WO2022142527A1 - Procédé de condensation pulsé pour la préparation de poudre métallique - Google Patents

Procédé de condensation pulsé pour la préparation de poudre métallique Download PDF

Info

Publication number
WO2022142527A1
WO2022142527A1 PCT/CN2021/120665 CN2021120665W WO2022142527A1 WO 2022142527 A1 WO2022142527 A1 WO 2022142527A1 CN 2021120665 W CN2021120665 W CN 2021120665W WO 2022142527 A1 WO2022142527 A1 WO 2022142527A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
cooling chamber
preparing
pulsed
powder
Prior art date
Application number
PCT/CN2021/120665
Other languages
English (en)
Chinese (zh)
Inventor
柴立新
汪艳春
Original Assignee
江苏博迁新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博迁新材料股份有限公司 filed Critical 江苏博迁新材料股份有限公司
Priority to JP2023528288A priority Critical patent/JP2023550716A/ja
Publication of WO2022142527A1 publication Critical patent/WO2022142527A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material

Definitions

  • the present application relates to the technical field of powder preparation, in particular to a method for preparing and condensing pulsed metal powder.
  • the physical gas phase method is mostly used to produce metal nickel powder. After the metal is melted and gasified in the molten pool of the reactor, the metal vapor enters the condenser under the action of nitrogen in the system, and is cooled by nitrogen in the condenser to form powder and then enter the collection tank.
  • the metal vapor is directly condensed through the condenser tube, and the inner volume of the condenser tube is small, and the gas-solid ratio of the powder in the pulse cooling chamber is only 1: (200-250), resulting in the existence of The problems of high powder concentration, high temperature and insufficient powder cooling.
  • the gas flow velocity in the tube is high, and the flow state Reynolds number Re ⁇ 3000, so the system flow state is excessive flow and turbulent flow.
  • the metal nickel powder obtained by the existing method is too large, the probability of collision between the powder particles and between the particles and the tube wall will increase, and then in a high temperature environment, the uncooled metal particles are sintered with each other. , it is easy to form a conjoined body, or form irregular shaped particles, resulting in a decrease in the quality of the powder.
  • the purpose of the present application is to provide a method for preparing and condensing pulsed metal powder, so as to achieve the purpose of improving the distribution uniformity and yield of metal powder. Its specific plan is as follows:
  • a pulsed metal powder preparation and condensation method comprises the following steps:
  • Step 1 put the raw material into the reactor to melt and evaporate, so that the metal vapor enters the condensation tube to crystallize and nucleate to form a powder blank;
  • Step 2 The powder blanks enter the pulse cooling chamber for cooling to form single metal particles, and the pulse cooling chamber is filled with nitrogen during the pulse cooling;
  • Step 3 The single metal particles are collected in the collector under the action of air flow
  • Step 4 The backflushing device in the collector blows the metal powder back into the powder collector for collection.
  • the pulse cooling chamber includes a dish-shaped head, a cylinder, an observation hole and a gas distributor; the gas distributor is an annular gas distributor.
  • the annular gas distributor is provided with a plurality of gas nozzles distributed in equal arcs, and the open ends of the gas nozzles face the center of the condensation pipe.
  • the cross-sectional area ratio of the condensation tube to the pulse cooling chamber is 1:(8-15); the volume ratio of the condensation tube to the pulse cooling chamber is 1:(10-15).
  • the metal powder is spherical, and the particle size is less than 100 nm.
  • the pulse cooling chamber is under negative pressure; the pressure in the reactor is 70-90 kPa.
  • a zirconia lining layer is provided in the condensation tube.
  • the gas-solid ratio of the metal powder in the pulse cooling chamber is 1:(1500-2000).
  • the condensation tube and/or the pulse cooling chamber are provided with an interlayer, and the interlayer has cooling water therein.
  • step 3 the single metal particles enter the collector from the pulse cooling chamber through the inclined pipe.
  • the present application provides a method for preparing and condensing pulsed metal powder, and the method for preparing and condensing pulsed metal powder has the following beneficial effects:
  • the metal vapor forms less slag on the chamber wall, less waste powder, and achieves the purpose of increasing the powder yield by 15%.
  • FIG. 1 is a schematic structural diagram of an embodiment of a pulsed metal powder preparation condensing device of the present disclosure.
  • a pulsed metal powder preparation condensation device includes a reactor 1 , a condensation tube 2 , a pulsed cooling chamber 3 , a collector 4 and a powder collector 5 .
  • the reactor 1 is used for melting and evaporating raw materials to obtain metal vapor.
  • the condenser tube 2 is connected to the reactor 1 and the pulse cooling chamber 3, so that the metal vapor crystallizes and nucleates when passing through the condenser tube 2.
  • the powder blanks that crystallize and nucleate The spacing between particles instantly expands, greatly reducing the collision probability of each powder blank particle, thereby effectively reducing the generation of conjoined particles and slag.
  • the collector 4 is used to collect the metal powder obtained by cooling through the pulse cooling chamber 3 , and the metal powder enters the powder collector 5 under the backflushing action of the backflushing tank in the collector 4 for collection.
  • a zirconia lining layer is arranged in the condenser tube 2, and an interlayer is arranged in the condenser tube 2 and/or the pulse cooling chamber 3. There is cooling water in the interlayer.
  • the pulse cooling chamber 3 includes a dish-shaped head, a cylinder, a viewing hole and a gas distributor 6 .
  • the dish-shaped head is used for sealing connection with the condensing pipe 2 .
  • Cylinders are used for cooling and obtaining metal powders.
  • the observation hole is used to observe the formation of metal powder in the cylinder.
  • the gas distributor 6 is an annular gas distributor, and a plurality of gas nozzles with equal arc distribution are arranged on the gas distributor 6 .
  • the open end of the gas nozzle faces the center of the condenser tube 2 to effectively slow down the gas flow rate and blow out the powder blanks.
  • the cross-sectional area ratio of the condenser tube 2 and the pulse cooling chamber 3 is 1:(8-15), and the volume ratio of the condenser tube 2 and the pulse cooling chamber 3 is 1:(10-15), so as to greatly reduce the The collision probability of each powder blank particle can effectively reduce the generation of conjoined particles and slag.
  • the present disclosure provides a pulsed metal powder preparation and condensation method.
  • a preparation condensation device consisting of a reactor 1, a condenser tube 2, a pulsed cooling chamber 3, a collector 4 and a powder collector 5, the pulsed cooling method is used to obtain metal powder.
  • the method of pulse cooling includes the following steps:
  • Step 1 The raw materials are put into the reactor 1 to melt and evaporate, so that the metal vapor enters the condenser tube 2 for crystallization and nucleation to form powder blanks.
  • Step 2 The powder blank enters the pulse cooling chamber 3 for cooling to form single metal particles, and the pulse cooling chamber 3 is filled with nitrogen during pulse cooling.
  • Step 3 the single metal particles enter the collector 4 through the inclined pipe under the action of the air flow of the pulsed metal powder preparation condensing device for collection.
  • Step 4 The backflushing device in the collector 4 backflushes the metal powder into the powder collector 5 for collection.
  • the raw material is one or more metals selected from iron, nickel, copper, tin, silver, etc.
  • the obtained metal powder is one or more of iron, nickel, copper, tin, silver, etc. Metal alloy powder.
  • the metal powder is spherical, and the particle size is less than 100nm.
  • the pulse cooling chamber 3 is under negative pressure, the pressure in the reactor 1 is 70-90kPa, and the gas-solid ratio of the metal powder in the pulse cooling chamber 3 is 1:(1500-2000), with To achieve the effect of effectively improving the distribution uniformity and yield of metal powder.
  • the pulsed metal powder preparation condensation device includes a reactor 1 , a condensation tube 2 , a pulsed cooling chamber 3 , a collector 4 and a powder collector 5 .
  • the reactor 1 is used for melting and evaporating raw materials to obtain metal vapor.
  • the condenser tube 2 is connected to the reactor 1 and the pulse cooling chamber 3, so that the metal vapor crystallizes and nucleates when passing through the condenser tube 2.
  • the powder blanks that crystallize and nucleate The spacing between particles instantly expands, greatly reducing the collision probability of each powder blank particle, thereby effectively reducing the generation of conjoined particles and slag.
  • the collector 4 is used to collect the metal powder obtained by cooling through the pulse cooling chamber 3 , and the metal powder enters the powder collector 5 under the backflushing action of the backflushing tank in the collector 4 for collection.
  • a zirconia lining layer is arranged in the condenser tube 2, and an interlayer is arranged in the condenser tube 2. There is cooling water in the interlayer.
  • the pulse cooling chamber 3 includes a dish-shaped head, a cylinder, a viewing hole and a gas distributor 6 .
  • the dish-shaped head is used for sealing connection with the condensing pipe 2 .
  • Cylinders are used for cooling and obtaining metal powders.
  • the observation hole is used to observe the formation of metal powder in the cylinder.
  • the gas distributor 6 is an annular gas distributor, and a plurality of gas nozzles with equal arc distribution are arranged on the gas distributor 6 .
  • the open end of the gas nozzle faces the center of the condenser tube 2 to effectively slow down the gas flow rate and blow out the powder blanks.
  • the cross-sectional area ratio of the condenser tube 2 and the pulse cooling chamber 3 is 1:8, and the volume ratio of the condenser tube 2 and the pulse cooling chamber 3 is 1:10, so as to greatly reduce the collision of each powder blank particle probability, thereby effectively reducing the generation of conjoined particles and slag.
  • the pulsed metal powder preparation and condensation method provided in this example uses a preparation condensation device composed of a reactor 1, a condenser tube 2, a pulsed cooling chamber 3, a collector 4 and a powder collector 5 to obtain metal by a pulsed cooling method. powder.
  • the method of pulse cooling includes the following steps:
  • Step 1 The raw materials are put into the reactor 1 to melt and evaporate, so that the metal vapor enters the condenser tube 2 for crystallization and nucleation to form powder blanks.
  • Step 2 The powder blank enters the pulse cooling chamber 3 for cooling to form single metal particles, and the pulse cooling chamber 3 is filled with nitrogen during pulse cooling.
  • Step 3 the single metal particles enter the collector 4 through the inclined pipe under the action of the air flow of the pulsed metal powder preparation condensing device for collection.
  • Step 4 The backflushing device in the collector 4 backflushes the metal powder into the powder collector 5 for collection.
  • the raw material is one or more metals selected from iron, nickel, copper, tin, silver, etc.
  • the obtained metal powder is one or more of iron, nickel, copper, tin, silver, etc. Metal alloy powder.
  • the metal powder is spherical, and the particle size is less than 100nm.
  • the pulse cooling chamber 3 is under negative pressure, the pressure in the reactor 1 is 70kPa, and the gas-solid ratio of the metal powder in the pulse cooling chamber 3 is 1:1500, so as to effectively improve the metal powder. The effect of distribution uniformity and yield.
  • the difference between the second embodiment and the first embodiment is that the cross-sectional area ratio of the condenser tube 2 to the pulse cooling chamber 3 in the second embodiment is 1:12, and the volume ratio of the condenser tube 2 to the pulse cooling chamber 3 is 1:13.
  • the difference between the third embodiment and the first embodiment is that the cross-sectional area ratio of the condenser tube 2 to the pulse cooling chamber 3 in the third embodiment is 1:15, and the volume ratio of the condenser tube 2 to the pulse cooling chamber 3 is 1:15.
  • Example 4 The difference between Example 4 and Example 1 is that the pressure in the reactor 1 in Example 4 is 80 kPa, and the gas-solid ratio of the metal powder in the pulse cooling chamber 3 is 1:1800.
  • Example 5 The difference between Example 5 and Example 1 is that the pressure in the reactor 1 in Example 5 is 90 kPa, and the gas-solid ratio of the metal powder in the pulse cooling chamber 3 is 1:2000.
  • the difference between the sixth embodiment and the first embodiment is that the condensation pipe 2 and the pulse cooling chamber 3 in the sixth embodiment are both provided with an interlayer, and the interlayer has cooling water.
  • the pulse cooling chamber 3 by setting the pulse cooling chamber 3 with a large cross-sectional area, the flow rate of the gas in the tube is reduced, the flow state Reynolds number Re ⁇ 3000, and the flow state of the condensation system is excessive flow and laminar flow.
  • the pulse cooling chamber 3 By setting the pulse cooling chamber 3 with a large volume, the cooling space of the metal powder is effectively enlarged, the density of the metal powder in the pulse cooling chamber 3 is reduced, and the gap between the powder particles and between the particles and the tube wall is effectively reduced. Collision probability, to achieve the purpose of avoiding the conjoined metal particles and the generation of irregular shaped particles.
  • the pulse cooling chamber 3 With uniform temperature field distribution, metal powder with uniform particle distribution can be obtained, and the effect of less super-large and ultra-fine particles and narrow particle size distribution of the powder can be achieved.
  • the metal vapor forms less slag and less waste powder on the chamber wall, and achieves the purpose of improving the powder yield by 15%. Therefore, there is less slagging on the inner wall of the condenser pipe 2, the condenser pipe 2 is not easily blocked, and the production cycle is shortened by 20%.
  • references in this application to "first”, “second”, “third”, “fourth”, etc. are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms “comprising” and “having”, and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method or apparatus comprising a series of steps or elements is not necessarily limited to those steps or elements expressly listed , but may include other steps or elements not expressly listed or inherent to these processes, methods or apparatus.

Abstract

Procédé de condensation pulsé pour la préparation de poudre métallique. Ledit procédé comprend les étapes suivantes : étape 1, introduire, dans un réacteur (1), d'une matière première à faire fondre et évaporer, et amener la vapeur de métal à entrer dans un tube de condensation (2) pour qu'elle y soit cristallisée et nucléée, de manière à former une ébauche de poudre ; étape 2, introduire l'ébauche de poudre dans une chambre de refroidissement pulsé (3) pour être refroidie de manière à former des particules métalliques monomères, la chambre de refroidissement pulsé (3) étant remplie d'azote pendant le refroidissement pulsé ; étape 3, introduire des particules de métal monomères dans un collecteur (4) sous l'effet d'un flux d'air pour être collectées ; et étape 4, renvoyer, au moyen d'un dispositif de renvoi dans le collecteur (4), une poudre métallique dans un collecteur de poudre (5) pour être collectée. Le procédé de condensation a pour effet d'améliorer significativement l'uniformité de distribution et le rendement d'une poudre métallique.
PCT/CN2021/120665 2020-12-29 2021-09-26 Procédé de condensation pulsé pour la préparation de poudre métallique WO2022142527A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023528288A JP2023550716A (ja) 2020-12-29 2021-09-26 パルス式金属粉末調製凝縮方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011602571.4A CN112846206A (zh) 2020-12-29 2020-12-29 一种脉冲式金属粉制备冷凝方法
CN202011602571.4 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022142527A1 true WO2022142527A1 (fr) 2022-07-07

Family

ID=75998295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120665 WO2022142527A1 (fr) 2020-12-29 2021-09-26 Procédé de condensation pulsé pour la préparation de poudre métallique

Country Status (4)

Country Link
JP (1) JP2023550716A (fr)
CN (1) CN112846206A (fr)
TW (1) TWI813105B (fr)
WO (1) WO2022142527A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115770882A (zh) * 2022-11-02 2023-03-10 杭州新川新材料有限公司 超细球形金属粉末的制造方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112846206A (zh) * 2020-12-29 2021-05-28 江苏博迁新材料股份有限公司 一种脉冲式金属粉制备冷凝方法
CN115383124A (zh) * 2022-09-02 2022-11-25 杭州新川新材料有限公司 超细金属粉末的冷却设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665277A (en) * 1994-10-27 1997-09-09 Northwestern University Nanoparticle synthesis apparatus and method
CN102615289A (zh) * 2011-01-28 2012-08-01 杭州华纳塔器科技有限公司 蒸发-冷凝制备超细金属粉末的方法
CN205362681U (zh) * 2016-03-04 2016-07-06 云南驰宏锌锗股份有限公司 一种用于制备超细金属粉体的冷凝装置
CN109513917A (zh) * 2018-12-18 2019-03-26 江苏博迁新材料股份有限公司 一种pvd生产镍粉的降碳方法
CN109648093A (zh) * 2018-12-18 2019-04-19 江苏博迁新材料股份有限公司 一种超细金属镍粉表面处理方法
CN112846206A (zh) * 2020-12-29 2021-05-28 江苏博迁新材料股份有限公司 一种脉冲式金属粉制备冷凝方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896719B2 (ja) * 1990-09-07 1999-05-31 三井金属鉱業株式会社 金属カドミウム粉末の製造方法
CN2276846Y (zh) * 1996-08-15 1998-03-25 昆明理工大学 真空法生产超细锌粉的设备
US5788738A (en) * 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
CN101618458B (zh) * 2009-07-17 2012-11-21 江苏科创金属新材料有限公司 一种亚微米锌粉的制备方法及其制备装置
JP5821579B2 (ja) * 2011-12-01 2015-11-24 昭栄化学工業株式会社 金属粉末製造用プラズマ装置
CN106623957B (zh) * 2016-11-30 2020-01-21 江永斌 连续量产超细纳米级金属粒子的纳米粒子生长器
CN207031478U (zh) * 2017-07-25 2018-02-23 神雾科技集团股份有限公司 矿粉还原***
CN108746652B (zh) * 2018-06-22 2021-08-31 上海硕余精密机械设备有限公司 一种金属粉末的制备装置及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665277A (en) * 1994-10-27 1997-09-09 Northwestern University Nanoparticle synthesis apparatus and method
CN102615289A (zh) * 2011-01-28 2012-08-01 杭州华纳塔器科技有限公司 蒸发-冷凝制备超细金属粉末的方法
CN205362681U (zh) * 2016-03-04 2016-07-06 云南驰宏锌锗股份有限公司 一种用于制备超细金属粉体的冷凝装置
CN109513917A (zh) * 2018-12-18 2019-03-26 江苏博迁新材料股份有限公司 一种pvd生产镍粉的降碳方法
CN109648093A (zh) * 2018-12-18 2019-04-19 江苏博迁新材料股份有限公司 一种超细金属镍粉表面处理方法
CN112846206A (zh) * 2020-12-29 2021-05-28 江苏博迁新材料股份有限公司 一种脉冲式金属粉制备冷凝方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115770882A (zh) * 2022-11-02 2023-03-10 杭州新川新材料有限公司 超细球形金属粉末的制造方法及装置

Also Published As

Publication number Publication date
TW202224810A (zh) 2022-07-01
JP2023550716A (ja) 2023-12-05
TWI813105B (zh) 2023-08-21
CN112846206A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022142527A1 (fr) Procédé de condensation pulsé pour la préparation de poudre métallique
JP4836136B2 (ja) 金属ガラス膜作製用スパッタリングターゲット及びその製造方法
CN105081337B (zh) 高频超音速等离子气体制备微细球状金属粉末方法及装置
WO2020228709A1 (fr) Procédé de préparation d'un matériau d'alliage pulvérulent
CN102476184A (zh) 一种铜粉及其制作方法、制作装置和散热件
JPS59208006A (ja) 合金微粉末の製造方法
CN109719303A (zh) 一种软磁材料用的亚微米级铁镍合金粉生产方法
CN111318716A (zh) 一种粉末床熔融增材制造用高熵合金球形粉末及其制备方法与应用
CN209935864U (zh) 一种球形微细金属粉体生产***
JPS6317884B2 (fr)
CN207119805U (zh) 一种多级冷却制备金属粉末的等离子体雾化装置
US7449044B2 (en) Method and apparatus for producing metal powder
CN107030292A (zh) 一种多级冷却制备金属粉末的等离子体雾化装置
CN104152734A (zh) 球形钨粉制备钨铜合金的方法
CN111390192B (zh) 一种制备球形金属微粉的设备和方法
CN116604023B (zh) 一种雾化器及3d打印用银粉末的制备方法
JP3270118B2 (ja) 高周波プラズマによる球状化粒子の製造方法およびその装置
JP3244493U (ja) 導電材料超微粉体の製造装置
CN216421070U (zh) 一种物理气相法制备超细粉体材料用的金属蒸气成核装置
CN109692968A (zh) 一种亚微米级NdFeB合金粉的生产方法
JP2017155279A (ja) 金属微粒子の製造方法
JP2587545Y2 (ja) 水素吸蔵合金の製造装置
CN203853547U (zh) 一种制备球形钼粉的设备
CN110102771A (zh) 一种高生坯高稳定性环保扩散式锡锌铜粉的制备方法
TWI798989B (zh) 電漿弧霧化法製備超細粉末的裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528288

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913272

Country of ref document: EP

Kind code of ref document: A1