WO2020228709A1 - Procédé de préparation d'un matériau d'alliage pulvérulent - Google Patents

Procédé de préparation d'un matériau d'alliage pulvérulent Download PDF

Info

Publication number
WO2020228709A1
WO2020228709A1 PCT/CN2020/089895 CN2020089895W WO2020228709A1 WO 2020228709 A1 WO2020228709 A1 WO 2020228709A1 CN 2020089895 W CN2020089895 W CN 2020089895W WO 2020228709 A1 WO2020228709 A1 WO 2020228709A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
acid
alloy powder
powder material
preparing
Prior art date
Application number
PCT/CN2020/089895
Other languages
English (en)
Chinese (zh)
Inventor
刘丽
Original Assignee
刘丽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘丽 filed Critical 刘丽
Publication of WO2020228709A1 publication Critical patent/WO2020228709A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C3/00Removing material from alloys to produce alloys of different constitution separation of the constituents of alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C3/00Removing material from alloys to produce alloys of different constitution separation of the constituents of alloys
    • C22C3/005Separation of the constituents of alloys

Definitions

  • the invention relates to the technical field of metal materials, in particular to a method for preparing alloy powder materials.
  • Micro-nano particle size alloy powder due to its special surface effect, quantum size effect, quantum tunneling effect and Coulomb blocking effect, exhibits many unique properties different from traditional materials in optics, electricity, magnetism, catalysis, etc. Therefore, it is widely used in many fields such as optoelectronic devices, wave absorbing materials, and high-efficiency catalysts.
  • the preparation methods of ultra-fine alloy powder are classified into solid phase method, liquid phase method and gas phase method from the state of matter.
  • the solid phase method mainly includes mechanical crushing method, ultrasonic crushing method, thermal decomposition method, explosion method and so on.
  • Liquid phase methods mainly include precipitation method, alkoxide method, carbonyl method, spray thermal drying method, freeze drying method, electrolysis method, chemical coagulation method, etc.
  • the gas phase method mainly includes gas phase reaction method, plasma method, high temperature plasma method, evaporation method, chemical vapor deposition method, etc.
  • Rotating electrode method and gas atomization method are currently the main methods for preparing high-performance alloy powder, but the production efficiency is low, the yield of ultrafine powder is not high, and the energy consumption is relatively large; jet milling method and hydrogenation dehydrogenation method are suitable for large Industrial production in batches, but with strong selectivity to raw metals and alloys. Therefore, it is of great significance to develop new preparation methods for ultrafine alloy powder materials.
  • a preparation method of alloy powder material includes the following steps:
  • (M x T y ) a RE b alloy wherein M is selected from at least one of Fe, Co, Ni, and T is selected from W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti
  • the (MxTy) a RE b alloy The solidification structure of the is composed of a dispersed particle phase with a composition of M x T y and a matrix phase with a composition mainly of RE;
  • the (M x T y ) a RE b alloy is mixed with an acid solution, the matrix phase reacts with the acid solution to become ions into the solution, and the dispersed particle phase separates out, that is, M x T y Composition of alloy powder material.
  • the alloy melt is prepared into the (M x T y ) a RE b alloy by a solidification method, wherein the solidification rate of the alloy melt is 0.001 K/s to 10 7 K/s.
  • the vacuum degree during the melting of the alloy melt is 1 ⁇ 10 -4 Pa to 1.01325 ⁇ 10 5 Pa.
  • the particle shape of the dispersed particle phase includes at least one of a dendritic shape, a spherical shape, a nearly spherical shape, a square shape, a pie shape, and a rod shape, and the particle size of the dispersed particle phase is 2 nm to 100 mm.
  • the acid in the acid solution is at least one of sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, acetic acid, oxalic acid, formic acid, carbonic acid, gluconic acid, oleic acid, and polyacrylic acid.
  • the solvent in the acid solution It is water, ethanol, methanol or a mixture of the three in any ratio.
  • the molar concentration of the acid in the acid solution is 0.001 mol/L to 5 mol/L.
  • the reaction time is 0.1 min to 48 h, and the reaction temperature is 0°C to 100°C.
  • the particle size of the M x T y alloy powder material is 2 nm to 100 mm.
  • the following step is further performed: the obtained alloy powder material with a particle size range of 1 ⁇ m to 1 mm is sieved, Plasma spheroidization is performed respectively, and finally alloy powder materials with different particle sizes and spherical shapes are obtained.
  • the particle size of the spherical alloy powder material with different particle diameters is 1 ⁇ m to 1 mm.
  • a (M x T y ) a RE b alloy made of a specific type and content of metal M, metal T and rare earth RE is selected.
  • the solidified structure of the alloy is composed of a dispersed particle phase with a composition of M x T y and a matrix phase with a composition mainly of RE. The structure is conducive to subsequent separation.
  • the matrix phase reacts with the H ions in the acid solution to become ions into the solution, and the composition is a dispersed particle phase of M x T y It is difficult to react with the dilute acid solution, so that it can be dispersed and separated from the (M x T y ) a RE b alloy, and finally the M x T y alloy powder material is obtained.
  • rare earth elements not only have a good "absorbing” effect on oxygen, but also have a good "absorbing” effect on other various impurity elements in the alloy raw materials M and T. Therefore, the dispersed particle phase in the (M x T y ) a RE b alloy and the obtained M x T y alloy powder material tend to have higher purity than the raw materials M and T.
  • the method has low cost and simple operation, and can prepare various alloy powder materials with different morphologies including nanometer, submicrometer, micrometer and millimeter level.
  • the alloy powder material has good application prospects in hydrogen storage, catalysis, powder metallurgy, 3D printing and other fields.
  • Figure 1 is a scanning electron micrograph of CoTi dendrites prepared in Example 1 of the present invention.
  • Fig. 2 is a high magnification photograph of the CoTi dendrites prepared in Example 1 of the present invention
  • FIG. 3 is an energy spectrum diagram of CoTi dendrites prepared in Example 1 of the present invention.
  • the method for preparing alloy powder material provided by the present invention includes the following steps:
  • step S1 the (M x T y ) a RE b alloy is obtained in the following manner:
  • the alloy melt is prepared into the (M x T y ) a RE b alloy by a solidification method, wherein the solidification rate of the alloy melt is 0.001 K/s to 10 7 K/s.
  • step (1) the raw materials required for smelting (M x T y ) a RE b alloy are prepared according to a specific composition and content.
  • step (2) due to the presence of a large amount of rare earth elements in the alloy melt obtained by melting the alloy raw materials, even if oxygen enters the alloy melt during the smelting process, all oxygen will be quickly "absorbed" by the rare earth elements, forming a coating
  • the dense rare earth oxide protective film on the surface of the alloy melt blocks the passage of oxygen from further entering the alloy melt. Therefore, even if the alloy is smelted under low vacuum conditions or even atmospheric conditions, the dispersed particles in the solidified structure of the alloy will still not be contaminated by oxygen. Therefore, when the vacuum degree in the melting process of the alloy melt is 1 ⁇ 10 -4 Pa ⁇ 1.01325 ⁇ 10 5 Pa, the purity of the obtained dispersed particle phase can still be guaranteed.
  • rare earth elements not only have a good "absorbing” effect on oxygen, but also have a good "absorbing” effect on other various impurity elements in the alloy raw materials M and T. Therefore, the dispersed particle phase in the (M x T y ) a RE b alloy tends to have higher purity than the raw materials M and T.
  • the alloy raw materials are metal M, metal T and rare earth RE, each element can be melted to prepare an alloy melt.
  • the alloy raw materials provided are directly (M x T y ) a RE b alloy, the (M x T y ) a RE b alloy can be remelted to obtain an alloy melt.
  • the solidified structure of the alloy melt is composed of a dispersed particle phase composed of M x T y and a matrix phase composed mainly of RE.
  • the dispersed particle phase of the component M x T y is an inert component under the action of dilute acid, and it is difficult to react with acid;
  • the matrix phase mainly composed of RE is an active component, which is very easy to react with acid. Therefore, the solidified structure of the (M x T y ) a RE b alloy facilitates subsequent separation.
  • the solidification method is not limited, and may be methods such as casting, melt stripping, and melt drawing.
  • the particle size and morphology of the finally formed alloy powder material is basically consistent with the particle size and morphology of the M x T y dispersed particle phase in the (M x T y ) a RE b alloy.
  • the particle size of the M x T y dispersed particle phase is related to the solidification rate of the alloy melt during the preparation process.
  • the particle size of the M x T y dispersed particle phase has a negative correlation with the cooling rate of the alloy melt, that is, the greater the solidification rate of the alloy melt, the smaller the particle size of the dispersed particle phase.
  • the solidification rate of the alloy melt may be 0.001 K/s to 10 7 K/s
  • the particle size of the M x T y dispersed particle phase may be 2 nm to 100 mm.
  • the particle shape of the dispersed particle phase is not limited, and may include at least one of a dendritic shape, a spherical shape, a nearly spherical shape, a square shape, a pie shape, and a rod shape.
  • the particle size specifically refers to the diameter of the rod-shaped cross-section.
  • the acid solution is a solution containing H + .
  • (M x T y ) a RE b alloy solidification structure is composed of a dispersed grain phase with a composition of M x T y and a matrix phase with a composition mainly of RE. Therefore, the H + in the dilute acid solution reacts with the rare earth elements in the matrix phase to dissolve the rare earth elements into ions and enter the solution, while the M x T y dispersed particle phase, which is difficult to react with the dilute acid solution, is removed from the original alloy Disperse out of it. After cleaning, the M x T y alloy powder material is obtained.
  • the particle size of the alloy powder material can be nanometer, submicrometer, micrometer, or even millimeter.
  • the acid in the acid solution may be at least one of sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, acetic acid, oxalic acid, formic acid, carbonic acid, gluconic acid, oleic acid, and polyacrylic acid, preferably sulfuric acid, hydrochloric acid , At least one of nitric acid, perchloric acid, phosphoric acid, acetic acid, and oxalic acid.
  • the solvent in the acid solution is water, ethanol, methanol or a mixture thereof mixed in any ratio.
  • the concentration of the dilute acid in the acid solution is not specifically limited, as long as it can react with the matrix phase and retain the primary crystal phase.
  • the reaction time is not limited, and the reaction temperature is not limited.
  • the molar concentration of the acid in the acid solution may be 0.001 mol/L to 5 mol/L.
  • the reaction time of this reaction can be 0.1min ⁇ 48h, and the reaction temperature can be 0°C ⁇ 100°C.
  • step S2 if the particle size of the obtained alloy powder material is in the range of 1 ⁇ m to 1 mm, the following steps may be performed: the obtained alloy powder material is sieved, and plasma spheroidization is performed respectively, and finally A spherical alloy powder material with different particle sizes is obtained.
  • the powder material after the screening can be spheroidized by plasma spheroidization.
  • the particle diameter of the spherical alloy powder material with different particle diameters is 1 ⁇ m to 1 mm.
  • the method has low cost and simple operation, and can prepare a variety of alloy powder materials with different morphologies including nanometer, submicrometer, micrometer and millimeter level.
  • the alloy powder material has good application prospects in hydrogen storage, catalysis, powder metallurgy, 3D printing and other fields.
  • This embodiment provides a method for preparing micron-sized CoTi powder, which includes the following steps:
  • the alloy solidification structure includes dispersed dendritic particles composed of CoTi and a matrix phase composed of Gd, and the size of the CoTi dendritic particles ranges from 2 ⁇ m to 40 ⁇ m.
  • the alloy powder material was tested by scanning electron microscopy. As shown in Figure 1 and Figure 2, the alloy powder particles were in dendrite shape.
  • This embodiment provides a method for preparing spherical micron-sized CoTi powder, which includes the following steps:
  • the alloy solidification structure includes dispersed dendritic particles composed of CoTi and a matrix phase composed of Gd, and the size of the CoTi dendritic particles ranges from 2 ⁇ m to 40 ⁇ m.
  • the dendrite size ranges are >26 ⁇ m, 26 ⁇ m-13 ⁇ m, 13 ⁇ m ⁇ Graded CoTi dendritic powder of 6.5 ⁇ m and less than 6.5 ⁇ m.
  • the CoTi dendritic powders with dendrite diameters ranging from 26 ⁇ m to 13 ⁇ m and 13 ⁇ m to 6.5 ⁇ m are selected respectively, and spherical Co 50 Ti with particle sizes ranging from 26 ⁇ m to 13 ⁇ m and 13 ⁇ m to 6.5 ⁇ m are further prepared through mature plasma spheroidization technology. 50 powder.
  • This embodiment provides a method for preparing nano-scale CoHf powder, including the following steps:
  • This embodiment provides a method for preparing spherical micron CoCrMo powder, which includes the following steps:
  • the alloy solidification structure of the Gd 75 alloy sheet includes dispersed dendritic particles composed of Co-Cr-Mo and a matrix phase composed of Gd, and the size of the Co-Cr-Mo dendritic particles ranges from 3 ⁇ m to 50 ⁇ m.
  • Co-Cr-Mo dendritic particles were separated from the solution, washed and dried, and then micron-sized Co-Cr-Mo dendritic powder was obtained, the composition of which was approximately Co 63 Cr 33 Mo 4 , dendritic particles The size range of 3 ⁇ m ⁇ 50 ⁇ m.
  • the dendrite size ranges are> 26 ⁇ m, 26 ⁇ m ⁇ Graded Co-Cr-Mo dendritic powder of 13 ⁇ m, 13 ⁇ m ⁇ 6.5 ⁇ m and less than 6.5 ⁇ m.
  • Co-Cr-Mo dendritic powders with dendrite particle sizes ranging from 26 ⁇ m to 13 ⁇ m and 13 ⁇ m to 6.5 ⁇ m are selected, and the particle size ranges from 26 ⁇ m to 13 ⁇ m and 13 ⁇ m to 6.5 ⁇ m are further prepared by mature plasma spheroidizing technology.
  • Spherical Co 63 Cr 33 Mo 4 powder are further prepared by mature plasma spheroidizing technology.
  • This embodiment provides a method for preparing sub-micron CoTiHf powder, which includes the following steps:
  • This embodiment provides a method for preparing micro-nano CoTiZr powder, which includes the following steps:
  • the alloy structure includes a matrix composed of Y and a nearly spherical dispersed particle phase composed of Co 50 Ti 25 Zr 25 ). The diameter of the dispersed particles ranges from 50-500nm.
  • the obtained Co 50 Ti 25 Zr 25 dispersed particles are separated from the solution, washed and dried to obtain approximately spherical Co 50 Ti 25 Zr 25 micro-nano alloy powder, the diameter of which is in the range of 50-500 nm.

Abstract

La présente invention concerne un procédé de préparation d'un matériau d'alliage pulvérulent. À l'aide de la caractéristique d'une structure de solidification d'alliage contenant une phase matricielle et une phase particulaire dispersée inerte, la phase matricielle est éliminée par réaction avec une solution acide, de sorte que la phase particulaire dispersée est séparée afin d'obtenir le matériau d'alliage pulvérulent. Le procédé est simple à mettre en œuvre, et permet de préparer une pluralité de matériaux d'alliage pulvérulents ayant différentes morphologies, notamment à l'échelle nanométrique, submicrométrique, micrométrique et millimétrique, et présente de bonnes perspectives d'application dans des domaines tels que la catalyse, la métallurgie des poudres et l'impression 3D.
PCT/CN2020/089895 2019-05-15 2020-05-13 Procédé de préparation d'un matériau d'alliage pulvérulent WO2020228709A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910400790.5 2019-05-15
CN201910400790.5A CN111940750B (zh) 2019-05-15 2019-05-15 一种合金粉体材料的制备方法

Publications (1)

Publication Number Publication Date
WO2020228709A1 true WO2020228709A1 (fr) 2020-11-19

Family

ID=73288939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089895 WO2020228709A1 (fr) 2019-05-15 2020-05-13 Procédé de préparation d'un matériau d'alliage pulvérulent

Country Status (2)

Country Link
CN (1) CN111940750B (fr)
WO (1) WO2020228709A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115301228A (zh) * 2021-05-08 2022-11-08 中国石油天然气股份有限公司 环己烷氧化制备己二酸的方法、金属准晶合金催化剂的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143926B (zh) * 2019-11-28 2021-11-16 赵远云 一种含铝合金粉体的制备方法及其应用及一种合金条带
WO2022100656A1 (fr) * 2019-11-28 2022-05-19 赵远云 Procédé de préparation de poudre d'alliage contenant de l'aluminium, son utilisation et bande d'alliage
CN112276101A (zh) * 2020-08-19 2021-01-29 赵远云 一种高纯粉体材料的制备方法及其应用及一种合金条带
EP4201553A4 (fr) * 2020-08-19 2024-02-14 Yuanyun Zhao Procédé de préparation et utilisation de matériau en poudre de haute pureté et matériau en poudre biphasique
CN112276106A (zh) * 2020-08-27 2021-01-29 赵远云 一种包含贵金属元素的粉体材料的制备方法及其应用
WO2023142251A1 (fr) * 2022-01-25 2023-08-03 赵远云 Matériau en poudre d'alliage de fer sphérique, son procédé de préparation et son application

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356724A (ja) * 2001-03-30 2002-12-13 Sumitomo Metal Ind Ltd 希土類磁石合金スラグの再生法及び希土類磁石合金の製造法
JP2003013116A (ja) * 2001-07-03 2003-01-15 Japan Science & Technology Corp 希土類酸化物の還元による極低酸素含有量でかつ微細で均質な結晶組織の希土類系合金の製造方法
CN1754972A (zh) * 2004-09-29 2006-04-05 内蒙古稀奥科镍氢动力电池有限公司 一种MH-Ni电池用高容量稀土-镁基多相贮氢合金及其制备方法
CN101423919A (zh) * 2008-12-11 2009-05-06 北京航空航天大学 一种含Fe稀土基非晶合金
US20120040825A9 (en) * 2009-12-28 2012-02-16 Mitsuya Hosoe Hydrogen Storage Material and Method for Producing the Same
JP2013052430A (ja) * 2011-09-06 2013-03-21 Sanyo Special Steel Co Ltd 鉛フリー接合材料
CN103647019A (zh) * 2013-11-27 2014-03-19 南京航空航天大学 一种轻稀土调制的巨磁致伸缩材料及其制备工艺
CN106756539A (zh) * 2016-12-05 2017-05-31 北京科技大学 一种具有纳米析出相的耐疲劳高强钢及其制备方法
CN106834793A (zh) * 2017-01-24 2017-06-13 付亚波 添加稀土铈的高强度弥散强化铜及其制备方法
CN107012408A (zh) * 2017-03-24 2017-08-04 东南大学 一种稀土基高熵块体金属玻璃材料及其制备方法
CN107419198A (zh) * 2017-03-21 2017-12-01 上海大学 稀土钴镍基低温非晶磁制冷材料及其制备方法
CN108179338A (zh) * 2018-02-02 2018-06-19 仝仲盛 高强度镁合金及其压铸方法
CN108977708A (zh) * 2018-07-27 2018-12-11 李明军 一种用于新能源汽车悬架***的高强度耐腐蚀铝合金铸件
CN109087766A (zh) * 2018-07-10 2018-12-25 北京航空航天大学 一种永磁合金及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872074A (en) * 1997-01-24 1999-02-16 Hydro-Quebec Leached nanocrystalline materials process for manufacture of the same, and use thereof in the energetic field
CN101532117B (zh) * 2008-03-12 2010-12-15 中国科学院金属研究所 一种连续金属玻璃纤维的制备方法
CN103317141B (zh) * 2013-06-17 2015-04-22 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
CN106811750B (zh) * 2015-11-30 2019-04-19 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN106917090B (zh) * 2015-12-28 2019-02-19 中国科学院宁波材料技术与工程研究所 一种纳米多孔mn金属薄膜的制备方法及其应用
CN106916988A (zh) * 2015-12-28 2017-07-04 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属薄膜的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356724A (ja) * 2001-03-30 2002-12-13 Sumitomo Metal Ind Ltd 希土類磁石合金スラグの再生法及び希土類磁石合金の製造法
JP2003013116A (ja) * 2001-07-03 2003-01-15 Japan Science & Technology Corp 希土類酸化物の還元による極低酸素含有量でかつ微細で均質な結晶組織の希土類系合金の製造方法
CN1754972A (zh) * 2004-09-29 2006-04-05 内蒙古稀奥科镍氢动力电池有限公司 一种MH-Ni电池用高容量稀土-镁基多相贮氢合金及其制备方法
CN101423919A (zh) * 2008-12-11 2009-05-06 北京航空航天大学 一种含Fe稀土基非晶合金
US20120040825A9 (en) * 2009-12-28 2012-02-16 Mitsuya Hosoe Hydrogen Storage Material and Method for Producing the Same
JP2013052430A (ja) * 2011-09-06 2013-03-21 Sanyo Special Steel Co Ltd 鉛フリー接合材料
CN103647019A (zh) * 2013-11-27 2014-03-19 南京航空航天大学 一种轻稀土调制的巨磁致伸缩材料及其制备工艺
CN106756539A (zh) * 2016-12-05 2017-05-31 北京科技大学 一种具有纳米析出相的耐疲劳高强钢及其制备方法
CN106834793A (zh) * 2017-01-24 2017-06-13 付亚波 添加稀土铈的高强度弥散强化铜及其制备方法
CN107419198A (zh) * 2017-03-21 2017-12-01 上海大学 稀土钴镍基低温非晶磁制冷材料及其制备方法
CN107012408A (zh) * 2017-03-24 2017-08-04 东南大学 一种稀土基高熵块体金属玻璃材料及其制备方法
CN108179338A (zh) * 2018-02-02 2018-06-19 仝仲盛 高强度镁合金及其压铸方法
CN109087766A (zh) * 2018-07-10 2018-12-25 北京航空航天大学 一种永磁合金及其制备方法
CN108977708A (zh) * 2018-07-27 2018-12-11 李明军 一种用于新能源汽车悬架***的高强度耐腐蚀铝合金铸件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115301228A (zh) * 2021-05-08 2022-11-08 中国石油天然气股份有限公司 环己烷氧化制备己二酸的方法、金属准晶合金催化剂的制备方法

Also Published As

Publication number Publication date
CN111940750A (zh) 2020-11-17
CN111940750B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2020228709A1 (fr) Procédé de préparation d'un matériau d'alliage pulvérulent
WO2020168883A1 (fr) Procédé pour la préparation de matériau métallique en poudre
Filipič et al. Copper oxide nanowires: a review of growth
WO2021104219A1 (fr) Procédé de préparation de poudre d'alliage contenant de l'aluminium, son utilisation et bande d'alliage
CN112207285B (zh) 粉体材料的制备方法及其应用
US20230321720A1 (en) Method of preparing nano-porous powder material
JP5093215B2 (ja) 焼結希土類磁石の製造方法
WO2022068710A1 (fr) Poudre d'alliage, son procédé de préparation et son utilisation
WO2022036906A1 (fr) Procédé de préparation d'un matériau en poudre de haute pureté, application d'un matériau en poudre de haute pureté et ruban d'alliage
WO2022041516A1 (fr) Procédé de préparation et application de matériau en poudre contenant un élément de métal noble
Zhang et al. Morphology-controlled synthesis of Co3O4 crystals by soft chemical method
JPH09180716A (ja) 水素吸蔵合金の製造方法
CN111515408A (zh) NiTi合金粉及其制备方法和应用
JP3720250B2 (ja) 高水素吸蔵合金とその製造方法
WO2022100656A1 (fr) Procédé de préparation de poudre d'alliage contenant de l'aluminium, son utilisation et bande d'alliage
KR101309516B1 (ko) 자성 비정질 금속 나노 파우더 제조방법
CN112355316B (zh) 一种纳微米多级尺寸铁硅铝软磁合金粉体及其制备方法
TWI410375B (zh) 二氧化鈦粉體之製備方法及利用該方法製備之二氧化鈦粉體
JP2001196057A (ja) 水素吸蔵合金粉末の製造方法およびその粉末を用いたNi−水素電池用負極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805723

Country of ref document: EP

Kind code of ref document: A1