WO2022091582A1 - 弾性波フィルタ - Google Patents

弾性波フィルタ Download PDF

Info

Publication number
WO2022091582A1
WO2022091582A1 PCT/JP2021/032738 JP2021032738W WO2022091582A1 WO 2022091582 A1 WO2022091582 A1 WO 2022091582A1 JP 2021032738 W JP2021032738 W JP 2021032738W WO 2022091582 A1 WO2022091582 A1 WO 2022091582A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
arm resonator
series
parallel
resonance frequency
Prior art date
Application number
PCT/JP2021/032738
Other languages
English (en)
French (fr)
Inventor
弘嗣 森
俊介 木戸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022091582A1 publication Critical patent/WO2022091582A1/ja
Priority to US18/307,024 priority Critical patent/US20230268906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Definitions

  • the present invention relates to an elastic wave filter.
  • a filter circuit having a specific band smaller than the resonance ratio band is realized by connecting two filter circuits whose pass bands partially overlap.
  • an object of the present invention is to provide an elastic wave filter having a passband width sufficiently narrower than the resonance bandwidth (antiresonance frequency-resonance frequency) and having good filter characteristics.
  • the elastic wave filter according to one aspect of the present invention is a first series arm connected in series to a series arm path connecting the first input / output terminal and the second input / output terminal with the first input / output terminal and the second input / output terminal.
  • a first ladder circuit having a resonator and a first parallel arm resonator connected to a first parallel arm path connecting the series arm path and ground, and a second series arm resonance connected in series to the series arm path.
  • a second ladder circuit having a child and a second parallel arm resonator connected to a second parallel arm path connecting the series arm path and ground, and a third series arm resonator connected in series to the series arm path.
  • a third ladder circuit having a third parallel arm resonator connected to a third parallel arm path connecting the series arm path and ground, the first ladder circuit, the second ladder circuit, and the first.
  • the three ladder circuits are sequentially connected in this order, the anti-resonance frequency of the first series arm resonator is set to fas1, the anti-resonance frequency of the second series arm resonator is set to fas 2, and the anti-resonance frequency of the third series arm resonator is set to fas 2.
  • the resonance frequency of the first parallel arm resonator is frp1
  • the resonance frequency of the second parallel arm resonator is frp2
  • the resonance frequency of the third parallel arm resonator is frp3, then fas1> face2.
  • an elastic wave filter having a passband width sufficiently narrower than the resonance bandwidth and having good filter characteristics.
  • FIG. 1 is a circuit configuration diagram of an elastic wave filter according to an embodiment.
  • FIG. 2A is a plan view and a cross-sectional view schematically showing an example of a surface acoustic wave resonator according to an embodiment.
  • FIG. 2B is a cross-sectional view schematically showing a surface acoustic wave resonator according to a modified example of the embodiment.
  • FIG. 3 is a circuit configuration diagram for explaining the basic operating principle of the ladder type circuit and a graph showing frequency characteristics.
  • FIG. 4 is a diagram schematically showing the passing characteristics of each ladder circuit constituting the elastic wave filter according to the embodiment.
  • FIG. 5 is a circuit configuration diagram of the elastic wave filter according to the first embodiment.
  • FIG. 6 is a diagram showing the pass characteristics of the elastic wave filter according to the first embodiment, the impedance characteristics of the series arm resonators, and the admittance characteristics of the parallel arm resonators.
  • FIG. 7A is a circuit block diagram of the elastic wave filter according to Comparative Example 1.
  • FIG. 7B is a graph showing the passing characteristics of the elastic wave filter according to Comparative Example 1.
  • FIG. 8A is a circuit block diagram of the elastic wave filter according to Comparative Example 2.
  • FIG. 8B is a diagram showing the pass characteristics of the elastic wave filter according to Comparative Example 2, the impedance characteristics of the series arm resonators, and the admittance characteristics of the parallel arm resonators.
  • FIG. 9A is a diagram showing the passing characteristics of the elastic wave filter according to the second embodiment.
  • FIG. 9B is a diagram showing the passing characteristics of the elastic wave filter according to Comparative Example 3.
  • the "series arm path” and the “parallel arm path” are composed of a wiring through which a high frequency signal propagates, an electrode directly connected to the wiring, and a terminal directly connected to the wiring or the electrode. It means that it is a transmission line.
  • FIG. 1 is a circuit configuration diagram of the elastic wave filter 1 according to the embodiment. As shown in the figure, the elastic wave filter 1 includes ladder circuits 11, 12 and 13, and input / output terminals 110 and 120.
  • the ladder circuit 11 is an example of the first ladder circuit, and includes a series arm resonator 11s and a parallel arm resonator 11p.
  • the series arm resonators 11s are arranged in series in the series arm path connecting the input / output terminals 110 and 120.
  • the parallel arm resonator 11p is arranged in the first parallel arm path connecting the series arm path and the ground.
  • the ladder circuit 12 is an example of the second ladder circuit, and includes a series arm resonator 12s and a parallel arm resonator 12p.
  • the series arm resonators 12s are arranged in series in the series arm path.
  • the parallel arm resonator 12p is arranged in the second parallel arm path connecting the series arm path and the ground.
  • the ladder circuit 13 is an example of a third ladder circuit, and includes a series arm resonator 13s and a parallel arm resonator 13p.
  • the series arm resonators 13s are arranged in series in the series arm path.
  • the parallel arm resonator 13p is arranged in the third parallel arm path connecting the series arm path and the ground.
  • Each of the series arm resonators 11s, 12s and 13s, and the parallel arm resonators 11p, 12p and 13p are surface acoustic wave resonators, and are surface acoustic wave (SAW) resonators or bulk elastic waves. (BAW: Bulk Acoustic Wave) It is a resonator.
  • the series arm resonator 11s has a resonance frequency frs1 and an antiresonance frequency fas1.
  • the parallel arm resonator 11p has a resonance frequency frp1 and an antiresonance frequency fap1.
  • the series arm resonator 12s has a resonance frequency frs2 and an antiresonance frequency fas2.
  • the parallel arm resonator 12p has a resonance frequency frp2 and an antiresonance frequency fap2.
  • the series arm resonator 13s has a resonance frequency frs3 and an antiresonance frequency fas3.
  • the parallel arm resonator 13p has a resonance frequency frp3 and an antiresonance frequency fap3.
  • the ladder circuit 11, the ladder circuit 12, and the ladder circuit 13 are sequentially connected in this order from the input / output terminals 110.
  • each of the ladder circuits 11 to 13 is not limited to being composed of one series arm resonator and one parallel arm resonator, and one or more series arm resonators and one or more parallel arm resonators. It may be composed of.
  • the resonance frequency difference and the antiresonance frequency difference in the plurality of series arm resonators constituting one ladder circuit are 50% or less of the passing bandwidth of the elastic wave filter 1, respectively, and one ladder circuit.
  • the resonance frequency difference and the anti-resonance frequency difference in the plurality of parallel arm resonators constituting the above are within 50% of the passing bandwidth of the elastic wave filter 1, respectively.
  • FIG. 2A is a plan view and a cross-sectional view schematically showing an example of the SAW resonator according to the embodiment
  • FIG. 2A is a plan view
  • FIGS. 2B and 2C are shown in FIG. 2A. It is sectional drawing in the one-dot chain line.
  • FIG. 2A illustrates a SAW resonator 100 having a basic structure of a series arm resonator and a parallel arm resonator constituting the ladder circuits 11 to 13.
  • the SAW resonator 100 shown in FIG. 2A is for explaining a typical structure of a surface acoustic wave resonator, and the number and length of electrode fingers constituting the electrode are limited thereto. Not done.
  • the SAW resonator 100 is composed of a substrate 5 having piezoelectricity and comb-shaped electrodes 100a and 100b.
  • a pair of comb-shaped electrodes 100a and 100b facing each other are formed on the substrate 5.
  • the comb-shaped electrode 100a is composed of a plurality of electrode fingers 150a parallel to each other and a bus bar electrode 160a connecting the plurality of electrode fingers 150a.
  • the comb-shaped electrode 100b is composed of a plurality of electrode fingers 150b parallel to each other and a bus bar electrode 160b connecting the plurality of electrode fingers 150b.
  • the plurality of electrode fingers 150a and 150b are formed along a direction orthogonal to the elastic wave propagation direction (X-axis direction).
  • the IDT (InterDigital Transducer) electrode 54 composed of the plurality of electrode fingers 150a and 150b and the bus bar electrodes 160a and 160b has the contact layer 540 and the main electrode layer 542 as shown in FIG. 2A (b). It has a laminated structure of.
  • the protective layer 55 is formed so as to cover the comb-shaped electrodes 100a and 100b.
  • the protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting the frequency temperature characteristics, and improving the moisture resistance, and is, for example, a dielectric film containing silicon dioxide as a main component. Is.
  • the IDT electrode 54 does not have to have the above-mentioned laminated structure.
  • the IDT electrode 54 may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, Pd, or may be made of a plurality of laminates made of the above metal or alloy. You may. Further, the protective layer 55 may not be formed.
  • the substrate 5 includes a high sound velocity support substrate 51, a low sound velocity film 52, and a piezoelectric film 53, and the high sound velocity support substrate 51, the low sound velocity film 52, and the piezoelectric film 53 are provided. It has a structure laminated in this order.
  • the piezoelectric film 53 is made of LiTaO 3 piezoelectric single crystal or piezoelectric ceramics.
  • the high sound velocity support substrate 51 is a substrate that supports the low sound velocity film 52, the piezoelectric film 53, and the IDT electrode 54.
  • the high sound velocity support substrate 51 is a substrate in which the sound velocity of the bulk wave in the high sound velocity support substrate 51 is higher than that of elastic waves such as surface waves and boundary waves propagating through the piezoelectric film 53, and the elastic surface waves are generated. It is confined in the portion where the piezoelectric film 53 and the low sound velocity film 52 are laminated, and functions so as not to leak below the high sound velocity support substrate 51.
  • the low sound velocity film 52 is a film in which the sound velocity of the bulk wave in the low sound velocity film 52 is lower than that of the bulk wave propagating through the piezoelectric film 53, and is arranged between the piezoelectric film 53 and the high sound velocity support substrate 51. To. Due to this structure and the property that the energy is concentrated in the medium in which the surface acoustic wave is essentially low sound velocity, the leakage of the surface acoustic wave energy to the outside of the IDT electrode is suppressed.
  • the laminated structure of the substrate 5 it is possible to significantly increase the Q value at the resonance frequency and the antiresonance frequency as compared with the conventional structure in which the piezoelectric substrate is used as a single layer. That is, since an elastic wave resonator having a high Q value can be configured, it is possible to construct a filter having a small insertion loss by using the elastic wave resonator.
  • the high sound velocity support substrate 51 has a structure in which a support substrate and a high sound velocity film in which the sound velocity of the bulk wave propagating is higher than that of elastic waves such as surface waves and boundary waves propagating in the piezoelectric film 53 are laminated. May have.
  • FIG. 2B is a cross-sectional view schematically showing a SAW resonator according to a modified example of the embodiment.
  • the SAW resonator 100 shown in FIG. 2A an example in which the IDT electrode 54 is formed on the substrate 5 having the piezoelectric film 53 is shown, but the substrate on which the IDT electrode 54 is formed is as shown in FIG. 2B.
  • the piezoelectric single crystal substrate 57 made of a single layer of the piezoelectric layer may be used.
  • the piezoelectric single crystal substrate 57 is composed of, for example, a piezoelectric single crystal of LiNbO 3 .
  • the SAW resonator 100 is composed of a piezoelectric single crystal substrate 57 of LiNbO 3 , an IDT electrode 54, and a protective layer 55 formed on the piezoelectric single crystal substrate 57 and the IDT electrode 54. There is.
  • the above-mentioned piezoelectric film 53 and the piezoelectric single crystal substrate 57 may have a laminated structure, a material, a cut angle, and a thickness appropriately changed according to the required passing characteristics of the elastic wave filter device and the like.
  • the substrate on which the IDT electrode 54 is formed may have a structure in which a support substrate, an energy confinement layer, and a piezoelectric film are laminated in this order.
  • the IDT electrode 54 is formed on the piezoelectric film.
  • the piezoelectric film for example, LiTaO3 piezoelectric single crystal or piezoelectric ceramics is used.
  • the support substrate is a substrate that supports the piezoelectric film, the energy confinement layer, and the IDT electrode 54.
  • the elastic surface wave refers to propagating the elastic wave to the surface of the piezoelectric substrate or the interface of a plurality of materials, and refers to various types of elastic waves configured by using the IDT electrode.
  • Surface acoustic waves also include, for example, surface waves, love waves, leaky waves, Rayleigh waves, boundary waves, leakage SAWs, pseudo SAWs, and surface acoustic waves.
  • the BAW resonator is composed of SMR (Solidly Mounted Resonator) or FBAR (Film Bulk Acoustic Resonator).
  • the SMR type BAW resonator includes, for example, a Si substrate, a lower electrode, an upper electrode, a piezoelectric layer, a low acoustic impedance film, and a high acoustic impedance film.
  • a Si substrate Above the Si substrate, an acoustic multilayer film having a structure in which low acoustic impedance films and high acoustic impedance films are alternately laminated is arranged.
  • a lower electrode is arranged above the acoustic multilayer film, and an upper electrode is arranged above the lower electrode.
  • the piezoelectric layer is arranged between the lower electrode and the upper electrode.
  • the SMR type BAW resonator uses Bragg reflection by the acoustic multilayer film arranged between the Si substrate and the lower electrode, the upper electrode, and the piezoelectric layer to generate bulk elastic waves above the acoustic multilayer film. Confine in.
  • the FBAR type BAW resonator includes, for example, a Si substrate, a lower electrode, an upper electrode, and a piezoelectric layer.
  • the Si substrate is an example of a support substrate.
  • a lower electrode is arranged above the Si substrate, and an upper electrode is arranged above the lower electrode.
  • the piezoelectric layer is arranged between the lower electrode and the upper electrode.
  • the FBAR type BAW resonator further has a cavity in the Si substrate. This structure generates bulk elastic waves in the stacking direction that are excited between the lower electrode and the upper electrode.
  • FIG. 3 is a circuit configuration diagram for explaining the basic operating principle of the ladder circuit and a graph showing frequency characteristics.
  • the ladder circuit shown in FIG. 3A is a basic ladder type filter composed of one series arm resonator 16 and one parallel arm resonator 26.
  • the parallel arm resonator 26 has a resonance frequency frp and an antiresonance frequency fap (> frp) in the resonance characteristic.
  • the series arm resonator 16 has a resonance frequency frs and an antiresonance frequency fas (> frs> frp) in the resonance characteristic.
  • the anti-resonance frequency fap of the parallel arm resonator 26 and the resonance frequency frs of the series arm resonator 16 are brought close to each other.
  • the vicinity of the resonance frequency frp where the impedance of the parallel arm resonator 26 approaches 0 becomes the low frequency side blocking region.
  • the impedance of the parallel arm resonator 26 becomes high in the vicinity of the antiresonance frequency fap, and the impedance of the series arm resonator 16 approaches 0 in the vicinity of the resonance frequency frs.
  • the signal passage region is set in the signal path from the input / output terminal 110 to the input / output terminal 120.
  • This makes it possible to form a pass band that reflects the electrode parameters of the elastic wave resonator and the electromechanical coupling coefficient.
  • the impedance of the series arm resonator 16 becomes high, and it becomes a high frequency side blocking region.
  • a surface acoustic wave filter having the above operating principle, when a high frequency signal is input from the input / output terminal 110 or 120, a potential difference occurs between the input / output terminal 110 or 120 and the reference terminal, which distorts the piezoelectric layer. As a result, surface acoustic waves are generated.
  • the wavelength ⁇ of the IDT electrode 54 with the wavelength of the pass band, only the high frequency signal having the frequency component to be passed passes through the elastic wave filter.
  • the number of stages of the resonance stage composed of the parallel arm resonator and the series arm resonator is appropriately optimized according to the required specifications.
  • the elastic wave filter is configured by a plurality of resonance stages
  • the antiresonance frequency fap of the plurality of parallel arm resonators and the resonance frequency frs of the plurality of series arm resonators are set in or near the pass band. Deploy. Further, the resonance frequency frp of the plurality of parallel arm resonators is arranged in the low frequency side blocking region, and the antiresonance frequency fas of the plurality of series arm resonators is arranged in the high frequency side blocking region.
  • the steepness of the low frequency side end of the passing band in the passing characteristic is the frequency difference (resonant bandwidth) between the resonance frequency frp and the antiresonance frequency fap of a plurality of parallel arm resonators. Strongly depends on. That is, the smaller the resonance bandwidth of the plurality of parallel arm resonators, the larger the slope of the straight line connecting the resonance frequency frp and the antiresonance frequency fap (relative to the horizon). The steepness of the edge becomes high.
  • the steepness of the high frequency side end of the pass band in the pass characteristic strongly depends on the frequency difference (resonance bandwidth) between the resonance frequency frs and the antiresonance frequency fas of the plurality of series arm resonators. That is, the smaller the resonance bandwidth of the plurality of series arm resonators, the larger the slope of the straight line connecting the resonance frequency frs and the antiresonance frequency fas (relative to the horizon). The steepness of the edge becomes high.
  • the insertion loss in the pass band strongly depends on the Q value at the antiresonance frequency fap of the plurality of parallel arm resonators and the Q value at the resonance frequency frs of the plurality of series arm resonators. That is, the higher the Q value in the antiresonance frequency fap of the plurality of parallel arm resonators, the smaller the insertion loss in the pass band, and the higher the Q value in the resonance frequency frs of the plurality of series arm resonators, the more the insertion in the pass band. The loss is reduced.
  • the insertion loss and steepness of the pass band of the elastic wave filter 1 according to the present embodiment are determined by the resonance frequency of each series arm resonator and each parallel arm resonator. It is determined by adjusting the anti-resonance frequency, resonance bandwidth, Q value, and the like.
  • FIG. 4 is a diagram schematically showing the passing characteristics of the ladder circuits 11 to 13 constituting the elastic wave filter 1 according to the embodiment. As shown in the figure, each of the ladder circuits 11 to 13 has a pass band and an attenuation band individually according to the above-mentioned operating principle of the ladder circuit.
  • the attenuation pole near the low frequency side of the passband is defined by the resonance frequency frp1, and the attenuation pole near the high frequency side of the passband is defined by the antiresonance frequency fas1.
  • the attenuation pole near the low frequency side of the passband is defined by the resonance frequency frp2, and the attenuation pole near the high frequency side of the passband is defined by the antiresonance frequency fas2.
  • the attenuation pole near the low frequency side of the passband is defined by the resonance frequency frp3, and the attenuation pole near the high frequency side of the passband is defined by the antiresonance frequency fas3.
  • the pass bandwidth of the ladder circuit 11 generally corresponds to the resonance bandwidth of the series arm resonator 11s and the resonance bandwidth of the parallel arm resonator 11p
  • the pass bandwidth of the ladder circuit 12 Generally corresponds to the resonance bandwidth of the series arm resonator 12s and the resonance bandwidth of the parallel arm resonator 12p
  • the pass bandwidth of the ladder circuit 13 is approximately the resonance bandwidth of the series arm resonator 13s. And, it corresponds to the resonance bandwidth of the parallel arm resonator 13p.
  • the pass band of the elastic wave filter is defined as a band in which the pass bands of the ladder circuits 11 to 13 overlap. Will be done.
  • the attenuation pole near the low frequency side of the pass band of the elastic wave filter 1 is defined by the resonance frequency frp1 which is on the highest frequency side of the three resonance frequencies frp1, frp2, and frp3.
  • the decaying pole near the high frequency side of the pass band of the elastic wave filter 1 is defined by the antiresonance frequency fas3 which is on the lowest frequency side of the three antiresonance frequencies fas1, fas2, and fas3.
  • the ladder circuits 11 to 13 composed of elastic wave resonators having a relatively wide resonance bandwidth, it is possible to realize the elastic wave filter 1 having a pass band narrower than the resonance bandwidth. Further, since at least the ladder circuit 12 has a pass bandwidth wider than the pass bandwidth of the elastic wave filter 1, a large amount of attenuation in the attenuation band far from the pass band formed by the ladder circuit 12 is secured. can. Therefore, it is possible to provide an elastic wave filter 1 having a narrower passband and a larger attenuation as compared with the passband and the resonance bandwidth of the ladder circuits 11 to 13.
  • the ladder circuits 11, 12 and 13 are arranged in this order between the input / output terminals 110 and 120, the frequency difference between the adjacent ladder circuits can be reduced. This makes it possible to improve the impedance matching of adjacent ladder circuits. Therefore, since the mismatch loss between the ladder circuits can be reduced, a low-loss elastic wave filter 1 can be provided.
  • the elastic wave filter 1 can be applied, for example, as a filter for a band n47 (band: 5855-5925 MHz) of 5G (5th Generation) -NR (New Radio).
  • each of the ladder circuits 11, 12 and 13 is a circuit having a resonance bandwidth corresponding to, for example, the band n46 (band: 5150-5925 MHz) of 5G-NR.
  • a circuit having a resonance bandwidth corresponding to a band of 5G-NR band n97 (band: 5925-7125 MHz) is used.
  • the elastic wave filter 1 is, for example, a filter for a 5G-NR band n42 (band: 3400-3600 MHz) and a filter for a 5G-NR band n48 (n49) (band: 3550-3700 MHz). It can be applied as a filter for 5G-NR band n52 (band: 3300-3400MHz).
  • each of the ladder circuits 11, 12 and 13 is a circuit having a resonance bandwidth corresponding to, for example, the band n77 (band: 3300-4200 MHz) of 5G-NR.
  • the applied band is not limited to the band for 5G-NR, but for 4G (4th Generation) -LTE (Long Term Evolution). It may be a band. Further, the band applied to the elastic wave filter 1 may be a frequency band predefined by a standardization body or the like for a communication system, and is not limited to a band for 5G-NR and 4G-LTE.
  • FIG. 5 is a circuit configuration diagram of the elastic wave filter 1A according to the first embodiment.
  • the elastic wave filter 1A includes ladder circuits 11, 12A and 13, and input / output terminals 110 and 120.
  • the elastic wave filter 1A according to the present embodiment is different from the elastic wave filter 1 according to the embodiment in that the ladder circuit 12 is replaced with the ladder circuit 12A.
  • the same points as the elastic wave filter 1 according to the embodiment of the elastic wave filter 1A according to the present embodiment will be omitted, and different points will be mainly described.
  • the ladder circuit 12A is an example of the second ladder circuit, and includes series arm resonators 121s and 122s and parallel arm resonators 121p and 122p.
  • the series arm resonators 121s and 122s are arranged in series in the series arm path connecting the input / output terminals 110 and 120.
  • the parallel arm resonator 121p is arranged in the parallel arm path connecting the connection node of the series arm resonators 121s and 122s to the ground.
  • the parallel arm resonator 122p is arranged in a parallel arm path connecting the connection node of the series arm resonators 122s and 13s to the ground.
  • Each of the series arm resonators 121s and 122s and the parallel arm resonators 121p and 122p are surface acoustic wave resonators, SAW resonators, or BAW resonators.
  • the series arm resonator 121s has a resonance frequency frs21 and an antiresonance frequency fas21.
  • the series arm resonator 122s has a resonance frequency frs22 and an antiresonance frequency fas22.
  • the parallel arm resonator 121p has a resonance frequency frp21 and an antiresonance frequency fap21.
  • the parallel arm resonator 122p has a resonance frequency frp22 and an antiresonance frequency fap22.
  • the ladder circuit 11, the ladder circuit 12A, and the ladder circuit 13 are sequentially connected in this order from the input / output terminals 110.
  • FIG. 6 is a diagram showing (a) the passage characteristic of the elastic wave filter 1A according to the first embodiment, (b) the impedance characteristic of the series arm resonator, and (c) the admittance characteristic of the parallel arm resonator.
  • the attenuation pole near the low frequency side of the pass band of the elastic wave filter 1A is defined by the resonance frequency frp1 which is on the highest frequency side of the four resonance frequencies frp1, frp21, frp22 and frp3.
  • the decaying pole near the high frequency side of the pass band of the elastic wave filter 1A is defined by the antiresonance frequency fas3 which is on the lowest frequency side of the four antiresonance frequencies fas1, fas21, fas22 and fas3.
  • the ladder circuit 12A since at least the ladder circuit 12A has a passband width wider than the passband width of the elastic wave filter 1A, a large amount of attenuation of the attenuation band far from the passband formed by the ladder circuit 12A is secured. can. Therefore, it is possible to provide an elastic wave filter 1A having a narrower passband and a larger attenuation as compared with the passband and resonance bandwidth of the ladder circuits 11, 12A and 13.
  • the capacitance value of the parallel arm resonator 11p may be the smallest. According to this, since the impedance of the parallel arm resonator 11p that defines the low frequency side end of the pass band in the elastic wave filter 1A can be increased, the insertion loss of the low frequency end of the pass band in the elastic wave filter 1A is reduced. can.
  • the capacitance value of the series arm resonator 13s may be the largest. According to this, since the impedance of the series arm resonator 13s that defines the high frequency side end of the pass band in the elastic wave filter 1A can be reduced, the insertion loss of the high frequency end of the pass band in the elastic wave filter 1A is reduced. can.
  • the resonance bandwidth of the parallel arm resonator 11p (fap1-frp1: first parallel resonance bandwidth), the resonance bandwidth of the parallel arm resonator 121p (fap21-frp21: second parallel resonance bandwidth), and the parallel arm resonator.
  • the first parallel resonance bandwidth is the largest. It may be small.
  • the attenuation slope can be steep.
  • the resonance bandwidth of the series arm resonator 11s (fas1-frs1: first series resonance bandwidth), the resonance bandwidth of the series arm resonator 121s (fas21-frs21: second series resonance bandwidth), and the series arm resonator.
  • the 122s resonance bandwidth (fas22-frs22: second series resonance bandwidth)
  • the series arm resonator 13s resonance bandwidth (fas3-frs3: third series resonance bandwidth)
  • the third series resonance bandwidth is the largest. It may be small.
  • the attenuation slope can be steep.
  • the capacitance value of the parallel arm resonator 121p or 122p may be the largest.
  • the parallel arm resonator 121p that defines the attenuation band on the low frequency side of the passband
  • the admittance of the resonance frequency frp21 of the resonance frequency frp21 or the resonance frequency frp22 of the parallel arm resonator 122p can be increased. Therefore, it is possible to increase the amount of attenuation in the attenuation band far from the low frequency side of the pass band of the elastic wave filter 1A.
  • the capacitance value of the series arm resonators 121s or 122s may be the smallest.
  • the series arm resonator 121s that defines the decay band on the high frequency side of the pass band
  • the impedance of the anti-resonance frequency fas 21 of the anti-resonance frequency fas 21 or the anti-resonance frequency fas 22 of the series arm resonator 122s can be increased. Therefore, it is possible to increase the amount of attenuation in the attenuation band far from the high frequency side of the pass band of the elastic wave filter 1A.
  • the resonance bandwidth of the parallel arm resonator 11p (fap1-frp1: first parallel resonance bandwidth), the resonance bandwidth of the parallel arm resonator 121p (fap21-frp21: second parallel resonance bandwidth), and the parallel arm resonator.
  • the 122p resonance bandwidth (fap22-frp22: second parallel resonance bandwidth)
  • the parallel arm resonator 13p resonance bandwidth (fap3-frp3: third parallel resonance bandwidth)
  • the second parallel resonance bandwidth is the largest. It may be large.
  • the pass band width and the resonance bandwidth of the ladder circuit 12A become wider. Therefore, the resonance frequency frp21 of the parallel arm resonator 121p and the resonance frequency frp22 of the parallel arm resonator 122p can define the low frequency side distant attenuation band of the pass band of the elastic wave filter 1A, and this attenuation amount can be increased.
  • the resonance bandwidth of the series arm resonator 11s (fas1-frs1: first series resonance bandwidth), the resonance bandwidth of the series arm resonator 121s (fas21-frs21: second series resonance bandwidth), and the series arm resonator.
  • the 122s resonance bandwidth (fas22-frs22: second series resonance bandwidth)
  • the series arm resonator 13s resonance bandwidth (fas3-frs3: third series resonance bandwidth)
  • the second series resonance bandwidth is the largest. It may be large.
  • the pass band width and the resonance bandwidth of the ladder circuit 12A become wider. Therefore, the anti-resonance frequency fas21 of the series arm resonator 121s and the anti-resonance frequency fas 22 of the series arm resonator 122s can specify the attenuation band far from the high frequency side of the pass band of the elastic wave filter 1A, and the attenuation amount can be increased. ..
  • FIG. 7A is a circuit block diagram of the elastic wave filter 500 according to Comparative Example 1.
  • the elastic wave filter 500 according to Comparative Example 1 includes ladder circuits 11 and 13, and input / output terminals 110 and 120.
  • the elastic wave filter 500 according to this comparative example is different from the elastic wave filter 1 according to the embodiment in that it does not include the ladder circuit 12.
  • FIG. 7B is a graph showing the passing characteristics of the elastic wave filter 500 according to Comparative Example 1.
  • the insertion loss (3.00 dB) of the pass band is larger than the insertion loss (2.12 dB) of the elastic wave filter 1A according to the first embodiment.
  • neither the attenuation slope near the low frequency side of the pass band nor the attenuation slope near the high frequency side of the pass band has a steep linear shape, and an unnecessary convex shape appears.
  • the elastic wave filter having a narrow passband is configured only by the two ladder circuits 11 and 13 having a relatively wide passband and the resonance bandwidth, so that the impedance mismatch is made between the ladder circuits 11 and 13. It is thought that one of the reasons is that the size has increased. In addition, since we tried to satisfy the narrow passband, the steepness of the attenuation slope near the passband, and the securing of the attenuation of the attenuation band far from the passband with only two ladder circuits, the passband was inserted. It is probable that the characteristic deterioration occurred in the loss and the attenuation slope near the pass band.
  • FIG. 8A is a circuit block diagram of the elastic wave filter 600 according to Comparative Example 2.
  • the elastic wave filter 600 according to Comparative Example 2 includes ladder circuits 11, 12 and 13, and input / output terminals 110 and 120.
  • the elastic wave filter 600 according to this comparative example differs from the elastic wave filter 1 according to the embodiment only in the arrangement order of the ladder circuits 11 to 13. That is, in the elastic wave filter 600, the ladder circuit 11, the ladder circuit 13, and the ladder circuit 12 are longitudinally connected from the input / output terminals 110 in this order.
  • FIG. 8B is a diagram showing (a) the passage characteristics of the elastic wave filter 600 according to Comparative Example 2, (b) the impedance characteristics of the series arm resonators 11s to 13s, and the admittance characteristics of the parallel arm resonators 11p to 13p. ..
  • the frequency difference between the ladder circuit 11 and the ladder circuit 13 is determined. It is smaller than that of Comparative Example 1. That is, the frequency difference between the resonance frequencies frp1 and frp3 and the frequency difference between the antiresonance frequencies fas1 and fas3 are smaller than those in Comparative Example 1.
  • the small frequency difference due to the small frequency difference, it is difficult to achieve both the attenuation characteristics in the vicinity of the pass band and the attenuation characteristics in the distance from the pass band of the elastic wave filter 600.
  • Comparative Example 2 as shown in FIG. 8B (a), it is not possible to secure a steep attenuation characteristic in the vicinity of the high frequency side of the pass band.
  • the ladder circuit 11 and the ladder circuit 12 are directly connected without interposing other circuit elements, and the ladder circuit 12 and the ladder circuit 13 are connected to each other. It is desirable that they are directly connected without going through a circuit element.
  • FIG. 9A is a diagram showing the passing characteristics of the elastic wave filter 1B according to the second embodiment. Further, FIG. 9B is a diagram showing the passing characteristics of the elastic wave filter 700 according to Comparative Example 3.
  • both the elastic wave filter 1B according to the second embodiment and the elastic wave filter 700 according to the comparative example 3 have the same circuit configuration as the elastic wave filter 1 according to the embodiment. That is, each of the elastic wave filter 1B and the elastic wave filter 700 includes a first ladder circuit, a second ladder circuit, and a third ladder circuit. The first ladder circuit, the second ladder circuit, and the third ladder circuit are sequentially connected in this order from the input / output terminals 110.
  • each of the elastic wave filter 1B and the elastic wave filter 700 satisfies the above equation 1.
  • the value obtained by dividing the difference between the antiresonance frequency and the resonance frequency of one or more first series arm resonators by the resonance frequency is defined as the first series resonance ratio band. Further, a value obtained by dividing the difference between the antiresonance frequency and the resonance frequency of one or more second series arm resonators by the resonance frequency is defined as the second series resonance ratio band. Further, a value obtained by dividing the difference between the antiresonance frequency and the resonance frequency of one or more third series arm resonators by the resonance frequency is defined as the third series resonance ratio band. Further, a value obtained by dividing the difference between the antiresonance frequency and the resonance frequency of one or more first parallel arm resonators by the resonance frequency is defined as the first parallel resonance ratio band.
  • a value obtained by dividing the difference between the antiresonance frequency and the resonance frequency of one or more second parallel arm resonators by the resonance frequency is defined as the second parallel resonance ratio band.
  • a value obtained by dividing the difference between the antiresonance frequency and the resonance frequency of one or more third parallel arm resonators by the resonance frequency is defined as the third parallel resonance ratio band.
  • the average value of the first to third series resonance ratio bands and the first to third parallel resonance ratio bands is defined as the resonance ratio band of the elastic wave filter.
  • the value obtained by dividing the pass band of the elastic wave filter by the center frequency of the pass band is defined as the filter ratio band.
  • the resonance ratio band is 8% and the filter ratio band is 1.2%. That is, the filter ratio band of the elastic wave filter 1B is 0.15 times the resonance ratio band.
  • the resonance ratio band is 9% and the filter ratio band is 1.2%. That is, the filter ratio band of the elastic wave filter 700 is 0.13 times the resonance ratio band.
  • the low loss property of the pass band, the steepness of the attenuation band near the pass band, and the attenuation amount of the attenuation band far from the pass band are all good. It has become.
  • the resonance ratio band that can be realized by the SAW resonator and the BAW resonator is approximately 3% or more, in the case of a surface acoustic wave filter having a filter ratio band of about 1.2%, the filter ratio band is resonant. It is 0.4 times or less of the specific band.
  • the filter ratio band of the elastic wave filter 1 according to the present embodiment is 0.15 times or more the resonance ratio band and 0.4 times or less the resonance ratio band.
  • the elastic wave filter 1 includes the input / output terminals 110 and 120, the series arm resonators 11s arranged in series in the series arm path connecting the input / output terminals 110 and 120, and the series arm path and ground.
  • a ladder circuit 11 having a parallel arm resonator 11p connected to a first parallel arm path connecting the two, a series arm resonator 12s arranged in series with the series arm path, and a second parallel connecting the series arm path and ground.
  • a ladder circuit 13 having a parallel arm resonator 13p is provided, and each of the series arm resonators 11s to 13s and the parallel arm resonators 11p to 13p is an elastic wave resonator, and the ladder circuit 11, the ladder circuit 12, and the ladder circuit 12 and the parallel arm resonator 13p are provided.
  • the ladder circuit 13 is longitudinally connected from the input / output terminal 110 in this order, the anti-resonance frequency of the series arm resonator 11s is set to fas1, the anti-resonance frequency of the series arm resonator 12s is set to fas 2, and the series arm resonator is set to fas 2.
  • the anti-resonance frequency of 13s is fas3
  • the resonance frequency of the parallel arm resonator 11p is frp1
  • the resonance frequency of the parallel arm resonator 12p is frp2
  • the resonance frequency of the parallel arm resonator 13p is frp3, then fas1> fas2.
  • an elastic wave filter 1 having a pass band narrower than the resonance bandwidth by using ladder circuits 11 to 13 composed of elastic wave resonators having a relatively wide resonance bandwidth. .. Further, since at least the ladder circuit 12 has a pass bandwidth wider than the pass bandwidth of the elastic wave filter 1, a large amount of attenuation in the attenuation band far from the pass band formed by the ladder circuit 12 is secured. can. Therefore, it is possible to provide an elastic wave filter 1 having a narrower passband and a larger attenuation as compared with the passband and the resonance bandwidth of the ladder circuits 11 to 13.
  • the ladder circuits 11, 12 and 13 are arranged in this order between the input / output terminals 110 and 120, the frequency difference between the adjacent ladder circuits can be reduced. This makes it possible to improve the impedance matching of adjacent ladder circuits. Therefore, since the mismatch loss between the ladder circuits can be reduced, a low-loss elastic wave filter 1 can be provided.
  • the capacitance value of the parallel arm resonator 11p may be the smallest among the parallel arm resonators 11p to 13p.
  • the impedance of the parallel arm resonator 11p that defines the low frequency side end of the pass band in the elastic wave filter 1A can be increased, the insertion loss of the low frequency end of the pass band in the elastic wave filter 1A is reduced. can.
  • the capacitance value of the series arm resonator 13s may be the largest among the series arm resonators 11s to 13s.
  • the impedance of the series arm resonator 13s that defines the high frequency side end of the pass band in the elastic wave filter 1A can be reduced, the insertion loss of the high frequency end of the pass band in the elastic wave filter 1A is reduced. can.
  • the first parallel resonance bandwidth may be the smallest among the first parallel resonance bandwidth, the second parallel resonance bandwidth, and the third parallel resonance bandwidth.
  • the attenuation slope can be steep.
  • the third series resonance bandwidth may be the smallest among the first series resonance bandwidth, the second series resonance bandwidth, and the third series resonance bandwidth.
  • the attenuation slope can be steep.
  • the capacitance value of the parallel arm resonator 12p may be the largest among the parallel arm resonators 11p to 13p.
  • the admittance of the resonance frequency frp2 of the parallel arm resonator 12p that defines the attenuation band on the low frequency side of the passband can be increased. Therefore, it is possible to increase the amount of attenuation in the attenuation band far from the low frequency side of the pass band of the elastic wave filter 1.
  • the capacitance value of the series arm resonator 12s may be the smallest among the series arm resonators 11s to 13s.
  • the impedance of the antiresonance frequency fas2 of the series arm resonator 12s that defines the attenuation band on the high frequency side of the passband can be increased. Therefore, it is possible to increase the amount of attenuation in the attenuation band far from the high frequency side of the pass band of the elastic wave filter 1.
  • the second parallel resonance bandwidth may be the largest among the first parallel resonance bandwidth, the second parallel resonance bandwidth, and the third parallel resonance bandwidth.
  • the pass bandwidth and the resonance bandwidth of the ladder circuit 12 become wider. Therefore, the resonance frequency frp2 of the parallel arm resonator 12p can define the attenuation band far from the low frequency side of the pass band of the elastic wave filter 1, and this attenuation amount can be increased.
  • the second series resonance bandwidth may be the largest among the first series resonance bandwidth, the second series resonance bandwidth, and the third series resonance bandwidth.
  • the pass bandwidth and the resonance bandwidth of the ladder circuit 12 become wider. Therefore, the antiresonance frequency fas2 of the series arm resonator 12s can define the attenuation band far from the high frequency side of the pass band of the elastic wave filter 1, and this attenuation amount can be increased.
  • the ladder circuit 11 and the ladder circuit 12 are directly connected without interposing other circuit elements, and the rudder circuit 12 and the ladder circuit 13 do not intervene through other circuit elements. It may be directly connected.
  • the filter ratio band may be 0.15 times or more the resonance ratio band and 0.4 times or less the resonance ratio band.
  • Filter 1 can be provided.
  • matching elements such as inductors and capacitors, and switch circuits may be connected between the circuit elements unless otherwise specified.
  • the inductor may include a wiring inductor by wiring connecting circuit elements.
  • the present invention can be widely used in communication devices such as mobile phones as an elastic wave filter applicable to a multi-band system.
  • Elastic wave filter 5 Substrate 11, 12, 12A, 13 Ladder circuit 11p, 12p, 13p, 26, 121p, 122p Parallel arm resonator 11s, 12s, 13s, 16, 121s, 122s series arm resonator 51 treble speed support substrate 52 bass velocity film 53 piezoelectric film 54 IDT electrode 55 protective layer 57 piezoelectric single crystal substrate 100 SAW resonator 100a, 100b comb-shaped electrode 110, 120 input / output terminal 150a, 150b electrode finger 160a, 160b Bus bar electrode 540 Adhesion layer 542 Main electrode layer fap, fap1, fap2, fap21, fap22, fap3, fas, fas1, fas2, fas21, fas22, fas3 anti-resonance frequency frp, frp1, frp2, fr frs1, frs2, frs21, frs22,

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波フィルタ(1)は、直列腕共振子(11s)および並列腕共振子(11p)を有するラダー回路(11)と、直列腕共振子(12s)および並列腕共振子(12p)を有するラダー回路(12)と、直列腕共振子(13s)および並列腕共振子(13p)を有するラダー回路(13)と、を備え、ラダー回路(11)、ラダー回路(12)、およびラダー回路(13)は、この順で縦続接続されており、直列腕共振子(11s)の***振周波数(fas1)、直列腕共振子(12s)の***振周波数(fas2)、直列腕共振子(13s)の***振周波数(fas3)、並列腕共振子(11p)の共振周波数(frp1)、並列腕共振子(12p)の共振周波数(frp2)、および並列腕共振子(13p)の共振周波数(frp3)は、fas1>fas2>fas3>frp1>frp2>frp3を満たす。

Description

弾性波フィルタ
 本発明は、弾性波フィルタに関する。
 近年、5G(5th Generation)-NR(New Radio)で利用されるバンドが増え、当該バンドに対応したフィルタに要求される特性も多様化してきている。一般的に、要求されるバンドの比帯域(バンド帯域幅/中心周波数)と、フィルタを構成する共振子の共振比帯域((***振周波数-共振周波数)/共振周波数)とを類似させることで、良好なフィルタ特性を実現することが可能である。ただし、バンドによっては、バンドの比帯域が共振子の共振比帯域よりも狭くなる場合がある。
 例えば、特許文献1では、通過帯域が一部重複している2つのフィルタ回路を縦続接続することで、共振比帯域よりも小さい比帯域を有するフィルタ回路を実現している。
特開平4-68908号公報
 しかしながら、特許文献1に記載されたフィルタ回路のように、通過帯域が周波数シフトしている2つのフィルタ回路を単純に縦続接続するだけでは、共振比帯域とバンドの比帯域との乖離が大きくなってくると、良好なフィルタ特性を実現することが困難となってくる。
 そこで、本発明は、共振帯域幅(***振周波数-共振周波数)よりも十分狭い通過帯域幅を有し、良好なフィルタ特性を有する弾性波フィルタを提供することを目的とする。
 本発明の一態様に係る弾性波フィルタは、第1入出力端子および第2入出力端子と、第1入出力端子および第2入出力端子を結ぶ直列腕経路に直列接続された第1直列腕共振子、および、直列腕経路とグランドとを結ぶ第1並列腕経路に接続された第1並列腕共振子、を有する第1ラダー回路と、直列腕経路に直列接続された第2直列腕共振子、および、直列腕経路とグランドとを結ぶ第2並列腕経路に接続された第2並列腕共振子、を有する第2ラダー回路と、直列腕経路に直列接続された第3直列腕共振子、および、直列腕経路とグランドとを結ぶ第3並列腕経路に接続された第3並列腕共振子、を有する第3ラダー回路と、を備え、第1ラダー回路、第2ラダー回路、および第3ラダー回路は、この順で縦続接続されており、第1直列腕共振子の***振周波数をfas1とし、第2直列腕共振子の***振周波数をfas2とし、第3直列腕共振子の***振周波数をfas3とし、第1並列腕共振子の共振周波数をfrp1とし、第2並列腕共振子の共振周波数をfrp2とし、第3並列腕共振子の共振周波数をfrp3とした場合、fas1>fas2>fas3>frp1>frp2>frp3、を満たす。
 本発明によれば、共振帯域幅よりも十分狭い通過帯域幅を有し、良好なフィルタ特性を有する弾性波フィルタを提供することができる。
図1は、実施の形態に係る弾性波フィルタの回路構成図である。 図2Aは、実施の形態に係る弾性表面波共振子の一例を模式的に表す平面図および断面図である。 図2Bは、実施の形態の変形例に係る弾性表面波共振子を模式的に表す断面図である。 図3は、ラダー型回路の基本的な動作原理を説明する回路構成図および周波数特性を表すグラフである。 図4は、実施の形態に係る弾性波フィルタを構成する各ラダー回路の通過特性を模式的に示す図である。 図5は、実施例1に係る弾性波フィルタの回路構成図である。 図6は、実施例1に係る弾性波フィルタの通過特性、直列腕共振子のインピーダンス特性、および並列腕共振子のアドミタンス特性を示す図である。 図7Aは、比較例1に係る弾性波フィルタの回路ブロック図である。 図7Bは、比較例1に係る弾性波フィルタの通過特性を示すグラフである。 図8Aは、比較例2に係る弾性波フィルタの回路ブロック図である。 図8Bは、比較例2に係る弾性波フィルタの通過特性、直列腕共振子のインピーダンス特性、および並列腕共振子のアドミタンス特性を示す図である。 図9Aは、実施例2に係る弾性波フィルタの通過特性を示す図である。 図9Bは、比較例3に係る弾性波フィルタの通過特性を示す図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態、実施例および変形例は、いずれも包括的または具体的な例を示すものである。以下の実施の形態、実施例および変形例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態、実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 また、以下において、「直列腕経路」および「並列腕経路」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 (実施の形態)
 [1 弾性波フィルタ1の回路構成]
 図1は、実施の形態に係る弾性波フィルタ1の回路構成図である。同図に示すように、弾性波フィルタ1は、ラダー回路11、12および13と、入出力端子110および120と、を備える。
 ラダー回路11は、第1ラダー回路の一例であり、直列腕共振子11sと、並列腕共振子11pと、を備える。直列腕共振子11sは、入出力端子110および120を結ぶ直列腕経路に直列配置されている。並列腕共振子11pは、上記直列腕経路とグランドとを結ぶ第1並列腕経路に配置されている。
 ラダー回路12は、第2ラダー回路の一例であり、直列腕共振子12sと、並列腕共振子12pと、を備える。直列腕共振子12sは、上記直列腕経路に直列配置されている。並列腕共振子12pは、上記直列腕経路とグランドとを結ぶ第2並列腕経路に配置されている。
 ラダー回路13は、第3ラダー回路の一例であり、直列腕共振子13sと、並列腕共振子13pと、を備える。直列腕共振子13sは、上記直列腕経路に直列配置されている。並列腕共振子13pは、上記直列腕経路とグランドとを結ぶ第3並列腕経路に配置されている。
 直列腕共振子11s、12sおよび13s、ならびに、並列腕共振子11p、12pおよび13pのそれぞれは、弾性波共振子であり、弾性表面波(SAW:Surface Acoustic Wave)共振子、または、バルク弾性波(BAW:Bulk Acoustic Wave)共振子である。
 直列腕共振子11sは、共振周波数frs1および***振周波数fas1を有している。並列腕共振子11pは、共振周波数frp1および***振周波数fap1を有している。
 直列腕共振子12sは、共振周波数frs2および***振周波数fas2を有している。並列腕共振子12pは、共振周波数frp2および***振周波数fap2を有している。
 直列腕共振子13sは、共振周波数frs3および***振周波数fas3を有している。並列腕共振子13pは、共振周波数frp3および***振周波数fap3を有している。
 ラダー回路11、ラダー回路12、およびラダー回路13は、入出力端子110から、この順で縦続接続されている。
 なお、ラダー回路11~13のそれぞれは、1つの直列腕共振子および1つの並列腕共振子で構成されていることに限定されず、1以上の直列腕共振子および1以上の並列腕共振子で構成されていればよい。ただし、この場合、1つのラダー回路を構成する複数の直列腕共振子における共振周波数差および***振周波数差は、それぞれ、弾性波フィルタ1の通過帯域幅の50%以下であり、1つのラダー回路を構成する複数の並列腕共振子における共振周波数差および***振周波数差は、それぞれ、弾性波フィルタ1の通過帯域幅の50%以内である。
 [2 弾性波共振子の構造]
 次に、弾性波フィルタ1を構成する弾性波共振子の構造を例示する。
 図2Aは、実施の形態に係るSAW共振子の一例を模式的に表す平面図および断面図であり、(a)は、平面図、(b)および(c)は、(a)に示した一点鎖線における断面図である。図2Aには、ラダー回路11~13を構成する直列腕共振子および並列腕共振子の基本構造を有するSAW共振子100が例示されている。なお、図2Aに示されたSAW共振子100は、弾性波共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数および長さなどは、これに限定されない。
 SAW共振子100は、圧電性を有する基板5と、櫛形電極100aおよび100bとで構成されている。
 図2Aの(a)に示すように、基板5の上には、互いに対向する一対の櫛形電極100aおよび100bが形成されている。櫛形電極100aは、互いに平行な複数の電極指150aと、複数の電極指150aを接続するバスバー電極160aとで構成されている。また、櫛形電極100bは、互いに平行な複数の電極指150bと、複数の電極指150bを接続するバスバー電極160bとで構成されている。複数の電極指150aおよび150bは、弾性波伝搬方向(X軸方向)と直交する方向に沿って形成されている。
 また、複数の電極指150aおよび150b、ならびに、バスバー電極160aおよび160bで構成されるIDT(InterDigital Transducer)電極54は、図2Aの(b)に示すように、密着層540と主電極層542との積層構造となっている。
 保護層55は、櫛形電極100aおよび100bを覆うように形成されている。保護層55は、主電極層542を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする誘電体膜である。
 なお、IDT電極54は、上記積層構造でなくてもよい。IDT電極54は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護層55は、形成されていなくてもよい。
 次に、基板5の積層構造について説明する。
 図2Aの(c)に示すように、基板5は、高音速支持基板51と、低音速膜52と、圧電膜53とを備え、高音速支持基板51、低音速膜52および圧電膜53がこの順で積層された構造を有している。
 圧電膜53は、LiTaO圧電単結晶または圧電セラミックスからなる。
 高音速支持基板51は、低音速膜52、圧電膜53ならびにIDT電極54を支持する基板である。高音速支持基板51は、さらに、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、高音速支持基板51中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜53および低音速膜52が積層されている部分に閉じ込め、高音速支持基板51より下方に漏れないように機能する。
 低音速膜52は、圧電膜53を伝搬するバルク波よりも、低音速膜52中のバルク波の音速が低速となる膜であり、圧電膜53と高音速支持基板51との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。
 なお、基板5の上記積層構造によれば、圧電基板を単層で使用している従来の構造と比較して、共振周波数および***振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性波共振子を構成し得るので、当該弾性波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
 なお、高音速支持基板51は、支持基板と、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。
 また、図2Bは、実施の形態の変形例に係るSAW共振子を模式的に表す断面図である。図2Aに示したSAW共振子100では、IDT電極54が、圧電膜53を有する基板5上に形成された例を示したが、当該IDT電極54が形成される基板は、図2Bに示すように、圧電体層の単層からなる圧電単結晶基板57であってもよい。圧電単結晶基板57は、例えば、LiNbOの圧電単結晶で構成されている。本変形例に係るSAW共振子100は、LiNbOの圧電単結晶基板57と、IDT電極54と、圧電単結晶基板57上およびIDT電極54上に形成された保護層55と、で構成されている。
 上述した圧電膜53および圧電単結晶基板57は、弾性波フィルタ装置の要求通過特性などに応じて、適宜、積層構造、材料、カット角、および、厚みを変更してもよい。
 また、IDT電極54が形成される基板は、支持基板と、エネルギー閉じ込め層と、圧電膜がこの順で積層された構造を有していてもよい。圧電膜上にIDT電極54が形成される。圧電膜は、例えば、LiTaO圧電単結晶または圧電セラミックスが用いられる。支持基板は、圧電膜、エネルギー閉じ込め層、およびIDT電極54を支持する基板である。
 なお、弾性表面波は、圧電基板の表面、もしくは、複数の材料の界面に弾性波の伝搬を行うことを指し、IDT電極を用いて構成される様々な種類の弾性波を指す。弾性表面波には、例えば、表面波、ラブ波、リーキー波、レイリー波、境界波、漏れSAW、疑似SAW、板波も含まれる。
 次に、BAW共振子について、説明する。BAW共振子は、SMR(Solidly Mounted Resonator)、または、FBAR(Film Bulk Acoustic Resonator)で構成される。
 SMR型のBAW共振子は、例えば、Si基板と、下部電極と、上部電極と、圧電層と、低音響インピーダンス膜と、高音響インピーダンス膜と、を備える。Si基板の上方に、低音響インピーダンス膜と高音響インピーダンス膜とが交互に積層された構造を有する音響多層膜が配置されている。音響多層膜の上方には、下部電極が配置され、下部電極の上方には、上部電極が配置されている。圧電層は、下部電極と上部電極との間に配置されている。この構造により、SMR型のBAW共振子は、Si基板と、下部電極、上部電極および圧電層との間に配置された音響多層膜によるブラッグ反射を利用してバルク弾性波を音響多層膜の上方に閉じ込める。
 FBAR型のBAW共振子は、例えば、Si基板と、下部電極と、上部電極と、圧電層と、を備える。Si基板は、支持基板の一例である。Si基板の上方には、下部電極が配置され、下部電極の上方には、上部電極が配置されている。圧電層は、下部電極と上部電極との間に配置されている。FBAR型のBAW共振子は、さらに、Si基板にキャビティを有している。この構造により、下部電極と上部電極との間で励振される積層方向のバルク弾性波が発生する。
 [3 ラダー回路の動作原理]
 次に、本実施の形態に係るラダー回路11~13の動作原理について説明する。図3は、ラダー回路の基本的な動作原理を説明する回路構成図および周波数特性を表すグラフである。
 図3の(a)に示されたラダー回路は、1つの直列腕共振子16および1つの並列腕共振子26で構成された基本的なラダー型フィルタである。図3の(b)に示すように、並列腕共振子26は、共振特性において共振周波数frpおよび***振周波数fap(>frp)を有している。また、直列腕共振子16は、共振特性において共振周波数frsおよび***振周波数fas(>frs>frp)を有している。
 ラダー回路を用いてバンドパスフィルタを構成するにあたり、一般的には、並列腕共振子26の***振周波数fapと直列腕共振子16の共振周波数frsとを近接させる。これにより、並列腕共振子26のインピーダンスが0に近づく共振周波数frp近傍は、低周波数側阻止域となる。また、これより周波数が増加すると、***振周波数fap近傍で並列腕共振子26のインピーダンスが高くなり、かつ、共振周波数frs近傍で直列腕共振子16のインピーダンスが0に近づく。これにより、***振周波数fap~共振周波数frsの近傍では、入出力端子110から入出力端子120への信号経路において信号通過域となる。これにより、弾性波共振子の電極パラメータおよび電気機械結合係数を反映した通過帯域を形成することが可能となる。さらに、周波数が高くなり、***振周波数fas近傍になると、直列腕共振子16のインピーダンスが高くなり、高周波数側阻止域となる。
 上記動作原理を有する弾性波フィルタにおいて、入出力端子110または120から高周波信号が入力されると、入出力端子110または120と基準端子との間で電位差が生じ、これにより、圧電体層が歪むことで弾性表面波が発生する。ここで、IDT電極54の波長λと、通過帯域の波長とを略一致させておくことにより、通過させたい周波数成分を有する高周波信号のみが当該弾性波フィルタを通過する。
 なお、並列腕共振子および直列腕共振子で構成される共振段の段数は、要求仕様に応じて、適宜最適化される。一般的に、複数の共振段で弾性波フィルタが構成される場合には、複数の並列腕共振子の***振周波数fapおよび複数の直列腕共振子の共振周波数frsを通過帯域内またはその近傍に配置する。また、複数の並列腕共振子の共振周波数frpを低周波数側阻止域に配置し、複数の直列腕共振子の***振周波数fasを高周波数側阻止域に配置する。
 ラダー回路の上記動作原理によれば、通過特性における通過帯域の低周波側端部の急峻性は、複数の並列腕共振子の共振周波数frpと***振周波数fapとの周波数差(共振帯域幅)に強く依存する。すなわち、複数の並列腕共振子の共振帯域幅が小さいほど、共振周波数frpと***振周波数fapとを結ぶ直線の傾きは(水平線に対して)大きくなるため、通過特性における通過帯域の低周波側端部の急峻性は高くなる。また、通過特性における通過帯域の高周波数側端部の急峻性は、複数の直列腕共振子の共振周波数frsと***振周波数fasとの周波数差(共振帯域幅)に強く依存する。すなわち、複数の直列腕共振子の共振帯域幅が小さいほど、共振周波数frsと***振周波数fasとを結ぶ直線の傾きは(水平線に対して)大きくなるため、通過特性における通過帯域の高周波数側端部の急峻性は高くなる。
 また、通過帯域内の挿入損失は、複数の並列腕共振子の***振周波数fapにおけるQ値および複数の直列腕共振子の共振周波数frsにおけるQ値に強く依存する。すなわち、複数の並列腕共振子の***振周波数fapにおけるQ値が高いほど通過帯域内の挿入損失は低減され、複数の直列腕共振子の共振周波数frsにおけるQ値が高いほど通過帯域内の挿入損失は低減される。
 上述した基本的なラダー回路の動作原理によれば、本実施の形態に係る弾性波フィルタ1の通過帯域の挿入損失および急峻性は、各直列腕共振子および各並列腕共振子の共振周波数、***振周波数、共振帯域幅、およびQ値などを調整することで決定される。
 [4 弾性波フィルタ1の通過特性]
 図4は、実施の形態に係る弾性波フィルタ1を構成するラダー回路11~13の通過特性を模式的に示す図である。同図に示すように、ラダー回路11~13のそれぞれは、上述したラダー回路の動作原理に則り、通過帯域および減衰帯域を個別に有している。
 同図に示すように、ラダー回路11において、通過帯域低周波数側近傍の減衰極は共振周波数frp1で規定され、通過帯域高周波数側近傍の減衰極は***振周波数fas1で規定される。また、ラダー回路12において、通過帯域低周波数側近傍の減衰極は共振周波数frp2で規定され、通過帯域高周波数側近傍の減衰極は***振周波数fas2で規定される。また、ラダー回路13において、通過帯域低周波数側近傍の減衰極は共振周波数frp3で規定され、通過帯域高周波数側近傍の減衰極は***振周波数fas3で規定される。
 上記通過特性によれば、ラダー回路11の通過帯域幅は、概ね、直列腕共振子11sの共振帯域幅、および、並列腕共振子11pの共振帯域幅に対応し、ラダー回路12の通過帯域幅は、概ね、直列腕共振子12sの共振帯域幅、および、並列腕共振子12pの共振帯域幅に対応し、ラダー回路13の通過帯域幅は、概ね、直列腕共振子13sの共振帯域幅、および、並列腕共振子13pの共振帯域幅に対応している。
 弾性波フィルタ1は、ラダー回路11~13が縦続接続された回路構成を有していることから、弾性波フィルタの通過帯域は、ラダー回路11~13のそれぞれの通過帯域が重複する帯域として規定される。
 ここで、本実施の形態に係る弾性波フィルタ1において、
 fas1>fas2>fas3>frp1>frp2>frp3(式1)
 を満たしている。
 これによれば、弾性波フィルタ1の通過帯域低周波数側近傍の減衰極は、3つの共振周波数frp1、frp2、およびfrp3のうち最も高周波数側にある共振周波数frp1で規定される。一方、弾性波フィルタ1の通過帯域高周波数側近傍の減衰極は、3つの***振周波数fas1、fas2、およびfas3のうち最も低周波数側にある***振周波数fas3で規定される。
 よって、共振帯域幅が比較的広い弾性波共振子で構成されたラダー回路11~13を用いて、当該共振帯域幅よりも狭帯域の通過帯域を有する弾性波フィルタ1を実現できる。また、少なくともラダー回路12は、弾性波フィルタ1の通過帯域幅よりも広い通過帯域幅を有していることから、ラダー回路12により形成される通過帯域から遠方の減衰帯域の減衰量を大きく確保できる。よって、ラダー回路11~13の通過帯域および共振帯域幅と比較して、より狭帯域の通過帯域、および、大きな減衰量を有する弾性波フィルタ1を提供できる。
 また、入出力端子110および120の間に、ラダー回路11、12および13がこの順で配置されていることにより、隣り合うラダー回路間の周波数差を小さくできる。これにより、隣り合うラダー回路のインピーダンス整合を良好とすることが可能となる。よって、ラダー回路間での不整合損を低減できるので低損失な弾性波フィルタ1を提供できる。
 本実施の形態に係る弾性波フィルタ1は、例えば、5G(5th Generation)-NR(New Radio)のバンドn47(帯域:5855-5925MHz)用のフィルタとして適用できる。この場合、ラダー回路11、12および13のそれぞれを、例えば、5G-NRのバンドn46(帯域:5150-5925MHz)の帯域に対応した共振帯域幅を有する回路とする。また、例えば、5G-NRのバンドn97(帯域:5925-7125MHz)の帯域に対応した共振帯域幅を有する回路とする。これらにより、低損失な5G-NRのバンドn47用のフィルタを提供できる。
 また、本実施の形態に係る弾性波フィルタ1は、例えば、5G-NRのバンドn42(帯域:3400-3600MHz)用のフィルタ、5G-NRのバンドn48(n49)(帯域:3550-3700MHz)用のフィルタ、または5G-NRのバンドn52(帯域:3300-3400MHz)用のフィルタとして適用できる。この場合、ラダー回路11、12および13のそれぞれを、例えば、5G-NRのバンドn77(帯域:3300-4200MHz)の帯域に対応した共振帯域幅を有する回路とする。これにより、低損失な5G-NRのバンドn42用のフィルタ、5G-NRのバンドn48(n49)用のフィルタ、または5G-NRのバンドn52用のフィルタを提供できる。
 なお、本実施の形態に係る弾性波フィルタ1のバンド適用例において、適用されるバンドは、5G-NRのためのバンドに限らず、4G(4th Generation)-LTE(Long Term Evolution)のためのバンドであってもよい。さらに、弾性波フィルタ1に適用されるバンドは、通信システムのために標準化団体等によって予め定義された周波数バンドであればよく、5G-NRおよび4G-LTEのためのバンドに限定されない。
 [5 実施例に係る弾性波フィルタ1Aの通過特性]
 図5は、実施例1に係る弾性波フィルタ1Aの回路構成図である。同図に示すように、弾性波フィルタ1Aは、ラダー回路11、12Aおよび13と、入出力端子110および120と、を備える。本実施例に係る弾性波フィルタ1Aは、実施の形態に係る弾性波フィルタ1と比較して、ラダー回路12がラダー回路12Aに置換されている点が異なる。以下、本実施例に係る弾性波フィルタ1Aについて、実施の形態に係る弾性波フィルタ1と同じ点は説明を省略し、異なる点を中心に説明する。
 ラダー回路12Aは、第2ラダー回路の一例であり、直列腕共振子121sおよび122sと、並列腕共振子121pおよび122pと、を備える。直列腕共振子121sおよび122sは、入出力端子110および120を結ぶ直列腕経路に直列配置されている。並列腕共振子121pは、直列腕共振子121sおよび122sの接続ノードとグランドとを結ぶ並列腕経路に配置されている。並列腕共振子122pは、直列腕共振子122sおよび13sの接続ノードとグランドとを結ぶ並列腕経路に配置されている。
 直列腕共振子121s、122s、ならびに、並列腕共振子121p、122pのそれぞれは、弾性波共振子であり、SAW共振子、または、BAW共振子である。
 直列腕共振子121sは、共振周波数frs21および***振周波数fas21を有している。直列腕共振子122sは、共振周波数frs22および***振周波数fas22を有している。並列腕共振子121pは、共振周波数frp21および***振周波数fap21を有している。並列腕共振子122pは、共振周波数frp22および***振周波数fap22を有している。
 ラダー回路11、ラダー回路12A、およびラダー回路13は、入出力端子110から、この順で縦続接続されている。
 図6は、(a)実施例1に係る弾性波フィルタ1Aの通過特性、(b)直列腕共振子のインピーダンス特性、および(c)並列腕共振子のアドミタンス特性を示す図である。
 図6の(b)および(c)に示すように、弾性波フィルタ1Aにおいて、
 fas1>(fas21,fas22)>fas3>frp1>(frp21,frp22)>frp3   (式2)
 を満たしている。
 これによれば、弾性波フィルタ1Aの通過帯域低周波数側近傍の減衰極は、4つの共振周波数frp1、frp21、frp22およびfrp3のうち最も高周波数側にある共振周波数frp1で規定される。一方、弾性波フィルタ1Aの通過帯域高周波数側近傍の減衰極は、4つの***振周波数fas1、fas21、fas22およびfas3のうち最も低周波数側にある***振周波数fas3で規定される。
 よって、共振帯域幅が比較的広い弾性波共振子で構成されたラダー回路11、12Aおよび13を用いて、当該共振帯域幅よりも狭帯域の通過帯域を有する弾性波フィルタ1Aを実現できる。
 また、少なくともラダー回路12Aは、弾性波フィルタ1Aの通過帯域幅よりも広い通過帯域幅を有していることから、ラダー回路12Aにより形成される通過帯域から遠方の減衰帯域の減衰量を大きく確保できる。よって、ラダー回路11、12Aおよび13の通過帯域および共振帯域幅と比較して、より狭帯域の通過帯域、および、大きな減衰量を有する弾性波フィルタ1Aを提供できる。
 また、並列腕共振子11p、121p、122pおよび13pのうち、並列腕共振子11pの容量値が最も小さくてもよい。これによれば、弾性波フィルタ1Aにおける通過帯域の低周波数側端部を規定する並列腕共振子11pのインピーダンスを大きくできるので、弾性波フィルタ1Aにおける通過帯域の低周波数端部の挿入損失を低減できる。
 また、直列腕共振子11s、121s、122sおよび13sのうち、直列腕共振子13sの容量値が最も大きくてもよい。これによれば、弾性波フィルタ1Aにおける通過帯域の高周波数側端部を規定する直列腕共振子13sのインピーダンスを小さくできるので、弾性波フィルタ1Aにおける通過帯域の高周波数端部の挿入損失を低減できる。
 また、並列腕共振子11pの共振帯域幅(fap1-frp1:第1並列共振帯域幅)、並列腕共振子121pの共振帯域幅(fap21-frp21:第2並列共振帯域幅)、並列腕共振子122pの共振帯域幅(fap22-frp22:第2並列共振帯域幅)、および並列腕共振子13pの共振帯域幅(fap3-frp3:第3並列共振帯域幅)のうち第1並列共振帯域幅が最も小さくてもよい。
 これによれば、弾性波フィルタ1Aの通過帯域低周波数側近傍の減衰スロープを規定する並列腕共振子11pの共振帯域幅が最小なので、当該減衰スロープを急峻にできる。
 また、直列腕共振子11sの共振帯域幅(fas1-frs1:第1直列共振帯域幅)、直列腕共振子121sの共振帯域幅(fas21-frs21:第2直列共振帯域幅)、直列腕共振子122sの共振帯域幅(fas22-frs22:第2直列共振帯域幅)、および直列腕共振子13sの共振帯域幅(fas3-frs3:第3直列共振帯域幅)のうち第3直列共振帯域幅が最も小さくてもよい。
 これによれば、弾性波フィルタ1Aの通過帯域高周波数側近傍の減衰スロープを規定する直列腕共振子13sの共振帯域幅が最小なので、当該減衰スロープを急峻にできる。
 また、並列腕共振子11p、121p、122pおよび13pのうち、並列腕共振子121pまたは122pの容量値が最も大きくてもよい。
 これによれば、通過帯域幅および共振帯域幅が相対的に広いラダー回路12Aにおいて、図6の(c)に示すように、通過帯域の低周波数側の減衰帯域を規定する並列腕共振子121pの共振周波数frp21または並列腕共振子122pの共振周波数frp22のアドミタンスを大きくできる。よって、弾性波フィルタ1Aの通過帯域よりも低周波数側遠方の減衰帯域の減衰量を大きくすることが可能となる。
 また、直列腕共振子11s、121s、122sおよび13sのうち、直列腕共振子121sまたは122sの容量値が最も小さくてもよい。
 これによれば、通過帯域幅および共振帯域幅が相対的に広いラダー回路12Aにおいて、図6の(b)に示すように、通過帯域の高周波数側の減衰帯域を規定する直列腕共振子121sの***振周波数fas21または直列腕共振子122sの***振周波数fas22のインピーダンスを大きくできる。よって、弾性波フィルタ1Aの通過帯域よりも高周波数側遠方の減衰帯域の減衰量を大きくすることが可能となる。
 また、並列腕共振子11pの共振帯域幅(fap1-frp1:第1並列共振帯域幅)、並列腕共振子121pの共振帯域幅(fap21-frp21:第2並列共振帯域幅)、並列腕共振子122pの共振帯域幅(fap22-frp22:第2並列共振帯域幅)、および並列腕共振子13pの共振帯域幅(fap3-frp3:第3並列共振帯域幅)のうち第2並列共振帯域幅が最も大きくてもよい。
 これによれば、ラダー回路11、12Aおよび13のうち、ラダー回路12Aの通過帯域幅および共振帯域幅が広くなる。よって、並列腕共振子121pの共振周波数frp21および並列腕共振子122pの共振周波数frp22により、弾性波フィルタ1Aの通過帯域の低周波数側遠方の減衰帯域を規定でき、この減衰量を大きくできる。
 また、直列腕共振子11sの共振帯域幅(fas1-frs1:第1直列共振帯域幅)、直列腕共振子121sの共振帯域幅(fas21-frs21:第2直列共振帯域幅)、直列腕共振子122sの共振帯域幅(fas22-frs22:第2直列共振帯域幅)、および直列腕共振子13sの共振帯域幅(fas3-frs3:第3直列共振帯域幅)のうち第2直列共振帯域幅が最も大きくてもよい。
 これによれば、ラダー回路11、12Aおよび13のうち、ラダー回路12Aの通過帯域幅および共振帯域幅が広くなる。よって、直列腕共振子121sの***振周波数fas21および直列腕共振子122sの***振周波数fas22により、弾性波フィルタ1Aの通過帯域の高周波数側遠方の減衰帯域を規定でき、この減衰量を大きくできる。
 [6 実施例および比較例に係る弾性波フィルタの通過特性比較]
 図7Aは、比較例1に係る弾性波フィルタ500の回路ブロック図である。同図に示すように、比較例1に係る弾性波フィルタ500は、ラダー回路11および13と、入出力端子110および120と、を備える。本比較例に係る弾性波フィルタ500は、実施の形態に係る弾性波フィルタ1と比較して、ラダー回路12を備えていない点が異なる。
 図7Bは、比較例1に係る弾性波フィルタ500の通過特性を示すグラフである。同図に示すように、弾性波フィルタ500において、通過帯域の挿入損失(3.00dB)は、実施例1に係る弾性波フィルタ1Aの挿入損失(2.12dB)よりも大きくなっている。また、通過帯域低周波数側近傍の減衰スロープおよび通過帯域高周波数側近傍の減衰スロープは、ともに急峻な直線形状とはなっておらず、不要な凸形状が出現している。
 これは、相対的に広い通過帯域幅および共振帯域幅を有する2つラダー回路11および13のみで狭帯域の通過帯域を有する弾性波フィルタを構成したため、ラダー回路11および13の間でインピーダンス不整合が大きくなったことが一因と考えられる。また、2つのラダー回路のみで、狭帯域の通過帯域と、通過帯域近傍の減衰スロープの急峻性と、通過帯域遠方の減衰帯域の減衰量確保と、を満たそうとしたために、通過帯域の挿入損失および通過帯域近傍の減衰スロープにおいて特性劣化が生じたものと考えられる。
 図8Aは、比較例2に係る弾性波フィルタ600の回路ブロック図である。同図に示すように、比較例2に係る弾性波フィルタ600は、ラダー回路11、12および13と、入出力端子110および120と、を備える。本比較例に係る弾性波フィルタ600は、実施の形態に係る弾性波フィルタ1と比較して、ラダー回路11~13の配置順のみが異なる。つまり、弾性波フィルタ600において、ラダー回路11、ラダー回路13、およびラダー回路12は、入出力端子110から、この順で縦続接続されている。
 図8Bは、(a)比較例2に係る弾性波フィルタ600の通過特性、(b)直列腕共振子11s~13sのインピーダンス特性、および並列腕共振子11p~13pのアドミタンス特性を示す図である。
 比較例1のように周波数差の大きいラダー回路11および13を直接接続すると、インピーダンス不整合による挿入損失の劣化が生じるため、比較例2では、ラダー回路11とラダー回路13との周波数差を、比較例1と比べて小さくしている。つまり、共振周波数frp1およびfrp3の周波数差、および、***振周波数fas1およびfas3の周波数差、を比較例1と比べて小さくしている。しかしながら、上記周波数差が小さくなったことにより、弾性波フィルタ600の通過帯域近傍の減衰特性と、通過帯域遠方の減衰特性との両立が困難となっている。特に、比較例2では、図8Bの(a)に示すように、通過帯域高周波数側近傍の急峻な減衰特性を確保できなくなっている。
 つまり、比較例1および比較例2の上記結果より、狭帯域の通過帯域、通過帯域近傍の減衰スロープの急峻性、および通過帯域遠方の減衰帯域の高減衰を満たすには、実施の形態に係る弾性波フィルタ1および実施例1に係る弾性波フィルタ1Aのように、入出力端子間に、共振周波数の異なる3つのラダー回路を、周波数順に配置することが必須となる。
 なお、本実施の形態に係る弾性波フィルタ1において、ラダー回路11とラダー回路12とは、他の回路素子を介さずに直接接続されており、ラダー回路12とラダー回路13とは、他の回路素子を介さずに直接接続されていることが望ましい。
 これによれば、隣接するラダー回路間の周波数差を小さくできるので、隣接するラダー回路のインピーダンス整合を良好とすることが可能となる。よって、狭帯域かつ低損失な弾性波フィルタ1を提供できる。
 [7 弾性波共振子の共振比帯域と弾性波フィルタのフィルタ比帯域との関係]
 図9Aは、実施例2に係る弾性波フィルタ1Bの通過特性を示す図である。また、図9Bは、比較例3に係る弾性波フィルタ700の通過特性を示す図である。
 実施例2に係る弾性波フィルタ1B、および、比較例3に係る弾性波フィルタ700は、ともに、実施の形態に係る弾性波フィルタ1と同様の回路構成を有している。つまり、弾性波フィルタ1Bおよび弾性波フィルタ700のそれぞれは、第1ラダー回路、第2ラダー回路、および第3ラダー回路を備える。第1ラダー回路、第2ラダー回路、および第3ラダー回路は、入出力端子110から、この順で縦続接続されている。ここで、弾性波フィルタ1Bおよび弾性波フィルタ700のそれぞれは、上記式1を満たしている。
 ここで、1以上の第1直列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値を第1直列共振比帯域と定義する。また、1以上の第2直列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値を第2直列共振比帯域と定義する。また、1以上の第3直列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値を第3直列共振比帯域と定義する。また、1以上の第1並列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値を第1並列共振比帯域と定義する。また、1以上の第2並列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値を第2並列共振比帯域と定義する。また、1以上の第3並列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値を第3並列共振比帯域と定義する。このとき、第1~第3直列共振比帯域および第1~第3並列共振比帯域の平均値を、弾性波フィルタの共振比帯域と定義する。
 また、弾性波フィルタの通過帯域を当該通過帯域の中心周波数で除した値をフィルタ比帯域と定義する。
 実施例2に係る弾性波フィルタ1Bにおいて、共振比帯域は8%であり、フィルタ比帯域は1.2%である。つまり、弾性波フィルタ1Bのフィルタ比帯域は、共振比帯域の0.15倍である。
 一方、比較例3に係る弾性波フィルタ700において、共振比帯域は9%であり、フィルタ比帯域は1.2%である。つまり、弾性波フィルタ700のフィルタ比帯域は、共振比帯域の0.13倍である。
 図9Aに示すように、実施例2に係る弾性波フィルタ1Bでは、通過帯域の低損失性、通過帯域近傍の減衰帯域の急峻性、および通過帯域遠方の減衰帯域の減衰量は、いずれも良好となっている。
 一方、図9Bに示すように、比較例3に係る弾性波フィルタ700では、通過帯域の低損失性および通過帯域遠方の減衰帯域の減衰量は良好であるが、通過帯域高周波数側近傍の減衰帯域の急峻性が悪化しており、要求仕様を満たしていない。
 また、SAW共振子およびBAW共振子で実現可能な共振比帯域は、概ね3%以上であることから、1.2%程度のフィルタ比帯域を有する弾性波フィルタの場合、フィルタ比帯域は、共振比帯域の0.4倍以下となる。
 以上より、本実施の形態に係る弾性波フィルタ1のフィルタ比帯域は、共振比帯域の0.15倍以上、かつ、共振比帯域の0.4倍以下であることが望ましい。
 これにより、共振帯域幅よりも十分狭い通過帯域幅を有し、通過帯域の低損失性、通過帯域近傍の減衰帯域の急峻性、および通過帯域遠方の減衰帯域の高減衰を満たす弾性波フィルタを提供できる。
 (効果など)
 以上、実施の形態に係る弾性波フィルタ1は、入出力端子110および120と、入出力端子110および120を結ぶ直列腕経路に直列配置された直列腕共振子11sおよび上記直列腕経路とグランドとを結ぶ第1並列腕経路に接続された並列腕共振子11pを有するラダー回路11と、上記直列腕経路に直列配置された直列腕共振子12sおよび上記直列腕経路とグランドとを結ぶ第2並列腕経路に接続された並列腕共振子12pを有するラダー回路12と、上記直列腕経路に直列接続された直列腕共振子13sおよび上記直列腕経路とグランドとを結ぶ第3並列腕経路に接続された並列腕共振子13pを有するラダー回路13と、を備え、直列腕共振子11s~13sおよび並列腕共振子11p~13pのそれぞれは弾性波共振子であり、ラダー回路11、ラダー回路12、およびラダー回路13は、入出力端子110から、この順で縦続接続されており、直列腕共振子11sの***振周波数をfas1とし、直列腕共振子12sの***振周波数をfas2とし、直列腕共振子13sの***振周波数をfas3とし、並列腕共振子11pの共振周波数をfrp1とし、並列腕共振子12pの共振周波数をfrp2とし、並列腕共振子13pの共振周波数をfrp3とした場合、fas1>fas2>fas3>frp1>frp2>frp3である。
 上記構成によれば、共振帯域幅が比較的広い弾性波共振子で構成されたラダー回路11~13を用いて、当該共振帯域幅よりも狭帯域の通過帯域を有する弾性波フィルタ1を実現できる。また、少なくともラダー回路12は、弾性波フィルタ1の通過帯域幅よりも広い通過帯域幅を有していることから、ラダー回路12により形成される通過帯域から遠方の減衰帯域の減衰量を大きく確保できる。よって、ラダー回路11~13の通過帯域および共振帯域幅と比較して、より狭帯域の通過帯域、および、大きな減衰量を有する弾性波フィルタ1を提供できる。また、入出力端子110および120の間に、ラダー回路11、12および13がこの順で配置されていることにより、隣り合うラダー回路間の周波数差を小さくできる。これにより、隣り合うラダー回路のインピーダンス整合を良好とすることが可能となる。よって、ラダー回路間での不整合損を低減できるので低損失な弾性波フィルタ1を提供できる。
 また、弾性波フィルタ1において、並列腕共振子11p~13pのうち、並列腕共振子11pの容量値が最も小さくてもよい。
 これによれば、弾性波フィルタ1Aにおける通過帯域の低周波数側端部を規定する並列腕共振子11pのインピーダンスを大きくできるので、弾性波フィルタ1Aにおける通過帯域の低周波数端部の挿入損失を低減できる。
 また、弾性波フィルタ1において、直列腕共振子11s~13sのうち、直列腕共振子13sの容量値が最も大きくてもよい。
 これによれば、弾性波フィルタ1Aにおける通過帯域の高周波数側端部を規定する直列腕共振子13sのインピーダンスを小さくできるので、弾性波フィルタ1Aにおける通過帯域の高周波数端部の挿入損失を低減できる。
 また、弾性波フィルタ1において、第1並列共振帯域幅、第2並列共振帯域幅、および第3並列共振帯域幅のうち第1並列共振帯域幅が最も小さくてもよい。
 これによれば、弾性波フィルタ1の通過帯域低周波数側近傍の減衰スロープを規定する並列腕共振子11pの共振帯域幅が最小なので、当該減衰スロープを急峻にできる。
 また、弾性波フィルタ1において、第1直列共振帯域幅、第2直列共振帯域幅、および第3直列共振帯域幅のうち第3直列共振帯域幅が最も小さくてもよい。
 これによれば、弾性波フィルタ1の通過帯域高周波数側近傍の減衰スロープを規定する直列腕共振子13sの共振帯域幅が最小なので、当該減衰スロープを急峻にできる。
 また、弾性波フィルタ1において、並列腕共振子11p~13pのうち、並列腕共振子12pの容量値が最も大きくてもよい。
 これによれば、通過帯域幅および共振帯域幅が相対的に広いラダー回路12において、通過帯域の低周波数側の減衰帯域を規定する並列腕共振子12pの共振周波数frp2のアドミタンスを大きくできる。よって、弾性波フィルタ1の通過帯域よりも低周波数側遠方の減衰帯域の減衰量を大きくすることが可能となる。
 また、弾性波フィルタ1において、直列腕共振子11s~13sのうち、直列腕共振子12sの容量値が最も小さくてもよい。
 これによれば、通過帯域幅および共振帯域幅が相対的に広いラダー回路12において、通過帯域の高周波数側の減衰帯域を規定する直列腕共振子12sの***振周波数fas2のインピーダンスを大きくできる。よって、弾性波フィルタ1の通過帯域よりも高周波数側遠方の減衰帯域の減衰量を大きくすることが可能となる。
 また、弾性波フィルタ1において、第1並列共振帯域幅、第2並列共振帯域幅、および第3並列共振帯域幅のうち第2並列共振帯域幅が最も大きくてもよい。
 これによれば、ラダー回路11~13のうち、ラダー回路12の通過帯域幅および共振帯域幅が広くなる。よって、並列腕共振子12pの共振周波数frp2により、弾性波フィルタ1の通過帯域の低周波数側遠方の減衰帯域を規定でき、この減衰量を大きくできる。
 また、弾性波フィルタ1において、第1直列共振帯域幅、第2直列共振帯域幅、および第3直列共振帯域幅のうち第2直列共振帯域幅が最も大きくてもよい。
 これによれば、ラダー回路11~13のうち、ラダー回路12の通過帯域幅および共振帯域幅が広くなる。よって、直列腕共振子12sの***振周波数fas2により、弾性波フィルタ1の通過帯域の高周波数側遠方の減衰帯域を規定でき、この減衰量を大きくできる。
 また、弾性波フィルタ1において、ラダー回路11とラダー回路12とは、他の回路素子を介さずに直接接続されており、ラダー回路12とラダー回路13とは、他の回路素子を介さずに直接接続されていてもよい。
 これによれば、隣接するラダー回路間の周波数差を小さくできるので、隣接するラダー回路のインピーダンス整合を良好とすることが可能となる。よって、狭帯域かつ低損失な弾性波フィルタ1を提供できる。
 また、弾性波フィルタ1において、フィルタ比帯域は、共振比帯域の0.15倍以上、かつ、共振比帯域の0.4倍以下であってもよい。
 これによれば、共振帯域幅よりも十分狭い通過帯域幅を有し、通過帯域の低損失性、通過帯域近傍の減衰帯域の急峻性、および通過帯域遠方の減衰帯域の高減衰を満たす弾性波フィルタ1を提供できる。
 (その他の実施の形態)
 以上、本発明に係る弾性波フィルタについて、実施の形態、実施例および変形例を挙げて説明したが、本発明は、上記実施の形態、実施例および変形例に限定されるものではない。上記実施の形態、実施例および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタを内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態、実施例および変形例に係る弾性波フィルタにおいて、特に断りのない限り、回路素子の間に、インダクタおよびキャパシタなどの整合素子、ならびにスイッチ回路が接続されていてもよい。なお、インダクタには、回路素子間を繋ぐ配線による配線インダクタが含まれてもよい。
 本発明は、マルチバンドシステムに適用できる弾性波フィルタとして、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、500、600、700  弾性波フィルタ
 5  基板
 11、12、12A、13  ラダー回路
 11p、12p、13p、26、121p、122p  並列腕共振子
 11s、12s、13s、16、121s、122s  直列腕共振子
 51  高音速支持基板
 52  低音速膜
 53  圧電膜
 54  IDT電極
 55  保護層
 57  圧電単結晶基板
 100  SAW共振子
 100a、100b  櫛形電極
 110、120  入出力端子
 150a、150b  電極指
 160a、160b  バスバー電極
 540  密着層
 542  主電極層
 fap、fap1、fap2、fap21、fap22、fap3、fas、fas1、fas2、fas21、fas22、fas3  ***振周波数
 frp、frp1、frp2、frp21、frp22、frp3、frs、frs1、frs2、frs21、frs22、frs3  共振周波数

Claims (11)

  1.  第1入出力端子および第2入出力端子と、
     前記第1入出力端子および前記第2入出力端子を結ぶ直列腕経路に直列接続された第1直列腕共振子、および、前記直列腕経路とグランドとを結ぶ第1並列腕経路に接続された第1並列腕共振子、を有する第1ラダー回路と、
     前記直列腕経路に直列接続された第2直列腕共振子、および、前記直列腕経路とグランドとを結ぶ第2並列腕経路に接続された第2並列腕共振子、を有する第2ラダー回路と、
     前記直列腕経路に直列接続された第3直列腕共振子、および、前記直列腕経路とグランドとを結ぶ第3並列腕経路に接続された第3並列腕共振子、を有する第3ラダー回路と、を備え、
     前記第1ラダー回路、前記第2ラダー回路、および前記第3ラダー回路は、この順で縦続接続されており、
     前記第1直列腕共振子の***振周波数をfas1とし、前記第2直列腕共振子の***振周波数をfas2とし、前記第3直列腕共振子の***振周波数をfas3とし、前記第1並列腕共振子の共振周波数をfrp1とし、前記第2並列腕共振子の共振周波数をfrp2とし、前記第3並列腕共振子の共振周波数をfrp3とした場合、
     fas1>fas2>fas3>frp1>frp2>frp3、を満たす、
     弾性波フィルタ。
  2.  前記第1並列腕共振子、前記第2並列腕共振子、および前記第3並列腕共振子のうち、前記第1並列腕共振子の容量値が最も小さい、
     請求項1に記載の弾性波フィルタ。
  3.  前記第1直列腕共振子、前記第2直列腕共振子、および前記第3直列腕共振子のうち、前記第3直列腕共振子の容量値が最も大きい、
     請求項1または2に記載の弾性波フィルタ。
  4.  前記第1並列腕共振子の***振周波数と共振周波数との差を第1並列共振帯域幅とし、前記第2並列腕共振子の***振周波数と共振周波数との差を第2並列共振帯域幅とし、前記第3並列腕共振子の***振周波数と共振周波数との差を第3並列共振帯域幅とした場合、前記第1並列共振帯域幅、前記第2並列共振帯域幅、および前記第3並列共振帯域幅のうち前記第1並列共振帯域幅が最も小さい、
     請求項1~3のいずれか1項に記載の弾性波フィルタ。
  5.  前記第1直列腕共振子の***振周波数と共振周波数との差を第1直列共振帯域幅とし、前記第2直列腕共振子の***振周波数と共振周波数との差を第2直列共振帯域幅とし、前記第3直列腕共振子の***振周波数と共振周波数との差を第3直列共振帯域幅とした場合、前記第1直列共振帯域幅、前記第2直列共振帯域幅、および前記第3直列共振帯域幅のうち前記第3直列共振帯域幅が最も小さい、
     請求項1~4のいずれか1項に記載の弾性波フィルタ。
  6.  前記第1並列腕共振子、前記第2並列腕共振子、および前記第3並列腕共振子のうち、前記第2並列腕共振子の容量値が最も大きい、
     請求項1~5のいずれか1項に記載の弾性波フィルタ。
  7.  前記第1直列腕共振子、前記第2直列腕共振子、および前記第3直列腕共振子のうち、前記第2直列腕共振子の容量値が最も小さい、
     請求項1~6のいずれか1項に記載の弾性波フィルタ。
  8.  前記第1並列腕共振子の***振周波数と共振周波数との差を第1並列共振帯域幅とし、前記第2並列腕共振子の***振周波数と共振周波数との差を第2並列共振帯域幅とし、前記第3並列腕共振子の***振周波数と共振周波数との差を第3並列共振帯域幅とした場合、前記第1並列共振帯域幅、前記第2並列共振帯域幅、および前記第3並列共振帯域幅のうち前記第2並列共振帯域幅が最も大きい、
     請求項1~7のいずれか1項に記載の弾性波フィルタ。
  9.  前記第1直列腕共振子の***振周波数と共振周波数との差を第1直列共振帯域幅とし、前記第2直列腕共振子の***振周波数と共振周波数との差を第2直列共振帯域幅とし、前記第3直列腕共振子の***振周波数と共振周波数との差を第3直列共振帯域幅とした場合、前記第1直列共振帯域幅、前記第2直列共振帯域幅、および前記第3直列共振帯域幅のうち前記第2直列共振帯域幅が最も大きい、
     請求項1~8のいずれか1項に記載の弾性波フィルタ。
  10.  前記第1ラダー回路と前記第2ラダー回路とは、他の回路素子を介さずに直接接続されており、
     前記第2ラダー回路と前記第3ラダー回路とは、他の回路素子を介さずに直接接続されている、
     請求項1~9のいずれか1項に記載の弾性波フィルタ。
  11.  前記第1直列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値である第1直列共振比帯域、前記第2直列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値である第2直列共振比帯域、前記第3直列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値である第3直列共振比帯域、前記第1並列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値である第1並列共振比帯域、前記第2並列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値である第2並列共振比帯域、および前記第3並列腕共振子の***振周波数と共振周波数との差を当該共振周波数で除した値である第3並列共振比帯域、の平均値を共振比帯域とし、
     前記弾性波フィルタの通過帯域を当該通過帯域の中心周波数で除した値をフィルタ比帯域とした場合、
     前記フィルタ比帯域は、前記共振比帯域の0.15倍以上、かつ、前記共振比帯域の0.4倍以下である、
     請求項1~10のいずれか1項に記載の弾性波フィルタ。
PCT/JP2021/032738 2020-10-28 2021-09-06 弾性波フィルタ WO2022091582A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/307,024 US20230268906A1 (en) 2020-10-28 2023-04-26 Acoustic wave filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020180744 2020-10-28
JP2020-180744 2020-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/307,024 Continuation US20230268906A1 (en) 2020-10-28 2023-04-26 Acoustic wave filter

Publications (1)

Publication Number Publication Date
WO2022091582A1 true WO2022091582A1 (ja) 2022-05-05

Family

ID=81384038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032738 WO2022091582A1 (ja) 2020-10-28 2021-09-06 弾性波フィルタ

Country Status (2)

Country Link
US (1) US20230268906A1 (ja)
WO (1) WO2022091582A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105156A (en) * 1977-02-24 1978-09-13 Nec Corp Ladder-type piezo-electric filter
JP2003243966A (ja) * 2001-12-14 2003-08-29 Mitsubishi Electric Corp フィルタ回路
WO2015198709A1 (ja) * 2014-06-27 2015-12-30 株式会社村田製作所 ラダー型フィルタ
WO2017159834A1 (ja) * 2016-03-18 2017-09-21 株式会社村田製作所 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置
WO2019188864A1 (ja) * 2018-03-28 2019-10-03 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2020036100A1 (ja) * 2018-08-13 2020-02-20 株式会社村田製作所 弾性波フィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105156A (en) * 1977-02-24 1978-09-13 Nec Corp Ladder-type piezo-electric filter
JP2003243966A (ja) * 2001-12-14 2003-08-29 Mitsubishi Electric Corp フィルタ回路
WO2015198709A1 (ja) * 2014-06-27 2015-12-30 株式会社村田製作所 ラダー型フィルタ
WO2017159834A1 (ja) * 2016-03-18 2017-09-21 株式会社村田製作所 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置
WO2019188864A1 (ja) * 2018-03-28 2019-10-03 株式会社村田製作所 弾性波フィルタ、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2020036100A1 (ja) * 2018-08-13 2020-02-20 株式会社村田製作所 弾性波フィルタ

Also Published As

Publication number Publication date
US20230268906A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
WO2018168836A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
KR102429897B1 (ko) 멀티플렉서, 고주파 프론트엔드 회로 및 통신 장치
US7741931B2 (en) Acoustic wave device, resonator and filter
JP3827232B2 (ja) フィルタ装置およびそれを用いた分波器
JP2019022164A (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
CN111527699B (zh) 弹性波滤波器
JP6760480B2 (ja) エクストラクタ
WO2018092511A1 (ja) 弾性表面波フィルタおよびマルチプレクサ
WO2021002321A1 (ja) 弾性波フィルタおよびマルチプレクサ
JP3419339B2 (ja) 弾性表面波フィルタ、デュプレクサ、通信機装置
JP5810113B2 (ja) 弾性波共振器とこれを用いた弾性波フィルタおよびアンテナ共用器
JP7047919B2 (ja) 弾性波フィルタ
WO2022091582A1 (ja) 弾性波フィルタ
WO2021015187A1 (ja) 弾性波フィルタ
CN116868506A (zh) 弹性波滤波器以及多工器
JP4995923B2 (ja) 弾性境界波デバイス、およびそれを用いた通信機
CN110809858A (zh) 多工器
WO2023054301A1 (ja) 弾性波フィルタ装置およびマルチプレクサ
WO2023074373A1 (ja) 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ
WO2022181578A1 (ja) 弾性波フィルタ
WO2023282328A1 (ja) 弾性波素子、弾性波フィルタ装置およびマルチプレクサ
WO2023068206A1 (ja) マルチプレクサ
JP7132841B2 (ja) 弾性表面波素子、分波器および通信装置
WO2023090238A1 (ja) マルチプレクサ
JP2010263296A (ja) 弾性境界波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP