;
  • the self-adaptive loading device also includes an angle adjustment assembly for adjusting the rotation angle of the rotating block and a locking assembly for limiting the displacement of the distribution beam along the direction of the fixed rod.
  • the upper end surface of the rigid platform is provided with a number of hydraulic support cylinders, so The hydraulic cylinder and the hydraulic support cylinder are respectively connected with the oil circuit of the hydraulic power station through their corresponding oil distributors.
  • the angle adjustment assembly includes an adjusting top rod, the middle part of the adjusting top rod is connected to the middle part of the adjusting bottom rod through a first telescopic rod, and the two ends of the adjusting top rod are respectively connected with the preset grooves on the two reaction force frames. Sliding and plugging, the adjusting bottom rod is fixedly connected with the rotating block, the first telescopic rod drives the rotating block to rotate through its own expansion and contraction, the electric push rod and the first telescopic rod are electrically controlled and are respectively provided with wireless receiving units and a control unit that controls its work.
  • the locking assembly includes an L-shaped fixing frame fixed on the rotating block, one end of the L-shaped fixing frame away from the rotating block is fixedly connected to the second telescopic rod, and the extending end of the second telescopic rod is fixedly connected to the rigid Wedge block, the side of the fixed rod facing the electric push rod is provided with several evenly distributed grooves, the two sides of the rigid wedge block can be embedded in the grooves to lock the distribution beam, the rigid wedge block There is a gap in the middle part that can accommodate the electric push rod, and the second telescopic rod adopts electric control and is respectively provided with a wireless receiving unit and a control unit for controlling its work.
  • the hydraulic support cylinder and the loading end of the hydraulic cylinder are provided with a hydraulic cylinder load sensor and a hydraulic cylinder displacement sensor, and a hydraulic cylinder proportional valve is provided between the hydraulic cylinder, the hydraulic support cylinder and the corresponding oil distributor. , to achieve their independent hydraulic supply.
  • the tower-type combustion vehicle includes a vehicle body, the two side surfaces and the top surface of the vehicle body are respectively provided with a plurality of combustion ports uniformly distributed in a rectangular array, and a number of combustion ports respectively connected to the combustion chamber are fixed on the inner wall of the vehicle body.
  • the sliding frame is slidably connected to the sliding plate, the sliding plate is fixedly connected with the combustion cylinder of the burner, and the flame-throwing end of the combustion cylinder passes through the sliding plate, the sliding frame and the combustion port and then extends out of the vehicle body
  • the combustion cylinder can be swung up and down by sliding the sliding plate on the sliding frame; the air inlet and air inlet holes of the burner pass through the heat-resistant hose and the air inlet pipe on the side sealing device of the furnace body, respectively.
  • the air inlet pipe is connected, the air inlet pipe and the air inlet pipe are respectively connected to external natural gas and air source, and a plurality of high temperature resistant panoramic detection devices are also arranged on the outer wall of the vehicle body, and the panoramic detection devices are electrically connected with an external monitor, and the monitoring A VR device is externally connected to the device, and one end of the vehicle body is provided with an inspection port capable of accommodating the entry and exit of maintenance personnel.
  • the sliding frame includes a wall plate fixed on the inner wall of the vehicle body, an arc-shaped plate is fixed on the side of the wall plate away from the inner wall of the vehicle body, and the arc-shaped edges on both sides of the arc-shaped plate and the wall plate are fixed.
  • a side plate is also sealed and fixed between the two sides.
  • the side of the arc plate away from the wall plate is slidably connected to the slide plate through the arc slide rail.
  • the arc-shaped plate and the sliding plate are all provided with a slot that is compatible with the combustion port and used for the combustion cylinder to pass through, the sliding plate is fixedly connected to the root of the combustion cylinder, and the sliding plate covers the arc-shaped plate part and the arc-shaped plate. of the same curvature.
  • the panoramic detection device includes a high temperature resistant spherical glass cover, the high temperature resistant spherical glass cover is fixed on the pedestal by a high temperature resistant clamp set at the bottom thereof, and a waterproof type 360 is installed in the high temperature resistant spherical glass cover
  • the waterproof 360-degree camera is fixed on the upper end surface of the pedestal through a vertically arranged water flow separator, and the edges on both sides of the water flow separator are close to the inner wall of the high temperature resistant spherical glass cover.
  • the space between the 360-degree camera and the pedestal is divided into a left cavity and a right cavity.
  • the right cavity is also provided with a thermal imaging camera and the thermal imaging camera is fixed at one end of the endoscope.
  • the other end of the mirror is the peeping end and extends out of the high temperature resistant spherical glass cover.
  • the left cavity and the right cavity are respectively connected with the water inlet and outlet pipes on the side sealing device of the furnace body through heat-resistant hoses.
  • the bottom of the pedestal is also provided with a heat shield, the inner cavity of the heat shield is fixed with a miniature microphone and a motor, the bottom of the heat shield is fixed on the vehicle body, and the waterproof 360-degree camera , ranging thermal imager, miniature microphone and motor are respectively electrically connected to the external monitor, the monitor is connected to an external VR device, the extension shaft of the motor is plugged and fixed at the center of the pedestal, and the forward and reverse rotation of the motor drives the pedestal Rotate clockwise or counterclockwise.
  • the natural gas is connected to the front end of the main gas main pipe
  • the main gas main valve is provided with a main gas valve, a pressure gauge, a flow meter and a main gas control valve in sequence from front to back
  • the end of the main gas main pipe is divided into several gas branch pipes, each of which is
  • the gas branch pipe is provided with a gas control sub-valve, the air intake holes of the same row of burners in the vehicle body are connected to a gas branch pipe through metal hoses, the gas main valve, pressure gauge, flow meter, gas control main valve and gas
  • the control sub-valve is respectively electrically connected with the external gas control panel, the gas control panel is electrically connected with the monitor, and the gas branch pipe is connected to the air inlet of the burner after passing through the air inlet pipe on the side sealing device of the furnace body;
  • the main gas control valve is a V-shaped notch ball valve
  • the main gas control valve is driven by pneumatic means
  • the valve positioning of the main gas control valve is controlled by the analog output signal of the control system of the monitor
  • the flow meter adopts the volume A type flowmeter
  • the flowmeter includes a frequency pulse counter, two thermistor temperature probes and two pressure sensors, and the thermistor temperature probes and pressure sensors are arranged in pairs at the inlet and the outlet of the flowmeter, respectively.
  • the model assembling device includes a model assembling platform and a model carrier set up and down, the model assembling platform is made of steel structural components and an arc-shaped component adapted to the tunnel model is arranged on the upper end of the model assembling platform.
  • the bottom of the assembled platform is connected with the model carrier by bolts, and the model carrier is driven by electricity.
  • the present invention also provides an implementation method of a tunnel structure multi-dimensional space loading fire test system, which specifically includes the following steps:
  • the angle adjustment component on the adaptive loading device sends a signal from the console to control the expansion and contraction of the rod body of the first telescopic rod, thereby driving the rotation of the rotating block to realize the angle adjustment of the adaptive loading device;
  • the distance adjustment component is based on the size of the experimental model, and the console transmits a signal to control the extension and contraction of the rod body of the electric push rod, so as to realize the distance adjustment of the distribution beam moving in the direction of the fixed rod;
  • the console After the distance adjustment is completed, on the locking assembly, the console transmits a signal to control the rigid wedge block to be pushed out through the second telescopic rod and inserted into the groove of the fixed rod to realize the locking function of the loading position;
  • the present invention is provided with two ring-shaped reaction force frames, which is convenient to carry out engineering tests on the tunnel lining structure model. Moreover, the present invention is provided with a rigid platform at the bottom of the reaction force frame, so that the system can achieve self-balancing during loading.
  • the present invention is provided with an adaptive loading device, which can perform loading tests on tunnel models with different cross-sectional shapes.
  • the present invention designs a tower-type combustion vehicle that can simulate a car fire.
  • the tower-type combustion vehicle can be reused.
  • the gas supply of each burner is adjusted by controlling the gas control main valve and the gas control sub-valve, so as to realize the difference between the flame size and heat release.
  • Real-time controllable can be used to simulate single or multiple car fires; at the same time, the burner can be rotated to select flame spray patterns in different directions, thereby more accurately simulating actual car fires.
  • the present invention is provided with a safety model carrier vehicle, so that the device has a walking function, which can be used to simulate the situation of a mobile fire.
  • a spherical glass cover made of high temperature resistant material is used as the protective cover of the detection device, so as to realize a panoramic window for the external observation of the detection device; the spherical glass cover is filled with colorless and transparent cooling liquid, so that the electronic equipment placed in the spherical glass cover can be Directly used in fire and high temperature environment.
  • the present invention is provided with a waterproof 360-degree camera, a VR device, a distance measuring thermal imager, a miniature microphone and other devices, and integrates the functions of camera, temperature measurement, distance measurement and sound measurement, so as to realize the panoramic presentation of the fire and high temperature environment and the whole scene. Full non-contact monitoring of temperature.
  • FIG. 1 is a schematic structural diagram of a tunnel structure multi-dimensional space loading fire test system provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-point loading self-balancing reaction force system with adjustable loading positions provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an adaptive loading apparatus provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a distance adjustment component provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a rotating shaft assembly provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a hydraulic cylinder loading assembly provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an angle adjustment assembly provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a locking assembly provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the arrangement of combustion ports on a tower combustion vehicle according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the layout of an inspection port on a tower combustion vehicle according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a burner provided by an example of the present invention.
  • FIG. 12 is a schematic structural diagram of a sliding part of a burner provided by an example of the present invention.
  • FIG. 13 is a schematic structural diagram of a panoramic detection device provided by an example of the present invention.
  • FIG. 14 is a schematic structural diagram of a model assembling device provided by an example of the present invention.
  • Reaction frame 2. Distance adjustment assembly, 2-1, Electric push rod, 2-2, Fixed rod, 2-4, Adjustment platform, 3. Adaptive loading device, 4. Panoramic detection device, 4-1 , high temperature resistant spherical glass cover, 4-2, waterproof 360-degree camera, 4-3, thermal imaging camera, 4-4, water separator, 4-5, pedestal, 4-6, endoscope, 4 -7, heat shield, 4-8, micro microphone, 4-9, motor, 5-1, gas branch pipe, 5-2, gas main pipe, 5-3, gas main valve, 5-4, pressure gauge, 5 -5, flow meter, 5-6, gas control main valve, 5-7, gas control sub-valve, 5-8, gas control panel, 6, hydraulic cylinder loading assembly, 6-1, hydraulic cylinder, 6-2, Distribution beam, 7.
  • Panoramic detection device 4-1 , high temperature resistant spherical glass cover, 4-2, waterproof 360-degree camera, 4-3, thermal imaging camera, 4-4, water separator, 4-5, pedestal, 4-6, endoscope, 4 -7, heat shield
  • Angle adjustment assembly 7-1, Adjusting top rod, 7-2, Adjusting bottom rod, 7-3, First telescopic rod, 8.
  • Locking assembly 8-1, L-shaped fixing frame, 8 -2, Second telescopic rod, 8-3, Rigid wedge, 9, Rigid platform, 9-1, Track groove, 10, Hydraulic support cylinder, 11, Oil distributor, 12, Hydraulic power station, 12-1, Ripple attenuator, 13, shaft assembly, 13-1, rotating rod, 13-2, rotating block, 13-3, rectangular hole, 13-4, round hole; 14, car body, 14-1, combustion port, 14-2, Insulation cotton, 14-7, Inspection port, 15, Burner, 15-1, Air inlet, 15-2, Air inlet, 15-3, Burner, 16, Sliding frame, 16-1 , wall panel, 16-2, side panel, 16-3, curved panel, 16-4, slide rail, 17, natural gas, 19, cooling pool, 20, monitor, 21, VR device, 22, skateboard; 23 , Model assembling device, 23-1, Model carrier, 23-2, Model assembly platform, 24, Console.
  • a multi-dimensional space loading fire test system for a tunnel structure includes a multi-point loading self-balancing reaction force system with a rigid platform 9, including two annularly designed reaction force frames 1, adaptive loading Device 3, distance adjustment assembly 2, rotating shaft assembly 13, hydraulic cylinder loading assembly 6, two reaction force frames 1 arranged in parallel on the rigid platform 9, the reaction force frame 1 is composed of multi-section steel members connected by bolts;
  • the distance adjustment assembly 2 includes an electric push rod 2-1, a fixed rod 2-2 and an adjustment platform 2-4;
  • the rotating shaft assembly 13 includes a rotating rod 13-1 and a rotating block 13-2, and the hydraulic cylinder loading assembly 6 includes a hydraulic cylinder 6- 1 and distribution beam 6-2;
  • the rigid platform 9 is provided with a track groove 9-1 and a track is laid.
  • the track is provided with a slidable model consolidating device 23 and two furnace body side sealing devices 22.
  • the two furnace body side sealing devices 22 are respectively used to seal the two ports of the tunnel model
  • the inner wall of the tunnel model is provided with a steel rail
  • the steel rail is provided with a tower capable of spraying flames to the outside type combustion vehicle
  • two of the reaction force frames 1 are arranged in parallel on the rigid platform 9, and several sets of uniformly distributed sets of self-adaptive loading for applying the loading force to the outer wall of the tunnel model are connected between the two reaction force frames 1 Device 3, the loading end of the adaptive loading device 3 can freely adjust the spatial position
  • the reaction force frame 1 is annular and is composed of multi-section steel members connected by bolts
  • the furnace body side sealing device 22 is provided with an air inlet pipe, an inlet Air ducts, inlet pipes and outlet pipes;
  • the self-adaptive loading device 3 includes a distribution beam 6-2, and the upper end surface of the distribution beam 6-2 is hinged with a plurality of evenly distributed hydraulic cylinders 6-1.
  • the bottom of the adjustment platform 2-4 is fixed, and the top surface of the adjustment platform 2-4 is fixed with an electric push rod 2-1 and two fixed rods 2-2 symmetrically arranged on both sides of the electric push rod 2-1. 2-2.
  • the electric push rod 2-1 is slidably connected to the rotating block 13-2.
  • Two rotating rods 13-1 are symmetrically fixed at both ends of the rotating block 13-2, and the two rotating rods 13-1 are far away from each other.
  • One end of the rotating block 13-2 is respectively connected with the preset pin holes on the two reaction force frames 1, and the rotating block 13-2 is provided with a circle through which the electric push rod 2-1 and the fixed rod 2-2 pass through.
  • the adaptive loading device 3 also includes an angle adjustment assembly 7 for adjusting the rotation angle of the rotating block 13-2 and a locking assembly 8 for limiting the displacement of the distribution beam 6-2 along the direction of the fixed rod 2-2.
  • the upper end surface of the platform 9 is provided with a number of hydraulic support cylinders 10 , and the hydraulic cylinders 6 - 1 and the hydraulic support cylinders 10 are respectively connected to the hydraulic power station 12 by the oil passages through their corresponding oil distributors 11 .
  • the angle adjustment assembly 7 includes an adjustment top rod 7-1, the middle part of the adjustment top rod 7-1 is connected to the middle part of the adjustment bottom rod 7-2 through a first telescopic rod 7-3, and both ends of the adjustment top rod 7-1 are connected. They are respectively slidably connected to the preset grooves on the two reaction force frames 1, the adjusting bottom rod 7-2 is fixedly connected with the rotating block 13-2, and the first telescopic rod 7-3 is driven to rotate by its own expansion and contraction.
  • the block 13-2 rotates, the electric push rod 2-1 and the first telescopic rod 7-3 are electrically controlled and are respectively provided with a wireless receiving unit and a control unit for controlling their work.
  • the locking assembly 8 includes an L-shaped fixing frame 8-1 fixed on the rotating block 13-2, and one end of the L-shaped fixing frame 8-1 away from the rotating block 13-2 is fixedly connected to the second telescopic rod 8-2 , the protruding end of the second telescopic rod 8-2 is fixedly connected to the rigid wedge block 8-3, and the side of the fixed rod 2-2 facing the electric push rod 2-1 has several evenly distributed grooves. Both sides of the rigid wedge block 8-3 can be embedded in the groove to lock the distribution beam 6-2. The middle of the rigid wedge block 8-3 is provided with a gap that can accommodate the electric push rod 2-1.
  • the second telescopic rod 8-2 adopts electric control and is respectively provided with a wireless receiving unit and a control unit for controlling its work.
  • the loading ends of the hydraulic support cylinder 10 and the hydraulic cylinder 6-1 are provided with a hydraulic cylinder load sensor and a hydraulic cylinder displacement sensor. Equipped with hydraulic cylinder proportional valve to achieve independent hydraulic supply.
  • the tower-type combustion vehicle includes a vehicle body 14.
  • the two sides and the top surface of the vehicle body 14 are respectively provided with a plurality of combustion ports 14-1 uniformly distributed in a rectangular array.
  • the sliding frames 16 corresponding to the combustion ports 14-1 respectively are slidably connected to the sliding plates 22, and the sliding plates 22 are fixedly connected to the combustion cylinder 15-3 of the burner 15.
  • the combustion cylinder 15-3 The flame-throwing end extends out of the vehicle body 14 after passing through the sliding plate 22, the sliding frame 16 and the combustion port 14-1, and the combustion cylinder 15-3 can swing up and down through the sliding of the sliding plate 22 on the sliding frame 16;
  • the air inlet hole 15-1 and the air inlet hole 15-2 of the burner 15 are respectively connected with the air inlet pipe and the air inlet pipe on the side sealing device 22 of the furnace body through heat-resistant hoses, and the air inlet pipe and the air inlet pipe are respectively externally connected to the outside.
  • Natural gas 17 and wind source a plurality of high temperature-resistant panoramic detection devices 4 are also provided on the outer wall of the vehicle body 14, and the panoramic detection devices 4 are electrically connected with an external monitor 20, and the monitor 20 is connected to an external VR device 21, and the One end of the vehicle body 14 is provided with an inspection port 14 - 7 which can accommodate the entry and exit of maintenance personnel.
  • the sliding frame 16 includes a wall plate 16-1 fixed on the inner wall of the vehicle body 14, and an arc-shaped plate 16-3 is fixed on the side of the wall plate 16-1 away from the inner wall of the vehicle body 14.
  • the arc-shaped plate 16 A side plate 16-2 is also sealed and fixed between the arc-shaped edges on both sides of the -3 and the wall plate 16-1, and the arc-shaped plate 16-3 passes through the arc-shaped slide rail 16 on one side of the arc-shaped plate 16-3 away from the wall plate 16-1.
  • the sliding plate 22 is also provided with a non-slip locking device for restricting its displacement
  • the wall plate 16-1, the arc plate 16-3 and the sliding plate 22 are all provided with a combustion port 14 -1 Fitting and communicating with a slot for the combustion cylinder 15-3 to pass through
  • the sliding plate 22 is fixedly connected to the root of the combustion cylinder 15-3
  • the sliding plate 13 covers the arc-shaped plate 16-3 and the arc-shaped plate 16-3 has the same curvature.
  • the panoramic detection device 4 includes a high temperature resistant spherical glass cover 4-1, the high temperature resistant spherical glass cover 4-1 is fixed on the pedestal 4-5 by a high temperature resistant clamp set at the bottom thereof, and the high temperature resistant spherical glass cover 4-1 is A waterproof 360-degree camera 4-2 is arranged in the cover 4-1, and the waterproof 360-degree camera 4-2 is fixed on the upper end surface of the pedestal 4-5 through a vertically arranged water flow separator 4-4, and the water flow is separated
  • the edges on both sides of the device 4-4 are close to the inner wall of the high temperature resistant spherical glass cover 4-1, and the water flow separator 4-4 separates the space between the waterproof 360-degree camera 4-2 and the pedestal 4-5 into a left cavity And the right cavity, the right cavity is also provided with a thermal imaging camera 4-3 and the thermal imaging camera 4-3 is fixed to one end of the endoscope 4-6, the endoscope 4-6 The other end is the peeping end and extends out of the high temperature resistant
  • the left cavity and the right cavity are respectively connected with the water inlet pipe and the water outlet pipe on the side sealing device 22 of the furnace body through a heat resistant hose.
  • the water outlet pipe is connected to the external cooling pool 19
  • the bottom of the pedestal is also provided with a heat shield 4-7
  • the inner cavity of the heat shield 4-7 is fixed with a micro microphone 4-8 and a motor 4-9.
  • the bottom of the heat cover 4-7 is fixed on the vehicle body 14, and the waterproof 360-degree camera 4-2, the thermal imager 4-3, the micro microphone 4-8, and the motor 4-9 are electrically connected to the external monitor 20 respectively.
  • the monitor 20 is externally connected to the VR device 21, and the connecting wires are arranged in the water outlet pipe and the heat-resistant hose.
  • the forward and reverse rotation of -9 drives the pedestal 4-9 to rotate clockwise or counterclockwise.
  • the natural gas 17 is connected to the front end of the main gas main 5-2, and the main gas main 5-2 is provided with a main gas valve 5-3, a pressure gauge 5-4, a flow meter 5-5 and a main gas control valve 5 in sequence from front to back. -6.
  • Several gas branch pipes 5-1 are branched from the end of the gas main pipe 5-2. Each gas branch pipe 5-1 is provided with a gas control valve 5-7.
  • the air hole 15-1 is connected to a gas branch pipe 5-1 through a metal hose.
  • the sub-valves 5-7 are respectively electrically connected to the external gas control panel 5-8, and the gas control panel 5-8 is electrically connected to the monitor 20;
  • the intake hole 15 - 1 of the combustor 15 is communicated.
  • the main gas control valve 5-3 is a V-shaped notch ball valve, the main gas control valve 5-3 is driven by pneumatic means, and the valve positioning of the main gas control valve 5-3 is analog output by the control system of the monitor 20
  • the flowmeter 5-5 adopts a positive displacement flowmeter, and the flowmeter 5-5 includes a frequency pulse counter, two thermistor temperature probes and two pressure sensors.
  • the thermistor temperature probe The pressure sensors are arranged in pairs at the inlet and the outlet of the flow meter 5-5 respectively.
  • the model assembling device 23 includes a model assembling platform 23-2 and a model carrier 23-1 arranged up and down.
  • the model assembling platform 23-2 is made of steel structural components and is provided with a tunnel model on its upper end. Arc-shaped assembly, the bottom of the model assembling platform 23-2 is connected with the model carrier 23-1 by bolts, and the model carrier 23-1 is driven by electricity.
  • the burner 15 adopts a controllable split burner.
  • the shape of the combustion port 14-1 is a rectangle, and the sliding frame 16 is made by welding a plurality of austenitic chromium-nickel heat-resistant steel plates.
  • a ripple attenuator 12-1 is provided at the high pressure outlet of the hydraulic power station 12.
  • the car body 14, the model splicing device 23, the furnace body side sealing device 22, the heat shields 4-7, and the sliding frame 16 are all made of austenitic chromium-nickel heat-resistant steel, and the rigid platform 9 may have reserved holes. Easy to install the pipeline.
  • the inner wall of the tunnel model, the outer wall of the vehicle body 14, the side sealing device 22 of the furnace body facing the side of the tunnel model, and the interior of the heat shields 4-7 are covered with multiple layers of thermal insulation cotton, and the thermal insulation cotton is polycrystalline mullite fiber Cotton and spray with high temperature curing agent.
  • the monitor 20 and the VR device 21 are installed on the console 24 .
  • This embodiment also provides an implementation method of a tunnel structure multi-dimensional space loading fire test system, which specifically includes the following steps:
  • the model carrier 23-1 is transported to the inner cavity of the two reaction frames 1 along the track. After the tunnel model is transported to the specified test position, several hydraulic support cylinders 10 located on the outside of the wheels of the model carrier 23-2 are lifted to The lower surface of the model assembly platform 23-1, and then the hydraulic support cylinder 10 is locked;
  • the angle adjustment component 7 on the adaptive loading device 3 extends and retracts the rod body of the first telescopic rod 7-3 according to the angle requirements of the experimental model loading point, thereby driving the rotation of the rotating block 13-2 to realize the adaptive loading device 3 through the console 24 to send out a wireless signal, the wireless receiving unit corresponding to the first telescopic rod 7-3 receives the signal, and then transmits the signal to its corresponding control unit, and the control unit controls the first telescopic rod 7-3 to work;
  • the distance adjustment component 7 extends and retracts the rod body of the electric push rod 2-1 to realize the distance adjustment of the distribution beam 6-2 along the direction of the fixed rod 2-2; through external control
  • the station 24 sends out a wireless signal, the wireless receiving unit corresponding to the electric push rod 2-1 receives the signal, and then transmits the signal to its corresponding control unit, and the control unit controls the electric push rod 2-1 to work;
  • the locking assembly 8 pushes out the rigid wedge 8-3 through the second telescopic rod 8-2 and inserts it into the groove of the fixing rod 2-2 to realize the locking function of the loading position; through the external console 24 Send a wireless signal, the wireless receiving unit corresponding to the second telescopic rod 8-2 receives the signal, and then transmits the signal to its corresponding control unit, and the control unit controls the second telescopic rod 8-2 to work;

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种隧道结构多维空间加载火灾试验***,包括设有刚性平台的多点加载自平衡反力***,刚性平台(9)上的轨道上设有运输放置轨道模型的模型拼运装置(23)和两个炉体侧封装置(22),两个炉体侧封装置(22)分别用于对隧道模型两端口进行密封,隧道模型内腔能够放置塔式燃烧车,多点加载自平衡反力***的两个反力架(1)之间连接有若干套均布的用于对隧道模型外壁实施加载力的自适应加载装置(3),本***能够对不同形状截面隧道模型进行加载,能够适用于不同截面形状的隧道结构测试需求,尤其针对隧道结构火灾试验,其摄像头成像视角大,耐热性好,兼具热像及测距,能很好地满足隧道火灾高温环境的使用需求要求。

Description

一种隧道结构多维空间加载火灾试验***及其实施方法 技术领域
本发明涉及隧道结构火灾试验***领域,具体涉及一种隧道结构多维空间加载火灾试验***及其实施方法。
背景技术
随着我国工业化、城市化进程推进,我国交通隧道(公路、铁路、地铁、海底隧道等)的开发利用进入快速增长阶段,隧道交通给我们带来便利,但是由于隧道火灾事故具有蔓延迅速、不易控制、危险性大等特点,也往往容易造成严重的损失;隧道结构在日常运营过程中处于围压受力状态,评估其承载能力对于隧道设计与运营安全具有重要意义。一般可利用反力加载***测定隧道试验模型的承载能力。然而,随着隧道用途的多样化,隧道截面形状不断更新(圆形、矩形、马蹄形、椭圆形、多边形、双圆形组合式断面等)。现有的加载反力加载***通常仅适用于圆形截面隧道模型加载,难以适用于不同截面形状的隧道结构测试需求。
此外,常见的隧道结构火灾试验往往将一辆即将报废的汽车点燃开展实验。该种试验方式一方面浪费资源且污染大,另一方面,试验燃烧过程不可控,且难以模拟汽车移动火灾的影响。另外,火灾试验过程中需要使用到摄像及热像装置获取试验数据与影像资料。常见的高温摄像及热像仪一般是将摄像与热像仪置于火灾高温环境外部(即通常为室温环境),通过伸进火灾高温环境内部的镜头组件间接成像,此类高温摄像及热像仪缺点是成像视角狭小,且难以兼具热像及测距,不能很好地满足隧道火灾高温环境的使用需求要求。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种隧道结构多维空间加载火灾试验***及其实施方法,其能够对不同形状截面隧道模型进行加载,能够适用于不同截面形状的隧道结构测试需求,尤其针对隧道结构火灾试验,其摄像头成像视角大,耐热性好,兼具热像及测距,能很好地满足隧道火灾高温环境的使用需求要求。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供一种隧道结构多维空间加载火灾试验***,包括设有刚性平台的多点加载自平衡反力***,所述刚性平台上开有轨道槽并铺设有轨道,所述轨道上设有能够滑动的模型拼运装置和两个炉体侧封装置,所述模型拼运装置上端用于放置隧道模型,两个所述炉体侧封装置分别用于对隧道模型两端口进行密封,所述隧道模型内壁上设有钢轨,所述钢轨上设有能够向外部喷射火焰的塔式燃烧车,所述多点加载自平衡反力***包括两个平行布置在刚性平台上的反力架,两个所述反力架之间连接有若干套均布的用于对隧道模型外壁实施加载力的自适应加载装置,自适应加载装置的加载端能够自由调节空间位置;所述反力架为环形并由多段钢构件通过螺栓连接组成;所述炉体侧封装置上设有进气管、进风管、进水管以及出水管;
所述自适应加载装置包括分配梁,所述分配梁上端面铰接若干均布的液压缸,所述液压缸远离分配梁的一端与调整平台底部固定,所述调整平台顶面固定有电动推杆和两个对称设在电动推杆两侧的固定杆,所述固定杆、电动推杆与转动块滑动连接,所述转动块的两端对称固定有两个转动杆,两个所述转动杆远离转动块的一端分别与两个反力架上预设的销孔销式连接;
所述自适应加载装置还包括用于调整转动块转动角度的角度调整组件和用于限定分配梁沿固定杆方向位移的锁止组件,所述刚性平台上端面设有若干个液压支撑缸,所述液压缸、液压支撑缸分别通过各自对应的分油台与液压动力站油路连接。
优选地,所述角度调整组件包括调整顶杆,所述调整顶杆中部通过第一伸缩杆连接调整底杆中部,所述调整顶杆两端分别与两个反力架上预设的凹槽滑动插接,所述调整底杆与转动块固定连接,所述第一伸缩杆通过其自身伸缩带动转动块转动,所述电动推杆、第一伸缩杆采用电动控制并分别设有无线接收单元和控制其工作的控制单元。
优选地,所述锁止组件包括固定在转动块上的L型固定架,所述L型固定架远离转动块的一端固定连接第二伸缩杆,所述第二伸缩杆伸出端固定连接刚性楔块,所述固定杆朝向电动推杆的一侧面开有若干均布的凹槽,所述刚性楔块两侧能够嵌入凹槽内对分配梁起到位置锁止作用,所述刚性楔块中部开有能够容纳电动推杆的缺口,所述第二伸缩杆采用电动控制并分别设有无线接收单元和控制其工作的控制单元。
优选地,所述液压支撑缸与液压缸的加载端均设有液压缸载荷传感器以及液压缸位移传感器,所述液压缸、液压支撑缸与对应的分油台之间均设有液压缸比例阀,用以实现各自独立的液压供给。
优选地,所述塔式燃烧车包括车体,所述车体的两侧面与顶面上分别开有若干呈矩形阵列均布的燃烧口,所述车体内壁上还固定有若干分别与燃烧口一一对应的滑动架,所述滑动架上滑动连接滑板,所述滑板与燃烧器的燃烧筒固定连接,所述燃烧筒喷火端穿过滑板、滑动架以及燃烧口后伸出车体之外,所述燃烧筒能通过滑板在滑动架上的滑动实现上下摆动喷射;所述燃烧器的进气孔、进风孔分别通过耐热软管与炉体侧封装置上的进气管、进风管连通,进气管、进风管分别外接外部天然气和风源,所述车体外壁上还设有多个耐高温全景探测装置,所述全景探测装置与外部监视器电连接,所述监视器外接VR装置,所述车体其中一端开设有能容纳检修人员进出的检修口。
优选地,所述滑动架包括固定在车体内壁上的壁板,所述壁板远离车体内壁的一侧固定有弧形板,所述弧形板的两侧弧形边与壁板之间还密封固定有侧板,所述弧形板远离壁板的一侧面上通过弧形滑轨滑动连接滑板,所述滑板上还设有用于限制其位移的防滑锁紧装置,所述壁板、弧形板以及滑板上均开有与燃烧口适配相通且用于供燃烧筒贯穿的槽口,所述滑板与燃烧筒根部固定连接,所述滑动板覆盖弧形板部分与弧形板的曲率相同。
优选地,所述全景探测装置包括耐高温球形玻璃罩,所述耐高温球形玻璃罩通过其底部套设有的耐高温夹具固定在台座上,所述耐高温球形玻璃罩内设有防水型360度相机,所述防水型360度相机通过竖向布置的水流分离器固定在台座上端面,所述水流分离器两侧边缘紧贴耐高温球形玻璃罩的内壁,所述水流分离器将防水型360度相机与台座之间的空间分隔为左腔和右腔,所述右腔内还设有测距热像仪并且所述测距热像仪固定在 内窥镜的一端,所述内窥镜另一端为窥视端并伸出耐高温球形玻璃罩之外,所述左腔、右腔分别通过耐热软管与炉体侧封装置上的进水管、出水管连通,进水管、出水管连通外部冷却水池,所述台座的底部还设有隔热罩,所述隔热罩内腔固定有微型麦克风和电机,所述隔热罩底部固定在车体上,所述防水型360度相机、测距热像仪、微型麦克风、电机分别与外部监视器电性连接,监视器外接VR装置,所述电机的伸出轴与台座中心处插接固定,所述电机的正反转带动台座进行顺时针或逆时针转动。
优选地,所述天然气连接燃气主管前端,所述燃气主管上从前到后依次设有燃气主阀、压力计、流量计及燃气控制主阀,所述燃气主管末端分出若干燃气支管,每个燃气支管设置一个燃气控制分阀,所述车体内同一排燃烧器的进气孔通过金属软管连接在一个燃气支管上,所述燃气主阀、压力计、流量计、燃气控制主阀以及燃气控制分阀分别与外部燃气控制面板电连接,所述燃气控制面板与监视器电连接,燃气支管穿过炉体侧封装置上的进气管后连通燃烧器的进气孔;
所述燃控制主阀为V型切口球阀,所述燃气控制主阀采用气动方式驱动,所述燃气控制主阀的阀门定位由监视器的控制***模拟输出信号来控制,所述流量计采用容积式流量计,所述流量计包括一个频率脉冲计数器、两个热敏电阻温度探头和两个压力传感器,所述热敏电阻温度探头、压力传感器成对分别设在流量计的入口和出口处。
优选地,所述模型拼运装置包括上下设置的模型拼装平台和模型运载车,所述模型拼装平台采用钢结构部件制作并且在其上端设有与隧道模型适配的弧形组件,所述模型拼装平台的底部与模型运载车通过螺栓连接,所述模型运载车采用电力驱动。
本发明还提供一种隧道结构多维空间加载火灾试验***的实施方法,具体包括以下步骤:
1)将模型拼装平台吊装至模型运载车上部,并与模型运载车螺栓连接,隧道模型利用行车分块吊装至模型拼装平台,并在模型拼装平台上完成拼装;液压动力站由控制台控制,控制台设置有与第一伸缩杆、电动推杆以及第二伸缩杆上无线无线接收单元适配的无线发射单元;
2)模型运载车沿轨道运至两个反力架内腔,将隧道模型运至规定试验位置后,位于模型运载车车轮外侧的若干台液压支撑缸升起至模型拼装平台下表面,然后将液压支撑缸锁止;
3)将模型运载车与模型拼装平台分离,将模型运载车移出实验工作位置,将位于模型运载车车轮内侧的若干台液压支撑缸的升起至模型拼装平台下表面,并将液压支撑缸锁止;
4)自适应加载装置上的角度调整组件根据实验模型加载点的角度要求,控制台发射信号控制第一伸缩杆的杆体伸缩,进而带动转动块的转动,实现自适应加载装置的角度调整;
5)待角度调整完毕后,距离调整组件根据实验模型尺寸大小,控制台发射信号控制电动推杆的杆体伸缩,实现分配梁沿固定杆方向移动进行距离调整;
6)待距离调整完毕后,锁止组件上,控制台发射信号控制通过第二伸缩杆推出刚性楔块并***固定杆凹槽内,实现加载位置锁止功能;
7)控制分配梁上多台液压缸的加载端伸出,分配梁对隧道模型实行预加载与正 式加载,各分配梁与隧道模型柔性挂接;
8)将塔式燃烧车沿钢轨进入隧道模型内部,待塔式燃烧车达到预定位置后,两个炉体侧封装置分别沿轨道移动至两个反力架处,完成防火隔热保护后,闭合两个炉体侧封装置,接入隧道模型两个端口,开始对隧道模型内部施加火灾温度场,从而进行火灾实验。
本发明的有益效果在于:
1、本发明设有两座形状为环形的反力架,便于实现对隧道衬砌结构模型进行工程试验,并且,本发明在反力架底部设有刚性平台,在加载时***能够实现自平衡。
2、本发明设有自适应加载装置,可以对不同截面形状的隧道模型进行加载试验。
3、本发明设计可模拟汽车火灾的塔式燃烧车,塔式燃烧车可重复使用,通过控制燃气控制主阀与燃气控制分阀调整各燃烧器的燃气供应,从而实现火焰大小与热释放的实时可控,可用于模拟单辆或者多辆汽车火灾;同时燃烧器可通过转动选择不同方向的的火焰喷射形态,进而更精准地模拟实际汽车火灾情况。
4、本发明设置了安模型运载车,使装置具备行走功能,可用于模拟汽车移动火灾的情况。
5、本发明采用耐高温材质的球形玻璃罩作为探测装置的防护罩,实现探测装置对外观测的全景视窗;球形玻璃罩内充满无色透明冷却液,使放置在球形玻璃罩内的电子设备可直接用于火灾高温环境中。
6、本发明设有防水型360度相机、VR装置、测距热像仪、微型麦克风等装置,集成摄像、测温、测距及测声功能,实现对火灾高温环境的全景呈现及全场温度的全程非接触监测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种隧道结构多维空间加载火灾试验***的结构示意图;
图2为本发明实施例提供的一种加载位置可调的多点加载自平衡反力***的结构示意图;
图3为本发明实施例提供的自适应加载装置的结构示意图;
图4为本发明实施例提供的距离调整组件的结构示意图;
图5为本发明实施例提供的转轴组件的结构示意图;
图6为本发明实施例提供的液压缸加载组件的结构示意图;
图7为本发明实施例提供的角度调整组件的结构示意图;
图8为本发明实施例提供的锁止组件的结构示意图;
图9为本发明实施例提供的一种塔式燃烧车上燃烧口布置示意图;
图10为本发明实施例提供的一种塔式燃烧车上检修口布置示意图;
图11为本发明实例提供的燃烧器结构示意图;
图12为本发明实例提供的燃烧器滑动部分结构示意图;
图13为本发明实例提供的全景探测装置结构示意图;
图14为本发明实例提供的模型拼运装置结构示意图。
附图标记说明:
1、反力架,2、距离调整组件,2-1、电动推杆,2-2、固定杆,2-4、调整平台,3、自适应加载装置,4、全景探测装置,4-1、耐高温球形玻璃罩,4-2、防水型360度相机,4-3、测距热像仪,4-4、水流分离器,4-5、台座,4-6、内窥镜,4-7、隔热罩,4-8、微型麦克风,4-9、电机,5-1、燃气支管,5-2、燃气主管,5-3、燃气主阀,5-4、压力计,5-5、流量计,5-6、燃气控制主阀,5-7、燃气控制分阀,5-8、燃气控制面板,6、液压缸加载组件,6-1、液压缸,6-2、分配梁,7、角度调整组件,7-1、调整顶杆,7-2、调整底杆,7-3、第一伸缩杆,8、锁止组件,8-1、L型固定架,8-2、第二伸缩杆,8-3、刚性楔块,9、刚性平台,9-1、轨道槽,10、液压支撑缸,11、分油台,12、液压动力站,12-1、纹波衰减器,13、转轴组件,13-1、转动杆,13-2、转动块,13-3、矩形孔,13-4、圆孔;14、车体,14-1、燃烧口,14-2、保温棉,14-7、检修口,15、燃烧器,15-1、进气孔,15-2、进风孔,15-3、燃烧筒,16、滑动架,16-1、壁板,16-2、侧板,16-3、弧形板,16-4、滑轨,17、天然气,19、冷却水池,20、监视器,21、VR装置,22、滑板;23、模型拼运装置,23-1、模型运载车,23-2、模型拼装平台,24、控制台。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图14所示,一种隧道结构多维空间加载火灾试验***,包括设有刚性平台9的多点加载自平衡反力***,包括两个环形设计的反力架1、自适应加载装置3、距离调整组件2、转轴组件13、液压缸加载组件6,两个反力架1平行布置在刚性平台9上的反力架1,反力架1为多段钢构件通过螺栓连接组成;距离调整组件2包括电动推杆2-1、固定杆2-2以及调整平台2-4;转轴组件13包括转动杆13-1和转动块13-2,液压缸加载组件6包括液压缸6-1和分配梁6-2;
所述刚性平台9上开有轨道槽9-1并铺设有轨道,所述轨道上设有能够滑动的模型拼运装置23和两个炉体侧封装置22,所述模型拼运装置23上端用于放置隧道模型,两个所述炉体侧封装置22分别用于对隧道模型两端口进行密封,所述隧道模型内壁上设有钢轨,所述钢轨上设有能够向外部喷射火焰的塔式燃烧车,两个所述反力架1平行布置在刚性平台9上,两个所述反力架1之间连接有若干套均布的用于对隧道模型外壁实施加载力的自适应加载装置3,自适应加载装置3的加载端能够自由调节空间位置;所述反力架1为环形并由多段钢构件通过螺栓连接组成;所述炉体侧封装置22上设有进气管、进风管、进水管以及出水管;
所述自适应加载装置3包括分配梁6-2,所述分配梁6-2上端面铰接若干均布的液压缸6-1,所述液压缸6-1远离分配梁6-2的一端与调整平台2-4底部固定,所述调整平台2- 4顶面固定有电动推杆2-1和两个对称设在电动推杆2-1两侧的固定杆2-2,所述固定杆2-2、电动推杆2-1与转动块13-2滑动连接,所述转动块13-2的两端对称固定有两个转动杆13-1,两个所述转动杆13-1远离转动块13-2的一端分别与两个反力架1上预设的销孔销式连接,转动块13-2上开有供电动推杆2-1和固定杆2-2穿过的圆孔13-4和矩形孔13-3;
所述自适应加载装置3还包括用于调整转动块13-2转动角度的角度调整组件7和用于限定分配梁6-2沿固定杆2-2方向位移的锁止组件8,所述刚性平台9上端面设有若干个液压支撑缸10,所述液压缸6-1、液压支撑缸10分别通过各自对应的分油台11与液压动力站12油路连接。
所述角度调整组件7包括调整顶杆7-1,所述调整顶杆7-1中部通过第一伸缩杆7-3连接调整底杆7-2中部,所述调整顶杆7-1两端分别与两个反力架1上预设的凹槽滑动插接,所述调整底杆7-2与转动块13-2固定连接,所述第一伸缩杆7-3通过其自身伸缩带动转动块13-2转动,所述电动推杆2-1、第一伸缩杆7-3采用电动控制并分别设有无线接收单元和控制其工作的控制单元。
所述锁止组件8包括固定在转动块13-2上的L型固定架8-1,所述L型固定架8-1远离转动块13-2的一端固定连接第二伸缩杆8-2,所述第二伸缩杆8-2伸出端固定连接刚性楔块8-3,所述固定杆2-2朝向电动推杆2-1的一侧面开有若干均布的凹槽,所述刚性楔块8-3两侧能够嵌入凹槽内对分配梁6-2起到位置锁止作用,所述刚性楔块8-3中部开有能够容纳电动推杆2-1的缺口,所述第二伸缩杆8-2采用电动控制并分别设有无线接收单元和控制其工作的控制单元。
所述液压支撑缸10与液压缸6-1的加载端均设有液压缸载荷传感器以及液压缸位移传感器,所述液压缸6-1、液压支撑缸10与对应的分油台11之间均设有液压缸比例阀,用以实现各自独立的液压供给。
所述塔式燃烧车包括车体14,所述车体14的两侧面与顶面上分别开有若干呈矩形阵列均布的燃烧口14-1,所述车体14内壁上还固定有若干分别与燃烧口14-1一一对应的滑动架16,所述滑动架16上滑动连接滑板22,所述滑板22与燃烧器15的燃烧筒15-3固定连接,所述燃烧筒15-3喷火端穿过滑板22、滑动架16以及燃烧口14-1后伸出车体14之外,所述燃烧筒15-3能通过滑板22在滑动架16上的滑动实现上下摆动喷射;所述燃烧器15的进气孔15-1、进风孔15-2分别通过耐热软管与炉体侧封装置22上的进气管、进风管连通,进气管、进风管分别外接外部天然气17和风源,所述车体14外壁上还设有多个耐高温全景探测装置4,所述全景探测装置4与外部监视器20电连接,所述监视器20外接VR装置21,所述车体14其中一端开设有能容纳检修人员进出的检修口14-7。
所述滑动架16包括固定在车体14内壁上的壁板16-1,所述壁板16-1远离车体14内壁的一侧固定有弧形板16-3,所述弧形板16-3的两侧弧形边与壁板16-1之间还密封固定有侧板16-2,所述弧形板16-3远离壁板16-1的一侧面上通过弧形滑轨16-4滑动连接滑板22,所述滑板22上还设有用于限制其位移的防滑锁紧装置,所述壁板16-1、弧形板16-3以及滑板22上均开有与燃烧口14-1适配相通且用于供燃烧筒15-3贯穿的槽口,所述滑板22与燃烧筒15-3根部固定连接,所述滑动板13覆盖弧形板16-3部分与弧形板16-3的曲率相同。
所述全景探测装置4包括耐高温球形玻璃罩4-1,所述耐高温球形玻璃罩4-1通过 其底部套设有的耐高温夹具固定在台座4-5上,所述耐高温球形玻璃罩4-1内设有防水型360度相机4-2,所述防水型360度相机4-2通过竖向布置的水流分离器4-4固定在台座4-5上端面,所述水流分离器4-4两侧边缘紧贴耐高温球形玻璃罩4-1的内壁,所述水流分离器4-4将防水型360度相机4-2与台座4-5之间的空间分隔为左腔和右腔,所述右腔内还设有测距热像仪4-3并且所述测距热像仪4-3固定在内窥镜4-6的一端,所述内窥镜4-6另一端为窥视端并伸出耐高温球形玻璃罩4-1之外,所述左腔、右腔分别通过耐热软管与炉体侧封装置22上的进水管、出水管连通,进水管、出水管连通外部冷却水池19,所述台座的底部还设有隔热罩4-7,所述隔热罩4-7内腔固定有微型麦克风4-8和电机4-9,所述隔热罩4-7底部固定在车体14上,所述防水型360度相机4-2、测距热像仪4-3、微型麦克风4-8、电机4-9分别与外部监视器20电性连接,监视器20外接VR装置21,连接用电线设在出水管和耐热软管内,所述电机4-9的伸出轴与台座4-5中心处插接固定,所述电机4-9的正反转带动台座4-9进行顺时针或逆时针转动。
所述天然气17连接燃气主管5-2前端,所述燃气主管5-2上从前到后依次设有燃气主阀5-3、压力计5-4、流量计5-5及燃气控制主阀5-6,所述燃气主管5-2末端分出若干燃气支管5-1,每个燃气支管5-1设置一个燃气控制分阀5-7,所述车体14内同一排燃烧器15的进气孔15-1通过金属软管连接在一个燃气支管5-1上,所述燃气主阀5-3、压力计5-4、流量计5-5、燃气控制主阀5-6以及燃气控制分阀5-7分别与外部燃气控制面板5-8电连接,所述燃气控制面板5-8与监视器20电连接;燃气支管5-1穿过炉体侧封装置22上的进气管后连通燃烧器15的进气孔15-1。
所述燃控制主阀5-3为V型切口球阀,所述燃气控制主阀5-3采用气动方式驱动,所述燃气控制主阀5-3的阀门定位由监视器20的控制***模拟输出信号来控制,所述流量计5-5采用容积式流量计,所述流量计5-5包括一个频率脉冲计数器、两个热敏电阻温度探头和两个压力传感器,所述热敏电阻温度探头、压力传感器成对分别设在流量计5-5的入口和出口处。
所述模型拼运装置23包括上下设置的模型拼装平台23-2和模型运载车23-1,所述模型拼装平台23-2采用钢结构部件制作并且在其上端设有与隧道模型适配的弧形组件,所述模型拼装平台23-2的底部与模型运载车23-1通过螺栓连接,所述模型运载车23-1采用电力驱动。
所述燃烧器15采用可控式分体燃烧器。
所述燃烧口14-1的形状为矩形,所述滑动架16为多块奥氏体铬镍耐热钢板焊接制成。
所述液压动力站12的高压出口处设有纹波衰减器12-1。
所述车体14、模型拼运装置23、炉体侧封装置22、隔热罩4-7、滑动架16均采用奥氏体铬镍耐热钢,刚性平台9内可开有预留孔便于管路安装。
所述隧道模型内壁、车体14外壁、炉体侧封装置22朝向隧道模型一侧、隔热罩4-7内部都覆盖设有多层保温棉,所述保温棉为多晶莫来石纤维棉且喷洒高温固化剂。
监视器20、VR装置21设在控制台24上。
本实施例还提供一种隧道结构多维空间加载火灾试验***的实施方法,具体包括以下步骤:
1)将模型拼装平台23-2吊装至模型运载车23-1上部,并与模型运载车23-1螺栓连接,隧道模型利用行车分块吊装至模型拼装平台23-2,并在模型拼装平台23-2上完成拼装;液压动力站12由控制台24控制,控制台24设置有与第一伸缩杆7-3、电动推杆2-1以及第二伸缩杆8-2上无线无线接收单元适配的无线发射单元;
2)模型运载车23-1沿轨道运至两个反力架1内腔,将隧道模型运至规定试验位置后,位于模型运载车23-2车轮外侧的若干台液压支撑缸10升起至模型拼装平台23-1下表面,然后将液压支撑缸10锁止;
3)将模型运载车23-1与模型拼装平台23-2分离,将模型运载车23-1移出实验工作位置,将位于模型运载车23-1车轮内侧的若干台液压支撑缸10的升起至模型拼装平台23-2下表面,并将液压支撑缸10锁止;
4)自适应加载装置3上的角度调整组件7根据实验模型加载点的角度要求,通过第一伸缩杆7-3的杆体伸缩,进而带动转动块13-2的转动,实现自适应加载装置3的角度调整;通过控制台24发出无线信号,第一伸缩杆7-3对应的无线接收单元接收信号,然后将信号传输到其对应的控制单元,控制单元控制第一伸缩杆7-3工作;
5)待角度调整完毕后,距离调整组件7根据实验模型尺寸大小,通过电动推杆2-1的杆体伸缩,实现分配梁6-2沿固定杆2-2方向移动进行距离调整;通过外部控制台24发出无线信号,电动推杆2-1对应的无线接收单元接收信号,然后将信号传输到其对应的控制单元,控制单元控制电动推杆2-1工作;
6)待距离调整完毕后,锁止组件8通过第二伸缩杆8-2推出刚性楔块8-3并***固定杆2-2凹槽内,实现加载位置锁止功能;通过外部控制台24发出无线信号,第二伸缩杆8-2对应的无线接收单元接收信号,然后将信号传输到其对应的控制单元,控制单元控制第二伸缩杆8-2工作;
7)控制分配梁6-2上多台液压缸6-1的加载端伸出,分配梁6-2对隧道模型实行预加载与正式加载,各分配梁6-2与隧道模型柔性挂接;
8)将塔式燃烧车沿钢轨进入隧道模型内部,待塔式燃烧车达到预定位置后,两个炉体侧封装置22分别沿轨道移动至两个反力架1处,完成防火隔热保护后,闭合两个炉体侧封装置22,接入隧道模型两个端口,开始对隧道模型内部施加火灾温度场,从而进行火灾实验。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种隧道结构多维空间加载火灾试验***,其特征在于,包括设有刚性平台(9)的多点加载自平衡反力***,所述刚性平台(9)上开有轨道槽(9-1)并铺设有轨道,所述轨道上设有能够滑动的模型拼运装置(23)和两个炉体侧封装置(22),所述模型拼运装置(23)上端用于放置隧道模型,两个所述炉体侧封装置(22)分别用于对隧道模型两端口进行密封,所述隧道模型内壁上设有钢轨,所述钢轨上设有能够向外部喷射火焰的塔式燃烧车,所述多点加载自平衡反力***包括两个平行布置在刚性平台(9)上的反力架(1),两个所述反力架(1)之间连接有若干套均布的用于对隧道模型外壁实施加载力的自适应加载装置(3),自适应加载装置(3)的加载端能够自由调节空间位置;所述反力架(1)为环形并由多段钢构件通过螺栓连接组成;所述炉体侧封装置(22)上设有进气管、进风管、进水管以及出水管;
    所述自适应加载装置(3)包括分配梁(6-2),所述分配梁(6-2)上端面铰接若干均布的液压缸(6-1),所述液压缸(6-1)远离分配梁(6-2)的一端与调整平台(2-4)底部固定,所述调整平台(2-4)顶面固定有电动推杆(2-1)和两个对称设在电动推杆(2-1)两侧的固定杆(2-2),所述固定杆(2-2)、电动推杆(2-1)与转动块(13-2)滑动连接,所述转动块(13-2)的两端对称固定有两个转动杆(13-1),两个所述转动杆(13-1)远离转动块(13-2)的一端分别与两个反力架(1)上预设的销孔销式连接;
    所述自适应加载装置(3)还包括用于调整转动块(13-2)转动角度的角度调整组件(7)和用于限定分配梁(6-2)沿固定杆(2-2)方向位移的锁止组件(8),所述刚性平台(9)上端面设有若干个液压支撑缸(10),所述液压缸(6-1)、液压支撑缸(10)分别通过各自对应的分油台(11)与液压动力站(12)油路连接。
  2. 如权利要求1所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述角度调整组件(7)包括调整顶杆(7-1),所述调整顶杆(7-1)中部通过第一伸缩杆(7-3)连接调整底杆(7-2)中部,所述调整顶杆(7-1)两端分别与两个反力架(1)上预设的凹槽滑动插接,所述调整底杆(7-2)与转动块(13-2)固定连接,所述第一伸缩杆(7-3)通过其自身伸缩带动转动块(13-2)转动,所述电动推杆(2-1)、第一伸缩杆(7-3)采用电动控制并分别设有无线接收单元和控制其工作的控制单元。
  3. 如权利要求1所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述锁止组件(8)包括固定在转动块(13-2)上的L型固定架(8-1),所述L型固定架(8-1)远离转动块(13-2)的一端固定连接第二伸缩杆(8-2),所述第二伸缩杆(8-2)伸出端固定连接刚性楔块(8-3),所述固定杆(2-2)朝向电动推杆(2-1)的一侧面开有若干均布的凹槽,所述刚性楔块(8-3)两侧能够嵌入凹槽内对分配梁(6-2)起到位置锁止作用,所述刚性楔块(8-3)中部开有能够容纳电动推杆(2-1)的缺口,所述第二伸缩杆(8-2)采用电动控制并分别设有无线接收单元和控制其工作的控制单元。
  4. 如权利要求1所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述液压支撑缸(10)与液压缸(6-1)的加载端均设有液压缸载荷传感器以及液压缸位移传感器,所述液压缸(6-1)、液压支撑缸(10)与对应的分油台(11)之间均设有液压缸比例阀,用以实现各自独立的液压供给。
  5. 如权利要求1所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述塔式燃烧车包括车体(14),所述车体(14)的两侧面与顶面上分别开有若干呈矩形阵列均布的燃烧口(14-1),所述车体(14)内壁上还固定有若干分别与燃烧口(14-1)一一对应的滑动架 (16),所述滑动架(16)上滑动连接滑板(22),所述滑板(22)与燃烧器(15)的燃烧筒(15-3)固定连接,所述燃烧筒(15-3)喷火端穿过滑板(22)、滑动架(16)以及燃烧口(14-1)后伸出车体(14)之外,所述燃烧筒(15-3)能通过滑板(22)在滑动架(16)上的滑动实现上下摆动喷射;所述燃烧器(15)的进气孔(15-1)、进风孔(15-2)分别通过耐热软管与炉体侧封装置(22)上的进气管、进风管连通,进气管、进风管分别外接外部天然气(17)和风源,所述车体(14)外壁上还设有多个耐高温全景探测装置(4),所述全景探测装置(4)与外部监视器(20)电连接,所述监视器(20)外接VR装置(21),所述车体(14)其中一端开设有能容纳检修人员进出的检修口(14-7)。
  6. 如权利要求5所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述滑动架(16)包括固定在车体(14)内壁上的壁板(16-1),所述壁板(16-1)远离车体(14)内壁的一侧固定有弧形板(16-3),所述弧形板(16-3)的两侧弧形边与壁板(16-1)之间还密封固定有侧板(16-2),所述弧形板(16-3)远离壁板(16-1)的一侧面上通过弧形滑轨(16-4)滑动连接滑板(22),所述滑板(22)上还设有用于限制其位移的防滑锁紧装置,所述壁板(16-1)、弧形板(16-3)以及滑板(22)上均开有与燃烧口(14-1)适配相通且用于供燃烧筒(15-3)贯穿的槽口,所述滑板(22)与燃烧筒(15-3)根部固定连接,所述滑动板(13)覆盖弧形板(16-3)部分与弧形板(16-3)的曲率相同。
  7. 如权利要求5所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述全景探测装置(4)包括耐高温球形玻璃罩(4-1),所述耐高温球形玻璃罩(4-1)通过其底部套设有的耐高温夹具固定在台座(4-5)上,所述耐高温球形玻璃罩(4-1)内设有防水型360度相机(4-2),所述防水型360度相机(4-2)通过竖向布置的水流分离器(4-4)固定在台座(4-5)上端面,所述水流分离器(4-4)两侧边缘紧贴耐高温球形玻璃罩(4-1)的内壁,所述水流分离器(4-4)将防水型360度相机(4-2)与台座(4-5)之间的空间分隔为左腔和右腔,所述右腔内还设有测距热像仪(4-3)并且所述测距热像仪(4-3)固定在内窥镜(4-6)的一端,所述内窥镜(4-6)另一端为窥视端并伸出耐高温球形玻璃罩(4-1)之外,所述左腔、右腔分别通过耐热软管与炉体侧封装置(22)上的进水管、出水管连通,进水管、出水管连通外部冷却水池(19),所述台座的底部还设有隔热罩(4-7),所述隔热罩(4-7)内腔固定有微型麦克风(4-8)和电机(4-9),所述隔热罩(4-7)底部固定在车体(14)上,所述防水型360度相机(4-2)、测距热像仪(4-3)、微型麦克风(4-8)、电机(4-9)分别与外部监视器(20)电性连接,监视器(20)外接VR装置(21),所述电机(4-9)的伸出轴与台座(4-5)中心处插接固定,所述电机(4-9)的正反转带动台座(4-9)进行顺时针或逆时针转动。
  8. 如权利要求5所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述天然气(17)连接燃气主管(5-2)前端,所述燃气主管(5-2)上从前到后依次设有燃气主阀(5-3)、压力计(5-4)、流量计(5-5)及燃气控制主阀(5-6),所述燃气主管(5-2)末端分出若干燃气支管(5-1),每个燃气支管(5-1)设置一个燃气控制分阀(5-7),所述车体(14)内同一排燃烧器(15)的进气孔(15-1)通过金属软管连接在一个燃气支管(5-1)上,所述燃气主阀(5-3)、压力计(5-4)、流量计(5-5)、燃气控制主阀(5-6)以及燃气控制分阀(5-7)分别与外部燃气控制面板(5-8)电连接,所述燃气控制面板(5-8)与监视器(20)电连接,燃气支管(5-1)穿过炉体侧封装置(22)上的进气管后连通燃烧器(15)的进气孔(15-1);
    所述燃控制主阀(5-3)为V型切口球阀,所述燃气控制主阀(5-3)采用气动方式驱动,所 述燃气控制主阀(5-3)的阀门定位由监视器(20)的控制***模拟输出信号来控制,所述流量计(5-5)采用容积式流量计,所述流量计(5-5)包括一个频率脉冲计数器、两个热敏电阻温度探头和两个压力传感器,所述热敏电阻温度探头、压力传感器成对分别设在流量计(5-5)的入口和出口处。
  9. 如权利要求1所述的一种隧道结构多维空间加载火灾试验***,其特征在于,所述模型拼运装置(23)包括上下设置的模型拼装平台(23-2)和模型运载车(23-1),所述模型拼装平台(23-2)采用钢结构部件制作并且在其上端设有与隧道模型适配的弧形组件,所述模型拼装平台(23-2)的底部与模型运载车(23-1)通过螺栓连接,所述模型运载车(23-1)采用电力驱动。
  10. 一种隧道结构多维空间加载火灾试验***的实施方法,其特征在于,具体包括以下步骤:
    1)将模型拼装平台(23-2)吊装至模型运载车(23-1)上部,并与模型运载车(23-1)螺栓连接,隧道模型利用行车分块吊装至模型拼装平台(23-2),并在模型拼装平台(23-2)上完成拼装;液压动力站(12)由控制台(24)控制,控制台(24)设置有与第一伸缩杆(7-3)、电动推杆(2-1)以及第二伸缩杆(8-2)上无线无线接收单元适配的无线发射单元;
    2)模型运载车(23-1)沿轨道运至两个反力架(1)内腔,将隧道模型运至规定试验位置后,位于模型运载车(23-2)车轮外侧的若干台液压支撑缸(10)升起至模型拼装平台(23-1)下表面,然后将液压支撑缸(10)锁止;
    3)将模型运载车(23-1)与模型拼装平台(23-2)分离,将模型运载车(23-1)移出实验工作位置,将位于模型运载车(23-1)车轮内侧的若干台液压支撑缸(10)的升起至模型拼装平台(23-2)下表面,并将液压支撑缸(10)锁止;
    4)自适应加载装置(3)上的角度调整组件(7)根据实验模型加载点的角度要求,控制台(24)发射信号控制第一伸缩杆(7-3)的杆体伸缩,进而带动转动块(13-2)的转动,实现自适应加载装置(3)的角度调整;
    5)待角度调整完毕后,距离调整组件(7)根据实验模型尺寸大小,控制台(24)发射信号控制电动推杆(2-1)的杆体伸缩,实现分配梁(6-2)沿固定杆(2-2)方向移动进行距离调整;
    6)待距离调整完毕后,锁止组件(8)上,控制台(24)发射信号控制通过第二伸缩杆(8-2)推出刚性楔块(8-3)并***固定杆(2-2)凹槽内,实现加载位置锁止功能;
    7)控制分配梁(6-2)上多台液压缸(6-1)的加载端伸出,分配梁(6-2)对隧道模型实行预加载与正式加载,各分配梁(6-2)与隧道模型柔性挂接;
    8)将塔式燃烧车沿钢轨进入隧道模型内部,待塔式燃烧车达到预定位置后,两个炉体侧封装置(22)分别沿轨道移动至两个反力架(1)处,完成防火隔热保护后,闭合两个炉体侧封装置(22),接入隧道模型两个端口,开始对隧道模型内部施加火灾温度场,从而进行火灾实验。
PCT/CN2022/074548 2021-02-25 2022-01-28 一种隧道结构多维空间加载火灾试验***及其实施方法 WO2022179383A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/923,645 US11650135B2 (en) 2021-02-25 2022-01-28 Multi-dimensional space load and fire test system for tunnel structure, and method for implementing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110211756.0A CN113009067B (zh) 2021-02-25 2021-02-25 一种隧道结构多维空间加载火灾试验***及其实施方法
CN202110211756.0 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022179383A1 true WO2022179383A1 (zh) 2022-09-01

Family

ID=76386355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074548 WO2022179383A1 (zh) 2021-02-25 2022-01-28 一种隧道结构多维空间加载火灾试验***及其实施方法

Country Status (3)

Country Link
US (1) US11650135B2 (zh)
CN (1) CN113009067B (zh)
WO (1) WO2022179383A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116021290A (zh) * 2023-03-29 2023-04-28 哈尔滨学院 一种模型加工***
CN116698396A (zh) * 2023-07-21 2023-09-05 江苏科力博自动化设备有限公司 一种可充电防火阀开闭试验装置及方法
CN117943788A (zh) * 2024-03-26 2024-04-30 宏华海洋油气装备(江苏)有限公司 一种风电导管架钢圆管辅助焊接装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009067B (zh) * 2021-02-25 2022-01-14 中国矿业大学 一种隧道结构多维空间加载火灾试验***及其实施方法
CN117647391B (zh) * 2024-01-30 2024-04-12 合肥工业大学 一种测量树状空间节点受力情况的试验方法
CN117783417B (zh) * 2024-02-27 2024-05-07 达州增美玄武岩纤维科技有限公司 一种玄武岩纤维复合材料防火布移动测试平台及测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652724A (zh) * 2017-01-12 2017-05-10 天津大学 一种模块式地铁隧道运动体火灾缩尺寸实验***
CN106770903A (zh) * 2017-01-06 2017-05-31 中国矿业大学 一种组合式框架结构抗火试验***及试验方法
CN206574374U (zh) * 2017-01-12 2017-10-20 天津大学 一种带联络通道的双洞隧道多运动体火灾缩尺寸实验***
CN107421761A (zh) * 2017-07-26 2017-12-01 华侨大学 一种双侧火灾中沉管隧道变形和温度的检测方法及其装置
CN109406184A (zh) * 2018-11-29 2019-03-01 华侨大学 一种单孔沉管隧道顶板耐火性能试验加载装置
US20190383714A1 (en) * 2017-06-28 2019-12-19 Shandong University Fully automatic true triaxial tunnel and underground project model test system
CN112945575A (zh) * 2021-02-25 2021-06-11 中国矿业大学 一种塔式燃烧车
CN113009067A (zh) * 2021-02-25 2021-06-22 中国矿业大学 一种隧道结构多维空间加载火灾试验***及其实施方法
CN113008685A (zh) * 2021-02-25 2021-06-22 中国矿业大学 一种加载位置可调的多点加载自平衡反力***及实施方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237182A (en) * 1978-11-02 1980-12-02 W. R. Grace & Co. Method of sealing interior mine surface with a fire retardant hydrophilic polyurethane foam and resulting product
US6314754B1 (en) * 2000-04-17 2001-11-13 Igor K. Kotliar Hypoxic fire prevention and fire suppression systems for computer rooms and other human occupied facilities
ATE414967T1 (de) * 2000-02-03 2008-12-15 Siemens Ag Verfahren und einrichtung zur konfiguration eines detektionssystems für tunnelbrände
ES2269432T3 (es) * 2000-04-17 2007-04-01 Igor K. Kotliar Sistemas de hipoxicos para suprimir incendios y composiciones respirables para apagar fuegos.
KR20060041054A (ko) * 2004-11-08 2006-05-11 한국철도기술연구원 철도터널의 화재제연 및 환기 실험장치
US8289327B1 (en) * 2009-01-21 2012-10-16 Lucasfilm Entertainment Company Ltd. Multi-stage fire simulation
FR2946889A3 (fr) * 2009-06-17 2010-12-24 France Manche Installation de lutte contre un incendie de train dans un tunnel ferroviaire de grande longueur et procede de mise en oeuvre.
KR101107211B1 (ko) * 2009-12-24 2012-01-25 한국철도기술연구원 헬륨가스를 이용한 철도터널의 화재 모의 실험장치 및 가스 혼합방법
CN102306459B (zh) * 2011-08-01 2013-01-30 中国科学技术大学 一种铁路隧道救援站火灾模拟实验***
DK177678B1 (da) * 2011-12-19 2014-02-24 Vid Fire Kill Aps Modulært fast installeret tunnel brand beskyttelses system.
CN203465148U (zh) * 2013-09-03 2014-03-05 同济大学 一种隧道衬砌整环结构试验加载装置
US9613432B2 (en) * 2014-01-29 2017-04-04 Stmicroelectronics S.R.L. Fire detection system and method employing digital images processing
ES2556262B1 (es) * 2014-07-11 2016-12-27 Torres Servicios Técnicos, Sl. Método para la extinción de incendios y proyectil para la extinción de incendios
CN205788846U (zh) * 2015-12-25 2016-12-07 武汉理工大学 一种火源可变速运动的隧道火灾实验模拟装置
CN206862656U (zh) * 2017-05-05 2018-01-09 华侨大学 一种单侧通道失火时沉管隧道变形的测试机构
CN108756992A (zh) * 2018-06-28 2018-11-06 清华大学 地铁多坡度区间隧道火灾试验***及方法
WO2020026589A1 (ja) * 2018-07-31 2020-02-06 日本電気株式会社 受信器、火災検知システム及び火災検知方法
CN108682269B (zh) * 2018-07-31 2024-01-26 南京工业大学 小尺寸多功能尺寸可调隧道列车两用火灾实验平台及其实验方法
CN109269896B (zh) * 2018-10-30 2021-11-30 山东省水利科学研究院 一种多角度荷载施加装置及方法
CN111103230B (zh) * 2019-12-18 2021-09-21 西南交通大学 一种模拟真实火灾作用下隧道衬砌灾变特性测试平台
CN111177841B (zh) * 2020-01-02 2021-09-14 同济大学 一种数物空间实时融合的隧道结构火灾试验***及方法
CN212302867U (zh) * 2020-03-13 2021-01-05 中国铁道科学研究院集团有限公司铁道建筑研究所 一种模块拼装式隧道火灾模型试验***火源区域模块
CN111508326A (zh) * 2020-04-26 2020-08-07 中铁隧道局集团有限公司 一种隧道火灾模拟***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770903A (zh) * 2017-01-06 2017-05-31 中国矿业大学 一种组合式框架结构抗火试验***及试验方法
CN106652724A (zh) * 2017-01-12 2017-05-10 天津大学 一种模块式地铁隧道运动体火灾缩尺寸实验***
CN206574374U (zh) * 2017-01-12 2017-10-20 天津大学 一种带联络通道的双洞隧道多运动体火灾缩尺寸实验***
US20190383714A1 (en) * 2017-06-28 2019-12-19 Shandong University Fully automatic true triaxial tunnel and underground project model test system
CN107421761A (zh) * 2017-07-26 2017-12-01 华侨大学 一种双侧火灾中沉管隧道变形和温度的检测方法及其装置
CN109406184A (zh) * 2018-11-29 2019-03-01 华侨大学 一种单孔沉管隧道顶板耐火性能试验加载装置
CN112945575A (zh) * 2021-02-25 2021-06-11 中国矿业大学 一种塔式燃烧车
CN113009067A (zh) * 2021-02-25 2021-06-22 中国矿业大学 一种隧道结构多维空间加载火灾试验***及其实施方法
CN113008685A (zh) * 2021-02-25 2021-06-22 中国矿业大学 一种加载位置可调的多点加载自平衡反力***及实施方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116021290A (zh) * 2023-03-29 2023-04-28 哈尔滨学院 一种模型加工***
CN116021290B (zh) * 2023-03-29 2023-10-20 哈尔滨学院 一种模型加工***
CN116698396A (zh) * 2023-07-21 2023-09-05 江苏科力博自动化设备有限公司 一种可充电防火阀开闭试验装置及方法
CN116698396B (zh) * 2023-07-21 2023-11-28 江苏科力博自动化设备有限公司 一种可充电防火阀开闭试验装置
CN117943788A (zh) * 2024-03-26 2024-04-30 宏华海洋油气装备(江苏)有限公司 一种风电导管架钢圆管辅助焊接装置
CN117943788B (zh) * 2024-03-26 2024-05-24 宏华海洋油气装备(江苏)有限公司 一种风电导管架钢圆管辅助焊接装置

Also Published As

Publication number Publication date
US20230122718A1 (en) 2023-04-20
CN113009067B (zh) 2022-01-14
CN113009067A (zh) 2021-06-22
US11650135B2 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2022179383A1 (zh) 一种隧道结构多维空间加载火灾试验***及其实施方法
CN109632886B (zh) 一种高速飞行器舱内精细热考核试验***及方法
CN103510816B (zh) 一种核电门
CN108682269B (zh) 小尺寸多功能尺寸可调隧道列车两用火灾实验平台及其实验方法
CN106770903B (zh) 一种组合式框架结构抗火试验***及试验方法
CN106715165A (zh) 用于涡轮拖车机械对接和对准***的***及方法
CN107402226B (zh) 一种地下空间结构混凝土顶板抗火试验装置及方法
CN106596160A (zh) 公路配筋混凝土桥梁火灾损伤机理与承载力实验装置
CN113252270B (zh) 一种级联高能地震-火灾耦合试验***
CN108005131A (zh) 一种地下围护结构体变形实时监测***及其监测方法
CN203925463U (zh) 一种地下气化工艺模拟试验装置
CN108776020A (zh) 一种空心砖蓄热加热的试验***
CN109212154B (zh) 气体***热力耦合破坏效应实验装置
CN113516880A (zh) 一种集中排烟模式下可变v形隧道火灾模拟装置
CN109991277B (zh) 一种湍流预混气体管道***实验测试装置及方法
CN112945575B (zh) 一种塔式燃烧车
CN204212654U (zh) 一种核电门
CN212296458U (zh) 一种模拟隧道竖井和排烟阀布置的排烟效果测试装置
CN115792178A (zh) 一种高温环境下不同离子浓度突涌水封堵模拟装置及方法
CN108222085A (zh) 一种地下综合管廊墙体损伤监测装置及方法
CN109000483B (zh) 一种电炉炉底绝缘和炉壳倒装工艺
CN202329258U (zh) 一种罐式炉测温元件的安装装置
CN107798943B (zh) 受弯构件火灾试验炉
CN104567746A (zh) 一种高温法兰偏转角测试***
CN217980717U (zh) 一种锅炉壁管漏点检查机器车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22758748

Country of ref document: EP

Kind code of ref document: A1