WO2022166677A1 - 摄像模组及其光学防抖方法和电子设备 - Google Patents

摄像模组及其光学防抖方法和电子设备 Download PDF

Info

Publication number
WO2022166677A1
WO2022166677A1 PCT/CN2022/073679 CN2022073679W WO2022166677A1 WO 2022166677 A1 WO2022166677 A1 WO 2022166677A1 CN 2022073679 W CN2022073679 W CN 2022073679W WO 2022166677 A1 WO2022166677 A1 WO 2022166677A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
piezoelectric
camera module
shake
base
Prior art date
Application number
PCT/CN2022/073679
Other languages
English (en)
French (fr)
Inventor
叶林敏
黄桢
戎琦
郑雪莹
卞强龙
阙嘉耀
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202280012186.5A priority Critical patent/CN116802549A/zh
Publication of WO2022166677A1 publication Critical patent/WO2022166677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to the technical field of cameras, and in particular, to a camera module and an optical anti-shake method and electronic device thereof.
  • the motor mechanism is complicated, the number of parts increases, and the thickness of the apparatus body tends to increase.
  • the density of the internal components of the motor also increases.
  • the internal magnetic field will interact with each other, causing the magnet to shift or shake, affecting the focus and image quality of the lens.
  • One of the main advantages of the present invention is to provide a camera module, an optical anti-shake method and an electronic device, wherein the camera module uses a piezoelectric driving device to convert electrical energy into elastic deformation to drive the photosensitive component to move, which is beneficial to Improve the anti-electromagnetic interference effect of the camera module.
  • Another advantage of the present invention is to provide a camera module and an optical anti-shake method and electronic device thereof, wherein the camera module uses a piezoelectric actuator as a drive to drive the photosensitive component of the camera module to move relative to the lens component, there are It is beneficial to improve the optical anti-shake stroke of the camera module.
  • Another advantage of the present invention is to provide a camera module and its optical anti-shake method and electronic device, wherein balls are arranged in the camera module, and sliding friction is replaced by rolling friction to reduce friction, which is beneficial to improve optical anti-shake. Effect.
  • Another advantage of the present invention is to provide a camera module and its optical anti-shake method and electronic device, wherein the camera module uses the bottom surface of the fixed base as a reference plane to ensure the flatness of a driving part of the optical anti-shake.
  • Another advantage of the present invention is to provide a camera module and an optical anti-shake method and electronic device thereof, wherein the camera module includes a reinforcing sheet, and the plane where the reinforcing sheet is located is used as a reference plane to ensure the optical anti-shake.
  • Another advantage of the present invention is to provide a camera module and an optical anti-shake method and electronic device thereof, wherein the optical anti-shake device includes a first actuator and a second actuator, wherein the first coincidence
  • the actuator and the second actuator form a dislocation structure on the camera module, avoiding the height direction of the first actuator and the second actuator on the same side of the photosensitive assembly
  • the upper overlapping arrangement increases the height of the photosensitive assembly, resulting in an increase in the height of the module, or the focal plane of the lens assembly cannot fall on the photosensitive chip, which affects the imaging effect.
  • Another advantage of the present invention is to provide a camera module, an optical anti-shake method, and an electronic device, wherein the camera module can move in two directions through different frames, and the movement in the two directions is driven separately, without any Mutual interference is generated, and the anti-interference effect of the camera module is improved.
  • a piezoelectric actuator of the present invention capable of achieving the aforementioned objects and other objects and advantages is suitable for driving a photosensitive component of a camera module, wherein the camera module further includes a support frame , the piezoelectric actuator is fixed to the support frame, and the piezoelectric actuator includes:
  • a vibrating substrate wherein one end of the vibrating substrate is connected to the piezoelectric substrate, and a potential is applied to the piezoelectric substrate through the vibrating plate to cause the piezoelectric substrate and the vibrating substrate to contract or inflate;
  • the drive shaft is disposed at the other end of the vibration base plate, and the drive shaft is driven to move by the vibration base plate;
  • a moving member wherein the moving member is arranged on the driving shaft, and the moving member is frictionally connected with the driving shaft, and the moving member is driven by the driving shaft to move along the direction of the driving shaft,
  • the piezoelectric actuator to drive the photosensitive component to move along the X-axis direction and/or the Y-axis direction, so as to realize the optical anti-shake of the camera module.
  • the piezoelectric substrate is a substrate that contracts or expands according to a polarization direction and an electric field direction, and the vibration substrate has a constant thickness.
  • the piezoelectric substrate and the vibration substrate are in the shape of a disk, and the piezoelectric substrate is mounted on the upper and lower surfaces of the vibration substrate.
  • the piezoelectric actuator includes a first actuator and a second actuator, wherein the first actuator is disposed on an anti-shake base of the support frame Between the seat and the photosensitive assembly, the second actuator is arranged between the anti-shake base and an outer frame of the support frame, whereby the first actuator drives the photosensitive The assembly moves along the X-axis direction, and the second actuator drives the anti-shake base to move along the Y-axis direction.
  • the first actuator and the second actuator are arranged in a staggered manner.
  • the piezoelectric substrate of the first actuator is fixed to the anti-shake base, and the moving member of the first actuator is fixed to the photosensitive component , for the first actuator to use the anti-shake base as a support to drive the moving member to move along the X-axis direction, so that the moving member drives the photosensitive component to move.
  • the piezoelectric substrate of the second actuator is fixed to the outer frame, and the moving member of the second actuator is in contact with the anti-shake base. fixed, so that the second actuator uses the outer frame as a support to drive the moving member to move along the Y-axis direction, so that the moving member drives the anti-shake base to move.
  • the first actuator is located inside the anti-shake base
  • the second actuator is located outside the anti-shake base
  • the first actuator The second actuator is located on two adjacent sides of the anti-shake base.
  • the first actuator is located inside the anti-shake base
  • the second actuator is located outside the anti-shake base
  • the first actuator The second actuator is located at two diagonal positions of the anti-shake base.
  • the first actuator is located inside the anti-shake base
  • the second actuator is located outside the anti-shake base
  • the first actuator The second actuator is located on two opposite sides of the anti-shake base.
  • the piezoelectric substrate of the first actuator and/or the piezoelectric substrate of the second actuator is fixed to a lens assembly of the camera module and the drive shaft of the first actuator extends along the X-axis direction from the vibration base plate, and the drive shaft of the second actuator extends from the vibration base plate along the Y-axis direction.
  • the piezoelectric actuator includes a first actuator and a second actuator, wherein the first actuator is disposed on an anti-shake base of the support frame Between the seat and an outer frame, the second actuator is arranged between the anti-shake base and the photosensitive assembly, whereby the first actuator drives the anti-shake assembly along the X-axis The second actuator drives the photosensitive component to move along the Y-axis direction.
  • the piezoelectric substrate of the second actuator is located outside the outer frame, and the vibration substrate, the moving member and the The drive shaft extends inward from the outer side of the outer frame to the inner side of the outer frame.
  • the piezoelectric substrate of the first actuator is originally fixed to the photosensitive component, and the moving part of the first actuator is driven by the anti-shake substrate connected, and the piezoelectric substrate of the first actuator is electrically connected to a circuit board of the photosensitive assembly.
  • the present invention further provides a camera module, comprising:
  • a photosensitive assembly wherein the lens assembly is disposed on the photosensitive path of the photosensitive assembly along the photosensitive path of the photosensitive assembly;
  • At least one piezoelectric actuator wherein the at least one piezoelectric actuator is drivingly connected with the photosensitive component, wherein the piezoelectric actuator includes a piezoelectric element, a drive shaft and a moving part, One end of the piezoelectric element is fixed, and the drive shaft is provided to the piezoelectric element, and the drive shaft is in frictional contact with the moving member, wherein the piezoelectric element drives the drive The moving member is driven by the driving shaft through friction, and then the photosensitive component is driven by the piezoelectric actuator to move along the X-axis direction and/or the Y-axis direction, so as to realize the optical anti-shake of the camera module .
  • the piezoelectric element of the piezoelectric actuator includes a piezoelectric substrate and a vibration substrate, wherein one end of the vibration substrate is connected to the piezoelectric substrate, and passes through the piezoelectric substrate.
  • the vibration plate applies a potential to the piezoelectric substrate to cause contraction or expansion of the piezoelectric substrate and the vibration substrate, wherein the drive shaft is provided at the other end of the vibration substrate, and the vibration substrate is The drive shaft is driven to move.
  • the piezoelectric substrate and the vibration substrate are in the shape of a disk, and the piezoelectric substrate is mounted on the upper and lower surfaces of the vibration substrate.
  • the piezoelectric element includes a plurality of piezoelectric stretchable bodies and a plurality of electrodes, and the plurality of piezoelectric stretchable bodies and the plurality of electrodes are alternately arranged.
  • the lens assembly includes a lens, a lens carrier, and at least a fixed base, wherein the lens is mounted on the lens carrier, wherein the piezoelectric actuator A piezoelectric element is provided on the fixed base of the lens assembly.
  • the piezoelectric actuator includes a first actuator and a second actuator
  • the support frame includes an anti-shake base and an outer frame
  • the anti-shake The base is located inside the outer frame
  • the first actuator is arranged between the anti-shake base of the support frame and the photosensitive assembly
  • the second actuator is arranged at Between the anti-shake base and the outer frame of the support frame, the first actuator drives the photosensitive assembly to move along the X-axis direction, and the second actuator drives the anti-shake The shaker base moves in the Y-axis direction.
  • the first actuator and the second actuator are arranged in a height direction offset.
  • the first stopper and the second stopper are located between the fixed base and the photosensitive assembly, and the first stopper and the second stopper are located on the fixed base below, and the first brake and the second brake are electrically connected to the fixed base.
  • the fixed base is provided with at least two LDS grooves, and the surface of the LDS grooves is plated with a conductive coating.
  • the first actuator is disposed on a side wall of the anti-shake base, the first actuator is fixed on the anti-shake base, and drives the photosensitive component Moving along the X-axis direction, the second actuator is arranged on a bottom side of the fixed base, the second actuator is fixed on the fixed base, and drives the anti-shake base along the Y move in the direction of the axis.
  • the piezoelectric element of the first actuator is fixed to the anti-shake base in a manner of bonding with an adhesive, and the second actuator is bonded with an adhesive fixed to the outer frame.
  • it further includes at least one guide unit, wherein the one-way unit is disposed opposite to the piezoelectric actuator, and the photosensitive member is guided to move by the guide unit.
  • the guide unit includes a first guide unit and a second guide unit, the first guide unit is disposed on the photosensitive assembly, and the first guide unit is consistent with the first guide unit.
  • the actuators are arranged opposite to each other, the second guide unit is arranged on the anti-shake base, and the second guide unit is arranged opposite to the second actuator.
  • the first guide unit is a guide rod whose length direction is consistent with the X direction
  • the second guide unit is a guide rod whose length direction is consistent with the Y direction.
  • the piezoelectric substrate of the first actuator is fixed to the anti-shake base, and the moving member of the first actuator is fixed to the photosensitive component , for the first actuator to use the anti-shake base as a support to drive the moving member to move along the X-axis direction, so that the moving member drives the photosensitive component to move.
  • the piezoelectric substrate of the second actuator is fixed to the outer frame, and the moving member of the second actuator is in contact with the anti-shake base. fixed, so that the second actuator uses the outer frame as a support to drive the moving member to move along the Y-axis direction, so that the moving member drives the anti-shake base to move.
  • the first actuator is located inside the anti-shake base
  • the second actuator is located outside the anti-shake base
  • the first actuator The second actuator is located on two adjacent sides of the anti-shake base.
  • the first actuator is located inside the anti-shake base
  • the second actuator is located outside the anti-shake base
  • the first actuator The second actuator is located at two diagonal positions of the anti-shake base.
  • the first actuator is located inside the anti-shake base
  • the second actuator is located outside the anti-shake base
  • the first actuator The second actuator is located on two opposite sides of the anti-shake base.
  • the piezoelectric substrate of the first actuator and/or the piezoelectric substrate of the second actuator is fixed to a lens assembly of the camera module and the drive shaft of the first actuator extends along the X-axis direction from the vibration base plate, and the drive shaft of the second actuator extends from the vibration base plate along the Y-axis direction.
  • the piezoelectric actuator includes a first actuator and a second actuator, wherein the first actuator is disposed on an anti-shake base of the support frame between the seat and an outer frame, the second actuator is arranged between the anti-shake base and the photosensitive assembly, whereby the first actuator drives the anti-shake assembly along the X-axis
  • the second actuator drives the photosensitive component to move along the Y-axis direction.
  • the piezoelectric substrate of the second actuator is located outside the outer frame, and the vibration substrate, the moving member and the The drive shaft extends inward from the outer side of the outer frame to the inner side of the outer frame.
  • the photosensitive assembly further includes at least one reinforcing sheet, the reinforcing sheet is disposed on the lower side of the circuit board of the photosensitive assembly, and is used to support the circuit board and is driveably connected to the piezoelectric actuator.
  • the lens assembly further includes at least one lens actuator, wherein the lens actuator is disposed on the fixed base and is driven with the lens carrier of the lens assembly connected to the ground, and the lens carrier is driven by the lens actuator to move up and down along the optical axis direction with the fixed base as a fulcrum, so as to realize the automatic focusing of the camera module.
  • the lens actuator includes at least one autofocus coil and at least one autofocus magnet, wherein the autofocus coil and the autofocus magnet are arranged in opposite positions, and the lens actuator
  • the AF coil is supported on the fixed base, and the AF magnet is arranged on the lens carrier.
  • the present invention further provides an optical anti-shake method for a camera module, wherein the optical anti-shake method includes the following steps:
  • the at least one piezoelectric actuator expands or contracts based on the potential signal, so as to drive the photosensitive component to move along the X-axis direction and/or the Y-axis direction, so as to realize the optical anti-shake of the camera module.
  • the step (b) of the optical anti-shake method further includes, the piezoelectric actuator includes a piezoelectric substrate and a vibration substrate disposed on the piezoelectric substrate,
  • the potential signal is applied to a piezoelectric substrate through a vibration substrate of the piezoelectric actuator, wherein the piezoelectric substrate expands or contracts based on the potential signal, and drives the vibration substrate to expand or contract to deform.
  • the piezoelectric actuator further includes a drive shaft and a moving member in frictional contact with the drive shaft, wherein the drive shaft is driven by the vibration substrate, and the drive shaft is driven by the drive shaft The moving part is driven to move.
  • the present invention further provides an electronic device, characterized in that it includes:
  • At least one camera module wherein the at least one camera module is mounted on the main body of the electronic device, and the camera module includes:
  • a photosensitive assembly wherein the lens assembly is disposed on the photosensitive path of the photosensitive assembly along the photosensitive path of the photosensitive assembly;
  • At least one piezoelectric actuator wherein the at least one piezoelectric actuator is drivingly connected with the photosensitive component, wherein the piezoelectric actuator includes a piezoelectric element, a drive shaft and a moving part, One end of the piezoelectric element is fixed, and the drive shaft is provided to the piezoelectric element, and the drive shaft is in frictional contact with the moving member, wherein the piezoelectric element drives the drive The moving member is driven by the driving shaft through friction, and then the photosensitive component is driven by the piezoelectric actuator to move along the X-axis direction and/or the Y-axis direction, so as to realize the optical anti-shake of the camera module .
  • one end of the vibration substrate is connected to the piezoelectric substrate, and a potential is applied to the piezoelectric substrate through the vibration plate to cause the piezoelectric substrate and the vibration substrate contraction or expansion, wherein the drive shaft is arranged at the other end of the vibration base plate, and the drive shaft is driven by the vibration base plate to move.
  • FIG. 1 is a schematic structural diagram of a camera module according to a preferred embodiment of the present invention.
  • FIGS. 2A to 2C are schematic diagrams showing several installation positions of a piezoelectric actuator of the camera module according to the above preferred embodiment of the present invention.
  • 3A to 3E are schematic structural diagrams of the piezoelectric actuator of the camera module according to the above preferred embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the driving action of the piezoelectric actuator of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 5 is a schematic plan view of the camera module according to the above-mentioned preferred embodiment of the present invention, which shows the structure of an auto-focusing device of the camera module.
  • FIG. 6 is a schematic structural diagram of a camera module according to another preferred embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a camera module according to another preferred embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a camera module according to another preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an electronic device according to a preferred embodiment of the present invention.
  • FIG. 10 is a method flowchart of an optical image stabilization method of a camera module according to a preferred embodiment of the present invention.
  • the camera module includes a lens assembly 10 , a photosensitive assembly 20 , a support frame 30 and at least one piezoelectric actuator 40 disposed on the support frame 30 , wherein the piezoelectric actuator 40 is connected to the support frame 30 .
  • the photosensitive assembly 20 is connected in a driving manner, and the photosensitive assembly 20 is driven by the piezoelectric actuator 40 based on the position of the support frame 30 along two directions perpendicular to each other on the imaging plane, that is, the X-axis direction and/or Movement in the Y-axis direction to achieve optical anti-shake of the camera module.
  • the lens assembly 10 is disposed on the photosensitive path of the photosensitive assembly 20 , so that the photosensitive assembly 20 can receive light incident from the lens assembly 10 to perform imaging.
  • the support frame 30 includes an anti-shake base 31 and an outer frame body 32, wherein the anti-shake base 31 is located inside the outer frame body 32, and the photosensitive assembly 20 is located on the anti-shake base 31 inside, wherein the piezoelectric actuator 40 drives the photosensitive assembly 20 to move based on the anti-shake base 31 and/or the outer frame 32 of the support frame 30 to realize the camera module optical image stabilization.
  • the outer frame body 32 is fixedly arranged, that is, the position of the outer frame body 32 is fixed, wherein the anti-shake base 31 can be moved by the piezoelectric actuator relative to the outer frame body 32 40 drives.
  • the anti-shake base 31 is used to control the photosensitive component 20 to perform optical anti-shake in the optical anti-shake process.
  • the shake base 31 is accommodated in the outer frame body 32, that is, the anti-shake base 32 is disposed between the photosensitive assembly 20 and the outer frame body 32, and the outer frame body 32 is located in the outer frame body 32.
  • the outermost side of the camera module serves as its casing.
  • the piezoelectric actuator 40 further includes at least one first actuator 40a and at least one second actuator 40b, wherein the first actuator 40a is located in the Between the photosensitive assembly 20 and the anti-shake base 31 , the second actuator 40 b is located between the anti-shake base 31 and the outer frame 32 .
  • the first actuator 40a drives the photosensitive assembly 20 to move along the X-axis direction based on the anti-shake base 31, so as to realize the optical anti-shake of the camera module in the X-axis direction
  • the second actuator 40b drives the anti-shake base 31 and the photosensitive assembly 20 to move along the Y-axis direction based on the outer frame body 32, so as to realize the optical anti-shake of the camera module in the Y-axis direction.
  • first actuator 40a and the second actuator 40b of the piezoelectric actuator 40 are shown, wherein the first actuator 40a and the second actuator 40b
  • An actuator 40a and the second actuator 40b are arranged diagonally, that is, the first actuator 40a and the second actuator 40b are located at two opposite corners of the anti-shake base 31 .
  • the first actuator 40a and the second actuator 40b are arranged on adjacent sides, that is, the first actuator 40a and the second actuator 40b are located in the anti-shake two adjacent sides of the base 31 .
  • first actuator 40a and the second actuator 40b are disposed on opposite sides, that is, the first actuator 40a and the second actuator 40b are located on the anti-shake base Two opposite sides of seat 31. Therefore, it can be understood that the positions of the first actuator 40a and the second actuator 40b are provided herein only as an example and not a limitation.
  • the first actuator 40a and the second actuator 40b can be respectively disposed on adjacent sides or opposite sides of the anti-shake base 31 .
  • the first actuator 40a and the second actuator 40b are respectively disposed in the middle of the adjacent sides of the anti-shake base 31, so that the piezoelectric actuator 40 drives The photosensitive assembly 20 moves smoothly.
  • the first actuator 40a and the second actuator 40b are disposed at two corners of the anti-shake base 31, namely the first actuator 40a and the second actuator 40b
  • the first actuator 40a and the second actuator 40b may be disposed at adjacent or opposite corners of the anti-shake base 31, respectively.
  • the first actuator 40a and the second actuator 40b can also be arranged at the same corner of the anti-shake base 31, that is, the first actuator 40a and the The second actuators 40b are respectively drawn out from the same corner of the anti-shake base 31, so that when conducting circuit conduction, they can extend upward from the same corner to the circuit board of the photosensitive component through wires or flexible boards, so as to realize The circuit is turned on, thereby simplifying the circuit arrangement of the camera module.
  • the first actuator 40a and the second actuator 40b are installed in the outer frame 32 of the camera module.
  • a dislocation structure is formed, which avoids the overlapping arrangement of the first actuator 40a and the second actuator 40b in the height direction of the same side of the photosensitive assembly, increasing the height of the photosensitive assembly 20 and causing the camera Mod height increased.
  • the first actuator 40a and the second actuator 40b of the piezoelectric actuator 40 are dislocated in phase, that is, the first actuator 40a and the second actuator 40b
  • the actuator 40a and the second actuator 40b do not overlap each other in the height direction of the same side of the photosensitive assembly, so as to avoid increasing the height of the photosensitive assembly 20 .
  • the photosensitive assembly 20 is driven by the first actuator 40a to move in the X-axis direction and the photosensitive assembly 20 is driven by the second actuator 40b
  • the movement in the Y-axis direction is realized, that is, the movement in the XY direction is realized through different frames, so as to drive the optical anti-shake in two directions separately, so there will be no mutual interference.
  • one end of the first actuator 40a of the piezoelectric actuator 40 is fixed to the inner side of the anti-shake base 31, wherein the The other end of the first actuator 40a is drivingly connected with the photosensitive assembly 20, and the photosensitive assembly 20 is driven by the first actuator 40a to move along the X-axis direction based on the anti-shake base 31.
  • One end of the second actuator 40b of the piezoelectric actuator 40 is fixed to the inner side of the outer frame body 32, wherein the other end of the second actuator 40b is connected to the anti-shake base
  • the 31-phase transmission is connected, and the anti-shake base 31 and the photosensitive assembly 20 are driven by the second actuator 40b based on the outer frame 32 to move along the Y-axis direction.
  • the piezoelectric actuator 40 includes a piezoelectric element 401, a drive shaft 43 and a moving member 44, the piezoelectric element includes a piezoelectric substrate 41 and a vibration substrate 42, wherein the vibration substrate 42 is located at the between the driving shaft 43 and the piezoelectric substrate 41 , and the moving member 44 can be in frictional contact with the driving shaft 43 , and the moving member 44 is driven by the frictional force between the driving shaft 43 and the moving member 44 .
  • the moving member 44 moves in the X-axis direction. It is worth mentioning that the length direction of the drive shaft 43 of the first actuator 40a of the piezoelectric actuator 40 is arranged along the X-axis direction.
  • the vibration substrate 42 of the piezoelectric actuator 40 drives the drive shaft 43 to move in the X-axis direction, whereby the drive shaft 43 drives the moving member 44 to move through friction.
  • the piezoelectric substrate 41 of the first actuator 40 a of the piezoelectric actuator 40 is fixed to the anti-shake base 31 , and the moving member 44 is drivingly connected to the photosensitive assembly 20 , the photosensitive assembly 20 is driven by the moving member 44 to move along the X-axis direction.
  • the shape of the drive shaft 43 is suitable to be cylindrical or polygonal, preferably cylindrical, and the drive shaft 43 is fixed to the vibration substrate 42 .
  • the vibration substrate 42 is a piezoelectric ceramic rod or a piezoelectric ceramic sheet, and the vibration substrate 42 and the drive shaft 43 can be connected by adhesive or integrally formed by injection molding.
  • the substrate 42 has a simpler structure and lower cost.
  • the vibrating substrate 42 is not limited to piezoelectric ceramics, and may also be other structures capable of driving the photosensitive component to move by utilizing the piezoelectric principle.
  • the piezoelectric substrate 41 can be fixed to the inner side of the anti-shake base 31 and disposed between the photosensitive component 20 and the anti-shake base 31 , and one end of the vibration substrate 42 is connected to the piezoelectric substrate 41 to The other end is connected to the drive shaft 43 , wherein the moving member 44 can be in frictional contact with the drive shaft 43 .
  • the moving member 44 is fixed to the photosensitive assembly 20, and the photosensitive assembly is moved in the X direction by driving the vibrating substrate 42, wherein the length direction of the driving shaft 43 is consistent with the X direction.
  • the piezoelectric substrate 41 may be fixed to the anti-shake base 31 by bonding with an adhesive.
  • an elastic adhesive soft glue
  • the drive shaft 43 can also be fixed on the photosensitive component 20 through an elastic adhesive, and the other end of the drive shaft 43 is movably connected, so The vibration substrate 42 and the drive shaft 43 of the first actuator 40a can vibrate freely.
  • the moving member 44 may be fixed to the circuit board or the bracket of the photosensitive assembly 20 by means of bonding, or may be fixed in a direction integrally formed with the bracket.
  • the piezoelectric substrate 41 may be integrally formed with the anti-shake base.
  • the piezoelectric substrate 41 is a substrate having a piezoelectric effect and shrinks or expands according to the polarization direction and the electric field direction, and the vibration substrate 42 may have a constant thickness.
  • the vibrating substrate 42 according to the present embodiment has a piezoelectric substrate 41 connected to a single crystal type or a double crystal type, and a potential is applied to the piezoelectric substrate 41, and the difference in the applied voltage is controlled by a controller to cause the piezoelectric substrate 41 and the Contraction and expansion of the vibration substrate 42 .
  • the piezoelectric substrate 41 and the vibration substrate 42 have a disc shape, and preferably the piezoelectric substrate is mounted on the upper and lower surfaces of the vibration substrate 42 .
  • the piezoelectric substrate 41 When the polarization direction of the piezoelectric substrate 41 is different from the electric field direction caused by the potential difference on the piezoelectric substrate 41 , the piezoelectric substrate 41 is stretched in the width direction and deformed in the direction in which the thickness decreases. , due to the expansion of the piezoelectric substrate 41 , the vibration substrate 42 will protrude and deform upwards.
  • the piezoelectric substrate 41 and the direction of the electric field applied to the piezoelectric substrate 41 are the same, the piezoelectric substrate 41 is deformed and contracted, so that its width becomes narrower and its thickness increases.
  • the potential difference of the voltage applied to the piezoelectric substrate 41 can be reversed instantaneously, and the piezoelectric substrate 41 and the vibration substrate 42 also change the displacement state accordingly.
  • the piezoelectric substrate 41 and the vibrating substrate 42 can vibrate up and down continuously.
  • the drive shaft 43 is fixed on the composite layer of the piezoelectric substrate 41 and the vibration substrate 42, and is fixed on the piezoelectric substrate 41 or the vibration substrate according to the uppermost layer of the composite layer. 42.
  • the control unit may generate bending deformation of the composite layer of the piezoelectric substrate 41 and the vibration substrate 42 by applying a voltage to the piezoelectric substrate 41 . As described above, if the voltage applied to the piezoelectric substrate 41 is repeatedly changed in potential difference, the piezoelectric substrate 41 and the vibration substrate 42 can vibrate up and down continuously.
  • the piezoelectric actuator 40 of this embodiment uses the law of inertia to allow the moving body/driven object to move along the direction of the drive shaft 43 .
  • the inertia of the driving shaft 43 is smaller than the static friction force between the driving shaft 43 and the moving member 44 oscillating in response to the displacement of the piezoelectric substrate 41 , the moving member 44 and the driving shaft 43 Although they move together, if the inertia of the drive shaft 43 is greater than the static friction between the drive shaft 43 and the moving member 44, the moving member 44 is stationary and only moves the drive shaft 43, and in all The position on the drive shaft 43 of the moving member 44 changes.
  • the voltage applied by the control unit of the present embodiment to the piezoelectric substrate 41 of the piezoelectric actuator 40 may include a forward voltage and a contraction voltage, and the forward voltage and the contraction voltage are obtained from the first voltage during the first period
  • the change to the second voltage is from the second voltage to the first voltage during the second period, wherein the first period of the forward voltage is longer than the second period and the second period of the systolic voltage is longer than the first period.
  • the forward voltage and the reverse voltage are configured to cause the piezoelectric substrate 41 to bulge upward during the first period and downward during the second period, so that during the first period in which the forward voltage is applied, when all the When the moving member 44 moves forward on the driving shaft 43 and a contraction voltage is applied, the moving member 44 can retreat on the driving shaft 43 during the second cycle.
  • the piezoelectric substrate 41 at one end will expand and contract, so that the vibration substrate 42 protrudes in one direction. It deforms into a bowl shape and quickly returns to its original flat shape.
  • the drive shaft 43 reciprocates in the longitudinal direction of the shaft, and due to the frictional contact between the moving member 44 and the drive shaft 43, when the vibration base plate 42 is deformed into a bowl shape in one direction , the moving member 44 and the driving shaft 43 move together, and when the vibrating substrate 42 quickly returns to the original flat shape, the driving shaft 43 also moves in the reverse direction. Since the moving member is in a high-speed state, it cannot be Following the action of the drive shaft 43, it cannot return to the original position, and can only stay at the position. Therefore, in an operation process, the moving member 44 moves with a relatively large deformation amplitude of the vibration substrate 42. By repeatedly applying the pulse voltage, the above-mentioned movement can be repeated, and the moving member 44 can be moved to the target position.
  • the piezoelectric actuator 40 has the advantages of small size, large thrust, and high precision, and the driving structure is relatively simple, which is suitable for driving heavier products. , adapt to the product trend of large image surface of camera module, glass lens and other products, used for chip anti-shake, prism anti-shake and other purposes. At the same time, in the anti-shake of the chip, the super-resolution control can be realized by taking advantage of its control accuracy.
  • the piezoelectric actuator 40 includes a piezoelectric element 401 , a driving shaft 43 and a moving member 44 , and the piezoelectric element 401 has the following laminated structure , the piezoelectric element 401 further includes a plurality of piezoelectric stretchable bodies 45 and a plurality of electrodes 46, and the plurality of piezoelectric stretchable bodies 45 and a plurality of electrodes 46 are alternately stacked.
  • the piezoelectric element 401 has a laminated structure, a large displacement amount can be obtained even when a small electric field is applied.
  • the plurality of piezoelectric stretchable bodies 45 will deform, expand or contract, and the driving force is driven by the continuous deformation of the piezoelectric element 401
  • the shaft 43 realizes the reciprocating motion.
  • the drive shaft 43 has a cylindrical shape with a flat lower surface.
  • the drive shaft 43 is bonded to the piezoelectric element 401 by adhering to the center portion of the upper surface of the piezoelectric element 401 .
  • the shape of the drive shaft 43 may be a shape other than a cylindrical shape such as a polygonal prism.
  • the drive shaft 43 is formed of a material mainly composed of carbon, heavy metals, carbides of heavy metals, borides of heavy metals, and nitrides of heavy metals.
  • the piezoelectric element 401 has a rectangular parallelepiped shape having sides along an X axis, a Y axis, and a Z axis that are orthogonal to each other, respectively.
  • the length of the piezoelectric element 401 in the X-axis direction is 1 mm
  • the length in the Y-axis direction is 1 mm
  • the length (height) in the Z-axis direction is 2 mm.
  • the plurality of electrodes 46 are arranged on the plurality of piezoelectric stretchable bodies 45 , and the plurality of electrodes 46 sandwiching the plurality of piezoelectric stretchable bodies 45 alternately are used as internal electrodes .
  • the plurality of electrodes 46 arranged on the surfaces of the plurality of piezoelectric stretchable bodies 45 and arranged at the upper and lower portions thereof are referred to as upper electrodes and lower electrodes, respectively.
  • the plurality of piezoelectric stretchable bodies 45 arranged on the surfaces of the plurality of piezoelectric stretchable bodies 45 and arranged on the side surfaces thereof are referred to as side electrodes.
  • a pair of the electrodes 46 are disposed on the upper and lower surfaces of the piezoelectric stretchable body 45 by welding or the like.
  • the side electrodes are connected to an external circuit.
  • the electrode layers of the same polarity are connected through the electrodes of the side electrodes, so that the electrode layers of the positive and negative electrodes can be drawn out on the two side surfaces.
  • the drive shaft 43 reciprocates in the longitudinal direction of the shaft, and due to the frictional contact between the moving member 44 and the driving shaft 43, when the vibration substrate 42 is deformed in one direction, the moving member 42 and the The drive shaft 43 moves together, and when the vibrating base plate 42 quickly returns to its original state, the drive shaft 43 also moves in the reverse direction. Since the moving member 44 is in a high-speed state, it cannot follow the action of the drive shaft 43. Failed to return to the original position, can only stay at the position. Therefore, in an operation process, the moving member 44 moves with a large deformation amplitude of the piezoelectric stretchable bodies 41. By repeatedly applying the pulse voltage, the above-mentioned movement can be repeated, and the moving member can be made to move. 44 to move to the target position.
  • the piezoelectric actuator 40 not only has the advantages of small size, large thrust, high precision, relatively simple driving structure, and is suitable for driving heavier products, Moreover, the structure is smaller, the circuit extends through the side surface of the piezoelectric element, the circuit is relatively simple, and it is suitable for use in a module with compact space.
  • the structures of the first actuator 40a and the second actuator 40b of the piezoelectric actuator 40 are the same, and the difference lies in the first actuator 40a and the second actuator 40b.
  • the piezoelectric substrate 41 of the second actuator 40b may be fixed to the outer frame 32, and the second actuator 40b is provided on the anti-shake base 31 and the Between the outer frame bodies 32 , one end of the vibration substrate 42 is connected to the piezoelectric substrate 41 and the other end is connected to the drive shaft 43 , and the moving member 44 can be in frictional contact with the drive shaft 43 .
  • the moving part 44 of the second actuator 40b can be fixed to the outer frame, so that the vibration base plate 42 can be driven to realize the anti-shake base in Y
  • the movement in the Y direction drives the movement of the photosensitive component 20 in the Y direction
  • the length direction of the drive shaft 43 is consistent with the Y direction.
  • the piezoelectric substrate 41 may be fixed to the outer frame by bonding with an adhesive.
  • the drive shaft 43 can also be fixed on the outer frame by an elastic adhesive, or the other end of the drive shaft 43 can be movably connected, suspended on the outer frame 32 or suspended in the air, etc. , so that the vibration substrate 42 and the drive shaft 43 of the second actuator 40b can vibrate freely.
  • the moving member 44 may be fixed to the anti-shake base 31 by means of bonding, or may be fixed in a direction integrally formed with the anti-shake base 31 .
  • the piezoelectric substrate 41 may be integrally formed with the outer frame body 32 .
  • the piezoelectric actuator 40 is electrically connected to the circuit board of the photosensitive component 20 , and a pulse voltage is provided to the vibration substrate 42 of the piezoelectric actuator 40 through the circuit board of the photosensitive component 20 ,
  • the vibration base plate 42 provides vibration of the drive shaft 43 along the X (Y) axis direction, so that the drive shaft 43 slightly reciprocates in the axis direction, whereby the drive shaft 43 drives the moving member 44 Linear movement on the drive shaft 43 . It is worth mentioning that by supplying the vibration substrate 42 with pulse voltages of different frequencies, the speed of the vibration of the drive shaft 43 in the axial direction is controlled, thereby changing the movement of the moving member 44 on the drive shaft 43 . rate.
  • a pulse voltage is provided to the vibration substrate 42 of the first actuator 40a, so that the vibration substrate 42 provides vibration of the drive shaft 43 in the direction of the positive X axis, so that the drive shaft 43 is The positive direction of the X-axis is slightly reciprocating, so that the moving member 44 is driven to move linearly along the positive direction of the X-axis on the drive shaft 43, thereby driving the photosensitive assembly 20 to move in the positive direction of the X-axis.
  • the drive shaft 43 is also rapidly retracted in the negative X direction, because the moving member 44 moves along the X direction Due to the inertial effect, although there is friction, the moving part 44 will be kept in place to achieve optical anti-shake in the X-axis direction.
  • the second actuator 40b can generate a driving force along the Y-axis direction to provide a pulse voltage to the vibrating substrate 42 of the second actuator 40b, so that the vibrating substrate 42 provides the desired voltage.
  • the vibration of the drive shaft 43 in the positive direction of the Y-axis causes the drive shaft 43 to move back and forth slightly in the positive direction of the Y-axis, thereby driving the moving member 44 to linearly move along the positive direction of the Y-axis on the drive shaft 43 .
  • the second actuator 40b is supported by the outer frame 32, drives the anti-shake base to move in the positive direction of the Y-axis, and is driven by the anti-shake base 31 and the first actuator 40a
  • the photosensitive assembly 20 moves along the positive direction of the Y-axis.
  • the drive shaft 43 is also rapidly retracted in the negative direction of the Y axis, because the moving member 44 is in the positive direction of the Y axis. Due to the inertial effect of directional movement, although there is friction, the moving member 44 will be kept in place to achieve optical image stabilization in the Y-axis direction.
  • the piezoelectric actuator is used as the driving motor for driving the photosensitive component to move, which not only has the advantages of small size, large thrust, and high precision, but also has the advantages of a driving structure. It is relatively simple, and has better anti-electromagnetic interference effect than the magnetic driving method.
  • the supporting frame 30 further includes at least one actuator rolling unit 33, wherein the actuator rolling unit 33 is disposed between the anti-shake base 31 of the supporting frame 30 and the outer frame 32, It is used to support the anti-shake base 31 and reduce the friction between the anti-shake base 31 and the outer frame 32 when the anti-shake base 31 moves.
  • a rolling support space 301 is provided between the anti-shake base 31 of the supporting frame 30 and the outer frame body 32 , wherein the actuator rolling unit 33 is arranged on the rolling support of the supporting frame 30 .
  • Support space 301 It can be understood that the actuator rolling unit 33 is used to support and maintain the distance between the anti-shake base 31 and the outer frame 32, and provide the anti-shake base 31 relative to the outer frame 32.
  • the actuator rolling unit 33 may be disposed between the anti-shake base 31 and the side or bottom of the outer frame body 32 , which is not limited in this application.
  • the photosensitive component 20 includes a photosensitive chip 21 , a circuit board 22 , at least one optical filter 23 , a bracket 24 and at least one electronic component 25 .
  • the circuit board 22 is used for carrying the photosensitive chip 21 , the filter 23 , the bracket 24 , and the electronic component 25 .
  • the circuit board may be a PCB (Printed Circuit Board, printed circuit board), a flexible and rigid combination board, or a reinforced FPC (Flexible Printed Circuit, flexible printed circuit board). circuit board).
  • the flexible-rigid board includes laminated PCB and FPC
  • the reinforced flexible circuit board includes laminated FPC and reinforcing sheet
  • the reinforcing sheet can be a sheet material with good heat dissipation performance, such as a steel sheet.
  • the photosensitive chip 21 is arranged on the circuit board 22, and the photosensitive chip 21 is electrically connected to the circuit board 22.
  • the photosensitive chip 21 can sense light, and convert the light signal into a light signal through its own photosensitive function. Imaging electrical signals. It is worth mentioning that the side of the photosensitive chip 21 away from the circuit board 22 includes a photosensitive area and a non-photosensitive area arranged around the photosensitive area.
  • the filter 23 is disposed above the photosensitive chip 21 and supported by the bracket 24 , wherein the bracket 24 is fixed to the circuit board 22 .
  • the piezoelectric actuator 40 realizes optical anti-shake by driving the entire photosensitive assembly 20 to move as a whole, the circuit board 22 , the photosensitive chip 21 , the support 24 , and the filter
  • the light sheet 23 can be packaged as a whole to form a closed space, wherein the photosensitive chip 21 is accommodated in the closed space, which improves the sealing of the photosensitive chip 21 and ensures that the camera module is manufactured or used in the process of Photosensitive chip imaging is not affected by dust.
  • the circuit board 22 is connected to the external electronic device mainboard through a flexible board and a connector.
  • the bracket 24 can be replaced with a package body, that is, a package body is formed on the circuit board 22, and the package body can be used to embed the electronic components 25 and/or photosensitive chips In the non-photosensitive area 21, the package body is integrally formed on the circuit board 22, which can not only reduce the height of the camera module, but also protect the electronic components 25 from pollution and damage.
  • the lens assembly 10 includes a lens 11 and a lens carrier 12 , wherein the lens 11 is mounted on the lens carrier 12 , that is, the lens assembly 10 can be implemented as a fixed-focus lens . In other embodiments of the present invention, the lens assembly 10 may also be implemented as an autofocus lens.
  • the lens assembly 10 further includes at least one lens actuator 13 and a fixed base 14 , wherein the lens actuator 13 is disposed on the fixed base 14 and is connected with the lens assembly 10 .
  • the lens carrier 12 is connected in a driving manner, and the lens actuator 13 uses the fixed base 14 as a fulcrum to drive the lens carrier 12 to move up and down along the optical axis, so as to realize the automatic operation of the camera module.
  • the lens 11 may be mounted on the lens carrier 12 by means of bonding, snapping or screwing.
  • the lens 11 and the lens carrier 12 are integral structures, that is, the lens carrier 12 and the lens barrel of the lens 11 , and at least two lenses of the lens 11 are accommodated in the lens carrier 12 .
  • the integrated structure can reduce the size of the lens barrel in the lens 11 and reduce the gap between the lens barrel and the carrier, so the beneficial effect of reducing the size of the camera module can be achieved.
  • the lens carrier 12 of the lens assembly is accommodated in the fixing base 14 .
  • the lens actuator 13 is arranged on the lens carrier 12 and the fixed base 14, and the fixed base 14 is used as the fulcrum position of the lens actuator 13.
  • the lens actuator 13 generates a driving force for causing the lens carrier to drive the lens to move in the direction of the optical axis, thereby driving the lens carrier 12 to move in the direction of the optical axis.
  • the lens actuator 13 includes at least one AF coil 131 and at least one AF magnet 132 , wherein the AF coil 131 and the AF magnet 132 are disposed in opposite positions.
  • the autofocus coil 131 of the lens actuator 13 is supported on the fixed base 14 .
  • the auto-focusing magnet 132 is disposed opposite to the auto-focusing coil 131 , and the auto-focusing magnet is disposed on the lens carrier 12 .
  • the AF coil 131 of the lens actuator 13 When the AF coil 131 of the lens actuator 13 is energized, the AF coil 131 uses the fixed base 14 as a support point, and generates a magnetic force along the optical axis with the AF magnet 132 . Magnetic force, wherein the auto-focusing magnet 132 drives the lens carrier 12 to move along the optical axis direction under the magnetic action, so as to realize auto-focusing.
  • the lens carrier 12 is provided with at least one magnet mounting portion 121 , wherein the AF magnet 132 is disposed on the magnet mounting portion 121 of the lens carrier 12 .
  • the magnet mounting portion 121 is an opening groove or a fitting surface formed on the outside of the lens carrier 12 .
  • the AF magnet 132 can be embedded in or attached to the side wall of the lens carrier 12, that is, the AF magnet 132 can be embedded or attached to the outer or inner side wall of the lens carrier, ie the The auto-focus coil 131 and the auto-focus magnet 132 are arranged relative to each other.
  • an auto-focus adjustment sensor is arranged on the inner side of the auto-focus coil 131 or on the adjacent side wall, wherein the auto-focus adjustment sensor can sense the movement of the lens carrier 12 of the fixed base 14 during auto-focusing. If the position changes, the auto focus adjustment sensor may be a Hall element.
  • the installation positions of the AF coil 131 and the AF magnet 132 of the lens actuator 13 can be reversed, that is, the AF coil 131 is arranged on the lens carrier 12 , the auto-focusing magnet 132 is arranged on the fixed base 14 .
  • the position of the lens actuator 13 in the present application is not limited to the above-mentioned content.
  • the auto-focus coil 131 can be installed at the corner where one side of the fixed base 14 and the adjacent side are perpendicular.
  • the AF magnet 132 is attached to the magnet attachment portion of the lens carrier facing the AF coil 131 .
  • the AF coil 131 can be fixed on the fixed base 14 through an AF substrate (FPC).
  • FPC AF substrate
  • the auto-focusing magnets 132 generate a driving force along the optical axis direction, and drive the lens carrier 12 to drive the lens 11 to move along the optical axis direction to realize automatic focusing.
  • the fixed base 14 can be used as a part of the lens actuator.
  • the lens actuator 13 further includes at least one lens rolling unit 133, wherein the at least one lens rolling unit 133 is located between the fixed base 14 and the lens carrier 12 for supporting and holding the lens carrier 12 and the fixed base 14, and when the lens actuator 13 drives the lens carrier 12 to move, the lens rolling unit 133 provides the lens carrier 12 relative to the fixed base The movement along the optical axis, and the sliding friction is replaced by rolling friction, reducing the frictional force of the lens carrier when moving.
  • At least one rolling unit accommodating cavity 101 is provided between the lens carrier 12 and the fixed base 14 , wherein the lens rolling unit 133 is held in the rolling unit accommodating cavity 101 .
  • the outer side wall of the lens carrier 12 has at least one first rail 102 along the Z-axis direction
  • the inner side wall of the fixed base 14 has at least one second rail 103 along the Z-axis direction, wherein the first rail 102
  • the position of the second rail 103 is opposite to the position of the second rail 103, so that at least one rolling unit accommodating cavity 101 is formed between the lens carrier 12 and the fixed base 14, and the rolling unit accommodating cavity 101 can accommodate all the
  • the lens rolling unit 133 is accommodated therein to provide movement of the lens carrier 12 relative to the fixed base 14 in the optical axis direction (Z-axis direction). Since the rolling unit accommodating cavity 101 is produced with directional regulations, the lens rolling unit 133 can be moved along the Z-axis direction, and the moving direction of the lens can be made more accurate during auto-focusing.
  • the number of the rolling unit accommodating cavities 101 may be two.
  • the rolling unit accommodating cavities 101 are arranged on the side where the auto-focusing magnet 132 is located, the two rolling unit accommodating cavities 101 are respectively provided On both sides of the auto-focusing magnet, the lens carrier 12 moves more smoothly without tilting during auto-focusing.
  • the rolling unit accommodating cavity 101 may also be disposed at other positions of the lens carrier 12 and the fixing base 14 , which is not limited in this application.
  • the fixing base 14 is located between the lens 11 and the photosensitive assembly 20 , the lens 11 and the photosensitive assembly 20 are respectively fixed on the fixing base 14 , and the photosensitive assembly 20 is relatively opposite to the photosensitive assembly 20 .
  • the fixed base 14 moves along directions perpendicular to each other on the image plane to achieve optical image stabilization. That is to say, during optical image stabilization, the piezoelectric actuator 40 drives the image stabilization base 31 to drive the photosensitive component 20 to move, and the fixed base 14 does not move.
  • the piezoelectric actuator 40 is disposed between the fixed base 14 and the photosensitive component 20 , and the piezoelectric actuator 40 is electrically connected to the fixed base 14 upward. That is, the first actuator 40a and the second actuator 40b are both disposed between the fixed base 14 and the photosensitive assembly 20 .
  • a circuit layer is laid on the surface of the fixing base 14, and the fixing base 14 is connected to the external electronic device mainboard through a flexible board and a connector. conduct conduction.
  • the piezoelectric actuator 40 and the photosensitive component 20 can be electrically connected to the circuit layer of the fixed base 14 through a connection circuit, so as to realize the circuit conduction of the camera module.
  • the piezoelectric actuator 40 and the photosensitive component 20 are placed under the fixed base 14 , it is necessary to extend the piezoelectric actuator 40 and the photosensitive component 20 upward through a wire or a flexible board It is electrically connected to the circuit layer on the surface 14 of the fixed base, and extending the circuit upward to conduct conduction can make full use of the height space of the camera module and avoid the increase of the height of the camera module.
  • the embodiment of the present application can reduce the length of the circuit board of the photosensitive assembly 20, thereby simplifying the wiring arrangement of the camera module.
  • the upper part is the direction in which the light enters
  • the lower part is the direction in which the light exits.
  • At least two LDS grooves may be provided on the surface of the fixed base 14 , the depth of the LDS grooves is not greater than 20-30 ⁇ m, and the width is not less than 60 ⁇ m. technology), a conductive coating (for example, a nickel-palladium-gold coating) is plated on the surface of the LDS tank, so as to avoid the interference of other metals inside, and the connection circuit of the piezoelectric actuator 40 is connected to the fixed base 14.
  • the conductive plating layer in the LDS tank is connected to lead out the circuit to realize the electrical connection with the circuit board of the photosensitive component 20 .
  • At least two wires are formed in the fixed base, so as to electrically connect the connection circuit of the piezoelectric actuator 40 with the wires so as to derive the circuit, through the
  • the fixed base 14 is electrically connected to the circuit board of the photosensitive assembly 20 .
  • the circuit board of the photosensitive assembly 20 extends upward through the corners of the camera module with the extra space, and conducts circuit connection with the circuit layer of the fixed base 14 , which not only reduces the size of the circuit The length of the board also makes wiring easier.
  • the photosensitive assembly 20 is connected to the piezoelectric actuator 40 in a driving manner.
  • the first actuator 40a is disposed on the anti-shake base 31 and drives the photosensitive assembly 20 to move along the X-axis direction.
  • Optical anti-shake in the X-axis direction is realized; the anti-shake base 31 has a connecting part for movably connecting with the photosensitive component 20, that is, the anti-shake base 31 can drive all parts of the camera through the connecting part when moving.
  • the photosensitive assembly 20 moves in the same direction, the second actuator 40b is disposed on the fixed base 14 and/or the outer frame 32, and drives the anti-shake base 31 relative to the outer frame
  • the body 32 moves along the Y-axis direction, thereby driving the photosensitive assembly 20 to move along the Y-axis direction, so as to realize optical anti-shake in the Y-axis direction.
  • the first actuator 40 a is disposed on a side wall of the anti-shake base 14
  • the first actuator 40 b is fixed on the anti-shake base 31 and drives the photosensitive assembly 20 Move along the X axis. That is, the piezoelectric element 401 of the first stopper 40a is fixed to the anti-vibration base 31 by bonding with an adhesive.
  • an elastic adhesive soft glue
  • the length direction of the drive shaft 43 is consistent with the X direction, and the other end of the drive shaft 43 can also be fixed on the anti-shake base by an elastic adhesive; or, the drive shaft 43 The other end is movably connected (suspended on the anti-shake base 31 or suspended in the air, so as not to affect its repeated vibration), so that the piezoelectric element 401 of the first brake 40a and the drive shaft 43 can vibrate freely.
  • the moving member 44 may be fixed to the photosensitive assembly 20 by means of adhesive bonding, or may be fixed in a direction integrally formed with the photosensitive assembly 20 .
  • the piezoelectric element 401 may also be integrally formed with the anti-shake base.
  • the photosensitive assembly 20 further includes at least one reinforcing sheet 26 , wherein the reinforcing sheet 26 is disposed under the circuit board 22 of the photosensitive assembly 20 , and the photosensitive assembly is supported by the reinforcing sheet 26 . 20 of the circuit board 22 and the photosensitive chip.
  • the circuit board 22 is reinforced by the reinforcing sheet 26, so that the circuit board 22 has good flatness and also has good heat dissipation performance, preventing the circuit board 22 generates heat during the working process, which leads to the deformation of the circuit board, and the reinforcing sheet 26 can be a sheet material with good heat dissipation performance such as a steel sheet.
  • the moving member 44 of the first actuator 40a can be fixed to the reinforcing sheet 26 of the photosensitive assembly 20 by means of adhesive, wherein the first actuator 40a is flattened
  • the reinforcing sheet 26 is the reference plane to ensure the flatness of the first actuator 40a.
  • the second actuator 40b is disposed on a bottom side of the fixed base 14, the second actuator 40b is fixed on the fixed base 14, and drives the anti-shake base 31 along the Y axis direction move. That is, the piezoelectric element 401 of the second stopper 40b is fixed to the bottom surface of the fixing base 14 by adhesive bonding. According to the embodiment of the present application, an elastic adhesive (soft glue) is used.
  • the length direction of the drive shaft 43 is consistent with the Y direction, and the other end of the drive shaft 43 may also be fixed on the fixed base by an elastic adhesive, or the drive shaft 43 may be The other end is movably connected (suspended on the fixed base or suspended in the air, so as not to affect its repeated vibration), so that the piezoelectric element 401 and the drive shaft 43 of the second brake 40b can be freely Just vibrate.
  • the moving member 44 may be fixed to the anti-shake base 31 by means of bonding, or may be fixed in a direction integrally formed with the anti-shake base 31 .
  • the piezoelectric element 401 may be formed integrally with the fixed base. Using the fixing base 14 as a reference surface, fixing the second actuator 40b upward on the fixing base 14 can improve the assembly accuracy of the second actuator 40b, and the The second actuator 40b maintains good flatness.
  • the second actuator 40b may be fixed on the outer frame body 32 by means of adhesive bonding, the longitudinal direction of the drive shaft 43 is consistent with the Y direction, and , the other end of the drive shaft 43 can also be fixed on the outer frame body 32 through an elastic adhesive, or the other end of the drive shaft 43 can be movably connected (suspended on the outer frame body It suffices that the repeated vibration is not affected), and the piezoelectric element 401 and the drive shaft 43 of the second brake 40b can vibrate freely. It can be understood that, the second actuator 40b can also be fixed to the fixed base 14 and the outer frame 32 at the same time.
  • the piezoelectric substrate 41 of the second actuator 40b is fixed to the fixed base 14, that is, all parts of the second actuator 40b are fixed to the fixed base 14.
  • the piezoelectric substrate 41 extends downward from the bottom surface of the fixed base 14 and uses the bottom surface of the fixed base 14 as a reference surface to ensure the flatness of the second actuator 40b. It can be understood that, the piezoelectric substrate 41 can also fix the bottom surface of the fixing base 14 and the inner surface of the outer frame body 32 at the same time.
  • the first actuator 40a is fixed to the reinforcing sheet 26 of the photosensitive assembly 20, and the second actuator 40b is fixed to the The fixed base 14 is described.
  • the first actuator 40a and the second actuator 40b are at adjacent sides or adjacent corners of the anti-shake base 31, the first actuator 40a and the second actuator 40b are respectively installed and extended from different height directions to make full use of the height space of the camera module, thereby making the module structure more compact.
  • both the shown reinforcing sheet and the fixing base have high flatness and can be used as a reference plane, which is beneficial to reduce the assembly time when the first actuator 40a and the second actuator 40b are assembled. tolerance.
  • the camera module further includes at least one anti-shake ball unit, wherein the anti-shake ball unit is disposed between the photosensitive assembly 20 and the anti-shake base 31 for supporting and maintaining the The distance between the anti-shake base 31 and the photosensitive assembly 20, and the movement of the photosensitive assembly 20 relative to the anti-shake base 31 in the X-axis direction, and the sliding friction is replaced by rolling friction, reducing Frictional force of optical components as they move.
  • At least one anti-shake accommodating space 302 is provided between the photosensitive assembly and the anti-shake base 31 , wherein the anti-shake rolling unit is accommodated in the anti-shake accommodating space 302 .
  • the anti-shake ball unit may also be disposed between the photosensitive assembly 20 and the side or bottom of the anti-shake base 31 , which is not limited in this application.
  • the camera module further includes at least one guiding unit, and the guiding unit can provide a guiding function for the movement of the photosensitive assembly 20 .
  • the guide unit includes a first guide unit and a second guide unit, and each group of the guide units is disposed opposite to the piezoelectric actuator 40 .
  • the first guide unit is disposed on the reinforcing sheet 26 of the photosensitive assembly 20, and the first guide unit is disposed opposite to the first actuator 40a, that is, the first guide unit is disposed On one side of the anti-shake base 31 along the X-axis direction, the first actuator 40a is placed on the opposite side of the anti-shake base along the X-axis direction.
  • the second guide unit is disposed on the anti-shake base 31 , and the second guide unit is disposed opposite to the second actuator 40 b , that is, the second guide unit is disposed on the anti-shake base 31
  • the second actuator 40b is placed on the opposite side of the anti-shake base 31 in the Y-axis direction. That is to say, each group of the guide units and the piezoelectric actuator 40 are located on opposite sides and arranged in the same direction.
  • the first guide unit may be a guide rod whose length direction is consistent with the X direction
  • the reinforcing sheet 26 of the photosensitive assembly 20 has at least one opening at the position where the guide rod is set, and the The guide rod is placed in the opening so that the guide rod is movably connected to the photosensitive assembly 20, and the direction of the photosensitive assembly 20 is controlled by the direction of the guide rod, so that the photosensitive assembly 20 can move more accurately along the X-axis direction of movement.
  • the second guide unit can also be a guide rod whose length direction is consistent with the Y direction, the anti-shake base is provided with at least one opening at the position where the guide rod is set, and the guide rod is placed in the opening so that all the The guide rod is movably connected with the anti-shake base, and the direction of the anti-shake base 31 is controlled by the direction of the guide rod, so that the anti-shake base 31 can move more accurately along the Y-axis.
  • Both ends of the first guide unit are fixed on the anti-shake base, so that the anti-shake base 31 can move along the X-axis direction under the guiding action of the first guide unit; the second guide Both ends of the unit are fixed to the fixed base 14 , so that the anti-shake base 31 can move along the Y-axis direction under the guidance of the second guide unit.
  • the guiding unit may be a ball, a sliding block or other structures capable of realizing a guiding function, which is not limited in this application.
  • the module device further includes a casing 50, wherein the casing 50 is used to protect the various components of the camera module, and can also be used to block electromagnetic waves generated by the camera module during operation, thereby producing an electromagnetic shielding effect.
  • the casing 50 can be a metal material, and the casing is grounded through a grounding plate so that the casing can be used as an electromagnetic shield.
  • the material of the casing 50 may be a plastic material, and a conductive material is coated on the surface of the plastic to block electromagnetic waves, so the present application does not limit the material of the casing.
  • the casing 50 has an opening, so that the light passing through the lens assembly 10 can be incident on the photosensitive assembly for imaging, and the casing 50 and the outer frame 32 form a receiving cavity for storing
  • the lens assembly 10 , the photosensitive assembly 20 and the piezoelectric actuator 40 are accommodated therein to prevent the lens assembly 10 , the photosensitive assembly 20 and the piezoelectric actuator 40 from falling off and being damaged due to external impact.
  • the housing 50 is fixed to the upper part of the fixed base 14
  • the outer frame 32 is fixed to the lower part of the fixed base 14 .
  • the first actuator 40a of the piezoelectric actuator 40 of the camera module is disposed on the anti-shake base 31 and the outer frame 32 In between, that is, the piezoelectric substrate 41 of the first actuator 40a is fixed to the outer frame 32, and the drive shaft 43 of the first actuator 40a extends in the X-axis direction.
  • One end of the vibration substrate 42 is connected to the piezoelectric substrate 41 , and the other end of the vibration substrate 42 is connected to the drive shaft 43 , wherein the moving member 44 is in frictional contact with the drive shaft 43 .
  • the moving member 44 is fixed to the anti-shake base, and the anti-shake base 31 is moved in the X direction by driving the vibration substrate 42, thereby driving the photosensitive assembly 20 to move in the X direction,
  • the longitudinal direction of the drive shaft 43 is the same as the X direction.
  • the second actuator 40b of the piezoelectric actuator 40 is disposed between the photosensitive component 20 and the anti-shake base 31, that is, the The piezoelectric substrate 41 of the second actuator 40 b is fixed to the inner side of the anti-shake base 31 and located between the photosensitive element 20 and the anti-shake base 31 .
  • One end of the vibration substrate 42 is connected to the piezoelectric substrate 41 , and the other end of the vibration substrate 42 is connected to the drive shaft 43 , wherein the moving member 44 is in frictional contact with the drive shaft 43 .
  • the moving member 44 is fixed to the photosensitive assembly 20, and the moving member 44 is driven to move in the Y-axis direction by driving the vibrating substrate 42, so as to realize the movement of the photosensitive assembly 20 in the Y-direction, wherein the driving shaft 43
  • the length direction is the same as the Y direction.
  • the second actuator 40b of the piezoelectric actuator 40 extends from the outside of the outer frame 32 to the Inside the outer frame body 32 .
  • the outer frame body 32 is provided with a fixing hole, wherein the second actuator 40b is fixed to the fixing hole of the outer frame body 32, and all the second actuator 40b is fixed to the fixing hole of the outer frame body 32.
  • the piezoelectric substrate 41 is fixed to the outside of the fixing hole.
  • the vibration substrate 42 of the piezoelectric actuator, the moving member 44 and the drive shaft 43 are placed inside the outer frame body 32 through the opening, and the piezoelectric substrate 42 is arranged on the outer frame
  • the outer side of the body 32 that is, the inner surface of the piezoelectric substrate 42 is fixed to the outer side of the outer frame body 32 by adhesive.
  • the arrangement of this embodiment can electrically connect the piezoelectric actuator 40 to the flexible board of the circuit board 22 through a flexible board or a plurality of lead wires, which can conduct conduction from the outside, and the conduction line is simpler.
  • FIG. 8 of the accompanying drawings of the present invention a camera module according to another preferred embodiment of the present invention is explained in the following description.
  • the difference from the above-mentioned preferred embodiment is the installation method of the first actuator 40 a of the piezoelectric actuator 40 .
  • the first actuator 40a is disposed between the photosensitive assembly 20 and the anti-shake base 31, and the first actuator 40a uses the anti-shake base 31 as a supporting point to drive the The photosensitive member 20 moves in the X-axis direction.
  • the piezoelectric substrate 41 of the first actuator 40a is fixed to the photosensitive assembly 20, and the first actuator 40a is electrically connected to the circuit board 22 of the photosensitive assembly 20, That is, the first actuator 40a is electrically connected to the photosensitive assembly 20 .
  • the piezoelectric substrate 41 of the first actuator 40a is fixed to the circuit board 22, and the moving member 44 of the first actuator 40a and the anti-shake base 31 connected in a phase-driven manner.
  • the circuit board 22 of the photosensitive assembly 20 provides a pulse voltage to the vibrating substrate 42, so that the vibrating substrate 42 provides the drive shaft 43 in the X-axis vibration in the direction.
  • the drive shaft 43 slightly reciprocates in the X-axis direction, thereby driving the moving member 44 to linearly move along the X-axis direction on the drive shaft 43, and the piezoelectric substrate 41 drives the
  • the photosensitive assembly 20 moves relative to the anti-shake base along the X-axis direction to realize optical anti-shake in the X-axis direction.
  • the arrangement of the first actuator 40a in this embodiment can electrically connect the vibrating substrate 42 to the circuit board, no flexible board or leads are required, and the conduction method is simpler.
  • the electronic device includes an electronic device main body 100 and at least one camera module 200 , wherein the camera module is mounted on the electronic device main body 100 and provided by the electronic device main body 100 and the camera module 200 . electrical energy.
  • the camera module 200 is electrically connected to the electronic device main body 100 . It is worth mentioning that, in this preferred embodiment of the present invention, the camera module 200 has the same structure and function as the camera module in the above-mentioned preferred embodiment, which is not repeated here.
  • the electronic device body 100 may be, but not limited to, a mobile phone, a computer, a tablet computer, a smart camera device, and the like.
  • the present invention further provides an optical anti-shake method for a camera module.
  • the optical anti-shake method includes the following steps:
  • the at least one piezoelectric actuator expands or contracts based on the potential signal, so as to drive the photosensitive component to move along the X-axis direction and/or the Y-axis direction, so as to realize the optical anti-shake of the camera module.
  • the step (b) of the optical anti-shake method further includes, the piezoelectric actuator includes a piezoelectric substrate and a vibration substrate disposed on the piezoelectric substrate , applying the potential signal to a piezoelectric substrate through a vibration substrate of the piezoelectric actuator, wherein the piezoelectric substrate expands or contracts based on the potential signal, and drives the vibration substrate to expand or contract to deform.
  • the piezoelectric actuator further includes a driving shaft and a moving member in frictional contact with the driving shaft, wherein the driving shaft is driven by the vibration substrate, and the moving member is driven by the driving shaft to move.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本发明提供一摄像模组及其光学防抖方法和电子设备,其中至少一压电致动器与所述感光组件相传动地连接,其中所述压电致动器包括一压电元件、一驱动轴以及一移动件,其中所述压电元件的一端被固定,且所述驱动轴被设置于所述压电元件,所述驱动轴与所述移动件可相摩擦地接触,其中所述压电元件驱动所述驱动轴,由所述驱动轴通过摩擦带动所述移动件,进而由所述压电致动器驱动所述感光组件沿X轴方向和/或Y轴方向运动,以实现摄像模组的光学防抖。

Description

摄像模组及其光学防抖方法和电子设备 技术领域
本发明涉及摄像头技术领域,尤其涉及一摄像模组及其光学防抖方法和电子设备。
背景技术
随着消费者对于手机拍照需求的增加,手机摄像头(即摄像模组)的功能越来越丰富,人像拍摄、远距拍摄、光学变焦、光学防抖等功能都集成在了体积有限的摄像头中,而其中自动对焦、光学防抖功能往往都需要依靠光学致动器(或马达)来实现。
随着手机摄像模组的成像质量要求越来越高,镜头的体积和重量越来越大,对马达的驱动力要求也越来越高。而当前电子设备(例如手机)对摄像模组的体积也有很大的限制,马达的占用体积随着镜头的增大而相应的增加。换句话说,在镜头向更大体积、更大重量发展的趋势下,马达所能提供的驱动力却难以相应地增加。在驱动力受限的前提下,镜头越重,马达能够驱动镜头移动的行程越短,影响对焦和防抖能力。另一方面,镜头越重,马达能够驱动镜头移动的速度也越慢,镜头到达预定的补偿位置的时间也越长,这也会影响对焦和防抖效果。并且,也会造成马达机构复杂,零件数量增加,并且设备主体的厚度趋于增加。
随着移动设备的小型化要求不断提高,马达内部部件的密度也随之提高,马达内设有磁铁和线圈,用于产生驱动镜头移动所必须的磁场,而当马达中两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁铁产生位移或抖动,影响镜头的对焦及成像质量。
因此需要提供一种能够实现较大驱动力,且能更好的避免电磁干扰的驱动马达。
发明内容
本发明的一个主要优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述摄像模组利用压电驱动装置将电能转化为弹性形变的方式带动所述感光组件移动,有利于提高摄像模组的防电磁干扰效果。
本发明的另一个优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述摄像模组利用压电致动器作为驱动带动摄像模组的感光组件相对于镜头组件移动,有利于提高所述摄像模组的光学防抖行程。
本发明的另一个优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述摄像模组中设置滚珠,通过滚动摩擦替代滑动摩擦,减小摩擦力,有利于提高光学防抖效果。
本发明的另一个优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述摄像模组以固定基座的底面作为基准面,以保证光学防抖一个驱动部的平整度。
本发明的另一个优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述摄像模组包括一补强片,以补强片所在平面作为基准面,以保证所述光学防抖装置一个方向的平整度。
本发明的另一个优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述光学防抖装置包括一第一致动器和一第二致动器,其中所述第一致动器和所述第二致动器在所述摄像模组上形成一错位结构,避免了所述第一致动器和所述第二致动器在所述感光组件的同一边的高度方向上重叠设置,增加所述感光组件的高度,造成模组高度增加,或者,造成所述镜头组件的焦面不能落到所述感光芯片上,影响成像效果。
本发明的另一个优势在于提供一摄像模组及其光学防抖方法和电子设备,其中所述摄像模组通过不同的框架来实现两个方向运动,将两个方向的移动分开驱动,不会产生互相干扰,提高了所述摄像模组的抗干扰效果。
依本发明的一个方面,能够实现前述目的和其他目的和优势的本发明的一压电致动器,适于驱动一摄像模组的一感光组件,其中所述摄像模组进一步包括一支承框架,所述压电致动器被固定值所述支承框架,所述压电致动器包括:
一压电基板;
一振动基板,其中所述振动基板的一端被连接至所述压电基板,并通过所述振动板像所述压电基板施加电势,以引起所述压电基板和所述振动基板的收缩或膨胀;
一驱动轴,其中所述驱动轴被设置于所述振动基板的另一端,由所述振动基板驱动所述驱动轴移动;以及
一移动件,其中所述移动件被设置于所述驱动轴,且所述移动件与所述驱动轴相摩擦连接,由所述驱动轴驱动所述移动件沿所述驱动轴所在方向移动,以供所述压电致动器驱动所述感光组件沿X轴方向和/或Y轴方向移动,以实现所述摄像模组的光学防抖。
根据本发明的一个实施例,所述压电基板是根据极化方向和电场方向收缩或膨胀的基板,且所述振动基板具有恒定的厚度。
根据本发明的一个实施例,所述压电基板和所述振动基板为圆盘形状,并且所述压电基板被安装于所述振动基板的上下表面。
根据本发明的一个实施例,所述压电致动器包括一第一致动器和一第二致动器,其中所述第一致动器被设置于所述支承框架的一防抖基座和所述感光组件之间,所述第二致动器被设置于所述防抖基座和所述支承框架的一外框体之间,借以所述第一致动器驱动所述感光组件沿X轴方向移动,所述第二致动器驱动所述防抖基座沿Y轴方向移动。
根据本发明的一个实施例,所述第一致动器和所述第二致动器相错位地设置。
根据本发明的一个实施例,所述第一致动器的所述压电基板被固定于所述防抖基座,所述第一致动器的所述移动件与所述感光组件相固定,以供所述第一致动器以所述防抖基座为支撑驱动所述移动件沿X轴方向移动,借以所述移动件带动所述感光组件移动。
根据本发明的一个实施例,所述第二致动器的所述压电基板被固定于所述外框体,所述第二致动器的所述移动件与所述防抖基座相固定,以供所述第二致动器以所述外框体为支撑驱动所述移动件沿Y轴方向移动,借以所述移动件带动所述防抖基座移动。
根据本发明的一个实施例,所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两相邻边。
根据本发明的一个实施例,所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两对角位置。
根据本发明的一个实施例,所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位 于所述防抖基座的两对边。
根据本发明的一个实施例,所述第一致动器的所述压电基板和/或所述第二致动器的所述压电基板被固定至所述摄像模组的一镜头组件的下端,并且所述第一致动器的所述驱动轴自所述振动基板沿X轴方向延伸,所述第二致动器的所述驱动轴自所述振动基板沿Y轴方向延伸。
根据本发明的一个实施例,所述压电致动器包括一第一致动器和一第二致动器,其中所述第一致动器被设置于所述支承框架的一防抖基座和一外框体之间,所述第二致动器被设置于所述防抖基座和所述感光组件之间,借以所述第一致动器驱动所述防抖组件沿X轴方向移动,所述第二致动器驱动所述感光组件沿Y轴方向移动。
根据本发明的一个实施例,所述第二致动器的所述压电基板位于所述外框体的外侧,且所述第二致动器的所述振动基板、所述移动件以及所述驱动轴自所述外框体的外侧向内延伸至所述外框体内侧。
根据本发明的一个实施例,所述第一致动器的所述压电基板本固定至所述感光组件,所述第一致动器的所述移动件与所述防抖基板相传动地连接,并且所述第一致动器的所述压电基板被电气连接至所述感光组件的一线路板。
根据本发明的另一方面,本发明进一步提供一摄像模组,包括:
一镜头组件;
一感光组件,其中所述镜头组件沿所述感光组件的感光路径被设置于所述感光组件的感光路径上;
一支承框架,其中所述镜头组件被固定至所述支承框架;以及
至少一压电致动器,其中所述至少一压电致动器与所述感光组件相传动地连接,其中所述压电致动器包括一压电元件、一驱动轴以及一移动件,其中所述压电元件的一端被固定,且所述驱动轴被设置于所述压电元件,所述驱动轴与所述移动件可相摩擦地接触,其中所述压电元件驱动所述驱动轴,由所述驱动轴通过摩擦带动所述移动件,进而由所述压电致动器驱动所述感光组件沿X轴方向和/或Y轴方向运动,以实现摄像模组的光学防抖。
根据本发明的一个实施例,所述压电致动器的所述压电元件包括一压电基板和一振动基板,其中所述振动基板的一端被连接至所述压电基板,并通过所述振动板向所述压电基板施加电势,以引起所述压电基板和所述振动基板的收缩或膨 胀,其中所述驱动轴被设置于所述振动基板的另一端,由所述振动基板驱动所述驱动轴移动。
根据本发明的一个实施例,所述压电基板和所述振动基板为圆盘形状,并且所述压电基板被安装于所述振动基板的上下表面。
根据本发明的一个实施例,所述压电元件包括多个压电伸缩体和多个电极,并且所述多个压电伸缩体和所述多个电极相交替地设置。
根据本发明的一个实施例,所述镜头组件包括一镜头、一镜头载体,以及至少一固定基座,其中所述镜头被安装于所述镜头载体,其中所述压电致动器的所述压电元件被设置于所述镜头组件的所述固定基座。
根据本发明的一个实施例,所述压电致动器包括一第一致动器和一第二致动器,所述支承框架包括一防抖基座和一外框体,所述防抖基座位于所述外框体内侧,其中所述第一致动器被设置于所述支承框架的所述防抖基座和所述感光组件之间,所述第二致动器被设置于所述防抖基座和所述支承框架的所述外框体之间,借以所述第一致动器驱动所述感光组件沿X轴方向移动,所述第二致动器驱动所述防抖基座沿Y轴方向移动。
根据本发明的一个实施例,所述第一致动器和所述第二致动器沿高度方向相错位地设置。
根据本发明的一个实施例,所述第一制动器和所述第二制动器位于所述固定基座和所述感光组件之间,所述第一制动器和所述第二制动器位于所述固定基座的下方,并且所述第一制动器和所述第二制动器被电气连接于所述固定基座。
根据本发明的一个实施例,所述固定基座的被设有至少二LDS槽,并且LDS槽表面镀设导电镀层。
根据本发明的一个实施例,所述第一致动器设置于所述防抖基座的一侧壁,所述第一致动器固定于所述防抖基座,并驱动所述感光组件沿X轴方向移动,所述第二致动器设置于所述固定基座的一底侧,所述第二致动器固定于所述固定基座,并驱动所述防抖基座沿Y轴方向移动。
根据本发明的一个实施例,所述第一制动器的所述压电元件以粘接剂粘接的方式固定于所述防抖基座,并且所述第二致动器以粘接剂粘接的方式固定于所述外框体。
根据本发明的一个实施例,进一步包括至少一导向单元,其中所述单向单元 与所述压电致动器相对设置,由所述导向单元引导所述感光组件移动。
根据本发明的一个实施例,所述导向单元包括一第一导向单元和一第二导向单元,所述第一导向单元设置于所述感光组件,所述第一导向单元与所述第一致动器相对设置,所述第二导向单元设置于所述防抖基座,所述第二导向单元与所述第二致动器相对设置。
根据本发明的一个实施例,所述第一导向单元为一长度方向与X方向一致的导杆,所述第二导向单元为一长度方向与Y方向一致的导杆。
根据本发明的一个实施例,所述第一致动器的所述压电基板被固定于所述防抖基座,所述第一致动器的所述移动件与所述感光组件相固定,以供所述第一致动器以所述防抖基座为支撑驱动所述移动件沿X轴方向移动,借以所述移动件带动所述感光组件移动。
根据本发明的一个实施例,所述第二致动器的所述压电基板被固定于所述外框体,所述第二致动器的所述移动件与所述防抖基座相固定,以供所述第二致动器以所述外框体为支撑驱动所述移动件沿Y轴方向移动,借以所述移动件带动所述防抖基座移动。
根据本发明的一个实施例,所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两相邻边。
根据本发明的一个实施例,所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两对角位置。
根据本发明的一个实施例,所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两对边。
根据本发明的一个实施例,所述第一致动器的所述压电基板和/或所述第二致动器的所述压电基板被固定至所述摄像模组的一镜头组件的下端,并且所述第一致动器的所述驱动轴自所述振动基板沿X轴方向延伸,所述第二致动器的所述驱动轴自所述振动基板沿Y轴方向延伸。
根据本发明的一个实施例,所述压电致动器包括一第一致动器和一第二致动器,其中所述第一致动器被设置于所述支承框架的一防抖基座和一外框体之间, 所述第二致动器被设置于所述防抖基座和所述感光组件之间,借以所述第一致动器驱动所述防抖组件沿X轴方向移动,所述第二致动器驱动所述感光组件沿Y轴方向移动。
根据本发明的一个实施例,所述第二致动器的所述压电基板位于所述外框体的外侧,且所述第二致动器的所述振动基板、所述移动件以及所述驱动轴自所述外框体的外侧向内延伸至所述外框体内侧。
根据本发明的一个实施例,所述感光组件进一步包括至少一补强片,所述补强片被设置于所述感光组件的所述线路板的下侧,其被用于支撑所述线路板和可被传动地连接于所述压电致动器。
根据本发明的一个实施例,所述镜头组件进一步包括至少一镜头致动器,其中所述镜头致动器被设置于所述固定基座,并与所述镜头组件的所述镜头载体相传动地连接,由所述镜头致动器以所述固定基座为支点驱动所述镜头载体沿光轴方向上下地移动,以实现所述摄像模组的自动对焦。
根据本发明的一个实施例,所述镜头致动器包括至少一自动对焦线圈和至少一自动对焦磁体,其中所述自动对焦线圈和所述自动对焦磁体相对位地设置,所述镜头致动器的所述自动对焦线圈被支撑于所述固定基座,所述自动对焦磁体被设置于所述镜头载体。
根据本发明的一方面,本发明进一步提供一摄像模组的光学防抖方法,其特征在于,所述光学防抖方法包括如下步骤:
(a)施加一电势信号至至少一压电制动器,其中所述至少一压电致动器与所述摄像模组的一感光组件相传动地连接;和
(b)基于所述电势信号所述至少一压电致动器膨胀或收缩,以驱动所述感光组件沿X轴方向和/或Y轴方向移动,实现摄像模组的光学防抖。
根据本发明的一个实施例,所述光学防抖方法的所述步骤(b)进一步包括,所述压电致动器包括一压电基板和被设置于所述压电基板的一振动基板,通过所述压电致动器的一振动基板施加所述电势信号至一压电基板,其中所述压电基板基于所述电势信号膨胀或收缩,并带动所述振动基板膨胀或收缩变形。
根据本发明的一个实施例,所述压电致动器进一步包括一驱动轴和与所述驱动轴相摩擦接触的移动件,其中所述驱动轴被所述振动基板驱动,由所述驱动轴带动所述移动件移动。
根据本发明的另一方面,本发明进一步提供一电子设备,其特征在于,包括:
一电子设备主体;和
至少一摄像模组,其中所述至少一摄像模组被搭载于所述电子设备主体,所述摄像模组包括:
一镜头组件;
一感光组件,其中所述镜头组件沿所述感光组件的感光路径被设置于所述感光组件的感光路径上;
一支承框架,其中所述镜头组件被固定至所述支承框架;以及
至少一压电致动器,其中所述至少一压电致动器与所述感光组件相传动地连接,其中所述压电致动器包括一压电元件、一驱动轴以及一移动件,其中所述压电元件的一端被固定,且所述驱动轴被设置于所述压电元件,所述驱动轴与所述移动件可相摩擦地接触,其中所述压电元件驱动所述驱动轴,由所述驱动轴通过摩擦带动所述移动件,进而由所述压电致动器驱动所述感光组件沿X轴方向和/或Y轴方向运动,以实现摄像模组的光学防抖。
根据本发明的一个实施例,所述振动基板的一端被连接至所述压电基板,并通过所述振动板像所述压电基板施加电势,以引起所述压电基板和所述振动基板的收缩或膨胀,其中所述驱动轴被设置于所述振动基板的另一端,由所述振动基板驱动所述驱动轴移动。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明和附图得以充分体现。
附图说明
图1是根据本发明的一较佳实施例的一摄像模组的结构示意图。
图2A至图2C是根据本发明上述较佳实施例的所述摄像模组的一压电致动器几种安装位置示意图。
图3A至图3E是根据本发明上述较佳实施例的所述摄像模组的所述压电致动器的结构示意图。
图4是根据本发明上述较佳实施例的所述摄像模组的所述压电致动器的驱动 动作示意图。
图5是根据本发明上述较佳实施例的所述摄像模组的一平面示意图,其示出了所述摄像模组的一自动对焦装置的结构。
图6是根据本发明另一较佳实施例的一摄像模组的结构示意图。
图7是根据本发明另一较佳实施例的一摄像模组的结构示意图。
图8是根据本发明另一较佳实施例的一摄像模组的结构示意图。
图9是根据本发明一较佳实施例的一电子设备的示意图。
图10是根据本发明一较佳实施例的一摄像模组的一光学防抖方法的方法流程图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参照本发明说明书附图之图1至图5所示,依照本发明第一较佳实施例的一摄像模组在接下来的描述中被阐明。所述摄像模组包括一镜头组件10、一感光组件20、一支承框架30以及被设置于所述支承框架30的至少一压电致动器40,其中所述压电致动器40与所述感光组件20相传动地连接,由所述压电致动器40基于所述支承框架30的位置驱动所述感光组件20沿成像平面上相互垂直的两个方向,即X轴方向和/或Y轴方向运动,以实现所述摄像模组的光学防抖。 值得一提的是,所述镜头组件10被设置于所述感光组件20的感光路径上,使得所述感光组件20可以接收从所述镜头组件10入射出光线以进行成像。
所述支承框架30包括一防抖基座31和一外框体32,其中所述防抖基座31位于所述外框体32的内侧,并且所述感光组件20位于所述防抖基座31内侧,其中所述压电致动器40基于所述支承框架30的所述防抖基座31和/或所述外框体32驱动所述感光组件20移动,以实现所述摄像模组的光学防抖。所述防抖基座与所述外框体间存在一间隙,使得在进行光学防抖时,所述防抖基座不会与所述外框体不会接触而产生摩擦,进而影响光学防抖效果。
详细地说,所述外框体32被固定设置,即所述外框体32的位置固定,其中所述防抖基座31可相对于所述外框体32被所述压电致动器40驱动。值得一提的是,所述防抖基座31用于在光学防抖中控制所述感光组件20进行光学防抖,所述感光组件20被设置于所述防抖基座31,所述防抖基座31被容纳于所述外框体32中,即所述防抖基座32被设置于所述感光组件20和所述外框体32之间,所述外框体32位于所述摄像模组的最外侧作为其外壳。
在本发明的该优选实施例中,所述压电致动器40进一步包括至少一第一致动器40a和至少一第二致动器40b,其中所述第一致动器40a位于所述感光组件20和所述防抖基座31之间,所述第二致动器40b位于所述防抖基座31和所述外框体32之间。所述第一致动器40a基于所述防抖基座31驱动所述感光组件20沿X轴方向移动,以实现所述摄像模组X轴方向的光学防抖,所述第二致动器40b基于所述外框体32驱动所述防抖基座31和所述感光组件20沿Y轴方向移动,以实现所述摄像模组Y轴方向的光学防抖。
如图2A至图2C所示,示出了所述压电致动器40的所述第一致动器40a和所述第二致动器40b的几种可选安装位置,其中所述第一致动器40a和所述第二致动器40b呈对角设置,即所述第一致动器40a和所述第二致动器40b位于所述防抖基座31的两个对角。可选地,所述第一致动器40a和所述第二致动器40b呈相邻边设置,即所述第一致动器40a和所述第二致动器40b位于所述防抖基座31的两相邻边。可选地,所述第一致动器40a和所述第二致动器40b呈相对边设置,即所述第一致动器40a和所述第二致动器40b位于所述防抖基座31的两对边。因此,可以理解的是,所述第一致动器40a和所述第二致动器40b的位置在此仅仅作为示例的,而非限制。
可以理解的是,在本发明的该优选实施例中,所述第一致动器40a和所述第二致动器40b可以分别设置于所述防抖基座31的相邻边或相对边。优选的,所述第一致动器40a和所述第二致动器40b分别被设置于所述防抖基座31的相邻边的中间部位,以使得所述压电致动器40驱动所述感光组件20平稳地移动。可选地,在本发明的其他可选实施方式中,所述第一致动器40a和所述第二致动器40b被设置于所述防抖基座31两个角,即所述第一致动器40a和所述第二致动器40b可以分别设置于所述防抖基座31的相邻角或相对角。优选的,所述第一致动器40a和所述第二致动器40b也可以被设置成位于所述防抖基座31的同一角落处,即所述第一致动器40a和所述第二致动器40b分别从所述防抖基座31的同一角引出,以在进行线路导通时,可以从同一角落向上通过导线或软板延伸至所述感光组件的线路板,以实现线路导通,进而简化所述摄像模组的电路布置。通过上述第一致动器40a和第二致动器40b的位置设置方法,所述第一致动器40a与第二致动器40b在所述摄像模组的所述外框体32内上形成一错位结构,避免了所述第一致动器40a和所述第二致动器40b在所述感光组件的同一边的高度方向上重叠设置,增加所述感光组件20的高度,造成摄像模组的高度增加。
可以理解的是,在本发明的该优选实施例中,所述压电致动器40的所述第一致动器40a和所述第二致动器40b相错位设置,即所述第一致动器40a和所述第二致动器40b在所述感光组件的同一边的高度方向上不相互地重叠,以避免增加所述感光组件20的高度。
值得一提的是,在本发明的该优选实施例中,通过第一致动器40a驱动所述感光组件20实现X轴方向移动和通过所述第二致动器40b驱动所述感光组件20实现Y轴方向移动,即通过不同的框架来说实现XY方向运动,以将两个方向的光学防抖分开驱动,因此不会产生互相干扰。
值得一提的是,在本发明的该优选实施例中,所述压电致动器40的所述第一致动器40a的一端被固定至所述防抖基座31的内侧,其中所述第一致动器40a的另一端与所述感光组件20相传动地连接,由所述第一致动器40a基于所述防抖基座31驱动所述感光组件20沿X轴方向移动。所述压电致动器40的所述第二致动器40b的一端被固定至所述外框体32的内侧,其中所述第二致动器40b的另一端与所述防抖基座31相传动地连接,由所述第二致动器40b基于所述外框体32驱动所述防抖基座31和所述感光组件20沿Y轴方向移动。
所述压电致动器40包括一压电元件401、一驱动轴43以及一移动件44,所述压电元件包括一压电基板41和一振动基板42,其中所述振动基板42位于所述驱动轴43和所述压电基板41之间,并且所述移动件44可与所述驱动轴43相摩擦接触,通过所述驱动轴43与所述移动件44之间的摩擦力驱动所述移动件44沿X轴方向移动。值得一提的是,所述压电致动器40的所述第一致动器40a的所述驱动轴43的长度方向沿X轴方向设置。所述压电致动器40的所述振动基板42驱动所述驱动轴43沿X轴方向移动,借以所述驱动轴43通过摩擦力驱动所述移动件44移动。所述压电致动器40的所述第一致动器40a的所述压电基板41被固定至所述防抖基座31,所述移动件44与所述感光组件20相传动地连接,由所述移动件44带动所述感光组件20沿X轴方向移动。
所述驱动轴43的形状适于为圆柱形或者多棱柱形,优选为圆柱形,所述驱动轴43固定于所述振动基板42。在本发明的一些实施例中,所述振动基板42为压电陶瓷杆或压电陶瓷片,所述振动基板42与所述驱动轴43可以通过粘胶方式连接或者注塑一体成型,所述振动基板42结构更加简单、成本更低。所述振动基板42也不限于压电陶瓷,还可以是其他能够利用压电原理驱动所述感光组件移动的结构。所述压电基板41可以固定至所述防抖基座31内侧,并且设置于所述感光组件20与所述防抖基座31之间,所述振动基板42的一端连接压电基板41而另一端连接驱动轴43,其中所述移动件44可以与所述驱动轴43摩擦接触。所述移动件44被固定至所述感光组件20,通过驱动所述振动基板42来实现所述感光组件在X方向上的移动,其中所述驱动轴43的长度方向与X方向一致。所述压电基板41可以以粘接剂粘接的方式固定于所述防抖基座31。优选地,采用具有弹性的粘接剂(软胶);所述驱动轴43也可以是通过具有弹性的粘接剂固定在所述感光组件20,所述驱动轴43的另一端活动连接,所述第一致动器40a的所述振动基板42及所述驱动轴43可以自由振动。所述移动件44可以采用粘接的方式固定于所述感光组件20的所述线路板或所述支架,也可以采用与所述支架一体形成的方向进行固定。在本发明的其他可选实施方式中,所述压电基板41可以与所述防抖基座一体形成。
如图3A至图3C所示,所述压电基板41是具有压电效应并且根据极化方向和电场方向收缩或膨胀的基板,并且所述振动基板42可以具有恒定的厚度。根据本实施例的所述振动基板42具有连接到单晶型或双晶型的压电基板41,并向 压电基板41施加电势,利用控制器控制施加电压的不同,引起压电基板41和振动基板42的收缩和膨胀动作。根据本实施例的所述压电基板41和所述振动基板42的复合层的弯曲变形原理。值得一提的是,所述压电基板41和所述振动基板42具有圆盘形状,并且优选的方案所述压电基板被安装于所述振动基板42的上下表面。
当所述压电基板41的分极方向和所述压电基板41上的电位差引起的电场方向不同时,所述压电基板41的宽度方向延展并且其厚度减小的方向上会发生变形,由于所述压电基板41的膨胀作用,所述振动基板42会向上凸起变形。当所述压电基板41的分极方向和施加到所述压电基板41的电场方向相同时,压电基板41会变形收缩,使得其宽度变得更窄并且其厚度增加。
如图3B和图3C所示,施加到所述压电基板41的电压的电位差可瞬时反转,所述压电基板41和所述振动基板42也随之改变位移的状态,如果重复上述电位差变化,则所述压电基板41和所述振动基板42可以连续地上下振动。
值得一提的是,所述驱动轴43固定在所述压电基板41和所述振动基板42的复合层上,并根据复合层的最上层固定在所述压电基板41或所述振动基板42。根据本发明的一个实施例,控制单元可以通过向所述压电基板41施加电压来产生所述压电基板41和所述振动基板42的复合层的弯曲变形。如上所述,如果施加到所述压电基板41的电压重复电位差变化,则所述压电基板41和所述振动基板42可以连续地上下振动。
值得一提的是,本实施例的压电致动器40使用惯性定律允许移动体/被驱动物体沿着驱动轴43所在方向移动。当所述驱动轴43的惯性小于所述驱动轴43与响应于所述压电基板41的位移而振荡的所述移动件44之间的静摩擦力时,所述移动件44与所述驱动轴43尽管一起移动,但是如果所述驱动轴43的惯性大于所述驱动轴43和所述移动件44之间的静摩擦,则所述移动件44静止并只移动所述驱动轴43,且在所述移动件44的所述驱动轴43上的位置改变。
本实施例的控制单元施加在压电致动器40的所述压电基板41上的电压可以包括正向电压和收缩电压,并且正向电压和收缩电压是在第一周期期间从第一电压向第二电压变化,第二周期期间是从第二电压到第一电压变化,其中正向电压的第一周期比第二周期长,并且收缩电压的第二周期比第一周期长。正向电压和反向电压被配置成使所述压电基板41在第一周期期间向上凸起并且在第二周期 期间向下凸起,使得在施加正向电压的第一周期期间,当所述移动件44在所述驱动轴43上向前移动并且施加收缩电压时,所述移动件44可以在第二周期期间在所述驱动轴43上后退。
值得一提的是,在本申请的一个实施方式中,当给所述压电基板41反复施加正向电压,一端的所述压电基板41将伸缩,使得振动基板42在向着一个方向凸起变形为碗形,并会快速恢复为原来平板状的状态中。
如图3D所示,在本申请的另一个实施方式中,当给所述压电基板41反复施加收缩电压,另一端的所述压电基板42将伸缩,使得振动基板42在向着另一个方向凸起变形为碗形,并会快速恢复为原来平板状的状态中。
在上述过程中,所述驱动轴43在轴的长度方向上往复移动,而由于所述移动件44与所述驱动轴43产生摩擦接触,当所述振动基板42向着一个方向变形为碗形时,所述移动件44与所述驱动轴43共同移动,而当所述振动基板42快速恢复为原来平板状时,所述驱动轴43也逆向移动,由于所述移动件处于高速状态,因此无法追随所述驱动轴43的动作,也未能返回至原有位置,只能停留在所在位置上。因此,在一个运作过程中,所述移动件44出现所述振动基板42变形振幅较大的移动,通过反复施加脉冲电压,可重复上述移动,并可使所述移动件44移动至目标位置。
值得一提的是,所述压电致动器40相较于现有技术的驱动机构,其具备体积小,推力大,精度高的优势,而且驱动结构相对简单,适于驱动较重的产品,适应摄像模组大像面、玻璃镜头等产品趋势,用于芯片防抖、棱镜防抖等用途。同时,可以再芯片防抖中,利用其控制精度优势实现超分辨率控制。
如图3E所示,在本申请的其他实施方式中,所述压电致动器40包括一压电元件401、一驱动轴43以及一移动件44,所述压电元件401具有如下层叠结构,所述压电元件401进一步包括多个压电伸缩体45和多个电极46,并且所述多个压电伸缩体45和多个电极46交替层叠。所述压电元件401具有层叠结构时,则即使在施加了小的电场的情况下,也可获得大的位移量。当所述多个电极46上的电位差引起的电场方向不同时,所述多个压电伸缩体45会发生变形,发生膨胀或收缩,由于所述压电元件401的不断变形带动所述驱动轴43实现往复运动。
所述驱动轴43具有圆柱形状,下表面平整,本实施方式中通过粘接剂粘接于所述压电元件401的上表面的中央部,从而接合于所述压电元件401。所述驱 动轴43的形状也可以为除了圆柱形状以外如多棱柱的形状。所述驱动轴43由以碳、重金属、重金属的碳化物、重金属的硼化物以及重金属的氮化物中的任一为主要成分的材料形成。
所述压电元件401具有长方体形状,所述长方体形状具有分别沿着相互正交的X轴、Y轴以及Z轴的边。在本例中,所述压电元件401的X轴方向长度为1mm,Y轴方向长度为1mm,Z轴方向长度(高度)为2mm。
如图3E所示,所述多个电极46被配置于所述多个压电伸缩体45,将交替夹着所述多个压电伸缩体45而成的所述多个电极46为内部电极。将配设于所述多个压电伸缩体45的表面并且配设于其上部及下部的所述多个电极46分别称为上部电极及下部电极。进一步,将配设于所述多个压电伸缩体45的表面并且配设于其侧面的所述多个压电伸缩体45称为侧面电极。予以说明,如图3E所示的形态那样,所述压电伸缩体45为1个的情况下,一对所述电极46配设于压电伸缩体45的上部及下部的表面,通过焊接等将所述侧面电极连接于外部电路。在多层的情况下,相同极性的电极层通过所述侧面电极的电极进行连接,从而能够将正负电极的电极层引出在两个侧面上。
所述驱动轴43在轴的长度方向上往复移动,而由于所述移动件44与所述驱动轴43产生摩擦接触,当所述振动基板42向着一个方向变形,所述移动件42与所述驱动轴43共同移动,而当所述振动基板42快速恢复为原状时,所述驱动轴43也逆向移动,由于所述移动件44处于高速状态,因此无法追随所述驱动轴43的动作,也未能返回至原有位置,只能停留在所在位置上。因此,在一个运作过程中,所述移动件44出现所述所述多个压电伸缩体41变形振幅较大的移动,通过反复施加脉冲电压,可重复上述移动,并可使所述移动件44移动至目标位置。
值得一提的是,所述压电致动器40相较于现有技术的驱动机构,不仅具备体积小,推力大,精度高,驱动结构相对简单,适于驱动较重的产品的优势,而且结构更小,线路通过所述压电元件的侧面延伸,线路相对简单,适合在空间紧凑的模组中使用。
优选地,在本发明的该优选实施例中,所述压电致动器40的所述第一致动器40a和所述第二致动器40b的结构相同,不同点在于所述第一致动器40a和所述第二致动器40b的安装位置和安装方向。详细地说,所述第二致动器40b的所 述压电基板41可以固定至所述外框体32,并且所述第二致动器40b被设置于所述防抖基座31与所述外框体32之间,所述振动基板42的一端连接压电基板41而另一端连接驱动轴43,移动件44可以与驱动轴43摩擦接触。
本领域技术人员可以理解的是,所述第二致动器40b的所述移动件44可以被固定至所述外框体,这样可以通过驱动振动基板42来实现所述防抖基座在Y方向上的移动,从而带动所述感光组件20在Y方向上的移动,所述驱动轴43的长度方向与Y方向一致。所述压电基板41可以以粘接剂粘接的方式固定于所述外框体上。所述驱动轴43也可以是通过具有弹性的粘接剂固定在所述外框体上,或者所述驱动轴43的另一端活动连接,悬置在所述外框体32上或者悬空等方式,使所述第二致动器40b的所述振动基板42及所述驱动轴43可以自由振动。所述移动件44可以采用粘接的方式固定于所述防抖基座31,也可以采用与所述防抖基座31一体形成的方向进行固定。此外,所述压电基板41可以一体地成型于所述外框体32。
所述压电致动器40与所述感光组件20的线路板相电气地连接,通过所述感光组件20的线路板给所述压电致动器40的所述振动基板42提供脉冲电压,其中所述振动基板42提供所述驱动轴43在沿X(Y)轴方向上的振动,使所述驱动轴43在轴方向上轻微往返移动,借以所述驱动轴43驱动所述移动件44在所述驱动轴43上线性移动。值得一提的是,通过给所述振动基板42提供不同频率的脉冲电压,控制所述驱动轴43在轴方向上振动的速率,从而改变所述移动件44在所述驱动轴43上移动的速率。具体地,为所述第一致动器40a的所述振动基板42提供脉冲电压,使所述振动基板42提供所述驱动轴43在X正轴方向上的振动,使所述驱动轴43在X轴正方向轻微往返移动,从而驱动所述移动件44在所述驱动轴43上沿X轴正方向线性移动,从而带动所述感光组件20沿X轴正方向移动。当所述第一致动器40a的所述振动基板42被控制为急速缩回时,所述驱动轴43也随之急速地向X负方向缩回,由于所述移动件44沿X方向移动的惯性作用,虽然存在摩擦,所述移动件44将会被保持在原处,以实现X轴方向的光学防抖。
可以理解的是,所述第二致动器40b能够产生沿Y轴方向的驱动力,为所述第二致动器40b的所述振动基板42提供脉冲电压,使得所述振动基板42提供所述驱动轴43在Y轴正方向上的振动,所述驱动轴43在Y轴正方向上轻微往返 移动,进而驱动所述移动件44在所述驱动轴43上沿Y轴正方向线性移动。所述第二致动器40b以所述外框体32为支撑,驱动所述防抖基座沿Y轴正方向移动,由所述防抖基座31和所述第一致动器40a带动所述感光组件20沿Y轴正方向移动。当所述第二致动器40b的所述振动基板42被控制为急速缩回时,所述驱动轴43也随之急速地向Y轴负缩回,由于所述移动件44向Y轴正方向移动的惯性作用,虽然存在摩擦,所述移动件44将会被保持在原处,以实现Y轴方向的光学防抖。
本领域技术人员可以理解的是,当所述压电致动器40的所述第一致动器40a和所述第二致动器40b的数量为二或多个时,所述压电致动器40的所述第一致动器40a和所述第二致动器40b的工作原理相同。
值得一提的是,在本发明的该优选实施例中,利用压电式致动器作为驱动所述感光组件移动的驱动马达,不仅具备体积小,推力大,精度高的优势,而且驱动结构相对简单,相较于磁性驱动的方式具有更好的防电磁干扰效果。
所述支承框架30进一步包括至少一致动器滚动单元33,其中所述致动器滚动单元33被设置于所述支承框架30的所述防抖基座31和所述外框体32之间,用以支撑所述防抖基座31,减少所述防抖基座31移动时所述防抖基座31与所述外框体32之间的摩擦力。所述支承框架30的所述防抖基座31和所述外框体32之间设有一滚动支撑空间301,其中所述致动器滚动单元33被设置于所述支承框架30的所述滚动支撑空间301。可以理解的是,所述致动器滚动单元33用于支撑和保持所述防抖基座31和所述外框体32间的距离,并提供所述防抖基座31相对于所述外框体32间在沿Y轴方向的运动,以及通过滚动摩擦替代滑动摩擦,减小防抖基座在移动时的摩擦力。所述致动器滚动单元33可以设置在所述防抖基座31与所述外框体32的侧部或底部之间,本申请不做限制。
所述感光组件20包括一感光芯片21、一线路板22、至少一滤光片23、支架24以及至少一电子元件25。所述线路板22用于承载所述感光芯片21、所述滤光片23、所述支架24、以及所述电子元件25。在本发明的该优选实施例中,所述线路板可以为PCB(Printed Circuit Board,印制电路板),也可以为软硬结合板,也可以为补强后的FPC(Flexible Printed Circuit,柔性电路板)。所述软硬结合板包括层叠设置的PCB及FPC,补强后的柔性电路板包括层叠设置的FPC及补强片,补强片可以为钢片等散热性能良好的片材。所述感光芯片21被设于所述线 路板22,且所述感光芯片21与所述线路板22相电性连接,所述感光芯片21能够感应光线,通过自身的感光功能将光信号转换为电信号进行成像。值得一提的是,所述感光芯片21远离所述线路板22的一侧包括感光区以及环绕感光区设置的非感光区。所述滤光片23被设置于所述感光芯片21的上方,并被所述支架24支撑,其中所述支架24被固定于所述线路板22。在本实施例中,所述压电致动器40通过驱动整个感光组件20整体地移动来实现光学防抖,所述线路板22、所述感光芯片21、所述支架24、以及所述滤光片23可被封装为一体,并形成一封闭空间,其中所述感光芯片21被容纳于该封闭空间,提升了所述感光芯片21的封闭性,保证了在摄像模组制作或者使用过程中感光芯片成像不受灰尘的影响。所述线路板22通过一软板和连接器连接与外界电子设备主板进行导通。
在其他实施例中,可以将所述支架24可被替换为一封装体,即在所述线路板22上形成一封装体,所述封装体可以用于包埋电子元件25和/或感光芯片21的非感光区,所述封装体被一体成型于所述线路板22,不仅可以减小所述摄像模组的高度,也可以保护电子元件25,避免其造成污染和损坏。
如图1至图4所示,所述镜头组件10包括一镜头11和一镜头载体12,其中所述镜头11安装于所述镜头载体12,即所述镜头组件10可被实施为一定焦镜头。在本发明的其他实施例中,所述镜头组件10也可被实施为自动对焦镜头。相应地,所述镜头组件10进一步包括至少一镜头致动器13和一固定基座14,其中所述镜头致动器13被设置于所述固定基座14,并与所述镜头组件10的所述镜头载体12相传动地连接,由所述镜头致动器13以所述固定基座14为支点驱动所述镜头载体12沿光轴方向上下地移动,以实现所述摄像模组的自动对焦。具体的,所述镜头11可以通过粘接、卡扣或螺纹等方式安装于所述镜头载体12。优选地,所述镜头11与所述镜头载体12为一体式结构,即所述镜头载体12与所述镜头11的镜筒,所述镜头11的至少两个透镜被容纳于所述镜头载体12。可以理解的是,所述一体式结构可以减掉所述镜头11中镜筒的尺寸,并减少镜筒与载体间存在的间隙,因此可以实现减小摄像模组尺寸的有益效果。所述镜头组件的所述镜头载体12被容纳于所述固定基座14。
值得一提的是,所述镜头致动器13被配置在所述镜头载体12和所述固定基座14,以所述固定基座14作为所述镜头致动器13的支点位置,通过所述镜头致动器13产生用于使得所述镜头载体带动所述镜头沿光轴方向移动的驱动力, 从而驱动所述镜头载体12沿所述光轴方向移动。所述镜头致动器13包括至少一自动对焦线圈131和至少一自动对焦磁体132,其中所述自动对焦线圈131和所述自动对焦磁体132相对位地设置。所述镜头致动器13的所述自动对焦线圈131被支撑于所述固定基座14。所述自动对焦磁体132与所述自动对焦线圈131相对位设置,并且所述自动对焦磁体被设置于所述镜头载体12。当所述镜头致动器13的所述自动对焦线圈131被通电时,所述自动对焦线圈131以所述固定基座14为支撑点,并与所述自动对焦磁体132产生沿光轴方向的磁性作用力,其中所述自动对焦磁体132在磁性作用下带动所述镜头载体12沿所述光轴方向移动,以实现自动对焦。
所述镜头载体12设有至少一磁体安装部121,其中所述自动对焦磁体132被设置于所述镜头载体12的所述磁体安装部121。优选地,在本发明的该优选实施例中,所述磁体安装部121是形成于所述镜头载体12外侧的开口槽或贴合面。所述自动对焦磁体132可以被嵌入或者贴附于所述镜头载体12的侧壁,即所述自动对焦磁体132可以被嵌入或者贴附于所述镜头载体的外侧壁或内侧壁,即所述自动对焦线圈131和所述自动对焦磁体132相对位设置。进一步地,在所述自动对焦线圈131内侧或相邻侧壁设置一自动对焦调节传感器,其中所述自动对焦调节传感器在自动对焦时可以感知对于所述固定基座14的所述镜头载体12的位置变化,所述自动对焦调节传感器可以为霍尔元件。本领域技术人员可以理解的是,所述镜头致动器13的所述自动对焦线圈131和所述自动对焦磁体132的安装位置可以对调,即所述自动对焦线圈131被设置于所述镜头载体12的外侧,所述自动对焦磁体132被设置于所述固定基座14。
本申请中所述镜头致动器13的位置并不限于上述内容,所述自动对焦线圈131可被安装于所述固定基座14的一侧面和相邻侧面所直交的边角处,所述自动对焦磁体132被安装于与所述自动对焦线圈131面对的镜头载体的磁铁安装部。所述自动对焦线圈131可通过一自动对焦基板(FPC)固定于所述固定基座14,当所述自动对焦线圈131通过所述自动对焦基板(FPC)通电后,所述自动对焦线圈131与所述自动对焦磁体132间产生沿光轴方向的驱动力,驱动所述镜头载体12带动所述镜头11沿光轴方向移动,实现自动对焦。本领域技术人员可以理解的是,所述固定基座14可以作为所述镜头致动器的一部分。
所述镜头致动器13进一步包括至少一镜头滚动单元133,其中所述至少一镜 头滚动单元133位于所述固定基座14和所述镜头载体12之间,用以支撑和保持所述镜头载体12和所述固定基座14之间的距离,并且当所述镜头致动器13驱动所述镜头载体12移动时,所述镜头滚动单元133提供所述镜头载体12相对于所述固定基座14间在沿光轴方向的运动,以及通过滚动摩擦替代滑动摩擦,减小镜头载体在移动时的摩擦力。
所述镜头载体12和所述固定基座14之间设有至少一滚动单元容纳腔101,其中所述镜头滚动单元133被保持在所述滚动单元容纳腔101。所述镜头载体12的外侧壁具有至少一沿Z轴方向的第一轨道102,所述固定基座14的内侧壁具有至少一沿Z轴方向的第二轨道103,其中所述第一轨道102的位置与所述第二轨道103的位置相对设置,以使得所述镜头载体12与所述固定基座14间形成至少一所述滚动单元容纳腔101,所述滚动单元容纳腔101可以将所述镜头滚动单元133容纳其中,以提供所述镜头载体12相对于所述固定基座14沿光轴方向(Z轴方向)运动。由于所述滚动单元容纳腔101是有具有方向性的规定产生的,因此可以使得镜头滚动单元133沿Z轴方向移动,在自动对焦时使得镜头的移动方向更加精准。
优选地,所述滚动单元容纳腔101的数量可以为2个,当所述滚动单元容纳腔101设置于所述自动对焦磁体132所在的一侧时,所述两个滚动单元容纳腔101分别设置于所述自动对焦磁体的两侧,使得在进行自动对焦时,所述镜头载体12运动的更加平稳不会产生倾斜。在本发明的其他可选实施方式中,所述滚动单元容纳腔101还可以设置于镜头载体12和固定基座14的其他位置,本申请不做限制。
所述固定基座14位于于所述镜头11与所述感光组件20之间,所述镜头11与所述感光组件20分别固定于所述固定基座14,并且所述感光组件20相对于所述固定基座14沿像平面上相互垂直的方向移动,实现光学防抖。也就是说,在进行光学防抖时,所述压电致动器40驱动所述防抖基座31带动所述感光组件20移动,所述固定基座14并不发生移动。所述压电致动器40设置于所述固定基座14与所述感光组件20之间,并且所述压电致动器40向上电连接于所述固定基座14。也就是说,所述第一致动器40a与所述第二致动器40b均被设置于所述固定基座14与所述感光组件20之间。
值得一提的是,在本发明的其他可选实施例中,所述固定基座14的表面铺 设有一电路层,并且所述固定基座14通过一软板和连接器连接于外界电子设备主板进行导通。所述压电致动器40与所述感光组件20可以通过一连接电路电连接于所述固定基座14的电路层,以实现所述摄像模组的电路导通。由于所述压电致动器40与所述感光组件20置于所述固定基座14的下方,因此需要将所述压电致动器40与所述感光组件20通过导线或软板向上延伸并电连接至所述固定基座表面14的电路层,将电路向上延伸进行导通可以充分利用所述摄像模组的高度空间,避免所述摄像模组高度的增加。并且,相对于通过所述感光组件20的线路板实现与外界电路导通,本申请的实施方式可以减小所述感光组件20的线路板的长度,进而简化所述摄像模组的导线布置。本申请中的上方为光线入射的方向,下方为光线射出的方向。
在本申请的其他实施方式中,可以在所述固定基座14的表面设置至少二LDS槽,所述LDS槽深度不大于20~30μm,宽度不小于60μm,在槽内运用LDS(激光直接成型技术),在LDS槽表面镀设导电镀层(例如可以是镍钯金的镀层),从而可以避免内部其他金属干扰,将所述压电致动器40的连接电路与所述固定基座14的LDS槽中的导电镀层相连接,从而导出电路,实现与所述感光组件20的线路板电连接。又或者,通过Insert Molding(嵌入式注塑)技术,将至少二导线成型在所述固定基座中,从而将所述压电致动器40的连接电路与导线电连接从而导出电路,通过所述固定基座14与感光组件20的线路板电连接。所述感光组件20的所述线路板通过所述摄像模组有富余空间的边角处向上延伸,与所述固定基座14的所述电路层进行电路导通,不仅可以减小所述线路板的长度,也可以使得布线更为简单。
所述感光组件20与所述压电致动器40相传动地连接,所述第一致动器40a设置于所述防抖基座31,并驱动所述感光组件20沿X轴方向移动,实现X轴方向的光学防抖;所述防抖基座31具有一连接部,用于和所述感光组件20活动连接,即所述防抖基座31移动时可以通过所述连接部带动所述感光组件20沿相同的方向移动,所述第二致动器40b设置于所述固定基座14和/或所述外框体32,驱动所述防抖基座31相对于所述外框体32沿Y轴方向移动,从而带动所述感光组件20沿Y轴方向移动,实现Y轴方向的光学防抖。
具体的,所述第一致动器40a设置于所述防抖基座14的一侧壁,所述第一致动器40b固定于所述防抖基座31,并驱动所述感光组件20沿X轴方向移动。也就是说,所述第一制动器40a的压电元件401以粘接剂粘接的方式固定于所述 防抖基座31上。根据本申请的实施例,采用具有弹性的粘接剂(软胶)。所述驱动轴43的长度方向与X方向一致,并且,所述驱动轴43的另一端也可以是通过具有弹性的粘接剂固定在所述防抖基座上;或者,所述驱动轴43的另一端活动连接(悬置在所述防抖基座31上或者悬空等方式,不影响其反复振动即可),使所述第一制动器40a的所述压电元件401及所述驱动轴43可以自由振动即可。所述移动件44可以采用粘接的方式固定于所述感光组件20,也可以采用与所述感光组件20一体形成的方向进行固定。并且,所述压电元件401也可以与所述防抖基座一体形成。
所述感光组件20进一步包括至少一补强片26,其中所述补强片26被设置于所述感光组件20的所述电路板22的下方,由所述补强片26支撑所述感光组件20的所述电路板22和所述感光芯片。值得一提的是,通过所述补强片26对所述线路板22进行补强,并使得所述线路板22具有良好的平整度,并且也会具有良好的散热性能,防止所述线路板22在工作过程中产生热量而导致线路板变形,所述补强片26可以为钢片等散热性能良好的片材。
优选地,所述第一致动器40a的所述移动件44可通过粘接的方式被固定于所述感光组件20的所述补强片26,其中所述第一致动器40a以平整的补强片26为基准面,以保证所述第一致动器40a的平整度。
所述第二致动器40b设置于所述固定基座14的一底侧,所述第二致动器40b固定于所述固定基座14,并驱动所述防抖基座31沿Y轴方向移动。也就是说,所述第二制动器40b的压电元件401以粘接剂粘接的方式固定于所述固定基座14的底面上。根据本申请的实施例,采用具有弹性的粘接剂(软胶)。所述驱动轴43的长度方向与Y方向一致,并且,所述驱动轴43的另一端也可以是通过具有弹性的粘接剂固定在所述固定基座上,或者,所述驱动轴43的另一端活动连接(悬置在所述固定基座上或者悬空等方式,不影响其反复振动即可),使所述第二制动器40b的所述压电元件401及所述驱动轴43可以自由振动即可。所述移动件44可以采用粘接的方式固定于所述防抖基座31,也可以采用与所述防抖基座31一体形成的方向进行固定。并且,所述压电元件401也可以与所述固定基座一体形成。以所述固定基座14作为一基准面,将所述第二致动器40b向上固定于所述固定基座14,能够提高所述第二致动器40b的组装精度,也可以使所述第二致动器40b保持良好的平整度。
在本申请的其他实施方式中,所述第二致动器40b可以以粘接剂粘接的方式固定于所述外框体32上,所述驱动轴43的长度方向与Y方向一致,并且,所述驱动轴43的另一端也可以是通过具有弹性的粘接剂固定在所述外框体32上,或者,所述驱动轴43的另一端活动连接(悬置在所述外框体上或者悬空等方式,不影响其反复振动即可),使所述第二制动器40b的所述压电元件401及所述驱动轴43可以自由振动即可。可以理解的是,所述第二致动器40b也可以同时固定于所述固定基座14和所述外框体32。
更优选地,在本发明的该优选实施例中,所述第二致动器40b的所述压电基板41被固定于所述固定基座14,即所述第二致动器40b的所述压电基板41由所述固定基座14的底面向下延伸,并以所述固定基座14的底面作为基准面,以保证所述第二致动器40b的平整度。可以理解的是,所述压电基板41也可以同时固定所述固定基座14的底面和所述外框体32的内侧面。
可以理解的是,本发明的该优选实施例中,所述第一致动器40a被固定于所述感光组件20的所述补强片26,所述第二致动器40b被固定于所述固定基座14。当所述第一致动器40a与第二致动器40b处于所述防抖基座31的相邻边或相邻角时,所述第一致动器40a与所述第二致动器40b分别从不同的高度方向安装和延伸,以充分地利用所述摄像模组的高度空间,从而使得模组结构更加紧凑。并且,所示补强片与所述固定基座都具有较高的平整度可以作为基准面,在所述第一致动器40a和所述第二致动器40b组装时有利于减小组装公差。
进一步地,所述摄像模组进一步包括至少一防抖滚珠单元,其中所述防抖滚珠单元被设置于所述感光组件20和所述防抖基座31之间,用于支撑和保持所述防抖基座31和所述感光组件20间的距离,并提供所述感光组件20相对于所述防抖基座31间在沿X轴方向的运动,以及通过滚动摩擦替代滑动摩擦,减小光学组件在移动时的摩擦力。所述感光组件和所述防抖基座31之间设有至少一防抖容纳空间302,其中所述防抖滚动单元被容纳于所述防抖容纳空间302。值得一提的是,所述防抖滚珠单元还可以被设置在所述感光组件20与所述防抖基座31的侧部或底部之间,本申请不做限制。
进一步的,所述摄像模组进一步包括至少一导向单元,所述导向单元可以为所述感光组件20的移动提供导向作用。所述导向单元包括第一导向单元和第二导向单元,每组所述导向单元与所述压电致动器40相对设置。具体的,所述第 一导向单元设置于所述感光组件20的所述补强片26,所述第一导向单元与所述第一致动器40a相对设置,即所述第一导向单元设置于所述防抖基座31沿X轴方向的一侧,所述第一致动器40a置于所述防抖基座沿X轴方向的相对的一侧。所述第二导向单元设置于所述防抖基座31,所述第二导向单元与所述第二致动器40b相对设置,即所述第二导向单元设置于所述防抖基座31沿Y轴方向的一侧,所述第二致动器40b置于所述防抖基座31沿Y轴方向的相对的一侧。也就是说,每组所述导向单元与压电致动器40位于相对的两侧并同向设置。优选的,所述第一导向单元可以为一长度方向与X方向一致的导杆,所述感光组件20的所述补强片26设置所述导杆的位置上具有至少一开口,将所述导杆置于开口中使得所述导杆与所述感光组件20活动连接,通过所述导杆的方向控制所述感光组件20移动的方向,使得所述感光组件20可以更加准确的沿X轴移动方向。所述第二导向单元也可以为一长度方向与Y方向一致的导杆,所述防抖基座设置所述导杆的位置上具有至少一开口,将所述导杆置于开口中使得所述导杆与所述防抖基座活动连接,通过所述导杆的方向控制所述防抖基座31移动的方向,使得所述防抖基座31可以更加准确的沿Y轴移动方向。所述第一导向单元的两端固定于所述防抖基座,以使得所述防抖基座31可以在所述第一导向单元的导向作用下沿X轴方向移动;所述第二导向单元的两端固定于所述固定基座14,以使得所述防抖基座31可以在所述第二导向单元的导向作用下沿Y轴方向移动。通过所述导向单元的导向作用,可以更加准确的控制所述感光组件的移动方向,以实现更好的光学防抖效果。对于本领域技术人员来说可以理解的是,所述导向单元可以为滚珠、滑块或其他能够实现导向功能的结构,本申请不做限制。
所述模组装置进一步包括一外壳50,其中所述外壳50用于保护所述摄像模组的各个元件,同时可用于阻挡所述相机模块在工作期间产生的电磁波,产生电磁屏蔽的效果。本领域技术人员可以理解的是,如果在驱动摄像模组时产生的电磁波向外部发射或被发射到相机模块的外部,则电磁波可能影响其他电子组件,这可能导致通信错误或故障。优选地,所述外壳50的材料可以为金属材料,通过接地板接地以使得外壳用作电磁屏蔽罩。可选地,所述外壳50的材料可以为塑料材料,在塑料表面涂覆导电材料,以阻挡电磁波,因此本申请对外壳的材料不做限制。具体地,所述外壳50具有一开口,以使得经过所述镜头组件10的光线可以入射到所述感光组件进行成像,所述外壳50与所述外框体32形成一容纳 腔,用于将所述镜头组件10、感光组件20以及所述压电致动器40容纳其中,以防止所述镜头组件10、感光组件20和压电致动器40由于外部冲击而脱落损坏。优选地,所述外壳50被固定于所述固定基座14的上部,所述外框体32固定于所述固定基座14的下部。
参照本发明说明书附图之图6所示,依照本发明另一较佳实施例的一摄像模组在接下来的描述中被阐明。与上述较佳实施例不同的是,所述摄像模组的所述压电致动器40的所述第一致动器40a被设置于所述防抖基座31与所述外框体32之间,即所述第一致动器40a的所述压电基板41被固定至所述外框体32,并且所述第一致动器40a的所述驱动轴43在X轴方向延伸。所述振动基板42的一端连接于所述压电基板41,所述振动基板42的另一端连接驱动轴43,其中所述移动件44与驱动轴43摩擦接触。所述移动件44被固定至所述防抖基座,通过驱动振动基板42来实现所述防抖基座31在X方向上的移动,从而带动所述感光组件20在X方向上的移动,所述驱动轴43的长度方向与X方向一致。
与上述第一较佳实施例不同的是,所述压电致动器40的所述第二致动器40b被设置于所述感光组件20与所述防抖基座31之间,即所述第二致动器40b的所述压电基板41被固定至所述防抖基座31的内侧,且位于所述感光组件20与所述防抖基座31之间。所述振动基板42的一端连接于压电基板41,所述振动基板42的另一端连接于所述驱动轴43,其中所述移动件44与所述驱动轴43摩擦接触。所述移动件44被固定至所述感光组件20,通过驱动振动基板42驱动所述移动件44沿Y轴方向移动,以实现所述感光组件20在Y方向上的移动,其中,驱动轴43的长度方向与Y方向一致。
参照本发明说明书附图之图7所示,依照本发明另一较佳实施例的一摄像模组在接下来的描述中被阐明。与上述较佳实施例不同的是,所述压电致动器40的所述第二致动器40b,其中所述第二致动器40b自所述外框体32的外侧延伸至所述外框体32内侧。具体而言,所述外框体32设有一固定孔,其中所述第二致动器40b被固定值所述外框体32的所述固定孔,并且所述第二致动器40b的所述压电基板41被固定值所述固定孔的外侧。所述压电致动器的振动基板42、所述移动件44以及所述驱动轴43通过所述开口置于所述外框体32内侧,所述压电基板42被设置于所述外框体32的外侧,即所述压电基板42的内表面通过粘胶固定于所述外框体32的外侧。本实施例的设置方式可以通过软板或多条引 线将所述压电致动器40电连接于所述线路板22的软板,可以从外部进行导通,导通线路更加简单。
参照本发明说明书附图之图8所示,依照本发明另一较佳实施例的一摄像模组在接下来的描述中被阐明。与上述较佳实施例不同的是,所述压电致动器40的所述第一致动器40a的安装方式。所述第一致动器40a被设置于所述感光组件20和所述防抖基座31之间,并且所述第一致动器40a以所述防抖基座31为支撑点驱动所述感光组件20沿X轴方向移动。
所述第一致动器40a的所述压电基板41被固定至所述感光组件20,并且所述第一致动器40a与所述感光组件20的所述线路板22相电气地连接,即所述第一致动器40a与所述感光组件20电气连接。优选地,所述第一致动器40a的所述压电基板41被固定至所述线路板22,并且所述第一致动器40a的所述移动件44与所述防抖基座31相传动地连接。当所述第一致动器40a被电导通后,所述感光组件20的所述线路板22为所述振动基板42提供脉冲电压,使所述振动基板42提供所述驱动轴43在X轴方向上的振动。所述驱动轴43在X轴方向上轻微往返移动,从而驱动所述移动件44在所述驱动轴43上沿X轴方向线性移动,由所述压电基板41基于反向作用力带动所述感光组件20相对于所述防抖基座沿X轴方向移动,实现X轴方向的光学防抖。本实施例中第一致动器40a的设置方式可以将振动基板42与所述线路板进行电连接,不需要设置软板或引线,导通方式更加简便。
参照本发明说明书附图之图9所示,依照本发明一较佳实施例的电子设备在接下来的描述中被阐明。所述电子设备包括一电子设备主体100和至少一摄像模组200,其中所述摄像模组被搭载于所述电子设备主体100,由所述电子设备主体100我所述摄像模组200工作提供电能。所述摄像模组200与所述电子设备主体100相电气地连接。值得一提的是,在本发明的该优选实施例中,所述摄像模组200与上述较佳实施例的所述摄像模组的结构和功能相同,在此不做赘述。所述电子设备主体100可以但不限于手机、电脑、平板电脑、智能拍照设备等。
参照本发明说明书附图之图10所示,依照本发明的另一方面,本发明进一步提供一摄像模组的光学防抖方法。所述光学防抖方法包括如下步骤:
(a)施加一电势信号至至少一压电制动器,其中所述至少一压电致动器与所述摄像模组的一感光组件相传动地连接;和
(b)基于所述电势信号所述至少一压电致动器膨胀或收缩,以驱动所述感光组件沿X轴方向和/或Y轴方向移动,实现摄像模组的光学防抖。
根据发明上述光学防抖方法,其中所述光学防抖方法的所述步骤(b)进一步包括,所述压电致动器包括一压电基板和被设置于所述压电基板的一振动基板,通过所述压电致动器的一振动基板施加所述电势信号至一压电基板,其中所述压电基板基于所述电势信号膨胀或收缩,并带动所述振动基板膨胀或收缩变形。所述压电致动器进一步包括一驱动轴和与所述驱动轴相摩擦接触的移动件,其中所述驱动轴被所述振动基板驱动,由所述驱动轴带动所述移动件移动。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (29)

  1. 一摄像模组,其特征在于,包括:
    一镜头组件;
    一感光组件,其中所述镜头组件沿所述感光组件的感光路径被设置于所述感光组件的感光路径上;
    一支承框架,其中所述感光组件活动连接于所述支承框架;以及
    至少一压电致动器,其中所述至少一压电致动器与所述支承框架相传动地连接,其中所述压电致动器包括一压电元件、一驱动轴以及一移动件,其中所述压电元件的一端被固定,且所述驱动轴被设置于所述压电元件,所述驱动轴与所述移动件可相摩擦地接触,其中所述压电元件驱动所述驱动轴,由所述驱动轴通过摩擦带动所述移动件,进而由所述压电致动器驱动所述支承框架,从而带动所述感光组件沿X轴方向和/或Y轴方向运动,以实现摄像模组的光学防抖。
  2. 根据权利要求1所述的摄像模组,其中所述压电致动器的所述压电元件包括一压电基板和一振动基板,其中所述振动基板的一端被连接至所述压电基板,并通过所述振动板向所述压电基板施加电势,以引起所述压电基板和所述振动基板的收缩或膨胀,其中所述驱动轴被设置于所述振动基板的另一端,由所述振动基板驱动所述驱动轴移动。
  3. 根据权利要求2所述的摄像模组,其中所述压电基板和所述振动基板为圆盘形状,并且所述压电基板被安装于所述振动基板的上下表面。
  4. 根据权利要求1所述的摄像模组,其中所述压电元件包括多个压电伸缩体和多个电极,并且所述多个压电伸缩体和所述多个电极相交替地设置。
  5. 根据权利要求1至4任一所述的摄像模组,其中所述镜头组件包括一镜头、一镜头载体,以及至少一固定基座,其中所述镜头被安装于所述镜头载体,其中所述压电致动器的所述压电元件被设置于所述镜头组件的所述固定基座。
  6. 根据权利要求5所述的摄像模组,其中所述压电致动器包括一第一致动器和一第二致动器,所述支承框架包括一防抖基座和一外框体,所述防抖基座位于所述外框体内侧,其中所述第一致动器被设置于所述支承框架的所述防抖基座和所述感光组件之间,所述第二致动器被设置于所述防抖基座和所述支承框架的所述外框体之间,借以所述第一致动器驱动所述感光组件沿X轴方向移动,所述第二致动器驱动所述防抖基座沿Y轴方向移动。
  7. 根据权利要求6所述的摄像模组,其中所述第一致动器和所述第二致动 器沿高度方向相错位地设置。
  8. 根据权利要求6所述的摄像模组,其中所述第一制动器和所述第二制动器位于所述固定基座和所述感光组件之间,所述第一制动器和所述第二制动器位于所述固定基座的下方,并且所述第一制动器和所述第二制动器被电气连接于所述固定基座。
  9. 根据权利要求8所述的摄像模组,其中所述固定基座的被设有至少二LDS槽,并且LDS槽表面镀设导电镀层。
  10. 根据权利要求6所述的摄像模组,其中所述第一致动器设置于所述防抖基座的一侧壁,所述第一致动器固定于所述防抖基座,并驱动所述感光组件沿X轴方向移动,所述第二致动器设置于所述固定基座的一底侧,所述第二压电致动器固定于所述固定基座,并驱动所述防抖基座沿Y轴方向移动。
  11. 根据权利要求10所述的摄像模组,其中所述第一制动器的所述压电元件以粘接剂粘接的方式固定于所述防抖基座,并且所述第二致动器以粘接剂粘接的方式固定于所述外框体。
  12. 根据权利要求5所述的摄像模组,进一步包括至少一导向单元,其中所述单向单元与所述压电致动器相对设置,由所述导向单元引导所述感光组件移动。
  13. 根据权利要求12所述的摄像模组,其中所述导向单元包括一第一导向单元和一第二导向单元,所述第一导向单元设置于所述感光组件,所述第一导向单元与所述第一致动器相对设置,所述第二导向单元设置于所述防抖基座,所述第二导向单元与所述第二致动器相对设置。
  14. 根据权利要求13所述的摄像模组,其中所述第一导向单元为一长度方向与X方向一致的导杆,所述第二导向单元为一长度方向与Y方向一致的导杆。
  15. 根据权利要求6所述的摄像模组,其中所述第一致动器的所述压电基板被固定于所述防抖基座,所述第一致动器的所述移动件与所述感光组件相固定,以供所述第一致动器以所述防抖基座为支撑驱动所述移动件沿X轴方向移动,借以所述移动件带动所述感光组件移动。
  16. 根据权利要求6所述的摄像模组,其中所述第二致动器的所述压电基板被固定于所述外框体,所述第二致动器的所述移动件与所述防抖基座相固定,以供所述第二致动器以所述外框体为支撑驱动所述移动件沿Y轴方向移动,借以所述移动件带动所述防抖基座移动。
  17. 根据权利要求6所述的摄像模组,其中所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两相邻边。
  18. 根据权利要求6所述的摄像模组,其中所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两对角位置。
  19. 根据权利要求6所述的摄像模组,其中所述第一致动器位于所述防抖基座的内侧,所述第二致动器位于所述防抖基座的外侧,并且所述第一致动器与所述第二致动器位于所述防抖基座的两对边。
  20. 根据权利要求2至5任一所述的摄像模组,其中所述压电致动器包括一第一致动器和一第二致动器,其中所述第一致动器被设置于所述支承框架的一防抖基座和一外框体之间,所述第二致动器被设置于所述防抖基座和所述感光组件之间,借以所述第一致动器驱动所述防抖组件沿X轴方向移动,所述第二致动器驱动所述感光组件沿Y轴方向移动。
  21. 根据权利要求16所述的摄像模组,其中所述第二致动器的所述压电基板位于所述外框体的外侧,且所述第二致动器的所述振动基板、所述移动件以及所述驱动轴自所述外框体的外侧向内延伸至所述外框体内侧。
  22. 根据权利要求1所述的摄像模组,其中所述感光组件进一步包括至少一补强片,所述补强片被设置于所述感光组件的所述线路板的下侧,其被用于支撑所述线路板和可被传动地连接于所述压电致动器。
  23. 根据权利要求5所述的摄像模组,其中所述镜头组件进一步包括至少一镜头致动器,其中所述镜头致动器被设置于所述固定基座,并与所述镜头组件的所述镜头载体相传动地连接,由所述镜头致动器以所述固定基座为支点驱动所述镜头载体沿光轴方向上下地移动,以实现所述摄像模组的自动对焦。
  24. 根据权利要求23所述的摄像模组,其中所述镜头致动器包括至少一自动对焦线圈和至少一自动对焦磁体,其中所述自动对焦线圈和所述自动对焦磁体相对位地设置,所述镜头致动器的所述自动对焦线圈被支撑于所述固定基座,所述自动对焦磁体被设置于所述镜头载体。
  25. 一摄像模组的光学防抖方法,其特征在于,所述光学防抖方法包括如下步骤:
    (a)施加一电势信号至至少一压电制动器,其中所述至少一压电致动器与所述摄像模组的一感光组件相传动地连接;和
    (b)基于所述电势信号所述至少一压电致动器膨胀或收缩,以驱动所述感光组件沿X轴方向和/或Y轴方向移动,实现摄像模组的光学防抖。
  26. 根据权利要求25所述的光学防抖方法,其中所述光学防抖方法的所述步骤(b)进一步包括,所述压电致动器包括一压电基板和被设置于所述压电基板的一振动基板,通过所述压电致动器的一振动基板施加所述电势信号至一压电基板,其中所述压电基板基于所述电势信号膨胀或收缩,并带动所述振动基板膨胀或收缩变形。
  27. 根据权利要求25所述的光学防抖方法,其中所述压电致动器进一步包括一驱动轴和与所述驱动轴相摩擦接触的移动件,其中所述驱动轴被所述振动基板驱动,由所述驱动轴带动所述移动件移动。
  28. 一电子设备,其特征在于,包括:
    一电子设备主体;和
    至少一摄像模组,其中所述至少一摄像模组被搭载于所述电子设备主体,所述摄像模组包括:
    一镜头组件;
    一感光组件,其中所述镜头组件沿所述感光组件的感光路径被设置于所述感光组件的感光路径上;
    一支承框架,其中所述镜头组件被固定至所述支承框架;以及
    至少一压电致动器,其中所述至少一压电致动器与所述感光组件相传动地连接,其中所述压电致动器包括一压电元件、一驱动轴以及一移动件,其中所述压电元件的一端被固定,且所述驱动轴被设置于所述压电元件,所述驱动轴与所述移动件可相摩擦地接触,其中所述压电元件驱动所述驱动轴,由所述驱动轴通过摩擦带动所述移动件,进而由所述压电致动器驱动所述感光组件沿X轴方向和/或Y轴方向运动,以实现摄像模组的光学防抖。
  29. 根据权利要求28所述的电子设备,其中所述振动基板的一端被连接至所述压电基板,并通过所述振动板像所述压电基板施加电势,以引起所述压电基板和所述振动基板的收缩或膨胀,其中所述驱动轴被设置于所述振动基板的另一端,由所述振动基板驱动所述驱动轴移动。
PCT/CN2022/073679 2021-02-05 2022-01-25 摄像模组及其光学防抖方法和电子设备 WO2022166677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280012186.5A CN116802549A (zh) 2021-02-05 2022-01-25 摄像模组及其光学防抖方法和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110164494.7A CN114885088B (zh) 2021-02-05 2021-02-05 摄像模组及其光学防抖方法和电子设备
CN202110164494.7 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022166677A1 true WO2022166677A1 (zh) 2022-08-11

Family

ID=82666477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073679 WO2022166677A1 (zh) 2021-02-05 2022-01-25 摄像模组及其光学防抖方法和电子设备

Country Status (2)

Country Link
CN (2) CN114885088B (zh)
WO (1) WO2022166677A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067709A (zh) * 2006-05-02 2007-11-07 三星Techwin株式会社 图像抖动校正设备和方法
CN101093288A (zh) * 2006-06-19 2007-12-26 三星Techwin株式会社 用于数码相机的手抖动校正模块
JP2008145894A (ja) * 2006-12-12 2008-06-26 Sony Corp 撮像装置、移動装置及び圧電バイモルフアクチュエータ
CN111399163A (zh) * 2020-03-17 2020-07-10 睿恩光电有限责任公司 具有光学防抖功能的透镜驱动装置、相机装置及电子设备
CN212135043U (zh) * 2020-03-17 2020-12-11 睿恩光电有限责任公司 具有光学防抖功能的透镜驱动装置、相机装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190078A (ja) * 1998-01-12 1998-07-21 Alps Electric Co Ltd 積層型圧電素子
JP4116185B2 (ja) * 1999-04-22 2008-07-09 株式会社リコー 撮像装置
JP5175492B2 (ja) * 2007-06-26 2013-04-03 三星電子株式会社 撮像装置
JP2009093001A (ja) * 2007-10-10 2009-04-30 Konica Minolta Opto Inc 撮像装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067709A (zh) * 2006-05-02 2007-11-07 三星Techwin株式会社 图像抖动校正设备和方法
CN101093288A (zh) * 2006-06-19 2007-12-26 三星Techwin株式会社 用于数码相机的手抖动校正模块
JP2008145894A (ja) * 2006-12-12 2008-06-26 Sony Corp 撮像装置、移動装置及び圧電バイモルフアクチュエータ
CN111399163A (zh) * 2020-03-17 2020-07-10 睿恩光电有限责任公司 具有光学防抖功能的透镜驱动装置、相机装置及电子设备
CN212135043U (zh) * 2020-03-17 2020-12-11 睿恩光电有限责任公司 具有光学防抖功能的透镜驱动装置、相机装置及电子设备

Also Published As

Publication number Publication date
CN116802549A (zh) 2023-09-22
CN114885088A (zh) 2022-08-09
CN114885088B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN208766375U (zh) 镜头驱动装置和摄像模组
US9813596B2 (en) Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
CN114630017A (zh) 驱动装置和带有驱动装置的摄像模组
CN109995919A (zh) 一种多层钹型压电驱动组件的手机镜头变焦机构
CN114624849B (zh) 摄像模组及其驱动装置
WO2022166677A1 (zh) 摄像模组及其光学防抖方法和电子设备
WO2022122008A1 (zh) 驱动装置和摄像模组
WO2022166924A1 (zh) 摄像模组及终端设备
CN114915700B (zh) 摄像模组及终端设备
CN114879336A (zh) 可变焦摄像模组
CN114915701A (zh) 摄像模组及终端设备
CN115529399A (zh) 摄像模组及终端设备
CN114942505B (zh) 可变焦摄像模组
CN114942504A (zh) 可变焦摄像模组
CN115086509B (zh) 潜望式摄像模组
CN114077031B (zh) 超声波压电马达、摄像头模组及电子设备
WO2024037631A1 (zh) 压电马达及其摄像模组
CN114879335A (zh) 潜望式摄像模组
EP4319126A1 (en) Camera module
WO2022233289A1 (zh) 摄像模组、光学致动器、感光组件及其制造方法
CN116745695A (zh) 可变焦摄像模组和潜望式摄像模组
KR20240062897A (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
CN115202130A (zh) 潜望式摄像模组
CN116802538A (zh) 可变焦摄像模组
CN115499560A (zh) 摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012186.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748956

Country of ref document: EP

Kind code of ref document: A1