WO2019076160A1 - 光学模组组装设备及方法 - Google Patents

光学模组组装设备及方法 Download PDF

Info

Publication number
WO2019076160A1
WO2019076160A1 PCT/CN2018/104388 CN2018104388W WO2019076160A1 WO 2019076160 A1 WO2019076160 A1 WO 2019076160A1 CN 2018104388 W CN2018104388 W CN 2018104388W WO 2019076160 A1 WO2019076160 A1 WO 2019076160A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembled
lens
spot
aligned
alignment
Prior art date
Application number
PCT/CN2018/104388
Other languages
English (en)
French (fr)
Inventor
董南京
孙德波
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/753,304 priority Critical patent/US11253962B2/en
Publication of WO2019076160A1 publication Critical patent/WO2019076160A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0061Gripping heads and other end effectors multiple gripper units or multiple end effectors mounted on a modular gripping structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41805Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • B23P19/102Aligning parts to be fitted together using remote centre compliance devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/008Gripping heads and other end effectors with sticking, gluing or adhesive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45067Assembly

Definitions

  • the present invention relates to the field of assembly technology, and in particular, to an optical module assembly apparatus and method.
  • optical modules with independent functions in the market to meet the diverse market demand.
  • These optical modules can be embedded in other devices to perform their functions, such as camera modules, micro projection modules, LED (Light Emitting Diode) optical modules, and VR (Virtual Reality)/AR (Augmented Reality) , augmented reality) optical modules, etc.
  • an optical module is assembled from a plurality of optical components and other components.
  • the camera module can be assembled from components such as an image sensor, a lens holder, a plurality of lenses, and a circuit board.
  • the assembly accuracy of the lens plays a decisive role in the optical performance of the optical module.
  • an imaging spot of an optical module in an assembly process and/or an image thereof is obtained by an image acquisition device, and the lenses are all aligned according to the collected imaging results, and The position of the lens to be assembled is constantly adjusted without alignment.
  • aspects of the present invention provide an optical module assembly apparatus and method for solving the problem of insufficient efficiency in the active alignment process of an optical module lens.
  • the invention provides an optical module assembly device, comprising:
  • a plurality of fixing members for respectively fixing a plurality of optical members to be assembled, for respectively placing a plurality of lenses to be assembled at a specified position of the plurality of optical components to be assembled to obtain a plurality of pairs of optical modules to be aligned a quasi-mechanism, and a power supply assembly for supplying power to the plurality of optical modules to be aligned;
  • a light-splitting prism adjacent to the plurality of optical modules to be aligned, a first image capturing device adjacent to the first light-emitting surface of the beam splitting prism and coaxial with the first light-emitting surface, and near the splitting a second image capturing device coaxial with the second light emitting surface and coaxial with the second light emitting surface; the first image capturing device and the second image capturing device are respectively configured to collect the plurality of to be aligned opticals The position and size of the plurality of imaging spots corresponding to the module are fed back to the controller;
  • the controller is configured to determine a spot that does not meet the quality requirement according to the position and/or size of the plurality of imaging spots and generate a corresponding alignment instruction, and determine the non-compliance quality requirement according to the correspondence between the lens to be assembled and the spot Corresponding lens corresponding to the lens to be assembled as an adjusted lens to be assembled, and outputting the alignment command to an alignment mechanism for clamping the lens to be assembled to be adjusted to adjust the position of the lens to be assembled to be adjusted .
  • the method further includes: a positive lens disposed between the first image capturing device and the dichroic prism and coaxial with the first image capturing device.
  • the positive lens comprises: an aspherical positive lens.
  • the beam splitting prism comprises two right-angle prisms glued by a beveled surface, and the cemented surface is coated with a transflective film having a transmittance and a reflectivity of 1:1.
  • the alignment mechanism comprises: a first mechanical arm electrically connected to the controller, an integrated mechanism disposed on the first mechanical arm, and a plurality of alignment heads integrated on the integrated mechanism.
  • the dispensing mechanism comprising a second mechanical arm electrically connected to the controller and a UV dispensing syringe fixed to the second mechanical arm;
  • the mechanism is configured to perform a dispensing operation on the plurality of optical components to be assembled according to the dispensing instruction of the controller.
  • the dispensing mechanism further includes a third image capture device secured to the second robot arm.
  • the alignment mechanism is respectively provided with a UV lamp electrically connected to the controller.
  • each of the plurality of fixing members is provided with a sensor for detecting whether the optical member to be assembled is placed on the fixing member.
  • the invention also provides an assembly method suitable for the optical module assembly device provided by the invention, comprising:
  • Controlling the alignment mechanism to respectively place a plurality of lenses to be assembled to a plurality of specified positions of the optical components to be assembled to obtain a plurality of optical modules to be aligned;
  • the corresponding relationship between the lens to be assembled and the spot is established by: controlling an alignment mechanism that clamps the lens to be assembled to perform movement; The first image capture device and/or the second image capture device determine a spot that dynamically changes with movement of the alignment mechanism; the dynamically changing spot is used as a spot corresponding to the lens to be assembled.
  • a plurality of sets of optical modules to be aligned are simultaneously added to the assembly process, and in the process of assembly, the corresponding relationship between the spot and the lens to be assembled is established in advance, and the position of the spot is collected by using an image acquisition device during the alignment process. And size. Further, the controller can distinguish, according to the position and/or size of the spot and the corresponding relationship between the spot and the lens to be assembled, which lenses to be assembled in the optical module to be aligned need further alignment and how to align, and generate an alignment instruction. Controlling the corresponding alignment mechanism for alignment movement greatly improves the assembly efficiency of the optical module.
  • FIG. 1a is a schematic structural diagram of an optical module assembly apparatus according to an embodiment of the present invention.
  • 1b is a schematic diagram of an image including a spot and an optical module to be aligned according to an embodiment of the present invention
  • 2a is a schematic diagram of an image captured by a first image acquisition device including an imaging spot and an optical module to be aligned;
  • 2b is a schematic diagram of an image including an imaging spot captured by a second image capturing device
  • FIG. 3 is a schematic structural diagram of an optical module assembly apparatus according to another embodiment of the present invention.
  • FIG. 4a is a schematic structural diagram of an alignment mechanism 11 according to an embodiment of the present invention.
  • FIG. 4b is another schematic structural diagram of the alignment mechanism 11 according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a dispensing mechanism 18 according to an embodiment of the invention.
  • FIG. 6 is a flow chart of a method for assembling an optical module according to an embodiment of the invention.
  • the optical module refers to a complete product after alignment and fixing;
  • the optical module to be aligned refers to an optical module during assembly, and It may be in a misaligned state or in an aligned state;
  • the optical component to be assembled refers to the semi-finished product of the optical module, and the optical alignment of the assembly to be assembled needs to be assembled at its designated position and fixed before the optical mode can be obtained. group.
  • the position of the lens to be assembled in the optical module to be aligned can be adjusted in real time according to the imaging effect of the optical module to be aligned.
  • the present invention provides an optical module assembly apparatus as shown in FIG. 1a.
  • FIG. 1 is a schematic structural diagram of an optical module assembly apparatus according to an embodiment of the present invention. Referring to FIG. 1a, the apparatus includes:
  • a plurality of fixing members 10 for respectively fixing a plurality of optical members to be assembled, for respectively placing a plurality of lenses to be assembled at a specified position of the plurality of optical members to be assembled to obtain alignment of the plurality of optical modules to be aligned
  • a mechanism 11 and a power supply assembly 12 for supplying power to the plurality of optical modules to be aligned; and the light-emitting surface S i is adjacent to the plurality of light-splitting prisms 13 of the optical module to be aligned, and the first light-emitting portion near the light-splitting prism 13 S o 1 and the surface of the first light emitting surface S o 1 coaxial with the first image capture device 14, and the dichroic prism 13 near the second surface 2 and S o S o and the second light emitting surface of the second coaxial 2 Image acquisition device 15.
  • the first image capturing device 14 and the second image capturing device 15 are respectively configured to collect the positions and sizes of the plurality of imaging spots corresponding to the plurality of optical modules to be aligned, and feed back to the controller 16; the controller 16 is configured to Determining a spot that does not meet the quality requirement according to the position and/or size of the plurality of imaging spots and generating a corresponding alignment instruction, and determining a lens to be assembled corresponding to the spot that does not meet the quality requirement according to the correspondence relationship between the lens to be assembled and the spot Adjusting the lens to be assembled, and outputting the alignment command to the alignment mechanism that holds the lens to be assembled to be adjusted to adjust the position of the lens to be assembled to be adjusted.
  • the position of the imaging spot refers to the center point of the image spot relative to the image of the optical module to be aligned in the image of the optical module to be aligned and the imaging spot thereof captured by the first image capturing device 14 .
  • A1 ⁇ A3 is an indication of the lens to be assembled
  • B1 ⁇ B3 is included in the optical component to be assembled.
  • An illustration of a mirror, C1 ⁇ C3, is an illustration of a light source device or an external light source device inside the optical component to be assembled
  • D is an illustration of a mirror for changing the direction of the light path.
  • Group i to be aligned The optical module can be mainly composed of Ai and Bi, where i is an integer and i is greater than zero.
  • FIG. 1a the present invention is illustrated in FIG. 1a by taking three sets of optical modules to be aligned as an example, but the apparatus provided by the present invention includes but is not limited to the simultaneous assembly of three sets of optical modules to be aligned.
  • the object side light source can pass through the optical module to be aligned.
  • the light that has passed through the dichroic prism 13 is split into two beams by the beam splitting surface of the beam splitting prism 13, and the two beams of light are respectively propagated in different directions.
  • the beam splitting prism 13 may be formed by gluing the beveled faces of two right-angle prisms, and the glued surface is plated with a transflective film having a transmittance and a reflectivity of 1:1.
  • the light incident from the dichroic prism light surface S i 13 may be divided into a dielectric film by two half-intensity beams of light close to a direction perpendicular to the light beam.
  • the light beam reflected by the transflective film can be transmitted from the first light-emitting surface S o 1
  • the light beam transmitted through the transflective film can be transmitted through the second light-emitting surface S o 2 .
  • the first image capturing device 14 and the second image capturing device 15 can respectively capture images within their viewing angle range.
  • the alignment of the lenses to be assembled includes the lenses to be assembled for the optical components to be assembled in the three axial directions of XYZ.
  • the Z-axis coordinate may represent the distance between the lens to be assembled and the center point of the optical component to be assembled
  • the X and Y-axis coordinates represent the up, down, left, and right offsets of the lens to be assembled with respect to the optical component to be assembled.
  • the controller 16 can capture the imaging spot including the optical module to be aligned according to the first image capturing device 14 and the pair to be An image of the quasi-optical module analyzes the up, down, left, and right positions of the lens to be assembled in the optical module to be aligned relative to the optical component to be assembled.
  • FIG. 1b illustrates an image of the optical module to be aligned and its imaging spot captured by the first image acquisition device 14. In the XY plane shown in FIG. 1b, the spot is on the lower right of the image of the optical module to be aligned. . If the center of the image of the optical module to be aligned is the alignment reference point, the position of the spot may indicate that the lens to be assembled is not aligned.
  • the controller 16 may analyze the to-be-aligned optics according to the size of the spot displayed in the image of the imaging spot including the optical spot to be aligned captured by the second image capturing device 15 .
  • the controller 16 may generate a corresponding alignment command and send the alignment command to the lens to be assembled.
  • the alignment mechanism is such that the alignment mechanism 11 performs a three-axis or six-axis motion to adjust the position of the lens to be assembled.
  • the controller 16 can control the corresponding alignment mechanism 11 to move in the X or Y direction to continuously adjust the lens to be assembled. The position until the requirements are met.
  • the controller 16 can control the corresponding alignment mechanism 11 to move in the Z direction to continuously adjust the position of the lens to be assembled until it is satisfied.
  • the controller 16 when performing the assembly operation of the plurality of sets of modules to be assembled at the same time, in order to ensure that the controller 16 can identify the spot corresponding to each set of the optical modules to be aligned and perform correct alignment control, the embodiment After the imaging of the plurality of sets of to-be-aligned optical modules, the correspondence between the spot and the optical lens to be assembled may be established in advance before the alignment is started. For the first to-be-assembled lens of the plurality of lenses to be assembled, the controller 16 can control the first alignment mechanism that clamps the first lens to be assembled to move.
  • the spot serves as a spot corresponding to the first lens to be assembled.
  • the first lens to be assembled may be any one of a plurality of lenses to be assembled, and is merely for convenience of description, and does not limit the order or position of the lenses. It should be understood that the correspondence between each of the plurality of lenses to be assembled and the spot can be established through the above process, and will not be described again.
  • the controller 16 may further analyze whether the lens to be assembled in the optical module to be aligned corresponding to the spot is aligned according to the position and/or size of the spot, and if not, generate corresponding
  • the alignment command is sent to the alignment mechanism that holds the lens to be assembled. Furthermore, the alignment mechanism can be moved to adjust the position of the lens to be assembled until the position and size of the spot meet the set requirements.
  • the spot 1 of the check mark corresponds to the lens A1 to be assembled in FIG. 1a
  • the spot 2 of the vertical stripe corresponds to the lens A2 to be assembled in FIG. 1a
  • the spot 3 corresponding to the diagonal stripe is mapped.
  • the first image capturing device 14 captures three spots and an image of the optical module to be aligned. From FIG. 2a, the center points of the three spots and the image of the optical module to be aligned can be analyzed. The positional relationship.
  • the second image acquisition device 15 captures three spots, from which the size of each of the three spots can be analyzed.
  • the alignment command may be generated according to the position and/or size of the spot 1, and the alignment command is output to the lens to be assembled.
  • the alignment mechanism of A1 adjusts the position of the lens A1 to be assembled.
  • an alignment command may be generated according to the position and/or size of the spot 2, and the alignment command is output to the clamp.
  • the alignment mechanism of the lens A2 to be assembled is to adjust the position of the lens A2 to be assembled.
  • the first image capturing device 14 and the beam splitting prism 13 can be disposed.
  • the distance is between, the distance is appropriately increased to make the distance satisfy the requirement of the first image capturing device 14 to capture the optical module to be aligned.
  • the embodiment may be disposed between the first image capturing device 14 and the dichroic prism 13.
  • a positive lens 17 having positive power can assist in expanding the field of view of the first image capture device 14.
  • the positive lens 17 may be a single lens or a lens group.
  • the positive lens 17 may include an aspherical lens that allows the spot captured by the first image capture device 14 to have a smaller spherical aberration, thereby more accurately analyzing the spot to be aligned. The relative position of the optical module.
  • the plurality of fixing members 10 may be a vacuum holding member or a size adjustable jig.
  • Each of the plurality of fixing members 10 can respectively fix the optical member to be assembled placed thereon, ensuring that the optical assembly to be assembled is accurately placed at a specified position on the turntable.
  • each of the fixing members may be provided with a sensor for detecting whether or not the optical member to be assembled is placed thereon.
  • a pressure sensor can be provided at the bottom of the fixture, and if the optics to be assembled have been placed on the fixture, the pressure sensor can detect a change in pressure and send the pressure change to the controller 16.
  • an infrared or ultrasonic sensor may be provided on the fixture, and if the optics to be assembled have been placed on the fixture, the infrared or ultrasonic sensor may detect a change in the time difference of the transceiving signal and send the change to the controller 16.
  • the control 16 can determine whether there is an optical component to be assembled on the fixing member according to the signal sent by the above sensor, thereby generating a corresponding work instruction to prevent the alignment mechanism 11, the dispensing mechanism 18 or other mechanism from generating a vacant operation.
  • the alignment mechanism 11 can include multiple independent alignment mechanisms to meet the needs of simultaneously assembling multiple sets of optical modules.
  • the alignment mechanism 11 can also include a plurality of integrated alignment heads.
  • the alignment mechanism 11 includes a first robot arm electrically connected to the controller 16, an integrated mechanism disposed on the first robot arm, and a plurality of alignment heads integrated on the integration mechanism.
  • the first robot arm can perform three-axis motion in the X, Y, and Z directions according to the control command of the controller 16, and the plurality of alignment heads on the integrated mechanism can also independently perform X, Y, Three-axis motion in the Z direction.
  • the first robot arm can move the lens to be assembled from the loading rack to the working position of the alignment mechanism 11, and the plurality of alignment heads on the integrated mechanism can respectively place the captured lens to be assembled to its theoretical position.
  • the first robot arm and the plurality of alignment heads on the integrated mechanism can also perform six-axis motion (X, Y, Z, ⁇ X, ⁇ Y, and ⁇ Z) under the control command of the controller 16 or even other multi-axis required.
  • six-axis motion X, Y, Z, ⁇ X, ⁇ Y, and ⁇ Z
  • the embodiment further includes a dispensing mechanism 18.
  • the dispensing mechanism 18 can perform a dispensing operation on the optics to be assembled. In the dispensing operation, the dispensing mechanism 18 can drop a specific glue onto the optical component to be assembled by smearing, potting or dripping, so that the dispensing has a certain viscosity, and then the lens is aligned after being assembled. The lens to be assembled finally obtains the finished optical module.
  • the dispensing mechanism 18 can perform a dispensing operation before or after alignment of the lens to be assembled, and the embodiment does not limit its order.
  • the dispensing mechanism 18 includes a second robot arm electrically connected to the controller, and a UV dispensing syringe fixed to the second robot arm.
  • the second robot arm can drive the UV dispensing syringe to the designated dispensing position under the control of the controller 16, and perform the dispensing operation by the UV dispensing syringe.
  • UV (Ultraviolet Rays) glue is stored in the UV dispensing syringe, that is, the shadowless glue, also known as photosensitive glue or ultraviolet curing glue, which has high adhesion and rapid curing, and can indirectly improve the assembly efficiency of the optical module.
  • a third image capturing device is also fixed on the second robot arm.
  • the third image capture device can capture the actual image of the optics to be assembled prior to dispensing and send the captured image to the controller 16.
  • the controller 16 identifies based on the received image, determines the dispensing location and sends a specific dispensing command to the dispensing mechanism 18.
  • a UV lamp may be disposed on the alignment mechanism 11 , and the UV lamp is electrically connected to the controller 16 and can receive a curing instruction of the controller 16 to illuminate after the lens to be assembled is aligned. To accelerate the curing of UV glue and improve the assembly efficiency of the optical module.
  • the power supply assembly 12 can supply power to the optical module to be aligned to image the optical module to be aligned.
  • a light source device such as a semi-finished product of the micro-projection module, is disposed in some of the optical modules to be aligned. After the light source device is lit, it can be imaged on the image side of the optical module to be aligned.
  • the optical module assembly device provided in this embodiment further includes A light source device.
  • the light source device is located on the object side of the optical module to be aligned, and parallel light can be generated to image the optical module to be aligned.
  • the light source device can be coupled to a power supply assembly and its switch state can be controlled by controller 16.
  • multiple sets of to-be-aligned optical modules are simultaneously added to the assembly process, and in the process of assembly, the corresponding relationship between the spot and the lens to be assembled is established in advance, and the image spotting device is used to collect the spot position during the alignment process. And size. Further, the controller can distinguish, according to the position and/or size of the spot and the corresponding relationship between the spot and the lens to be assembled, which lenses to be assembled in the optical module to be aligned need further alignment and how to align, and generate an alignment instruction. Controlling the corresponding alignment mechanism for alignment movement greatly improves the assembly efficiency of the optical module.
  • the unassembled optical module is imaged, and the splitting prism and the two sets of image capturing devices are respectively obtained in two different directions.
  • the image formed by the image and/or the optical module, and the controller can determine whether the lens to be assembled is aligned in the three axial directions according to the imaging results collected by the two sets of image acquisition devices, and In the case of alignment, the alignment mechanism is continuously controlled to drive the lens to be assembled for position adjustment.
  • the above-mentioned three-axis simultaneous feedback alignment process effectively reduces the assembly tolerance of the entire optical module, improves the assembly precision of the optical module, and effectively ensures the optical performance of the optical module.
  • FIG. 6 is a flowchart of a method for assembling an optical module according to an embodiment of the present invention. Referring to FIG. 6, the method includes:
  • Step 601 The control alignment mechanism respectively places the plurality of lenses to be assembled at a specified position of the plurality of optical components to be assembled to obtain a plurality of optical modules to be aligned.
  • Step 602 The control power component supplies power to the plurality of to-be-aligned optical modules to image the plurality of to-be-aligned optical modules.
  • Step 603 The first image capturing device and the second image capturing device respectively collect the positions and sizes of the plurality of imaging spots corresponding to the plurality of optical modules to be aligned, and feed back to the controller.
  • Step 604 Determine, according to the position and/or size of the plurality of imaging spots, a spot that does not meet the quality requirement and generate a corresponding alignment instruction, and determine the spot that does not meet the quality requirement according to the corresponding relationship between the lens to be assembled and the spot.
  • the corresponding lens to be assembled is used as the lens to be assembled to be adjusted.
  • Step 605 Output the alignment command to an alignment mechanism that clamps the lens to be assembled that needs to be adjusted to adjust a position of the lens to be assembled that needs to be adjusted.
  • the correspondence between the lens to be assembled and the spot is established by: controlling, for any one of the plurality of lenses to be assembled, the alignment mechanism that clamps the lens to be assembled to move;
  • the image capture device and/or the second image capture device determine a spot that dynamically changes with movement of the alignment mechanism; the dynamically changing spot is used as a spot corresponding to the lens to be assembled.
  • the alignment mechanism movements of the clamps A1, A2, and A3 may be sequentially controlled in sequence, and sequentially captured to change as the alignment mechanism moves.
  • the spot which in turn establishes the correspondence between the spot and the lens to be assembled.
  • the controller before or after the alignment of the lens to be assembled, can control the dispensing mechanism to point the UV glue at a specified position of the optical module to be aligned. After the alignment is completed, the controller can control the UV lamp on the alignment mechanism to illuminate to illuminate the dispensing site, thereby accelerating the curing of the UV glue and improving assembly efficiency.
  • multiple sets of to-be-aligned optical modules are simultaneously added to the assembly process, and in the process of assembly, the corresponding relationship between the spot and the lens to be assembled is established in advance, and the image spotting device is used to collect the spot position during the alignment process. And size. Further, the controller can distinguish, according to the position and/or size of the spot and the corresponding relationship between the spot and the lens to be assembled, which lenses to be assembled in the optical module to be aligned need further alignment and how to align, and generate an alignment instruction. Controlling the corresponding alignment mechanism for alignment movement greatly improves the assembly efficiency of the optical module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光学模组组装设备及方法,包括:多个固定件(10)、对准机构(11)、电源组件(12);入光面(S i)靠近多个待对准光学模组的分光棱镜(13)、靠近分光棱镜(13)的第一出光面(So1)的第一图像采集设备(14)、以及靠近分光棱镜(13)的第二出光面(So2)的第二图像采集设备(15);第一图像采集设备(14)和第二图像采集设备(15)分别用于采集多个待对准光学模组对应的多个成像光斑的位置及大小;控制器(16)用于根据多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定不符合质量要求的光斑对应的待组装镜片作为需调整的待组装镜片,并将对准指令输出至夹持需调整的待组装镜片的对准机构(11)。

Description

光学模组组装设备及方法
交叉引用
本申请引用于2017年10月17日递交的名称为“光学模组组装设备及方法”的第2017109673566号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及装配技术领域,尤其涉及一种光学模组组装设备及方法。
背景技术
现如今,市场上存在越来越多的具备独立功能的光学模组,以满足多样化的市场需求。这些光学模组可以嵌入到其他设备中发挥其功能,例如摄像头模组、微型投影模组、LED(Light Emitting Diode,发光二极管)光学模组以及VR(Virtual Reality,虚拟现实)/AR(Augmented Reality,增强现实)光学模组等。
通常,光学模组由多个光学元件以及其他零件组装得到。例如,摄像头模组可由图像传感器、镜座、多个镜片、线路板等零配件组装得到。其中,镜片的组装精度对光学模组的光学性能起到决定性的作用。在一种光学模组的组装方式中,通过图像采集装置获取组装过程中的光学模组的成像光斑和/或其本身的像,根据采集到的成像结果分析镜片是否均已对准,并在没有对准的情况下不断调整待组装镜片的位置。
但是,上述根据成像结果主动对准光学模组镜片的方式仍然存在不够高效的缺陷。
发明内容
本发明的多个方面提供一种光学模组组装设备及方法,用以解决光学模组镜片的主动对准过程存在的不够高效的缺陷。
本发明提供一种光学模组组装设备,包括:
用于分别固定多个待组装光学件的多个固定件、用于将多个待组装镜片分别放置到所述多个待组装光学件的指定位置处以得到多个待对准光学模组的对准机构,以及用于给所述多个待对准光学模组供电的电源组件;
入光面靠近所述多个待对准光学模组的分光棱镜、靠近所述分光棱镜的第一出光面且与所述第一出光面同轴的第一图像采集设备,以及靠近所述分光棱镜的第二出光面且与所述第二出光面同轴的第二图像采集设备;所述第一图像采集设备和所述第二图像采集设备分别用于采集所述多个待对准光学模组对应的多个成像光斑的位置及大小,并反馈至控制器;
所述控制器用于根据所述多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定所述不符合质量要求的光斑对应的待组装镜片作为调整的待组装镜片,并将所述对准指令输出至夹持所述需调整的待组装镜片的对准机构,以调整所述需调整的待组装镜片的位置。
进一步可选地,还包括:设于所述第一图像采集设备与所述分光棱镜之间,且与所述第一图像采集设备同轴的正透镜。
进一步可选地,所述正透镜包括:非球面正透镜。
进一步可选地,所述分光棱镜包括斜棱面胶合的两个直角棱镜,且胶合面上镀有透射率和反射率为1:1的半透半反介质膜。
进一步可选地,所述对准机构包括:与所述控制器电连接的第一机械臂,设于所述第一机械臂上的集成机构,所述集成机构上集成有多个对准头。
进一步可选地,还包括点胶机构;所述点胶机构包括与所述控制器电连接的第二机械臂以及固定在所述第二机械臂上的UV点胶针筒;所述点胶机构用于根据所述控制器的点胶指令分别向所述多个待组装光学件执行点胶操作。
进一步可选地,所述点胶机构还包括固定在所述第二机械臂上的第三图像采集设备。
进一步可选地,所述对准机构上分别设有与所述控制器电连接的UV灯。
进一步可选地,所述多个固定件中的每一固定件上均设有用于检测所述固定件上是否放置待组装光学件的传感器。
本发明还提供一种适用于本发明提供的光学模组组装设备的组装方法,包括:
控制对准机构将多个待组装镜片分别放置到多个待组装光学件的指定位置处,以得到多个待对准光学模组;
控制电源组件给所述多个待对准光学模组供电,以使所述多个待对准光学模组成像;
通过第一图像采集设备和所述第二图像采集设备分别采集所述多个待对准光学模组对应的多个成像光斑的位置及大小,并反馈至控制器;
根据所述多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定所述不符合质量要求的光斑对应的待组装镜片作为需调整的待组装镜片;
将所述对准指令输出至夹持所述需调整的待组装镜片的对准机构,以调整所述需调整的待组装镜片的位置。
进一步可选地,针对多个待组装镜片中的任一待组装镜片,所述待组装镜片与光斑的对应关系通过如下步骤建立:控制夹持所述待组装镜片的对准机构进行运动;通过第一图像采集设备和/或第二图像采集设备确定随着所述对准机构的运动而动态变化的光斑;将所述动态变化的光斑作为与所述待组装镜片对应的光斑。
在本发明中,同时将多组待对准光学模组加入组装进程,在组装的过程中,预先建立光斑与待组装镜片的对应关系,并在对准的过程中采用图像采集设备采集光斑位置及大小。进而控制器可根据光斑的位置和/或大小以及光斑与待组装镜片的对应关系,区分出哪些待对准光学模组中的待组装镜片需要进一步对准及如何对准,并生成对准指令控制相应的对准机构进行对准运动,极大提升了光学模组的组装效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明一实施例提供的光学模组组装设备的结构示意图;
图1b为本发明一实施例提供的包含光斑以及待对准光学模组的图像的一示意图;
图2a为第一图像采集设备拍摄到的包含成像光斑及待对准光学模组的图像的一示意图;
图2b为第二图像采集设备拍摄到的包含成像光斑的图像的一示意图;
图3为本发明另一实施例提供的光学模组组装设备的结构示意图;
图4a为本发明实施例提供的对准机构11的一结构示意图;
图4b为本发明实施例提供的对准机构11的另一结构示意图;
图5为发明实施例提供的点胶机构18的一结构示意图;
图6为发明一实施例提供的光学模组组装方法的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明的下述实施例中,光学模组指的是对准完成并固定后的完整产品;待对准光学模组,指的是组装过程中的光学模组,其可能处于未对准状态,也可能处于已对准状态;待组装光学件,指的是光学模组的半成品,需要将待组装光学对准组装在其指定的位置并固定后才能够得到光学模 组。以下所提到的上述概念,可参照上述解释进行理解,不再追逐。
在一种光学模组的组装方式中,可根据待对准光学模组的成像效果实时调整待对准光学模组中的待组装镜片的位置。当存在需同时组装的多个待对准光学模组时,需要依次点亮待对准光学模组的物方的光源,并依次对镜片进程对准操作,这样的操作过程效率较低。为解决上述缺陷,本发明提供了如图1a所示的光学模组组装设备。
图1a为本发明一实施例提供的光学模组组装设备的结构示意图,结合图1a,该设备包括:
用于分别固定多个待组装光学件的多个固定件10、用于将多个待组装镜片分别放置到多个待组装光学件的指定位置处以得到多个待对准光学模组的对准机构11,以及用于给多个待对准光学模组供电的电源组件12;以及,入光面S i靠近多个待对准光学模组的分光棱镜13、靠近分光棱镜13的第一出光面S o1且与第一出光面S o1同轴的第一图像采集设备14,以及靠近分光棱镜13的第二出光面S o2且与第二出光面S o2同轴的第二图像采集设备15。
其中,第一图像采集设备14和第二图像采集设备15分别用于采集多个待对准光学模组对应的多个成像光斑的位置及大小,并反馈至控制器16;控制器16用于根据多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定不符合质量要求的光斑对应的待组装镜片作为需调整的待组装镜片,并将对准指令输出至夹持需调整的待组装镜片的对准机构,以调整需调整的待组装镜片的位置。
其中,成像光斑的位置,是指在第一图像采集设备14拍摄到的包含待对准光学模组及其成像光斑的图像中,成像光斑相对于待对准光学模组的像的中心点的上下左右位置,如图1b所示。
需要说明的是,在图1a的虚线框内,除所标注的固定件10、对准机构11以及电源组件12之外,A1ˉA3是待组装镜片的一种示意,B1ˉB3是待组装光学件所包含的反射镜的一种示意,C1ˉC3是待组装光学件内部的光源设备或外部光源设备的一种示意,D是用于改变光路方向的反射镜的一种示意。第i组待对准 光学模组主要可由Ai与Bi组成,其中,i为整数,且i大于零。当然,应当理解的是,上述包括Ai、Bi、Ci、D的光路结构示意仅仅是为了便于说明本发明的技术方案,其对本发明的本质不构成限制。当光学模组内部结构或功能产生变化时,此部分光路结构应随之变化,不再赘述。除此之外,图1a中以三组待对准光学模组为例对本发明进行图示,但本发明提供的设备并包括但不仅限于三组待对准光学模组的同时组装。
针对每一组待对准光学模组而言,物方光源点亮时,物方光源可经待对准光学模组透出。透出的光,经分光棱镜13后,被分光棱镜13的分光面分成两束,且这两束光分别朝着不同方向传播。
可选地,在本实施例中,分光棱镜13可由两个直角棱镜的斜棱面胶合而成,且胶合面上镀有透射率和反射率为1:1的半透半反介质膜。进而,从分光棱镜13的入光面S i入射的光线,可经半透半反介质膜分成两束光强接近、方向垂直的光束。其中,经半透半反介质膜反射的光束可从第一出光面S o1透出,经半透半反介质膜透射的光束可经第二出光面S o2透出。进而,第一图像采集设备14和第二图像采集设备15可分别拍摄到其视角范围内的图像。
应当理解的是,为保证光学模组的光学性能,在每一组光学模组的组装过程中,待组装镜片的对准包括待组装镜片针对待组装光学件在XYZ三个轴向上分别对准。其中,Z轴坐标可表示待组装镜片和待组装光学件的中心点之间的距离,X、Y轴坐标表示待组装镜片相对于待组装光学件的上下左右偏移量。
以一组待对准光学模组为例,在一种可行的实施方式中,控制器16可根据第一图像采集设备14拍摄到的包含该待对准光学模组的成像光斑以及该待对准光学模组的图像,分析该待对准光学模组中的待组装镜片相对于待组装光学件的上下左右位置。图1b示意了第一图像采集设备14拍摄到的包含有待对准光学模组及其成像光斑的图像,在图1b所示的XY平面中,光斑在待对准光学模组的像的右下方。若以待对准光学模组的像的中心为对准参考点,则光斑的位置可表征待组装镜片并未对准。
在一种可行的实施方式中,控制器16可根据第二图像采集设备15拍摄到 的包含该待对准光学模组的成像光斑的图像中所展示的光斑的大小,分析该待对准光学模组中的待组装镜片的中心点相对于待组装光学件的中心点的距离。
在确定待组装镜片相对于待组装光学件的上下左右位置及其中心点之间的距离后,控制器16可生成相应的对准指令,并将该对准指令发送至夹持该待组装镜片的对准机构,以使对准机构11进行三轴或六轴运动以调整待组装镜片的位置。
可选的,当待组装镜片相对于待组装光学件的上下左右位置不满足预设要求时,控制器16可控制相应的对准机构11在X或Y方向上运动,以不断调整待组装镜片的位置直至满足要求。当待组装镜片与待组装光学件的中心点之间的距离不满足预设要求时,控制器16可控制相应的对准机构11在Z方向上运动,以不断调整待组装镜片的位置直至满足要求。
可选的,当同时执行多组待组装学模组的组装操作时,为保证控制器16能够识别出每一组待对准光学模组对应的光斑并进行正确的对准控制,本实施例中,在多组待对准光学模组成像之后,开始对准之前,可预先建立光斑与待组装光学镜片的对应关系。针对多个待组装镜片中的第一待组装镜片,控制器16可控制夹持该第一待组装镜片的第一对准机构进行运动。随着该第一对准机构的运动,第一图像采集设备14和/或第二图像采集设备15反馈至控制器16的图像中,会有光斑动态变化,此时,可将该动态变化的光斑作为与第一待组装镜片对应的光斑。其中,第一待组装镜片可以是多个待组装镜片中的任一镜片,此处仅仅是为了便于描述,并不对镜片的顺序或位置做任何限定。应当理解,多个待组装镜片中的每一个待组装镜片与光斑的对应关系均可通过上述过程建立,不再赘述。
针对每个光斑,控制器16可进一步根据该光斑的位置和/或大小,分析与该光斑对应的待对准光学模组中的待组装镜片是否已对准,若没有对准,则生成相应的对准指令,并将该对准指令发送至夹持该待组装镜片的对准机构。进而,该对准机构可进行运动以调整该待组装镜片的位置直至光斑的位置和大小均满足设定要求。
如图2a以及图2b所示,假设格纹标识的光斑1对应图1a中的待组装镜片A1,竖条纹标识的光斑2对应图1a中的待组装镜片A2,斜条纹标识的光斑3对应图1a中的待组装镜片A3。在图2a中,第一图像采集设备14拍摄到了三个光斑以及待对准光学模组的像,从图2a中,可以分析出三个光斑分别与待对准光学模组的像的中心点的位置关系。在图2b中,第二图像采集设备15拍摄到了三个光斑,从图2b中可以分析出三个光斑各自的大小。若控制器16根据光斑1的位置和/或大小确定光斑1不符合质量要求,则可根据光斑1的位置和/或大小生成对准指令,并将该对准指令输出至夹持待组装镜片A1的对准机构以调整待组装镜片A1的位置。同理,若控制器16根据光斑2的位置和/或大小确定光斑2不符合质量要求,则可根据光斑2的位置和/或大小生成对准指令,并将该对准指令输出至夹持待组装镜片A2的对准机构以调整待组装镜片A2的位置。
可选的,为确保第一图像采集设备14不仅能够拍摄到待对准光学模组的成像光斑,还能够拍摄到待对准光学模组,可在设置第一图像采集设备14与分光棱镜13之间的距离时,适当增大该距离以使该距离满足第一图像采集设备14拍摄待对准光学模组的需求。
可选的,为缩小设备体积并保证第一图像采集设备14对待对准光学模组的拍摄质量,如图3所示,本实施例可在第一图像采集设备14与分光棱镜13之间设置正透镜17,其中,正透镜17与第一图像采集设备14同轴。进而,具有正光焦度的正透镜17可以辅助扩大第一图像采集设备14的视场角。可选的,正透镜17可以是一个单透镜,也可以是透镜组。
在一可选实施方式中,正透镜17可以包括一非球面透镜,非球面透镜可以使得第一图像采集设备14拍摄到的光斑具有更小的球差,进而更精确地分析光斑与待对准光学模组的相对位置。
在本发明实施例中,多个固定件10可以是真空吸持件或可尺寸调节的夹具。多个固定件10中的每个固定件可分别固定放置于其上的待组装光学件,确保待组装光学组件精确地放置在转盘上的指定的位置处。
可选的,每一固定件上均可设有用于检测其上是否放置待组装光学件的传 感器。例如,可在固定件的底部设压力传感器,若固定件上已放置待组装光学件,则压力传感器可检测到压力变化并将该压力变化发送至控制器16。例如,可在固定件上设红外或超声波传感器,若固定件上已放置待组装光学件,则红外或超声波传感器可检测到收发信号的时间差的改变,并将该改变发送至控制器16。控制16可根据上述传感器发送的信号判断固定件上是否有待组装光学件,进而可生成相应的作业指令,避免对准机构11、点胶机构18或其他机构产生空操作。
可选的,对准机构11可以包括与多个独立的对准机构,以满足同时组装多组光学模组的需求。可选的,对准机构11也可包括多个集成的对准头。当包括多个集成的对准头时,对准机构11包括:与控制器16电连接的第一机械臂,设于第一机械臂上的集成机构,集成机构上集成有多个对准头。如图4a以及图4b所示,第一机械臂可根据控制器16的控制指令进行X、Y、Z方向上的三轴运动,集成机构上的多个对准头也可独立进行X、Y、Z方向上的三轴运动。第一机械臂可将待组装镜片从上料架搬移至对准机构11的作业位置,集成机构上的多个对准头可分别将所抓取的待组装镜片放置到其理论位置。当然,第一机械臂以及集成机构上的多个对准头也可以在控制器16的控制指令下进行六轴运动(X,Y,Z,θX,θY,及θZ)甚至所需的其他多轴向运动,本发明实施例对此不作限制。
在一可选实施方式中,如图1a以及图3所示,本实施例还包括点胶机构18。点胶机构18可向待组装光学件执行点胶操作。在点胶操作中,点胶机构18可将特定的胶水通过涂抹、灌封或点滴的方式滴到待组装光学件上,使得点胶处具有一定粘性,进而在待组装镜片对准后,固定该待组装镜片,最终得到光学模组成品。点胶机构18可以在待组装镜片对准之前或对准之后执行点胶操作,本实施例对其顺序不做限制。
在本实施例中,如图5所示,点胶机构18包括:与控制器电连接的第二机械臂,以及固定在第二机械臂上的UV点胶针筒。第二机械臂可在控制器16的控制下,带动UV点胶针筒至指定的点胶位置,并由UV点胶针筒执行点胶操作。 其中,UV点胶针筒中存放有UV(Ultraviolet Rays)胶,即无影胶,又称光敏胶或紫外光固化胶,其粘结度高,固化迅速,可间接提升光学模组的组装效率。
可选的,如图5所示,为确保点胶机构18能够在正确的位置点胶,第二机械臂上还固设有第三图像采集设备。第三图像采集设备可在点胶之前拍摄待组装光学件的实际图像,并将拍摄到的图像发送至控制器16。控制器16根据接收到的图像进行识别,确定点胶处并发送具体的点胶指令至点胶机构18。
可选的,本实施例中还可在对准机构11上设一UV灯,该UV灯与控制器16电连接,并且可接收控制器16的固化指令,在待组装镜片对准后点亮,以加速UV胶的固化,提升光学模组的组装效率。
在一可选实施方式中,电源组件12,可向待对准光学模组供电,以使待对准光学模组成像。可选的,根据光学模组的性能不同,在一些待对准光学模组中设有光源设备,例如微投影模组的半成品。光源设备点亮后,可在待对准光学模组的像方成像。
应当理解的是,针对不设有光源设备的待对准光学模组,例如摄像头模组的半成品,为使这类待对准光学模组成像,本实施例提供的光学模组组装设备还包括一光源设备。可选的,针对待对准光学模组,光源设备位于该待对准光学模组的物方,可产生平行光使得待对准光学模组成像。该光源设备可与电源组件连接,其开关状态可由控制器16进行控制。
本实施例中,同时将多组待对准光学模组加入组装进程,在组装的过程中,预先建立光斑与待组装镜片的对应关系,并在对准的过程中采用图像采集设备采集光斑位置及大小。进而控制器可根据光斑的位置和/或大小以及光斑与待组装镜片的对应关系,区分出哪些待对准光学模组中的待组装镜片需要进一步对准及如何对准,并生成对准指令控制相应的对准机构进行对准运动,极大提升了光学模组的组装效率。
除此之外,在本实例中,针对每一组待对准光学模组,通过使未组装完成的光学模组成像,并采用分光棱镜以及两组图像采集设备分别在两个不同方向获取其所成的像以和/或光学模组的像,进而控制器可以根据两组图像采集设备 采集到的成像结果确定待组装镜片在三个轴向上是否均已对准,并在没有对准的情况下不断控制对准机构带动待组装镜片进行位置调整。上述三轴向同时反馈的对准过程,有效地减小整个光学模组的装配公差,提升了光学模组的组装精度,有效确保了光学模组的光学性能。
图6是本发明一实施例提供的光学模组组装方法的方法流程图,结合图6,该方法包括:
步骤601、控制对准机构将多个待组装镜片分别放置到多个待组装光学件的指定位置处,以得到多个待对准光学模组。
步骤602、控制电源组件给所述多个待对准光学模组供电,以使所述多个待对准光学模组成像。
步骤603、通过第一图像采集设备和所述第二图像采集设备分别采集所述多个待对准光学模组对应的多个成像光斑的位置及大小,并反馈至控制器。
步骤604、根据所述多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定所述不符合质量要求的光斑对应的待组装镜片作为需调整的待组装镜片。
步骤605、将所述对准指令输出至夹持所述需调整的待组装镜片的对准机构,以调整所述需调整的待组装镜片的位置。
在步骤604中,待组装镜片与光斑的对应关系通过如下步骤建立:针对多个待组装镜片中的任一待组装镜片,控制夹持所述待组装镜片的对准机构进行运动;通过第一图像采集设备和/或第二图像采集设备确定随着所述对准机构的运动而动态变化的光斑;将所述动态变化的光斑作为与所述待组装镜片对应的光斑。例如,针对图1a以及图3所示的待组装镜片A1ˉA3,可按照顺序,依次分别控制夹持A1、A2以及A3的对准机构运动,并依次捕获随着对准机构的运动而发生变化的光斑,进而建立光斑和待组装镜片的对应关系。
在本实施例中,在待组装镜片的对准之前或对准之后,控制器可控制点胶机构可以在待对准光学模组的指定位置处点UV胶。在对准完成之后,控制器可控制对准机构上的UV灯点亮以对点胶处进行照射,进而加速UV胶的固化,提 升组装效率。
在实施例中,同时将多组待对准光学模组加入组装进程,在组装的过程中,预先建立光斑与待组装镜片的对应关系,并在对准的过程中采用图像采集设备采集光斑位置及大小。进而控制器可根据光斑的位置和/或大小以及光斑与待组装镜片的对应关系,区分出哪些待对准光学模组中的待组装镜片需要进一步对准及如何对准,并生成对准指令控制相应的对准机构进行对准运动,极大提升了光学模组的组装效率。
需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (11)

  1. 一种光学模组组装设备,其特征在于,包括:
    用于分别固定多个待组装光学件的多个固定件、用于将多个待组装镜片分别放置到所述多个待组装光学件的指定位置处以得到多个待对准光学模组的对准机构,以及用于给所述多个待对准光学模组供电的电源组件;
    入光面靠近所述多个待对准光学模组的分光棱镜、靠近所述分光棱镜的第一出光面且与所述第一出光面同轴的第一图像采集设备,以及靠近所述分光棱镜的第二出光面且与所述第二出光面同轴的第二图像采集设备;所述第一图像采集设备和所述第二图像采集设备分别用于采集所述多个待对准光学模组对应的多个成像光斑的位置及大小,并反馈至控制器;
    所述控制器用于根据所述多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定所述不符合质量要求的光斑对应的待组装镜片作为需调整的待组装镜片,并将所述对准指令输出至夹持所述需调整的待组装镜片的对准机构,以调整所述需调整的待组装镜片的位置。
  2. 根据权利要求1所述的组装设备,其特征在于,还包括:设于所述第一图像采集设备与所述分光棱镜之间,且与所述第一图像采集设备同轴的正透镜。
  3. 根据权利要求2所述的组装设备,其特征在于,所述正透镜包括:非球面正透镜。
  4. 根据权利要求1所述的设备,其特征在于,所述分光棱镜包括斜棱面胶合的两个直角棱镜,且胶合面上镀有透射率和反射率为1:1的半透半反介质膜。
  5. 根据权利要求1-4中任一项所述的设备,其特征在于,所述对准机构包括:
    与所述控制器电连接的第一机械臂,设于所述第一机械臂上的集成机构,所述集成机构上集成有多个对准头。
  6. 根据权利要求1-4中任一项所述的组装设备,其特征在于,还包括点胶机构;
    所述点胶机构包括与所述控制器电连接的第二机械臂以及固定在所述第二机械臂上的UV点胶针筒;
    所述点胶机构用于根据所述控制器的点胶指令分别向所述多个待组装光学件执行点胶操作。
  7. 根据权利要求6所述的设备,其特征在于,所述点胶机构还包括固定在所述第二机械臂上的第三图像采集设备。
  8. 根据权利要求5所述的设备,其特征在于,所述对准机构上分别设有与所述控制器电连接的UV灯。
  9. 根据权利要求1-4中任一项所述的设备,其特征在于,
    所述多个固定件中的每一固定件上均设有用于检测所述固定件上是否放置待组装光学件的传感器。
  10. 一种适用于权利要求1-9中任一项所述的光学模组组装设备的组装方法,其特征在于,包括:
    控制对准机构将多个待组装镜片分别放置到多个待组装光学件的指定位置处,以得到多个待对准光学模组;
    控制电源组件给所述多个待对准光学模组供电,以使所述多个待对准光学模组成像;
    通过第一图像采集设备和所述第二图像采集设备分别采集所述多个待对准光学模组对应的多个成像光斑的位置及大小,并反馈至控制器;
    根据所述多个成像光斑的位置和/或大小确定不符合质量要求的光斑并生成相应的对准指令,以及根据待组装镜片与光斑的对应关系确定所述不符合质量要求的光斑对应的待组装镜片作为需调整的待组装镜片;
    将所述对准指令输出至夹持所述需调整的待组装镜片的对准机构,以调整所述需调整的待组装镜片的位置。
  11. 根据权利要求10所述的方法,其特征在于,针对多个待组装镜片中的任一待组装镜片,所述待组装镜片与光斑的对应关系通过如下步骤建立:
    控制夹持所述待组装镜片的对准机构进行运动;
    通过第一图像采集设备和/或第二图像采集设备确定随着所述对准机构的运动而动态变化的光斑;
    将所述动态变化的光斑作为与所述待组装镜片对应的光斑。
PCT/CN2018/104388 2017-10-17 2018-09-06 光学模组组装设备及方法 WO2019076160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/753,304 US11253962B2 (en) 2017-10-17 2018-09-06 Apparatus and method for assembling optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710967356.6 2017-10-17
CN201710967356.6A CN107649875B (zh) 2017-10-17 2017-10-17 光学模组组装设备及方法

Publications (1)

Publication Number Publication Date
WO2019076160A1 true WO2019076160A1 (zh) 2019-04-25

Family

ID=61118387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104388 WO2019076160A1 (zh) 2017-10-17 2018-09-06 光学模组组装设备及方法

Country Status (3)

Country Link
US (1) US11253962B2 (zh)
CN (1) CN107649875B (zh)
WO (1) WO2019076160A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589514A (zh) * 2017-10-17 2018-01-16 歌尔股份有限公司 光学模组组装方法及装置
CN107649875B (zh) * 2017-10-17 2024-05-10 歌尔光学科技有限公司 光学模组组装设备及方法
CN107855767B (zh) * 2017-10-17 2024-06-07 歌尔光学科技有限公司 光学模组组装设备及方法
CN108683898B (zh) * 2018-05-31 2020-10-09 歌尔股份有限公司 彩色汇聚误差的修正方法、装置及设备
CN112945520B (zh) * 2019-12-11 2023-07-04 余姚舜宇智能光学技术有限公司 投射器组装设备及其组装方法
CN114810762B (zh) * 2022-04-06 2024-07-05 江西联坤智能科技有限公司 光引擎装配设备及装配方法
CN117191198B (zh) * 2023-11-07 2024-01-23 四川中久大光科技有限公司 光束质量实时监测装置及其应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794096A (zh) * 2006-01-06 2006-06-28 上海微电子装备有限公司 一种自动对准装置
US8857029B2 (en) * 2010-01-21 2014-10-14 Olympus Corporation Mounting apparatus and mounting method
CN107649875A (zh) * 2017-10-17 2018-02-02 歌尔股份有限公司 光学模组组装设备及方法
CN107855767A (zh) * 2017-10-17 2018-03-30 歌尔股份有限公司 光学模组组装设备及方法
CN207663158U (zh) * 2017-10-17 2018-07-27 歌尔股份有限公司 光学模组组装设备
CN207663157U (zh) * 2017-10-17 2018-07-27 歌尔股份有限公司 光学模组组装设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365598B2 (ja) * 1995-08-31 2003-01-14 富士通株式会社 光モジュール組立体の製造方法および製造装置
CN101165597B (zh) * 2007-10-11 2010-04-14 上海微电子装备有限公司 对准***及使用该***的光刻装置
CN102564301B (zh) * 2011-12-29 2014-07-09 中国科学院长春光学精密机械与物理研究所 一种用于点衍射干涉仪针孔对准的装置和方法
US10293441B2 (en) * 2013-12-19 2019-05-21 Isolution Co., Ltd. Apparatus and method for aligning optical axes of lenses and assembling camera module
CN103712573B (zh) * 2013-12-27 2016-04-20 华南师范大学 双通道干涉测量中面阵图像传感器的空间匹配校正方法
CN105721859B (zh) * 2014-12-03 2018-05-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN104930971B (zh) * 2015-06-12 2017-05-24 浙江大学 非零位检测中部分补偿透镜和被测面对准装置及对准方法
US10356967B2 (en) * 2015-10-16 2019-07-16 Gallery Blocks Llc Method for manufacturing an image display
CN105721753B (zh) * 2016-03-29 2020-06-23 联想(北京)有限公司 镜头组装方法和镜头组装装置
CN106773484A (zh) * 2016-12-28 2017-05-31 广东威创视讯科技股份有限公司 一种能快速调节和对准dmd光斑的投影机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794096A (zh) * 2006-01-06 2006-06-28 上海微电子装备有限公司 一种自动对准装置
US8857029B2 (en) * 2010-01-21 2014-10-14 Olympus Corporation Mounting apparatus and mounting method
CN107649875A (zh) * 2017-10-17 2018-02-02 歌尔股份有限公司 光学模组组装设备及方法
CN107855767A (zh) * 2017-10-17 2018-03-30 歌尔股份有限公司 光学模组组装设备及方法
CN207663158U (zh) * 2017-10-17 2018-07-27 歌尔股份有限公司 光学模组组装设备
CN207663157U (zh) * 2017-10-17 2018-07-27 歌尔股份有限公司 光学模组组装设备

Also Published As

Publication number Publication date
CN107649875A (zh) 2018-02-02
CN107649875B (zh) 2024-05-10
US20200331105A1 (en) 2020-10-22
US11253962B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2019076160A1 (zh) 光学模组组装设备及方法
WO2019076159A1 (zh) 光学模组组装设备及方法
US11077530B2 (en) Apparatus and method for assembling optical module
US11614633B2 (en) Optical module assembly device
WO2019076162A1 (zh) 光学模组组装方法及装置
US11612971B2 (en) Apparatus and method for assembling optical module
WO2023070272A1 (zh) 晶圆键合设备及方法
US11079221B2 (en) Method and apparatus of optical module assembly
CN207663157U (zh) 光学模组组装设备
CN114439827A (zh) 摄像模组组装设备及组装方法
CN207663158U (zh) 光学模组组装设备
CN107664833B (zh) 一种用于基片对准的机器视觉***及对准装置
WO2021251090A1 (ja) 露光用の光源装置、照明装置、露光装置、及び露光方法
KR20160129651A (ko) 카메라 모듈 조립장치
CN113671634A (zh) 用于对准多个透镜元件的***及方法
CN207833129U (zh) 光学模组组装设备
JP5927711B1 (ja) レンズ素子搬送機構、コントローラ、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
CN115863235A (zh) 用于对准检查的光学组件和包括其的光学设备
TWI407175B (zh) 中心對準治具及中心對準方法
CN208872245U (zh) 成像光斑检测装置
CN115712201B (zh) 一种无源耦合***及耦合方法
CN216858613U (zh) 一种激光镭射设备及其同轴结构
JPH0640576B2 (ja) 固体撮像素子へのフイルタ−接着方法及びその装置
TW201603892A (zh) 點膠裝置及點膠方法
CN114934941A (zh) 光引擎自动装配设备及其装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868827

Country of ref document: EP

Kind code of ref document: A1