WO2022057650A1 - 逆变器温度控制方法、***、车辆及介质 - Google Patents

逆变器温度控制方法、***、车辆及介质 Download PDF

Info

Publication number
WO2022057650A1
WO2022057650A1 PCT/CN2021/116641 CN2021116641W WO2022057650A1 WO 2022057650 A1 WO2022057650 A1 WO 2022057650A1 CN 2021116641 W CN2021116641 W CN 2021116641W WO 2022057650 A1 WO2022057650 A1 WO 2022057650A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
inverter
control module
torque
information
Prior art date
Application number
PCT/CN2021/116641
Other languages
English (en)
French (fr)
Inventor
李岩
李帅
陈晓娇
李伟亮
赵慧超
潘忠亮
范雨卉
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022057650A1 publication Critical patent/WO2022057650A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to inverter technology, for example, to an inverter temperature control method, system, vehicle and medium.
  • Pure electric vehicles and hybrid vehicles have become the main forms of future vehicles due to their low pollution and emissions, and high fuel economy.
  • the power motors of pure electric vehicles and hybrid electric vehicles require high-power inverters to drive. Due to the characteristics of the inverter module itself, the temperature of the inverter rises rapidly when the motor is outputting at low speed and high torque. If it exceeds the safe working temperature of the inverter, it will not only affect the overall efficiency of the controller but also affect the inverter. The life and safety of the device are seriously affected.
  • the temperature rise of the inverter can be reduced by reducing the torque output of the motor.
  • this method can achieve the purpose of cooling the inverter, it also leads to a decrease in the power performance of the whole vehicle.
  • the present application provides an inverter temperature control method, system, vehicle and medium, so as to control the temperature of the inverter.
  • an inverter temperature control method which is applied to a temperature control system, the temperature control system comprising: a sensing module, a frequency control module, a power control module and a motor;
  • the method includes:
  • the sensing module obtains the rotational speed information of the motor; the frequency control module obtains the torque information of the motor; the power control module obtains the temperature information of the inverter;
  • the frequency control module determines the target frequency of the inverter according to the rotational speed information, the torque information and the temperature information;
  • the frequency control module adjusts the frequency of the inverter to the target frequency to control the frequency of the inverter
  • the power control module controls the output frequency of the motor based on the target frequency to control the temperature of the inverter.
  • an inverter temperature control system comprising: a sensing module, a frequency control module, a power control module and a motor;
  • the sensing module is configured to obtain rotational speed information of the motor
  • the frequency control module is configured to obtain torque information of the motor
  • the power control module is configured to obtain temperature information of the inverter
  • the frequency control module is further configured to determine the target frequency of the inverter according to the rotational speed information, the torque information and the temperature information;
  • the frequency control module is further configured to adjust the frequency of the inverter to the target frequency to control the frequency of the inverter
  • the power control module is further configured to control the output frequency of the motor based on the target frequency to control the temperature of the inverter.
  • Also provided is a vehicle comprising:
  • processors one or more processors
  • storage means arranged to store one or more programs
  • an inverter temperature control system configured to control the temperature of the inverter
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the above-mentioned inverter temperature control method.
  • FIG. 1 is a schematic structural diagram of a temperature control system for implementing a method for controlling the temperature of an inverter provided by the present application;
  • FIG. 2 is a flowchart of an inverter temperature control method according to Embodiment 1 of the present application
  • Fig. 3 is the partition diagram of inverter active frequency control
  • Fig. 5 is the inverter passive frequency switching diagram based on temperature information
  • FIG. 6 is a schematic diagram of inverter frequency switching according to driving mode changes
  • FIG. 7 is a schematic diagram of inverter active frequency partition switching
  • FIG. 8 is a schematic diagram of frequency hysteresis switching
  • FIG. 10 is a schematic structural diagram of a vehicle according to Embodiment 4 of the present application.
  • Some exemplary embodiments are described as processes or methods depicted as flowcharts. Although a flowchart depicts operations (or steps) as sequential processing, many of the operations may be performed in parallel, concurrently, or concurrently. Additionally, the order of multiple operations can be rearranged. The process may be terminated when multiple operations are completed, but may also have additional steps not included in the figures.
  • the processes may correspond to methods, functions, procedures, subroutines, subroutines, and the like. Furthermore, the embodiments in this application and features in the embodiments may be combined with each other without conflict.
  • FIG. 1 is a schematic structural diagram of a temperature control system for implementing an inverter temperature control method provided by the present application.
  • the temperature control system may include: a sensing module, a frequency control module, a power control module and a motor .
  • the sensing module may include a position sensor and a current sensor
  • the power control module may include a torque control module, a driving algorithm module and a power module.
  • the position sensor is electrically connected with the motor, the torque control module, the driving algorithm module and the frequency control module respectively; the current sensor is electrically connected with the motor and the torque control module respectively; the frequency control module is electrically connected with the position sensor, the driving algorithm module and the power module respectively.
  • the torque control module is respectively electrically connected with the position sensor, the current sensor and the driving algorithm module; the driving algorithm module is respectively electrically connected with the position sensor, the torque control module, the frequency control module and the power module; the power module is respectively connected with the driving algorithm module, the frequency control module and the power module.
  • the control module, the motor and the inverter are electrically connected; the motor is respectively electrically connected with the position sensor, the current sensor and the power module.
  • the position sensor can include a motor rotor sensor.
  • the motor rotor position sensor can be set to detect the position of the motor rotor, and can also be set to detect the rotational speed of the motor.
  • the motor rotor position sensor can include a resolver or other types of incremental encoders.
  • the position sensor; the current sensor may include a motor three-phase current sensor, which may be set to detect the three-phase current amplitude of the motor.
  • the torque control module can realize the closed-loop control of torque according to the received torque request command, and output 6-channel pulse width modulation (Pulse Width Modulation, PWM) duty cycle.
  • PWM Pulse Width Modulation
  • the frequency control module can determine the current frequency of the inverter according to the received torque request command, the speed information of the motor, the torque information of the motor and the temperature information of the inverter, etc. frequency control.
  • the drive algorithm module can output 6-way PWM drive signals that can drive the power control module according to the 6-way PWM duty cycle output by the torque control module.
  • the drive algorithm module can also output a fixed drive frequency according to the frequency command output by the frequency control module. .
  • the power module can control the motor to output a preset torque according to the received 6-channel PWM drive signals.
  • the power control module can also detect the real-time temperature information of the inverter and feed back the temperature information to the frequency control module.
  • the motor may include a drive motor, and the drive motor may include a permanent magnet synchronous motor, an AC asynchronous motor, a DC brushless motor, or an excitation motor.
  • FIG. 2 is a flowchart of an inverter temperature control method provided in Embodiment 1 of the present application. This embodiment can be applied to the situation that the inverter temperature is too high, resulting in a decrease in the power performance of the vehicle. This method can be controlled by a temperature control method.
  • the temperature control system may include: a sensing module, a frequency control module, a power control module and a motor.
  • the method may include the following steps.
  • Step 210 the sensing module acquires the rotational speed information of the motor.
  • the sensing module may include a motor rotor position sensor, which may be configured to detect the rotational speed of the motor and obtain rotational speed information of the motor.
  • Step 220 the frequency control module acquires torque information of the motor.
  • the frequency control module can obtain a torque request command, the torque request command can include torque information of the motor, and the torque information can include the torque of the motor running.
  • Step 230 The power control module acquires the temperature information of the inverter.
  • the power module may include a power module, the power module may include a temperature sensor, and the temperature sensor may acquire real-time temperature information of the inverter.
  • Step 240 The frequency control module determines the target frequency of the inverter according to the rotational speed information, the torque information and the temperature information.
  • the motor When the speed of the motor is low and the torque is low, the motor can be controlled with a low carrier frequency, and when the speed of the motor is high, the motor can be controlled with a high carrier frequency.
  • Figure 3 is a partition diagram of the active frequency control of the inverter. As shown in Figure 3, the partition frequency control can be performed on the working conditions of the motor.
  • the target frequency of the inverter can be controlled to be the first carrier frequency, and the first carrier frequency can be the lowest carrier frequency in frequency control.
  • the rotational speed in this area can include 0 rpm to 50 rpm.
  • the rotational speed area is not strictly defined and can be determined according to different motor conditions.
  • the rotational speed in this area can be defined as if the rotational speed of the motor is in this area, it belongs to the rotational speed in this area.
  • the first carrier frequency may include 1.25 kHz, but the first carrier frequency is not limited to be 1.25 kHz.
  • the carrier frequency can be a fixed value, or it can be a very low carrier frequency value that varies with the rotational speed of the motor.
  • the motor When the motor is in the second area, that is, the low-speed and low-torque area, it may also include the area of common working conditions in urban areas, and the target frequency of the inverter can be controlled to be the second carrier frequency.
  • the rotational speed of the region may include a region of 100 rpm to 3500 rpm
  • the torque region may include a region between 0Nm torque and 40% of the maximum torque
  • the torque region may be defined as the torque of the motor in this region.
  • the second carrier frequency may include 4.2 kHz, but the second carrier frequency is not limited to be 4.2 kHz.
  • the carrier frequency may be a fixed value, or may be a lower carrier frequency value that varies with the rotational speed of the motor.
  • Motor torque can refer to the amount of force that is turned.
  • the torque of the motor is proportional to the strength of the rotating magnetic field and the current in the rotor cage, and is proportional to the square of the power supply voltage, so the torque can be determined by current and voltage.
  • the target frequency of the inverter can be controlled to be the third carrier frequency.
  • the regional rotation speed may be the same as the regional rotation speed of the second region, that is, the regional rotation speed may include a region of 100 rpm to 3500 rpm, and the torque region may include a region between 40% of the maximum torque and 80% of the maximum torque.
  • the third carrier frequency may include 6 kHz, but the third carrier frequency is not limited to be 6 kHz.
  • the carrier frequency may be a fixed value, or may be a lower carrier frequency value that varies with the rotational speed of the motor.
  • the target frequency of the inverter can be controlled to be the fourth carrier frequency.
  • the region rotational speed may include a region in excess of 3500 rpm, and the torque region may exceed an 80% maximum torque region.
  • the fourth carrier frequency may include 10 kHz, but the fourth carrier frequency is not limited to be 10 kHz.
  • the carrier frequency may be a fixed value, or may be a higher carrier frequency value that varies with the rotational speed of the motor.
  • the passive adjustment mode is activated, and the frequency of the inverter can be adjusted to The preset low frequency, if it is detected that the temperature of the inverter is lower than the second preset temperature, the frequency of the inverter can be adjusted to the preset high frequency.
  • Step 250 The frequency control module adjusts the frequency of the inverter to the target frequency, so as to control the frequency of the inverter.
  • the frequency control module can adjust the frequency of the inverter to the target frequency according to the difference between the current frequency and the target frequency.
  • the frequency control module can adjust the frequency of the inverter according to the target frequency determined above, so as to control the frequency of the inverter.
  • Step 260 The power control module controls the output frequency of the motor based on the target frequency to control the temperature of the inverter.
  • the power control module can determine the drive frequency of the motor according to the target frequency output by the frequency control module, so as to control the inverter.
  • the frequency of the inverter decreases, the loss of the inverter will decrease, the efficiency will increase, and the temperature of the inverter will decrease; when the frequency of the inverter increases, the loss of the inverter will increase, and the efficiency will decrease , and the temperature of the inverter will increase.
  • the temperature of the inverter can be changed by changing the frequency of the inverter without affecting the power output of the motor.
  • the speed information of the motor is acquired by the sensing module; the torque information of the motor is acquired by the frequency control module; the temperature information of the inverter is acquired by the power control module;
  • the rotational speed information, the torque information and the temperature information determine the target frequency of the inverter;
  • the frequency control module adjusts the frequency of the inverter to the target frequency, so as to realize the control of the inverter.
  • the power control module controls the output frequency of the motor based on the target frequency, realizes the control of the temperature of the inverter, and solves the change in the power of the vehicle caused by the temperature change of the inverter.
  • FIG. 4 is a flowchart of an inverter temperature control method according to Embodiment 2 of the present application. This embodiment is described on the basis of the above-mentioned embodiment. In this embodiment, the method may further include the following steps.
  • Step 410 the sensing module acquires the rotational speed information of the motor.
  • the sensing module may include a position sensor and a current sensor.
  • the position sensor can be set to detect the speed of the motor and obtain the speed information of the motor;
  • the current sensor can be set to detect the three-phase current amplitude of the motor.
  • the three-phase currents of the motor may include i u , i v and i w .
  • Step 420 the frequency control module acquires torque information of the motor.
  • Step 430 The power control module acquires the temperature information of the inverter.
  • the power control module may include a torque control module, a drive algorithm module, and a power module.
  • the power module can monitor the temperature of the inverter in real time and send the temperature information to the frequency control module.
  • Step 440 The frequency control module judges the rotational speed information, the torque information and the temperature information respectively according to the preset rotational speed, the preset torque and the preset threshold.
  • step 440 may include:
  • the frequency control module determines the current rotational speed based on the current rotational speed, the first rotational speed and the second rotational speed.
  • the rotational speed values or rotational speed regions of the first rotational speed and the second rotational speed may be determined according to different motor conditions.
  • the first rotational speed may include 0 rpm to 50 rpm
  • the second rotational speed may include 100 rpm to 3500 rpm.
  • the region in which the current rotational speed is located can be determined according to the above rotational speed range.
  • the frequency control module judges the current torque based on the current torque, the first torque and the second torque.
  • the torque values or torque regions of the first torque and the second torque may be determined according to different motor conditions.
  • the first torque may include 40% of the maximum torque
  • the second torque may include 80% of the maximum torque.
  • the region in which the current torque is located can be determined according to the above torque range.
  • the maximum torque which can also be called the stall torque
  • the torque that the motor can generate when the load is increased without causing a sudden drop in speed can be the maximum torque.
  • the maximum torque can be determined according to different operating conditions, and the minimum value of the maximum torque can be 1.6 to 2.5 times the rated torque.
  • the frequency control module judges the current temperature based on the current temperature, the first threshold and the second threshold.
  • the rotational speed information and torque information no longer play an active role in adjusting the frequency of the inverter, and passively control the frequency of the inverter based on the current temperature.
  • Figure 5 is a diagram of inverter passive frequency switching based on temperature information. As shown in Figure 5, if the current temperature is greater than the first threshold, the frequency of the inverter is controlled to be a lower carrier frequency; if the current temperature is less than the second threshold, Then the frequency of the control inverter is a higher carrier frequency.
  • Step 450 The frequency control module determines the target frequency of the inverter based on the judgment results of the rotational speed information, the torque information and the temperature information.
  • step 450 may include:
  • the frequency control module determines that the target frequency is the first carrier frequency.
  • the motor may be in the first region, and the target frequency is determined to be the first carrier frequency.
  • the frequency control module determines that the target frequency is less than or equal to the second carrier frequency.
  • the motor can be in the second region, and it is determined that the target frequency is less than or equal to the second carrier frequency.
  • the frequency control module determines that the target frequency is less than or equal to the third carrier frequency.
  • the motor can be in the third region, and it is determined that the target frequency is less than or equal to the third load frequency.
  • the frequency control module determines that the target frequency is greater than or equal to the fourth carrier frequency.
  • the motor may be in the fourth region, and it is determined that the target frequency is greater than or equal to the first rotational speed.
  • Four carrier frequencies are possible.
  • step 450 may further include:
  • the frequency control module determines the target frequency according to the comparison result between the preset low frequency and the current carrier frequency.
  • the inverter may be switched to the low frequency mode.
  • the target frequency can be determined according to the comparison result between the preset low frequency and the current carrier frequency.
  • the preset low frequency is determined as the target frequency; if the preset low frequency is greater than the current carrier frequency, the current carrier frequency is determined as the target frequency.
  • the frequency control module determines the target frequency according to the comparison result between the preset high frequency and the current carrier frequency.
  • the inverter can be switched to the high frequency mode.
  • the target frequency can be determined according to the comparison result between the preset high frequency and the current carrier frequency.
  • the preset high frequency is determined as the target frequency; if the preset high frequency is greater than the current carrier frequency, the current carrier frequency is determined as the target frequency.
  • the frequency of the inverter can also be actively adjusted and controlled according to the change of driving mode. Similar to traditional cars, new energy vehicles have driving modes such as comfort mode, sports mode, and energy-saving mode.
  • the frequency of the inverter can be changed according to the needs of the driving mode of the whole vehicle, and the active frequency conversion control method can adjust the frequency of the inverter according to different driving modes.
  • FIG. 6 is a schematic diagram of switching the frequency of the inverter according to the change of the driving mode.
  • the frequency curve of the control inverter is curve 1, that is, the lower frequency.
  • a lower frequency can improve the efficiency of the inverter and the cruising range of the vehicle; when the vehicle is in comfort mode or sports mode, the control accuracy and noise of the electric drive system (including the motor and inverter) are higher. requirements, so the frequency curve of the control inverter is curve 2, i.e. higher frequency.
  • the lower frequency and the higher frequency can use either a fixed value or a value that varies with the speed. In this embodiment, a lower frequency can use a value that varies with the rotational speed, and a higher frequency can use a fixed value.
  • the driving mode information may be input to the frequency control module, and the frequency control module determines the frequency of the inverter according to the input driving mode information.
  • Step 460 The frequency control module adjusts the frequency of the inverter to the target frequency based on the preset switching mode and the target frequency, so as to control the frequency of the inverter.
  • FIG. 7 is a schematic diagram of inverter active frequency partition switching, and the area enclosed by the dotted line shown in FIG. 7 is the switching area.
  • the rotational speed and torque are adjusted in the first area, the second area, the third area and the fourth area, so as to realize the adjustment of the frequency of the inverter.
  • FIG. 8 is a schematic diagram of frequency hysteresis switching
  • FIG. 9 is a schematic diagram of frequency linear switching.
  • the preset switching modes may include: hysteretic switching and linear switching.
  • the preset switching method can include hysteresis switching, when the speed or torque of the motor is higher than the second speed or the second torque, the frequency of the inverter is switched from a very low carrier frequency to a lower carrier frequency; When the rotational speed or torque is lower than the first rotational speed or the first torque, the frequency of the inverter is switched from a lower carrier frequency to an extremely low carrier frequency.
  • the preset switching mode can include linear switching, when the motor switches back and forth between the first region and the second region, the frequency of the inverter changes linearly between the first carrier frequency and the second carrier frequency; When switching back and forth between the second area and the third area, the frequency of the inverter changes linearly between the second carrier frequency and the third carrier frequency; when the motor switches back and forth between the third area and the fourth area , the frequency of the inverter changes linearly between the third carrier frequency and the fourth carrier frequency.
  • temperature switching can also be achieved by hysteresis switching or linear switching.
  • the temperature switching in FIG. 5 of this embodiment is hysteresis switching.
  • Step 470 The power control module controls the output frequency of the motor based on the target frequency, so as to control the temperature of the inverter.
  • the power control module may include a torque control module, a drive algorithm module and a power module, and the torque control module may be based on the torque request command T * e , the rotor position ⁇ r of the motor, the rotational speed ⁇ r of the motor, the three-phase current i u of the motor, i v and i w , output three PWM duty ratios T a , T b and T c ; the drive algorithm module can output 6 PWM drivers capable of driving the power module according to the 3 PWM duty ratios output by the torque control module The driving algorithm module can also output a fixed PWM driving frequency according to the frequency command output by the frequency control module; temperature control.
  • the speed information of the motor is obtained by the sensing module; the torque information of the motor is obtained by the frequency control module; the temperature information of the inverter is obtained by the power control module; and the preset threshold, respectively, to judge the speed information, torque information and temperature information; the frequency control module determines the target frequency of the inverter based on the judgment results of the speed information, torque information and temperature information; the frequency control module is based on the preset Switch the mode and target frequency, adjust the frequency of the inverter to the target frequency, and realize the control of the frequency of the inverter; the power control module controls the output frequency of the motor based on the target frequency, realizes the control of the temperature of the inverter, and solves the problem of reverse operation.
  • the temperature change of the inverter leads to the change of the power of the whole vehicle, and the effect of controlling the temperature change of the inverter without affecting the power of the whole vehicle is realized.
  • FIG. 1 is a structural diagram of an inverter temperature control system provided in the third embodiment of the application.
  • the system can be adapted to reduce the temperature rise of the inverter by reducing the torque output of the motor, resulting in a decrease in the power performance of the whole vehicle. Case.
  • the system can be implemented in software and/or hardware, integrated in the vehicle system.
  • the system includes: a sensing module, a frequency control module, a power control module and a motor, wherein,
  • the sensing module is configured to obtain rotational speed information of the motor
  • the frequency control module is configured to obtain torque information of the motor
  • the power control module is configured to obtain temperature information of the inverter
  • the frequency control module is further configured to determine the target frequency of the inverter according to the rotational speed information, the torque information and the temperature information;
  • the frequency control module is further configured to adjust the frequency of the inverter to the target frequency, so as to control the frequency of the inverter;
  • the power control module is further configured to control the output frequency of the motor based on the target frequency, so as to control the temperature of the inverter.
  • the speed information of the motor is acquired by the sensing module; the torque information of the motor is acquired by the frequency control module; the temperature information of the inverter is acquired by the power control module;
  • the frequency control module determines the target frequency of the inverter according to the rotational speed information, the torque information and the temperature information; the frequency control module adjusts the frequency of the inverter to the target frequency, Realize the control of the frequency of the inverter; the power control module controls the output frequency of the motor based on the target frequency, realizes the control of the temperature of the inverter, and solves the problem caused by the temperature change of the inverter.
  • the effect of controlling the temperature change of the inverter without affecting the vehicle power is achieved.
  • the frequency control module is set to:
  • the frequency control module judges the speed information, the torque information and the temperature information respectively according to the preset speed, the preset torque and the preset threshold;
  • the frequency control module determines the target frequency of the inverter based on the judgment results of the rotational speed information, the torque information and the temperature information.
  • a preset rotation speed, a preset torque and a preset threshold the rotation speed information, the torque information and the temperature information are respectively judged, which may include:
  • the frequency control module judges the current rotational speed based on the current rotational speed, the first rotational speed and the second rotational speed;
  • the frequency control module judges the current torque based on the current torque, the first torque and the second torque
  • the frequency control module determines the current temperature based on the current temperature, the first threshold and the second threshold.
  • determining the target frequency of the inverter based on the judgment results of the rotational speed information, the torque information and the temperature information may include:
  • the frequency control module determines that the target frequency is the first carrier frequency
  • the frequency control module determines that the target frequency is less than or equal to the second carrier frequency
  • the frequency control module determines that the target frequency is less than or equal to the third carrier frequency
  • the frequency control module determines that the target frequency is greater than or equal to the fourth load frequency.
  • determining the target frequency of the inverter based on the judgment results of the rotational speed information, the torque information and the temperature information may further include:
  • the frequency control module determines the target frequency according to the comparison result between the preset low frequency and the current carrier frequency
  • the frequency control module determines the target frequency according to the comparison result between the preset high frequency and the current carrier frequency.
  • the power control module is set to:
  • the frequency control module adjusts the frequency of the inverter based on the preset switching mode and the target frequency, so as to control the frequency of the inverter.
  • the preset switching manner includes: hysteresis switching and linear switching.
  • the inverter temperature control system provided by the embodiment of the present application can execute the inverter temperature control method provided by any embodiment of the present application, and has functional modules and effects corresponding to the execution method.
  • FIG. 10 is a schematic structural diagram of a vehicle according to Embodiment 4 of the application.
  • the vehicle includes a processor 1010, a memory 1020 and an inverter temperature control device 1030; the number of processors 1010 in the vehicle may be One or more, one processor 1010 is taken as an example in FIG. 10; the processor 1010, the memory 1020 and the inverter temperature control device 1030 in the vehicle can be connected through a bus or other means, and the connection through a bus is taken as an example in FIG. 10 .
  • the memory 1020 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the inverter temperature control method in the embodiments of the present application (for example, the inverter Sensing module, frequency control module, frequency control module, power control module and motor in temperature control system).
  • the processor 1010 executes various functional applications and data processing of the vehicle by running the software programs, instructions and modules stored in the memory 1020 , that is, to implement the above-mentioned inverter temperature control method.
  • the memory 1020 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like. Additionally, memory 1020 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device. In some examples, memory 1020 may include memory located remotely from processor 1010, which may be connected to the vehicle via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the inverter temperature control system can be configured to control the temperature of the inverter.
  • the vehicle provided by the embodiment of the present application can execute the inverter temperature control method provided by the above embodiment, and has corresponding functions and effects.
  • the fifth embodiment of the present application further provides a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute an inverter temperature control method when executed by a computer processor, and the method can be executed by a temperature control system.
  • the temperature control system may include: a sensing module, a frequency control module, a power control module and a motor;
  • the method may include the following steps:
  • the sensing module obtains the rotational speed information of the motor
  • the frequency control module obtains torque information of the motor
  • the power control module obtains the temperature information of the inverter
  • the frequency control module determines the target frequency of the inverter according to the rotational speed information, the torque information and the temperature information;
  • the frequency control module adjusts the frequency of the inverter to the target frequency to control the frequency of the inverter
  • the power control module controls the output frequency of the motor based on the target frequency to control the temperature of the inverter.
  • a storage medium containing computer-executable instructions provided by an embodiment of the present application the computer-executable instructions are not limited to the above-mentioned method operations, and can also execute any of the inverter temperature control methods provided by any embodiment of the present application. related operations.
  • the present application can be implemented by software and general hardware, and can also be implemented by hardware.
  • the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a floppy disk of a computer, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory) , RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in the various embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized;
  • the names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开了一种逆变器温度控制方法、***、车辆及介质。该逆变器温度控制方法包括:所述传感模块获取电机的转速信息;所述转矩控制模块获取电机的转矩信息;所述功率控制模块获取逆变器的温度信息;所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;所述频率控制模块调节所述逆变器的频率至所述目标频率,实现对所述逆变器频率的控制;所述功率控制模块基于所述目标频率控制所述电机的输出频率,实现对所述逆变器温度的控制。

Description

逆变器温度控制方法、***、车辆及介质
本申请要求在2020年09月18日提交中国专利局、申请号为202010986265.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及逆变器技术,例如涉及一种逆变器温度控制方法、***、车辆及介质。
背景技术
纯电动汽车与混合动力汽车由于污染与排放少,且有较高的燃油经济性,成为未来汽车的主要形式。纯电动汽车与混合动力汽车的动力电机需要大功率逆变器进行驱动。由于逆变器模块本身的特性限制,在电机进行低速大转矩输出时逆变器的温度上升较快,若超过逆变器的安全工作温度,不仅会影响控制器的整体效率,对逆变器的寿命及安全都有严重影响。
在检测到逆变器的温度过高的现象后,可以通过降低电机转矩输出来减小逆变器的温升。该方法虽然能够达到逆变器降温的目的,但也导致整车动力性的下降。
发明内容
本申请提供一种逆变器温度控制方法、***、车辆及介质,以实现对逆变器的温度的控制。
提供了一种逆变器温度控制方法,应用于温控***,所述温控***包括:传感模块、频率控制模块、功率控制模块和电机;
所述方法包括:
所述传感模块获取电机的转速信息;所述频率控制模块获取电机的转矩信息;所述功率控制模块获取逆变器的温度信息;
所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;
所述频率控制模块调节所述逆变器的频率至所述目标频率,以控制所述逆变器的频率;
所述功率控制模块基于所述目标频率控制所述电机的输出频率,以控制所 述逆变器的温度。
还提供了一种逆变器温度控制***,该***包括:传感模块、频率控制模块、功率控制模块和电机;
所述传感模块,设置为获取电机的转速信息;
所述频率控制模块,设置为获取电机的转矩信息;
所述功率控制模块,设置为获取逆变器的温度信息;
所述频率控制模块,还设置为根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;
所述频率控制模块,还设置为调节所述逆变器的频率至所述目标频率,以控制所述逆变器的频率;
所述功率控制模块,还设置为基于所述目标频率控制所述电机的输出频率,以控制所述逆变器的温度。
还提供了一种车辆,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
逆变器温度控制***,设置为控制所述逆变器的温度;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的逆变器温度控制方法。
还提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行上述的逆变器温度控制方法。
附图说明
图1为执行本申请提供的一种逆变器温度控制方法的温控***的结构示意图;
图2为本申请实施例一提供的一种逆变器温度控制方法的流程图;
图3为逆变器主动频率控制分区图;
图4为本申请实施例二提供的一种逆变器温度控制方法的流程图;
图5为基于温度信息的逆变器被动频率切换图;
图6为逆变器的频率根据驾驶模式变化切换的示意图;
图7为逆变器主动频率分区切换示意图;
图8为频率滞环切换示意图;
图9为频率线性切换示意图;
图10为本申请实施例四提供的一种车辆的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,多项操作的顺序可以被重新安排。当多项操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。此外,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图1为执行本申请提供的一种逆变器温度控制方法的温控***的结构示意图,如图1所示,该温控***可以包括:传感模块、频率控制模块、功率控制模块和电机。
其中,传感模块可以包括位置传感器和电流传感器;功率控制模块可以包括转矩控制模块、驱动算法模块和功率模块。
位置传感器分别与电机、转矩控制模块、驱动算法模块以及频率控制模块电连接;电流传感器分别与电机以及转矩控制模块电连接;频率控制模块分别与位置传感器、驱动算法模块以及功率模块电连接;转矩控制模块分别与位置传感器、电流传感器以及驱动算法模块电连接;驱动算法模块分别与位置传感器、转矩控制模块、频率控制模块以及功率模块电连接;功率模块分别与驱动算法模块、频率控制模块、电机以及逆变器电连接;电机分别与位置传感器、电流传感器以及功率模块电连接。
位置传感器可以包括电机转子传感器,电机转子位置传感器可以设置为检测电机转子的位置,还可以设置为检测电机的转速,电机转子位置传感器可以包括旋转变压器,也可以包括增量编码器等其他类型的位置传感器;电流传感器可以包括电机三相电流传感器,可以设置为检测电机的三相电流幅值。
转矩控制模块可以根据接收到的转矩请求指令实现转矩的闭环控制,并且输出6路脉冲宽度调制(Pulse Width Modulation,PWM)占空比。
频率控制模块可以根据接收到的转矩请求指令、电机的转速信息、电机的转矩信息和逆变器的温度信息等,确定逆变器的当前频率,输出频率指令,实现对逆变器的频率的控制。
驱动算法模块可以根据转矩控制模块输出的6路PWM占空比,输出可以驱动功率控制模块的6路PWM驱动信号,驱动算法模块还可以根据频率控制模块输出的频率指令,输出固定的驱动频率。
功率模块可以根据接收到的6路PWM驱动信号,控制电机输出预设转矩,同时,功率控制模块还可以检测逆变器的实时温度信息并将温度信息反馈给频率控制模块。
电机可以包括驱动电机,驱动电机可以包括永磁同步电机、交流异步电机、直流无刷电机或者励磁电机。
实施例一
图2为本申请实施例一提供的一种逆变器温度控制方法的流程图,本实施例可适用于逆变器温度过高,导致整车动力性下降的情况,该方法可以由温控***来执行,该温控***可以包括:传感模块、频率控制模块、功率控制模块和电机。
如图2所示,该方法可以包括如下步骤。
步骤210、传感模块获取电机的转速信息。
传感模块可以包括电机转子位置传感器,可以设置为检测电机的转速,获得电机的转速信息。
步骤220、频率控制模块获取电机的转矩信息。
频率控制模块可以获取转矩请求指令,转矩请求指令可以包括电机的转矩信息,转矩信息可以包括电机运行的转矩。
步骤230、功率控制模块获取逆变器的温度信息。
功率模块可以包括功率模块,功率模块可以包括温度传感器,温度传感器可以获取逆变器的实时温度信息。
步骤240、频率控制模块根据转速信息、转矩信息和温度信息,确定逆变器的目标频率。
当电机的转速较低且转矩较低时,可以使用低载频控制电机,当电机的转 速较高时,可以使用高载频控制电机。
图3为逆变器主动频率控制分区图,如图3所示,可以对电机的工况进行分区变频控制。
当电机处于第一区域,即极低转速区域,也可以包括电机堵转区域时,可以控制逆变器的目标频率为第一载频,第一载频可以为频率控制中的最低载频。该区域转速可以包括0rpm~50rpm,该转速区域不作严格界定,可以根据不同的电机情况而定,该区域转速可以定义为如果电机的转速处于此区域则属于该区域转速。本实施例中第一载频可以包括1.25kHz,但不限定第一载频为1.25kHz。该载频可以为固定值,也可以为随着电机的转速变化的极低载频值。
当电机处于第二区域,即低转速低转矩区域,也可以包括市区常用工况区域,可以控制逆变器的目标频率为第二载频。该区域转速可以包括100rpm~3500rpm区域,该转矩区域可以包括0Nm转矩~40%最大转矩之间的区域,该转矩区域可以定义为电机的转矩处于此区域。本实施例中第二载频可以包括4.2kHz,但不限定第二载频为4.2kHz。同样的,该载频可以为固定值,也可以为随着电机的转速变化的较低载频值。
电机转矩可以指转动的力量的大小。电动机的转矩与旋转磁场的强弱和转子笼条中的电流成正比,以及与电源电压的平方成正比,所以转矩可以由电流和电压决定。
当电机处于第三区域,即低转速中等转矩区域,可以控制逆变器的目标频率为第三载频。该区域转速可以与第二区域的区域转速相同,即该区域转速可以包括100rpm~3500rpm区域,该转矩区域可以包括40%最大转矩~80%最大转矩之间的区域。本实施例中第三载频可以包括6kHz,但不限定第三载频为6kHz。同样的,该载频可以为固定值,也可以为随着电机的转速变化的较低载频值。
当电机处于第四区域,即高转速区域或高转矩区域,可以控制逆变器的目标频率为第四载频。该区域转速可以包括超过3500rpm的区域,该转矩区域可以超过80%最大转矩区域。本实施例中第四载频可以包括10kHz,但不限定第四载频为10kHz。同样的,该载频可以为固定值,也可以为随着电机的转速变化的较高载频值。
在根据转速信息和转矩信息对逆变器的目标频率进行确定的过程中,若检测到逆变器的温度大于第一预设温度,则启动被动调节模式,可以调节逆变器的频率至预设低频,若检测到逆变器的温度小于第二预设温度时,可以调节逆变器的频率至预设高频。
步骤250、频率控制模块调节逆变器的频率至目标频率,实现对逆变器的频 率的控制。
频率控制模块可以根据当前频率与目标频率之间的差值,将逆变器的频率调节至目标频率。频率控制模块可以根据前述确定的目标频率对逆变器的频率进行调节,实现对逆变器的频率的控制。
步骤260、功率控制模块基于目标频率控制电机的输出频率,实现对逆变器的温度的控制。
当逆变器的频率确定之后,功率控制模块可以根据频率控制模块输出的目标频率,确定电机的驱动频率,实现对逆变器的控制。当逆变器的频率下降时,逆变器的损耗会降低,效率会提高,同时逆变器的温度会降低;当逆变器的频率提高时,逆变器的损耗会提高,效率会降低,同时逆变器的温度会升高。本实施例实现了在不影响电机动力输出的前提下,通过改变逆变器的频率,改变逆变器的温度。
本实施例的技术方案,通过所述传感模块获取电机的转速信息;所述频率控制模块获取电机的转矩信息;所述功率控制模块获取逆变器的温度信息;所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;所述频率控制模块调节所述逆变器的频率至所述目标频率,实现对所述逆变器的频率的控制;所述功率控制模块基于所述目标频率控制所述电机的输出频率,实现对所述逆变器的温度的控制,解决逆变器的温度变化导致整车动力性变化的问题,实现控制逆变器的温度变化且不会影响整车动力性的效果。
实施例二
图4为本申请实施例二提供的一种逆变器温度控制方法的流程图,本实施例是在上述实施例的基础上进行说明。在本实施例中,该方法还可以包括以下步骤。
步骤410、传感模块获取电机的转速信息。
传感模块可以包括位置传感器和电流传感器。位置传感器,可以设置为检测电机的转速,获得电机的转速信息;电流传感器可以设置为检测电机的三相电流幅值。电机的三相电流可以包括i u、i v和i w
步骤420、频率控制模块获取电机的转矩信息。
频率控制模块获取转矩信息的情况已经在实施例一中进行了解释说明,在此不再赘述。
步骤430、功率控制模块获取逆变器的温度信息。
功率控制模块可以包括转矩控制模块、驱动算法模块和功率模块。其中功率模块可以实时监控逆变器的温度,并将温度信息发送至频率控制模块。
步骤440、频率控制模块根据预设转速、预设转矩和预设阈值,分别对转速信息、转矩信息和温度信息进行判断。
一种实施方式中,步骤440可以包括:
频率控制模块基于当前转速、第一转速和第二转速,对当前转速进行判断。
第一转速和第二转速的转速值或者转速区域可以根据不同的电机情况而定。本实施例中,第一转速可以包括0rpm~50rpm,第二转速可以包括100rpm~3500rpm。可以根据上述的转速范围对当前转速所处的区域进行判断。
频率控制模块基于当前转矩、第一转矩和第二转矩,对当前转矩进行判断。
第一转矩和第二转矩的转矩值或者转矩区域可以根据不同电机情况而定。本实施例中,第一转矩可以包括40%最大转矩,第二转矩可以包括80%最大转矩。可以根据上述的转矩范围对当前转矩所处的区域进行判断。
其中,最大转矩,也可以叫停转转矩,是电动机的重要特性之一。在额定电压和额定频率下,增加负载而不致使转速突然下降时电动机所能产生的转矩可以为最大转矩。最大转矩可以根据不同的运行情况而定,最大转矩的最小值可以为额定转矩的1.6~2.5倍。
频率控制模块基于当前温度、第一阈值和第二阈值,对当前温度进行判断。
若当前温度大于第一阈值或者小于第二阈值,转速信息和转矩信息对逆变器的频率的主动调节不再发挥作用,转而基于当前温度被动控制逆变器的频率。
图5为基于温度信息的逆变器被动频率切换图,如图5所示,若当前温度大于第一阈值,则控制逆变器的频率为较低载频;若当前温度小于第二阈值,则控制逆变器的频率为较高载频。
步骤450、频率控制模块基于转速信息、转矩信息和温度信息的判断结果,确定逆变器的目标频率。
一种实施方式中,步骤450可以包括:
若当前转速小于或者等于第一转速,则频率控制模块确定目标频率为第一载频。
若当前转速小于或者等于第一转速,则电机可以处于第一区域,确定目标频率为第一载频。
第一载频的确定在实施例一中已经进行了说明,在此不再赘述。
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩小于或者等于第一转矩,则频率控制模块确定目标频率小于或者等于第二载频。
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩小于或者等于第一转矩,则电机可以处于第二区域,确定目标频率小于或者等于第二载频。
第二载频的确定在实施例一中已经进行了说明,在此不再赘述。
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩且小于或者等于第二转矩,则频率控制模块确定目标频率小于或者等于第三载频。
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩且小于或者等于第二转矩,则电机可以处于第三区域,确定目标频率小于或者等于第三载频。
第三载频的确定在实施例一中已经进行了说明,在此不再赘述。
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩或者所述电机的转速大于第二转速,则频率控制模块确定目标频率大于或者等于第四载频。
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩或者所述电机的转速大于第二转速,则电机可以处于第四区域,确定目标频率大于或者等于第四载频。
第四载频的确定在实施例一中已经进行了说明,在此不再赘述。
另一种实施方式中,步骤450还可以包括:
若温度大于第一阈值,则频率控制模块根据预设低频和当前载频的比对结果,确定目标频率。
若逆变器的温度大于第一阈值,可以将逆变器切换至低频率模式。在低频率模式中,可以根据预设低频和当前载频的比对结果,确定目标频率。
若预设低频小于当前载频,则确定预设低频为目标频率;若预设低频大于当前载频,则确定当前载频为目标频率。
若温度小于第二阈值,则频率控制模块根据预设高频和当前载频的比对结果,确定目标频率。
若逆变器温度逐渐降低至小于或者等于第二阈值时,可以将逆变器切换至 高频率模式。在高频率模式中,可以根据预设高频和当前载频的比对结果,确定目标频率。
若预设高频小于当前载频,则确定预设高频为目标频率;若预设高频大于当前载频,则确定当前载频为目标频率。
逆变器的频率还可以根据驾驶模式的变换进行主动调节控制。新能源汽车与传统汽车类似,都有舒适模式、运动模式、节能模式等驾驶模式。逆变器的频率可以随着整车驾驶模式的需求而变化,主动变频控制方法可以根据不同的驾驶模式调整逆变器的频率。
图6为逆变器的频率根据驾驶模式变化切换的示意图。如图6所示,当整车处于节能模式时,控制逆变器的频率曲线为曲线1,即较低的频率。较低的频率可以提升逆变器的效率,提升整车的续航里程;当整车处于舒适模式或者运动模式时,对电驱***(包括电机及逆变器)的控制精度及噪声有较高要求,因此控制逆变器的频率曲线为曲线2,即较高的频率。较低的频率与较高的频率既可以使用定值也可以使用随转速变化的值。在本实施例中较低的频率可以使用随转速变化的值,较高的频率可以使用定值。
可以将驾驶模式信息输入频率控制模块,频率控制模块根据输入的驾驶模式信息确定逆变器的频率。
步骤460、频率控制模块基于预设切换方式和目标频率,调节逆变器的频率至目标频率,实现对逆变器的频率的控制。
图7为逆变器主动频率分区切换示意图,图7所示的虚线所包围的区域即为切换区域。
根据当前频率和目标频率,对转速和转矩在第一区域、第二区域、第三区域和第四区域内进行调整,实现对逆变器的频率的调整。
可选的,图8为频率滞环切换的示意图,图9为频率线性切换的示意图,如图8和图9所示,预设切换方式可以包括:滞环切换和线性切换。
若预设切换方式可以包括滞环切换,则当电机的转速或转矩高于第二转速或者第二转矩时,逆变器的频率由极低载频切换至较低载频;当电机转速或转矩低于第一转速或者第一转矩时,逆变器的频率由较低载频切换至极低载频。
若预设切换方式可以包括线性切换,则当电机在第一区域与第二区域之间来回切换时,在第一载频和第二载频之间逆变器的频率进行线性变化;当电机在第二区域与第三区域之间来回切换时,在第二载频和第三载频之间逆变器的频率进行线性变化;当电机在第三区域与第四区域之间来回切换时,在第三载频和第四载频之间逆变器的频率进行线性变化。
另外,温度切换也可以通过滞环切换或者线性切换实现。本实施例的图5中对温度的切换为滞环切换。
步骤470、功率控制模块基于目标频率控制电机的输出频率,实现对逆变器的温度的控制。
功率控制模块可以包括转矩控制模块、驱动算法模块和功率模块,转矩控制模块可以根据转矩请求指令T * e、电机转子位置θ r、电机转速ω r、电机的三相电流i u、i v和i w,输出三路PWM占空比T a、T b和T c;驱动算法模块可以根据转矩控制模块输出的3路PWM占空比,输出能够驱动功率模块的6路PWM驱动信号;驱动算法模块还可以根据频率控制模块输出的频率指令输出固定的PWM驱动频率;功率模块可以根据接收到的6路PWM驱动信号控制电机的输出转矩以及输出频率,实现对逆变器的温度的控制。
本实施例的技术方案,通过传感模块获取电机的转速信息;频率控制模块获取电机的转矩信息;功率控制模块获取逆变器的温度信息;频率控制模块根据预设转速、预设转矩和预设阈值,分别对转速信息、转矩信息和温度信息进行判断;频率控制模块基于转速信息、转矩信息和温度信息的判断结果,确定逆变器的目标频率;频率控制模块基于预设切换方式和目标频率,调节逆变器的频率至目标频率,实现对逆变器的频率的控制;功率控制模块基于目标频率控制电机的输出频率,实现对逆变器的温度的控制,解决逆变器的温度变化导致整车动力性变化的问题,实现控制逆变器的温度变化且不会影响整车动力性的效果。
实施例三
图1为本申请实施例三提供的一种逆变器温度控制***的结构图,该***可以适用于通过降低电机的转矩输出减小逆变器的温升,导致整车动力性的下降的情况。该***可以通过软件和/或硬件实现,集成在车辆***中。
如图1所示,该***包括:传感模块、频率控制模块、功率控制模块和电机,其中,
所述传感模块,设置为获取电机的转速信息;
所述频率控制模块,设置为获取电机的转矩信息;
所述功率控制模块,设置为获取逆变器的温度信息;
所述频率控制模块,还设置为根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;
所述频率控制模块,还设置为调节所述逆变器的频率至所述目标频率,实现对所述逆变器的频率的控制;
所述功率控制模块,还设置为基于所述目标频率控制所述电机的输出频率,实现对所述逆变器的温度的控制。
本实施例提供的逆变器温度控制***,通过所述传感模块获取电机的转速信息;所述频率控制模块获取电机的转矩信息;所述功率控制模块获取逆变器的温度信息;所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;所述频率控制模块调节所述逆变器的频率至所述目标频率,实现对所述逆变器的频率的控制;所述功率控制模块基于所述目标频率控制所述电机的输出频率,实现对所述逆变器的温度的控制,解决逆变器的温度变化导致整车动力性变化的问题,实现控制逆变器的温度变化且不会影响整车动力性的效果。
在上述实施例的基础上,频率控制模块,是设置为:
频率控制模块根据预设转速、预设转矩和预设阈值,分别对所述转速信息、所述转矩信息和所述温度信息进行判断;
所述频率控制模块基于所述转速信息、所述转矩信息和所述温度信息的判断结果,确定所述逆变器的目标频率。
一种实施方式中,根据预设转速、预设转矩和预设阈值,分别对所述转速信息、所述转矩信息和所述温度信息进行判断,可以包括:
频率控制模块基于当前转速、第一转速和第二转速,对所述当前转速进行判断;
频率控制模块基于当前转矩、第一转矩和第二转矩,对所述当前转矩进行判断;
频率控制模块基于当前温度、第一阈值和第二阈值,对所述当前温度进行判断。
一种实施方式中,基于所述转速信息、所述转矩信息和所述温度信息的判断结果,确定所述逆变器的目标频率,可以包括:
若当前转速小于或者等于第一转速,则频率控制模块确定所述目标频率为第一载频;
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩小于或者等于第一转矩,则频率控制模块确定所述目标频率小于或者等于第二载频;
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一 转矩且小于或者等于第二转矩,则频率控制模块确定所述目标频率小于或者等于第三载频;
若当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩或者所述电机的转速大于第二转速,则频率控制模块确定所述目标频率大于或者等于第四载频。
另一种实施方式中,基于所述转速信息、所述转矩信息和所述温度信息的判断结果,确定所述逆变器的目标频率,还可以包括:
若所述温度大于第一阈值,则频率控制模块根据预设低频和当前载频的比对结果,确定所述目标频率;
若所述温度小于第二阈值,则频率控制模块根据预设高频和当前载频的比对结果,确定所述目标频率。
在上述实施例的基础上,功率控制模块,是设置为:
频率控制模块基于预设切换方式和所述目标频率,调节所述逆变器的频率,实现对所述逆变器的频率的控制。
可选的,所述预设切换方式包括:滞环切换和线性切换。
本申请实施例所提供的逆变器温度控制***可执行本申请任意实施例所提供的逆变器温度控制方法,具备执行方法相应的功能模块和效果。
实施例四
图10为本申请实施例四提供的一种车辆的结构示意图,如图10所示,该车辆包括处理器1010、存储器1020和逆变器温度控制装置1030;车辆中处理器1010的数量可以是一个或多个,图10中以一个处理器1010为例;车辆中的处理器1010、存储器1020和逆变器温度控制装置1030可以通过总线或其他方式连接,图10中以通过总线连接为例。
存储器1020作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的逆变器温度控制方法对应的程序指令/模块(例如,逆变器温度控制***中的传感模块、频率控制模块、频率控制模块、功率控制模块和电机)。处理器1010通过运行存储在存储器1020中的软件程序、指令以及模块,从而执行车辆的多种功能应用以及数据处理,即实现上述的逆变器温度控制方法。
存储器1020可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所 创建的数据等。此外,存储器1020可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1020可包括相对于处理器1010远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
逆变器温度控制***可以设置为控制逆变器的温度。
本申请实施例提供的车辆可以执行上述实施例提供的逆变器温度控制方法,具备相应的功能和效果。
实施例五
本申请实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种逆变器温度控制方法,该方法可以由温控***来执行,该温控***可以包括:传感模块、频率控制模块、功率控制模块和电机;
该方法可以包括如下步骤:
所述传感模块获取电机的转速信息;
所述频率控制模块获取电机的转矩信息;
所述功率控制模块获取逆变器的温度信息;
所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;
所述频率控制模块调节所述逆变器的频率至所述目标频率,实现对所述逆变器的频率的控制;
所述功率控制模块基于所述目标频率控制所述电机的输出频率,实现对所述逆变器的温度的控制。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的逆变器温度控制方法中的相关操作。
通过以上关于实施方式的描述,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。本申请可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是 个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
上述逆变器温度控制***的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种逆变器温度控制方法,应用于温控***,所述温控***包括:传感模块、频率控制模块、功率控制模块和电机;
    所述方法包括:
    所述传感模块获取所述电机的转速信息;所述频率控制模块获取所述电机的转矩信息;所述功率控制模块获取逆变器的温度信息;
    所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;
    所述频率控制模块调节所述逆变器的频率至所述目标频率,以控制所述逆变器的频率;
    所述功率控制模块基于所述目标频率控制所述电机的输出频率,以控制所述逆变器的温度。
  2. 根据权利要求1所述的方法,其中,所述频率控制模块根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率,包括:
    所述频率控制模块根据预设转速、预设转矩和预设阈值,分别对所述转速信息、所述转矩信息和所述温度信息进行判断;
    所述频率控制模块基于所述转速信息、所述转矩信息和所述温度信息的判断结果,确定所述逆变器的目标频率。
  3. 根据权利要求2所述的方法,其中,所述频率控制模块根据预设转速、预设转矩和预设阈值,分别对所述转速信息、所述转矩信息和所述温度信息进行判断,包括:
    所述频率控制模块基于当前转速、第一转速和第二转速,对所述当前转速进行判断;
    所述频率控制模块基于当前转矩、第一转矩和第二转矩,对所述当前转矩进行判断;
    所述频率控制模块基于当前温度、第一阈值和第二阈值,对所述当前温度进行判断。
  4. 根据权利要求2所述的方法,其中,所述频率控制模块基于所述转速信息、所述转矩信息和所述温度信息的判断结果,确定所述逆变器的目标频率,包括:
    在当前转速小于或者等于第一转速的情况下,所述频率控制模块确定所述目标频率为第一载频;
    在当前转速大于第一转速且小于或者等于第二转速,且当前转矩小于或者等于第一转矩的情况下,所述频率控制模块确定所述目标频率小于或者等于第二载频;
    在当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩且小于或者等于第二转矩的情况下,所述频率控制模块确定所述目标频率小于或者等于第三载频;
    在当前转速大于第一转速且小于或者等于第二转速,且当前转矩大于第一转矩的情况下或者在当前转速大于第二转速的情况下,所述频率控制模块确定所述目标频率大于或者等于第四载频。
  5. 根据权利要求2所述的方法,其中,所述频率控制模块基于所述转速信息、所述转矩信息和所述温度信息的判断结果,确定所述逆变器的目标频率,包括:
    在当前温度大于第一阈值的情况下,所述频率控制模块根据预设低频和当前载频的比对结果,确定所述目标频率;
    在当前温度小于第二阈值的情况下,所述频率控制模块根据预设高频和当前载频的比对结果,确定所述目标频率。
  6. 根据权利要求2所述的方法,其中,所述频率控制模块调节所述逆变器的频率至所述目标频率,以控制所述逆变器的频率,包括:
    所述频率控制模块基于预设切换方式和所述目标频率,调节所述逆变器的频率,以控制所述逆变器的频率。
  7. 根据权利要求6所述的方法,其中,所述预设切换方式包括:滞环切换和线性切换。
  8. 一种逆变器温度控制***,包括:传感模块、频率控制模块、功率控制模块和电机;
    所述传感模块,设置为获取所述电机的转速信息;
    所述频率控制模块,设置为获取所述电机的转矩信息;
    所述功率控制模块,设置为获取逆变器的温度信息;
    所述频率控制模块,还设置为根据所述转速信息、所述转矩信息和所述温度信息,确定所述逆变器的目标频率;
    所述频率控制模块,还设置为调节所述逆变器的频率至所述目标频率,以控制所述逆变器的频率;
    所述功率控制模块,还设置为基于所述目标频率控制所述电机的输出频率,以控制所述逆变器的温度。
  9. 一种车辆,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序;
    逆变器温度控制***,设置为控制逆变器的温度;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一项所述的逆变器温度控制方法。
  10. 一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一项所述的逆变器温度控制方法。
PCT/CN2021/116641 2020-09-18 2021-09-06 逆变器温度控制方法、***、车辆及介质 WO2022057650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010986265.9A CN112054744B (zh) 2020-09-18 2020-09-18 一种逆变器温度控制方法、***、车辆及介质
CN202010986265.9 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057650A1 true WO2022057650A1 (zh) 2022-03-24

Family

ID=73603409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116641 WO2022057650A1 (zh) 2020-09-18 2021-09-06 逆变器温度控制方法、***、车辆及介质

Country Status (2)

Country Link
CN (1) CN112054744B (zh)
WO (1) WO2022057650A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054744B (zh) * 2020-09-18 2022-07-05 中国第一汽车股份有限公司 一种逆变器温度控制方法、***、车辆及介质
CN114465545A (zh) * 2022-02-23 2022-05-10 哈尔滨昇悦生物科技有限公司 一种变频器的功率控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134559A (zh) * 2017-12-19 2018-06-08 珠海格力节能环保制冷技术研究中心有限公司 开关频率调节方法、装置、存储介质及伺服驱动***
CN108705956A (zh) * 2018-04-24 2018-10-26 安徽江淮汽车集团股份有限公司 一种电动汽车的电机控制器温度控制***及方法
CN110138284A (zh) * 2019-05-24 2019-08-16 苏州汇川联合动力***有限公司 驱动电机控制方法、驱动电机控制器及可读存储介质
JP2020089136A (ja) * 2018-11-28 2020-06-04 日立オートモティブシステムズ株式会社 モータ制御装置
CN112054744A (zh) * 2020-09-18 2020-12-08 中国第一汽车股份有限公司 一种逆变器温度控制方法、***、车辆及介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382396A (ja) * 1989-08-23 1991-04-08 Mitsubishi Electric Corp パルス幅変調形インバータ装置
JP3301194B2 (ja) * 1994-01-28 2002-07-15 三菱電機株式会社 インバータ制御装置
JP2006025565A (ja) * 2004-07-09 2006-01-26 Matsushita Electric Ind Co Ltd インバータ回路および圧縮機
JP4839780B2 (ja) * 2004-12-28 2011-12-21 トヨタ自動車株式会社 モータ制御装置および車両
JP4424421B2 (ja) * 2008-01-17 2010-03-03 トヨタ自動車株式会社 電動車両の制御装置およびそれを備えた電動車両、ならびに電動車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
GB201207874D0 (en) * 2012-05-04 2012-06-20 Control Tech Ltd Inverter controller and method of controlling an inverter
EP2896121A1 (en) * 2012-09-13 2015-07-22 Moog Inc. Method and apparatae for controlling and providing a voltage converter with a pulse-width-modulated switch
FR3023432B1 (fr) * 2014-07-01 2016-07-22 Renault Sa Procede de commande d'un groupe motopropulseur a deux modulations de largeur d'impulsion a deux frequences de decoupage.
KR101684538B1 (ko) * 2015-06-18 2016-12-08 현대자동차 주식회사 하이브리드 차량의 인버터 제어 방법
CN107196585B (zh) * 2017-06-11 2019-04-19 天津恒天新能源汽车研究院有限公司 一种抑制电动汽车同步电机控制器过热的方法
CN107367095B (zh) * 2017-07-28 2020-08-04 广东美芝制冷设备有限公司 压缩机功率模块温度控制方法及控制***
CN110875710B (zh) * 2018-08-29 2021-08-10 比亚迪股份有限公司 逆变器中功率模块的过温保护方法、装置及车辆
CN111200390A (zh) * 2020-02-25 2020-05-26 中国第一汽车股份有限公司 一种大功率逆变器控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134559A (zh) * 2017-12-19 2018-06-08 珠海格力节能环保制冷技术研究中心有限公司 开关频率调节方法、装置、存储介质及伺服驱动***
CN108705956A (zh) * 2018-04-24 2018-10-26 安徽江淮汽车集团股份有限公司 一种电动汽车的电机控制器温度控制***及方法
JP2020089136A (ja) * 2018-11-28 2020-06-04 日立オートモティブシステムズ株式会社 モータ制御装置
CN110138284A (zh) * 2019-05-24 2019-08-16 苏州汇川联合动力***有限公司 驱动电机控制方法、驱动电机控制器及可读存储介质
CN112054744A (zh) * 2020-09-18 2020-12-08 中国第一汽车股份有限公司 一种逆变器温度控制方法、***、车辆及介质

Also Published As

Publication number Publication date
CN112054744B (zh) 2022-07-05
CN112054744A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022057650A1 (zh) 逆变器温度控制方法、***、车辆及介质
JP5645083B2 (ja) 回転電機制御装置
US8497645B2 (en) Control device for electric motor drive device
US20090243522A1 (en) Motor drive system
CN111619351B (zh) 一种安全状态控制方法、装置及汽车
US20020185989A1 (en) Electric motor control having DC-DC converter and method of using same
WO2022227422A1 (zh) 电驱动***控制方法、电驱动***及车辆
CN102611369B (zh) 电动汽车专用开关磁阻电机调速***
US10752114B2 (en) Motor drive control method and system, and method of controlling drive of air compressor in fuel cell system using the same
Zhang et al. Vibration reduction control of switched reluctance machine
US20190248248A1 (en) Controller of electrically powered vehicle
Singh et al. Minimization of torque ripples in SRM drive using DITC for electrical vehicle application
WO2024040881A1 (zh) 应用于竞赛级遥控模型车的线性刹车控制方法和装置
US10910980B2 (en) Control device for switched reluctance motor
Yaling et al. Outer-rotor switched reluctance motor and its control system used in electric vehicles
JP2013031257A (ja) 回転電機制御装置
CN113442737A (zh) 一种双电机联合驱动***的双电机控制***及控制方法
Sun et al. Multi-level converter-based torque sharing function control strategy for switched reluctance motors
Wang et al. Design of a wide speed range control strategy of switched reluctance motor for electric vehicles
JP7424058B2 (ja) モータ制御装置
US8148927B2 (en) Alternating-current motor control apparatus
Zhang et al. Research on optimized control technique of electrical vehicles propulsion system with dual PMSM connection
CN202550951U (zh) 电动汽车专用开关磁阻电机调速***
CN107086749B (zh) 电动车用单绕组双速永磁电机
CN108418497B (zh) 一种分段绕组电机控制器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868476

Country of ref document: EP

Kind code of ref document: A1