WO2022141863A1 - 基于机器视觉的多通道预对准***及多通道预对准方法 - Google Patents

基于机器视觉的多通道预对准***及多通道预对准方法 Download PDF

Info

Publication number
WO2022141863A1
WO2022141863A1 PCT/CN2021/083884 CN2021083884W WO2022141863A1 WO 2022141863 A1 WO2022141863 A1 WO 2022141863A1 CN 2021083884 W CN2021083884 W CN 2021083884W WO 2022141863 A1 WO2022141863 A1 WO 2022141863A1
Authority
WO
WIPO (PCT)
Prior art keywords
data processing
edge line
outer edge
alignment
angle
Prior art date
Application number
PCT/CN2021/083884
Other languages
English (en)
French (fr)
Inventor
李礼
张博
刘欢
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2022141863A1 publication Critical patent/WO2022141863A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4227Active alignment methods, e.g. procedures and algorithms

Definitions

  • the present application belongs to the field of channel alignment, and more particularly, relates to a multi-channel pre-alignment system and multi-channel pre-alignment method based on machine vision.
  • a multi-channel optical fiber array is commonly used. At this time, more than one optical channel is required between the channel planar waveguide and the optical fiber array at the same time to achieve position alignment on the optical path.
  • the existing automatic coupling device solution is to rotate the angular axis parallel to the fiber core, that is, the Roll axis, in a certain step when a single channel (usually one of the head and tail channels of the fiber array) has light sensing, and Coordinate with the movement of the linear axis of the horizontal plane, so as to find the light perception of another target channel while maintaining the light perception of the existing channel.
  • This process involves the width and size of the fiber array, the spacing of the optical path, the rotation center of the angle axis and the compensation movement of each axis. Synchronous power acquisition, coordinated movement of multiple linear axes and angular axes, the entire light-finding process takes a long time.
  • the present application provides a multi-channel pre-alignment system and a multi-channel pre-alignment method based on machine vision, the purpose of which is to eliminate the need for multi-axis linkage during the coupling alignment process. There is also no need to monitor the optical power value in real time, and a non-contact, non-destructive end-face fast coupling and positioning scheme for automatic coupling of planar waveguides can be realized, thereby solving the current multi-channel alignment scheme. technical problem.
  • a multi-channel pre-alignment system based on machine vision includes: a vision device, a displacement device and a data processing device, the displacement The device includes at least one angular axis on which a clamp is mounted, the clamp is used to fix the optical fiber array to be coupled and aligned;
  • the data processing device is configured to send a driving instruction to the displacement device to sequentially drive the angle axis to move to a specified axis coordinate position;
  • the vision device is configured to acquire a target image of the optical fiber array, and send the target image to the data processing device;
  • the data processing device is configured to compare a plurality of the target images to determine a pre-alignment position of the angular axis, and to drive the angular axis to move to the pre-alignment position.
  • each specified axis coordinate position corresponds to one of the target images
  • the data processing device is specifically configured to acquire a first outer edge line, a second outer edge line and a third outer edge line of the target image, wherein the first outer edge line and the second outer edge line are respectively corresponds to the side edge line of the optical fiber array, and the third outer edge line corresponds to the front edge line of the optical fiber array;
  • the data processing device is further configured to compare the fitting distances corresponding to each of the target images, set the axis coordinate position corresponding to the smallest fitting distance as the pre-alignment position, and drive the angle axis to move to the desired position. the pre-aligned position.
  • the visual device includes: a lens, a camera and a ring light source, the camera is fixed to the rear end of the lens through a standard interface, the camera is fixed to the front end of the lens through a fixing screw, the camera is connected to the data processing device connection;
  • the camera is configured to capture the target image and transmit the target image to the data processing device.
  • the data processing device includes: an image processing unit and a driving unit, the image processing unit is connected to the visual device, and the driving unit is connected to the displacement device;
  • the drive unit is configured to drive the angular axis to change position
  • the image processing unit is configured to identify and process the target image.
  • the displacement device includes a stepper motor, the stepper motor is connected with the angle shaft, the stepper motor is connected with the drive unit, and the stepper motor is configured to receive driving from the drive unit instruction, and control the angle axis to rotate step by step within the specified angle range according to the drive instruction.
  • the data processing device is specifically configured to compare a plurality of the target images to determine the pre-alignment position of the angle axis, and driving the angle axis to move to the pre-alignment position includes:
  • the image processing unit is configured to compare a plurality of the target images to determine the pre-alignment position of the angle axis, and output the target coordinates corresponding to the pre-alignment position to the driving unit;
  • the driving unit is configured to calculate the relative distance between the target coordinate and the current axis coordinate, convert the relative distance into the number of pulses, and drive the stepping motor according to the number of pulses, so that the angle axis moves to the preset position. Align position.
  • the angle axis is a Roll axis, wherein the vision device is disposed on the side of the fixture, and the side of the optical fiber array is located within the imaging field of view of the vision device.
  • a multi-channel pre-alignment method based on machine vision is provided, the multi-channel pre-alignment method is applied to a multi-channel pre-alignment system, and the multi-channel pre-alignment system includes: A vision device, a displacement device, and a data processing device, the displacement device includes at least one angle axis, and a clamp is installed on the angle axis, and the clamp is used for fixing the optical fiber array to be coupled and aligned;
  • the multi-channel pre-alignment method includes:
  • the data processing device sends a drive instruction to the displacement device to sequentially drive the angle axis to move to a specified axis coordinate position;
  • the vision device collects the target image of the optical fiber array, and sends the target image to the data processing device;
  • the data processing device compares a plurality of the target images to determine the pre-alignment position of the angle axis, and drives the angle axis to move to the pre-alignment position.
  • the data processing device compares a plurality of the target images to determine the pre-alignment position of the angle axis, and drives the angle axis to move to the pre-alignment position, comprising:
  • the data processing device is specifically configured to acquire a first outer edge line, a second outer edge line and a third outer edge line of the target image, wherein the first outer edge line and the second outer edge line respectively correspond to an optical fiber array
  • the edge lines of the top surface and the bottom surface, the third outer edge line corresponds to the edge line of the front end of the optical fiber array
  • the data processing device compares the fitting distances corresponding to each of the target images, sets the axis coordinate position corresponding to the smallest fitting distance as the pre-alignment position, and drives the angle axis to move to the pre-alignment position. Location.
  • the data processing device includes: an image processing unit and a driving unit, the image processing unit is connected to the visual device, the driving unit is connected to the displacement device, and the displacement device includes a stepping motor, the the stepping motor is connected with the angle shaft, and the stepping motor is connected with the driving unit;
  • the data processing device compares a plurality of the target images to determine the pre-alignment position of the angle axis, and drives the angle axis to move to the pre-alignment position, specifically including:
  • the image processing unit compares a plurality of the target images to determine the pre-alignment position of the angle axis, and outputs the target coordinates corresponding to the pre-alignment position to the driving unit;
  • the drive unit calculates the relative distance between the target coordinate and the current axis coordinate, converts the relative distance into the number of pulses, and drives the stepper motor according to the number of pulses, so that the angle axis moves to the pre-alignment Location.
  • the present application provides a multi-channel pre-alignment system and a multi-channel pre-alignment method based on machine vision, which
  • the channel pre-alignment system includes: a vision device, a displacement device and a data processing device, the displacement device includes at least one angle axis, and a clamp is installed on the angle axis, and the clamp is used for fixing the optical fiber array to be coupled and aligned;
  • the data processing device is configured to send a driving instruction to the displacement device to sequentially drive the angle axis to move to a specified axis coordinate position; when the angle axis is at the specified axis coordinate position, the visual device is configured to acquiring a target image of the optical fiber array and sending the target image to the data processing device; the data processing device is configured to compare a plurality of the target images to determine the pre-aligned position of the angular axis , and drive the angle axis to move
  • a non-contact, non-destructive end-face fast coupling and positioning scheme for automatic coupling of planar waveguides can be realized without multi-axis linkage or real-time monitoring of the optical power value.
  • the optical path coupling of the device using this method can shorten the multi-channel light finding time, and has high consistency.
  • FIG. 1 is a schematic structural diagram of a multi-channel pre-alignment system based on machine vision provided by an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of another machine vision-based multi-channel pre-alignment system provided by an embodiment of the present application.
  • FIG. 3 is a target image collected by the visual device 1 in FIG. 2 provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a target image collected when the angle axis in FIG. 2 is at different specified axis coordinate positions according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a channel alignment process provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a multi-channel pre-alignment system based on machine vision provided by an embodiment of the present application.
  • Vision device 1 lens 11, camera 12, ring light source 13, fixing fixture 14, displacement device 2, angle axis 21, fixture 22, stepping motor 23, data processing device 3, image processing unit 31, drive unit 32, fiber array 4.
  • Work platform 5 5.
  • this embodiment provides a multi-channel pre-alignment system based on machine vision.
  • the multi-channel pre-alignment system includes: a vision device 1, a displacement device 2 and a data processing device 3, and the displacement device 2 includes at least one angle axis 21.
  • a clamp 22 is installed on the angle shaft 21, and the clamp 22 is used to fix the optical fiber array 4 to be coupled and aligned.
  • the data processing device 3 is configured to issue a drive command to the displacement device 2 to sequentially drive the angle axis 21 to move to the specified axis coordinate position; when the angle axis 21 is at the specified axis coordinate position, the visual device 1 is configured In order to collect the target image of the optical fiber array 4 and send the target image to the data processing device 3; the data processing device 3 is configured to compare a plurality of target images to determine the pre-aligned position of the angle axis 21 and drive the angle axis 21 to move to the pre-aligned position.
  • the driving command can be input through the control interface of the data processing device 3, and the data processing device 3 is configured to change the position of the angle axis 21 according to the driving command.
  • the vision device 1 , the displacement device 2 and the data processing device 3 are all fixed on the same vibration isolation working platform 5 .
  • the angle axis 21 is the Roll axis, wherein the vision device 1 is disposed on the side of the fixture 22 , and the side of the optical fiber array 4 is located within the imaging field of view of the vision device 1 .
  • each designated axis coordinate position corresponds to a target image; the data processing device 3 is specifically configured to acquire the outer edge lines of the target image, determine the intersection points formed by the outer edge lines that intersect each other, and calculate the fitting distance of the intersection points. The data processing device 3 is also specifically configured to compare the fitting distances corresponding to each target image, set the axis coordinate position corresponding to the minimum fitting distance as the pre-aligned position, and drive the angular axis 21 to move to the pre-aligned position .
  • the data processing device 3 is specifically configured to acquire the first outer edge line, the second outer edge line and the third outer edge line of the target image, wherein the first outer edge line and the second outer edge line are The outer edge lines correspond to the side edge lines of the optical fiber array 4 respectively, and the third outer edge line corresponds to the front edge line of the optical fiber array 4 .
  • the fitting distance between the first intersection point and the second intersection point refers to the distance between the first intersection point and the second intersection point.
  • the coordinates of the first intersection point are (Xa, Ya)
  • the coordinates of the second intersection point are (Xb, Yb)
  • the first intersection point is calculated by calculating (Xa, Ya) and (Xb, Yb) distance from the second intersection.
  • the target image collected by the visual device 1 will also change accordingly.
  • the fitting distance and the axis coordinate position can be combined according to a plurality of fitting distances obtained from the target image.
  • One correspondence, the relationship curve between the axis coordinate position and the fitting distance can be obtained.
  • the target image collected by the vision device 1 is exactly one side of the fiber array (the first outer edge line and the second outer edge line are the two edge lines on the same side), indicating that the fiber array is pre-aligned on the Roll axis.
  • the first outer edge line and the second outer edge line correspond to edge lines on different sides of the fiber array respectively, and the fitting distance of the intersection formed by the outer edge lines is greater than Dmin, so the fitting distance can be used as the basis for judging whether the Roll axis is aligned.
  • the data processing device 3 is further configured to compare the fitting distances corresponding to each target image, set the axis coordinate position corresponding to the smallest fitting distance as the pre-alignment position, and drive the angle axis 21 to move to the pre-alignment position.
  • the minimum fitting distance (Dmin as shown in Figure 4) is determined according to the relationship curve between the axis coordinate position and the fitting distance.
  • the visual device 1 includes: a lens 11, a camera 12 and a ring light source 13, the camera 12 is fixed to the rear end of the lens 11 through a standard interface, and the camera 12 is fixed to the front end of the lens 11 through fixing screws,
  • the camera 12 is connected to the data processing device 3 ; the camera 12 is configured to capture a target image and transmit the target image to the data processing device 3 .
  • the vision device 1 further includes a fixing fixture 14 , and the lens 11 is fixed on the working platform 5 by the fixing fixture 14 . Wherein, after the initial installation and debugging of the vision device 1 is completed, the magnification of the lens 11 is no longer adjusted, and the fixed position of the lens 11 is no longer adjusted in other directions except the horizontal direction, so as to ensure the consistency of image acquisition.
  • the data processing device 3 includes: an image processing unit 31 and a driving unit 32, the image processing unit 31 is connected to the visual device 1, and the driving unit 32 is connected to the displacement device 2; the driving unit 32 is configured to drive the angle axis 21 to change positions; the image processing unit 31 Configured to recognize and process target images.
  • the displacement device 2 includes a stepping motor 23, the stepping motor 23 is connected with the angle shaft 21, and the stepping motor 23 is used to control the angle shaft 21 to rotate stepwise within a specified angle range.
  • a drive command is issued through the control interface of the data processing device 3 , and the drive unit 32 transmits the drive command to the stepping motor 23 , and finally moves the angle axis 21 to the specified axis coordinate position according to a certain step.
  • the vision device 1 , the displacement device 2 and the corresponding mechanical fixing structure in this embodiment are all fixed on the same vibration isolation work surface.
  • the magnification and position of the lens 11 are no longer adjusted; if the image is incomplete or blurred due to the deviation of the clamping position on the fiber array 4, the fiber array 4 can only be adjusted by adjusting the transfer fixing structure. Move in the horizontal plane to make the image complete and clear to ensure the consistency of image acquisition with the preset image recognition scheme.
  • a non-contact, non-destructive end-face fast coupling and positioning scheme for automatic coupling of planar waveguides can be realized without multi-axis linkage or real-time monitoring of the optical power value.
  • the optical path coupling of the device using this method can shorten the multi-channel light finding time, and has high consistency.
  • a multi-channel pre-alignment method based on machine vision is provided.
  • the multi-channel pre-alignment method is applied to the multi-channel pre-alignment system of the foregoing embodiment 1.
  • the multi-channel pre-alignment system includes: vision The device 1, the displacement device 2 and the data processing device 3, the displacement device 2 includes at least one angle axis 21, and a clamp 22 is installed on the angle axis 21, and the clamp 22 is used to fix the fiber array 4 to be coupled and aligned.
  • the multi-channel pre-alignment method includes the following steps:
  • Step 101 The data processing device 3 sends a driving instruction to the displacement device 2 to sequentially drive the angle axis 21 to move to the designated axis coordinate position.
  • the data processing device 3 includes: an image processing unit 31 and a driving unit 32.
  • the image processing unit 31 is connected to the visual device 1, and the driving unit 32 is connected to the displacement device 2.
  • the displacement device 2 includes a stepping motor 23.
  • the stepping motor 23 is connected to The angle shaft 21 is connected, and the stepping motor 23 is connected with the drive unit 32 .
  • the stepping motor 23 is configured to receive the drive command from the drive unit 32, and control the angle shaft 21 to step and rotate within a specified angle range according to the drive command
  • Step 102 When the angle axis 21 is at the specified axis coordinate position, the vision device 1 collects the target image of the optical fiber array 4, and sends the target image to the data processing device 3.
  • the visual device 1 includes: a lens 11 , a camera 12 and a ring light source 13 , the camera 12 is fixed to the rear end of the lens 11 through a standard interface, the camera 12 is fixed to the front end of the lens 11 through fixing screws, and the camera 12 is connected to the data processing device 3 ; The camera 12 is configured to collect the target image and transmit the target image to the data processing device 3 .
  • Step 103 The data processing device 3 compares multiple target images to determine the pre-alignment position of the angle shaft 21, and drives the angle shaft 21 to move to the pre-alignment position.
  • the data processing device 3 is specifically configured to acquire the first outer edge line, the second outer edge line and the third outer edge line of the target image, wherein the first outer edge line and the second outer edge line respectively correspond to the optical fiber array
  • the edge lines of the top surface and the bottom surface of 4 corresponds to the edge line of the front end of the optical fiber array 4, the third outer edge line; obtain the first intersection formed by the first outer edge line and the third outer edge line , and the second intersection formed by the second outer edge line and the third outer edge line, calculate the fitting distance between the first intersection point and the second intersection point; Compare the distances, set the axis coordinate position corresponding to the smallest fitting distance as the pre-alignment position, and drive the angle axis 21 to move to the pre-alignment position.
  • the foregoing Embodiment 1 please refer to the foregoing Embodiment 1, which will not be repeated here.
  • the image processing unit 31 compares multiple target images to determine the pre-alignment position of the angle axis 21, and outputs the target coordinates corresponding to the pre-alignment position to the driving unit 32; the driving unit 32 calculates the target The relative distance between the coordinates and the current axis coordinates, and the relative distance is converted into the number of pulses, and the stepping motor 23 is driven according to the number of pulses, so that the angle axis 21 moves to the pre-aligned position.
  • a non-contact, non-destructive end-face fast coupling and positioning scheme for automatic coupling of planar waveguides can be realized without multi-axis linkage or real-time monitoring of the optical power value. Roll axis quick positioning.
  • the optical path coupling of the device using this method can shorten the multi-channel light finding time, and has high consistency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种基于机器视觉的多通道预对准***及多通道预对准方法,该多通道预对准***包括:视觉装置(1)、位移装置(2)和数据处理装置(3),位移装置(2)包括至少一个角度轴(21),角度轴(21)上安装有夹具(22),夹具(22)用于固定待耦合对准的光纤阵列(4);数据处理装置(3)用于向位移装置(2)发出驱动指令,以依次驱动角度轴(21)移动至指定的轴坐标位置;在角度轴(21)处于指定的轴坐标位置时,视觉装置(1)用于采集光纤阵列(4)的目标图像,并将该目标图像发送至数据处理装置(3);数据处理装置(3)用于对多个目标图像进行比较,以确定角度轴(21)的预对准位置,并驱动角度轴(21)移动至预对准位置。这一方法无需多轴联动,无需实时监控光功率值,就可实现的平面波导自动耦合的无接触式、无损端面的快速耦合定位方案

Description

基于机器视觉的多通道预对准***及多通道预对准方法
相关申请的交叉引用
本申请基于申请号为202011583027.X、申请日为2020年12月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于通道对准领域,更具体地,涉及一种基于机器视觉的多通道预对准***及多通道预对准方法。
背景技术
在平面波导耦合中,常用到多通道的光纤阵列,此时通道平面波导与光纤阵列之间需要同时有1个以上的光通道实现光路上位置对准。现有的自动耦合设备解决方法是在单个通道(通常是光纤阵列的首尾通道之一)有光感的情况下,按一定的步进旋转与光纤纤芯平行的角度轴,即Roll轴,并配合水平面直线轴的移动,从而在保持现有通道光感的情况下寻找到另一个目标通道的光感。这个过程牵涉到光纤阵列宽度尺寸、光路通道的间距、角度轴的旋转中心和各轴向补偿移动,对光纤阵列的各项一致性及夹持机械结构的装配容差要求较高,加上光功率同步采集、多个直线轴和角度轴的配合移动,整个找光过程历时较长。
鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本申请提供了一种基于机器视 觉的多通道预对准***及多通道预对准方法,其目的在于在耦合对准过程中,无需多轴联动,也无需实时监控光功率值,就可实现的平面波导自动耦合的无接触式、无损端面的快速耦合定位方案,由此解决目前多通道对准方案中限制约束较多、找光过程历时长的技术问题。
为实现上述目的,按照本申请的一个方面,提供了一种基于机器视觉的多通道预对准***,所述多通道预对准***包括:视觉装置、位移装置和数据处理装置,所述位移装置包括至少一个角度轴,所述角度轴上安装有夹具,所述夹具用于固定待耦合对准的光纤阵列;
所述数据处理装置配置为向所述位移装置发出驱动指令,以依次驱动所述角度轴移动至指定的轴坐标位置;
在所述角度轴处于指定的轴坐标位置时,所述视觉装置配置为采集所述光纤阵列的目标图像,并将该目标图像发送至所述数据处理装置;
所述数据处理装置配置为对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并驱动所述角度轴移动至所述预对准位置。
优选地,每一指定的轴坐标位置对应一个所述目标图像;
所述数据处理装置具体配置为获取所述目标图像的第一外缘线、第二外缘线和第三外缘线,其中,所述第一外缘线和所述第二外缘线分别对应为光纤阵列的侧面边缘线,所述第三外缘线对应为光纤阵列的前端边缘线;
获取所述第一外缘线和所述第三外缘线形成的第一交叉点,以及所述第二外缘线和所述第三外缘线形成的第二交叉点,计算所述第一交叉点和第二交叉点之间的拟合距;
所述数据处理装置具体还配置为对各个所述目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动所述角度轴移动至所述预对准位置。
优选地,所述视觉装置包括:镜头、摄像头和环形光源,所述摄像头 通过标准接口固定在所述镜头的后端,所述摄像头通过固定螺钉固定在镜头的前端,所述摄像头与所述数据处理装置连接;
所述摄像头配置为采集所述目标图像,并将所述目标图像传输给所述数据处理装置。
优选地,所述数据处理装置包括:图像处理单元和驱动单元,所述图像处理单元与所述视觉装置连接,所述驱动单元与所述位移装置连接;
所述驱动单元配置为驱动所述角度轴变换位置;
所述图像处理单元配置为对所述目标图像进行识别和处理。
优选地,所述位移装置包括步进电机,所述步进电机与所述角度轴连接,所述步进电机与所述驱动单元连接,所述步进电机配置为接收所述驱动单元的驱动指令,根据驱动指令控制所述角度轴在指定的角度范围内步进转动。
优选地,所述数据处理装置具体配置为对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并驱动所述角度轴移动至所述预对准位置包括:
所述图像处理单元配置为对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并将所述预对准位置对应的目标坐标输出给所述驱动单元;
所述驱动单元配置为计算所述目标坐标与当前轴坐标的相对间距,并将所述相对间距转换为脉冲数,根据所述脉冲数驱动所述步进电机,使得角度轴移动至所述预对准位置。
优选地,所述角度轴为Roll轴,其中,所述视觉装置设置在所述夹具的侧面,所述光纤阵列的侧面位于所述视觉装置的成像视野内。
按照本申请的另一方面,提供了一种基于机器视觉的多通道预对准方法,所述多通道预对准方法应用于多通道预对准***,所述多通道预对准 ***包括:视觉装置、位移装置和数据处理装置,所述位移装置包括至少一个角度轴,所述角度轴上安装有夹具,所述夹具用于固定待耦合对准的光纤阵列;
所述多通道预对准方法包括:
所述数据处理装置向所述位移装置发出驱动指令,以依次驱动所述角度轴移动至指定的轴坐标位置;
在所述角度轴处于指定的轴坐标位置时,所述视觉装置采集所述光纤阵列的目标图像,并将该目标图像发送至所述数据处理装置;
所述数据处理装置对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并驱动所述角度轴移动至所述预对准位置。
优选地,所述数据处理装置对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并驱动所述角度轴移动至所述预对准位置包括:
所述数据处理装置具体配置为获取所述目标图像的第一外缘线、第二外缘线和第三外缘线,其中,第一外缘线和第二外缘线分别对应为光纤阵列的顶面和底面的边缘线,所述第三外缘线对应为光纤阵列的前端的边缘线;
获取所述第一外缘线和所述第三外缘线形成的第一交叉点,以及所述第二外缘线和所述第三外缘线形成的第二交叉点,计算所述第一交叉点和第二交叉点之间的拟合距;
所述数据处理装置对各个所述目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动所述角度轴移动至所述预对准位置。
优选地,所述数据处理装置包括:图像处理单元和驱动单元,所述图像处理单元与所述视觉装置连接,所述驱动单元与所述位移装置连接,所述位移装置包括步进电机,所述步进电机与所述角度轴连接,所述步进电 机与所述驱动单元连接;
所述数据处理装置对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并驱动所述角度轴移动至所述预对准位置具体包括:
所述图像处理单元对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并将所述预对准位置对应的目标坐标输出给所述驱动单元;
所述驱动单元计算所述目标坐标与当前轴坐标的相对间距,并将所述相对间距转换为脉冲数,根据所述脉冲数驱动所述步进电机,使得角度轴移动至所述预对准位置。
总体而言,通过本申请所构思的以上技术方案与现有技术相比,具有如下有益效果:本申请提供一种基于机器视觉的多通道预对准***及多通道预对准方法,该多通道预对准***包括:视觉装置、位移装置和数据处理装置,所述位移装置包括至少一个角度轴,所述角度轴上安装有夹具,所述夹具用于固定待耦合对准的光纤阵列;所述数据处理装置配置为向所述位移装置发出驱动指令,以依次驱动所述角度轴移动至指定的轴坐标位置;在所述角度轴处于指定的轴坐标位置时,所述视觉装置配置为采集所述光纤阵列的目标图像,并将该目标图像发送至所述数据处理装置;所述数据处理装置配置为对多个所述目标图像进行比较,以确定所述角度轴的预对准位置,并驱动所述角度轴移动至所述预对准位置。
在本申请中,无需多轴联动,也无需实时监控光功率值,就可实现的平面波导自动耦合的无接触式、无损端面的快速耦合定位方案,适用于平面波导与光纤阵列耦合时的Roll轴快速定位。采用该方法的器件光路耦合可缩短多通道找光时间,并且一致性较高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅 是本申请的一些实施例,对于本领域普通技术人员来讲,在不无需多轴联动,也无需实时监控光功率值,就可实现的平面波导自动耦合的无接触式、无损端面的快速耦合定位方案付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种基于机器视觉的多通道预对准***的结构示意图;
图2是本申请实施例提供的另一种基于机器视觉的多通道预对准***的结构示意图;
图3是本申请实施例提供的图2中视觉装置1所采集到的目标图像;
图4是本申请实施例提供的图2中角度轴处于不同指定的轴坐标位置时,所采集到的目标图像示意图;
图5是本申请实施例提供的通道对准过程示意图;
图6是本申请实施例提供的一种基于机器视觉的多通道预对准***的流程示意图。
其中,附图标记为:
视觉装置1,镜头11,摄像头12,环形光源13,固定夹具14,位移装置2,角度轴21,夹具22,步进电机23,数据处理装置3,图像处理单元31,驱动单元32,光纤阵列4,工作平台5。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不 应当理解为对本申请的限制。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
参阅图1,本实施例提供一种基于机器视觉的多通道预对准***,多通道预对准***包括:视觉装置1、位移装置2和数据处理装置3,位移装置2包括至少一个角度轴21,角度轴21上安装有夹具22,夹具22用于固定待耦合对准的光纤阵列4。
在实际使用过程中,数据处理装置3配置为向位移装置2发出驱动指令,以依次驱动角度轴21移动至指定的轴坐标位置;在角度轴21处于指定的轴坐标位置时,视觉装置1配置为采集光纤阵列4的目标图像,并将该目标图像发送至数据处理装置3;数据处理装置3配置为对多个目标图像进行比较,以确定角度轴21的预对准位置,并驱动角度轴21移动至预对准位置。
其中,可以通过数据处理装置3的控制界面输入驱动指令,数据处理装置3配置为根据驱动指令变换角度轴21的位置。
其中,视觉装置1、位移装置2和数据处理装置3都固定在同一隔振工作平台5上。
角度轴21为Roll轴,其中,视觉装置1设置在夹具22的侧面,光纤阵列4的侧面位于视觉装置1的成像视野内。
具体地,每一指定的轴坐标位置对应一个目标图像;数据处理装置3具体配置为获取目标图像的外缘线,确定两两相交的外缘线形成的交叉点,计算交叉点的拟合距;数据处理装置3具体还配置为对各个目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动角度轴21移动至预对准位置。
在一具体实施例中,参阅图3,数据处理装置3具体配置为获取目标图像的第一外缘线、第二外缘线和第三外缘线,其中,第一外缘线和第二外缘线分别对应为光纤阵列4的侧面边缘线,第三外缘线对应为光纤阵列4的前端边缘线。
然后,获取第一外缘线和第三外缘线形成的第一交叉点,以及第二外缘线和第三外缘线形成的第二交叉点,计算第一交叉点和第二交叉点之间的拟合距;其中,第一交叉点和第二交叉点之间的拟合距指的是第一交叉点和第二交叉点之间的距离。如图3所示,第一交叉点的坐标为(Xa,Ya),第二交叉点的坐标为(Xb,Yb),通过计算(Xa,Ya)和(Xb,Yb)计算第一交叉点和第二交叉点之间的距离。
结合图4,当角度轴21的轴坐标位置发生改变时,视觉装置1所采集到的目标图像也会相应改变,可以根据目标图像得到的多个拟距,将拟合距与轴坐标位置一一对应,可以得到轴坐标位置和拟合距之间的关系曲线。在本实施例中,结合图4,当角度轴处于“最小的拟合距Dmin对应的轴坐标位置”时,视觉装置1所采集到的目标图像正好是光纤阵列的一个侧面(第一外缘线和第二外缘线是同一个侧面的两个边缘线),说明光纤阵列在Roll轴上预对准。如果光纤阵列在Roll轴上没有预对准,则第一外缘线和第二外缘线分别对应光纤阵列的不同侧面上的边缘线,此时外缘线形成的交叉点的拟合距大于Dmin,因此可以根据拟合距作为Roll轴是否对准的判断依据。
数据处理装置3具体还配置为对各个目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动角度轴21移动至预对准位置。具体地,根据轴坐标位置和拟合距之间的关系曲线确定最小的拟合距(如图所示4的Dmin)。
在本实施例中,结合图2,视觉装置1包括:镜头11、摄像头12和环 形光源13,摄像头12通过标准接口固定在镜头11的后端,摄像头12通过固定螺钉固定在镜头11的前端,摄像头12与数据处理装置3连接;摄像头12配置为采集目标图像,并将目标图像传输给数据处理装置3。视觉装置1还包括固定夹具14,通过固定夹具14将镜头11固定在工作平台5上。其中,视觉装置1初次安装调试完成后,不再调整镜头11倍率,除水平方向之外不再在其他各方向调整镜头11的固定位置,以保证图像采集的一致性。
数据处理装置3包括:图像处理单元31和驱动单元32,图像处理单元31与视觉装置1连接,驱动单元32与位移装置2连接;驱动单元32配置为驱动角度轴21变换位置;图像处理单元31配置为对目标图像进行识别和处理。
进一步地,位移装置2包括步进电机23,步进电机23与角度轴21连接,步进电机23用于控制角度轴21在指定的角度范围内步进转动。在实际应用场景下,通过数据处理装置3的控制界面发出驱动指令,驱动单元32将驱动指令传递给步进电机23,最终使角度轴21按照一定的步进移动到指定的轴坐标位置。
在此,需要说明的是,本实施例的视觉装置1、位移装置2及相应的机械固定结构,都固定在同一隔振工作台面上。视觉装置1初次安装调试完成后,不再调整镜头11倍率和位置;如有因光纤阵列4上夹位置的偏差所造成的成像不完整或成像模糊,只通过调整转接固定结构让光纤阵列4在水平面移动来使成像完整并清晰,以保证图像采集与预设的图像识别方案的一致性。
在实际应用场景下,分立的两组相同间距的波导,如芯片波导和光纤阵列,它们在完成光路耦合前,两者波导截面的中心连线可能会存在角度(如图5所示的初始状态)。要实现多通道的波导一一对准,需将两组波导 的截面中心连线调整为平行,即,在一组波导固定的情况下,另一组波导进行Roll轴的角度调节(如图5所示的Roll轴调整后)。Roll轴调整到位后,只需通过任一通道的XY方位的调整,就可最终实现多通道光路的耦合。因此对芯片同侧进出的Loop波导,以及因芯片倒装或者其他无法可视到波导位置的情况,通过本实施例的方案可以实现快速定位对准。
在本申请中,无需多轴联动,也无需实时监控光功率值,就可实现的平面波导自动耦合的无接触式、无损端面的快速耦合定位方案,适用于平面波导与光纤阵列耦合时的Roll轴快速定位。采用该方法的器件光路耦合可缩短多通道找光时间,并且一致性较高。
实施例2:
在本实施例中,提供了一种基于机器视觉的多通道预对准方法,多通道预对准方法应用于前述实施例1的多通道预对准***,多通道预对准***包括:视觉装置1、位移装置2和数据处理装置3,位移装置2包括至少一个角度轴21,角度轴21上安装有夹具22,夹具22用于固定待耦合对准的光纤阵列4。
参阅图6,多通道预对准方法包括如下步骤:
步骤101:数据处理装置3向位移装置2发出驱动指令,以依次驱动角度轴21移动至指定的轴坐标位置。
其中,数据处理装置3包括:图像处理单元31和驱动单元32,图像处理单元31与视觉装置1连接,驱动单元32与位移装置2连接,位移装置2包括步进电机23,步进电机23与角度轴21连接,步进电机23与驱动单元32连接。
步进电机23配置为接收驱动单元32的驱动指令,根据驱动指令控制角度轴21在指定的角度范围内步进转动
步骤102:在角度轴21处于指定的轴坐标位置时,视觉装置1采集光 纤阵列4的目标图像,并将该目标图像发送至数据处理装置3。
其中,视觉装置1包括:镜头11、摄像头12和环形光源13,摄像头12通过标准接口固定在镜头11的后端,摄像头12通过固定螺钉固定在镜头11的前端,摄像头12与数据处理装置3连接;摄像头12配置为采集目标图像,并将目标图像传输给数据处理装置3。
步骤103:数据处理装置3对多个目标图像进行比较,以确定角度轴21的预对准位置,并驱动角度轴21移动至预对准位置。
具体地,数据处理装置3具体配置为获取目标图像的第一外缘线、第二外缘线和第三外缘线,其中,第一外缘线和第二外缘线分别对应为光纤阵列4的顶面和底面的边缘线,第三外缘线对应为光纤阵列4的前端的边缘线,第三外缘线;获取第一外缘线和第三外缘线形成的第一交叉点,以及第二外缘线和第三外缘线形成的第二交叉点,计算第一交叉点和第二交叉点之间的拟合距;数据处理装置3对各个目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动角度轴21移动至预对准位置。该步骤的具体实现过程请详见前述实施例1,在此不再赘述。
在实际应用场景下,图像处理单元31对多个目标图像进行比较,以确定角度轴21的预对准位置,并将预对准位置对应的目标坐标输出给驱动单元32;驱动单元32计算目标坐标与当前轴坐标的相对间距,并将相对间距转换为脉冲数,根据脉冲数驱动步进电机23,使得角度轴21移动至预对准位置。
在本申请中,无需多轴联动,也无需实时监控光功率值,就可实现的平面波导自动耦合的无接触式、无损端面的快速耦合定位方案,适用于平面波导与光纤阵列4耦合时的Roll轴快速定位。采用该方法的器件光路耦合可缩短多通道找光时间,并且一致性较高。
本领域的技术人员容易理解,以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于机器视觉的多通道预对准***,所述多通道预对准***包括:视觉装置(1)、位移装置(2)和数据处理装置(3),所述位移装置(2)包括至少一个角度轴(21),所述角度轴(21)上安装有夹具(22),所述夹具(22)用于固定待耦合对准的光纤阵列(4);
    所述数据处理装置(3)配置为向所述位移装置(2)发出驱动指令,以依次驱动所述角度轴(21)移动至指定的轴坐标位置;
    在所述角度轴(21)处于指定的轴坐标位置时,所述视觉装置(1)配置为采集所述光纤阵列(4)的目标图像,并将该目标图像发送至所述数据处理装置(3);
    所述数据处理装置(3)配置为对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并驱动所述角度轴(21)移动至所述预对准位置。
  2. 根据权利要求1所述的多通道预对准***,其中,每一指定的轴坐标位置对应一个所述目标图像;
    所述数据处理装置(3)具体配置为获取所述目标图像的第一外缘线、第二外缘线和第三外缘线,其中,所述第一外缘线和所述第二外缘线分别对应为光纤阵列(4)的侧面边缘线,所述第三外缘线对应为光纤阵列(4)的前端边缘线;
    获取所述第一外缘线和所述第三外缘线形成的第一交叉点,以及所述第二外缘线和所述第三外缘线形成的第二交叉点,计算所述第一交叉点和第二交叉点之间的拟合距;
    所述数据处理装置(3)具体还配置为对各个所述目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动所述角度轴(21)移动至所述预对准位置。
  3. 根据权利要求1所述的多通道预对准***,其中,所述视觉装置(1)包括:镜头(11)、摄像头(12)和环形光源(13),所述摄像头(12)通过标准接口固定在所述镜头(11)的后端,所述摄像头(12)通过固定螺钉固定在镜头(11)的前端,所述摄像头(12)与所述数据处理装置(3)连接;
    所述摄像头(12)配置为采集所述目标图像,并将所述目标图像传输给所述数据处理装置(3)。
  4. 根据权利要求1所述的多通道预对准***,其中,所述数据处理装置(3)包括:图像处理单元(31)和驱动单元(32),所述图像处理单元(31)与所述视觉装置(1)连接,所述驱动单元(32)与所述位移装置(2)连接;
    所述驱动单元(32)配置为驱动所述角度轴(21)变换位置;
    所述图像处理单元(31)配置为对所述目标图像进行识别和处理。
  5. 根据权利要求4所述的多通道预对准***,其中,所述位移装置(2)包括步进电机(23),所述步进电机(23)与所述角度轴(21)连接,所述步进电机(23)与所述驱动单元(32)连接,所述步进电机(23)配置为接收所述驱动单元(32)的驱动指令,根据驱动指令控制所述角度轴(21)在指定的角度范围内步进转动。
  6. 根据权利要求5所述的多通道预对准***,其中,所述数据处理装置(3)具体配置为对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并驱动所述角度轴(21)移动至所述预对准位置包括:
    所述图像处理单元(31)配置为对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并将所述预对准位置对应的目标坐标输出给所述驱动单元(32);
    所述驱动单元(32)配置为计算所述目标坐标与当前轴坐标的相对间距,并将所述相对间距转换为脉冲数,根据所述脉冲数驱动所述步进电机(23),使得角度轴(21)移动至所述预对准位置。
  7. 根据权利要求1所述的多通道预对准***,其中,所述角度轴(21)为Roll轴,其中,所述视觉装置(1)设置在所述夹具(22)的侧面,所述光纤阵列(4)的侧面位于所述视觉装置(1)的成像视野内。
  8. 一种基于机器视觉的多通道预对准方法,所述多通道预对准方法应用于多通道预对准***,所述多通道预对准***包括:视觉装置(1)、位移装置(2)和数据处理装置(3),所述位移装置(2)包括至少一个角度轴(21),所述角度轴(21)上安装有夹具(22),所述夹具(22)用于固定待耦合对准的光纤阵列(4);
    所述多通道预对准方法包括:
    所述数据处理装置(3)向所述位移装置(2)发出驱动指令,以依次驱动所述角度轴(21)移动至指定的轴坐标位置;
    在所述角度轴(21)处于指定的轴坐标位置时,所述视觉装置(1)采集所述光纤阵列(4)的目标图像,并将该目标图像发送至所述数据处理装置(3);
    所述数据处理装置(3)对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并驱动所述角度轴(21)移动至所述预对准位置。
  9. 根据权利要求8所述的多通道预对准方法,其中,所述数据处理装置(3)对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并驱动所述角度轴(21)移动至所述预对准位置包括:
    所述数据处理装置(3)具体配置为获取所述目标图像的第一外缘线、第二外缘线和第三外缘线,其中,第一外缘线和第二外缘线分别对应为 光纤阵列(4)的顶面和底面的边缘线,所述第三外缘线对应为光纤阵列(4)的前端的边缘线;
    获取所述第一外缘线和所述第三外缘线形成的第一交叉点,以及所述第二外缘线和所述第三外缘线形成的第二交叉点,计算所述第一交叉点和第二交叉点之间的拟合距;
    所述数据处理装置(3)对各个所述目标图像所对应的拟合距进行比较,设置最小的拟合距对应的轴坐标位置为预对准位置,并驱动所述角度轴(21)移动至所述预对准位置。
  10. 根据权利要求8所述的多通道预对准方法,其中,所述数据处理装置(3)包括:图像处理单元(31)和驱动单元(32),所述图像处理单元(31)与所述视觉装置(1)连接,所述驱动单元(32)与所述位移装置(2)连接,所述位移装置(2)包括步进电机(23),所述步进电机(23)与所述角度轴(21)连接,所述步进电机(23)与所述驱动单元(32)连接;
    所述数据处理装置(3)对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并驱动所述角度轴(21)移动至所述预对准位置具体包括:
    所述图像处理单元(31)对多个所述目标图像进行比较,以确定所述角度轴(21)的预对准位置,并将所述预对准位置对应的目标坐标输出给所述驱动单元(32);
    所述驱动单元(32)计算所述目标坐标与当前轴坐标的相对间距,并将所述相对间距转换为脉冲数,根据所述脉冲数驱动所述步进电机(23),使得角度轴(21)移动至所述预对准位置。
PCT/CN2021/083884 2020-12-28 2021-03-30 基于机器视觉的多通道预对准***及多通道预对准方法 WO2022141863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011583027.X 2020-12-28
CN202011583027.XA CN112764172B (zh) 2020-12-28 2020-12-28 基于机器视觉的多通道预对准***及多通道预对准方法

Publications (1)

Publication Number Publication Date
WO2022141863A1 true WO2022141863A1 (zh) 2022-07-07

Family

ID=75696489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083884 WO2022141863A1 (zh) 2020-12-28 2021-03-30 基于机器视觉的多通道预对准***及多通道预对准方法

Country Status (2)

Country Link
CN (1) CN112764172B (zh)
WO (1) WO2022141863A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237640B (zh) * 2021-07-12 2022-03-01 南京光智元科技有限公司 一种光耦合测试方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030113069A1 (en) * 2001-12-17 2003-06-19 Sang-Ho Kim Optical fiber alignment system
CN101498816A (zh) * 2009-02-13 2009-08-05 中南大学 一种波导器件高精度自动对准封装的机械装置
CN103513335A (zh) * 2013-10-09 2014-01-15 中南大学 一种基于耦合模型的阵列波导器件对准方法与装置
CN108646353A (zh) * 2018-04-28 2018-10-12 北京航空航天大学 一种基于图像处理的光纤-波导自动对准耦合仪
CN110441030A (zh) * 2019-07-24 2019-11-12 武汉光迅科技股份有限公司 一种平面波导类器件的通道对准***及通道对准方法
CN112083526A (zh) * 2019-06-14 2020-12-15 云晖科技有限公司 光学子组件结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028348A1 (en) * 2002-03-15 2004-02-12 Marie-Claude Cote Method and apparatus for assembling optical devices
CN1245646C (zh) * 2002-06-13 2006-03-15 武汉光迅科技有限责任公司 波导器件自动耦合封装及角度补偿扫描方法
CN1245647C (zh) * 2002-06-13 2006-03-15 武汉光迅科技有限责任公司 光波导器件和光纤阵列的自动对准及其通道能量均衡方法
CN101419311B (zh) * 2008-11-11 2010-12-22 北京大学 一种保偏光纤侧视图像匹配对轴方法及其装置
CN103592722B (zh) * 2013-08-22 2015-08-05 浙江大学 一种熊猫型保偏光纤侧视对轴装置及方法
CN104007522B (zh) * 2014-05-26 2016-02-17 上海大学 全自动plc分路器耦合封装***和方法
CN104122633B (zh) * 2014-07-10 2015-09-23 中南大学 一种光波导芯片与光纤角度自动对准装置及方法
EP3379307B9 (en) * 2016-01-25 2021-10-27 Nippon Telegraph and Telephone Corporation Alignment device and alignment method
CN111596425A (zh) * 2020-06-23 2020-08-28 中国计量大学 一种用于准直器对光的自动对光***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030113069A1 (en) * 2001-12-17 2003-06-19 Sang-Ho Kim Optical fiber alignment system
CN101498816A (zh) * 2009-02-13 2009-08-05 中南大学 一种波导器件高精度自动对准封装的机械装置
CN103513335A (zh) * 2013-10-09 2014-01-15 中南大学 一种基于耦合模型的阵列波导器件对准方法与装置
CN108646353A (zh) * 2018-04-28 2018-10-12 北京航空航天大学 一种基于图像处理的光纤-波导自动对准耦合仪
CN112083526A (zh) * 2019-06-14 2020-12-15 云晖科技有限公司 光学子组件结构
CN110441030A (zh) * 2019-07-24 2019-11-12 武汉光迅科技股份有限公司 一种平面波导类器件的通道对准***及通道对准方法

Also Published As

Publication number Publication date
CN112764172A (zh) 2021-05-07
CN112764172B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN106271044B (zh) 激光打标机以及ccd同轴光路定位方法
CN101856773B (zh) 一种激光加工初始位置的对焦定位方法
WO2016090661A1 (zh) 一种透镜阵列和pd阵列高精度对准贴片装置及其对准方法
CN102699359A (zh) 微小车床对刀装置及方法
CN111965192A (zh) 一种多面成像的视觉检测***及检测方法
RU2713074C1 (ru) Устройство формирования микроскопических изображений с помощью зеркала и система и способ калибровки положения микроиглы
CN102445329B (zh) 一种连续变焦镜头的光轴的快速确定方法
WO2022141863A1 (zh) 基于机器视觉的多通道预对准***及多通道预对准方法
WO2019076159A1 (zh) 光学模组组装设备及方法
CN105372856A (zh) 一种基于机械手臂检测大屏面板的多工位对位方法及装置
WO2019076160A1 (zh) 光学模组组装设备及方法
CN112596165A (zh) 一种光纤波导阵列自动耦合装置
CN106154420A (zh) 一种光纤熔接方法及光纤熔接机
CN115086525B (zh) 摄像头模组组装方法、装置、设备及计算机可读存储介质
JP5998707B2 (ja) 光部品の光軸調整方法及び光軸調整装置
CN111598836A (zh) 一种基于机器视觉的光纤位置和角度调整的***及方法
CN107121727A (zh) 光纤熔接机纤芯识别光学及成像***
US11846560B2 (en) Automatic leveling system
CN113671634A (zh) 用于对准多个透镜元件的***及方法
KR20160129651A (ko) 카메라 모듈 조립장치
WO2019080344A1 (zh) 一种光组件耦合装置及其使用方法
CN116314470A (zh) 薄膜太阳能电池的加工方法和控制方法及装置
CN212483393U (zh) 一种多面成像的视觉检测设备
WO2022021917A1 (zh) 一种光路耦合方法、装置及存储介质
CN114089369A (zh) 三维激光定位投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912633

Country of ref document: EP

Kind code of ref document: A1