WO2022131139A1 - 車両用前照灯 - Google Patents

車両用前照灯 Download PDF

Info

Publication number
WO2022131139A1
WO2022131139A1 PCT/JP2021/045420 JP2021045420W WO2022131139A1 WO 2022131139 A1 WO2022131139 A1 WO 2022131139A1 JP 2021045420 W JP2021045420 W JP 2021045420W WO 2022131139 A1 WO2022131139 A1 WO 2022131139A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distribution pattern
light distribution
control unit
light emitting
Prior art date
Application number
PCT/JP2021/045420
Other languages
English (en)
French (fr)
Inventor
一磨 望月
篤 杉本
智之 大野
尚志 寺山
俊幸 土屋
篤志 上杉
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN202180084024.8A priority Critical patent/CN116583434A/zh
Priority to US18/267,296 priority patent/US20240035639A1/en
Priority to JP2022569935A priority patent/JPWO2022131139A1/ja
Priority to EP21906502.6A priority patent/EP4265475A4/en
Publication of WO2022131139A1 publication Critical patent/WO2022131139A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/10Protection of lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/05Special features for controlling or switching of the light beam
    • B60Q2300/056Special anti-blinding beams, e.g. a standard beam is chopped or moved in order not to blind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/145Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted between two parallel vertical cutoff lines, e.g. selectively emitted rectangular-shaped high beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/20Illuminance distribution within the emitted light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources

Definitions

  • the present invention relates to a vehicle headlight.
  • a light source unit including a light emitting element such as an LED (Light Emitting Diode) or LD (Laser Diode) and a circuit board on which the light emitting element is mounted, and a temperature sensor such as a thermista mounted on the circuit board.
  • the control unit of the vehicle headlight may perform temperature derating to reduce the electric power supplied to the light emitting element according to the temperature.
  • the temperature derating protects the light source from heat and ensures the reliability of the light source.
  • the electric power supplied according to the temperature is set based on software such as an arbitrary function or table, and it is suitable for the light source unit by changing the software. Temperature derating is done.
  • the light source unit there is also a configuration in which a plurality of light emitting elements are arranged, and examples of such a light source unit include an LED array and a micro LED array.
  • a light source unit the light of the light distribution pattern is projected on the front of the vehicle by the light emitted from each light emitting element.
  • the light distribution pattern becomes dark and the visibility in front is deteriorated even if only a part of the light emitting elements reduces the supplied power. It may end up.
  • an object of the present invention is to provide a vehicle headlight capable of suppressing a decrease in front visibility when temperature derating is performed.
  • the vehicle headlight of the first aspect of the present invention has a plurality of light emitting elements, and the irradiation region of each first light emitted forward from the plurality of light emitting elements is a matrix. It includes a first light source unit in which the plurality of light emitting elements are arranged so as to be arranged, a second light source unit that emits a second light, and a control unit, and is formed by at least a part of the first light.
  • a low beam light distribution pattern is formed by the first light distribution pattern and the second light distribution pattern formed by the second light, and the low beam light distribution pattern is a part of the first light distribution pattern.
  • the first region overlaps with a part of the second light distribution pattern, and the other part of the first light distribution pattern does not overlap with the second light distribution pattern and is continuous with the first region.
  • the control unit includes a second region located above the region, and the control unit performs temperature derating to the first light source unit based on the temperature of the first light source unit in a state where the low beam light distribution pattern is formed.
  • the plurality of light emitting elements are such that the amount of light of at least a part of the first light irradiating at least the first region of the first light distribution pattern is reduced as compared with that before the temperature derating. It is characterized by controlling the power supplied to each of the above.
  • the first light and the second light illuminate in the first region. Therefore, when temperature derating is performed, even if the amount of light of the first light is reduced as described above in the first region, the light distribution pattern of the low beam is higher than that in the case where the second light does not irradiate the first region.
  • the decrease in brightness of the light can be suppressed, and the decrease in visibility in front can be suppressed.
  • the control unit when the control unit performs the temperature derating on the first light source unit in a state where the low beam light distribution pattern is formed, the first region.
  • the amount of light of at least a part of the first light illuminating the first region is reduced as compared with that before the temperature derating, and the amount of light of at least a part of the first light irradiating the first region illuminates the second region.
  • the power supplied to each of the plurality of light emitting elements may be controlled so as to be reduced more than the amount of light of a part of the first light.
  • the upper edge of the second region may form a part of the cut-off line in the low beam light distribution pattern.
  • the decrease in brightness on the cut-off line side is suppressed as compared with the case where the amount of light of the first light illuminating the second region is reduced more than the amount of light of the first light irradiating the first region. Therefore, the decrease in visibility in the front can be suppressed.
  • the temperature rise of the first light source unit can be suppressed as compared with the case where the first region is smaller than the second region.
  • the control unit when the control unit performs the temperature derating on the first light source unit while the low beam light distribution pattern is formed, the second region.
  • the amount of light of at least a part of the first light irradiating the second region is reduced as compared with that before the temperature derating, and the amount of light of at least a part of the first light irradiating the second region illuminates the first region.
  • the power supplied to each of the plurality of light emitting elements may be controlled so as to decrease after the amount of light of a part of the first light.
  • the upper edge of the second region may form a part of the cut-off line in the low beam light distribution pattern.
  • the brightness on the cut-off line side is reduced as compared with the case where the amount of light of the first light illuminating the second region is reduced before the amount of light of the first light irradiating the first region.
  • the start can be delayed. Therefore, the start of the decrease in visibility of the cut-off line may be delayed.
  • the control unit when the control unit performs the temperature derating on the first light source unit in a state where the low beam light distribution pattern is formed, the second region.
  • the plurality of light sources are emitted so that the amount of light in the first light distribution pattern decreases from the upper edge side of the first light distribution pattern included in the first light distribution pattern toward the lower edge side of the first light distribution pattern included in the first region.
  • the electric power supplied to each of the elements may be controlled.
  • the upper edge of the second region may form a part of the cut-off line in the low beam light distribution pattern.
  • the brightness of the cut-off line side of the low beam light distribution pattern is higher than that in the case where the amount of light decreases from the lower edge side of the first light distribution pattern toward the upper edge side of the first light distribution pattern. Can be suppressed. Therefore, the decrease in visibility of the cut-off line can be delayed and suppressed.
  • the control unit when the control unit performs the temperature derating on the first light source unit while the low beam light distribution pattern is formed, the first distribution unit.
  • the power supplied to each of the plurality of light emitting elements may be controlled so that the amount of light in the light pattern decreases from the hot zone of the low beam light distribution pattern toward the peripheral edge side of the first light distribution pattern. ..
  • the line of sight of the driver of the vehicle tends to be concentrated on the hot zone side rather than the peripheral side of the first light distribution pattern. According to the above configuration, the decrease in brightness on the hot zone side where the driver's line of sight is concentrated can be suppressed as compared with the case where the amount of light decreases from the peripheral side of the first light distribution pattern toward the hot zone.
  • the vehicle headlight of the first aspect further includes a third light source unit that emits a third light, and the first light distribution pattern, the second light distribution pattern, and the third light.
  • a high beam light distribution pattern is formed by the formed third light distribution pattern, and in the high beam light distribution pattern, at least a part of the second region overlaps with a part of the third light distribution pattern.
  • the control unit overlaps a part of the third light distribution pattern in the second region.
  • the power supplied to each of the plurality of light emitting elements so that the amount of light of at least a part of the first light illuminating at least one of the third region and the first region is reduced as compared with that before the temperature derating. May be controlled.
  • the first light and the second light are irradiated in the first region, and the first light and the third light are irradiated in the third region.
  • the second light does not irradiate the first region and when the third light does not irradiate the third region even if the amount of light of the first light decreases.
  • the decrease in brightness of the high beam light distribution pattern can be suppressed. Therefore, the deterioration of the front visibility can be suppressed.
  • the control unit when the control unit performs the temperature derating on the first light source unit while the high beam light distribution pattern is formed, the first region.
  • the light amount of at least a part of the first light to irradiate the third region is reduced more than the light amount of at least a part of the first light to irradiate the third region.
  • the power may be controlled.
  • the driver's line of sight tends to be concentrated in the third region rather than the first region.
  • the brightness of the third region in which the driver's line of sight is concentrated in the light distribution pattern of the high beam is higher than that in the case where the amount of light in the first region is reduced less than the amount of light in the third region. The decrease can be suppressed and the decrease in forward visibility can be suppressed.
  • the control unit when the control unit performs the temperature derating on the first light source unit while the high beam light distribution pattern is formed, the third region.
  • the light amount of at least a part of the first light illuminating the first region is supplied to each of the plurality of light emitting elements so as to be reduced after the light amount of at least a part of the first light illuminating the first region.
  • the power may be controlled.
  • the driver's line of sight tends to be concentrated in the third region rather than the first region.
  • the driver's line of sight is concentrated as compared with the case where the amount of light in the third region is reduced before the amount of light in the first region.
  • the onset of the decrease in brightness of the region may be delayed, and the decrease in visibility in the third region may be delayed.
  • the control unit when the control unit performs the temperature derating on the first light source unit while the high beam light distribution pattern is formed, the third region.
  • the plurality of light sources are emitted so that the amount of light in the first light distribution pattern decreases from the upper edge side of the first light distribution pattern included in the first light distribution pattern toward the lower edge side of the first light distribution pattern included in the first region.
  • the electric power supplied to each of the elements may be controlled.
  • the driver's line of sight tends to be concentrated in the third region rather than the first region.
  • the brightness of the third region of the high beam light distribution pattern in which the driver's line of sight is concentrated is higher than that in the case where the amount of light decreases from the lower edge side to the upper edge side of the first light distribution pattern.
  • the decrease in visibility can be suppressed, and the decrease in visibility in the third region can be suppressed.
  • the control unit when the control unit performs the temperature derating on the first light source unit while the high beam light distribution pattern is formed, the first distribution unit.
  • the power supplied to each of the plurality of light emitting elements may be controlled so that the amount of light in the light pattern decreases from the hot zone of the high beam light distribution pattern toward the peripheral edge side of the first light distribution pattern. ..
  • the driver's line of sight tends to be more concentrated on the hot zone side than on the peripheral side of the first light distribution pattern. According to the above configuration, the decrease in brightness on the hot zone side where the driver's line of sight is concentrated can be suppressed as compared with the case where the amount of light decreases from the peripheral side of the first light distribution pattern toward the hot zone.
  • the vehicle headlight according to the second aspect of the present invention includes a light source unit having a plurality of light emitting elements and a control unit for controlling the electric power supplied to each of the light emitting elements.
  • the control unit When performing temperature derating on the light source unit based on the temperature of the light source unit, the control unit is supplied to at least a part of the light emitting elements driven by a second electric power larger than the first electric power. The electric power is reduced from the second electric power to the first electric power or less, and the electric power supplied to at least a part of the light source elements driven by the third electric power of the first electric power or less is increased.
  • the control unit when the control unit performs temperature derating on the light source unit, the power of at least a part of the light emitting elements driven by the second power drops from the second power to the first power or less. Therefore, the light source unit is protected from the heat from the light emitting element, but the light distribution pattern formed by the light emitted from the light source unit tends to be dark. Therefore, in the above configuration, when the light source unit is subjected to temperature derating, the control unit increases the power supplied to at least a part of the light emitting elements driven by the third power. As the power increases, the light distribution pattern can become brighter. Therefore, the deterioration of the front visibility can be suppressed.
  • control unit is supplied to at least a part of the light emitting elements driven by the third electric power when the temperature derating is performed on the light source unit.
  • the electric power may be increased to the first electric power.
  • the light distribution pattern becomes brighter and the deterioration of the front visibility can be suppressed as compared with the case where the power does not rise to the first power.
  • control unit is supplied to at least a part of the light emitting elements driven by the third electric power when the temperature derating is performed on the light source unit.
  • the electric power may be higher than the first electric power.
  • the light distribution pattern becomes brighter and the deterioration of the front visibility can be further suppressed as compared with the case where the power does not rise above the first power.
  • control unit raises the electric power supplied to at least a part of the light emitting elements driven by the third electric power to be higher than the first electric power for a certain period of time. After that, the electric power supplied to the light emitting element may be reduced to the first electric power or less.
  • the temperature of the light source will rise. According to the above configuration, after a certain period of time elapses, the electric power drops to the first power or less, so that the temperature of the light source section drops and the temperature rise of the light source section can be suppressed.
  • the control unit is supplied to at least a part of the light emitting elements driven by the third electric power when the temperature derating is performed on the light source unit.
  • the electric power may be increased to a fourth electric power that is larger than the third electric power and smaller than the first electric power.
  • the control unit is supplied to at least a part of the light emitting elements driven by the second electric power when the temperature derating is performed on the light source unit.
  • the amount of decrease in electric power is larger, the amount of increase in electric power supplied to at least a part of the light emitting elements driven by the third electric power may be increased.
  • control unit is supplied to at least a part of the light emitting elements driven by the second electric power when the temperature derating is performed on the light source unit.
  • the electric power supplied to at least a part of the light source elements driven by the third electric power may be increased.
  • the light distribution pattern becomes brighter as the electric power increases from the third electric power before the light distribution pattern becomes darker as the electric power decreases from the second electric power to the first electric power or less. Therefore, it is possible to suppress the light distribution pattern from becoming darker than before the temperature derating is performed on the light source unit, and it is possible to suppress the deterioration of visibility, as compared with the case where the light distribution pattern becomes bright after darkening. ..
  • the control unit changes the intensity distribution of the light in the light distribution pattern formed by the light emitted from the light source unit, and then displays the temperature on the light source unit.
  • the power supplied to at least a part of the light emitting elements driven by the second power is lowered to the first power or less, and the light is driven by the third power before changing the intensity distribution of the light.
  • the electric power supplied to at least a part of the light emitting elements may be increased.
  • the control unit performs temperature derating on the light source unit after changing the light intensity distribution, the light source unit is protected from heat from the light emitting element, but the light distribution pattern tends to be dark. It is in. Therefore, in the above configuration, when the temperature derating is performed after changing the light intensity distribution, the control unit is supplied to at least a part of the light emitting elements driven by the third power before changing the light intensity distribution. Increase the power. As the power increases, the light distribution pattern can become brighter. Therefore, even if the control unit changes the intensity distribution of the light and then performs temperature derating on the light source unit, the decrease in visibility ahead can be suppressed as compared with the case where the power does not increase.
  • the present invention it is possible to provide a headlight for a vehicle that can suppress a decrease in front visibility when temperature derating is performed.
  • FIG. 3 is a front view schematically showing a first light source unit and a temperature sensor shown in FIG. 2. It is a figure which shows the 1st light distribution pattern of 1st Embodiment formed by the 1st light emitted from the 1st lamp.
  • FIG. 3 is a side view schematically showing a second lamp of the first embodiment shown in FIG. 1.
  • FIG. 5 is a front view schematically showing a second light source unit and a shade shown in FIG.
  • FIG. 1 is a plan view conceptually showing the vehicle 10 of the first embodiment.
  • the vehicle 10 includes a vehicle headlight 20, a detection device 150, and a light switch 200.
  • the vehicle headlight 20 of the present embodiment is a headlight for an automobile.
  • the vehicle headlight 20 includes a pair of lamp units 30 arranged on the left and right sides of the front portion of the vehicle 10, a control unit 110 for controlling the pair of lamp units 30, and a recording unit 130.
  • "right” means the right side in the traveling direction of the vehicle 10
  • “left” means the left side in the traveling direction of the vehicle 10.
  • each lamp unit 30 has the same configuration except that the shape is substantially symmetrical in the left-right direction. Therefore, in the following, the configuration of each lamp unit 30 will be described using one lamp unit 30.
  • the lamp unit 30 includes a first lamp 40, a second lamp 60, and a third lamp 80 arranged in the horizontal direction.
  • the second lamp 60 is arranged on the most central side of the vehicle 10
  • the third lamp 80 is arranged on the outermost side of the vehicle 10
  • the first lamp 40 is arranged between the second lamp 60 and the third lamp 80.
  • the order of the lamps 40, 60, 80 is not particularly limited.
  • the first lamp 40 includes a first light source unit 41 that emits first light toward the front, a temperature sensor 47 arranged in the first light source unit 41, and a projection lens arranged in front of the first light source unit 41. It includes a first light source unit 41, a temperature sensor 47, and a housing 51 that houses the projection lens 49.
  • the housing 51 is shown in a schematic cross section in the vertical direction of the first lamp tool 40.
  • the housing 51 includes a lamp housing 51a, a front cover 51b, and a back cover 51c.
  • the front of the lamp housing 51a is open, and the front cover 51b is fixed to the lamp housing 51a so as to close the opening. Further, an opening smaller than the front is formed behind the lamp housing 51a, and the back cover 51c is fixed to the lamp housing 51a so as to close the opening.
  • the housing 51 is formed with a lamp chamber 51d surrounded by the lamp housing 51a, the front cover 51b, and the back cover 51c.
  • a first light source unit 41, a temperature sensor 47, and a projection lens 49 are arranged in the light chamber 51d.
  • the lamp housing 51a and the back cover 51c are made of, for example, resin.
  • the front cover 51b is made of a translucent material, and the first light emitted from the first light source unit 41 passes through the projection lens 49 and the front cover 51b.
  • FIG. 3 is a front view schematically showing the first light source unit 41 and the temperature sensor 47 shown in FIG. 2.
  • the first light source unit 41 includes a plurality of light emitting elements 43 that emit the first light, which is white light, and a circuit board 45 on which the plurality of light emitting elements 43 are mounted.
  • the light emitting element 43 include an LED or an LD.
  • Such light emitting elements 43 are arranged in a matrix and arranged in the vertical direction and the horizontal direction.
  • the number of light emitting elements 43 is 96 in the left-right direction and 32 in the up-down direction, but the number is not particularly limited.
  • These light emitting elements 43 are micro LEDs, and are preferably so-called micro LED arrays.
  • the shape of the emission surface of each light emitting element 43 is substantially the same size and has a square shape, but is not particularly limited.
  • Each light emitting element 43 may be an LED or an LD that emits light having different wavelengths from each other.
  • Each light emitting element 43 emits first light when electric power is individually supplied from a power supply unit (not shown) via a circuit board 45, and generates heat when the first light is emitted.
  • the heat of each light emitting element 43 is transferred to the circuit board 45.
  • the amount of light emitted and the amount of heat generated by each light emitting element 43 increase, and the temperature of the first light source unit 41 rises. Since the calorific value of the circuit board 45 is much smaller than the calorific value of each light emitting element 43 as a whole, the temperature of the first light source unit 41 can be regarded as the temperature based on the calorific value of each light emitting element 43 as a whole. ..
  • the temperature sensor 47 is mounted on the circuit board 45 and estimates the temperature of the first light source unit 41. Examples of such a temperature sensor 47 include a thermistor.
  • the temperature sensor 47 is electrically connected to the control unit 110, and outputs a temperature signal related to the estimated temperature to the control unit 110.
  • the temperature sensor 47 of the present embodiment is arranged away from each light emitting element 43, and the temperature of the heat may drop before the heat of each light emitting element 43 is transferred to the temperature sensor 47. Therefore, the control unit 110 may estimate the temperature of the first light source unit 41 based on the temperature signal from the temperature sensor 47 and the distance between each light emitting element 43 and the temperature sensor 47. Further, the control unit 110 may estimate the temperature of the first light source unit 41 based on the electric power of each light emitting element 43.
  • the configuration and mounting position of the temperature sensor 47 are not particularly limited as long as the temperature sensor 47 can estimate the temperature of the first light source unit 41.
  • the temperature sensor 47 may be attached to each light emitting element 43, or may be mounted on another circuit board electrically connected to the circuit board 45.
  • the projection lens 49 is a lens that adjusts the divergence angle of the first light incident on the projection lens 49.
  • the incident surface is formed to be convex toward the rear
  • the exit surface is formed to be convex toward the front.
  • the rear focal point of the projection lens 49 is located on or near the emission surface of any of the light emitting elements 43.
  • the first light whose divergence angle is adjusted by the projection lens 49 passes through the front cover 51b of the housing 51 and is emitted from the first lamp 40 toward the front of the vehicle 10.
  • FIG. 4 is a diagram showing a first light distribution pattern 400 formed on a virtual vertical screen arranged 25 m ahead of the vehicle 10.
  • S indicates a horizontal line
  • V indicates a vertical line passing through the center of the vehicle 10 in the left-right direction.
  • the first light distribution pattern 400 includes an irradiation region 401a to which the first light emitted from each light emitting element 43 is irradiated. Since the plurality of light emitting elements 43 are arranged in a matrix, the irradiation region 401a is arranged in a matrix. Each irradiation region 401a corresponds to one light emitting element 43.
  • the relative position of the specific light emitting element 43 among the plurality of light emitting elements 43 and the relative position of the specific irradiation area 401a corresponding to the specific light emitting element 43 among the plurality of irradiation areas 401a are It is flipped up, down, left and right. In FIG. 4, the number of irradiation regions 401a is smaller than the number of light emitting elements 43 for ease of understanding.
  • the irradiation region 401a corresponds to the shape of the emission surface of the light emitting element 43.
  • the adjacent irradiation regions 401a are in contact with each other but overlap each other.
  • the region formed from all the irradiation regions 401a is shown as the irradiation region 401b, and the irradiation region 401b is a region where the first lamp 40 can irradiate the first light.
  • the irradiation region 401b has a rectangular shape that is long in the left-right direction, and overlaps the horizontal line S and the vertical line V.
  • the upper edge of the irradiation region 401b is located above the horizontal line S and extends in the horizontal direction. Further, the lower edge of the irradiation region 401b is located below the horizontal line S and extends in the horizontal direction.
  • the position, orientation, and the like of the light emitting element 43 are adjusted so that the irradiation region 401b is arranged as described above.
  • the adjacent irradiation regions 401a may be in contact with each other or may be separated from each other to form a gap. However, it is preferable that the plurality of irradiation regions 401a are arranged in a matrix without gaps. Further, the size and shape of the irradiation region 401a are not particularly limited, and the size and shape of the irradiation regions 401a may be different from each other.
  • the size and shape of the first light distribution pattern 400 changes according to the selection of the light emitting element 43 that emits the first light. Further, the intensity distribution of the first light in the first light distribution pattern 400 is adjusted by adjusting the amount of light emitted by each light emitting element 43.
  • FIG. 5 is a side view schematically showing the second lamp 60.
  • the second lamp 60 includes a second light source unit 61 that emits second light toward the front, a shade 67, a projection lens 69 arranged in front of the second light source unit 61, a second light source unit 61, and a shade. It includes 67 and a housing 51 that houses the projection lens 69. In FIG. 5, the housing 51 is shown in a schematic cross section in the vertical direction of the second lamp 60.
  • FIG. 6 is a front view schematically showing the second light source unit 61 and the shade 67 shown in FIG.
  • the second light source unit 61 includes a light emitting element 63 that emits second light, which is white light, and a circuit board 65 on which the light emitting element 63 is mounted.
  • the light emitting element 63 include an LED or an LD.
  • the shape of the emission surface of the light emitting element 63 is generally rectangular, which is long in the left-right direction, but is not particularly limited. The emission surface is made larger than the emission surface of the light emitting element 43 of the first light source unit 41.
  • the shade 67 has a light-shielding portion 67a and a fixing portion 67b that are integrally formed by bending a plate-shaped member.
  • the light-shielding portion 67a extends in the left-right direction in front of the light-emitting element 63, and a fixing portion 67b is connected to the lower end portion of the light-shielding portion 67a.
  • the fixing portion 67b extends rearward from the lower end portion of the light-shielding portion 67a, and the end portion of the fixing portion 67b is fixed to the circuit board 65.
  • the upper edge of the light-shielding portion 67a is located below the optical axis of the light-emitting element 63.
  • a protrusion 67c that projects upward in an isosceles trapezoidal shape is provided at the center of the upper edge of the light-shielding portion 67a in the left-right direction. Such a light-shielding portion 67a blocks a part of the second light emitted from the light emitting element 63.
  • the projection lens 69 has the same configuration as the projection lens 49, is arranged in front of the shade 67, and is a lens that adjusts the divergence angle of the second light incident on the projection lens 69.
  • the rear focal point of the projection lens 69 is located at or near the upper edge of the light-shielding portion 67a.
  • a part of the second light emitted from the light emitting element 63 is shielded by the light shielding portion 67a of the shade 67, and the other part of the second light emitted from the light emitting element 63 is incident on the projection lens 69.
  • the second light whose divergence angle is adjusted by the projection lens 69 passes through the front cover 51b of the housing 51 and is emitted from the second lamp 60 toward the front of the vehicle 10.
  • FIG. 7 is a diagram showing a second light distribution pattern 600 formed on a virtual vertical screen arranged 25 m ahead of the vehicle 10.
  • the shape of the second light distribution pattern 600 corresponds to the shape of the light-shielding portion 67a, and is a light distribution pattern in which the light distribution pattern when a part of the second light is shielded by the light-shielding portion 67a is inverted up, down, left and right.
  • the second light distribution pattern 600 overlaps the horizontal line S and the vertical line V.
  • the upper edge of the second light distribution pattern 600 corresponds to the shape of the upper edge of the light-shielding portion 67a including the protrusion 67c.
  • the upper edge of the second light distribution pattern 600 includes a first edge 601 and a second edge 602, a third edge 603, a fourth edge 604, and a fifth edge 605.
  • the first edge 601 is located below the horizontal line S and extends horizontally from the vertical line V to the right side, which is one side in the horizontal direction, and to the left side, which is the other side in the horizontal direction.
  • the second edge 602 extends diagonally upward from the left end of the first edge 601 to the left side.
  • the end of the second edge 602 opposite to the first edge 601 side is located above the horizon S.
  • the third edge 603 extends horizontally to the left side from the end of the second edge 602 opposite to the first edge 601 side, and is located above the horizontal line S.
  • the fourth edge 604 and the fifth edge 605 are located substantially symmetrically with the second edge 602 and the third edge 603 with respect to the first edge 601.
  • the lower edge of the second light distribution pattern 600 is located below the horizontal line S, intersects the vertical line V, and extends in the horizontal direction.
  • the left edge of the second light distribution pattern 600 extends from the end of the third edge 603 opposite to the second edge 602 toward the left end of the lower edge of the second light distribution pattern 600.
  • the right edge of the second light distribution pattern 600 extends from the end of the fifth edge 605 opposite to the fourth edge 604 toward the right end of the lower edge of the second light distribution pattern 600.
  • the intensity distribution of the second light in the second light distribution pattern 600 is adjusted by adjusting the amount of light emitted from the light emitting element 63.
  • FIG. 8 is a side view schematically showing the third lamp 80.
  • the third lamp 80 includes a third light source unit 81 that emits third light toward the front, a projection lens 89 arranged in front of the third light source unit 81, a third light source unit 81, and a projection lens 89. It is provided with a housing 51 for accommodating. In FIG. 8, the housing 51 is shown in a schematic cross section in the vertical direction of the third lamp 80.
  • FIG. 9 is a front view schematically showing the third light source unit 81 shown in FIG.
  • the third light source unit 81 includes a plurality of light emitting elements 83a to 83j that emit the third light, which is white light, and a circuit board 85 on which the plurality of light emitting elements 83a to 83j are mounted.
  • the light emitting elements 83a to 83j include LEDs or LDs, and the light emitting elements 83a to 83j are arranged in an array in a row in the left-right direction.
  • the shape of the emission surface of each of the light emitting elements 83a to 83j is generally the same size and is substantially rectangular in the vertical direction, but is not particularly limited.
  • the emission surface is made larger than the emission surface of the light emitting element 43 in the first light source unit 41.
  • the number of light emitting elements is not particularly limited as long as it is one or more.
  • the light emitting elements 83a to 83j may be LEDs or LDs that emit light having different wavelengths from each other.
  • the number of light emitting elements may be two or more.
  • Each of the light emitting elements 83a to 83j emits the third light when the electric power is individually supplied from the power supply unit (not shown) via the circuit board 85, and generates heat when the third light is emitted. The greater the power supplied to each, the greater the amount of light emitted by each of the light emitting elements 83a to 83j.
  • the projection lens 89 has the same configuration as the projection lens 49, and is a lens that adjusts the divergence angle of the third light incident on the projection lens 89.
  • the rear focal point of the projection lens 89 is located on or near the emission surface of the light emitting element 83f, which is located substantially at the center of the left and right of the plurality of light emitting elements 83a to 83j.
  • the third light whose divergence angle is adjusted by the projection lens 89 passes through the front cover 51b of the housing 51 and is emitted from the third lamp 80 toward the front of the vehicle 10.
  • FIG. 10 is a diagram showing a third light distribution pattern 800 formed on a virtual vertical screen arranged 25 m ahead of the vehicle 10.
  • the third light distribution pattern 800 includes irradiation regions 801a to 801j to which the third light emitted from the light emitting elements 83a to 83j is irradiated. Since the light emitting elements 83a to 83j are arranged in a row in the left-right direction, the irradiation regions 801a to 801j are also arranged in a row in the left-right direction.
  • the irradiation regions 801a to 801j individually correspond to the shape of the emission surface of the light emitting elements 83a to 83j, and are substantially the same size and have a long rectangular shape in the vertical direction. Adjacent irradiation areas are in contact with each other.
  • the third light distribution pattern 800 has a long rectangular shape in the left-right direction, the irradiation regions 801a to 801j overlap the horizontal line S, and the irradiation regions 801e and 801f are in contact with the vertical line V.
  • the upper edge of each irradiation region, which is the upper edge of the third light distribution pattern 800, is located above the horizontal line S and extends in the horizontal direction.
  • the lower edge of each irradiation region, which is the lower edge of the third light distribution pattern 800 is located below the horizontal line S and extends in the horizontal direction.
  • the positions and orientations of the light emitting elements 83a to 83j are adjusted so that the irradiation regions 801a to 801j are arranged as described above.
  • adjacent irradiation areas may overlap each other.
  • adjacent irradiation regions may be separated from each other to form a gap.
  • the irradiation regions 801a to 801j are lined up in the left-right direction without any gap.
  • the size and shape of the irradiation regions 801a to 801j are not particularly limited, and may be different from each other, and may be larger than the irradiation region 401a.
  • the size and shape of the third light distribution pattern 800 changes according to the selection of the light emitting elements 83a to 83j that emit the third light. Further, the intensity distribution of the third light in the third light distribution pattern 800 is adjusted by adjusting the amount of light emitted from each of the light emitting elements 83a to 83j.
  • the detection device 150 includes a steering sensor, and the steering sensor detects the rotation direction and rotation angle of the steering wheel of the vehicle 10, that is, the direction in which the vehicle 10 turns and the steering angle of the vehicle 10. Therefore, the steering sensor detects the right steering angle and the left steering angle while distinguishing them from different steering angles.
  • the steering sensor is electrically connected to the control unit 110, and outputs a signal corresponding to the steering angle based on the straight running time of the vehicle 10 to the control unit 110.
  • the steering sensor may be electrically connected to the control unit 110 via an ECU (Electronic Control Unit) (not shown) of the vehicle 10, or a signal may be input to the control unit 110 via the ECU. good.
  • ECU Electronic Control Unit
  • the recording unit 130 is electrically connected to the control unit 110.
  • the recording unit 130 is, for example, a non-transitory recording medium, and a semiconductor recording medium such as a RAM (Random Access Memory) or a ROM (Read Only Memory) is suitable, but an optical recording medium or an optical recording medium is suitable. It may include any type of recording medium such as a magnetic recording medium.
  • the "non-transient" recording medium includes a recording medium that can be read by all computers except a transient propagation signal (transitory, propagating signal), and does not exclude a volatile recording medium. do not have.
  • the control unit 110 includes, for example, an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), and an NC (Numerical Control) device. Further, when the NC device is used, the control unit 110 may use a machine learning device or may not use a machine learning device. The control unit 110 may be a part of the ECU of the vehicle 10.
  • an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), and an NC (Numerical Control) device. Further, when the NC device is used, the control unit 110 may use a machine learning device or may not use a machine learning device. The control unit 110 may be a part of the ECU of the vehicle 10.
  • a light switch 200 is electrically connected to the control unit 110.
  • the light switch 200 is a switch for selecting one of low beam emission, high beam emission, and non-emission of light.
  • the light switch 200 outputs a control signal indicating the emission of the low beam when the emission of the low beam is selected, and a control signal indicating the emission of the high beam when the emission of the high beam is selected, respectively, to the control unit 110. ..
  • the control signal is a signal instructing the start of emission of light from the lamp unit 30.
  • the light switch 200 does not output a control signal to the control unit 110 when non-emission of light is selected.
  • the control unit 110 stops the driving of the lamp unit 30.
  • the control unit 110 supplies electric power or supplies electric power to the light emitting elements 43, 63, 83a to 83j via the power supply unit and the circuit boards 45, 65, 85. Stop. As a result, the light emitting elements 43, 63, 83a to 83j that emit light are selected, and the light distribution patterns 400, 600, 800 formed by the light emitted from the lamp unit 30 change according to the selection. Further, the control unit 110 adjusts the electric power supplied to the light emitting elements 43, 63, 83a to 83j. As a result, the amount of light emitted from each of the light emitting elements 43, 63, 83a to 83j is adjusted, and the light intensity distribution in the light distribution patterns 400, 600, 800 is adjusted.
  • the control unit 110 performs temperature derating on the first light source unit 41.
  • the control unit 110 performs temperature derating when the temperature T of the first light source unit 41 estimated by the temperature sensor 47 is lower than the temperature T0, which is a predetermined value at the start of temperature derating, for example, 80 ° C. do not have. Further, the control unit 110 performs temperature derating when the temperature T is equal to or higher than the temperature T0.
  • the control unit 110 supplies the light emitting element 43 with a power E0 smaller than the power supplied when the temperature derating is not performed. In this case, the control unit supplies the electric power E0 to the light emitting element 43 to which the electric power larger than the electric power E0 of the light emitting element 43 is supplied, and lowers the electric power supplied to the light emitting element 43.
  • the control unit 110 supplies the electric power E1 smaller than the electric power E0 to the light emitting element 43.
  • the control unit 110 supplies the electric power E1 to the light emitting element 43 to which the electric power larger than the electric power E1 among the plurality of light emitting elements 43 is supplied, and lowers the electric power supplied to the light emitting element 43.
  • the temperature T0 is 80 ° C
  • the temperature T1 is, for example, 110 ° C.
  • the control unit 110 supplies a power E2 smaller than the power E1 to the light emitting element 43.
  • the temperature T1 is 110 ° C
  • the temperature T2 is, for example, 120 ° C.
  • the control unit 110 supplies the electric power E2 to the light emitting element 43, for example, in order to avoid turning off the lights. In this way, the control unit 110 controls the electric power E according to the temperature T when the temperature T is equal to or higher than the temperature T0.
  • the electric power E decreases, the amount of light emitted from each light emitting element 43 and the amount of heat generated decrease, and the temperature of the first light source unit 41 decreases.
  • the temperature T1 may be the same when the high beam is emitted and when the low beam is emitted, and may be higher or lower when the high beam is emitted than when the low beam is emitted.
  • FIG. 11 is a diagram showing an example of a control flowchart of the control unit 110 in the present embodiment. As shown in FIG. 11, the control flow of the present embodiment includes steps SP11 to SP18. The control flow is not limited to this. In the start state shown in FIG. 11, it is assumed that the temperature sensor 47 estimates the temperature T of the first light source unit 41 and the temperature signal is input to the control unit 110.
  • Step SP11 If the control signal is not input from the light switch 200, the control unit 110 does not supply power to the light emitting elements 43, 63, 83a to 83j, and repeats step SP11. If the light switch 200 is turned on and the control signal is input from the light switch 200, the control unit 110 advances the control flow to step SP12.
  • Step SP12 In this step, if the control signal from the light switch 200 is a signal indicating the emission of a low beam, the control unit 110 advances the control flow to step SP13. If the control signal from the light switch 200 is not a signal indicating the emission of the low beam, the control unit 110 advances the control flow to step SP16.
  • Step SP13 the control unit 110 supplies electric power to the light emitting elements 43 and 63 to emit the first and second lights to form a low beam light distribution pattern.
  • FIG. 12 is a diagram showing a low beam light distribution pattern 910 formed on a virtual vertical screen arranged 25 m ahead of the vehicle 10. In FIG. 12, the light distribution pattern 910 is shown by a thick line.
  • the first light distributes the first light distribution pattern 400, and the second light forms the second light distribution pattern 600.
  • the first light distribution pattern 400 is formed by the first light from a part of a part of the light emitting elements 43 instead of all the light emitting elements 43, but at least a part of the light emitting elements 43. It may be formed by the first light from.
  • the upper edge, a part of the left edge, and a part of the right edge of the irradiation region 401b in the first light distribution pattern 400 are shown by broken lines.
  • the light distribution pattern 910 is formed by overlapping the first light distribution pattern 400 and the second light distribution pattern 600. Specifically, a part of the first light distribution pattern 400 overlaps with at least a part of the second light distribution pattern 600. Further, the other part of the first light distribution pattern 400 does not overlap with the second light distribution pattern 600, and is second above the height position of the first edge 601 of the upper edge of the second light distribution pattern 600. It is located outside the light distribution pattern 600.
  • the light distribution pattern 910 as described above has cut-off lines CL11 to CL15 on the upper edge.
  • the cut-off line CL11 extends horizontally to the right side, which is one side in the left-right direction, from the elbow point EP located below the horizontal line S and on or near the vertical line V.
  • the cut-off line CL12 extends diagonally upward from the elbow point EP to the left side, which is the other side in the left-right direction.
  • the end of the cut-off line CL12 opposite to the EP side of the elbow point is located above the horizon S.
  • the cut-off line CL13 extends horizontally from the end opposite to the elbow point EP side in the cut-off line CL12 to the other side in the left-right direction.
  • the cut-off line CL13 is located above the horizon S.
  • the cut-off line CL14 extends diagonally upward from the end opposite to the elbow point EP side in the cut-off line CL11 to one side in the left-right direction.
  • the end of the cut-off line CL14 opposite to the cut-off line CL11 side is located above the horizon S and is located at substantially the same height as the cut-off line CL13.
  • the cut-off line CL15 extends horizontally from the end opposite to the cut-off line CL11 side in the cut-off line CL14 to one side in the left-right direction.
  • the cut-off line CL15 is located above the horizon S, and is located at substantially the same height as the cut-off line CL13.
  • the cut-off line CL11, CL12, CL14 of the light distribution pattern 910 is a part of the upper edge of the first light distribution pattern 400. Further, a part of the cut-off line CL13 continuous with the cut-off line CL12 is another part of the upper edge of the first light distribution pattern 400. Another part of the cut-off line CL13 is the third edge 603 in the upper edge of the second light distribution pattern 600. Further, a part of the cut-off line CL15 continuous with the cut-off line CL14 is a part of the remaining upper edge of the first light distribution pattern 400. Another part of the cut-off line CL15 is the fifth edge 605 at the upper edge of the second light distribution pattern 600.
  • the control unit 110 connects the light emitting element 43 so that the upper edge of the first light distribution pattern 400 becomes a part of the cut-off line CL11, the cut-off line CL12, the cut-off line CL14, the cut-off line CL13, and the cut-off line CL15. Control the power supply. Therefore, the first light distribution pattern 400 of the light distribution pattern 910 is formed by the first light emitted from a part of the light emitting element 43 instead of all the light emitting elements 43 of the first lamp 40.
  • the left edge, the right edge, and the lower edge of the light distribution pattern 910 are the left edge, the right edge, and the lower edge of the second light distribution pattern 600. Therefore, in the left-right direction, the second light distribution pattern 600 is made longer than the first light distribution pattern 400. Further, the left edge of the second light distribution pattern 600 is located on the left side of the left edge of the first light distribution pattern 400, and the right edge of the second light distribution pattern 600 is on the right side of the right edge of the first light distribution pattern 400. Located in. Further, in the vertical direction, the lower edge of the first light distribution pattern 400 is located between the upper edge and the lower edge of the second light distribution pattern 600.
  • a region 911 in which a part of the first light distribution pattern 400 overlaps with a part of the second light distribution pattern 600 and a second part of the other part of the first light distribution pattern 400 are second.
  • a second region 913 that does not overlap with the light distribution pattern 600 is included.
  • the first light from the first lamp 40 and the second light from the second lamp 60 illuminate the region 911, and the first light from the first lamp 40 illuminates the region 913.
  • Region 911 is larger than Region 913. If the amount of light of the second light is lower than a predetermined ratio of the peak value of the amount of light, the region where the first light and the second light overlap can be regarded as the region 913.
  • the predetermined ratio is, for example, 2%, and in this case, it can be visually regarded by humans that the first light and the second light do not overlap.
  • the region where the second light having a luminous intensity lower than the predetermined luminous intensity of the second light forming the outer edge of the second light distribution pattern 600 such as the edges 601, 602, 604 overlaps with the first light can be regarded as the region 913. ..
  • the predetermined luminous intensity is, for example, 500 cd, and it can be visually regarded by humans that the first light and the second light do not overlap.
  • One region 913 is surrounded by a cut-off line CL12, a part of the cut-off line CL13, a part of the first edge 601 passing through the elbow point EP, and a second edge 602 on the left side of the vertical line V.
  • the other region 913 is surrounded by a part of the cut-off line CL14 and the cut-off line CL15, another part of the first edge 601 passing through the elbow point EP, and a fourth edge 604 on the right side of the vertical line V.
  • the regions 913 are separated from each other in the left-right direction.
  • Such a region 913 is a region of the first light distribution pattern 400 excluding the region 911, is continuous with the region 911, and is located above the region 911 on the outside of the second light distribution pattern 600.
  • the hot zone HZL which is the region having the highest light intensity in the light distribution pattern 910, is located in the vicinity of the elbow point EP in the region 911.
  • the amount of light of the first and second lights emitted from the respective light emitting elements 43 and 63 is adjusted by the control unit 110 so that the intensity of the light in the light distribution pattern 910 becomes lower as the distance from the hot zone HZL increases.
  • control flow advances the control flow to step SP14.
  • Step SP14 In this step, if the temperature T indicated by the temperature signal from the temperature sensor 47 is less than the temperature T0, the control unit 110 returns the control flow to the step SP11. Further, if the temperature T is equal to or higher than the temperature T0, the control unit 110 advances the control flow to step SP15.
  • Step SP15 The control unit 110 performs temperature derating on the first light source unit 41 based on the temperature of the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed.
  • the control unit 110 temperature deratings the electric power supplied to the light emitting element 43 that emits at least a part of the first light that irradiates at least the region 911 of the first light distribution pattern 400 in the light distribution pattern 910. Lower than before. As a result, the amount of the first light irradiating the region 911 is reduced as compared with that before the temperature derating. When the amount of light of the first light decreases, the amount of heat generated by the light emitting element 43 decreases, and the temperature rise of the first light source unit 41 is suppressed. When the temperature T of the first light source unit 41 becomes lower than the temperature T0, the control unit 110 returns the electric power supplied to the light emitting element 43 to the electric power before the temperature derating.
  • the control unit 110 supplies electric power to be supplied to a plurality of light emitting elements 43 that emit the first light that irradiates the region 913 of the first light distribution pattern 400. Same as before temperature derating. As a result, the amount of light of the first light irradiating the region 913 is the same as before the temperature derating, and even if the temperature derating is performed, the change in brightness in the region 913 is suppressed. Further, the change in brightness on a part of the cut-off line CL12 and CL13 and a part of CL14 and CL15 in the light distribution pattern 910 is suppressed.
  • the control unit 110 supplies power to the light emitting element 43 that emits at least a part of the first light that irradiates the region 913 as compared with that before the temperature derating. You may lower it. As a result, the calorific value of the light emitting element 43 is reduced as compared with that before the temperature derating, and the temperature rise of the first light source unit 41 can be suppressed. Further, for example, when the region 913 is brighter than the second light distribution pattern 600 before the temperature derating, the region 913 may have the same brightness as the second light distribution pattern 600 due to the temperature derating.
  • the region 913 has the same brightness as the second light distribution pattern 600
  • the brightness in the region 913 and the second light distribution pattern 600 is excessive as compared with the case where the region 913 does not have the same brightness as the second light distribution pattern 600. Changes can be suppressed.
  • the control unit 110 performs temperature derating on the first light source unit 41
  • the power supplied to the light emitting element 63 that emits the second light is the same as before the temperature derating.
  • the amount of light of the second light irradiating the second light distribution pattern 600 of the low beam light distribution pattern 910 is the same as before the temperature derating, and even if the temperature derating is performed, the second light distribution pattern 600 The change in brightness is suppressed.
  • control unit 110 When the control unit 110 performs temperature derating on the first light source unit 41, the control flow returns to step SP11.
  • Step SP16 the control signal in step SP12 becomes a signal indicating the emission of the high beam, and the control unit 110 supplies electric power to the light emitting elements 43, 63, 83a to 83j to emit the first, second, and third lights, and emits the high beam.
  • FIG. 13 is a diagram showing a high beam light distribution pattern 930 formed on a virtual vertical screen arranged 25 m ahead of the vehicle 10. In FIG. 13, the light distribution pattern 930 is shown by a thick line, and the low beam light distribution pattern 910 shown in FIG. 12 is shown by a broken line.
  • the light distribution patterns 400 and 600 are formed and the third light distribution pattern 800 is formed by the third light, as in the case where the low beam is emitted.
  • the first light distribution pattern 400 is formed by the first light from all the light emitting elements 43. Therefore, when the high beam is emitted, the first light distribution pattern 400 is made larger than when the low beam is emitted.
  • the light distribution pattern 930 is formed by overlapping the light distribution patterns 400, 600, 800. Specifically, in the light distribution pattern 930, the third light distribution pattern 800 is aligned with the second light distribution pattern 600 in the vertical direction. Further, a part of the third light distribution pattern 800 overlaps with a part of the second light distribution pattern 600, and the other part of the third light distribution pattern 800 does not overlap with the second light distribution pattern 600 and the second light distribution. It is located outside the pattern 600. Further, in the light distribution pattern 930, a part of the first light distribution pattern 400 overlaps only the second light distribution pattern 600, and another part of the first light distribution pattern 400 overlaps only the third light distribution pattern 800. Further, the remaining part of the first light distribution pattern 400 overlaps with the second light distribution pattern 600 and the third light distribution pattern 800.
  • the second light distribution pattern 600 is longer to the left and right than the third light distribution pattern 800.
  • the left edge of the second light distribution pattern 600 is located on the left side of the left edge of the third light distribution pattern 800, and the right edge of the second light distribution pattern 600 is located on the right side of the right edge of the third light distribution pattern 800. is doing.
  • the lower edge of the second light distribution pattern 600 is located below the lower edge of the third light distribution pattern 800.
  • the edges 602 to 605 are located above the lower edge of the third light distribution pattern 800.
  • the second edge 602, a part of the third edge 603, the fourth edge 604, and a part of the fifth edge 605 are located inside the third light distribution pattern 800, and the other one of the third edge 603.
  • the portion and the other part of the fifth edge 605 are located outside the third light distribution pattern 800. Further, the first edge 601 overlaps a part of the lower edge of the third light distribution pattern 800. Therefore, a part of the second light distribution pattern 600 overlaps a part of the third light distribution pattern 800, and the other part of the second light distribution pattern 600 does not overlap the third light distribution pattern 800 and the third light distribution pattern 800. It is located outside the pattern 800.
  • the second light distribution pattern 600 is longer to the left and right than the first light distribution pattern 400.
  • the left edge of the second light distribution pattern 600 is located on the left side of the left edge of the first light distribution pattern 400, and the right edge of the second light distribution pattern 600 is located on the right side of the right edge of the first light distribution pattern 400. is doing.
  • the upper edge of the second light distribution pattern 600 crosses between the upper edge and the lower edge of the first light distribution pattern 400.
  • the edges 601, 602, 604 are located inside the first light distribution pattern 400, and the edges 603,605 are located outside the first light distribution pattern 400.
  • the first light distribution pattern 400 is shorter to the left and right than the third light distribution pattern 800.
  • the left edge of the first light distribution pattern 400 is located on the right side of the left edge of the third light distribution pattern 800, and the right edge of the first light distribution pattern 400 is located on the left side of the right edge of the third light distribution pattern 800. is doing.
  • the lower edge of the first light distribution pattern 400 is located below the lower edge of the third light distribution pattern 800 and the upper edge of the second light distribution pattern 600.
  • the upper edge of the first light distribution pattern 400 is located below the upper edge of the third light distribution pattern 800, and is located above the upper edge of the second light distribution pattern 600.
  • the upper edge of the light distribution pattern 930 as described above is located outside the third light distribution pattern 800 and a part of the third edge 603 of the second light distribution pattern 600 and outside the second light distribution pattern 600. It is a part of the left edge of the third light distribution pattern 800.
  • the upper edge of the light distribution pattern 930 is the upper edge of the third light distribution pattern 800, the right edge of the third light distribution pattern 800 located outside the second light distribution pattern 600, and the third light distribution pattern 800. It is a part of the fifth edge 605 of the second light distribution pattern 600 located outside the.
  • the left edge, right edge, and lower edge of the light distribution pattern 930 are the left edge, right edge, and lower edge of the second light distribution pattern 600.
  • a region 931 in which a part of the first light distribution pattern 400 overlaps a part of the second light distribution pattern 600 and a second part of the other part of the first light distribution pattern 400 are second.
  • the region 933 which is a second region that does not overlap with the light distribution pattern 600, is included.
  • the region 931 is the same as the region 911 which is the first region in the low beam light distribution pattern 910, but the reference numerals are separated for convenience of explanation.
  • a part of the first light distribution pattern 400 overlaps only the second light distribution pattern 600.
  • another part of the first light distribution pattern 400 overlaps with the second light distribution pattern 600 and the third light distribution pattern 800. Therefore, the region 931 is a region where the first light distribution pattern 400 overlaps with at least the second light distribution pattern 600.
  • a portion of region 931 is made larger than the other portion of region 931.
  • a part of the region 931 is irradiated with the first and second lights, and the other part of the region 931 is irradiated with the first to third lights.
  • At least a part of the region 933 includes a third region in which the remaining part of the first light distribution pattern 400 overlaps with a part of the third light distribution pattern 800.
  • the entire region 933 is also the third region.
  • Region 933 is larger than Region 931.
  • the region 933 includes a region 913 which is a second region in the low beam light distribution pattern 910, and is made larger than the region 913.
  • the region 933 is continuous with the region 931 in the vertical direction, and the lower edge of the region 933 is continuous with the upper edge of the region 931.
  • the first and third lights irradiate the region 933.
  • the hot zone HZH which is the region having the highest light intensity in the light distribution pattern 930, is located on or near the intersection of the horizontal line S and the vertical line V in the region 933 where the light distribution patterns 400 and 800 overlap each other. ..
  • the amount of light of the first and third lights emitted from the respective light emitting elements 43, 83a to 83j is adjusted by the control unit 110 so that the intensity of the light in the light distribution pattern 930 becomes lower as the distance from the hot zone HZH increases.
  • control unit 110 When the control unit 110 forms the high beam light distribution pattern 930 in front of the vehicle 10, the control flow advances to step SP17.
  • Step SP17 In this step, if the temperature T indicated by the temperature signal from the temperature sensor 47 is less than the temperature T0, the control unit 110 returns the control flow to the step SP11. Further, if the temperature T is equal to or higher than the temperature T0, the control unit 110 advances the control flow to step SP18.
  • Step SP18 The control unit 110 performs temperature derating on the first light source unit 41 based on the temperature of the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed.
  • the control unit 110 supplies the light emitting element 43 that emits at least a part of the first light that illuminates at least one of the region 931 and the region 933 of the first light distribution pattern 400 in the light distribution pattern 930. Reduce the power compared to before temperature derating. As a result, the amount of light of at least a part of the first light irradiating at least one of the region 931 and the region 933 is reduced as compared with that before the temperature derating.
  • the amount of light of the first light decreases, the amount of heat generated by the light emitting element 43 decreases, and the temperature rise of the first light source unit 41 is suppressed.
  • the control unit 110 returns the electric power supplied to the light emitting element 43 to the electric power before the temperature derating.
  • the control unit 110 supplies power to be supplied to the light emitting element 63 that emits the second light and power to be supplied to the light emitting elements 83a to 83j that emit the third light. Same as before temperature derating.
  • the amount of light of the second light irradiating the second light distribution pattern 600 of the high beam light distribution pattern 930 and the amount of light of the third light irradiating the third light distribution pattern 800 are the same as before the temperature derating. .. Therefore, even if the temperature derating is performed, the change in brightness in the light distribution patterns 600 and 800 is suppressed.
  • control unit 110 When the control unit 110 performs temperature derating on the first light source unit 41, the control flow returns to step SP11.
  • the control unit 110 when the control unit 110 performs temperature derating to the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed, the control unit 110 is first.
  • the power supplied to each of the plurality of light emitting elements 43 is controlled so that the amount of light of at least a part of the first light illuminating at least the region 911 of the light distribution pattern 400 is reduced as compared with that before the temperature derating.
  • the low beam light distribution pattern 910 In this vehicle headlight 20, in the low beam light distribution pattern 910, the first light and the second light illuminate in the region 911. Therefore, when temperature derating is performed, even if the amount of light of the first light is reduced as described above in the region 911, the low beam light distribution pattern 910 is compared with the case where the second light does not irradiate the first region. The decrease in brightness of the light can be suppressed, and the decrease in visibility in front can be suppressed. Further, when the amount of light of the first light decreases, the amount of heat generated by the light emitting element 43 decreases, and the temperature rise of the first light source unit 41 can be suppressed.
  • At least a part of the area 933 includes a third area overlapping with a part of the third light distribution pattern 800.
  • the entire area 933 is the third area.
  • the region 931 is irradiated with the first light, the second light, and the third light
  • the region 933 is irradiated with the first light and the third light.
  • the control unit 110 When the control unit 110 performs temperature derating to the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed, the control unit 110 to the light emitting element 43 that emits the first light that irradiates the region 911.
  • the supply of electric power may be stopped and the amount of light of the first light may become zero.
  • the temperature rise of the first light source unit 41 can be further suppressed.
  • the power supply when the power supply is stopped, only the second light irradiates the region 911. Even if the amount of light of the first light becomes zero in the region 911, the decrease in the brightness of the low beam light distribution pattern 910 is suppressed as compared with the case where the second light does not irradiate the region 911, and the front visibility is improved. The decline can be suppressed.
  • the control unit 110 when the control unit 110 performs temperature derating to the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the control unit 110 stops supplying power to the light emitting element 43 and the first light is emitted.
  • the amount of light may be zero.
  • the temperature rise of the first light source unit 41 can be further suppressed.
  • the power supply when the power supply is stopped, only the second light illuminates a part of the region 931, the second light and the third light illuminate the other part of the region 931, and only the third light illuminates the region 933. Irradiate.
  • the light distribution pattern of the high beam is compared with the case where the second and third lights do not illuminate the region 931 and the case where the third light does not irradiate the region 933.
  • the decrease in brightness of 930 can be suppressed, and the decrease in visibility ahead can be suppressed.
  • control unit 110 of the present embodiment When the control unit 110 of the present embodiment performs temperature derating on the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed, the first light that irradiates the regions 911 and 913 as described above.
  • the power supplied to each of the light emitting elements 43 that emits light is controlled.
  • the control of the control unit 110 on the light emitting element 43 need not be limited to the above. Hereinafter, other control of the control unit 110 on the light emitting element 43 will be described.
  • the control unit 110 When the control unit 110 performs temperature derating on the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed, at least a part of the light amount of the first light illuminating the region 911 illuminates the region 913.
  • the power supplied to each of the light emitting elements 43 may be controlled so as to be reduced by more than the amount of light of at least a part of the first light.
  • a part of the cut-off line CL12 and CL13 in the light distribution pattern 910 as compared with the case where the light amount of the first light irradiating the region 913 is reduced more than the light amount of the first light irradiating the region 911.
  • the decrease in brightness on a part of CL14 and CL15 can be suppressed.
  • the region 911 is larger than the region 913, according to the above configuration, the temperature rise of the first light source unit 41 is suppressed as compared with the case where the region 911 is smaller than the region 913.
  • the amount of light in the region 911 may be reduced by the same amount as the amount of light in the region 913, or may be reduced by less than the amount of light in the region 913.
  • the control unit 110 performs temperature derating on the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed, the amount of light of at least a part of the first light irradiating the region 913 is the region 911.
  • the power supplied to each of the light emitting elements 43 may be controlled so as to decrease after the amount of light of at least a part of the first light irradiating the light source 43.
  • the cut-off line CL11, CL12, CL13 in the light distribution pattern 910 is compared with the case where the light amount of the first light irradiating the region 913 is reduced before the light amount of the first light irradiating the region 911.
  • the start of the decrease in brightness on some sides of CL14 and CL15 may be delayed. Therefore, the start of the decrease in visibility of the cut-off line may be delayed.
  • the amount of light in the region 913 may decrease at the same time as the amount of light in the region 911, or may decrease before the amount of light in the region 911.
  • the first distribution unit 110 includes the amount of light in the first light distribution pattern 400 in the region 913.
  • the electric power supplied to each of the light emitting elements 43 may be controlled so as to decrease from the upper edge side of the light pattern 400 toward the lower edge side of the first light distribution pattern 400 included in the region 911.
  • one of the cut-off lines CL11, CL12, CL13, CL14, and CL15 of the light distribution pattern 910 is compared with the case where the amount of light decreases from the lower edge side to the upper edge side of the first light distribution pattern 400. The decrease in brightness on the part side can be suppressed.
  • the amount of light in the first light distribution pattern 400 may decrease from the lower edge side of the first light distribution pattern 400 toward the upper edge side of the first light distribution pattern 400.
  • the control unit 110 may gradually reduce the amount of light or may gradually reduce the amount of light.
  • the amount of light gradually decreases from the upper edge side to the lower edge side of the first light distribution pattern 400, it decreases from the upper edge side to the lower edge side of the first light distribution pattern 400 as compared with the case where the amount of light does not gradually decrease. Excessive changes in the brightness of the first light distribution pattern 400 can be suppressed.
  • the control unit 110 performs temperature derating on the first light source unit 41 in a state where the low beam light distribution pattern 910 is formed, the amount of light in the first light distribution pattern 400 is first distributed from the hot zone HZL side.
  • the electric power supplied to each of the light emitting elements 43 may be controlled so as to decrease toward the peripheral edge side of the optical pattern 400.
  • the line of sight of the driver of the vehicle 10 tends to be concentrated on the hot zone HZL side rather than the peripheral side of the first light distribution pattern 400. According to the above configuration, the decrease in brightness on the hot zone HZL side where the driver's line of sight is concentrated is suppressed as compared with the case where the amount of light decreases from the peripheral side of the first light distribution pattern 400 toward the hot zone HZL. Can be done.
  • the control unit 110 when the control unit 110 performs temperature derating on the first light source unit 41, the amount of light of at least a part of the first light irradiating the upper edge side of the first light distribution pattern 400 is below the first light distribution pattern 400.
  • the power supplied to each of the light emitting elements 43 may be controlled so as to decrease after the amount of light of at least a part of the first light illuminating the edge side.
  • a part of the cut-off lines CL11, CL12, and CL13 in the light distribution pattern 910 as compared with the case where the light amount on the upper edge side of the first light distribution pattern 400 decreases before the light amount on the lower edge side. , CL14, CL15 may delay the start of the decrease in brightness on some sides.
  • the amount of light on the upper edge side of the first light distribution pattern 400 may decrease at the same time as the amount of light on the lower edge side of the first light distribution pattern 400, or may decrease before the amount of light on the lower edge side of the first light distribution pattern 400. It may decrease.
  • each of the light emitting elements 43 is such that the amount of light in the region 911 decreases from the upper edge side to the lower edge side of the first light distribution pattern 400. You may control the power supplied to the.
  • each of the light emitting elements 43 is such that the amount of light in the region 913 decreases from the upper edge side to the lower edge side of the first light distribution pattern 400. You may control the power supplied to the.
  • control unit 110 may control the power supplied to each of the plurality of light emitting elements 43 so that the amount of light in the area 913 is the same as the amount of light in the area 911.
  • the control unit 110 of the present embodiment irradiates at least one of the regions 931 and 933 as described above.
  • the electric power supplied to each of the light emitting elements 43 that emit the first light is controlled.
  • the control unit 110 for the light emitting element 43 need not be limited to the above. Hereinafter, other control of the control unit 110 on the light emitting element 43 will be described.
  • the control unit 110 when the control unit 110 performs temperature derating on the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the amount of light of at least a part of the first light irradiating the region 931 is the region 933.
  • the power supplied to each of the light emitting elements 43 may be controlled so as to reduce the amount of light of at least a part of the first light to irradiate the light source 43. Since the region 933 is located above the region 931 the driver's line of sight tends to be more concentrated in the region 933 than in the region 931.
  • the decrease in the brightness of the region 933 in which the driver's line of sight is concentrated in the high beam light distribution pattern is suppressed as compared with the case where the amount of light in the region 931 is reduced to be smaller than the amount of light in the region 933. Therefore, the decrease in front visibility can be suppressed.
  • the amount of light in the region 931 may be reduced by the same amount as the amount of light in the region 933, or may be reduced by less than the amount of light in the region 933.
  • the control unit 110 performs temperature derating on the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the amount of light of at least a part of the first light irradiating the region 933 is the region 931.
  • the power supplied to each of the light emitting elements 43 may be controlled so as to decrease after the amount of light of at least a part of the first light irradiating the light source 43.
  • the brightness of the region 933 where the driver's line of sight is concentrated is higher than that in the case where the light quantity of the region 933 is reduced before the light quantity of the region 931.
  • the onset of the decline can be delayed and the decline in visibility in the region 933 is suppressed.
  • the amount of light in the region 933 may decrease at the same time as the amount of light in the region 931 or may decrease before the amount of light in the region 931.
  • the region 933 is larger than the region 931 and the light quantity of the region 933 decreases before the light quantity of the region 931, the light quantity of the region 933 decreases after the light quantity of the region 931. The temperature rise is more suppressed.
  • the control unit 110 performs temperature derating on the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the first light amount in the first light distribution pattern 400 is included in the third region.
  • the electric power supplied to each of the light emitting elements 43 may be controlled so as to decrease from the upper edge side of the light distribution pattern 400 toward the lower edge side of the first light distribution pattern 400 included in the region 931.
  • the driver's line of sight tends to be more concentrated in the region 933 than in the region 931.
  • the brightness of the region 933 where the driver's line of sight is concentrated as compared with the case where the amount of light decreases from the lower edge side of the first light distribution pattern 400 toward the upper edge side of the first light distribution pattern 400.
  • the decrease in visibility can be suppressed and the decrease in visibility in the region 933 can be suppressed.
  • the amount of light in the first light distribution pattern 400 may decrease from the lower edge side of the first light distribution pattern 400 toward the upper edge side of the first light distribution pattern 400.
  • the control unit 110 may gradually reduce the amount of light or may gradually reduce the amount of light.
  • the amount of light gradually decreases from the upper edge side to the lower edge side of the first light distribution pattern 400, it decreases from the upper edge side to the lower edge side of the first light distribution pattern 400 as compared with the case where the amount of light does not gradually decrease. Excessive changes in the brightness of the first light distribution pattern 400 can be suppressed.
  • the control unit 110 performs temperature derating on the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the amount of light in the first light distribution pattern 400 is first distributed from the hot zone HZH side.
  • the electric power supplied to each of the light emitting elements 43 may be controlled so as to decrease toward the peripheral edge side of the optical pattern 400.
  • the driver's line of sight tends to be more concentrated on the hot zone HZH side than on the peripheral side of the first light distribution pattern 400. According to the above configuration, the decrease in brightness on the hot zone HZH side where the driver's line of sight is concentrated is suppressed as compared with the case where the amount of light decreases from the peripheral side of the first light distribution pattern 400 toward the hot zone HZH. Can be done.
  • control unit 110 has a light amount of at least a part of the first light illuminating the upper edge side of the first light distribution pattern 400 and at least a part of the light amount of the first light illuminating the lower edge side of the first light distribution pattern 400.
  • the electric power supplied to each of the light emitting elements 43 may be controlled so as to decrease later.
  • the region 933 is larger than the region 931 of the light distribution pattern 930
  • the amount of light on the upper edge side of the first light distribution pattern 400 decreases before the amount of light on the lower edge side.
  • the start of the decrease in brightness on the upper porch where the driver's line of sight is concentrated is suppressed. Therefore, the decrease in visibility on the upper edge side is suppressed.
  • the amount of light on the upper edge side of the first light distribution pattern 400 may decrease at the same time as the amount of light on the lower edge side of the first light distribution pattern 400, or may decrease before the amount of light on the lower edge side of the first light distribution pattern 400. It may decrease.
  • control unit 110 may control the light emitting element 43 so that the amount of light in the area 933 is the same as the amount of light in the area 931.
  • FIG. 14 is a front view schematically showing the second light source unit 61 and the shade 67 of this modification.
  • the upper edge of the light-shielding portion 67a extends substantially in the horizontal direction, unlike the upper edge of the embodiment.
  • the light-shielding portion 67a of the shade 67 blocks a part of the second light from the light emitting element 63.
  • FIG. 15 is a diagram showing a second light distribution pattern 600 of this modification.
  • the second light distribution pattern 600 has a rectangular shape that is long in the left-right direction and overlaps with the vertical line V.
  • the upper edge of the second light distribution pattern 600 corresponds to the shape of the upper edge of the light-shielding portion 67a in the third lamp 80, is located below the horizontal line S, intersects the vertical line V, and extends in the horizontal direction. ..
  • FIG. 16 is a diagram showing a low beam light distribution pattern 910 of this modification.
  • the relative positions of the light distribution patterns 400 and 600 in the light distribution pattern 910 of this modification are different from the relative positions of the light distribution patterns 400 and 600 in the light distribution pattern 910 of the embodiment, and will be described below. ..
  • the light distribution pattern 910 has cut-off lines CL21 to CL29 on the upper edge.
  • the cut-off line CL21 extends horizontally to the right side, which is one side in the left-right direction, from the elbow point EP.
  • the cut-off line CL22 extends diagonally upward from the elbow point EP to the left side, which is the other side in the left-right direction.
  • the end of the cut-off line CL22 opposite to the elbow point EP side is located above the horizon S.
  • the cut-off line CL23 extends horizontally from the end opposite to the elbow point EP side in the cut-off line CL 22 to the other side in the left-right direction.
  • the cut-off line CL23 is located above the horizon S.
  • the cut-off line CL 24 extends downward along the vertical line V direction from the end of the cut-off line CL 23 opposite to the cut-off line CL22 side.
  • the end of the cut-off line CL 24 opposite to the cut-off line CL23 side is located below the horizon S.
  • the cut-off line CL25 extends horizontally from the end of the cut-off line CL 24 opposite to the cut-off line CL23 side to the other side in the left-right direction.
  • the cut-off line CL25 is located at substantially the same height as the cut-off line CL21.
  • the cut-off line CL26 extends diagonally upward from the end opposite to the elbow point EP side in the cut-off line CL21 to one side in the left-right direction.
  • the end of the cut-off line CL 26 opposite to the cut-off line CL21 side is located above the horizon S and is located at substantially the same height as the cut-off line CL23.
  • the cut-off line CL 27 extends horizontally from the end of the cut-off line CL 26 opposite to the cut-off line CL21 side to one side in the left-right direction.
  • the cut-off line CL27 is located above the horizon S.
  • the cut-off line CL 28 extends downward along the vertical line V direction from the end of the cut-off line CL 27 opposite to the cut-off line CL26 side.
  • the end of the cut-off line CL 28 opposite to the cut-off line CL27 side is located below the horizon S.
  • the cut-off line CL29 extends horizontally from the end of the cut-off line CL 28 opposite to the cut-off line CL27 side to one side in the left-right direction.
  • the cut-off line CL29 is located at substantially the same height as the cut-off line CL21.
  • the cut-off lines CL21 to CL23, CL26, and CL27 of the light distribution pattern 910 are the upper edges of the first light distribution pattern 400.
  • the cut-off line CL24 is a part of the left edge of the first light distribution pattern 400
  • the cut-off line CL28 is a part of the right edge of the first light distribution pattern 400.
  • the cut-off line CL25 is the upper edge of the second light distribution pattern 600 extending to the left side of the left edge of the first light distribution pattern 400 in the horizontal direction.
  • the cut-off line CL29 is an upper edge of the second light distribution pattern 600 extending to the right side of the right edge of the first light distribution pattern 400 in the horizontal direction.
  • the control unit 110 emits light so that the upper edge of the first light distribution pattern 400 is cut-off line CL21 to CL23, CL26, CL27, a part of the left edge is cut-off line CL24, and a part of the right edge is cut-off line CL28.
  • the electric power supplied to each of the elements 43 is controlled. Therefore, similarly to the light distribution pattern 910 of the embodiment, the first light distribution pattern 400 in the light distribution pattern 910 of this modification is not all the light emitting elements 43 in the first lamp 40 but the light emitting element 43. It is formed by the first light emitted from a part.
  • the left edge, the right edge, and the lower edge of the light distribution pattern 910 are the left edge, the right edge, and the lower edge of the second light distribution pattern 600, as in the light distribution pattern 910 of the embodiment. Therefore, in the left-right direction, the second light distribution pattern 600 is made longer than the first light distribution pattern 400. Further, the left edge of the second light distribution pattern 600 is located on the left side of the left edge of the first light distribution pattern 400, and the right edge of the second light distribution pattern 600 is on the right side of the right edge of the first light distribution pattern 400. Located in. Further, in the vertical direction, the upper edge of the second light distribution pattern 600 crosses between the upper edge and the lower edge of the first light distribution pattern 400.
  • the light distribution pattern 910 includes regions 911 and 913, similarly to the light distribution pattern 910 of the embodiment. Unlike the embodiment, the region 911 is made smaller than the region 913. The region 913 is adjacent to the region 911 and is located above the region 911.
  • One region 913 is surrounded by cut-off lines CL22 to CL24 on the left side of the vertical line V and a part of the upper edge of the second light distribution pattern 600 located inside the first light distribution pattern 400.
  • the other region 913 is surrounded by cut-off lines CL26 to CL28 on the right side of the vertical line V and another part of the upper edge of the second light distribution pattern 600 located inside the first light distribution pattern 400.
  • the regions 913 are separated from each other in the left-right direction.
  • the control unit 110 controls the light emitting elements 43 and 63 in the same manner as the light emitting elements 43 and 63 in the embodiment. do. Therefore, the description of the control of the light emitting elements 43 and 63 will be omitted.
  • FIG. 17 is a diagram showing a high beam light distribution pattern 930 of this modification.
  • the light distribution pattern 910 is shown by a thick line
  • the low beam light distribution pattern 910 shown in FIG. 16 is shown by a broken line.
  • the relative positions of the light distribution patterns 400, 600, 800 in the light distribution pattern 930 of this modification are different from the relative positions of the light distribution patterns 400, 600, 800 in the light distribution pattern 930 of the embodiment.
  • the third light distribution pattern 800 and the second light distribution pattern 600 are lined up in the vertical direction without any gap. Further, the lower edge of the third light distribution pattern 800 is in contact with the upper edge of the second light distribution pattern 600, and the third light distribution pattern 800 does not overlap with the second light distribution pattern 600 and is the upper edge of the second light distribution pattern 600. It is located outside the second light distribution pattern 600 above the height position of.
  • the upper edge of the second light distribution pattern 600 crosses between the upper edge and the lower edge of the first light distribution pattern 400.
  • the upper edge of the light distribution pattern 930 is a part of the upper edge of the upper edge of the second light distribution pattern 600 that is not in contact with the lower edge of the third light distribution pattern 800.
  • the upper edge of the light distribution pattern 930 is the left edge, the upper edge, and the right edge of the third light distribution pattern 800, and the upper edge of the third light distribution pattern 800 of the upper edges of the second light distribution pattern 600. It is the other part of the upper edge that is not in contact with.
  • the left edge, the right edge, and the lower edge of the light distribution pattern 930 of this modification are the left edge, the right edge, and the lower edge of the second light distribution pattern 600, similarly to the light distribution pattern 930 of the embodiment. be.
  • the light distribution pattern 930 includes the regions 931 and 933 as in the light distribution pattern 930 of the embodiment.
  • the embodiment is different, and in the region 933, the first light distribution pattern 400 overlaps only the third light distribution pattern 800. Therefore, in the light distribution pattern 930, the first light and the second light illuminate the region 931, and the first light and the third light illuminate the region 933. As described above, in the light distribution pattern 930 of this modification, the region where the light distribution patterns 400, 600, and 800 overlap is not formed.
  • the hot zone HZH which is the region having the highest light intensity in the light distribution pattern 930, is located on or near the intersection of the horizontal line S and the vertical line V in the region 933.
  • the amount of light of the first and third lights emitted from the respective light emitting elements 43, 83a to 83j is adjusted by the control unit 110 so that the intensity of the light in the light distribution pattern 930 becomes lower as the distance from the hot zone HZH increases.
  • the control unit 110 When the control unit 110 performs temperature derating to the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the control unit 110 is the same as the light emitting elements 43, 63, 83a to 83j in the embodiment. In addition, the light emitting elements 43, 63, 83a to 83j are controlled. Therefore, the description of the control of the light emitting elements 43, 63, 83a to 83j will be omitted.
  • FIG. 18 is a front view schematically showing the second light source unit 61 and the shade 67 of this modification.
  • the upper edge of the light-shielding portion 67a includes a first edge 67e, a second edge 67f, and a third edge 67g, unlike the upper edge of the first modification.
  • the first edge 67e extends substantially in the horizontal direction.
  • the second edge 67f extends linearly from one end of the first edge 67e to the opposite side of the first edge 67e and downward.
  • the third edge 67g extends substantially horizontally from the end of the second edge 67f opposite to the first edge 67e side toward the side opposite to the first edge 67e side.
  • the light-shielding portion 67a of the shade 67 blocks a part of the second light from the light emitting element 63.
  • FIG. 19 is a diagram showing a second light distribution pattern 600 of this modification.
  • the second light distribution pattern 600 overlaps the vertical line V.
  • the upper edge of the second light distribution pattern 600 corresponds to the shape of the upper edge of the light-shielding portion 67a in the third lamp 80, and includes the first edge 601 and the second edge 602, and the third edge 603.
  • the first edge 601 is located below the horizontal line S and extends horizontally from the vertical line V to the right side, which is one side in the horizontal direction, and to the left side, which is the other side in the horizontal direction.
  • the part of the first edge 601 extending horizontally from the vertical line V is larger than the other part of the first edge 601 extending horizontally from the vertical line V to the other side. It has been lengthened.
  • FIG. 20 is a diagram showing a low beam light distribution pattern 910 of this modification.
  • S indicates a horizontal line
  • V indicates a vertical line passing through the center of the vehicle 10 in the left-right direction
  • the light distribution pattern 910 formed on the virtual vertical screen arranged 25 m ahead of the vehicle 10 is a thick line. Shown.
  • the light distribution pattern 910 has cut-off lines CL31 to CL33 on the upper edge.
  • the cut-off line CL31 extends horizontally to the right side, which is one side in the left-right direction, from the elbow point EP.
  • the cut-off line CL32 extends diagonally upward from the elbow point EP to the left side, which is the other side in the left-right direction.
  • the end of the cut-off line CL32 opposite to the elbow point EP side is located above the horizon S.
  • the cut-off line CL 33 extends horizontally from the end opposite to the elbow point EP side in the cut-off line CL 32 to the other side in the left-right direction.
  • the cut-off line CL33 is located above the horizon S.
  • the cut-off line CL31 of the light distribution pattern 910 is located on a part of the upper edge of the first light distribution pattern 400 and on the right side of the right edge of the first light distribution pattern 400 in the horizontal direction. It is a part of the first edge 601 of the extending second light distribution pattern 600.
  • the cut-off line CL32 is another part of the upper edge of the first light distribution pattern 400.
  • the cut-off line CL33 includes the remaining part of the upper edge of the first light distribution pattern 400 and the third edge of the second light distribution pattern 600 extending to the left side of the left edge of the first light distribution pattern 400 in the horizontal direction. 603.
  • the control unit 110 controls the supply of electric power to the light emitting element 43 so that the upper edge of the first light distribution pattern 400 becomes a part of the cut-off line CL31, a part of the cut-off line CL32, and a part of the cut-off line CL33. .. Therefore, similarly to the light distribution pattern 910 of the first modification, the first light distribution pattern 400 of the light distribution pattern 910 of this modification is not all the light emitting elements 43 of the first lamp 40, but emits light. It is formed by the first light emitted from a part of the element 43.
  • the left edge, the right edge, and the lower edge of the light distribution pattern 910 of the present modification are the left edge, the right edge, and the right edge of the second light distribution pattern 600, similarly to the light distribution pattern 910 of the first modification.
  • the lower edge of the first light distribution pattern 400 is located between the upper edge and the lower edge of the second light distribution pattern 600 in the vertical direction. There is.
  • the light distribution pattern 910 includes regions 911 and 913, similarly to the light distribution pattern 910 of the first modification.
  • Region 911 is larger than Region 913, as in the embodiment.
  • the region 913 is surrounded by the cut-off line CL32, a part of the cut-off line CL33, a part of the first edge 601 and the second edge 602 on the left side of the vertical line V.
  • the control unit 110 controls the light emitting elements 43 and 63 in the same manner as the light emitting elements 43 and 63 in the embodiment. do. Therefore, the description of the control of the light emitting elements 43 and 63 will be omitted.
  • FIG. 21 is a diagram showing a high beam light distribution pattern 930 of this modification.
  • the light distribution pattern 910 is shown by a thick line
  • the low beam light distribution pattern 910 shown in FIG. 20 is shown by a broken line.
  • the relative positions of the light distribution patterns 400, 600, 800 in the light distribution pattern 930 of this modification are different from the relative positions of the light distribution patterns 400, 600, 800 in the light distribution pattern 930 of the first modification. This will be explained below.
  • the second light distribution pattern 600 is longer than the third light distribution pattern 800.
  • the left edge of the second light distribution pattern 600 is located on the left side of the left edge of the third light distribution pattern 800, and the right edge of the second light distribution pattern 600 is located on the right side of the right edge of the third light distribution pattern 800. is doing.
  • the lower edge of the second light distribution pattern 600 is located below the lower edge of the third light distribution pattern 800.
  • a part of the first edge 601 overlaps a part of the lower edge of the third light distribution pattern 800, and the other part of the first edge 601 is the third light distribution pattern. Located on the outside of 800.
  • the second edge 602 and the third edge 603 are located above the lower edge of the third light distribution pattern 800.
  • the second edge 602 and a part of the third edge 603 are located inside the third light distribution pattern 800, and the other part of the third edge 603 is located outside the third light distribution pattern 800. Therefore, a part of the second light distribution pattern 600 overlaps a part of the third light distribution pattern 800, and the other part of the second light distribution pattern 600 does not overlap the third light distribution pattern 800 and the third light distribution pattern 800. It is located outside the pattern 800.
  • the upper edges of the second light distribution pattern 600 a part of the first edge 601 and the second edge 602 are located inside the first light distribution pattern 400. Further, among the upper edges of the second light distribution pattern 600, the third edge 603 and the other part of the first edge 601 are located outside the first light distribution pattern 400.
  • the upper edge of the light distribution pattern 930 is a part of the third edge 603 located outside the third light distribution pattern 800 of the upper edges of the second light distribution pattern 600. be. Further, the upper edge of the light distribution pattern 930 is a part of the left edge of the third light distribution pattern 800 located outside the second light distribution pattern 600, and the upper edge and the right edge of the third light distribution pattern 800. be. Further, the upper edge of the light distribution pattern 930 is a part of the first edge 601 located outside the third light distribution pattern 800 of the upper edges of the second light distribution pattern 600.
  • the left edge, right edge, and lower edge of the light distribution pattern 930 are the left edge, right edge, and lower edge of the second light distribution pattern 600, as in the light distribution pattern 930 of the first modification.
  • the light distribution pattern 930 includes the regions 931 and 933 as in the light distribution pattern 930 of the first modification.
  • the configuration of the regions 931,933 is the same as the configuration of the regions 931,933 of the first modification.
  • the control unit 110 When the control unit 110 performs temperature derating to the first light source unit 41 in a state where the high beam light distribution pattern 930 is formed, the control unit 110 is the same as the light emitting elements 43, 63, 83a to 83j in the embodiment. In addition, the light emitting elements 43, 63, 83a to 83j are controlled. Therefore, the description of the control of the light emitting elements 43, 63, 83a to 83j will be omitted.
  • the configuration of the first lamp 40 is not particularly limited to the above.
  • the configuration of the first lamp 40 may be such that the light emitted from the light source is scanned by using, for example, a MEMS (Micro Electro Mechanical Systems), a galvano mirror, or the like, and the light is emitted forward.
  • the configuration of the first lighting tool 40 may be a configuration in which light emitted from a light source is diffracted using an LCOS (Liquid Crystal On Silicon), a diffraction grating, or the like to form a desired light distribution pattern and emitted forward. ..
  • LCOS Liquid Crystal On Silicon
  • the configuration of the second lamp 60 and the third lamp 80 is not particularly limited, and may be the same as the configuration of other lamps. Therefore, the second light source unit 61 may be a micro LED array like the first light source unit 41, or may be an LED array like the third light source unit 81. Further, the third light source unit 81 may be a micro LED array like the first light source unit 41.
  • the first lamp 40 and the third lamp 80 may be, for example, a parabola type lamp or a direct lens type lamp.
  • One of the regions 911 and 913 may be the same size as the other or smaller than the other.
  • the light distribution pattern 930 may include only the region 933.
  • the first edge 601 of the second light distribution pattern 600 may touch a part of the lower edge of the third light distribution pattern 800, or may cross the first light distribution pattern 400 and the third arrangement. It may be located above or below a portion of the lower edge of the light pattern 800.
  • the lower edge of the first light distribution pattern 400 may be in contact with a part of the lower edge of the third light distribution pattern 800, or may overlap with the lower edge of the third light distribution pattern 800. However, it may be located above the lower edge of the third light distribution pattern 800.
  • the upper edge of the first light distribution pattern 400 may be in contact with the upper edge of the third light distribution pattern 800, may overlap with the upper edge of the third light distribution pattern 800, or may be the first. 3
  • the light distribution pattern 800 may be located above the upper edge.
  • the lower edge of the third light distribution pattern 800 may overlap with the lower edge of the second light distribution pattern 600, or may be lower than the lower edge of the second light distribution pattern 600. May be located at. In the light distribution pattern 930 of the embodiment and the second modification, a part of the lower edge of the third light distribution pattern 800 may be in contact with the first edge 601 of the second light distribution pattern 600, or the third light distribution pattern. The lower edge of 800 may be located above or below the first edge 601.
  • a gap may be formed between the third light distribution pattern 800 and the second light distribution pattern 600 in the vertical direction.
  • the first light distribution pattern 400 may be formed so as to overlap the gap, the third light distribution pattern 800, and the second light distribution pattern 600.
  • each of the pair of lamp units 30 three lamps 40, 60, 80 are provided in the first embodiment, but in the present embodiment, only the first lamp 40 is provided, and the first lamp 40 is provided.
  • the configuration of the light source unit 41 is different from that of the first embodiment.
  • the first lamp 40 of the present embodiment emits a low beam or a high beam in front of the vehicle 10.
  • FIG. 22 is a front view schematically showing the first light source unit 41 and the temperature sensor 47 of the present embodiment.
  • each of the light emitting elements 43 in the first light source unit 41 is shown as light emitting elements 43a to 43l.
  • the light emitting elements 43a to 43l have the same configuration as the light emitting elements 83a to 83j of the third lamp 80 of the first embodiment, and are arranged in an array in a row in the left-right direction, which is a so-called LED array.
  • the emission surfaces of the light emitting elements 43a to 43l emit white light, for example, and have a substantially rectangular shape that is long in the vertical direction.
  • the control unit 110 stops the supply of electric power or the supply of electric power to the respective light emitting elements 43a to 43l via the power supply unit and the circuit board 45. As a result, the light emitting elements 43a to 43l that emit light are selected, and the size and shape of the light distribution pattern formed by the light emitted from the first light source unit 41 change according to the selection. Further, the control unit 110 adjusts the electric power supplied to each of the light emitting elements 43a to 43l. For example, the control unit 110 may adjust the power by PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • the control unit 110 adjusts the electric power supplied to each of the light emitting elements 43a to 43l by adjusting the duty ratio, and adjusts the light emitting amount of each of the light emitting elements 43a to 43l by adjusting the electric power.
  • the larger the duty ratio the larger the electric power applied to the light emitting element 43.
  • the control unit 110 may adjust the amount of light emitted from each of the light emitting elements 43a to 43l by adjusting the current supplied to each of the light emitting elements 43b to 43l.
  • FIG. 23 is a diagram showing an example of duty ratios 43aD to 43lD when the vehicle 10 is traveling straight, and FIG. 23 shows values of duty ratios 43aD to 43lD in the height of the rectangle shown in FIG. 23.
  • the duty ratios 43aD to 43lD shown in FIG. 23 are the duty ratios when the temperature derating is not performed.
  • the control unit 110 sets the duty ratios 43aD to 43fD of the light emitting elements 43a to 43f to 20%, 30, 40%, 60%, 80%, and 100% in order. Further, the control unit 110 sets the duty ratios 43lD to 43gD of the light emitting elements 43l to 43g to 20%, 30, 40%, 60%, 80%, and 100% in order in the same manner as described above.
  • the values of the duty ratios 43aD to 43lD are recorded in the recording unit 130, and the control unit 110 reads the values from the recording unit 130 and controls the duty ratios 43aD to 43lD as described above.
  • the above value of the duty ratio is not particularly limited.
  • the control unit 110 controls the duty ratios 43aD to 43lD as described above, the amount of light emitted from the light emitting elements 43f and 43g located on the center side in the left-right direction becomes the largest. Further, the amount of light emitted decreases in the order of the light emitting element 43f to the light emitting element 43a and from the light emitting element 43g to the light emitting element 43l. In the light emitting elements 43a to 43l, if the duty ratio is the same, the light emitting amount is the same. Therefore, the light emitting amount is symmetrical between the left and right light emitting elements with respect to the light emitting elements 43f and 43g. As a result, the hot zone, which is the region where the light intensity is the highest in the high beam light distribution pattern, is located approximately in the center of the high beam light distribution pattern in the left-right direction.
  • Each of the light emitting elements 43a to 43l generates heat when light is emitted at the above duty ratio.
  • the temperature of the first light source unit 41 due to the heat generation of each of the light emitting elements 43a to 43l is estimated by the temperature sensor 47 as described above, and the temperature sensor 47 outputs the temperature signal to the control unit 110.
  • the control unit 110 performs temperature derating on each of the light emitting elements 43a to 43l based on the temperature signal.
  • FIG. 24 is a diagram showing the relationship between the temperature T (° C.) of the first light source unit 41 estimated by the temperature sensor 47 and the duty ratio D (%) of the light emitting element 43.
  • the horizontal axis of FIG. 24 shows the temperature T, and the vertical axis shows the duty ratio D.
  • the temperatures T0, T1 and T2 are set to, for example, 80 ° C, 110 ° C and 120 ° C.
  • the temperature T0 is the temperature at which the control unit 110 starts the temperature derating. When the temperature T is lower than the temperature T0, the temperature derating is not performed, and when the temperature T is the temperature T0 or more, the temperature derating is performed.
  • the duty ratio D0 corresponding to the temperature lower than the temperature T0 is 100%, and the duty ratios D1 and D2 corresponding to the temperatures T1 and T2 are, for example, 50% and 30%.
  • the duty ratio D2 the amount of decrease in the duty ratio when temperature derating is performed is maximized.
  • the relationship between the temperature T and the duty ratio D, the values of the temperatures T0, T1 and T2, and the values of the duty ratios D1 and D2 are recorded in the recording unit 130. Note that these values are not particularly limited.
  • the control unit 110 sets a reference duty ratio D according to the temperature of the temperature T0 or higher. For example, when the temperature T is the temperature T1, the control unit 110 sets the reference duty ratio D to the duty ratio D1. When the temperature T is the temperature T2 or higher, the control unit 110 sets the reference duty ratio D to the duty ratio D2 in order to avoid turning off the lights. In the temperature derating of the present embodiment, when the temperature T is the temperature T0 or higher, the control unit 110 has a duty ratio higher than the reference duty ratio D corresponding to the temperature T among the duty ratios 43aD to 43lD. Lower at least part.
  • the control unit 110 When the duty ratio is lowered, the amount of light emitted from the light emitting element 43 and the amount of heat generated are reduced, and the temperature of the first light source unit 41 is lowered.
  • the control unit 110 performs temperature derating based on the duty ratio as described above, but may perform temperature derating based on the current flowing through each of the light emitting elements 43b to 43l. Therefore, the control unit 110 may perform temperature derating based on the electric power supplied to each of the light emitting elements 43b to 43l.
  • FIG. 25 is a diagram showing an example of a control flowchart of the control unit 110 in the present embodiment.
  • the control flow of the present embodiment includes steps SP31 to SP33.
  • the control flow is not limited to this.
  • the vehicle VE goes straight and a high beam light distribution pattern is formed.
  • the duty ratios 43aD to 43lD of the light emitting elements 43a to 43l are as shown in FIG. 23.
  • the temperature sensor 47 estimates the temperature of the first light source unit 41 and the temperature signal is input to the control unit 110.
  • Step SP31 the control unit 110 repeats step SP31 if the temperature T indicated by the temperature signal from the temperature sensor 47 is less than the temperature T0. Further, if the temperature T is equal to or higher than the temperature T0, the control unit 110 advances the control flow to step SP32.
  • the control unit 110 performs temperature derating on the first light source unit 41.
  • the control unit 110 controls the duty ratio of the light emitting element 43 with reference to the duty ratio corresponding to the temperature T.
  • the temperature T in step SP31 is, for example, the temperature T1
  • the duty ratio D1 corresponding to the temperature T1 is the reference duty ratio at the time of temperature derating. It will be described using an example.
  • Step SP32 the control unit 110 raises the duty ratio of at least a part of the light emitting elements 43 driven by the duty ratio D1 or less before the temperature derating.
  • FIG. 26 is a diagram showing an example of the duty ratios 43aD to 43lD in this step, and in FIG. 26, of the duty ratios 43aD to 43lD shown in FIG. 23 for comparison with the duty ratios 43aD to 43lD shown in FIG. The part before going up is shown by a broken line. Since the duty ratio D1 is 50%, the duty ratios of the duty ratio D1 or less are the duty ratios 43aD to 43cD and 43jD to 43lD of the light emitting elements 43a to 43c and 43j to 43l.
  • the control unit 110 raises, for example, the duty ratios 43aD to 43cD and 43jD to 43lD from the state shown in FIG. 23.
  • the control unit 110 raises the duty ratios 43aD and 43lD to a duty ratio larger than the duty ratios 43aD and 43lD shown in FIG. 23 and smaller than the duty ratio D1.
  • the control unit 110 raises the duty ratios 43bD and 43kD to the duty ratio D1 and raises the duty ratios 43cD and 43jD above the duty ratio D1.
  • control unit 110 sets, for example, the duty ratios 43aD and 43lD to 30%, the duty ratios 43bD and 43kD to 50%, and the duty ratios 43cD and 43jD to 55%.
  • the duty ratios 43aD to 43cD and 43jD to 43lD increase, the amount of light emitted from the first light source unit 41 increases, and the light distribution pattern becomes brighter.
  • the control unit 110 may raise at least one of the duty ratios 43aD to 43cD and 43jD to 43lD as described above, and the method of raising the duty ratios 43aD to 43cD and 43jD to 43lD is not limited to the above.
  • the control unit 110 may raise the duty ratio having a large difference from the duty ratio D1 among the duty ratios having a duty ratio D1 or less in preference to other duty ratios as described above.
  • the control unit 110 may raise the duty ratio with a small difference in preference to other duty ratios as described above.
  • the control unit 110 may raise the duty ratio with a large difference to be larger or smaller than the duty ratio with a small difference.
  • control unit 110 may increase a plurality of duty ratios having a duty ratio D1 or less by the same amount. Further, the control unit 110 does not have to raise any of the duty ratios 43aD to 43cD and 43jD to 43lD.
  • the control unit 110 increases the power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l driven by the third power of the first power or less.
  • step SP32 when the first light source unit 41 is subjected to temperature derating, the control unit 110 transfers the electric power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l to the first electric power, or , It will be higher than the first power.
  • the target light emitting elements in FIG. 26 are the light emitting elements 43b and 43k, and the light distribution pattern becomes brighter and the front visibility is higher than that when the power does not increase to the first power.
  • the decrease in power can be suppressed.
  • the target light emitting elements in FIG. 26 are the light emitting elements 43c and 43j, and the light distribution pattern is further brightened as compared with the case where the power does not rise to the first power.
  • the decrease in forward visibility can be further suppressed.
  • step SP32 the control unit 110 raises the power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l driven by the third power to be higher than the first power and elapses for a certain period of time.
  • the electric power supplied to the light emitting element may be reduced to the first electric power or less.
  • the value for a certain period of time is, for example, 5 minutes.
  • the light emitting elements targeted in this case are the light emitting elements 43c and 43j. If the power remains higher than the first power, the temperature of the first light source unit 41 will rise.
  • the control unit 110 does not have to reduce the electric power to the first electric power or less after a certain period of time has elapsed.
  • the fourth electric power is supplied to the light emitting element 43 which is smaller than the duty ratio D1 and is driven by the duty ratio when the third electric power is supplied.
  • the fourth electric power is smaller than the first electric power and larger than the third electric power.
  • the control unit 110 performs temperature derating on the first light source unit 41
  • the power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l in step SP32 is larger than the third power and is the first power. It may be increased to a smaller fourth power.
  • the light emitting elements targeted in this case are the light emitting elements 43a and 43l.
  • control unit 110 raises the duty ratios 43aD to 43cD and 43jD to 43lD, the control flow advances to step SP33.
  • Step SP33 the control unit 110 performs temperature derating on the first light source unit 41.
  • the control unit 110 performs temperature derating, for example, 1 second after the end of the duty ratio control in step SP32, but the temperature derating may be performed at the same time as the end of the control, and the timing of performing the temperature derating is not particularly limited. ..
  • the control unit 70 lowers the duty ratio of at least a part of the light emitting elements 43 driven by the duty ratio larger than the duty ratio D1 to the duty ratio D1 or less.
  • 27 is a diagram showing an example of the duty ratios 43aD to 43lD in this step, and in FIG. 27, of the duty ratios 43aD to 43lD shown in FIG.
  • the control unit 110 lowers the duty ratios 43dD to 43iD of the light emitting elements 43d to 43i to the duty ratio D1 and sets them to 50%.
  • the duty ratios 43dD to 43iD decrease, the amount of light emitted from the first light source unit 41 and the amount of heat generated decrease, and the temperature of the first light source unit 41 decreases.
  • the duty ratio larger than the duty ratio D1 is set to the duty ratio 43cD to 43jD larger than the duty ratio D1 at the time shown in FIG. 26, but it is not necessary to limit the above.
  • a duty ratio larger than the duty ratio D1 may be a duty ratio 43dD to 43iD larger than the duty ratio D1 at the start of the control flow.
  • the control unit 110 maintains the duty ratios 43cD and 43jD shown in FIG. 27.
  • control unit 110 may lower at least one of the duty ratios 43dD to 43iD as described above, and the method of lowering the duty ratios 43dD to 43iD is not limited to the above.
  • the control unit 110 may lower the duty ratio having a large difference from the duty ratio D1 among the duty ratios larger than the duty ratio D1 as described above in preference to the other duty ratios.
  • the control unit 110 may lower the duty ratio with a small difference in preference to other duty ratios as described above.
  • the control unit 110 may lower the duty ratio with a large difference to be larger or smaller than the duty ratio with a small difference.
  • the control unit 110 may reduce a plurality of duty ratios larger than the duty ratio D1 by the same amount.
  • the control unit 110 may lower the duty ratio of at least a part of the light emitting elements 43f, 43g driven by the duty ratio larger than the duty ratio D1 to the duty ratio D1 or less.
  • the control unit 110 transfers the power supplied to at least a part of the light emitting elements 43d to 43i driven by the second power larger than the first power. The power will be reduced from the second power to the first power or less.
  • the amount of increase in electric power supplied to at least a part of 43c, 43j to 43l may be increased in advance. According to the above configuration, the larger the amount of decrease in power, the brighter the light distribution pattern can be, as compared with the case where the amount of increase in power is small.
  • the control unit 110 increases the amount of power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l as the amount of reduction of the electric power supplied to at least a part of the light emitting elements 43d to 43i becomes larger. You don't have to do much.
  • the control unit 110 ends the control flow when the duty ratio 43dD to 43iD is lowered.
  • the control unit 110 when the control unit 110 performs temperature derating on the first light source unit 41, the power supplied to at least a part of the light emitting elements 43d to 43i in step SP33 is changed from the second power to the first power. Lower to: Further, when the first light source unit 41 is subjected to temperature derating, the control unit 110 supplies at least a part of the light emitting elements 43a to 43c and 43j to 43l driven by the third power of the first power or less in step SP32. Increase the power to be done.
  • the control unit 110 when the control unit 110 performs temperature derating on the first light source unit 41, at least a part of the power of the light emitting elements 43d to 43i driven by the second power is from the second power to the first power or less. Go down to. Therefore, the first light source unit 41 is protected from the heat from the light emitting element 43, but the light distribution pattern formed by the light emitted from the first light source unit 41 tends to be dark. Therefore, in the above configuration, when the control unit 110 performs temperature derating on the first light source unit 41, the control unit 110 supplies electric power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l driven by the third electric power. increase. As the power increases, the light distribution pattern can become brighter. Therefore, the deterioration of the front visibility can be suppressed.
  • the control unit 110 performs temperature derating on the first light source unit 41
  • the power supplied to at least a part of the light emitting elements 43d to 43i driven by the second electric power in the step SP33 is first from the second electric power.
  • the power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l in step SP32 is increased.
  • the light distribution pattern becomes brighter as the electric power increases from the third electric power before the light distribution pattern becomes darker as the electric power decreases from the second electric power to the first electric power or less. Therefore, it is possible to suppress the light distribution pattern from becoming darker than before the temperature derating is performed on the first light source unit 41, as compared with the case where the light distribution pattern becomes brighter after it becomes darker, and the visibility is deteriorated. Can be suppressed.
  • control unit 110 may perform step SP32 and step SP33 at the same time. Therefore, the control unit 110 reduces the power supplied to at least a part of the light emitting elements 43d to 43i driven by the second power from the second power to the first power or less, and at the same time, the light emitting elements 43a to 43c, 43j to 43l. The power supplied to at least a part of the power may be increased. Alternatively, the control unit 110 may advance the control flow in the order of step SP33 and step SP32.
  • the control unit reduces the power supplied to at least a part of the light emitting elements 43d to 43i driven by the second power from the second power to the first power or less, and then reduces the power of the light emitting elements 43a to 43c and 43j to 43l.
  • the power supplied to at least a part may be increased.
  • the control unit 110 is supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l, for example, one second after the power is reduced to the first power or less, or at the same time when the power is reduced to the first power or less. You may increase the power.
  • FIG. 28 is a diagram showing an example of duty ratios 43aD to 43lD in a state where the vehicle 10 turns to the left.
  • the control unit 110 when the steering angle indicated by the signal input from the steering sensor to the control unit 110 is the left steering angle, the control unit 110 has the duty ratio of the light emitting elements 43b and 43c. 43bD and 43cD are set to 100%. Further, the control unit 110 sets the duty ratios 43aD and 43dD of the light emitting elements 43a and 43d to 80%, the duty ratio 43eD of the light emitting element 43e to 70%, and the duty ratio 43fD of the light emitting element 43f to 60%. Further, the control unit 110 sets the duty ratio 43gD of the light emitting element 43g to 50% and the duty ratios 43hD and 43iD of the light emitting elements 43h and 43i to 30%.
  • control unit 110 sets the duty ratios 43jD and 43kD of the light emitting elements 43j and 43k to 20% and the duty ratio 43lD of the light emitting elements 43l to 10%. Also in this modification, the values of the duty ratios 43aD to 43lD are recorded in the recording unit 130, and the control unit 110 reads the values from the recording unit 130 and controls the duty ratios 43aD to 43lD as described above. The above value of the duty ratio is not particularly limited.
  • the control unit 110 controls the duty ratios 43aD to 43lD as described above, the hot zone in the high beam light distribution pattern when the vehicle 10 turns to the left shifts to the left side as compared with the case where the vehicle 10 goes straight. Further, the light intensity distribution in the high beam light distribution pattern when the vehicle 10 turns to the left is higher than that in the case where the vehicle 10 goes straight so that the region on the left side of the high beam light distribution pattern is brighter than the region on the right side. Will change.
  • control flow includes steps SP31 to SP33, and the temperature derating is the first light source unit. It is done at 41.
  • FIG. 29 is a diagram showing an example of duty ratios 43aD to 43lD in step SP32.
  • the portion of the duty ratio shown in FIG. 28 before the increase is shown by a broken line.
  • the temperature T input from the temperature sensor 47 to the control unit 110 is the temperature T1
  • the duty ratio D1 corresponding to the temperature T1 is used as a reference for temperature derating, as in the above embodiment. This will be described using an example of the duty ratio.
  • the control unit 110 raises the duty ratios 43hD to 43lD of the light emitting elements 43h to 43l from the state shown in FIG. 28.
  • control unit 110 raises the duty ratios 43hD and 43iD to the duty ratio D1 and raises the duty ratios 43jD and 43kD to the duty ratio D1. Further, the control unit 110 raises the duty ratio 43 lD to a duty ratio larger than the duty ratio 43 lD shown in FIG. 28 and smaller than the duty ratio D1. In this case, the control unit 110 sets, for example, the duty ratios 43lD and 43iD to 55%, the duty ratios 43jD and 43kD to 50%, and the duty ratio 43lD to 30%.
  • the duty ratio 43hD to 43lD increases, the amount of light emitted from the first light source unit 41 increases, and the light distribution pattern becomes brighter.
  • control flow advances to step SP33.
  • step SP33 the control unit 110 performs temperature derating on the first light source unit 41.
  • the control unit 110 lowers the duty ratio of at least a part of the light emitting elements 43 driven by the duty ratio larger than the duty ratio D1 to the duty ratio D1 or less.
  • FIG. 30 is a diagram showing an example of the duty ratios 43aD to 43lD in this step, and in FIG. 30, among the duty ratios 43aD to 43lD shown in FIG. 29 for comparison with the duty ratios 43aD to 43lD shown in FIG. 29. The part before going down is shown by the dotted line.
  • the control unit 110 lowers the duty ratios 43aD to 43fD of the light emitting elements 43a to 43f to the duty ratio D1 and sets them to 50%.
  • the duty ratios 43aD to 43fD decrease, the amount of light emitted from the first light source unit 41 and the amount of heat generated decrease, and the temperature of the first light source unit 41 decreases.
  • control unit 110 ends the control flow when the duty ratios 43aD to 43fD are lowered.
  • control unit 110 controls the light emitting element 43 as described above by the duty ratio, but as described above, the power supplied to the light emitting element 43 driven by the duty ratio also as in the embodiment.
  • the light emitting element 43 can be controlled.
  • FIG. 31 shows the duty ratios 43aD to 43lD of the light emitting elements 43a to 43l after the temperature derating when the vehicle 10 is switched from the state of going straight to the state of turning to the left and the light intensity distribution in the light distribution pattern is changed. It is a figure which shows an example.
  • the portion of the duty ratios 43aD to 43lD shown in FIG. 28 before the decrease is shown by a dotted line.
  • the control unit 110 lowers the duty ratios 43aD to 43fD of the light emitting elements 43a to 43f, which are larger than the duty ratio D1 of the light emitting elements 43a to 43l. For example, the control unit 110 lowers the duty ratios 43aD to 43fD to the duty ratio D1 and sets the duty ratios 43aD to 43fD to 50%. The control unit 110 may lower the duty ratio of at least a part of the light emitting elements 43a to 43f driven by the duty ratio larger than the duty ratio D1 to the duty ratio D1 or less. Further, the control unit 110 maintains the duty ratios 43gD to 43lD of the light emitting elements 43g to 43l driven by the duty ratio D1 or less in the state shown in FIG. 28.
  • the control unit 110 raises the duty ratios 43aD to 43cD shown in FIG. 31 as compared with the duty ratios 43aD to 43cD of the light emitting elements 43a to 43c shown in FIG. 23.
  • the portion of the duty ratios 43aD to 43cD shown in FIG. 23 before the increase is shown by a broken line. Therefore, when the control unit 110 performs temperature derating on the first light source unit 41 after changing the light intensity distribution in the light distribution pattern, the duty ratio 43aD to which the duty ratio is D1 or less before the light intensity distribution is changed. 43cD is raised.
  • control unit 110 raises the duty ratios 43aD to 43cD to the duty ratio D1 and sets the duty ratios 43aD to 43cD to 50%.
  • the control unit 110 may increase the duty ratio of at least a part of the light emitting elements 43a to 43c as described above.
  • control unit 110 controls the light emitting element 43 as described above by the duty ratio, but the light emitting element 43 can also be controlled as described above by the electric power supplied to the light emitting element 43 driven by the duty ratio. .. Therefore, the control of the light emitting element 43 using electric power will be described below.
  • the control unit 110 performs temperature derating after changing the light intensity distribution as shown in FIG. 31, at least the light emitting elements 43a to 43f driven by the second power larger than the first power. The power supplied to a part of the power will be reduced to the first power or less.
  • control unit 110 performs temperature derating after changing the light intensity distribution as shown in FIG.
  • the above-mentioned first is performed before changing the light intensity distribution as shown in FIG. 23.
  • the power supplied to at least a part of the light emitting elements 43a to 43c driven by the third power of 1 power or less is increased.
  • the control unit 110 raises the power to the first power as described above.
  • the control unit 110 when the control unit 110 performs temperature derating on the first light source unit 41 after changing the light intensity distribution, the control unit 110 is supplied to at least a part of the light emitting elements 43a to 43f driven by the second electric power. Reduce the power to below the first power. Further, when the control unit 110 performs temperature derating on the first light source unit 41 after changing the light intensity distribution, at least the light emitting elements 43a to 43c driven by the third power before changing the light intensity distribution. Increase the power supplied to some parts.
  • the control unit 110 performs temperature derating on the first light source unit 41 after changing the light intensity distribution, the first light source unit 41 is protected from the heat from the light emitting element 43. , The light distribution pattern tends to be dark. Therefore, in the above configuration, when the control unit 110 performs temperature derating after changing the light intensity distribution, at least one of the light emitting elements 43a to 43c driven by the third power before changing the light intensity distribution. Increase the power supplied to the unit. As the power increases, the light distribution pattern can become brighter. Therefore, even if the first light source unit 41 is subjected to temperature derating after the control unit 110 changes the light intensity distribution, the deterioration of the front visibility can be suppressed as compared with the case where the power does not increase. Further, when the electric power is increased, the decrease in visibility can be further suppressed at night.
  • the control unit 110 makes the total amount of reduction of the duty ratios 43aD to 43fD to the duty ratio D1 shown in FIG. 31 larger than the total amount of reduction of the duty ratios 43dD to 43iD to the duty ratio D1 shown in FIG. 27. , Less, or the same as the sum. Further, the duty ratios 43aD to 43cD of the light emitting elements 43a to 43c shown in FIG. 31 are higher than the duty ratios 43aD to 43cD shown in FIG. 27. In this case, the control unit 110 makes the total amount of increase in the duty ratios 43aD to 43cD to the duty ratio D1 shown in FIG. 31 more than the total amount of decrease in the duty ratios 43dD to 43iD to the duty ratio D1 shown in FIG. 27. It is less, but it may be the same or more.
  • FIG. 32 is another example of the duty ratios 43aD to 43lD of the light emitting elements 43a to 43l when the vehicle 10 is switched from the state of going straight to the state of turning to the left and the light intensity distribution in the light distribution pattern is changed. It is a figure which shows.
  • the portion of the duty ratios 43aD to 43lD shown in FIG. 28 before the decrease is shown by a dotted line.
  • the control unit 110 lowers the duty ratios 43dD to 43fD of the light emitting elements 43d to 43f, which are larger than the duty ratio D1 of the light emitting elements 43a to 43l. For example, the control unit 110 lowers the duty ratios 43dD to 43fD to the duty ratio D1 and sets the duty ratios 43aD to 43fD to 50%.
  • the control unit 110 raises the duty ratios 43aD to 43cD shown in FIG. 32 as compared with the duty ratios 43aD to 43cD shown in FIG.
  • the portion of the duty ratios 43aD to 43cD shown in FIG. 23 before the increase is shown by a broken line. Therefore, when the control unit 110 performs temperature derating on the first light source unit 41 after changing the light intensity distribution in the light distribution pattern, the duty ratio 43aD to which the duty ratio is D1 or less before the light intensity distribution is changed. 43cD is higher than the duty ratio D1.
  • the control unit 110 sets the duty ratios 43aD to 43cD to 80%, 100%, and 100%.
  • the control unit 110 may increase the duty ratio of at least a part of the light emitting elements 43a to 43c as described above.
  • control unit 110 controls the light emitting element 43 as described above by the duty ratio, but the light emitting element 43 can also be controlled as described above by electric power. Therefore, the control of the light emitting element 43 using electric power will be described below.
  • the control unit 110 when the temperature derating is performed after changing the light intensity distribution, the control unit 110 has a third power equal to or lower than the above-mentioned first power before changing the light intensity distribution.
  • the electric power supplied to at least a part of the light emitting elements 43a to 43c driven by the electric power is higher than the first electric power.
  • the light distribution pattern becomes brighter and the deterioration of the front visibility can be further suppressed as compared with the case where the power does not rise to the first power.
  • the control unit 110 may raise at least a part of the duty ratios 43aD to 43cD above the duty ratio D1 and lower it to the duty ratio D1 or less after a certain period of time has elapsed. Therefore, when the control unit 110 performs temperature derating on the first light source unit 41 after changing the light intensity distribution, at least the light emitting elements 43a to 43c driven by the third power before changing the light intensity distribution.
  • the power supplied to at least a part of the light emitting elements 43a to 43c may be lowered to the first power or less after a certain period of time has elapsed after raising the power supplied to a part of the power to be higher than the first power.
  • the temperature of the first light source unit 41 will increase. According to the above configuration, after a certain period of time elapses, the electric power drops to the first power or less, so that the temperature of the first light source unit 41 decreases, and the temperature rise of the first light source unit 41 can be suppressed.
  • the larger the amount of reduction in the power supplied to at least a part of the light emitting elements 43d to 43f driven by the second power the larger the control unit 110 is to at least a part of the light emitting elements 43a to 43c driven by the third power.
  • the amount of increase in the supplied electric power may be increased.
  • the larger the amount of decrease in power the brighter the light distribution pattern can be, as compared with the case where the amount of increase in power is small.
  • the control unit 110 does not increase the amount of power supplied to at least a part of the light emitting elements 43a to 43c as the amount of reduction of the electric power supplied to at least a part of the light emitting elements 43d to 43f is large. May be good.
  • the control unit 110 makes the total amount of increase in the duty ratios 43aD to 43cD larger than the total amount of decrease in the duty ratios 43dD to 43fD. It is not particularly limited.
  • the control unit 110 may set the total sum of the raised amounts to be the same as the sum of the lowered amounts, or may make it smaller than the total of the lowered amounts.
  • the configuration of the vehicle 10 of the present embodiment is the same as the configuration of the vehicle 10 of the first embodiment except for the detection device 150.
  • the detection device 150 of the present embodiment detects a preceding vehicle located in front of the vehicle 10.
  • the detection device 150 mainly includes, for example, a camera (not shown), a detection unit, a calculation unit, a determination unit, and the like.
  • the camera is attached to the front part of the vehicle 10 and photographs the front of the vehicle 10 at predetermined time intervals, for example, 1/30 second intervals.
  • the captured image captured by the camera includes at least a part of the area irradiated with the light emitted from the pair of lamp units 30.
  • Examples of the camera include a CMOS (Complementary metal oxide semiconductor) camera and a CCD (Charged coupled device) camera.
  • the detection unit determines the presence of the preceding vehicle in the captured image, the position of the preceding vehicle in the captured image, the ratio of the preceding vehicle in the captured image, and the time of the size of the preceding vehicle in the captured image. Detects information such as the amount of change.
  • the amount of change in the size of the preceding vehicle in the captured image becomes small. Further, when the vehicle 10 moves forward and the vehicle 10 close to the preceding vehicle approaches the preceding vehicle after a lapse of time, the amount of change in the size of the preceding vehicle becomes larger.
  • the size of the preceding vehicle indicates, for example, the ratio of the preceding vehicle in the captured image, the width of the preceding vehicle in the captured image, and the like.
  • a pair of reddish light spots due to the light emitted from the taillight of the preceding vehicle is reflected in the captured image.
  • the detection unit detects the preceding vehicle based on the light. When the detection unit detects the preceding vehicle from the captured image, the detection unit has the captured image, the presence of the preceding vehicle in the captured image, the position of the preceding vehicle in the captured image, the ratio of the preceding vehicle in the captured image, and the preceding vehicle in the captured image.
  • a signal indicating information such as the amount of change in the magnitude of the image over time is output to the calculation unit.
  • the detection unit does not detect the preceding vehicle from the captured image, the detection unit does not output a signal to the calculation unit. Further, the detection device 150 outputs the captured image to the recording unit 130, and the recording unit 130 records the captured image.
  • the configuration of the detection unit for example, the same configuration as that of the control unit 110 can be mentioned.
  • the calculation unit calculates the distance between the vehicle 10 and the preceding vehicle based on the information from the detection unit.
  • the calculation unit calculates the distance based on the above ratio and the amount of change in the information from the detection unit.
  • the calculation unit may calculate the distance by another method. For example, a pair of reddish light spots due to the light emitted from the taillight of the preceding vehicle is reflected in the captured image.
  • the calculation unit calculates the distance between the vehicle 10 and the preceding vehicle based on the distance between the pair of red light spots and the like.
  • the calculation unit outputs a signal indicating the calculated distance to the determination unit.
  • the configuration of the calculation unit for example, the same configuration as that of the control unit 110 can be mentioned.
  • the determination unit When a signal indicating the distance between the vehicle 10 and the preceding vehicle is input from the calculation unit to the determination unit, the determination unit reads a predetermined requirement from the recording unit 130 and determines whether the distance satisfies the predetermined requirement. Is determined. When the distance meets a predetermined requirement, the determination unit outputs a signal indicating that the distance satisfies the predetermined requirement to the control unit 110, and the distance does not satisfy the predetermined requirement. In this case, the signal is not output to the control unit 110.
  • the signal from the determination unit may be input to the control unit 110 via the ECU.
  • the state in which the predetermined requirement is satisfied means, for example, that the distance between the vehicle 10 and the preceding vehicle is less than the predetermined distance.
  • the determination unit determines whether or not the distance satisfies a predetermined requirement according to the signal input from the calculation unit.
  • the predetermined distance is, for example, 130 m
  • the numerical value of the distance is recorded in the recording unit 130 as a threshold value.
  • the numerical value may be appropriately changed depending on the traveling situation of the vehicle 10 such as daytime or nighttime.
  • the configuration of the determination unit for example, the same configuration as that of the control unit 110 can be mentioned.
  • the object detected by the detection device 150, the number of types of the object, the configuration of the detection device 150, and the detection method of the preceding vehicle by the detection device 150 are not particularly limited. Further, the method of calculating the distance from the vehicle 10 to the preceding vehicle, the information detected by the detection unit, and the information input from the calculation unit to the determination unit are not particularly limited.
  • the detection device 150 may further include an image processing unit that performs image processing on the captured image captured by the camera. From the information processed by the image processing unit, the detection unit determines the presence of the preceding vehicle in the captured image, the position of the preceding vehicle in the captured image, the ratio of the preceding vehicle in the captured image, and the size of the preceding vehicle in the captured image.
  • the detection device 150 may further include a millimeter wave radar, a rider, or the like capable of detecting an object located in front of the vehicle 10.
  • the detection unit determines the existence of the preceding vehicle located in front of the vehicle 10, the position of the preceding vehicle with respect to the vehicle 10, based on the captured image taken by the camera and the signal input from the millimeter wave radar, the rider, or the like. And the distance from the vehicle 10 to the preceding vehicle may be detected.
  • FIG. 33 is a diagram showing an example of duty ratios 43aD to 43lD in a state where the distance between the vehicle 10 and the preceding vehicle is less than a predetermined distance.
  • the duty ratios 43aD to 43lD shown in FIG. 33 are the duty ratios when the temperature derating is not performed.
  • the duty ratios 43aD to 43lD are as shown in FIG. 23.
  • the control unit 110 sets the duty ratios 43eD to 43hD of the light emitting elements 43e to 43h to 0%, and the light emitting element 43d.
  • the duty ratios 43dD and 43iD of 43i are set to 100%.
  • the description of the rectangle in the light emitting elements 43e to 43h is omitted.
  • control unit 110 sets the duty ratios 43cD and 43jD of the light emitting elements 43c and 43j to 80%, the duty ratios 43bD and 43kD of the light emitting elements 43b and 43k to 60%, and the duty ratios 43aD and 43lD of the light emitting elements 43a and 43l to 40. It is set to%.
  • the values of the duty ratios 43aD to 43lD are recorded in the recording unit 130, and the control unit 110 reads the values from the recording unit 130 and controls the duty ratios 43aD to 43lD as described above.
  • the above value of the duty ratio is not particularly limited.
  • the control unit 110 controls the duty ratios 43aD to 43lD as described above, the light emitting elements 43e to 43h are turned off, and the amount of light emitted is smaller in the order of the light emitting element 43d to the light emitting element 43a and from the light emitting element 43i to the light emitting element 43l. Therefore, the amount of light emitted is symmetrical between the left and right light emitting elements. As a result of the above, the region of the high beam light distribution pattern that overlaps with the preceding vehicle becomes a non-projected region in which light is not projected, and the irradiation of the high beam to the preceding vehicle is suppressed.
  • the control unit 110 does not need to set the duty ratios 43eD to 43hD to 0%.
  • the control unit 110 performs temperature derating on the first light source unit 41.
  • the temperature derating of the present embodiment will be described by using the duty ratio D1 as an example of the duty ratio as a reference at the time of the temperature derating, as in the first embodiment.
  • FIG. 34 is a diagram showing an example of duty ratios 43aD to 43lD of the respective light emitting elements 43a to 43l after temperature derating when the distance between the vehicle 10 and the preceding vehicle is less than a predetermined distance.
  • the portion of the duty ratios 43aD to 43lD shown in FIG. 33 before the decrease is shown by a dotted line.
  • the control unit 110 lowers the duty ratios 43dD and 43iD of some of the light emitting elements 43d and 43i among the light emitting elements 43b to 43d and 43i to 43k driven by the duty ratio larger than the duty ratio D1 to 50. Set to%. Further, the control unit 110 maintains the duty ratios 43bD, 43cD, 43jD, 43kD of the remaining part of the light emitting elements 43b, 43c, 43j, 43k in the state shown in FIG. 33. The control unit 110 may lower the duty ratio of at least a part of the light emitting elements 43b to 43d and 43i to 43k driven by the duty ratio larger than the duty ratio D1 to the duty ratio D1 or less.
  • control unit 110 shows the duty ratios 43aD, 43eD to 43hD, 43lD of the light emitting elements 43a, 43e to 43h, 43l driven by the duty ratio D1 or less among the light emitting elements 43a to 43l, as shown in FIG. 33. Maintain to.
  • the vehicle 10 travels straight and the distance between the vehicle 10 and the preceding vehicle is greater than or equal to a predetermined distance, and the distance between the vehicle 10 and the preceding vehicle is less than a predetermined distance.
  • the control of the duty ratios 43aD to 43lD of the light emitting elements 43a to 43l when is changed will be described.
  • the control unit 110 raises the duty ratios 43aD to 43cD and 43jD to 43lD shown in FIG. 34 as compared with the duty ratios 43aD to 43cD and 43jD to 43lD shown in FIG. In FIG. 34, in order to compare with the duty ratios 43aD to 43cD and 43jD to 43lD shown in FIG. 23, the portion of the duty ratios 43aD to 43cD and 43jD to 43lD shown in FIG. The control unit 110 raises the duty ratios 43aD and 43lD to a duty ratio smaller than the duty ratio D1 and sets it to 40%.
  • the control unit 110 sets some duty ratios 43aD and 43lD smaller than the duty ratio D1 before changing the light intensity distribution.
  • the duty ratio is increased to a duty ratio larger than the duty ratios 43aD and 43lD and smaller than the duty ratio D1.
  • control unit 110 controls the light emitting element 43 as described above by the duty ratio, but the light emitting element 43 can also be controlled as described above by the electric power supplied to the light emitting element 43 driven by the duty ratio. .. Therefore, the control of the light emitting element 43 using electric power will be described below.
  • the control unit 110 when the temperature derating is performed after changing the light intensity distribution, the control unit 110 has a third power equal to or lower than the above-mentioned first power before changing the light intensity distribution.
  • the electric power supplied to at least a part of the light emitting elements 43a and 43l driven by electric power is increased to the fourth electric power which is larger than the third electric power and smaller than the first electric power.
  • the control unit 110 changes the light intensity distribution
  • the light emission amount of the first light source unit 41 increases and the light distribution pattern is higher than that in the case where the power does not rise to the fourth power. It can be bright.
  • the control unit 110 has a duty ratio 43bD, 43cD, 43jD, 43kD shown in FIG. 34 as compared with the duty ratios 43bD, 43cD, 43jD, 43kD of the light emitting elements 43b, 43c, 43j, 43k shown in FIG. I'm raising it.
  • the control unit 110 raises the duty ratios 43bD, 43cD, 43jD, and 43kD above the duty ratio D1.
  • the control unit 110 sets the duty ratios 43bD, 43cD, 43jD, and 43kD to 60%, 80%, 80%, and 60%.
  • the remaining duty is smaller than the duty ratio D1 when performing temperature derating before changing the light intensity distribution.
  • the ratios 43bD, 43cD, 43jD, and 43kD are higher than the duty ratio D1.
  • the control unit 110 may raise at least a part of the duty ratios 43bD, 43cD, 43jD, and 43kD to the duty ratio D1 or higher. That is, as shown in FIG. 34, when the temperature derating is performed after changing the light intensity distribution, the control unit 110 is driven by a third power equal to or lower than the first power described above before changing the light intensity distribution.
  • the electric power supplied to at least a part of the light emitting elements 43b, 43c, 43j, 43k is higher than the first electric power.
  • the control unit 110 changes the light intensity distribution of the light distribution pattern
  • the light emission amount of the first light source unit 41 is further increased, the light distribution pattern is brighter, and the front visibility is lowered. Can be suppressed.
  • the duty ratios 43aD to 43cD and 43jD to 43lD are increased as described above, the area of the light distribution pattern excluding the non-projection area becomes brighter than when the vehicle 10 is traveling straight, and the driver can visually recognize the area. Deterioration of sex is suppressed.
  • the duty ratios 43aD to 43cD and 43jD to 43lD may be increased to the duty ratio D1.
  • the detection device 150 of this modification mainly includes a rain sensor that detects raindrops adhering to the front window of the vehicle 10.
  • the rain sensor includes an LED that is a light emitting element that emits infrared rays, a photodiode that is a light receiving element, and a detection unit. Infrared rays emitted from the vehicle interior side to the outside of the vehicle by the LED are totally reflected by the front window, but when raindrops adhere to the surface of the front window, a part of the infrared rays is transmitted to the outside through the raindrops.
  • the detection unit detects the presence or absence of raindrops on the surface of the front window and the amount of raindrops adhering to the surface of the front window based on the amount of decrease in the amount of light.
  • the rain sensor may mainly include a camera that captures the front window of the vehicle 10 and a detection unit that detects raindrops adhering to the front window from the captured image of the front window captured by the camera.
  • the configuration of the detection unit is the same as the configuration of the control unit 110.
  • the configuration of the rain sensor and the mounting position of the rain sensor are not particularly limited as long as raindrops can be detected.
  • the rain sensor is electrically connected to the control unit 110, and outputs a signal indicating that raindrops have adhered and the amount of raindrops attached to the control unit 110. If the rain sensor does not detect raindrops, the rain sensor does not output a signal to the control unit 110.
  • the signal from the rain sensor may be input to the control unit 110 via the ECU.
  • the rain sensor may detect snow.
  • FIG. 35 is a diagram showing an example of duty ratios 43aD to 43lD when the vehicle 10 is in the rain.
  • the duty ratios 43aD to 43lD shown in FIG. 35 are the duty ratios when the temperature derating is not performed.
  • the duty ratios 43aD to 43lD are as shown in FIG. 23.
  • the control unit 110 sets the duty ratios 43aD and 43lD of the light emitting elements 43a and 43l to 80% and the duty ratios of the light emitting elements 43b and 43k. Set 43bD and 43kD to 70%. Further, the control unit 110 sets the duty ratios 43cD, 43dD, 43iD, 43jD of the light emitting elements 43c, 43d, 43i, 43j to 60% and the duty ratios 43eD to 43hD of the light emitting elements 43e to 43h to 40%.
  • the values of the duty ratios 43aD to 43lD are recorded in the recording unit 130, and the control unit 110 reads these values from the recording unit 130 and controls the duty ratios 43aD to 43lD as described above.
  • the above value of the duty ratio is not particularly limited.
  • the control unit 110 controls the duty ratios 43aD to 43lD as described above, the amount of light emitted from the light emitting elements 43e to 43h located on the center side in the left-right direction is the smallest. Further, the amount of light emitted increases in the order of the light emitting element 43d to the light emitting element 43a and from the light emitting element 43i to the light emitting element 43l, and the light emitting amount is symmetrical between the left and right light emitting elements. As a result of the above, the regions on the left and right ends are brighter than the region on the center side of the light distribution pattern of the high beam.
  • the value of the duty ratio in this case is not particularly limited as long as the regions on the left and right ends are brighter than the region on the center side of the light distribution pattern of the high beam.
  • the control unit 110 performs temperature derating on the first light source unit 41. Similar to the first embodiment, the temperature derating of this modification will be described using the duty ratio D1 as an example of the duty ratio as a reference in the case of temperature derating.
  • FIG. 36 is a diagram showing an example of duty ratios 43aD to 43lD of the light emitting elements 43a to 43l after temperature derating in a state where the vehicle 10 is in rainy weather.
  • the portion of the duty ratios 43aD to 43lD shown in FIG. 35 before the decrease is shown by a dotted line.
  • the control unit 110 lowers the duty ratios 43dD and 43iD of some of the light emitting elements 43d and 43i among the light emitting elements 43a to 43d and 43i to 43l driven by the duty ratio larger than the duty ratio D1 to 50. Set to%. Further, the control unit 110 sets the duty ratios 43aD to 43cD and 43jD to 43lD of the remaining light emitting elements 43a to 43c and 43j to 43l of the light emitting elements 43a to 43d and 43i to 43l in the state shown in FIG. 35. maintain. The control unit 110 may lower the duty ratio of at least a part of the light emitting elements 43a to 43d and 43i to 43l driven by the duty ratio larger than the duty ratio D1 to the duty ratio D1 or less. Further, the control unit 110 maintains the duty ratio of the light emitting elements 43e to 43h driven by the duty ratio D1 or less among the light emitting elements 43a to 43l in the state shown in FIG. 35.
  • the control of the duty ratios 43aD to 43lD will be described.
  • the control unit 110 has duty ratios 43aD to 43aD to 43l of the light emitting elements 43a to 43c and 43j to 43l shown in FIG. 43cD and 43jD to 43lD are higher than the duty ratio D1.
  • FIG. 36 in order to compare with the duty ratios 43aD to 43cD and 43jD to 43lD shown in FIG. 23, the portion of the duty ratios 43aD to 43cD and 43jD to 43lD shown in FIG.
  • the control unit 110 sets the duty ratios 43aD and 43lD to 80%, the duty ratios 43bD and 43kD to 70%, and the duty ratios 43cD and 43jD to 90%.
  • the control unit 110 sets the duty ratios 43aD to 43cD and 43jD to 43lD, which are smaller than the duty ratio D1, before changing the light intensity distribution. It is higher than D1.
  • the control unit 110 may raise at least a part of the duty ratios 43aD to 43cD and 43jD to 43lD as described above. That is, as shown in FIG. 36, when the temperature derating is performed after changing the light intensity distribution, the control unit 110 is driven by a third power equal to or lower than the first power described above before changing the light intensity distribution.
  • the electric power supplied to at least a part of the light emitting elements 43a to 43c and 43j to 43l is higher than the first electric power.
  • the control unit 110 changes the light intensity distribution of the light distribution pattern
  • the light emission amount of the first light source unit 41 is further increased, the light distribution pattern is brighter, and the front visibility is lowered. Can be more suppressed.
  • the duty ratio control has been described using the high beam light distribution pattern, but the low beam light distribution pattern may be controlled in the same manner as the high beam light distribution pattern.
  • the control unit 110 controls the duty ratio of the light emitting element 43 in each of the left and right first lamps 40 based on the temperature of the first light source unit 41 by the temperature sensors 47 of the left and right first lamps 40. , Not limited to this.
  • the temperature sensor 47 is arranged in one of the left and right first lamps 40, and the light emitting element in each of the left and right first lamps 40 is based on the temperature of the control unit 110 and the first light source unit 41 in the one lamp.
  • the duty ratio may be controlled.
  • a vehicle headlight that can suppress a decrease in front visibility when temperature derating is performed, and it can be used in a field such as a vehicle headlight such as an automobile. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

車両用前照灯(20)は、第1光源部(41)と、第2光源部(61)と、温度センサ(47)と、制御部(110)とを備える。制御部(110)は、ロービームの配光パターン(910)が形成される状態で、温度を基に第1光源部(41)に温度ディレーティングを行う場合、第1配光パターン(400)のうちの少なくとも領域(911)を照射する少なくとも一部の第1光の光量が温度ディレーティング前に比べて減少するように、複数の発光素子(43)のそれぞれに供給する電力を制御する。

Description

車両用前照灯
 本発明は、車両用前照灯に関する。
 LED(Light Emitting Diode)やLD(Laser Diode)等の発光素子及び発光素子が実装される回路基板を含む光源部と、回路基板に実装されるサーミスタなどの温度センサとを備える車両用前照灯が知られている。このような光源部では、発光素子に供給される電力が大きいほど、発光素子の発光量及び発熱量が増加し、発光素子の温度は上昇する。発光素子からの熱は回路基板に伝わり、温度センサによって回路基板の温度が推定される。推定された温度が所定値以上である場合、車両用前照灯の制御部は、発光素子に供給される電力を当該温度に応じて低減する温度ディレーティングを行うことがある。温度ディレーティングによって、光源部は熱から保護されると共に光源部の信頼性が確保される。
 ところで、互いに形状の異なる筐体のそれぞれに光源部及び温度センサが収容される場合、同じ電力でそれぞれの光源部の発光素子が点灯すると、推定される温度はそれぞれの筐体で異なることがある。このため、下記特許文献1に記載の車両用前照灯では、温度に応じて供給される電力を任意の関数やテーブルといったソフトウエアに基づいて設定し、ソフトウエアの変更で光源部に適した温度ディレーティングが行われている。
特開2016-91730号公報
 光源部では、複数の発光素子が配置される構成も挙げられ、このような光源部として例えばLEDアレイやマイクロLEDアレイが挙げられる。このような光源部では、それぞれの発光素子から出射する光によって車両の前方に配光パターンの光が投影される。このような光源部に温度ディレーティングが行われると、供給される電力が低減する発光素子が一部の発光素子だけであっても、配光パターンが暗くなり、前方の視認性が低下してしまう場合がある。
 そこで本発明は、温度ディレーティングが行われる場合に、前方の視認性の低下を抑制し得る車両用前照灯を提供することを目的とする。
 上記目的の達成のため、本発明の第1の態様の車両用前照灯は、複数の発光素子を有し、前記複数の発光素子から前方に出射するそれぞれの第1光の照射領域がマトリックス状に並ぶように前記複数の発光素子が配置される第1光源部と、第2光を出射する第2光源部と、制御部と、を備え、少なくとも一部の前記第1光によって形成される第1配光パターンと、前記第2光によって形成される第2配光パターンとによって、ロービームの配光パターンが形成され、前記ロービームの配光パターンは、前記第1配光パターンの一部が前記第2配光パターンの一部と重なる第1領域と、前記第1配光パターンの他の一部が前記第2配光パターンと重ならず、前記第1領域と連続し前記第1領域の上方に位置する第2領域とを含み、前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部の温度を基に前記第1光源部に温度ディレーティングを行う場合、前記第1配光パターンのうちの少なくとも前記第1領域を照射する少なくとも一部の前記第1光の光量が前記温度ディレーティング前に比べて減少するように、前記複数の発光素子のそれぞれに供給する電力を制御することを特徴とするものである。
 第1の態様の車両用前照灯では、ロービームの配光パターンにおいて、第1領域では、第1光と第2光とが照射している。従って、温度ディレーティングが行われる場合、第1領域において、上記のように第1光の光量が減少しても、第2光が第1領域を照射しない場合に比べて、ロービームの配光パターンの明るさの低下は抑制され、前方の視認性の低下は抑制され得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1領域を照射する少なくとも一部の前記第1光の光量が温度ディレーティング前に比べて減少し、前記第1領域を照射する少なくとも一部の前記第1光の光量が前記第2領域を照射する少なくとも一部の前記第1光の光量よりも多く減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 例えば第2領域の上縁は、ロービームの配光パターンのうちのカットオフラインの一部を形成することがある。上記の構成によれば、第2領域を照射する第1光の光量が第1領域を照射する第1光の光量よりも多く減少する場合に比べて、カットオフライン側の明るさの低下が抑制され、前方の視認性の低下が抑制され得る。また、第1領域が第2領域よりも大きい場合、上記の構成によれば、第1領域が第2領域よりも小さい場合に比べて、第1光源部の温度上昇が抑制され得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域を照射する少なくとも一部の前記第1光の光量が温度ディレーティング前に比べて減少し、前記第2領域を照射する少なくとも一部の前記第1光の光量が前記第1領域を照射する少なくとも一部の前記第1光の光量よりも後に減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 例えば第2領域の上縁は、ロービームの配光パターンのうちのカットオフラインの一部を形成することがある。上記の構成によれば、第2領域を照射する第1光の光量が第1領域を照射する第1光の光量よりも前に減少する場合に比べて、カットオフライン側の明るさの低下の開始が遅くなり得る。このため、当該カットオフラインの視認性の低下の開始が遅くなり得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域に含まれる前記第1配光パターンの上縁側から前記第1領域に含まれる前記第1配光パターンの下縁側に向かって前記第1配光パターンにおける光量が減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 例えば第2領域の上縁は、ロービームの配光パターンのうちのカットオフラインの一部を形成することがある。上記の構成によれば、光量が第1配光パターンの下縁側から第1配光パターンの上縁側に向かって減少する場合に比べて、ロービームの配光パターンのうちのカットオフライン側の明るさの低下が抑制され得る。このため、当該カットオフラインの視認性の低下が遅くなり抑制され得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1配光パターンにおける光量が前記ロービームの配光パターンのホットゾーンから前記第1配光パターンの周縁側に向かって減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 車両の運転者の視線は、第1配光パターンの周縁側よりもホットゾーン側に集中する傾向にある。上記の構成によれば、光量が第1配光パターンの周縁側からホットゾーンに向かって減少する場合に比べて、運転者の視線が集中するホットゾーン側の明るさの低下が抑制され得る。
 また、第1の態様の車両用前照灯は、第3光を出射する第3光源部をさらに具備し、前記第1配光パターンと、前記第2配光パターンと、前記第3光によって形成される第3配光パターンとによって、ハイビームの配光パターンが形成され、前記ハイビームの配光パターンでは、前記第2領域の少なくとも一部は、前記第3配光パターンの一部と重なり、前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域のうちの前記第3配光パターンの一部に重なる第3領域と前記第1領域との少なくとも一方を照射する少なくとも一部の前記第1光の光量が温度ディレーティング前に比べて減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 ハイビームの配光パターンにおいて、第1領域では第1光及び第2光が照射し、第3領域では第1光及び第3光が照射している。上記の構成によれば、温度ディレーティングが行われる場合、第1光の光量が減少しても、第2光が第1領域を照射しない場合及び第3光が第3領域を照射しない場合に比べて、ハイビームの配光パターンの明るさの低下は抑制され得る。従って、前方の視認性の低下が抑制され得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1領域を照射する少なくとも一部の前記第1光の光量が前記第3領域を照射する少なくとも一部の前記第1光の光量よりも多く減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 第3領域は第1領域よりも上方に位置しているため、運転者の視線は、第1領域よりも第3領域に集中する傾向にある。上記の構成によれば、第1領域の光量が第3領域の光量よりも少なく減少する場合に比べて、ハイビームの配光パターンのうちの運転者の視線が集中する第3領域の明るさの低下が抑制され、前方の視認性の低下が抑制され得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第3領域を照射する少なくとも一部の前記第1光の光量が前記第1領域を照射する少なくとも一部の前記第1光の光量よりも後に減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 第3領域が第1領域よりも大きい状態のハイビームの配光パターンが形成される場合、運転者の視線は、第1領域よりも第3領域に集中する傾向にある。第3領域が第1領域よりも大きい場合、上記の構成によれば、第3領域の光量が第1領域の光量よりも前に減少する場合に比べて、運転者の視線が集中する第3領域の明るさの低下の開始が遅くなり、第3領域における視認性の低下が遅くなり得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第3領域に含まれる前記第1配光パターンの上縁側から前記第1領域に含まれる前記第1配光パターンの下縁側に向かって前記第1配光パターンにおける光量が減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 ハイビームの配光パターンが形成される場合、運転者の視線は、第1領域よりも第3領域に集中する傾向にある。上記の構成によれば、光量が第1配光パターンの下縁側から上縁側に向かって減少する場合に比べて、ハイビームの配光パターンのうちの運転者の視線が集中する第3領域の明るさの低下が抑制され、第3領域における視認性の低下が抑制され得る。
 また、第1の態様の車両用前照灯では、前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1配光パターンにおける光量が前記ハイビームの配光パターンのホットゾーンから前記第1配光パターンの周縁側に向かって減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御してもよい。
 運転者の視線は、第1配光パターンの周縁側よりもホットゾーン側に集中する傾向にある。上記の構成によれば、光量が第1配光パターンの周縁側からホットゾーンに向かって減少する場合に比べて、運転者の視線が集中するホットゾーン側の明るさの低下が抑制され得る。
 また、上記目的の達成のため、本発明の第2の態様の車両用前照灯は、複数の発光素子を有する光源部と、それぞれの前記発光素子に供給される電力を制御する制御部と、を備え、前記制御部は、前記光源部の温度を基に前記光源部に温度ディレーティングを行う場合、第1電力よりも大きい第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第2電力から前記第1電力以下に下げ、前記第1電力以下の第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を上げるものである。
 上記の構成によれば、制御部が光源部に温度ディレーティングを行う場合、第2電力で駆動する少なくとも一部の発光素子の電力が第2電力から第1電力以下に下がる。このため、光源部は発光素子からの熱から保護されるが、光源部から出射する光によって形成される配光パターンは暗くなる傾向にある。そこで、上記の構成では、制御部は、光源部に温度ディレーティングを行う場合、第3電力で駆動する少なくとも一部の発光素子に供給される電力を上げる。電力が上がると、配光パターンは明るくなり得る。従って、前方の視認性の低下が抑制され得る。
 また、第2の態様の車両用前照灯では、前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を、前記第1電力まで上げてもよい。
 上記の構成によれば、電力が第1電力まで上がらない場合に比べて、配光パターンは明るくなり、前方の視認性の低下が抑制され得る。
 或いは、第2の態様の車両用前照灯では、前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を、前記第1電力よりも上げてもよい。
 上記の構成によれば、電力が第1電力よりも上がらない場合に比べて、配光パターンはさらに明るくなり、前方の視認性の低下がさらに抑制され得る。
 また、第2の態様の車両用前照灯では、前記制御部は、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第1電力よりも上げて一定時間経過した後に、当該発光素子に供給される前記電力を前記第1電力以下に下げてもよい。
 電力が第1電力よりも上がったままだと、光源部の温度は上がってしまう。上記の構成によれば、一定時間が経過すると、電力が第1電力以下に下がるため、光源部の温度が下がり、光源部の温度の上昇が抑制され得る。
 或いは、第2の態様の車両用前照灯では、前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を、前記第3電力よりも大きく前記第1電力よりも小さい第4電力に上げてもよい。
 或いは、第2の態様の車両用前照灯では、前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力の下げ量が大きいほど、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力の上げ量を多くしてもよい。
 上記の構成によれば、上記電力の下げ量が大きいほど上記電力の上げ量が少ない場合に比べて、配光パターンは明るくなり得る。
 また、第2の態様の車両用前照灯では、前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第2電力から前記第1電力以下に下げる前に、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を上げてもよい。
 上記の構成によれば、電力が第2電力から第1電力以下に下がることによって配光パターンが暗くなる前に、電力が第3電力から上がることによって配光パターンが明るくなる。従って、配光パターンが暗くなった後に明るくなる場合に比べて、温度ディレーティングが光源部に行われる前に比べて配光パターンが暗くなることが抑制され得、視認性の低下が抑制され得る。
 また、第2の態様の車両用前照灯では、前記制御部は、前記光源部から出射する光によって形成される配光パターンにおける前記光の強度分布を変更した後に前記光源部に前記温度ディレーティングを行う場合、前記第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第1電力以下に下げ、前記光の強度分布を変更する前に前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を上げてもよい。
 上記の構成によれば、制御部が光の強度分布を変更した後に光源部に温度ディレーティングを行う場合でも、光源部は発光素子からの熱から保護されるが、配光パターンが暗くなる傾向にある。そこで、上記の構成では、制御部は、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に第3電力で駆動する少なくとも一部の発光素子に供給される電力を上げる。電力が上がると、配光パターンが明るくなり得る。従って、制御部が光の強度分布を変更した後に光源部に温度ディレーティングを行っても、当該電力が上がらない場合に比べて、前方の視認性の低下が抑制され得る。
 以上のように本発明によれば、温度ディレーティングが行われる場合に、前方の視認性の低下が抑制され得る車両用前照灯を提供できる。
本発明の第1の態様としての第1実施形態の車両を概念的に示す平面図である。 図1に示す第1実施形態の第1灯具を概略的に示す側面図である。 図2に示す第1光源部及び温度センサを概略的に示す正面図である。 第1灯具から出射する第1光によって形成される第1実施形態の第1配光パターンを示す図である。 図1に示す第1実施形態の第2灯具を概略的に示す側面図である。 図5に示す第2光源部及びシェードを概略的に示す正面図である。 第2灯具から出射する第2光によって形成される第1実施形態の第2配光パターンを示す図である。 図1に示す第1実施形態の第3灯具を概略的に示す側面図である。 図8に示す第3光源部を概略的に示す正面図である。 第3灯具から出射する第3光によって形成される第1実施形態の第3配光パターンを示す図である。 第1実施形態における制御部の制御フローチャートの一例を示す図である。 第1実施形態のロービームの配光パターンを示す図である。 第1実施形態のハイビームの配光パターンを示す図である。 第1実施形態の第1変形例の第2光源部及びシェードを概略的に示す正面図である。 第1実施形態の第1変形例の第2灯具から出射する第2光によって形成される第2配光パターンを示す図である。 第1実施形態の第1変形例のロービームの配光パターンを示す図である。 第1実施形態の第1変形例のハイビームの配光パターンを示す図である。 第1実施形態の第2変形例の第2光源部及びシェードを概略的に示す正面図である。 第1実施形態の第2変形例の第2灯具から出射する第2光によって形成される第2配光パターンを示す図である。 第1実施形態の第2変形例のロービームの配光パターンを示す図である。 第1実施形態の第2変形例のハイビームの配光パターンを示す図である。 本発明の第2の態様としての第2実施形態の光源部及び温度センサを概略的に示す正面図である。 車両が直進している状態におけるそれぞれの発光素子のデューティー比の一例を示す図である。 光源部の温度とデューティー比との関係を図である。 第2実施形態における制御部の制御フローチャートの一例を示す図である。 車両が直進している状態でのステップSP32におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が直進している状態でのステップSP33におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が左に曲がる状態におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が左に曲がる状態でのステップSP32におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が左に曲がる状態でのステップSP33におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が直進している状態から左に曲がる状態に切り替わり配光パターンにおける光の強度分布が変更した場合の温度ディレーティング後のそれぞれの発光素子のデューティー比の一例を示す図である。 車両が直進している状態から左に曲がる状態に切り替わり配光パターンにおける光の強度分布が変更した場合の温度ディレーティング後のそれぞれの発光素子のデューティー比の別の一例を示す図である。 車両と先行車との距離が所定の距離未満の状態において、本発明の第2の態様としての第3実施形態のそれぞれの発光素子のデューティー比の一例を示す図である。 車両と先行車との距離が所定の距離未満の状態において、温度ディレーティング後におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が雨天の中にある状態におけるそれぞれの発光素子のデューティー比の一例を示す図である。 車両が雨天の中にある状態において、温度ディレーティング後におけるそれぞれの発光素子のデューティー比の一例を示す図である。
 以下、本発明に係る車両用前照灯の好適な実施形態について図面を参照しながら詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。また、本発明は、以下に例示する各実施形態における構成要素を適宜組み合わせてもよい。なお、以下で参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。
(第1実施形態)
 本発明の第1の態様としての第1実施形態について説明する。図1は、第1実施形態の車両10を概念的に示す平面図である。車両10は、車両用前照灯20と、検知装置150と、ライトスイッチ200とを備える。本実施形態の車両用前照灯20は、自動車用の前照灯とされる。車両用前照灯20は、車両10の前方部位の左右のそれぞれに配置される一対の灯具ユニット30と、一対の灯具ユニット30を制御する制御部110と、記録部130とを備える。なお、本明細書において「右」とは車両10の進行方向において右側を意味し、「左」とは車両10の進行方向において左側を意味する。
 一対の灯具ユニット30において、それぞれの灯具ユニット30は、形状が左右方向に概ね対称であることを除いて、同じ構成とされる。このため、以下において、それぞれの灯具ユニット30の構成を、一方の灯具ユニット30を用いて説明する。
 灯具ユニット30は、水平方向に並べられている第1灯具40、第2灯具60、及び第3灯具80を備える。第2灯具60は車両10の最も中心側に、第3灯具80は車両10の最も外側に、第1灯具40は第2灯具60と第3灯具80との間に配置される。灯具40,60,80の並び順は、特に限定されるものではない。
 次に、図2を参照して第1灯具40について説明する。図2は、第1灯具40を概略的に示す側面図である。第1灯具40は、前方に向かって第1光を出射する第1光源部41と、第1光源部41に配置される温度センサ47と、第1光源部41の前方に配置される投影レンズ49と、第1光源部41、温度センサ47、及び投影レンズ49を収容する筐体51とを備える。図2では、筐体51は、第1灯具40の鉛直方向の概略的な断面にて示されている。
 筐体51は、ランプハウジング51a、フロントカバー51b、及びバックカバー51cを備える。ランプハウジング51aの前方は開口しており、当該開口を塞ぐようにフロントカバー51bがランプハウジング51aに固定されている。また、ランプハウジング51aの後方には前方よりも小さな開口が形成されており、当該開口を塞ぐようにバックカバー51cがランプハウジング51aに固定されている。こうして、筐体51には、ランプハウジング51a、フロントカバー51b、及びバックカバー51cによって囲まれる灯室51dが形成される。灯室51d内には、第1光源部41、温度センサ47、及び投影レンズ49が配置されている。ランプハウジング51a及びバックカバー51cは、例えば、樹脂で構成される。フロントカバー51bは透光性を有する材料で構成されており、第1光源部41から出射する第1光は投影レンズ49及びフロントカバー51bを透過する。
 図3は、図2に示す第1光源部41及び温度センサ47を概略的に示す正面図である。図2及び図3に示すように、第1光源部41は、白色光である第1光を出射する複数の発光素子43と、複数の発光素子43が実装される回路基板45とを備える。それぞれの発光素子43としては、LEDまたはLDを挙げることができる。このような発光素子43は、マトリックス状に配置されて上下方向及び左右方向に配列される。発光素子43は、左右方向に96個、上下方向に32個並んでいるが、数は特に限定されるものではない。これら発光素子43は、マイクロLEDであり、所謂マイクロLEDアレイであることが好ましい。それぞれの発光素子43の出射面の形状は、概ね同じ大きさで正方形形状であるが、特に限定されるものではない。それぞれの発光素子43は、互いに異なる波長の光を出射するLEDまたはLDであってもよい。
 それぞれの発光素子43は、不図示の電源部から回路基板45を経由して電力を個別に供給されると第1光を出射し、第1光を出射すると発熱する。それぞれの発光素子43の熱は、回路基板45に伝わる。それぞれに供給される電力が大きいほど、それぞれの発光素子43の発光量及び発熱量が増加し、第1光源部41の温度は上昇する。なお、回路基板45の発熱量はそれぞれの発光素子43全体の発熱量に比べて非常に少ないため、第1光源部41の温度はそれぞれの発光素子43全体の発熱量を基にした温度とみなせる。
 温度センサ47は、回路基板45に実装されており、第1光源部41の温度を推定する。このような温度センサ47としては、例えば、サーミスタを挙げることができる。温度センサ47は、制御部110に電気的に接続されており、推定した温度に係る温度信号を制御部110に出力する。本実施形態の温度センサ47はそれぞれの発光素子43から離れて配置されており、それぞれの発光素子43の熱が温度センサ47に伝わるまでに、熱の温度が下がることもある。従って、制御部110は、温度センサ47からの温度信号、及びそれぞれの発光素子43と温度センサ47との間の距離を基に、第1光源部41の温度を推定してもよい。また、制御部110がそれぞれの発光素子43の電力量を基に第1光源部41の温度を推定してもよい。
 温度センサ47の構成及び取り付け位置は、温度センサ47が第1光源部41の温度を推定できれば特に限定されるものではない。例えば、温度センサ47は、それぞれの発光素子43に取り付けられてもよいし、回路基板45に電気的に接続されている別の回路基板に実装されてもよい。
 投影レンズ49は、投影レンズ49に入射した第1光の発散角を調節するレンズである。投影レンズ49では、入射面は後方に向かって凸状に形成され、出射面は前方に向かって凸状に形成される。投影レンズ49の後方焦点は、いずれかの発光素子43の出射面上またはその近傍に位置する。投影レンズ49で発散角が調節された第1光は、筐体51のフロントカバー51bを透過して第1灯具40から車両10の前方へ向けて出射する。
 次に、図4を参照して、第1灯具40から出射する第1光によって形成される第1配光パターン400について説明する。図4は、車両10の25m前方に配置された仮想鉛直スクリーン上に形成される第1配光パターン400を示す図である。図4において、Sは水平線を示し、Vは車両10の左右方向の中心を通る鉛直線を示す。
 第1配光パターン400は、それぞれの発光素子43から出射する第1光が照射される照射領域401aを含む。複数の発光素子43がマトリックス状に配置されているため、照射領域401aはマトリックス状に配置される。それぞれの照射領域401aは、1つの発光素子43に対応している。複数の発光素子43のうちの特定の発光素子43の相対的な位置と、複数の照射領域401aのうちの当該特定の発光素子43に対応する特定の照射領域401aの相対的な位置とは、上下左右で反転している。図4では、理解を容易にするため、照射領域401aの数が発光素子43の数よりも少なくされている。照射領域401aは、発光素子43の出射面の形状に対応している。
 図4では、理解を容易にするために、隣り合う照射領域401aは、互いに接しているが、互いに重なっている。図4では、全ての照射領域401aから形成される領域を照射領域401bとして示しており、照射領域401bは第1灯具40が第1光を照射可能な領域である。照射領域401bは、左右方向に長尺な長方形状であり、水平線S及び鉛直線Vに重なる。照射領域401bの上縁は、水平線Sよりも上方に位置し、水平方向に延在している。また、照射領域401bの下縁は、水平線Sよりも下方に位置し、水平方向に延在している。照射領域401bが上記のように配置されるように、発光素子43の位置や向き等が調整されている。
 なお、隣り合う照射領域401aは、互いに接していても、互いに離れて隙間が形成されていてもよい。しかし、複数の照射領域401aは隙間なくマトリックス状に配置されていることが好ましい。また、照射領域401aの大きさや形状は特に限定されるものではなく、それぞれの照射領域401aの大きさや形状は互いに異なっていてもよい。
 第1配光パターン400の大きさ及び形状は、第1光を出射させる発光素子43の選択に応じて変化する。また、第1配光パターン400における第1光の強度分布は、それぞれの発光素子43の発光量が調節されることで、調節される。
 次に、図5を参照して第2灯具60について説明する。図5は、第2灯具60を概略的に示す側面図である。第2灯具60は、前方に向かって第2光を出射する第2光源部61と、シェード67と、第2光源部61の前方に配置される投影レンズ69と、第2光源部61、シェード67、及び投影レンズ69を収容する筐体51とを備える。図5では、筐体51は、第2灯具60の鉛直方向の概略的な断面にて示されている。
 図6は、図5に示す第2光源部61及びシェード67を概略的に示す正面図である。図5及び図6に示すように、第2光源部61は、白色光である第2光を出射する発光素子63と、発光素子63が実装される回路基板65とを備える。発光素子63としては、LEDまたはLDを挙げることができる。発光素子63の出射面の形状は、左右方向に長尺な概ね長方形状とされるが、特に限定されるものではない。当該出射面は、第1光源部41の発光素子43の出射面より大きくされている。
 シェード67は、板状部材を曲げ加工することで一体に成形されている遮光部67a及び固定部67bを有する。遮光部67aは発光素子63より前方において左右方向に延在し、遮光部67aの下端部には固定部67bが接続されている。固定部67bは遮光部67aの下端部から後方に向かって延在し、固定部67bの端部は回路基板65に固定されている。遮光部67aの上縁は、発光素子63の光軸より下方に位置している。遮光部67aの上縁の左右方向における中央部には、上方に向かって概ね等脚台形状に突出する突起67cが設けられている。このような遮光部67aは、発光素子63から出射する第2光の一部を遮る。
 投影レンズ69は、投影レンズ49と同じ構成とされ、シェード67よりも前方に配置され、投影レンズ69に入射した第2光の発散角を調節するレンズである。投影レンズ69の後方焦点は、遮光部67aにおける上縁またはその近傍に位置している。上記のように、発光素子63から出射する第2光の一部はシェード67の遮光部67aによって遮光され、発光素子63から出射する第2光の他の一部が投影レンズ69に入射する。投影レンズ69で発散角が調節された第2光は、筐体51のフロントカバー51bを透過して第2灯具60から車両10の前方へ向けて出射する。
 次に、図7を参照して、第2灯具60から出射する第2光によって形成される第2配光パターン600について説明する。図7は、車両10の25m前方に配置された仮想鉛直スクリーン上に形成される第2配光パターン600を示す図である。第2配光パターン600の形状は、遮光部67aの形状に対応し、遮光部67aによって一部の第2光が遮光された際の配光パターンが上下左右に反転した配光パターンである。
 第2配光パターン600は、水平線S及び鉛直線Vに重なる。第2配光パターン600の上縁は、突起67cを含む遮光部67aの上縁の形状に対応している。第2配光パターン600の上縁は、第1縁601、第2縁602、第3縁603、第4縁604、及び第5縁605を含む。第1縁601は、水平線Sより下方に位置し、鉛直線Vから水平方向の一方側である右側に及び水平方向の他方側である左側に水平に延在している。第2縁602は、第1縁601における左側の端から左側に斜め上方に向かって延在している。第2縁602における第1縁601側と反対側の端は、水平線Sより上方に位置している。第3縁603は、第2縁602における第1縁601側と反対側の端から左側に水平方向に延在し、水平線Sより上方に位置している。第4縁604及び第5縁605は、第1縁601を基準に第2縁602及び第3縁603と概ね対称に位置している。第2配光パターン600の下縁は、水平線Sより下方に位置し、鉛直線Vに交わり、水平方向に延在している。第2配光パターン600の左縁は、第3縁603における第2縁602とは反対側の端から第2配光パターン600の下縁の左端に向かって延在している。第2配光パターン600の右縁は、第5縁605における第4縁604とは反対側の端から第2配光パターン600の下縁の右端に向かって延在している。
 第2配光パターン600における第2光の強度分布は、発光素子63の発光量が調節されることで、調節される。
 次に、図8を参照して第3灯具80について説明する。図8は、第3灯具80を概略的に示す側面図である。第3灯具80は、前方に向かって第3光を出射する第3光源部81と、第3光源部81の前方に配置される投影レンズ89と、第3光源部81、及び投影レンズ89を収容する筐体51とを備える。図8では、筐体51は、第3灯具80の鉛直方向の概略的な断面にて示されている。
 図9は、図8に示す第3光源部81を概略的に示す正面図である。第3光源部81は、白色光である第3光を出射する複数の発光素子83a~83jと、複数の発光素子83a~83jが実装される回路基板85とを備える。それぞれの発光素子83a~83jとしてはLEDまたはLDを挙げることができ、発光素子83a~83jは左右方向に一列にアレイ状に配列される。それぞれの発光素子83a~83jの出射面の形状は、概ね同じ大きさで上下方向に長尺な概ね長方形とされるが、特に限定されるものではない。当該出射面は、第1光源部41における発光素子43の出射面より大きくされている。発光素子の数は1つ以上であれば特に限定されるものではない。それぞれの発光素子83a~83jは、互いに異なる波長の光を出射するLEDまたはLDであってもよい。発光素子の数は、2つ以上であればよい。それぞれの発光素子83a~83jは、不図示の電源部から回路基板85を経由して電力を個別に供給されると第3光を出射し、第3光を出射すると発熱する。それぞれに供給される電力が大きいほど、それぞれの発光素子83a~83jの発光量が増加する。
 投影レンズ89は、投影レンズ49と同じ構成とされ、投影レンズ89に入射した第3光の発散角を調節するレンズである。投影レンズ89の後方焦点は、複数の発光素子83a~83jのうちの左右の概ね中心に位置する発光素子83fの出射面上またはその近傍に位置している。投影レンズ89で発散角が調節された第3光は、筐体51のフロントカバー51bを透過して第3灯具80から車両10の前方へ向けて出射する。
 次に、図10を参照して、第3灯具80から出射する第3光によって形成される第3配光パターン800について説明する。図10は、車両10の25m前方に配置された仮想鉛直スクリーン上に形成される第3配光パターン800を示す図である。
 第3配光パターン800は、発光素子83a~83jから出射する第3光が照射される照射領域801a~801jを含む。発光素子83a~83jが左右方向に一列に配列されるため、照射領域801a~801jも左右方向に一列に配列される。照射領域801a~801jは、発光素子83a~83jの出射面の形状に個別に対応しており、概ね同じ大きさで上下方向に長尺な長方形状である。隣り合う照射領域は、互いに接している。
 第3配光パターン800は左右方向に長尺な長方形状であり、照射領域801a~801jは水平線Sに重なり、照射領域801e,801fは鉛直線Vに接している。第3配光パターン800の上縁である各照射領域の上縁は、水平線Sよりも上方に位置し、水平方向に延在している。また、第3配光パターン800の下縁である各照射領域の下縁は、水平線Sよりも下方に位置し、水平方向に延在している。照射領域801a~801jが上記のように配置されるように、発光素子83a~83jの位置や向き等が調整されている。
 なお、隣り合う照射領域の一部は、互いに重なってもよい。或いは、隣り合う照射領域は互いに離れて、隙間が形成されてもよい。しかし、照射領域801a~801jは左右方向に隙間なく並んでいることが好ましい。また、照射領域801a~801jの大きさや形状は、特に限定されるものではなく、互いに異なっていてもよく、照射領域401aより大きければよい。
 第3配光パターン800の大きさ及び形状は、第3光を出射させる発光素子83a~83jの選択に応じて変化する。また、第3配光パターン800における第3光の強度分布は、それぞれの発光素子83a~83jの発光量が調節されることで、調節される。
 図1に戻り、車両10の説明を続ける。
 検知装置150はステアリングセンサを備え、ステアリングセンサは車両10のステアリングホイールの回転方向及び回転角度、つまり車両10が曲がる方向及び車両10の操舵角を検知する。従って、ステアリングセンサは、右の操舵角と左の操舵角とを異なる操舵角と識別しつつこれらの操舵角を検知する。ステアリングセンサは、制御部110に電気的に接続されており、車両10の直進時を基準とした操舵角に応じた信号を制御部110に出力する。なお、ステアリングセンサは、車両10の不図示のECU(Electronic Control Unit)を経由して制御部110に電気的に接続されてもよく、ECUを経由して制御部110に信号を入力してもよい。
 記録部130は、制御部110に電気的に接続されている。記録部130は、例えば非一過性(non-transitory)の記録媒体であり、RAM(Random Access Memory)やROM(Read Only Memory)等の半導体記録媒体が好適であるが、光学式記録媒体や磁気記録媒体等の任意の形式の記録媒体を包含し得る。なお、「非一過性」の記録媒体とは、一過性の伝搬信号(transitory, propagating signal)を除く全てのコンピュータで読み取り可能な記録媒体を含み、揮発性の記録媒体を除外するものではない。
 制御部110は、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置から成る。また、制御部110は、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。制御部110は、車両10のECUの一部とされてもよい。
 制御部110には、ライトスイッチ200が電気的に接続されている。ライトスイッチ200は、ロービームの出射、ハイビームの出射、光の非出射のいずれかを選択するスイッチである。例えば、ライトスイッチ200は、ロービームの出射が選択された場合にロービームの出射を示す制御信号を、ハイビームの出射が選択された場合にハイビームの出射を示す制御信号を、それぞれ制御部110に出力する。このように、制御信号は、灯具ユニット30からの光の出射の開始を指示する信号である。また、ライトスイッチ200は、光の非出射が選択された場合に制御部110に制御信号を出力しない。制御部110は、制御信号が入力されていない場合には、灯具ユニット30の駆動を停止させる。
 制御部110は、ライトスイッチ200から制御信号が入力されると、電源部及び回路基板45,65,85を経由して発光素子43,63,83a~83jへの電力の供給または電力の供給を停止する。これにより、光を出射する発光素子43,63,83a~83jが選択され、灯具ユニット30から出射する光によって形成される配光パターン400,600,800が当該選択に応じて変化する。また、制御部110は、発光素子43,63,83a~83jに供給される電力を調節する。これにより、それぞれの発光素子43,63,83a~83jの発光量が調節され、配光パターン400,600,800における光の強度分布が調節される。
 次に、第1光源部41における温度ディレーティングについて説明する。
 第1光源部41では、他の光源部61,81に比べて発光素子43が密集して配置されてるため、第1光源部41の温度は他の光源部61,81に比べて、上昇し易い。従って、本実施形態では、制御部110は、第1光源部41に温度ディレーティングを行う。
 制御部110は、温度センサ47によって推定された第1光源部41の温度Tが温度ディレーティングを開始する際の所定値である例えば80℃といった温度T0よりも低い場合には温度ディレーティングを行わない。また、制御部110は、温度Tが温度T0以上の場合には温度ディレーティングを行う。温度Tが温度T0の場合、制御部110は、温度ディレーティングが行われない場合に供給される電力よりも小さい電力E0を発光素子43に供給する。この場合、制御部は、発光素子43のうちの電力E0よりも大きい電力を供給される発光素子43に電力E0を供給し、当該発光素子43に供給する電力を下げる。また、温度Tが温度T0よりも高い温度T1の場合、制御部110は、電力E0よりも小さい電力E1を発光素子43に供給する。この場合、制御部110は、複数の発光素子43のうちの電力E1よりも大きい電力を供給される発光素子43に電力E1を供給し、当該発光素子43に供給する電力を下げる。温度T0が80℃であれば、温度T1は例えば110℃である。推定された温度Tが温度T1よりも大きい温度T2であれば、制御部110は、電力E1よりも小さい電力E2を発光素子43に供給する。温度T1が110℃であれば、温度T2は例えば120℃である。推定された温度Tが温度T2より高い場合、制御部110は、例えば消灯を避けるために電力E2を発光素子43に供給する。このように、制御部110は、温度Tが温度T0以上である場合に、温度Tに応じて電力Eを制御する。電力Eが下がると、それぞれの発光素子43の発光量及び発熱量が減少し、第1光源部41の温度は下降する。なお、温度T1は、ハイビームが出射する場合とロービームが出射する場合とで同じであってもよいし、ロービームが出射する場合よりもハイビームが出射する場合において高くても低くてもよい。
 次に、本実施形態の車両用前照灯20の動作について説明する。
 図11は、本実施形態における制御部110の制御フローチャートの一例を示す図である。図11に示すように、本実施形態の制御フローは、ステップSP11からステップSP18を含む。なお、制御フローは、これに限定されるものではない。図11に示す開始の状態では、温度センサ47が第1光源部41の温度Tを推定し、温度信号は制御部110に入力しているものとする。
 (ステップSP11)
 制御部110は、ライトスイッチ200から制御信号が入力されていなければ、発光素子43,63,83a~83jに電力を供給せず、ステップSP11を繰り返す。制御部110は、ライトスイッチ200がONとなり、ライトスイッチ200から制御信号が入力されていれば、制御フローをステップSP12に進める。
 (ステップSP12)
 本ステップでは、制御部110は、ライトスイッチ200からの制御信号がロービームの出射を示す信号であれば、制御フローをステップSP13に進める。制御部110は、ライトスイッチ200からの制御信号がロービームの出射を示す信号でなければ、制御フローをステップSP16に進める。
 (ステップSP13)
 本ステップでは、制御部110は、発光素子43,63に電力を供給して、第1,2光を出射させ、ロービームの配光パターンを形成する。図12は、車両10の25m前方に配置された仮想鉛直スクリーン上に形成されるロービームの配光パターン910を示す図である。図12では、配光パターン910を太線で示している。
 本ステップでは、第1光によって第1配光パターン400が形成され、第2光によって第2配光パターン600が形成される。ロービームが出射される場合に、第1配光パターン400は、全ての発光素子43ではなく一部の発光素子43の一部からの第1光によって形成されるが、少なくとも一部の発光素子43からの第1光によって形成されてもよい。図12では、第1配光パターン400における照射領域401bの上縁、左縁の一部、及び右縁の一部を破線で示している。
 配光パターン910は、第1配光パターン400及び第2配光パターン600の重なりによって形成される。具体的には、第1配光パターン400の一部は、第2配光パターン600の少なくとも一部に重なる。また、第1配光パターン400の他の一部は、第2配光パターン600に重ならず、第2配光パターン600の上縁の第1縁601の高さ位置よりも上方において第2配光パターン600の外側に位置する。
 上記のような配光パターン910は、上縁に、カットオフラインCL11~CL15を有する。カットオフラインCL11は、水平線Sより下方かつ鉛直線V上またはその近傍に位置するエルボー点EPから左右方向の一方側である右側に水平方向に延在している。カットオフラインCL12は、エルボー点EPから左右方向の他方側である左側に斜め上方に向かって延在している。カットオフラインCL12におけるエルボー点EP側と反対側の端は、水平線Sより上方に位置している。カットオフラインCL13は、カットオフラインCL12におけるエルボー点EP側と反対側の端から、左右方向の他方側に水平方向に延在している。カットオフラインCL13は、水平線Sより上方に位置している。カットオフラインCL14は、カットオフラインCL11におけるエルボー点EP側と反対側の端から左右方向の一方側に斜め上方に向かって延在している。カットオフラインCL14におけるカットオフラインCL11側と反対側の端は、水平線Sより上方に位置しており、カットオフラインCL13と概ね同じ高さ位置に位置している。カットオフラインCL15は、カットオフラインCL14におけるカットオフラインCL11側と反対側の端から左右方向の一方側に水平方向に延在している。カットオフラインCL15は、水平線Sより上方に位置しており、カットオフラインCL13と概ね同じ高さ位置に位置している。
 配光パターン910のカットオフラインCL11,CL12,CL14は、第1配光パターン400の上縁の一部である。また、カットオフラインCL13のうちのカットオフラインCL12と連続するカットオフラインCL13の一部は、第1配光パターン400の上縁の別の一部である。カットオフラインCL13の他の一部は、第2配光パターン600の上縁における第3縁603である。また、カットオフラインCL15のうちのカットオフラインCL14と連続するカットオフラインCL15の一部は、第1配光パターン400の上縁の残りの一部である。カットオフラインCL15の他の一部は、第2配光パターン600の上縁における第5縁605である。制御部110は、第1配光パターン400の上縁がカットオフラインCL11とカットオフラインCL12とカットオフラインCL14とカットオフラインCL13の一部とカットオフラインCL15の一部となるように、発光素子43への電力の供給を制御する。従って、配光パターン910のうちの第1配光パターン400は、第1灯具40のうちの全ての発光素子43ではなく発光素子43の一部から出射する第1光によって形成される。
 また、配光パターン910の左縁、右縁、及び下縁は、第2配光パターン600の左縁、右縁、及び下縁である。従って、左右方向において、第2配光パターン600は、第1配光パターン400よりも長くされる。また、第2配光パターン600の左縁は第1配光パターン400の左縁よりも左側に位置し、第2配光パターン600の右縁は第1配光パターン400の右縁よりも右側に位置する。また、上下方向において、第1配光パターン400の下縁は、第2配光パターン600の上縁と下縁との間に位置している。
 配光パターン910は、第1配光パターン400の一部が第2配光パターン600の一部と重なる第1領域である領域911と、第1配光パターン400の他の一部が第2配光パターン600と重ならない第2領域である領域913とを含む。配光パターン910では、第1灯具40からの第1光と第2灯具60からの第2光とが領域911を照射し、第1灯具40からの第1光が領域913を照射する。領域911は、領域913よりも大きくされている。なお、第2光の光量が当該光量のピーク値の所定の割合よりも低ければ、第1光及び当該第2光が重なっている領域を領域913とみなし得る。所定の割合は例えば2%であり、この場合だと人間の視覚的に第1光及び当該第2光が重なっていないとみなし得る。或いは、縁601,602,604等の第2配光パターン600の外縁を形成する第2光の所定の光度よりも低い光度の第2光が第1光に重なった領域を領域913とみなし得る。所定の光度は例えば500cdであり、人間の視覚的に第1光及び当該第2光が重なっていないとみなし得る。
 領域913は、2つである。一方の領域913は、鉛直線Vよりも左側においてカットオフラインCL12とカットオフラインCL13の一部とエルボー点EPを通る第1縁601の一部と第2縁602とによって囲まれる。他方の領域913は、鉛直線Vよりも右側においてカットオフラインCL14とカットオフラインCL15の一部とエルボー点EPを通る第1縁601の他の一部と第4縁604とによって囲まれる。それぞれの領域913は、左右方向において、離れて位置している。このような領域913は、第1配光パターン400のうちの領域911を除く領域であり、領域911と連続し、第2配光パターン600の外側において領域911の上方に位置する。
 配光パターン910において光の強度が最も高い領域であるホットゾーンHZLは、領域911内におけるエルボー点EPの近傍に位置している。この配光パターン910における光の強度が、例えばホットゾーンHZLから離れるほど低くなるように、それぞれの発光素子43,63から出射する第1,2光の光量が制御部110によって調節される。
 制御部110は、ロービームの配光パターン910を車両10の前方に形成すると、制御フローをステップSP14に進める。
 (ステップSP14)
 本ステップでは、制御部110は、温度センサ47からの温度信号が示す温度Tが温度T0未満であれば、制御フローをステップSP11に戻す。また、制御部110は、温度Tが温度T0以上であれば、制御フローをステップSP15に進める。
 (ステップSP15)
 制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41の温度を基に第1光源部41に温度ディレーティングを行う。
 本ステップでは、制御部110は、配光パターン910において第1配光パターン400のうちの少なくとも領域911を照射する少なくとも一部の第1光を出射する発光素子43に供給する電力を温度ディレーティング前に比べて下げる。これにより、領域911を照射する第1光の光量が温度ディレーティング前に比べて減少する。第1光の光量が減少すると、発光素子43の発熱量は減少し、第1光源部41の温度上昇が抑制される。なお、第1光源部41の温度Tが温度T0よりも低くなると、制御部110は、上記発光素子43に供給する電力を、温度ディレーティング前の電力に戻す。
 また、制御部110は、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400のうちの領域913を照射する第1光を出射する複数の発光素子43に供給する電力を温度ディレーティング前と同じにしている。これにより、領域913を照射する第1光の光量は温度ディレーティング前と同じとなり、温度ディレーティングが行われても、領域913における明るさの変化が抑制される。また、配光パターン910のうちのカットオフラインCL12,CL13の一部,CL14,CL15の一部側の明るさの変化が抑制される。
 なお、制御部110は、第1光源部41に温度ディレーティングを行う場合、領域913を照射する少なくとも一部の第1光を出射する発光素子43に供給する電力を温度ディレーティング前に比べて下げてもよい。これにより、温度ディレーティング前に比べて発光素子43の発熱量は減少し、第1光源部41の温度上昇が抑制され得る。また、例えば、領域913が温度ディレーティング前において第2配光パターン600よりも明るい場合、温度ディレーティングによって、領域913は、第2配光パターン600と同じ明るさとなることがある。領域913が第2配光パターン600と同じ明るさとなると、領域913が第2配光パターン600と同じ明るさとならない場合に比べて、領域913と第2配光パターン600とにおける明るさの過度な変化が抑制され得る。
 また、制御部110は、第1光源部41に温度ディレーティングを行う場合、第2光を出射する発光素子63に供給する電力を温度ディレーティング前と同じにしている。これにより、ロービームの配光パターン910うちの第2配光パターン600を照射する第2光の光量は温度ディレーティング前と同じとなり、温度ディレーティングが行われても、第2配光パターン600における明るさの変化が抑制される。
 制御部110は、第1光源部41に温度ディレーティングを行うと、制御フローをステップSP11に戻す。
 (ステップSP16)
 本ステップでは、ステップSP12における制御信号がハイビームの出射を示す信号となり、制御部110は、発光素子43,63,83a~83jに電力を供給し、第1,2,3光を出射させ、ハイビームの配光パターンを形成する。図13は、車両10の25m前方に配置された仮想鉛直スクリーン上に形成されるハイビームの配光パターン930を示す図である。図13では、配光パターン930を太線で、図12に示すロービームの配光パターン910を破線で示している。
 本ステップでは、ロービームが出射される場合と同様に、配光パターン400,600が形成されると共に、第3光によって第3配光パターン800が形成される。ハイビームが出射される場合、ロービームが出射される場合とは異なり、第1配光パターン400は、全ての発光素子43からの第1光によって形成される。従って、ハイビームが出射する場合、第1配光パターン400はロービームが出射する場合よりも大きくされている。
 配光パターン930は、配光パターン400,600,800の重なりによって形成される。具体的には、配光パターン930において、第3配光パターン800は、上下方向において第2配光パターン600に並んでいる。また、第3配光パターン800の一部は第2配光パターン600の一部に重なり、第3配光パターン800の他の一部は第2配光パターン600に重ならず第2配光パターン600の外側に位置する。また、配光パターン930において、第1配光パターン400の一部は第2配光パターン600のみと重なり、第1配光パターン400の別の一部は第3配光パターン800のみと重なる。また、第1配光パターン400の残りの一部は、第2配光パターン600及び第3配光パターン800と重なる。
 第2配光パターン600は、第3配光パターン800よりも左右に長くされている。第2配光パターン600の左縁は第3配光パターン800の左縁よりも左側に位置し、第2配光パターン600の右縁は第3配光パターン800の右縁よりも右側に位置している。第2配光パターン600の下縁は第3配光パターン800の下縁よりも下方に位置している。第2配光パターン600の上縁のうち、縁602~605は、第3配光パターン800の下縁よりも上方に位置している。第2縁602と、第3縁603の一部と、第4縁604と、第5縁605の一部とは第3配光パターン800の内側に位置し、第3縁603の他の一部と、第5縁605の他の一部とは第3配光パターン800の外側に位置する。また、第1縁601は、第3配光パターン800の下縁の一部に重なる。従って、第2配光パターン600の一部は第3配光パターン800の一部に重なり、第2配光パターン600の他の一部は第3配光パターン800に重ならず第3配光パターン800の外側に位置する。
 第2配光パターン600は、第1配光パターン400よりも左右に長くされている。第2配光パターン600の左縁は第1配光パターン400の左縁よりも左側に位置し、第2配光パターン600の右縁は第1配光パターン400の右縁よりも右側に位置している。第2配光パターン600の上縁は、第1配光パターン400の上縁と下縁との間を横切る。縁601,602,604は第1配光パターン400の内側に位置し、縁603,605は第1配光パターン400の外側に位置している。
 第1配光パターン400は、第3配光パターン800よりも左右に短くされている。第1配光パターン400の左縁は第3配光パターン800の左縁よりも右側に位置し、第1配光パターン400の右縁は第3配光パターン800の右縁よりも左側に位置している。第1配光パターン400の下縁は、第3配光パターン800の下縁及び第2配光パターン600の上縁よりも下方に位置している。また、第1配光パターン400の上縁は、第3配光パターン800の上縁よりも下方に位置し、第2配光パターン600の上縁よりも上方に位置する。
 上記のような配光パターン930の上縁は、第3配光パターン800の外側に位置する第2配光パターン600の第3縁603の一部と、第2配光パターン600の外側に位置する第3配光パターン800の左縁の一部とである。また、配光パターン930の上縁は、第3配光パターン800の上縁と、第2配光パターン600の外側に位置する第3配光パターン800の右縁と、第3配光パターン800の外側に位置する第2配光パターン600の第5縁605の一部とである。配光パターン930の左縁、右縁、及び下縁は、第2配光パターン600の左縁、右縁、及び下縁である。
 配光パターン930は、第1配光パターン400の一部が第2配光パターン600の一部と重なる第1領域である領域931と、第1配光パターン400の他の一部が第2配光パターン600と重ならない第2領域である領域933とを含む。
 領域931は、ロービームの配光パターン910における第1領域である領域911と同じであるが、説明の便宜上、符号を分けている。領域931の一部では、第1配光パターン400の一部は、第2配光パターン600のみと重なる。また、領域931の他の一部では、第1配光パターン400の別の一部は、第2配光パターン600及び第3配光パターン800と重なる。従って、領域931は、第1配光パターン400が少なくとも第2配光パターン600と重なっている領域となる。領域931の一部は、領域931の他の一部よりも大きくされている。配光パターン930では、領域931の一部を第1,2光が照射し、領域931の他の一部を第1~3光が照射する。
 領域933の少なくとも一部は、第1配光パターン400の残りの一部が第3配光パターン800の一部と重なる第3領域を含む。本実施形態では、領域933の全体において、第1配光パターン400の残りの一部が第3配光パターン800の一部と重なっているため、領域933全体は第3領域でもある。領域933は、領域931よりも大きくされている。本実施形態では領域933は、ロービームの配光パターン910における第2領域である領域913を含み、当該913よりも大きくされている。領域933は領域931と上下方向に連続しており、領域933の下縁は領域931の上縁と連続している。配光パターン930では、領域933を第1,3光が照射する。
 配光パターン930において光の強度が最も高い領域であるホットゾーンHZHは、配光パターン400,800が互いに重なる領域933内における水平線Sと鉛直線Vとの交点上またはその近傍に位置している。配光パターン930における光の強度が、例えばホットゾーンHZHから離れるほど低くなるように、それぞれの発光素子43,83a~83jから出射する第1,3光の光量が制御部110によって調節される。
 制御部110は、ハイビームの配光パターン930を車両10の前方に形成すると、制御フローをステップSP17に進める。
 (ステップSP17)
 本ステップでは、制御部110は、温度センサ47からの温度信号が示す温度Tが温度T0未満であれば、制御フローをステップSP11に戻す。また、制御部110は、温度Tが温度T0以上であれば、制御フローをステップSP18に進める。
 (ステップSP18)
 制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41の温度を基に第1光源部41に温度ディレーティングを行う。
 本ステップでは、制御部110は、配光パターン930において第1配光パターン400のうちの領域931及び領域933の少なくとも一方を照射する少なくとも一部の第1光を出射する発光素子43に供給する電力を温度ディレーティング前に比べて下げる。これにより、領域931及び領域933の少なくとも一方を照射する少なくとも一部の第1光の光量が温度ディレーティング前に比べて減少する。第1光の光量が減少すると、発光素子43の発熱量は減少し、第1光源部41の温度上昇が抑制される。なお、第1光源部41の温度Tが温度T0よりも低くなると、制御部110は、上記発光素子43に供給する電力を、温度ディレーティング前の電力に戻す。
 また、制御部110は、第1光源部41に温度ディレーティングを行う場合、第2光を出射する発光素子63に供給する電力及び第3光を出射する発光素子83a~83jに供給する電力を温度ディレーティング前と同じにしている。これにより、ハイビームの配光パターン930うちの第2配光パターン600を照射する第2光の光量及び第3配光パターン800を照射する第3光の光量は、温度ディレーティング前と同じとなる。従って、温度ディレーティングが行われても、配光パターン600,800における明るさの変化が抑制される。
 制御部110は、第1光源部41に温度ディレーティングを行うと、制御フローをステップSP11に戻す。
 以上のように、本実施形態の車両用前照灯20では、制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400のうちの少なくとも領域911を照射する少なくとも一部の第1光の光量が温度ディレーティング前に比べて減少するように、複数の発光素子43のそれぞれに供給する電力を制御する。
 この車両用前照灯20では、ロービームの配光パターン910において、領域911では、第1光と第2光とが照射している。従って、温度ディレーティングが行われる場合、領域911において、上記のように第1光の光量が減少しても、第2光が第1領域を照射しない場合に比べて、ロービームの配光パターン910の明るさの低下は抑制され、前方の視認性の低下が抑制され得る。また、第1光の光量が減少すると、発光素子43の発熱量は減少し、第1光源部41の温度上昇が抑制され得る。
 また、本実施形態の車両用前照灯20では、領域933の少なくとも一部は、第3配光パターン800の一部と重なる第3領域を含む。本実施形態では、領域933全体が第3領域となっている。制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、領域931と領域933との少なくとも一方を照射する少なくとも一部の第1光の光量が温度ディレーティング前に比べて減少するように、複数の発光素子43のそれぞれに供給する電力を制御する。
 この車両用前照灯20では、ハイビームの配光パターン930において、領域931では第1光、第2光、及び第3光が照射し、領域933では第1光及び第3光が照射している。上記の構成によれば、温度ディレーティングが行われる場合、第1光の光量が減少しても、第2光及び第3光が領域931を照射しない場合及び第3光が領域933を照射しない場合に比べて、ハイビームの配光パターン930の明るさの低下は抑制され得る。従って、前方の視認性の低下が抑制され得る。また、第1光の光量が減少すると、発光素子43の発熱量は減少し、第1光源部41の温度上昇が抑制され得る。
 なお、制御部110がロービームの配光パターン910が形成される状態で第1光源部41に温度ディレーティングを行う場合、制御部110は領域911を照射する第1光を出射する発光素子43への電力の供給を停止し、第1光の光量がゼロとなってもよい。これにより、第1光源部41の温度上昇は、より抑制され得る。また、電力の供給が停止すると、領域911では、第2光のみが照射する。領域911において、第1光の光量がゼロとなっても、第2光が領域911を照射しない場合に比べて、ロービームの配光パターン910の明るさの低下は抑制され、前方の視認性の低下が抑制され得る。
 また、制御部110がハイビームの配光パターン930が形成される状態で第1光源部41に温度ディレーティングを行う場合、制御部110は発光素子43への電力の供給を停止し、第1光の光量がゼロとなってもよい。これにより、第1光源部41の温度上昇は、より抑制され得る。また、電力の供給が停止すると、領域931の一部では第2光のみが照射し、領域931の他の一部は第2光及び第3光が照射し、領域933は第3光のみが照射する。領域931,933において、第1光の光量がゼロとなっても、第2,3光が領域931を照射しない場合及び第3光が領域933を照射しない場合に比べて、ハイビームの配光パターン930の明るさの低下は抑制され、前方の視認性の低下が抑制され得る。
 本実施形態の制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、上記のように、領域911,913を照射する第1光を出射する発光素子43のそれぞれに供給する電力を制御する。しかし、発光素子43への制御部110の制御について、上記に限定される必要はない。以下に、発光素子43への制御部110の他の制御について説明する。
 制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、領域911を照射する少なくとも一部の第1光の光量が領域913を照射する少なくとも一部の第1光の光量よりも多く減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。これにより、領域913を照射する第1光の光量が領域911を照射する第1光の光量よりも多く減少する場合に比べて、配光パターン910のうちのカットオフラインCL12,CL13の一部,CL14,CL15の一部側の明るさの低下が抑制され得る。また、領域911が領域913よりも大きい場合、上記の構成によれば、領域911が領域913よりも小さい場合に比べて、第1光源部41の温度上昇が抑制される。なお、領域911の光量は、領域913の光量と同じだけ減少してもよいし、領域913の光量よりも少なく減少してもよい。
 また、制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、領域913を照射する少なくとも一部の第1光の光量が領域911を照射する少なくとも一部の第1光の光量よりも後に減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。これにより、領域913を照射する第1光の光量が領域911を照射する第1光の光量よりも前に減少する場合に比べて、配光パターン910のうちのカットオフラインCL11,CL12,CL13の一部,CL14,CL15の一部側の明るさの低下の開始が遅くなり得る。このため、当該カットオフラインの視認性の低下の開始が遅くなり得る。なお、領域913の光量は、領域911の光量と同時に減少してもよいし、領域911の光量よりも前に減少してもよい。
 また、制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400における光量が領域913に含まれる第1配光パターン400の上縁側から領域911に含まれる第1配光パターン400の下縁側に向かって減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。これにより、光量が第1配光パターン400の下縁側から上縁側に向かって減少する場合に比べて、配光パターン910のうちのカットオフラインCL11,CL12,CL13の一部,CL14,CL15の一部側の明るさの低下が抑制され得る。このため、当該カットオフラインの視認性の低下が抑制され得る。なお、第1配光パターン400における光量は、第1配光パターン400の下縁側から第1配光パターン400の上縁側に向かって減少してもよい。上記において、制御部110は、光量を徐々に下げてもよいし、光量を段階的に下げてもよい。光量が第1配光パターン400の上縁側から下縁側に向かって徐々に減少すると、光量が徐々に減少しない場合に比べて、第1配光パターン400の上縁側から下縁側に向かって低下する第1配光パターン400の明るさの過度な変化が抑制され得る。
 また、制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400における光量がホットゾーンHZL側から第1配光パターン400の周縁側に向かって減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。車両10の運転者の視線は、第1配光パターン400の周縁側よりもホットゾーンHZL側に集中する傾向にある。上記の構成によれば、光量が第1配光パターン400の周縁側からホットゾーンHZLに向かって減少する場合に比べて、運転者の視線が集中するホットゾーンHZL側の明るさの低下が抑制され得る。
 また、制御部110は、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400の上縁側を照射する少なくとも一部の第1光の光量が第1配光パターン400の下縁側を照射する少なくとも一部の第1光の光量よりも後に減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。上記の構成によれば、第1配光パターン400の上縁側の光量が下縁側の光量より前に減少する場合に比べて、配光パターン910のうちのカットオフラインCL11,CL12,CL13の一部,CL14,CL15の一部側の明るさの低下の開始が遅くなり得る。このため、当該カットオフラインの視認性の低下の開始が遅くなり得る。なお、第1配光パターン400の上縁側の光量は、第1配光パターン400の下縁側の光量と同時に減少してもよいし、第1配光パターン400の下縁側の光量よりも前に減少してもよい。
 また、制御部110は、第1光源部41に温度ディレーティングを行う場合、領域911の光量が第1配光パターン400の上縁側から下縁側に向かって減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。
 或いは、制御部110は、第1光源部41に温度ディレーティングを行う場合、領域913の光量が第1配光パターン400の上縁側から下縁側に向かって減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。
 また、制御部110は、領域913の光量が領域911の光量と同じとなるように、複数の発光素子43のそれぞれに供給する電力を制御してもよい。
 本実施形態の制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、上記のように、領域931,933の少なくとも一方を照射する第1光を出射する発光素子43のそれぞれに供給する電力を制御する。しかし、発光素子43への制御部110について、上記に限定される必要はない。以下に、発光素子43への制御部110の他の制御について説明する。
 例えば、制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、領域931を照射する少なくとも一部の第1光の光量が領域933を照射する少なくとも一部の第1光の光量よりも多く減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。領域933は領域931よりも上方に位置しているため、運転者の視線は、領域931よりも領域933に集中する傾向にある。上記の構成によれば、領域931の光量が領域933の光量よりも少なく減少する場合に比べて、ハイビームの配光パターンのうちの運転者の視線が集中する領域933の明るさの低下が抑制され、前方の視認性の低下が抑制され得る。なお、領域931の光量は、領域933の光量と同じだけ減少してもよいし、領域933の光量よりも少なく減少してもよい。
 また、制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、領域933を照射する少なくとも一部の第1光の光量が領域931を照射する少なくとも一部の第1光の光量よりも後に減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。領域933が領域931よりも大きい状態の配光パターン930が形成される場合、運転者の視線は、領域931よりも領域933に集中する傾向にある。領域933が領域931よりも大きい場合、上記の構成によれば、領域933の光量が領域931の光量よりも前に減少する場合に比べて、運転者の視線が集中する領域933の明るさの低下の開始が遅くなり得、領域933における視認性の低下が抑制される。
 なお、領域933の光量は、領域931の光量と同時に減少してもよいし、領域931の光量よりも前に減少してもよい。領域933が領域931よりも大きい場合、領域933の光量が領域931の光量よりも前に減少すると、領域933の光量が領域931の光量よりも後に減少する場合に比べて、第1光源部41の温度上昇がより抑制される。
 また、制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400における光量が第3領域に含まれる第1配光パターン400の上縁側から領域931に含まれる第1配光パターン400の下縁側に向かって減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。配光パターン930が形成される場合、運転者の視線は、領域931よりも領域933に集中する傾向にある。上記の構成によれば、光量が第1配光パターン400の下縁側から第1配光パターン400の上縁側に向かって減少する場合に比べて、運転者の視線が集中する領域933の明るさの低下が抑制され、領域933における視認性の低下が抑制され得る。なお、第1配光パターン400における光量は、第1配光パターン400の下縁側から第1配光パターン400の上縁側に向かって減少してもよい。上記において、制御部110は、光量を徐々に下げてもよいし、光量を段階的に下げてもよい。光量が第1配光パターン400の上縁側から下縁側に向かって徐々に減少すると、光量が徐々に減少しない場合に比べて、第1配光パターン400の上縁側から下縁側に向かって低下する第1配光パターン400の明るさの過度な変化が抑制され得る。
 また、制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、第1配光パターン400における光量がホットゾーンHZH側から第1配光パターン400の周縁側に向かって減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。運転者の視線は、第1配光パターン400の周縁側よりもホットゾーンHZH側に集中する傾向にある。上記の構成によれば、光量が第1配光パターン400の周縁側からホットゾーンHZHに向かって減少する場合に比べて、運転者の視線が集中するホットゾーンHZH側の明るさの低下が抑制され得る。
 また、制御部110は、第1配光パターン400の上縁側を照射する少なくとも一部の第1光の光量が第1配光パターン400の下縁側を照射する少なくとも一部の第1光の光量よりも後に減少するように、発光素子43のそれぞれに供給する電力を制御してもよい。上記の構成によれば、領域933が領域931よりも大きい場合、第1配光パターン400の上縁側の光量が下縁側の光量よりも前に減少する場合に比べて、配光パターン930のうちの運転者の視線が集中する上縁側の明るさの低下の開始が抑制される。従って、上縁側における視認性の低下が抑制される。なお、第1配光パターン400の上縁側の光量は、第1配光パターン400の下縁側の光量と同時に減少してもよいし、第1配光パターン400の下縁側の光量よりも前に減少してもよい。
 また、制御部110は、領域933の光量が領域931の光量と同じとなるように、発光素子43を制御してもよい。
 次に、第2灯具60の第1変形例について詳細に説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図14は、本変形例の第2光源部61及びシェード67を概略的に示す正面図である。遮光部67aの上縁は、実施形態の当該上縁とは異なり、概ね水平方向に延在している。このようなシェード67の遮光部67aは、発光素子63からの第2光の一部を遮る。
 図15は、本変形例の第2配光パターン600を示す図である。第2配光パターン600は、左右方向に長尺な長方形状であり、鉛直線Vに重なる。第2配光パターン600の上縁は、第3灯具80における遮光部67aの上縁の形状に対応し、水平線Sより下方に位置し、鉛直線Vに交わり、水平方向に延在している。
 次に、図16を参照して、本変形例のロービームの配光パターン910について説明する。図16は、本変形例のロービームの配光パターン910を示す図である。本変形例の配光パターン910のうちの配光パターン400,600の相対位置は、実施形態の配光パターン910のうちの配光パターン400,600の相対位置と異なっており、以下に説明する。
 配光パターン910は、上縁に、カットオフラインCL21~CL29を有する。カットオフラインCL21は、エルボー点EPから左右方向の一方側である右側に水平方向に延在している。カットオフラインCL22は、エルボー点EPから左右方向の他方側である左側に斜め上方に向かって延在している。カットオフラインCL22におけるエルボー点EP側と反対側の端は、水平線Sより上方に位置している。カットオフラインCL23は、カットオフラインCL22におけるエルボー点EP側と反対側の端から、左右方向の他方側に水平方向に延在している。カットオフラインCL23は、水平線Sより上方に位置している。カットオフラインCL24は、カットオフラインCL23におけるカットオフラインCL22側と反対側の端から、鉛直線V方向に沿って下方に向かって延在している。カットオフラインCL24におけるカットオフラインCL23側と反対側の端は、水平線Sより下方に位置している。カットオフラインCL25は、カットオフラインCL24におけるカットオフラインCL23側と反対側の端から、左右方向の他方側に水平方向に延在している。カットオフラインCL25は、カットオフラインCL21と概ね同じ高さ位置に位置している。
 カットオフラインCL26は、カットオフラインCL21におけるエルボー点EP側と反対側の端から左右方向の一方側に斜め上方に向かって延在している。カットオフラインCL26におけるカットオフラインCL21側と反対側の端は、水平線Sより上方に位置しており、カットオフラインCL23と概ね同じ高さ位置に位置している。カットオフラインCL27は、カットオフラインCL26におけるカットオフラインCL21側と反対側の端から、左右方向の一方側に水平方向に延在している。カットオフラインCL27は、水平線Sより上方に位置している。カットオフラインCL28は、カットオフラインCL27におけるカットオフラインCL26側と反対側の端から、鉛直線V方向に沿って下方に向かって延在している。カットオフラインCL28におけるカットオフラインCL27側と反対側の端は、水平線Sより下方に位置している。カットオフラインCL29は、カットオフラインCL28におけるカットオフラインCL27側と反対側の端から、左右方向の一方側に水平方向に延在している。カットオフラインCL29は、カットオフラインCL21と概ね同じ高さ位置に位置している。
 上記のような配光パターン910において、配光パターン910のカットオフラインCL21~CL23,CL26,CL27は、第1配光パターン400の上縁である。また、カットオフラインCL24は第1配光パターン400の左縁の一部であり、カットオフラインCL28は第1配光パターン400の右縁の一部である。カットオフラインCL25は、水平方向において第1配光パターン400の左縁よりも左側に延在する第2配光パターン600の上縁である。また、カットオフラインCL29は、水平方向において第1配光パターン400の右縁よりも右側に延在する第2配光パターン600の上縁である。制御部110は、第1配光パターン400の上縁がカットオフラインCL21~CL23,CL26,CL27、左縁の一部がカットオフラインCL24、右縁の一部がカットオフラインCL28となるように、発光素子43のそれぞれに供給する電力を制御する。従って、実施形態の配光パターン910と同様に、本変形例の配光パターン910のうちの第1配光パターン400は、第1灯具40のうちの全ての発光素子43ではなく発光素子43の一部から出射する第1光によって形成される。
 また、配光パターン910の左縁、右縁、及び下縁は、実施形態の配光パターン910と同様に、第2配光パターン600の左縁、右縁、及び下縁である。従って、左右方向において、第2配光パターン600は、第1配光パターン400よりも長くされる。また、第2配光パターン600の左縁は第1配光パターン400の左縁よりも左側に位置し、第2配光パターン600の右縁は第1配光パターン400の右縁よりも右側に位置する。また、上下方向において、第2配光パターン600の上縁は第1配光パターン400の上縁と下縁との間を横切る。
 配光パターン910は、実施形態の配光パターン910と同様に、領域911,913を含む。実施形態とは異なり、領域911は領域913よりも小さくされている。領域913は、領域911に隣り合い領域911よりも上方に位置する。
 領域913は、2つである。一方の領域913は、鉛直線Vよりも左側においてカットオフラインCL22~CL24と第1配光パターン400の内側に位置する第2配光パターン600の上縁の一部とによって囲まれる。他方の領域913は、鉛直線Vよりも右側においてカットオフラインCL26~CL28と第1配光パターン400の内側に位置する第2配光パターン600の上縁の他の一部とによって囲まれる。それぞれの領域913は、左右方向において、離れて位置している。
 制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、実施形態における発光素子43,63と同様に、発光素子43,63を制御する。このため、発光素子43,63の制御については、説明を省略する。
 次に、図17を参照して、本変形例のハイビームの配光パターン930について説明する。図17は、本変形例のハイビームの配光パターン930を示す図である。図17では、配光パターン910を太線で示し、図16に示すロービームの配光パターン910を破線で示している。
 本変形例の配光パターン930のうちの配光パターン400,600,800の相対位置が実施形態の配光パターン930のうちの配光パターン400,600,800の相対位置と異なっており、以下に説明する。
 第3配光パターン800及び第2配光パターン600は、上下方向に隙間なく並んでいる。また、第3配光パターン800の下縁は第2配光パターン600の上縁に接し、第3配光パターン800は第2配光パターン600に重ならず第2配光パターン600の上縁の高さ位置よりも上方において第2配光パターン600の外側に位置する。
 第2配光パターン600の上縁は、第1配光パターン400の上縁と下縁との間を横切る。
 本変形例の配光パターン930において、配光パターン930の上縁は、第2配光パターン600の上縁のうちの第3配光パターン800の下縁と接していない上縁の一部である。また、配光パターン930の上縁は、第3配光パターン800の左縁、上縁、及び右縁と、第2配光パターン600の上縁のうちの第3配光パターン800の上縁と接していない上縁の他の一部とである。また、本変形例の配光パターン930の左縁、右縁、及び下縁は、実施形態の配光パターン930と同様に、第2配光パターン600の左縁、右縁、及び下縁である。
 配光パターン930は、実施形態の配光パターン930と同様に、領域931,933を含む。実施形態は異なり、領域933では第1配光パターン400が第3配光パターン800のみと重なる。従って、配光パターン930では、第1光と第2光とが領域931を照射し、第1光と第3光とが領域933を照射する。このように、本変形例の配光パターン930では、配光パターン400,600,800が重なる領域は形成されていない。
 配光パターン930において光の強度が最も高い領域であるホットゾーンHZHは、領域933内における水平線Sと鉛直線Vとの交点上またはその近傍に位置している。配光パターン930における光の強度が、例えばホットゾーンHZHから離れるほど低くなるように、それぞれの発光素子43,83a~83jから出射する第1,3光の光量が制御部110によって調節される。
 制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、制御部110は、実施形態における発光素子43,63,83a~83jと同様に、発光素子43,63,83a~83jを制御する。このため、発光素子43,63,83a~83jの制御については、説明を省略する。
 次に、第2灯具60の第2変形例について詳細に説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 図18は、本変形例の第2光源部61及びシェード67を概略的に示す正面図である。遮光部67aの上縁は、第1本変形例の当該上縁とは異なり、第1縁67e、第2縁67f、及び第3縁67gを含む。第1縁67eは概ね水平方向に延在している。第2縁67fは、第1縁67eの一方側の端から第1縁67e側と反対側かつ下方に向かって直線状に延在している。第3縁67gは、第2縁67fのうちの第1縁67e側と反対側の端から第1縁67e側と反対側に向かって概ね水平方向に延在している。このようなシェード67の遮光部67aは、発光素子63からの第2光の一部を遮る。
 図19は、本変形例の第2配光パターン600を示す図である。第2配光パターン600は、鉛直線Vに重なる。第2配光パターン600の上縁は、第3灯具80における遮光部67aの上縁の形状に対応し、第1縁601、第2縁602、及び第3縁603を含む。第1縁601は、水平線Sより下方に位置し、鉛直線Vから水平方向の一方側である右側に及び水平方向の他方側である左側に水平に延在している。鉛直線Vから水平方向の一方側に延在している第1縁601の一部は、鉛直線Vから水平方向の他方側に延在している第1縁601の他の一部よりも長くされている。
 次に、図20を参照して、本変形例のロービームの配光パターン910について説明する。図20は、本変形例のロービームの配光パターン910を示す図である。図20において、Sは水平線を示し、Vは車両10の左右方向の中心を通る鉛直線を示し、車両10の25m前方に配置された仮想鉛直スクリーン上に形成される配光パターン910が太線で示される。
 配光パターン910は、上縁に、カットオフラインCL31~CL33を有する。カットオフラインCL31は、エルボー点EPから左右方向の一方側である右側に水平方向に延在している。カットオフラインCL32は、エルボー点EPから左右方向の他方側である左側に斜め上方に向かって延在している。カットオフラインCL32におけるエルボー点EP側と反対側の端は、水平線Sより上方に位置している。カットオフラインCL33は、カットオフラインCL32におけるエルボー点EP側と反対側の端から、左右方向の他方側に水平方向に延在している。カットオフラインCL33は、水平線Sより上方に位置している。
 上記のような配光パターン910では、配光パターン910のカットオフラインCL31は、第1配光パターン400の上縁の一部と、水平方向において第1配光パターン400の右縁よりも右側に延在する第2配光パターン600の第1縁601の一部とである。カットオフラインCL32は、第1配光パターン400の上縁の別の一部である。カットオフラインCL33は、第1配光パターン400の上縁の残りの一部と、水平方向において第1配光パターン400の左縁よりも左側に延在する第2配光パターン600の第3縁603である。制御部110は、第1配光パターン400の上縁がカットオフラインCL31の一部とカットオフラインCL32とカットオフラインCL33の一部となるように、発光素子43への電力の供給を制御している。従って、第1本変形例の配光パターン910と同様に、本変形例の配光パターン910のうちの第1配光パターン400は、第1灯具40のうちの全ての発光素子43ではなく発光素子43の一部から出射する第1光によって形成される。
 また、本変形例の配光パターン910の左縁、右縁、及び下縁は、第1本変形例の配光パターン910と同様に、第2配光パターン600の左縁、右縁、及び下縁である。また、第1本変形例の配光パターン910と同様に、上下方向において、第1配光パターン400の下縁は、第2配光パターン600の上縁と下縁との間に位置している。
 配光パターン910は、第1本変形例の配光パターン910と同様に、領域911,913を含む。領域911は、実施形態と同様に、領域913よりも大きくされている。
 領域913は、鉛直線Vよりも左側においてカットオフラインCL32とカットオフラインCL33の一部と第1縁601の一部と第2縁602とによって囲まれる。
 制御部110は、ロービームの配光パターン910が形成される状態で、第1光源部41に温度ディレーティングを行う場合、実施形態における発光素子43,63と同様に、発光素子43,63を制御する。このため、発光素子43,63の制御については、説明を省略する。
 次に、図21を参照して、本変形例のハイビームの配光パターン930について説明する。図21は、本変形例のハイビームの配光パターン930を示す図である。図21では、配光パターン910を太線でし、図20に示すロービームの配光パターン910を破線で示している。
 本変形例の配光パターン930のうちの配光パターン400,600,800の相対位置が第1本変形例の配光パターン930のうちの配光パターン400,600,800の相対位置と異なっており、以下に説明する。
 左右方向において、第2配光パターン600は、第3配光パターン800よりも長くされている。第2配光パターン600の左縁は第3配光パターン800の左縁よりも左側に位置し、第2配光パターン600の右縁は第3配光パターン800の右縁よりも右側に位置している。第2配光パターン600の下縁は第3配光パターン800の下縁よりも下方に位置している。第2配光パターン600の上縁のうち、第1縁601の一部は第3配光パターン800の下縁の一部に重なり、第1縁601の他の一部は第3配光パターン800の外側に位置する。また、第2配光パターン600の上縁のうち、第2縁602と、第3縁603とは、第3配光パターン800の下縁よりも上方に位置している。第2縁602と第3縁603の一部とは第3配光パターン800の内側に位置し、第3縁603の他の一部は第3配光パターン800の外側に位置する。従って、第2配光パターン600の一部は第3配光パターン800の一部に重なり、第2配光パターン600の他の一部は第3配光パターン800に重ならず第3配光パターン800の外側に位置する。
 第2配光パターン600の上縁のうち、第1縁601の一部と、第2縁602とは、第1配光パターン400の内側に位置している。また、第2配光パターン600の上縁のうち、第3縁603と第1縁601の他の一部とは、第1配光パターン400の外側に位置している。
 本変形例の配光パターン930において、配光パターン930の上縁は、第2配光パターン600の上縁のうちの第3配光パターン800の外側に位置する第3縁603の一部である。また、配光パターン930の上縁は、第2配光パターン600の外側に位置する第3配光パターン800の左縁の一部と、第3配光パターン800の上縁及び右縁とである。また、配光パターン930の上縁は、第2配光パターン600の上縁のうちの第3配光パターン800の外側に位置する第1縁601の一部である。配光パターン930の左縁、右縁、及び下縁は、第1本変形例の配光パターン930と同様に、第2配光パターン600の左縁、右縁、及び下縁である。
 配光パターン930は、第1本変形例の配光パターン930と同様に、領域931,933を含む。領域931,933の構成は、第1本変形例の領域931,933の構成と同じとされる。
 制御部110は、ハイビームの配光パターン930が形成される状態で、第1光源部41に温度ディレーティングを行う場合、制御部110は、実施形態における発光素子43,63,83a~83jと同様に、発光素子43,63,83a~83jを制御する。このため、発光素子43,63,83a~83jの制御については、説明を省略する。
 以上、本発明の第1の態様について、上記第1実施形態及び変形例を例に説明したが、本態様はこれらに限定されるものではない。
 第1灯具40の構成は、特に上記に限定されるものではない。第1灯具40の構成は、例えば、MEMS(Micro Electro Mechanical Systems)やガルバノミラー等を用いて光源から出射する光を走査させて光を前方に出射する構成であってもよい。第1灯具40の構成は、LCOS(Liquid Crystal On Silicon)や回折格子等を用いて光源から出射する光を回折して所望の配光パターンを形成して前方に出射する構成であってもよい。
 なお、第2灯具60及び第3灯具80の構成は、特に限定されるものではなく、他の灯具の構成と同じとされてもよい。従って、第2光源部61は、第1光源部41のようにマイクロLEDアレイであってもよいし、第3光源部81のようにLEDアレイであってもよいし。また、第3光源部81は、第1光源部41のようにマイクロLEDアレイであってもよい。第1灯具40及び第3灯具80は、例えば、パラボラ型や、直射レンズ型の灯具とされてもよい。
 領域911と領域913との一方は、他方と同じ大きさであってもよいし、他方より小さくてもよい。
 配光パターン930は、領域933のみを含んでもよい。
 配光パターン930において、第2配光パターン600の第1縁601は、第3配光パターン800の下縁の一部に接してもよいし、第1配光パターン400を横切ると共に第3配光パターン800の下縁の一部よりも上方または下方に位置してもよい。
 配光パターン930において、第1配光パターン400の下縁は、第3配光パターン800の下縁の一部に接してもよいし、第3配光パターン800の下縁に重なってもよいし、第3配光パターン800の下縁よりも上方に位置にしてもよい。
 配光パターン930において、第1配光パターン400の上縁は、第3配光パターン800の上縁に接してもよいし、第3配光パターン800の上縁に重なってもよいし、第3配光パターン800の上縁よりも上方に位置にしてもよい。
 第1変形例の配光パターン930において、第3配光パターン800の下縁は、第2配光パターン600の下縁に重なってもよいし、第2配光パターン600の下縁よりも下方に位置してもよい。実施形態及び第2変形例の配光パターン930において、第3配光パターン800の下縁の一部は第2配光パターン600の第1縁601に接してもよいし、第3配光パターン800の下縁は第1縁601よりも上方または下方に位置してもよい。
 また、配光パターン930において、上下方向において第3配光パターン800と第2配光パターン600との間に隙間が形成されていてもよい。この場合、第1配光パターン400は、当該隙間、第3配光パターン800、及び第2配光パターン600に重なるように形成されていてもよい。
(第2実施形態)
 本発明の第2の態様としての第2実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 一対の灯具ユニット30のそれぞれにおいて、第1実施形態では3つの灯具40,60,80が設けられているが、本実施形態では、第1灯具40のみが設けられ、第1灯具40の第1光源部41の構成が第1実施形態とは異なる。本実施形態の第1灯具40は、ロービームまたはハイビームを車両10の前方に出射する。
 図22は、本実施形態の第1光源部41及び温度センサ47を概略的に示す正面図である。図22では、第1光源部41における発光素子43のそれぞれを発光素子43a~43lとして示している。発光素子43a~43lは、第1実施形態の第3灯具80の発光素子83a~83jと同様の構成とされ、左右方向に一列にアレイ状に配列されており、所謂LEDアレイである。それぞれの発光素子43a~43lの出射面は、例えば白色光を出射し、上下方向に長尺な概ね長方形形状とされる。
 制御部110は、電源部及び回路基板45を経由してそれぞれの発光素子43a~43lへの電力の供給または電力の供給を停止する。これにより、光を出射する発光素子43a~43lが選択され、第1光源部41から出射する光によって形成される配光パターンの大きさ及び形状が当該選択に応じて変化する。また、制御部110は、それぞれの発光素子43a~43lに供給される電力を調節する。例えば、制御部110は、PWM(Pulse Width Modulation)制御によって当該電力を調節してもよい。この場合、制御部110は、それぞれの発光素子43a~43lのデューティー比の調節によってそれぞれに供給する電力を調節し、電力の調整によってそれぞれの発光素子43a~43lの発光量を調節する。デューティー比が大きいほど、発光素子43に印加される電力が大きくなる。発光量の調節によって、第1光源部41から出射する光によって形成される配光パターンにおける光の強度分布が調節される。なお、制御部110は、それぞれの発光素子43b~43lに供給される電流の調節によってそれぞれの発光素子43a~43lの発光量を調節してもよい。
 次に、操舵角が基準角度以下の状態で、車両用前照灯20がハイビームを出射する場合において、それぞれの発光素子43a~43lのデューティー比43aD~43lDについて説明する。基準角度は例えば5°とされ、この場合、車両10は直進している状態とされる。図23は車両10が直進している状態におけるデューティー比43aD~43lDの一例を示す図であり、図23ではデューティー比43aD~43lDの値を図23に示す矩形の高さで表している。図23に示すデューティー比43aD~43lDは、温度ディレーティングが行われていない場合におけるデューティー比である。
 本実施形態では、制御部110は、発光素子43a~43fのデューティー比43aD~43fDを順に、20%、30、40%、60%、80%、100%に設定している。また、制御部110は、発光素子43l~43gのデューティー比43lD~43gDを順に、上記と同様に、20%、30、40%、60%、80%、100%に設定している。デューティー比43aD~43lDの値は記録部130に記録されており、制御部110は記録部130から当該値を読み出して上記のようにデューティー比43aD~43lDを制御する。なお、デューティー比の上記値は、特に限定されるものではない。
 制御部110が上記のようにデューティー比43aD~43lDを制御すると、左右方向の中央側に位置する発光素子43f,43gの発光量が最も多くなる。また、発光素子43fから発光素子43aの順及び発光素子43gから発光素子43lの順で、発光量が少なくなる。発光素子43a~43lにおいて、デューティー比が同じであれば発光量は同じであるため、発光量は発光素子43f,43gを基準に左右の発光素子で対称とされる。これにより、ハイビームの配光パターンにおける光の強度が最も高い領域であるホットゾーンは、左右方向においてハイビームの配光パターンの概ね中央に位置する。
 それぞれの発光素子43a~43lは、上記のデューティー比で光を出射すると、発熱する。それぞれの発光素子43a~43lの発熱に伴う第1光源部41の温度は上記したように温度センサ47によって推定され、温度センサ47は温度信号を制御部110に出力する。制御部110は、温度信号を基にそれぞれの発光素子43a~43lに温度ディレーティングを行う。
 次に、第1光源部41における本実施形態の温度ディレーティングについて説明する。図24は、温度センサ47によって推定された第1光源部41の温度T(℃)と発光素子43のデューティー比D(%)との関係を示す図である。図24の横軸は温度Tを示し、縦軸はデューティー比Dを示している。図24では、温度T0,T1,T2は例えば80℃,110℃,120℃とされている。温度T0は、制御部110が温度ディレーティングを開始する温度である。温度Tが温度T0よりも低い場合には、温度ディレーティングが行われず、温度Tが温度T0以上の場合、温度ディレーティングが行われる。温度T0よりも低い温度に対応するデューティー比D0は100%とされ、温度T1,T2に対応するデューティー比D1,D2は例えば50%,30%とされる。デューティー比D2では、温度ディレーティングが行われる場合におけるデューティー比の減少量が最大とされる。温度T及びデューティー比Dの関係、温度T0,T1,T2の値、及びデューティー比D1,D2の値は、記録部130に記録されている。なお、これら値は、特に限定されるものではない。
 制御部110は、第1光源部41に温度ディレーティングを行う場合、温度T0以上の温度に応じて基準となるデューティー比Dを設定する。例えば、温度Tが温度T1である場合、制御部110は、基準となるデューティー比Dをデューティー比D1に設定する。また、温度Tが温度T2以上の場合、制御部110は、消灯を避けるために、基準となるデューティー比Dをデューティー比D2に設定する。本実施形態の温度ディレーティングでは、制御部110は、温度Tが温度T0以上である場合、デューティー比43aD~43lDのうちの当該温度Tに対応する基準となるデューティー比Dよりも高いデューティー比の少なくとも一部を下げる。デューティー比が下がると、発光素子43の発光量及び発熱量が減少し、第1光源部41の温度は下降する。制御部110は、デューティー比を基に上記のように温度ディレーティングを行うが、それぞれの発光素子43b~43lに流れる電流を基に温度ディレーティングを行ってもよい。従って、制御部110は、それぞれに発光素子43b~43lに供給される電力を基に温度ディレーティングを行えばよい。
 次に、本実施形態の車両用前照灯20の動作について説明する。
 図25は、本実施形態における制御部110の制御フローチャートの一例を示す図である。図25に示すように、本実施形態の制御フローは、ステップSP31からステップSP33を含む。なお、制御フローは、これに限定されるものではない。図25に示す開始の状態では、車両VEは直進して、ハイビームの配光パターンが形成されているものとする。発光素子43a~43lのデューティー比43aD~43lDは、図23に示す通りである。また、開始の状態では、温度センサ47が第1光源部41の温度を推定し、温度信号は制御部110に入力しているものとする。
 (ステップSP31)
 本ステップでは、制御部110は、温度センサ47からの温度信号が示す温度Tが温度T0未満であれば、ステップSP31を繰り返す。また、制御部110は、温度Tが温度T0以上であれば、制御フローをステップSP32に進める。
 制御部110は、温度Tが温度T0以上であれば、第1光源部41に温度ディレーティングを行う。制御部110は、第1光源部41に温度ディレーティングを行う場合、当該温度Tに対応するデューティー比を基準にして発光素子43のデューティー比を制御する。このようなデューティー比の制御について、ステップSP32,SP33では、ステップSP31での温度Tが例えば温度T1であり、当該温度T1に対応するデューティー比D1を温度ディレーティングの際の基準となるデューティー比の一例に用いて説明する。
 (ステップSP32)
 本ステップでは、制御部110は、温度ディレーティングの前に、デューティー比D1以下のデューティー比で駆動する少なくとも一部の発光素子43のデューティー比を上げる。図26は本ステップにおけるデューティー比43aD~43lDの一例を示す図であり、図26では、図23に示すデューティー比43aD~43lDと比較するために、図23に示すデューティー比43aD~43lDのうちの上がる前の部分を破線で示している。デューティー比D1は50%であるため、デューティー比D1以下のデューティー比は発光素子43a~43c,43j~43lのデューティー比43aD~43cD,43jD~43lDである。そこで、制御部110は、例えばデューティー比43aD~43cD,43jD~43lDを図23に示す状態から上げる。本ステップでは、制御部110は、例えば、デューティー比43aD,43lDを図23に示すデューティー比43aD,43lDよりも大きくデューティー比D1よりも小さいデューティー比に上げる。また、制御部110は、デューティー比43bD,43kDをデューティー比D1に上げ、デューティー比43cD,43jDをデューティー比D1よりも上げる。この場合、制御部110は、例えば、デューティー比43aD,43lDを30%、デューティー比43bD,43kDを50%、デューティー比43cD,43jDを55%に設定する。デューティー比43aD~43cD,43jD~43lDが上がると、第1光源部41の発光量が増加し、配光パターンは明るくなる。
 なお、制御部110は、デューティー比43aD~43cD,43jD~43lDの少なくとも1つを上記のように上げればよく、デューティー比43aD~43cD,43jD~43lDの上げ方は上記に限定されない。例えば、制御部110は、デューティー比D1以下のデューティー比のうちのデューティー比D1との差が大きいデューティー比を他のデューティー比よりも優先的に上記のように上げてもよい。或いは、制御部110は、差が小さいデューティー比を他のデューティー比よりも優先的に上記のように上げてもよい。或いは、制御部110は、差が大きいデューティー比を差が小さいデューティー比よりも大きくまたは小さく上げてもよい。或いは、制御部110は、デューティー比D1以下のデューティー比の複数を同じ量だけ上げてもよい。また、制御部110は、デューティー比43aD~43cD,43jD~43lDのいずれかを上げなくてもよい。
 ところで、発光素子43がデューティー比D1で駆動する場合、当該発光素子43に供給される電力を第1電力とする。この場合、デューティー比D1よりも大きいデューティー比で駆動する発光素子43には第1電力よりも大きい第2電力が供給され、デューティー比D1以下のデューティー比で駆動する発光素子43には第1電力以下の第3電力が供給される。ステップSP32では、制御部110は、第1電力以下の第3電力で駆動する発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げることになる。
 また、制御部110は、ステップSP32では、第1光源部41に温度ディレーティングを行う場合、発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を、第1電力まで、または、第1電力よりも上げることになる。電力が第1電力まで上がる場合、図26では対象となる発光素子は発光素子43b,43kであり、電力が第1電力まで上がらない場合に比べて、配光パターンは明るくなり、前方の視認性の低下が抑制され得る。また、電力が第1電力よりも上がる場合、図26では対象となる発光素子は発光素子43c,43jであり、電力が第1電力まで上がらない場合に比べて、配光パターンはさらに明るくなり、前方の視認性の低下がさらに抑制され得る。
 なお、制御部110は、ステップSP32において、第3電力で駆動する発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を第1電力よりも上げて一定時間経過した後に、当該発光素子に供給される電力を第1電力以下に下げてもよい。一定時間の値は、例えば5分である。図26では、この場合の対象となる発光素子は、発光素子43c,43jである。電力が第1電力よりも上がったままだと、第1光源部41の温度は上がってしまう。上記の構成よれば、一定時間が経過すると、電力が第1電力以下に下がるため、第1光源部41の温度が下がり、第1光源部41の温度の上昇が抑制され得る。なお、制御部110は、一定時間経過した後に、電力を第1電力以下に下げなくてもよい。
 また、デューティー比D1よりも小さく、第3電力が供給される場合のデューティー比で駆動する発光素子43には第4電力が供給される。第4電力は、第1電力よりも小さく第3電力よりも大きい電力である。制御部110は、第1光源部41に温度ディレーティングを行う場合、ステップSP32において、発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を第3電力よりも大きく第1電力よりも小さい第4電力に上げてもよい。図26では、この場合の対象となる発光素子は、発光素子43a,43lである。
 制御部110は、デューティー比43aD~43cD,43jD~43lDを上げると、制御フローをステップSP33に進める。
 (ステップSP33)
 本ステップでは、制御部110は、第1光源部41に温度ディレーティングを行う。制御部110は、ステップSP32でのデューティー比の制御終了後の例えば1秒後に温度ディレーティングを行うが、制御終了と同時に温度ディレーティングを行ってもよく、温度ディレーティングを行うタイミングは特に限定されない。温度ディレーティングにおいて、制御部70は、デューティー比D1よりも大きいデューティー比で駆動する少なくとも一部の発光素子43のデューティー比をデューティー比D1以下に下げる。図27は本ステップにおけるデューティー比43aD~43lDの一例を示す図であり、図27では、図26に示すデューティー比43aD~43lDと比較するために、図26に示すデューティー比43aD~43lDのうちの下がる前の部分を点線で示している。デューティー比D1は50%であるため、デューティー比D1よりも大きいデューティー比は発光素子43c~43jのデューティー比43cD~43jDである。そこで、制御部110は、本ステップでは、例えば、発光素子43d~43iのデューティー比43dD~43iDをデューティー比D1に下げて50%に設定している。デューティー比43dD~43iDが下がると、第1光源部41の発光量及び発熱量が減少し、第1光源部41の温度は下降する。
 なお、本ステップでは、デューティー比D1よりも大きいデューティー比を、図26に示す時点でデューティー比D1よりも大きいデューティー比43cD~43jDとしているが上記に限定する必要はない。例えば、デューティー比D1よりも大きいデューティー比を、制御フローの開始の時点でデューティー比D1よりも大きいデューティー比43dD~43iDとしてもよい。この場合、制御部110は、図27に示すデューティー比43cD,43jDを維持する。
 また、制御部110は、デューティー比43dD~43iDの少なくとも1つを上記のように下げればよく、デューティー比43dD~43iDの下げ方は上記に限定されない。例えば、制御部110は、デューティー比D1よりも大きいデューティー比のうちのデューティー比D1との差が大きいデューティー比を他のデューティー比よりも優先的に上記のように下げてもよい。或いは、制御部110は、差が小さいデューティー比を他のデューティー比よりも優先的に上記のように下げてもよい。或いは、制御部110は、差が大きいデューティー比を差が小さいデューティー比よりも大きくまたは小さく下げてもよい。或いは、制御部110は、デューティー比D1よりも大きい複数のデューティー比を同じ量だけ下げてもよい。また、制御部110は、デューティー比D1よりも最も大きいデューティー比で駆動する発光素子43f,43gの少なくとも一部の発光素子のデューティー比を、デューティー比D1以下に下げてもよい。
 ところで、上記のように、デューティー比D1よりも大きいデューティー比で駆動する発光素子43には、第1電力よりも大きい第2電力が供給される。第2電力を供給される発光素子43にて、ステップSP33では、制御部110は、第1電力よりも大きい第2電力で駆動する発光素子43d~43iの少なくとも一部に供給される電力を、第2電力から第1電力以下に下げることになる。
 なお、制御部110は、ステップSP33において第2電力で駆動する発光素子43d~43iの少なくとも一部に供給される電力の下げ量が大きいほど、ステップSP32において第3電力で駆動する発光素子43a~43c,43j~43lの少なくとも一部に供給される電力の上げ量を予め多くしてもよい。上記の構成によれば、上記電力の下げ量が大きいほど上記電力の上げ量が少ない場合に比べて、配光パターンは明るくなり得る。なお、制御部110は、発光素子43d~43iの少なくとも一部に供給される電力の下げ量が大きいほど、発光素子43a~43c,43j~43lの少なくとも一部に供給される電力の上げ量を多くしなくてもよい。
 制御部110は、デューティー比43dD~43iDを下げると、制御フローを終了する。
 以上のように、制御部110は、第1光源部41に温度ディレーティングを行う場合、ステップSP33において、発光素子43d~43iの少なくとも一部に供給される電力を、第2電力から第1電力以下に下げる。また、制御部110は、第1光源部41に温度ディレーティングを行う場合、ステップSP32において、第1電力以下の第3電力で駆動する発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げる。
 上記の構成によれば、制御部110が第1光源部41に温度ディレーティングを行う場合、第2電力で駆動する発光素子43d~43iの少なくとも一部の電力が第2電力から第1電力以下に下がる。このため、第1光源部41は発光素子43からの熱から保護されるが、第1光源部41から出射する光によって形成される配光パターンは暗くなる傾向にある。そこで、上記の構成では、制御部110は、第1光源部41に温度ディレーティングを行う場合、第3電力で駆動する発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げる。電力が上がると、配光パターンは明るくなり得る。従って、前方の視認性の低下が抑制され得る。
 また、制御部110は、第1光源部41に温度ディレーティングを行う場合、ステップSP33において第2電力で駆動する発光素子43d~43iの少なくとも一部に供給される電力を第2電力から第1電力以下に下げる前に、ステップSP32において発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げる。
 上記の構成によれば、電力が第2電力から第1電力以下に下がることによって配光パターンが暗くなる前に、電力が第3電力から上がることによって配光パターンが明るくなる。従って、配光パターンが暗くなった後に明るくなる場合に比べて、温度ディレーティングが第1光源部41に行われる前に比べて配光パターンが暗くなることが抑制され得、視認性の低下が抑制され得る。
 なお、制御部110は、ステップSP32及びステップSP33を同時に行ってもよい。従って、制御部110は、第2電力で駆動する発光素子43d~43iの少なくとも一部に供給される電力を第2電力から第1電力以下に下げると同時に、発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げてもよい。或いは、制御部110は、制御フローを、ステップSP33、ステップSP32の順で進めてもよい。従って、制御部は、第2電力で駆動する発光素子43d~43iの少なくとも一部に供給される電力を第2電力から第1電力以下に下げた後に、発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げてもよい。この場合、制御部110は、電力を第1電力以下に下げてから例えば1秒後に或いは電力を第1電力以下に下げたと同時に発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を上げてもよい。
 (第1変形例)
 次に、本実施形態の第1変形例について説明する。上記の実施形態では、車両10が直進している場合におけるそれぞれの発光素子43a~43lのデューティー比43aD~43lDの制御について説明している。これに対して本変形例では、車両10が曲がる場合におけるデューティー比43aD~43lDの制御について説明するものである。本変形例では、操舵角が基準角度を超えて左への操舵角に変わり、車両10は左に曲がる状態として説明する。図28は、車両10が左に曲がる状態におけるデューティー比43aD~43lDの一例を示す図である。
 本変形例の車両用前照灯20では、ステアリングセンサから制御部110に入力される信号によって示される操舵角が左の操舵角である場合、制御部110は、発光素子43b,43cのデューティー比43bD,43cDを100%に設定している。また、制御部110は、発光素子43a,43dのデューティー比43aD,43dDを80%、発光素子43eのデューティー比43eDを70%、発光素子43fのデューティー比43fDを60%に設定している。また、制御部110は、発光素子43gのデューティー比43gDを50%、発光素子43h,43iのデューティー比43hD,43iDを30%に設定している。さらに、制御部110は、発光素子43j,43kのデューティー比43jD,43kDを20%、発光素子43lのデューティー比43lDを10%に設定している。本変形例においても、デューティー比43aD~43lDの値は記録部130に記録されており、制御部110は記録部130から当該値を読み出して上記のようにデューティー比43aD~43lDを制御する。なお、デューティー比の上記値は、特に限定されるものではない。
 制御部110が上記のようにデューティー比43aD~43lDを制御すると、車両10が左に曲がる場合のハイビームの配光パターンにおけるホットゾーンは、車両10が直進する場合に比べて左側にずれる。また、車両10が左に曲がる場合のハイビームの配光パターンにおける光の強度分布は、ハイビームの配光パターンの左側の領域が右側の領域よりも明るくなるように、車両10が直進する場合に比べて変わる。
 ところで、車両10が左に曲がる状態であっても、車両用前照灯20の動作は上記実施形態と同じであり、制御フローはステップSP31からステップSP33を含み、温度ディレーティングが第1光源部41に行われる。
 図29は、ステップSP32におけるデューティー比43aD~43lDの一例を示す図である。図28及び図29におけるデューティー比43aD~43lDを比較するために、図29では、図28に示すデューティー比のうちの上がる前の部分を破線で示している。本変形例では、上記実施形態と同様に、温度センサ47から制御部110に入力された温度Tが温度T1であり、当該温度T1に対応するデューティー比D1を温度ディレーティングの際の基準となるデューティー比の一例に用いて説明する。本ステップでは、制御部110は、発光素子43h~43lのデューティー比43hD~43lDを図28に示す状態から上げる。制御部110は、例えば、デューティー比43hD,43iDをデューティー比D1よりも上げ、デューティー比43jD,43kDをデューティー比D1に上げる。また、制御部110は、デューティー比43lDを図28に示すデューティー比43lDよりも大きくデューティー比D1よりも小さいデューティー比に上げる。この場合、制御部110は、例えば、デューティー比43lD,43iDを55%、デューティー比43jD,43kDを50%、デューティー比43lDを30%に設定する。デューティー比43hD~43lDが上がると、第1光源部41の発光量が増加し、配光パターンは明るくなる。
 制御部110は、デューティー比43hD~43lDを上げると、制御フローをステップSP33に進める。
 ステップSP33では、制御部110は、第1光源部41に温度ディレーティングを行う。温度ディレーティングにおいて、制御部110は、デューティー比D1よりも大きいデューティー比で駆動する少なくとも一部の発光素子43のデューティー比をデューティー比D1以下に下げる。図30は本ステップにおけるデューティー比43aD~43lDの一例を示す図であり、図30では、図29に示すデューティー比43aD~43lDと比較するために、図29に示すデューティー比43aD~43lDのうちの下がる前の部分を点線で示している。本ステップでは、例えば、制御部110は、発光素子43a~43fのデューティー比43aD~43fDをデューティー比D1に下げて50%に設定する。デューティー比43aD~43fDが下がると、第1光源部41の発光量及び発熱量が減少し、第1光源部41の温度は下降する。
 本変形例では、制御部110は、デューティー比43aD~43fDを下げると、制御フローを終了する。なお、本変形例では、制御部110は、デューティー比によって上記のように発光素子43を制御するが、実施形態と同様にデューティー比で駆動する発光素子43に供給される電力によっても上記のように発光素子43を制御できる。
 (第2変形例)
 次に、本実施形態の第2変形例について説明する。本変形例は、車両10が直進している状態から左に曲がる状態に切り替わり配光パターンにおける光の強度分布が変更された場合の発光素子43a~43lのデューティー比43aD~43lDについて説明するものである。本変形例では、上記実施形態と同様に、温度ディレーティングの際の基準となるデューティー比の一例にデューティー比D1を用いて説明する。
 本変形例では、操舵角が基準角度を超えて左への操舵角に変わり、ステアリングセンサは、操舵角に係る信号を制御部110に出力している。図31は、車両10が直進している状態から左に曲がる状態に切り替わり配光パターンにおける光の強度分布が変更された場合の温度ディレーティング後の発光素子43a~43lのデューティー比43aD~43lDの一例を示す図である。図31では、図28に示すデューティー比43aD~43lDと比較するために、図28に示すデューティー比43aD~43lDのうちの下がる前の部分を点線で示している。制御部110は、発光素子43a~43lのうちのデューティー比D1よりも大きい発光素子43a~43fのデューティー比43aD~43fDを下げる。例えば、制御部110は、デューティー比43aD~43fDをデューティー比D1に下げ、デューティー比43aD~43fDを50%に設定する。なお、制御部110は、デューティー比D1よりも大きいデューティー比で駆動する発光素子43a~43fの少なくとも一部の発光素子のデューティー比を、デューティー比D1以下に下げてもよい。また、制御部110は、デューティー比D1以下のデューティー比で駆動する発光素子43g~43lのデューティー比43gD~43lDを図28に示す状態に維持する。
 また、本変形例では、制御部110は、図23に示す発光素子43a~43cのデューティー比43aD~43cDに比べて、図31に示すデューティー比43aD~43cDを、上げている。図31では、図23に示すデューティー比43aD~43cDと比較するために、図23に示すデューティー比43aD~43cDのうちの上がる前の部分を破線で示している。従って、制御部110は、配光パターンにおける光の強度分布を変更した後に第1光源部41に温度ディレーティングを行う場合、光の強度分布を変更する前にデューティー比D1以下のデューティー比43aD~43cDを、上げている。この場合、例えば、制御部110は、デューティー比43aD~43cDをデューティー比D1まで上げており、デューティー比43aD~43cDを50%に設定する。なお、制御部110は、発光素子43a~43cの少なくとも一部のデューティー比を、上記のように上げてもよい。
 本変形例では、制御部110は、デューティー比によって上記のように発光素子43を制御するが、デューティー比で駆動する発光素子43に供給される電力によっても上記のように発光素子43を制御できる。そこで、以下に電力を用いた発光素子43の制御について説明する。本変形例では、制御部110は、図31に示すように光の強度分布を変更した後に温度ディレーティングを行う場合、第1電力よりも大きい第2電力で駆動する発光素子43a~43fの少なくとも一部に供給される電力を第1電力以下に下げることになる。また、本変形例では、制御部110は、図31示すように光の強度分布を変更した後に温度ディレーティングを行う場合、図23に示すように光の強度分布を変更する前に上記した第1電力以下の第3電力で駆動する発光素子43a~43cの少なくとも一部に供給される電力を上げることになる。本変形例では、制御部110は、上記のように当該電力を第1電力まで上げることになる。
 以上のように、制御部110は、光の強度分布を変更した後に第1光源部41に温度ディレーティングを行う場合、第2電力で駆動する発光素子43a~43fの少なくとも一部に供給される電力を第1電力以下に下げる。また、制御部110は、光の強度分布を変更した後に第1光源部41に温度ディレーティングを行う場合、光の強度分布を変更する前に第3電力で駆動する発光素子43a~43cの少なくとも一部に供給される電力を上げる。
 上記の構成によれば、制御部110が光の強度分布を変更した後に第1光源部41に温度ディレーティングを行う場合でも、第1光源部41は発光素子43からの熱から保護されるが、配光パターンが暗くなる傾向にある。そこで、上記の構成では、制御部110は、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に第3電力で駆動する発光素子43a~43cの少なくとも一部の供給される電力を上げる。電力が上がると、配光パターンが明るくなり得る。従って、制御部110が光の強度分布を変更した後に第1光源部41に温度ディレーティングを行っても、当該電力が上がらない場合に比べて、前方の視認性の低下が抑制され得る。また、電力が上がると、夜間では視認性の低下がより抑制され得る。
 なお、制御部110は、図31に示すデューティー比D1へのデューティー比43aD~43fDの下げ量の総和を、図27に示すデューティー比D1へのデューティー比43dD~43iDの下げ量の総和よりも多く、少なく、または当該総和と同じにしてもよい。また、図31に示す発光素子43a~43cのデューティー比43aD~43cDは、図27に示すデューティー比43aD~43cDよりも上がっている。この場合、制御部110は、図31に示すデューティー比D1へのデューティー比43aD~43cDの上げ量の総和を、図27に示すデューティー比D1へのデューティー比43dD~43iDの下げ量の総和よりも少なくしているが、同じ、または多くしてもよい。
 (第3変形例)
 次に、本実施形態の第3変形例について説明する。車両10が直進している状態から左に曲がる状態に切り替わり配光パターンにおける光の強度分布が変更された場合の発光素子43a~43lのデューティー比43aD~43lDの制御は、上記に限定されない。本変形例では、実施形態と同様に、温度ディレーティングの際の基準となるデューティー比の一例にデューティー比D1を用いて説明する。
 図32は、車両10が直進している状態から左に曲がる状態に切り替わり光の配光パターンにおける光の強度分布が変更された場合の発光素子43a~43lのデューティー比43aD~43lDの別の一例を示す図である。図32では、図28に示すデューティー比43aD~43lDと比較するために、図28に示すデューティー比43aD~43lDのうちの下がる前の部分を点線で示している。
 第2変形例と同様に、本変形例では、制御部110は、発光素子43a~43lのうちのデューティー比D1よりも大きい発光素子43d~43fのデューティー比43dD~43fDを下げる。例えば、制御部110は、デューティー比43dD~43fDをデューティー比D1に下げ、デューティー比43aD~43fDを50%に設定する。
 また、制御部110は、図23に示すデューティー比43aD~43cDに比べて、図32に示すデューティー比43aD~43cDを上げている。図32では、図23に示すデューティー比43aD~43cDと比較するために、図23に示すデューティー比43aD~43cDのうちの上がる前の部分を破線で示している。従って、制御部110は、配光パターンにおける光の強度分布を変更した後に第1光源部41に温度ディレーティングを行う場合、光の強度分布を変更する前にデューティー比D1以下のデューティー比43aD~43cDをデューティー比D1よりも上げている。この場合、例えば、制御部110は、デューティー比43aD~43cDを、80%,100%,100%に設定している。なお、制御部110は、発光素子43a~43cの少なくとも一部のデューティー比を、上記のように上げてもよい。
 本変形例では、制御部110は、デューティー比によって上記のように発光素子43を制御するが、電力によっても上記のように発光素子43を制御できる。そこで、以下に電力を用いた発光素子43の制御について説明する。本変形例では、制御部110は、図32に示すように、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に上記した第1電力以下の第3電力で駆動する発光素子43a~43cの少なくとも一部に供給される電力を、第1電力よりも上げていることになる。
 上記の構成によって、電力が第1電力まで上がらない場合に比べて、配光パターンはさらに明るくなり、前方の視認性の低下がさらに抑制され得る。
 なお、制御部110は、デューティー比43aD~43cDの少なくとも一部をデューティー比D1よりも上げて一定時間経過した後に、デューティー比D1以下に下げてもよい。従って、制御部110は、光の強度分布を変更した後に第1光源部41に温度ディレーティングを行う場合、光の強度分布を変更する前に第3電力で駆動する発光素子43a~43cの少なくとも一部に供給される電力を第1電力よりも上げて一定時間経過した後に、発光素子43a~43cの少なくとも一部に供給される電力を第1電力以下に下げてもよいことになる。発光素子43a~43cの電力が第1電力よりも上がったままだと、第1光源部41の温度は上がってしまう。上記の構成よれば、一定時間が経過すると、電力が第1電力以下に下がるため、第1光源部41の温度が下がり、第1光源部41の温度の上昇が抑制され得る。
 また、制御部110は、第2電力で駆動する発光素子43d~43fの少なくとも一部に供給される電力の下げ量が大きいほど、第3電力で駆動する発光素子43a~43cの少なくとも一部に供給される電力の上げ量を多くしてもよい。上記の構成によれば、上記電力の下げ量が大きいほど上記電力の上げ量が少ない場合に比べて、配光パターンは明るくなり得る。なお、制御部110は、発光素子43d~43fの少なくとも一部に供給される電力の下げ量が大きいほど、発光素子43a~43cの少なくとも一部に供給される電力の上げ量を多くしなくてもよい。
 また、図32に示す車両10が左に曲がる状態において、制御部110は、デューティー比43aD~43cDの上げ量の総和を、デューティー比43dD~43fDの下げ量の総和よりも多くしているが、特に限定されるものではない。制御部110は、当該上げ量の総和を、当該下げ量の総和と同じとしてもよいし、当該下げ量の総和よりも少なくしてもよい。
 (第3実施形態)
 次に、本発明の第2の態様の第3実施形態について詳細に説明する。なお、第2の態様の第2実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 本実施形態の車両10の構成は、検知装置150を除いて、第1実施形態の車両10の構成と同じである。本実施形態の検知装置150は、車両10の前方に位置する先行車を検知する。検知装置150は、例えば、図示しないカメラ、検知部、算出部、及び判定部等を主に備える。
 カメラは、車両10の前方部位に取り付けられ、所定の時間間隔、例えば1/30秒間隔で車両10の前方を撮影する。カメラによって撮影される撮影画像には、一対の灯具ユニット30から出射する光が照射される領域の少なくとも一部が含まれる。カメラとして、例えば、CMOS(Complementary metal oxide semiconductor)カメラや、CCD(Charged coupled device)カメラが挙げられる。
 検知部は、カメラによって撮影された撮影画像から、撮影画像における先行車の存在、撮影画像における先行車の存在位置、撮影画像における先行車の割合、及び、撮影画像における先行車の大きさの時間的な変化量等の情報を検知する。時間が経過して先行車から離れている車両10が先行車に近づいた場合には、撮影画像における先行車の大きさの変化量は小さくなる。また、時間が経過して車両10が前進して先行車に近い車両10が先行車にさらに近づいた場合には、先行車の大きさの変化量はより大きくなる。先行車の大きさとは、例えば、撮影画像における先行車の割合や、撮影画像における先行車の幅などを示す。撮影画像には先行車の尾灯から出射される光による赤色系の一対の光点が映り込む。検知部は、当該光を基に、先行車を検知する。検知部は、撮影画像から先行車を検知した場合に、撮影画像、撮影画像における先行車の存在、撮影画像における先行車の存在位置、撮影画像における先行車の割合、及び、撮影画像における先行車の大きさの時間的な変化量等の情報を示す信号を算出部に出力する。一方、検知部は、撮影画像から先行車を検知しない場合には、算出部に信号を出力しない。また、検知装置150は撮影画像を記録部130に出力し、記録部130は撮影画像を記録する。検知部の構成として、例えば、制御部110と同様の構成が挙げられる。
 算出部は、検知部からの情報を基に、車両10と先行車との距離を算出する。算出部は、検知部からの情報における上記割合及び上記変化量を基に、距離を算出する。なお、算出部は、他の方法で距離を算出してもよい。例えば、撮影画像には先行車の尾灯から出射される光による赤色系の一対の光点が映り込む。算出部は、この赤色系の一対の光点間の距離等に基づいて、車両10と先行車との距離を算出する。算出部は、算出した距離を示す信号を判定部に出力する。算出部の構成として、例えば、制御部110と同様の構成が挙げられる。
 車両10と先行車との距離を示す信号が算出部から判定部に入力されると、判定部は、記録部130から所定の要件を読み出し、距離が所定の要件を満たした状態であるか否かを判定する。判定部は、距離が所定の要件を満たした状態である場合には、距離が所定の要件を満たすことを示す信号を制御部110に出力し、距離が所定の要件を満たしていない状態である場合には、信号を制御部110に出力しない。なお、判定部からの信号は、ECUを経由して制御部110に入力されてもよい。所定の要件を満たした状態とは、例えば、車両10と先行車との距離が所定の距離未満の状態であることを示す。このように、判定部は、算出部から入力される信号に応じて、距離が所定の要件を満たした状態か否かを判定する。所定の距離は例えば130mであり、距離の数値は閾値として記録部130に記録されている。数値は、日中や夜間といった車両10の走行状況などに応じて適宜変更可能にされてもよい。判定部の構成として、例えば、制御部110と同様の構成が挙げられる。
 検知装置150が検知する対象物、対象物の種類の数、検知装置150の構成、及び、検知装置150による先行車の検知方法は、特に限定されるものではない。また、車両10から先行車までの距離の演算方法、検知部によって検知される情報、及び、算出部から判定部に入力される情報も、特に限定されるものではない。例えば、検知装置150は、カメラによって撮影された撮影画像に画像処理を施す画像処理部を更に備えてもよい。検知部は、画像処理部によって画像処理された情報から、撮影画像における先行車の存在、撮影画像における先行車の存在位置、撮影画像における先行車の割合、及び、撮影画像における先行車の大きさの時間的な変化量等の情報を検知してもよい。また、検知装置150は、車両10の前方に位置する物体を検知可能なミリ波レーダやライダー等を更に備えてもよい。検知部は、カメラによって撮影された撮影画像と、ミリ波レーダやライダー等から入力される信号とに基づいて、車両10の前方に位置する先行車の存在、車両10に対する当該先行車の位置、及び車両10から先行車までの距離を検知してもよい。
 次に、車両10と先行車との距離が所定の距離未満の状態で、車両用前照灯20がハイビームを出射する場合において、それぞれの発光素子43a~43lのデューティー比43aD~43lDについて説明する。図33は、車両10と先行車との距離が所定の距離未満の状態におけるデューティー比43aD~43lDの一例を示す図である。図33に示すデューティー比43aD~43lDは、温度ディレーティングが行われていない場合におけるデューティー比である。なお、判定部から制御部110に信号が入力されない場合、デューティー比43aD~43lDは、図23に示す通りである。
 本実施形態の車両用前照灯20では、判定部から制御部110に信号が入力されると、制御部110は、発光素子43e~43hのデューティー比43eD~43hDを0%、発光素子43d,43iのデューティー比43dD,43iDを100%に設定している。図33では、デューティー比43eD~43hDが0%であるため、発光素子43e~43hにおける矩形の記載が省略されている。また、制御部110は、発光素子43c,43jのデューティー比43cD,43jDを80%、発光素子43b,43kのデューティー比43bD,43kDを60%、発光素子43a,43lのデューティー比43aD,43lDを40%に設定している。上記のデューティー比43aD~43lDの値は記録部130に記録されており、制御部110は記録部130から当該値を読み出して上記のようにデューティー比43aD~43lDを制御する。なお、デューティー比の上記値は、特に限定されるものではない。
 制御部110が上記のようにデューティー比43aD~43lDを制御すると、発光素子43e~43hは消灯し、発光素子43dから発光素子43aの順及び発光素子43iから発光素子43lの順で発光量が少なくなり、発光量は左右の発光素子で対称とされる。上記によって、ハイビームの配光パターンのうちの先行車と重なる領域は光が投影されない非投影領域となり、先行車へのハイビームの照射が抑制される。また、ハイビームの配光パターンのうちの非投影領域を除く領域に光が投影される。なお、デューティー比43aD~43lDの値は、配光パターンのうちの先行車に重なる領域が暗くなれば、特に限定されるものではない。従って、制御部110は、デューティー比43eD~43hDを0%にする必要はない。
 ところで、上記のように車両10と先行車と距離が所定の距離未満の状態であっても、制御部110は、第1光源部41に温度ディレーティングを行う。本実施形態の温度ディレーティングについて、第1実施形態と同様に、温度ディレーティングの際の基準となるデューティー比の一例にデューティー比D1を用いて説明する。
 図34は、車両10と先行車との距離が所定の距離未満の状態において、温度ディレーティング後におけるそれぞれの発光素子43a~43lのデューティー比43aD~43lDの一例を示す図である。図34では、図33に示すデューティー比43aD~43lDと比較するために、図33に示すデューティー比43aD~43lDのうちの下がる前の部分を点線で示している。
 制御部110は、デューティー比D1よりも大きいデューティー比で駆動する発光素子43b~43d,43i~43kのうちの一部の発光素子43d,43iのデューティー比43dD,43iDをデューティー比D1に下げて50%に設定する。また、制御部110は、残りの一部の発光素子43b,43c,43j,43kのデューティー比43bD,43cD,43jD,43kDを図33に示す状態に維持する。なお、制御部110は、デューティー比D1よりも大きいデューティー比で駆動する発光素子43b~43d,43i~43kの少なくとも一部のデューティー比を、デューティー比D1以下に下げてもよい。また、制御部110は、発光素子43a~43lのうちのデューティー比D1以下のデューティー比で駆動する発光素子43a,43e~43h,43lのデューティー比43aD,43eD~43hD,43lDを図33に示す状態に維持する。
 デューティー比43dD,43iDが下がると、第1光源部41の発光量及び発熱量が減少し、第1光源部41の温度は下降する。
 次に、車両10が直進して車両10と先行車との距離が所定の距離以上の状態から車両10と先行車との距離が所定の距離未満の状態に切り替わり配光パターンにおける光の強度分布が変更された場合の発光素子43a~43lのデューティー比43aD~43lDの制御について説明する。
 制御部110は、図23に示すデューティー比43aD~43cD,43jD~43lDに比べて、図34に示すデューティー比43aD~43cD,43jD~43lDを、上げている。図34では、図23に示すデューティー比43aD~43cD,43jD~43lDと比較するために、図23に示すデューティー比43aD~43cD,43jD~43lDのうちの上がる前の部分を破線で示している。制御部110は、デューティー比43aD,43lDをデューティー比D1よりも小さいデューティー比に上げて40%に設定する。従って、制御部110は、配光パターンにおける光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前にデューティー比D1よりも小さい一部のデューティー比43aD,43lDを、当該デューティー比43aD,43lDよりも大きくデューティー比D1よりも小さいデューティー比にまで上げている。
 本変形例では、制御部110は、デューティー比によって上記のように発光素子43を制御するが、デューティー比で駆動する発光素子43に供給される電力によっても上記のように発光素子43を制御できる。そこで、以下に電力を用いた発光素子43の制御について説明する。本変形例では、制御部110は、図34に示すように、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に上記した第1電力以下の第3電力で駆動する発光素子43a,43lの少なくとも一部に供給される電力を、第3電力よりも大きく第1電力よりも小さい第4電力に上げていることになる。
 上記の構成によれば、制御部110が光の強度分布を変更した後において、電力が第4電力に上がらない場合に比べて、第1光源部41の発光量は増加し、配光パターンは明るくなり得る。
 また、例えば、制御部110は、図23に示す発光素子43b,43c,43j,43kのデューティー比43bD,43cD,43jD,43kDに比べて、図34に示すデューティー比43bD,43cD,43jD,43kDを上げている。例えば、制御部110は、デューティー比43bD,43cD,43jD,43kDをデューティー比D1よりも上げている。この場合、例えば、制御部110は、デューティー比43bD,43cD,43jD,43kDを60%,80%,80%,60%に設定している。従って、制御部110は、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に温度ディレーティングを行う際のデューティー比D1よりも小さい残りの一部のデューティー比43bD,43cD,43jD,43kDを、デューティー比D1よりも上げている。なお、制御部110は、デューティー比43bD,43cD,43jD,43kDの少なくとも一部を、デューティー比D1以上に上げてもよい。つまり、制御部110は、図34に示すように、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に上記した第1電力以下の第3電力で駆動する発光素子43b,43c,43j,43kの少なくとも一部に供給される電力を、第1電力よりも上げることになる。
 上記の構成によって、制御部110が配光パターンの光の強度分布を変更した後において、第1光源部41の発光量はより増加し、配光パターンはより明るくなり、前方の視認性の低下が抑制され得る。
 また、上記のようにデューティー比43aD~43cD,43jD~43lDが上がると、配光パターンのうちの非投影領域を除く領域は車両10が直進している場合に比べて明るくなり、運転者の視認性の低下が抑制される。なお、デューティー比43aD~43cD,43jD~43lDは、デューティー比D1まで上がってもよい。
 (変形例)
 次に本実施形態の変形例について説明する。本変形例の車両10の構成は、検知装置150を除いて、第1実施形態の車両10の構成と同じである。本変形例では、検知装置150が雨滴を検知するものである。
 本変形例の検知装置150は、車両10のフロントウインドウに付着した雨滴を検知するレインセンサを主に備える。レインセンサは、赤外線を出射する発光素子であるLED、受光素子であるフォトダイオード、及び検知部を含んでいる。LEDによって車室側から車外に出射する赤外線はフロントウインドウで全反射するが、フロントウインドウの表面に雨滴が付着する場合赤外線の一部は雨滴を透過して外部に放出される。このため、フロントウインドウでの赤外線の反射量が減少し、受光素子であるフォトダイオードに入る赤外線の光量が減少する。検知部は、当該光量の減少量に基づいて、フロントウインドウの表面の雨滴の有無及び雨滴の付着量を検知する。或いは、レインセンサは、車両10のフロントウインドウを撮影するカメラと、カメラによって撮影されたフロントウインドウの撮影画像からフロントウインドウに付着した雨滴を検知する検知部とを主に備えてもよい。上記の検知部の構成は、制御部110の構成と同じとされる。レインセンサの構成やレインセンサの取り付け位置は、雨滴を検知できれば、特に限定されるものではない。レインセンサは、制御部110に電気的に接続されており、雨滴が付着したこと及び雨滴の付着量を示す信号を制御部110に出力する。なお、レインセンサは、雨滴を検知していない場合には信号を制御部110に出力しない。レインセンサからの信号は、ECUを経由して制御部110に入力されてもよい。レインセンサは、雪を検知してもよい。
 次に、車両10が雨天の中にある状態で、車両用前照灯20がハイビームを出射する場合において、それぞれの発光素子43a~43lのデューティー比43aD~43lDについて説明する。図35は、車両10が雨天の中にある状態におけるデューティー比43aD~43lDの一例を示す図である。図35に示すデューティー比43aD~43lDは、温度ディレーティングが行われていない場合におけるデューティー比である。なお、レインセンサから制御部110に信号が入力されない場合、デューティー比43aD~43lDは、図23に示す通りである。
 本実施形態の車両用前照灯20では、レインセンサから信号が入力されると、制御部110は、発光素子43a,43lのデューティー比43aD,43lDを80%、発光素子43b,43kのデューティー比43bD,43kDを70%に設定する。また、制御部110は、発光素子43c,43d,43i,43jのデューティー比43cD,43dD,43iD,43jDを60%、発光素子43e~43hのデューティー比43eD~43hDを40%に設定する。デューティー比43aD~43lDの値は記録部130に記録されており、制御部110は記録部130からこれら値を読み出して上記のようにデューティー比43aD~43lDを制御する。なお、デューティー比の上記値は、特に限定されるものではない。
 制御部110が上記のようにデューティー比43aD~43lDを制御すると、左右方向の中央側に位置する発光素子43e~43hの発光量が最も少なくなる。また、発光素子43dから発光素子43aの順及び発光素子43iから発光素子43lの順で発光量が多くなり、発光量は左右の発光素子で対称とされる。上記によって、ハイビームの配光パターンのうちの中央側の領域よりも左右の両端側の領域が明るくなる。この場合におけるデューティー比の値は、ハイビームの配光パターンのうちの中央側の領域よりも左右の両端側の領域が明るくなれば、特に限定されるものではない。
 ところで、上記のように車両10が雨天の中にある状態であっても、制御部110は、第1光源部41に温度ディレーティングを行う。本変形例の温度ディレーティングについて、第1実施形態と同様に、温度ディレーティングの際の基準となるデューティー比の一例にデューティー比D1を用いて説明する。
 図36は、車両10が雨天の中にある状態において、温度ディレーティング後における発光素子43a~43lのデューティー比43aD~43lDの一例を示す図である。図36では、図35に示すデューティー比43aD~43lDと比較するために、図35に示すデューティー比43aD~43lDのうちの下がる前の部分を点線で示している。
 制御部110は、デューティー比D1よりも大きいデューティー比で駆動する発光素子43a~43d,43i~43lのうちの一部の発光素子43d,43iのデューティー比43dD,43iDをデューティー比D1に下げて50%に設定する。また、制御部110は、発光素子43a~43d,43i~43lのうちの残りの一部の発光素子43a~43c,43j~43lのデューティー比43aD~43cD,43jD~43lDを図35に示す状態に維持する。なお、制御部110は、デューティー比D1よりも大きいデューティー比で駆動する発光素子43a~43d,43i~43lの少なくとも一部のデューティー比を、デューティー比D1以下に下げてもよい。また、制御部110は、発光素子43a~43lのうちのデューティー比D1以下のデューティー比で駆動する発光素子43e~43hのデューティー比を図35に示す状態に維持する。
 デューティー比43dD,43iDが下がると、第1光源部41の発光量及び発熱量が減少し、第1光源部41の温度は下降する。
 次に、車両10が直進して車両10が雨天の中にない状態から車両10が雨天の中にある状態に切り替わり配光パターンにおける光の強度分布が変更された場合の発光素子43a~43lのデューティー比43aD~43lDの制御について説明する。
 制御部110は、図23に示す発光素子43a~43c,43j~43lのデューティー比43aD~43cD,43jD~43lDに比べて、図36に示す発光素子43a~43c,43j~43lのデューティー比43aD~43cD,43jD~43lDをデューティー比D1よりも上げている。図36では、図23に示すデューティー比43aD~43cD,43jD~43lDと比較するために、図23に示すデューティー比43aD~43cD,43jD~43lDのうちの上がる前の部分を破線で示している。制御部110は、デューティー比43aD,43lDを80%、デューティー比43bD,43kDを70%、デューティー比43cD,43jDを90%に設定する。従って、制御部110は、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前にデューティー比D1よりも小さいデューティー比43aD~43cD,43jD~43lDを、デューティー比D1よりも上げている。なお、制御部110は、デューティー比43aD~43cD,43jD~43lDの少なくとも一部を、上記のように上げてもよい。つまり、制御部110は、図36に示すように、光の強度分布を変更した後に温度ディレーティングを行う場合、光の強度分布を変更する前に上記した第1電力以下の第3電力で駆動する発光素子43a~43c,43j~43lの少なくとも一部に供給される電力を、第1電力よりも上げることになる。
 上記の構成によって、制御部110が配光パターンの光の強度分布を変更した後において、第1光源部41の発光量はより増加し、配光パターンはより明るくなり、前方の視認性の低下がより抑制され得る。
 以上、本発明の第2の態様について、上記第2,3実施形態及び変形例を例に説明したが、本態様はこれらに限定されるものではない。
 デューティー比の制御について、ハイビームの配光パターンを用いて説明したが、ロービームの配光パターンにおいても、ハイビームの配光パターンと同様に制御されてもよい。
 制御部110は、左右のそれぞれの第1灯具40の温度センサ47によって第1光源部41の温度を基に、左右のそれぞれの第1灯具40における発光素子43のデューティー比を制御しているが、これに限定されるものではない。例えば、温度センサ47は左右のそれぞれの第1灯具40の一方に配置され、制御部110、一方の灯具における第1光源部41の温度を基に左右のそれぞれの第1灯具40における発光素子のデューティー比を制御してもよい。
 本発明によれば、温度ディレーティングが行われる場合に、前方の視認性の低下が抑制され得る車両用前照灯が提供され、自動車等の車両用前照灯などの分野において利用可能である。
 

Claims (18)

  1.  複数の発光素子を有し、前記複数の発光素子から前方に出射するそれぞれの第1光の照射領域がマトリックス状に並ぶように前記複数の発光素子が配置される第1光源部と、
     第2光を出射する第2光源部と、
     制御部と、
    を備え、
     少なくとも一部の前記第1光によって形成される第1配光パターンと、前記第2光によって形成される第2配光パターンとによって、ロービームの配光パターンが形成され、
     前記ロービームの配光パターンは、前記第1配光パターンの一部が前記第2配光パターンの一部と重なる第1領域と、前記第1配光パターンの他の一部が前記第2配光パターンと重ならず、前記第1領域と連続し前記第1領域の上方に位置する第2領域とを含み、
     前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部の温度を基に前記第1光源部に温度ディレーティングを行う場合、前記第1配光パターンのうちの少なくとも前記第1領域を照射する少なくとも一部の前記第1光の光量が前記温度ディレーティング前に比べて減少するように、前記複数の発光素子のそれぞれに供給する電力を制御する
    ことを特徴とする車両用前照灯。
  2.  前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域を照射する少なくとも一部の前記第1光の光量が前記温度ディレーティング前に比べて減少し、前記第1領域を照射する少なくとも一部の前記第1光の光量が前記第2領域を照射する少なくとも一部の前記第1光の光量よりも多く減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項1に記載の車両用前照灯。
  3.  前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域を照射する少なくとも一部の前記第1光の光量が前記温度ディレーティング前に比べて減少し、前記第2領域を照射する少なくとも一部の前記第1光の光量が前記第1領域を照射する少なくとも一部の前記第1光の光量よりも後に減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項1または2に記載の車両用前照灯。
  4.  前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域に含まれる前記第1配光パターンの上縁側から前記第1領域に含まれる前記第1配光パターンの下縁側に向かって前記第1配光パターンにおける光量が減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項1から3のいずれか1項に記載の車両用前照灯。
  5.  前記制御部は、前記ロービームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1配光パターンにおける光量が前記ロービームの配光パターンのホットゾーンから前記第1配光パターンの周縁側に向かって減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項1から4のいずれか1項に記載の車両用前照灯。
  6.  第3光を出射する第3光源部をさらに具備し、
     前記第1配光パターンと、前記第2配光パターンと、前記第3光によって形成される第3配光パターンとによって、ハイビームの配光パターンが形成され、
     前記ハイビームの配光パターンでは、前記第2領域の少なくとも一部は、前記第3配光パターンの一部と重なり、
     前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第2領域のうちの前記第3配光パターンの一部に重なる第3領域と前記第1領域との少なくとも一方を照射する少なくとも一部の前記第1光の光量が前記温度ディレーティング前に比べて減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項1から5のいずれか1項に記載の車両用前照灯。
  7.  前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1領域を照射する少なくとも一部の前記第1光の光量が前記第3領域を照射する少なくとも一部の前記第1光の光量よりも多く減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項6に記載の車両用前照灯。
  8.  前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第3領域を照射する少なくとも一部の前記第1光の光量が前記第1領域を照射する少なくとも一部の前記第1光の光量よりも後に減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項6または7に車両用前照灯。
  9.  前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第3領域に含まれる前記第1配光パターンの上縁側から前記第1領域に含まれる前記第1配光パターンの下縁側に向かって前記第1配光パターンにおける光量が減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項6から8のいずれか1項に車両用前照灯。
  10.  前記制御部は、前記ハイビームの配光パターンが形成される状態で、前記第1光源部に前記温度ディレーティングを行う場合、前記第1配光パターンにおける光量が前記ハイビームの配光パターンのホットゾーンから前記第1配光パターンの周縁側に向かって減少するように、前記複数の発光素子のそれぞれに供給する前記電力を制御する
    ことを特徴とする請求項6から9のいずれか1項に記載の車両用前照灯。
  11.  複数の発光素子を有する光源部と、
     それぞれの前記発光素子に供給される電力を制御する制御部と、
     を備え、
     前記制御部は、前記光源部の温度を基に前記光源部に温度ディレーティングを行う場合、第1電力よりも大きい第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第2電力から前記第1電力以下に下げ、前記第1電力以下の第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を上げる
    ことを特徴とする車両用前照灯。
  12.  前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を、前記第1電力まで上げる
    ことを特徴とする請求項11に記載の車両用前照灯。
  13.  前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を、前記第1電力よりも上げる
    ことを特徴とする請求項11に記載の車両用前照灯。
  14.  前記制御部は、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第1電力よりも上げて一定時間経過した後に、当該発光素子に供給される前記電力を前記第1電力以下に下げる
    ことを特徴とする請求項13に記載の車両用前照灯。
  15.  前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を、前記第3電力よりも大きく前記第1電力よりも小さい第4電力に上げる
    ことを特徴とする請求項11に記載の車両用前照灯。
  16.  前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力の下げ量が大きいほど、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力の上げ量を多くする
    ことを特徴とする請求項11に記載の車両用前照灯。
  17.  前記制御部は、前記光源部に前記温度ディレーティングを行う場合、前記第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第2電力から前記第1電力以下に下げる前に、前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を上げる
    ことを特徴とする請求項11から16のいずれか1項に記載の車両用前照灯。
  18.  前記制御部は、前記光源部から出射する光によって形成される配光パターンにおける前記光の強度分布を変更した後に前記光源部に前記温度ディレーティングを行う場合、前記第2電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を前記第1電力以下に下げ、前記光の強度分布を変更する前に前記第3電力で駆動する少なくとも一部の前記発光素子に供給される前記電力を上げる
    ことを特徴とする請求項11から17のいずれか1項に記載の車両用前照灯。
PCT/JP2021/045420 2020-12-15 2021-12-09 車両用前照灯 WO2022131139A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180084024.8A CN116583434A (zh) 2020-12-15 2021-12-09 车辆用前照灯
US18/267,296 US20240035639A1 (en) 2020-12-15 2021-12-09 Vehicular headlight
JP2022569935A JPWO2022131139A1 (ja) 2020-12-15 2021-12-09
EP21906502.6A EP4265475A4 (en) 2020-12-15 2021-12-09 VEHICLE HEADLIGHTS

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-207980 2020-12-15
JP2020207980 2020-12-15
JP2021008999 2021-01-22
JP2021-008999 2021-01-22
JP2021-185996 2021-11-15
JP2021185996 2021-11-15

Publications (1)

Publication Number Publication Date
WO2022131139A1 true WO2022131139A1 (ja) 2022-06-23

Family

ID=82059100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045420 WO2022131139A1 (ja) 2020-12-15 2021-12-09 車両用前照灯

Country Status (4)

Country Link
US (1) US20240035639A1 (ja)
EP (1) EP4265475A4 (ja)
JP (1) JPWO2022131139A1 (ja)
WO (1) WO2022131139A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022420A (ja) * 2005-07-20 2007-02-01 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2009154748A (ja) * 2007-12-27 2009-07-16 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2012022980A (ja) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp 照明装置
JP2012043700A (ja) * 2010-08-20 2012-03-01 Seiko Epson Corp 光源装置及びプロジェクター
JP2015015104A (ja) * 2013-07-03 2015-01-22 スタンレー電気株式会社 光源装置、車両用前照灯、車両用前照灯システム
JP2016091730A (ja) 2014-10-31 2016-05-23 株式会社小糸製作所 車両用灯具およびその点灯回路
JP2017199520A (ja) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 点灯装置、及びそれを備える車両用照明装置
JP2020013642A (ja) * 2018-07-13 2020-01-23 株式会社小糸製作所 点灯回路および車両用灯具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083025B4 (de) * 2011-09-20 2016-10-20 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung für ein Fahrzeug
KR102094679B1 (ko) * 2017-04-11 2020-04-01 제트카베 그룹 게엠베하 차량용 레이저 헤드 램프 및 차량
DE102018130512A1 (de) * 2018-11-30 2020-06-04 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für Fahrzeuge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022420A (ja) * 2005-07-20 2007-02-01 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2009154748A (ja) * 2007-12-27 2009-07-16 Koito Mfg Co Ltd 車両用灯具の点灯制御装置
JP2012022980A (ja) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp 照明装置
JP2012043700A (ja) * 2010-08-20 2012-03-01 Seiko Epson Corp 光源装置及びプロジェクター
JP2015015104A (ja) * 2013-07-03 2015-01-22 スタンレー電気株式会社 光源装置、車両用前照灯、車両用前照灯システム
JP2016091730A (ja) 2014-10-31 2016-05-23 株式会社小糸製作所 車両用灯具およびその点灯回路
JP2017199520A (ja) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 点灯装置、及びそれを備える車両用照明装置
JP2020013642A (ja) * 2018-07-13 2020-01-23 株式会社小糸製作所 点灯回路および車両用灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265475A4

Also Published As

Publication number Publication date
US20240035639A1 (en) 2024-02-01
JPWO2022131139A1 (ja) 2022-06-23
EP4265475A4 (en) 2024-02-21
EP4265475A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US8801242B2 (en) Light module of motor vehicle for generating spot distribution of high-beam-light distribution and vehicle headlights having such module
JP5816031B2 (ja) 車両用前照灯装置
EP3647115B1 (en) Vehicle lamp fitting system, and vehicle lamp fitting control method
WO2021200701A1 (ja) 車両用前照灯
JP5819153B2 (ja) 車両用前照灯装置
WO2022131139A1 (ja) 車両用前照灯
WO2022172860A1 (ja) 車両用前照灯
WO2023286693A1 (ja) 車両用前照灯
WO2021200804A1 (ja) 車両用前照灯及び車両用前照灯システム
WO2021182151A1 (ja) 車両用前照灯
CN116583434A (zh) 车辆用前照灯
JP7490043B2 (ja) 車両用前照灯
US20240110685A1 (en) Vehicle headlamps
WO2022163432A1 (ja) 車両用前照灯
WO2024034553A1 (ja) 車両用前照灯
WO2023095767A1 (ja) 車両用前照灯
WO2021200803A1 (ja) 車両用前照灯及び車両用前照灯システム
CN210141553U (zh) 车辆用前照灯
WO2023095766A1 (ja) 車両用前照灯
WO2024057975A1 (ja) 車両用前照灯
JP7463207B2 (ja) 車両用前照灯
JP2022002933A (ja) 車両用前照灯
JP2023168131A (ja) 車両用前照灯
JP2023168130A (ja) 車両用前照灯
JP2023163771A (ja) 車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569935

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084024.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18267296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906502

Country of ref document: EP

Effective date: 20230717