WO2022047990A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022047990A1
WO2022047990A1 PCT/CN2020/125847 CN2020125847W WO2022047990A1 WO 2022047990 A1 WO2022047990 A1 WO 2022047990A1 CN 2020125847 W CN2020125847 W CN 2020125847W WO 2022047990 A1 WO2022047990 A1 WO 2022047990A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
optical lens
radius
Prior art date
Application number
PCT/CN2020/125847
Other languages
English (en)
French (fr)
Inventor
石荣宝
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022047990A1 publication Critical patent/WO2022047990A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-piece or four-piece lens structure.
  • the pixel area of the photosensitive device is continuously reduced, and the requirements of the system for imaging quality are constantly improving.
  • the common six-piece lens already has good optical performance, its optical power, lens spacing and lens shape setting are still unreasonable to a certain extent, resulting in the lens structure having good optical performance, it cannot be used.
  • the purpose of the present invention is to provide an imaging optical lens, which can meet the design requirements of large aperture, wide angle, and ultra-thinness while obtaining high imaging performance.
  • an imaging optical lens sequentially includes from the object side to the image side: a first lens having a positive refractive power, a second lens having a negative refractive power a lens, a third lens, a fourth lens, a fifth lens with positive refractive power, and a sixth lens with negative refractive power;
  • the overall focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the axial distance from the image side of the fifth lens to the object side of the sixth lens is d10
  • the imaging optical lens The total optical length is TTL and satisfies the following relation:
  • the focal length of the second lens is f2 and satisfies the following relationship:
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the following relational expressions are satisfied:
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is d3, and the following relationship is satisfied:
  • the focal length of the third lens is f3, the radius of curvature of the object side of the third lens is R5, the radius of curvature of the image side of the third lens is R6, the on-axis thickness of the third lens is d5, and satisfy the following relation:
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is d7, and satisfies the following relation:
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is is d9, and satisfies the following relation:
  • the focal length of the sixth lens is f6, the radius of curvature of the object side of the sixth lens is R11, the radius of curvature of the image side of the sixth lens is R12, and the on-axis thickness of the sixth lens is is d11 and satisfies the following relation:
  • the image height of the imaging optical lens is IH
  • the optical total length of the imaging optical lens is TTL
  • the following relational formula is satisfied: TTL/IH ⁇ 1.88.
  • the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, wide angle and ultra-thin thickness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements Camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 6 is the axial aberration schematic diagram of the imaging optical lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 9;
  • FIG. 11 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention.
  • Fig. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in Fig. 13;
  • FIG. 15 is a schematic diagram of the magnification chromatic aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13 .
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes six lenses. Specifically, the imaging optical lens 10 sequentially includes, from the object side to the image side: a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, an aperture S1, and a third lens Six lenses L6, the sixth lens L6 and the image plane Si are spaced apart from each other.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a negative refractive power
  • the fourth lens L4 has a negative refractive power
  • the fifth lens L5 has a positive refractive power
  • the sixth lens L6 has a negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of plastic material Made of plastic.
  • the overall focal length of the imaging optical lens 10 as f
  • the focal length of the first lens L1 as f1
  • the axial distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6 as d10.
  • the total optical length is TTL and satisfies the following relationship:
  • the air separation distance between the fifth lens L5 and the sixth lens L6 (that is, the on-axis distance d10 from the image side of the fifth lens L5 to the object side of the sixth lens L6) can be effectively allocated. ) to facilitate lens mounting.
  • the relational expression (2) defines the ratio of the focal length f1 of the first lens L1 to the focal length f of the imaging optical lens 10 as a whole. Within the range of the relational expression, it is beneficial to correct aberrations and improve image quality.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is defined as f2
  • the following relationship is satisfied: -2.10 ⁇ f2/f ⁇ -1.00.
  • This relational expression defines the ratio of the focal length f2 of the second lens L2 to the focal length f of the entire imaging optical lens 10 , and within the range of the relational expression, contributes to improving the performance of the imaging optical lens 10 .
  • the curvature radius of the object side surface of the fifth lens L5 is defined as R9, and the curvature radius of the image side surface of the fifth lens L5 is R10, and the following relationship is satisfied: -3.00 ⁇ R10/R9 ⁇ -1.00.
  • the relational expression specifies the shape of the fifth lens L5, and within the range specified by the relational expression, the degree of deflection of the light passing through the lens can be moderated, and aberrations can be effectively reduced.
  • the object side surface of the first lens L1 is a convex surface at the paraxial position, and the image side surface thereof is a convex surface at the paraxial position.
  • the curvature radius of the object side surface of the first lens L1 is defined as R1, and the curvature radius of the image side surface of the first lens L1 is R2, and the following relationship is satisfied: -1.01 ⁇ (R1+R2)/(R1-R2) ⁇ 0.27.
  • the first lens L1 can effectively correct the spherical aberration of the system.
  • -0.63 ⁇ (R1+R2)/(R1-R2) ⁇ 0.21 is satisfied.
  • the axial thickness of the first lens L1 is defined as d1, and the optical total length of the imaging optical lens 10 is TTL, which satisfies the following relational formula: 0.03 ⁇ d1/TTL ⁇ 0.10. Within the range of the relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.05 ⁇ d1/TTL ⁇ 0.08 is satisfied.
  • the object side surface of the second lens L2 is a convex surface at the paraxial position, and the image side surface thereof is a concave surface at the paraxial position.
  • the curvature radius of the object side surface of the second lens L2 is defined as R3, and the curvature radius of the image side surface of the second lens L2 is R4, and the following relationship is satisfied: 1.60 ⁇ (R3+R4)/(R3-R4) ⁇ 6.07.
  • This relational expression specifies the shape of the second lens L2, and when it is within the range of the relational expression, as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • Preferably, 2.56 ⁇ (R3+R4)/(R3-R4) ⁇ 4.86 is satisfied.
  • the optical total length of the imaging optical lens 10 is TTL, and the axial thickness of the second lens L2 is d3, which satisfies the following relationship: 0.01 ⁇ d3/TTL ⁇ 0.05.
  • 0.02 ⁇ d3/TTL ⁇ 0.04 is satisfied.
  • the object side surface of the third lens L3 is a concave surface at the paraxial position
  • the image side surface of the third lens L3 is a convex surface at the paraxial position
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: -2.50 ⁇ f3/f ⁇ 20.33.
  • the system has better imaging quality and lower sensitivity.
  • -1.56 ⁇ f3/f ⁇ 16.27 is satisfied.
  • the curvature radius R5 of the object side surface of the third lens L3 and the curvature radius R6 of the image side surface of the third lens L3 are defined to satisfy the following relationship: -3.68 ⁇ (R5+R6)/(R5-R6) ⁇ 17.54.
  • the relational expression specifies the shape of the third lens L3, and within the range specified by the relational expression, the degree of deflection of the light passing through the lens can be moderated, and aberrations can be effectively reduced.
  • -2.30 ⁇ (R5+R6)/(R5-R6) ⁇ 14.03 is satisfied.
  • the optical total length of the imaging optical lens 10 is TTL, and the axial thickness of the third lens L3 is defined as d5, which satisfies the following relational formula: 0.01 ⁇ d5/TTL ⁇ 0.06. Within the range of the relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.02 ⁇ d5/TTL ⁇ 0.05 is satisfied.
  • the object side surface of the fourth lens L4 is a convex surface at the paraxial position, and the image side surface thereof is a concave surface at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the fourth lens L4 is defined as f4, which satisfies the following relationship: -25.39 ⁇ f4/f ⁇ 88.25.
  • the system has better imaging quality and lower sensitivity.
  • -15.87 ⁇ f4/f ⁇ 70.60 is satisfied.
  • the curvature radius of the object side surface of the fourth lens L4 is defined as R7, and the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfy the following relationship: -354.59 ⁇ (R7+R8)/(R7-R8) ⁇ 30.09.
  • This relational expression specifies the shape of the fourth lens L4, and when it is within the range of the relational expression, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations in off-axis picture angles.
  • -221.62 ⁇ (R7+R8)/(R7-R8) ⁇ 24.07 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the axial thickness of the fourth lens L4 is defined as d7, which satisfies the following relational formula: 0.01 ⁇ d7/TTL ⁇ 0.05. Within the range of the relational expression, it is advantageous to achieve ultra-thinning. Preferably, 0.02 ⁇ d7/TTL ⁇ 0.04 is satisfied.
  • the object side surface of the fifth lens L5 is convex at the paraxial position, and the image side surface thereof is convex at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the fifth lens L5 is defined as f5, which satisfies the following relationship: 0.37 ⁇ f5/f ⁇ 1.40.
  • the definition of the fifth lens L5 can effectively make the light angle of the imaging optical lens 10 gentle and reduce the tolerance sensitivity.
  • 0.59 ⁇ f5/f ⁇ 1.12 is satisfied.
  • the curvature radius R9 of the object side surface of the fifth lens L5 and the curvature radius R10 of the image side surface of the fifth lens L5 are defined to satisfy the following relationship: -0.98 ⁇ (R9+R10)/(R9-R10) ⁇ -0.02.
  • This relational expression specifies the shape of the fifth lens L5, and when it is within the range of the relational expression, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations in off-axis picture angles.
  • -0.61 ⁇ (R9+R10)/(R9-R10) ⁇ -0.02 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the axial thickness of the fifth lens L5 is defined as d9, which satisfies the following relational formula: 0.02 ⁇ d9/TTL ⁇ 0.11, within the range of the relational formula, it is beneficial to realize ultra-thinning.
  • 0.04 ⁇ d9/TTL ⁇ 0.09 is satisfied.
  • the object side surface of the sixth lens L6 is concave at the paraxial position, and the image side surface thereof is concave at the paraxial position.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the sixth lens L6 is defined as f6, which satisfies the following relationship: -1.82 ⁇ f6/f ⁇ -0.50, through the reasonable distribution of the optical power of the sixth lens L6, the system Has better imaging quality and lower sensitivity.
  • -1.14 ⁇ f6/f ⁇ -0.63 is satisfied.
  • the curvature radius of the object side surface of the sixth lens L6 is defined as R11, and the curvature radius of the image side surface of the sixth lens L6 is R12, which satisfy the following relationship: -0.35 ⁇ (R11+R12)/(R11-R12) ⁇ 0.47.
  • This relational expression specifies the shape of the sixth lens L6, and when it is within the range of the relational expression, along with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations in the off-axis picture angle.
  • -0.22 ⁇ (R11+R12)/(R11-R12) ⁇ 0.38 is satisfied.
  • the total optical length of the imaging optical lens 10 is TTL, and the axial thickness of the sixth lens L6 is defined as d11, which satisfies the following relationship: 0.08 ⁇ d11/TTL ⁇ 0.31, which is conducive to realizing ultra-thinning. Preferably, 0.13 ⁇ d11/TTL ⁇ 0.25 is satisfied.
  • the image height of the imaging optical lens 10 is IH
  • the total optical length of the imaging optical lens 10 is TTL
  • the following relationship is satisfied: TTL/IH ⁇ 1.88, which is conducive to realizing ultra-thinning.
  • the aperture value FNO of the imaging optical lens 10 satisfies the following relational expression: FNO ⁇ 2.25. To achieve a large aperture.
  • the field of view FOV of the imaging optical lens 10 is greater than or equal to 64.00°, thereby realizing a wide angle.
  • the overall focal length of the imaging optical lens 10 is f
  • the combined focal length of the first lens L1 and the second lens L2 is defined as f12, which satisfies the following relationship: 0.39 ⁇ f12/f ⁇ 6.90.
  • the aberration and distortion of the imaging optical lens 10 can be eliminated, the back focal length of the imaging optical lens 10 can be suppressed, and the miniaturization of the imaging lens system group can be maintained.
  • 0.62 ⁇ f12/f ⁇ 5.52 is satisfied.
  • the surface of each lens can be set as an aspherical surface, and the aspherical surface can be easily made into a shape other than a spherical surface, so as to obtain more control variables to reduce aberrations, thereby reducing the use of the lens. Therefore, the total length of the imaging optical lens 10 can be effectively reduced.
  • the object side surface and the image side surface of each lens are both aspherical surfaces.
  • the imaging optical lens 10 can have good optical performance, and can satisfy the requirements of large aperture, wide-angle, and ultra-thinning. Design requirements: According to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, curvature radius, on-axis thickness, position of inflection point and position of stagnation point is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the entrance pupil diameter ENPD.
  • an inflection point and/or a stagnation point may also be set on the object side and/or the image side of each lens to meet the requirements of high-quality imaging. For specific implementations, see below.
  • the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
  • Table 1 lists the curvature radius of the object side surface and the curvature radius R of the image side surface of the first lens L1 to the sixth lens L6 constituting the imaging optical lens 10 in the first embodiment of the present invention, the on-axis thickness of each lens, and the two adjacent lenses.
  • distance d distance between the units of R and d are both millimeters (mm).
  • R the radius of curvature at the center of the optical surface
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the curvature radius of the image side surface of the third lens L3;
  • R7 the curvature radius of the object side surface of the fourth lens L4;
  • R8 the curvature radius of the image side surface of the fourth lens L4;
  • R9 the curvature radius of the object side surface of the fifth lens L5;
  • R10 the curvature radius of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the curvature radius of the image side surface of the sixth lens L6;
  • d the on-axis thickness of the lens, the on-axis distance between the lenses
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the axial distance from the image side of the sixth lens L6 to the image plane
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, and A20 are aspheric coefficients.
  • x is the vertical distance between the point on the aspheric curve and the optical axis
  • y is the aspheric depth (the vertical distance between the point on the aspheric surface that is x from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis ).
  • the aspherical surfaces of the respective lens surfaces are those shown in the above formula (3).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (3).
  • Table 3 and Table 4 show the inflection point and stagnation point design data of each lens in the imaging optical lens 10 of the present embodiment.
  • P1R1 and P1R2 respectively represent the object side and image side of the first lens L1
  • P2R1 and P2R2 respectively represent the object side and image side of the second lens L2
  • P3R1 and P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 respectively represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and the image side of the fifth lens L5
  • P6R1 and P6R2 respectively represent the object side and the image side of the sixth lens L6.
  • the corresponding data in the column of “inflection point position” is the vertical distance from the inflection point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • the corresponding data in the column of "stagnation point position” is the vertical distance from the stagnation point set on the surface of each lens to the optical axis of the imaging optical lens 10 .
  • P2R2 1 1.095 / P3R1 2 0.755 2.355 P3R2 2 0.435 1.735 P4R1 1 2.315 / P4R2 1 2.275 / P5R1 0 / / P5R2 1 1.275 / P6R1 1 4.105 / P6R2 2 1.795 6.575
  • the first embodiment satisfies each relational expression.
  • FIG. 4 shows a schematic diagram of the field curvature and distortion of light with a wavelength of 460 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field in the meridional direction. song.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 5.200 mm
  • the image height IH of the full field of view is 7.500 mm
  • the FOV in the diagonal direction is 65.50°.
  • the imaging optical lens 10 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 5 is a schematic structural diagram of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment.
  • the symbols in the following list have the same meanings as the first embodiment, so the same parts will not be repeated here. .
  • the imaging optical lens 20 includes six lenses. Specifically, the imaging optical lens 20 includes, in order from the object side to the image side: a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, an aperture S1, a fifth lens L5 and a sixth lens The lens L6 and the sixth lens L6 are spaced apart from the image plane Si.
  • the third lens L3 has positive refractive power.
  • Table 5 shows design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and the stagnation point of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 460 nm, 540 nm and 620 nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 460 nm passes through the imaging optical lens 20 of the second embodiment.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 5.200 mm
  • the full field of view image height IH is 7.500 mm
  • the FOV in the diagonal direction is 65.20°.
  • the imaging optical lens 20 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 9 is a schematic structural diagram of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment.
  • the symbols in the following list have the same meanings as the first embodiment, so the same parts will not be repeated here. , only the differences are listed below.
  • the imaging optical lens 30 includes six lenses. Specifically, the imaging optical lens 20 includes, in order from the object side to the image side: a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, an aperture S1, a fifth lens L5 and a sixth lens The lens L6 and the sixth lens L6 are spaced apart from the image plane Si.
  • the image side surface of the third lens L3 is concave at the paraxial position.
  • Table 9 shows design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 10 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 11 and Table 12 show the inflection point and stagnation point design data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • P2R1 1 1.305 / P2R2 2 2.025 2.345 P3R1 1 1.315 / P3R2 0 / / P4R1 2 0.315 1.385 P4R2 0 / / P5R1 0 / / P5R2 1 1.835 / P6R1 0 / / P6R2 1 4.185 /
  • the third embodiment satisfies each relational expression.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 460 nm, 540 nm and 620 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 460 nm passes through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 5.200 mm
  • the full field of view image height IH is 7.500 mm
  • the FOV in the diagonal direction is 65.32°.
  • the imaging optical lens 30 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • FIG. 13 is a schematic structural diagram of the imaging optical lens 40 in the fourth embodiment.
  • the fourth embodiment is basically the same as the first embodiment, and the symbols in the following list have the same meanings as the first embodiment, so the same parts will not be repeated here. , only the differences are listed below.
  • the imaging optical lens 40 includes six lenses. Specifically, the imaging optical lens 20 includes, in order from the object side to the image side: a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, an aperture S1, a fifth lens L5 and a sixth lens The lens L6 and the sixth lens L6 are spaced apart from the image plane Si.
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has positive refractive power
  • Table 13 shows design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • P2R2 1 1.345 / P3R1 0 / / P3R2 0 / / P4R1 0 / / P4R2 0 / / P5R1 2 0.965 1.865 P5R2 1 2.005 / P6R1 1 4.085 / P6R2 2 1.965 6.245
  • the fourth embodiment satisfies each relational expression.
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light with wavelengths of 460 nm, 540 nm and 620 nm passes through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 shows a schematic diagram of field curvature and distortion after light with a wavelength of 460 nm passes through the imaging optical lens 40 of the fourth embodiment.
  • the entrance pupil diameter ENPD of the imaging optical lens 40 is 5.200 mm
  • the full field of view image height IH is 7.500 mm
  • the FOV in the diagonal direction is 64.88°.
  • the imaging optical lens 40 satisfies the requirements of large aperture, Wide-angle and ultra-thin design requirements, the on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Table 17 lists the numerical values of the corresponding relational expressions in the first embodiment, the second embodiment, the third embodiment and the fourth embodiment, and the values of other related parameters according to the above-mentioned relational expressions.
  • Example 1 Example 2
  • Example 3 Example 4 f 11.540 11.600 11.600 11.600 f1 7.252 11.270 6.691 11.520 f2 -14.101 -12.525 -23.295 -12.605 f3 -14.424 137.538 -11.122 157.233 f4 -146.518 -143.541 -32.851 682.475 f5 9.392 8.600 9.113 10.841 f6 -9.472 -8.781 -10.538 -9.850 f12 13.235 47.843 8.949 53.386 FNO 2.22 2.23 2.23 2.23 TTL 13.041 13.609 13.299 14.096 IH 7.500 7.500 7.500 7.500 FOV 65.50° 65.20° 65.32° 64.88° d10/TTL 0.48 0.27 0.43 0.40 f1/f 0.63 0.97 0.58 0.99

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明涉及光学镜头领域,公开了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、第四透镜、具有正屈折力的第五透镜及具有负屈折力的第六透镜;所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第五透镜的像侧面到所述第六透镜的物侧面的轴上距离为d10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.25≤d10/TTL≤0.50; 0.55≤f1/f≤1.00。本发明的摄像光学镜头具有大光圈、广角化、超薄化等良好的光学性能。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且***对成像品质的要求不断提高的情况下,五片式、六片式透镜结构逐渐出现在镜头设计当中,常见的六片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足大光圈、广角化、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、第四透镜、具有正屈折力的第五透镜及具有负屈折力的第六透镜;
所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第五透镜的像侧面到所述第六透镜的物侧面的轴上距离为d10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.25≤d10/TTL≤0.50;
0.55≤f1/f≤1.00。
优选地,所述第二透镜的焦距为f2,且满足下列关系式:
-2.10≤f2/f≤-1.00。
优选地,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧 面的曲率半径为R10,且满足下列关系式:
-3.00≤R10/R9≤-1.00。
优选地,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
-1.01≤(R1+R2)/(R1-R2)≤0.27;
0.03≤d1/TTL≤0.10。
优选地,
所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
1.60≤(R3+R4)/(R3-R4)≤6.07;
0.01≤d3/TTL≤0.05。
优选地,
所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:
-2.50≤f3/f≤20.33;
-3.68≤(R5+R6)/(R5-R6)≤17.54;
0.01≤d5/TTL≤0.06。
优选地,所述第四透镜的焦距为f4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
-25.39≤f4/f≤88.25;
-354.59≤(R7+R8)/(R7-R8)≤30.09;
0.01≤d7/TTL≤0.05。
优选地,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
0.37≤f5/f≤1.40;
-0.98≤(R9+R10)/(R9-R10)≤-0.02;
0.02≤d9/TTL≤0.11。
优选地,所述第六透镜的焦距为f6,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
-1.82≤f6/f≤-0.50;
-0.35≤(R11+R12)/(R11-R12)≤0.47;
0.08≤d11/TTL≤0.31。
优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.88。
本发明的有益效果在于:根据本发明的摄像光学镜头具有良好光学性 能,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本发明第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、光圈S1、及第六透镜L6,第六透镜L6与像面Si间隔设置。
在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有负屈折力,第五透镜L5 具有正屈折力,第六透镜L6具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。
在此,定义摄像光学镜头10整体的焦距为f,第一透镜L1的焦距为f1,第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离为d10,摄像光学镜头10的光学总长为TTL,且满足下列关系式:
0.25≤d10/TTL≤0.50       (1)
0.55≤f1/f≤1.00         (2)
其中,当d10/TTL满足条件时,可有效分配第五透镜L5与第六透镜L6之间的空气间隔距离(即第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离d10),有助于镜片安装。
在关系式(2)规定了第一透镜L1的焦距f1与摄像光学镜头10整体的焦距f的比值,在关系式范围内,有利于像差校正及提高像质。
摄像光学镜头10整体的焦距为f,定义第二透镜L2的焦距为f2,且满足下列关系式:-2.10≤f2/f≤-1.00。该关系式规定了第二透镜L2的焦距f2与摄像光学镜头10整体的焦距f的比值,在关系式范围内,有助于提高摄像光学镜头10的性能。
定义第五透镜L5的物侧面的曲率半径为R9,第五透镜L5的像侧面的曲率半径为R10,且满足下列关系式:-3.00≤R10/R9≤-1.00。该关系式规定了第五透镜L5的形状,在关系式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,其像侧面于近轴处为凸面。
定义第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,且满足下列关系式:-1.01≤(R1+R2)/(R1-R2)≤0.27。通过合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正***球差。优选地,满足-0.63≤(R1+R2)/(R1-R2)≤0.21。
定义第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.10。在关系式范围内,有利于实现超薄化。优选地,满足0.05≤d1/TTL≤0.08。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
定义第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,且满足下列关系式:1.60≤(R3+R4)/(R3-R4)≤6.07。该关系式规定了第二透镜L2的形状,在关系式范围内时,随着镜头向超薄、广角化发展,有利于补正轴上色像差问题。优选地,满足2.56≤(R3+R4)/(R3-R4)≤4.86。
摄像光学镜头10的光学总长为TTL,第二透镜L2的轴上厚度为d3,满 足下列关系式:0.01≤d3/TTL≤0.05。在关系式范围内,有利于实现超薄化。优选地,满足0.02≤d3/TTL≤0.04。
本实施方式中,第三透镜L3的物侧面于近轴处为凹面,第三透镜L3的像侧面于近轴处为凸面。
摄像光学镜头10整体的焦距为f,定义第三透镜L3的焦距为f3,满足下列关系式:-2.50≤f3/f≤20.33。通过第三透镜L3的负光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选地,满足-1.56≤f3/f≤16.27。
定义第三透镜L3的物侧面的曲率半径R5,第三透镜L3的像侧面的曲率半径R6,满足下列关系式:-3.68≤(R5+R6)/(R5-R6)≤17.54。该关系式规定了第三透镜L3的形状,在关系式规定的范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-2.30≤(R5+R6)/(R5-R6)≤14.03。
摄像光学镜头10的光学总长为TTL,定义第三透镜L3的轴上厚度为d5,满足下列关系式:0.01≤d5/TTL≤0.06。在关系式范围内,有利于实现超薄化。优选地,满足0.02≤d5/TTL≤0.05。
本实施方式中,第四透镜L4的物侧面于近轴处为凸面,其像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第四透镜L4的焦距为f4,满足下列关系式:-25.39≤f4/f≤88.25。通过第四透镜L4的光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选地,满足-15.87≤f4/f≤70.60。
定义第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧面的曲率半径为R8,满足下列关系式:-354.59≤(R7+R8)/(R7-R8)≤30.09。该关系式规定了第四透镜L4的形状,在关系式范围内时,随着超薄、广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-221.62≤(R7+R8)/(R7-R8)≤24.07。
摄像光学镜头10的光学总长为TTL,定义第四透镜L4的轴上厚度为d7,满足下列关系式:0.01≤d7/TTL≤0.05。在关系式范围内,有利于实现超薄化。优选地,满足0.02≤d7/TTL≤0.04。
本实施方式中,第五透镜L5的物侧面于近轴处为凸面,其像侧面于近轴处为凸面。
摄像光学镜头10整体的焦距为f,定义第五透镜L5的焦距为f5,满足下列关系式:0.37≤f5/f≤1.40。对第五透镜L5的限定可有效的使得摄像光学镜头10的光线角度平缓,降低公差敏感度。优选地,满足0.59≤f5/f≤1.12。
定义第五透镜L5的物侧面的曲率半径R9,第五透镜L5的像侧面的曲率半径R10,满足下列关系式:-0.98≤(R9+R10)/(R9-R10)≤-0.02。该关系式规定了第五透镜L5的形状,在关系式范围内时,随着超薄、广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-0.61≤(R9+R10)/(R9-R10)≤ -0.02。
摄像光学镜头10的光学总长为TTL,定义第五透镜L5的轴上厚度为d9,满足下列关系式:0.02≤d9/TTL≤0.11,在关系式范围内,有利于实现超薄化。优选地,满足0.04≤d9/TTL≤0.09。
本实施方式中,第六透镜L6的物侧面于近轴处为凹面,其像侧面于近轴处为凹面。
摄像光学镜头10整体的焦距为f,定义第六透镜L6的焦距为f6,满足下列关系式:-1.82≤f6/f≤-0.50,通过第六透镜L6的光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选地,满足-1.14≤f6/f≤-0.63。
定义第六透镜L6的物侧面的曲率半径为R11,第六透镜L6的像侧面的曲率半径为R12,满足下列关系式:-0.35≤(R11+R12)/(R11-R12)≤0.47。该关系式规定了第六透镜L6的形状,在关系式范围内时,随着超薄、广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-0.22≤(R11+R12)/(R11-R12)≤0.38。
摄像光学镜头10的光学总长为TTL,定义第六透镜L6的轴上厚度为d11,满足下列关系式:0.08≤d11/TTL≤0.31,有利于实现超薄化。优选地,满足0.13≤d11/TTL≤0.25。
本实施方式中,摄像光学镜头10的像高为IH,摄像光学镜头10的光学总长为TTL,且满足下列关系式:TTL/IH≤1.88,从而有利于实现超薄化。
本实施方式中,摄像光学镜头10的光圈值FNO满足下列关系式:FNO≤2.25。从而实现大光圈。
本实施方式中,摄像光学镜头10的视场角FOV大于或等于64.00°,从而实现广角化。
本实施方式中,摄像光学镜头10整体的焦距为f,定义第一透镜L1与第二透镜L2的组合焦距为f12,满足下列关系式:0.39≤f12/f≤6.90。在关系式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片***组小型化。优选的,满足0.62≤f12/f≤5.52。
此外,本实施方式提供的摄像光学镜头10中,各透镜的表面可以设置为非球面,非球面容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低摄像光学镜头10的总长度。在本实施方式中,各个透镜的物侧面和像侧面均为非球面。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符 号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径ENPD的比值。
另外,各透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第六透镜L6的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度以及相邻两透镜间的距离d、折射率nd及阿贝数vd。需要说明的是,本实施方式中,R与d的单位均为毫米(mm)。
【表1】
Figure PCTCN2020125847-appb-000001
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020125847-appb-000002
Figure PCTCN2020125847-appb-000003
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20       (3)
其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(3)中所示的非球面。但是,本发明不限于该公式(3)表示的非球面多项式形式。
表3、表4示出本实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 1.685 /
P1R2 0 / /
P2R1 2 0.805 2.525
P2R2 1 1.095 /
P3R1 2 0.755 2.355
P3R2 2 0.435 1.735
P4R1 1 2.315 /
P4R2 1 2.275 /
P5R1 0 / /
P5R2 1 1.275 /
P6R1 1 4.105 /
P6R2 2 1.795 6.575
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1 1 2.465 /
P1R2 0 / /
P2R1 1 1.495 /
P2R2 0 / /
P3R1 1 1.555 /
P3R2 2 0.825 2.275
P4R1 0 / /
P4R2 0 / /
P5R1 0 / /
P5R2 1 1.885 /
P6R1 0 / /
P6R2 1 4.065 /
另外,在后续的表17中,还列出了第一实施方式中各种数值与关系式中已规定的参数所对应的值。
如表17所示,第一实施方式满足各关系式。
图2、图3分别示出了波长为460nm、540nm和620nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为460nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头10的入瞳直径ENPD为5.200mm,全视场像高IH为7.500mm,对角线方向的视场角FOV为65.50°,摄像光学镜头10满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第二实施方式)
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述。
该摄像光学镜头20包括六个透镜。具体的,所述摄像光学镜头20,由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、光圈S1、第五透镜L5及第六透镜L6,第六透镜L6与像面Si间隔设置。
在本实施例中,第三透镜L3具有正屈折力。
表5示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2020125847-appb-000004
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure PCTCN2020125847-appb-000005
Figure PCTCN2020125847-appb-000006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0 / /
P1R2 1 1.985 /
P2R1 1 1.015 /
P2R2 2 1.355 2.275
P3R1 0 / /
P3R2 0 / /
P4R1 0 / /
P4R2 0 / /
P5R1 2 1.015 1.515
P5R2 1 1.885 /
P6R1 1 3.255 /
P6R2 2 1.445 5.075
【表8】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 1 1.855
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 0 /
P4R2 0 /
P5R1 0 /
P5R2 1 2.345
P6R1 0 /
P6R2 1 2.755
另外,在后续的表17中,还列出了第二实施方式中各种数值与关系式中已规定的参数所对应的值。
如表17所示,第二实施方式满足各关系式。
图6、图7分别示出了波长为460nm、540nm和620nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为460nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头20的入瞳直径ENPD为5.200mm,全视场像高IH为7.500mm,对角线方向的视场角FOV为65.20°,摄像光学镜头20满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第三实施方式)
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
该摄像光学镜头30包括六个透镜。具体的,所述摄像光学镜头20,由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、光圈S1、第五透镜L5及第六透镜L6,第六透镜L6与像面Si间隔设置。
在本实施例中,第三透镜L3的像侧面于近轴处为凹面。
表9示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2020125847-appb-000007
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure PCTCN2020125847-appb-000008
Figure PCTCN2020125847-appb-000009
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 1.255 /
P1R2 0 / /
P2R1 2 0.705 2.425
P2R2 2 0.945 2.205
P3R1 1 0.685 /
P3R2 1 2.165 /
P4R1 2 0.185 1.015
P4R2 2 0.665 0.775
P5R1 0 / /
P5R2 1 1.225 /
P6R1 1 4.135 /
P6R2 2 2.005 6.385
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1 1 2.005 /
P1R2 0 / /
P2R1 1 1.305 /
P2R2 2 2.025 2.345
P3R1 1 1.315 /
P3R2 0 / /
P4R1 2 0.315 1.385
P4R2 0 / /
P5R1 0 / /
P5R2 1 1.835 /
P6R1 0 / /
P6R2 1 4.185 /
另外,在后续的表17中,还列出了第三实施方式中各种数值与关系式中已规定的参数所对应的值。
如表17所示,第三实施方式满足各关系式。
图10、图11分别示出了波长为460nm、540nm和620nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为460nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头30的入瞳直径ENPD为5.200mm,全视场像高IH为7.500mm,对角线方向的视场角FOV为65.32°,摄像光学镜头30满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
(第四实施方式)
图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,以下列表中符号含义与第一实施方式相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
该摄像光学镜头40包括六个透镜。具体的,所述摄像光学镜头20,由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、光圈S1、第五透镜L5及第六透镜L6,第六透镜L6与像面Si间隔设置。
在本实施例中,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力。
表13示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2020125847-appb-000010
Figure PCTCN2020125847-appb-000011
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure PCTCN2020125847-appb-000012
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 0 / /
P1R2 1 1.535 /
P2R1 1 0.975 /
P2R2 1 1.345 /
P3R1 0 / /
P3R2 0 / /
P4R1 0 / /
P4R2 0 / /
P5R1 2 0.965 1.865
P5R2 1 2.005 /
P6R1 1 4.085 /
P6R2 2 1.965 6.245
【表16】
  驻点个数 驻点位置1
P1R1 0 /
P1R2 0 /
P2R1 1 1.715
P2R2 0 /
P3R1 0 /
P3R2 0 /
P4R1 0 /
P4R2 0 /
P5R1 0 /
P5R2 0 /
P6R1 0 /
P6R2 1 4.055
另外,在后续的表17中,还列出了第四实施方式中各种数值与关系式中已规定的参数所对应的值。
如表17所示,第四实施方式满足各关系式。
图14、图15分别示出了波长为460nm、540nm和620nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了,波长为460nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图。
在本实施方式中,摄像光学镜头40的入瞳直径ENPD为5.200mm,全视场像高IH为7.500mm,对角线方向的视场角FOV为64.88°,摄像光学镜头40满足大光圈、广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。
以下表17根据上述关系式列出了第一实施方式、第二实施方式、第三实施方式及第四实施方式中对应关系式的数值,以及其他相关参数的取值。
【表17】
参数及关系式 实施例1 实施例2 实施例3 实施例4
f 11.540 11.600 11.600 11.600
f1 7.252 11.270 6.691 11.520
f2 -14.101 -12.525 -23.295 -12.605
f3 -14.424 137.538 -11.122 157.233
f4 -146.518 -143.541 -32.851 682.475
f5 9.392 8.600 9.113 10.841
f6 -9.472 -8.781 -10.538 -9.850
f12 13.235 47.843 8.949 53.386
FNO 2.22 2.23 2.23 2.23
TTL 13.041 13.609 13.299 14.096
IH 7.500 7.500 7.500 7.500
FOV 65.50° 65.20° 65.32° 64.88°
d10/TTL 0.48 0.27 0.43 0.40
f1/f 0.63 0.97 0.58 0.99
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、第四透镜、具有正屈折力的第五透镜及具有负屈折力的第六透镜;
    所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第五透镜的像侧面到所述第六透镜的物侧面的轴上距离为d10,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.25≤d10/TTL≤0.50;
    0.55≤f1/f≤1.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,且满足下列关系式:
    -2.10≤f2/f≤-1.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,且满足下列关系式:
    -3.00≤R10/R9≤-1.00。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,
    所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,且满足下列关系式:
    -1.01≤(R1+R2)/(R1-R2)≤0.27;
    0.03≤d1/TTL≤0.10。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,
    所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
    1.60≤(R3+R4)/(R3-R4)≤6.07;
    0.01≤d3/TTL≤0.05。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,
    所述第三透镜的焦距为f3,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:
    -2.50≤f3/f≤20.33;
    -3.68≤(R5+R6)/(R5-R6)≤17.54;
    0.01≤d5/TTL≤0.06。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,
    所述第四透镜的焦距为f4,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
    -25.39≤f4/f≤88.25;
    -354.59≤(R7+R8)/(R7-R8)≤30.09;
    0.01≤d7/TTL≤0.05。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的物侧面的曲率半径为R9,所述第五透镜的像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    0.37≤f5/f≤1.40;
    -0.98≤(R9+R10)/(R9-R10)≤-0.02;
    0.02≤d9/TTL≤0.11。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,
    所述第六透镜的焦距为f6,所述第六透镜的物侧面的曲率半径为R11,所述第六透镜的像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
    -1.82≤f6/f≤-0.50;
    -0.35≤(R11+R12)/(R11-R12)≤0.47;
    0.08≤d11/TTL≤0.31。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.88。
PCT/CN2020/125847 2020-09-03 2020-11-02 摄像光学镜头 WO2022047990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010918113.5A CN111929827B (zh) 2020-09-03 2020-09-03 摄像光学镜头
CN202010918113.5 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022047990A1 true WO2022047990A1 (zh) 2022-03-10

Family

ID=73310124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125847 WO2022047990A1 (zh) 2020-09-03 2020-11-02 摄像光学镜头

Country Status (4)

Country Link
US (1) US11892605B2 (zh)
JP (1) JP6979113B1 (zh)
CN (1) CN111929827B (zh)
WO (1) WO2022047990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929821B (zh) * 2020-09-03 2022-07-12 诚瑞光学(苏州)有限公司 摄像光学镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232147A (ja) * 2013-05-28 2014-12-11 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105278085A (zh) * 2014-06-11 2016-01-27 先进光电科技股份有限公司 光学成像***
CN105589174A (zh) * 2014-11-06 2016-05-18 先进光电科技股份有限公司 光学成像***
CN109581627A (zh) * 2018-12-31 2019-04-05 瑞声精密制造科技(常州)有限公司 摄像光学镜头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263113A (ja) * 1984-06-11 1985-12-26 Canon Inc 小型のズ−ムレンズ
JPS61109012A (ja) * 1984-11-01 1986-05-27 Canon Inc 小型のズ−ムレンズ
JPS61133925A (ja) * 1984-12-03 1986-06-21 Sharp Corp 液晶表示素子のコモン転位部用導電性樹脂
JPH0218510A (ja) * 1988-07-06 1990-01-22 Hitachi Ltd 投写レンズとそれを用いたプロジェクタ装置、投写型テレビ受像機ならびに実物投映機
JP3739529B2 (ja) * 1996-12-06 2006-01-25 オリンパス株式会社 ズームレンズ
JP2010266577A (ja) * 2009-05-13 2010-11-25 Canon Inc 光学系及びそれを有する光学機器
JP5424745B2 (ja) * 2009-07-02 2014-02-26 キヤノン株式会社 光学系及びそれを有する光学機器
JP5549462B2 (ja) * 2009-08-04 2014-07-16 コニカミノルタ株式会社 光学系及びそれを備えた画像投影装置及び撮像装置
TWI541539B (zh) * 2014-12-30 2016-07-11 大立光電股份有限公司 成像光學鏡片組、取像裝置及電子裝置
TWI581001B (zh) * 2016-01-11 2017-05-01 Tan Cian Technology Co Ltd The zoom mechanism of the zoom lens
CN108802976B (zh) * 2017-05-03 2023-10-03 信泰光学(深圳)有限公司 成像镜头
CN111158125B (zh) * 2017-07-04 2022-04-08 浙江舜宇光学有限公司 光学成像镜头
US11921260B2 (en) * 2018-10-11 2024-03-05 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly including six lenses of +−+++−, +−+−+−, or ++−++−; or seven lenses of+−++−+−, or +−+++−− refractive powers
CN109270664B (zh) * 2018-12-04 2021-03-16 广东旭业光电科技股份有限公司 一种光学成像镜头及应用该光学成像镜头的摄像装置
JP6687819B1 (ja) * 2020-02-24 2020-04-28 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
CN111308667A (zh) * 2020-04-03 2020-06-19 南昌欧菲精密光学制品有限公司 光学***、镜头模组及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232147A (ja) * 2013-05-28 2014-12-11 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN105278085A (zh) * 2014-06-11 2016-01-27 先进光电科技股份有限公司 光学成像***
CN105589174A (zh) * 2014-11-06 2016-05-18 先进光电科技股份有限公司 光学成像***
CN109581627A (zh) * 2018-12-31 2019-04-05 瑞声精密制造科技(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
US11892605B2 (en) 2024-02-06
CN111929827A (zh) 2020-11-13
CN111929827B (zh) 2021-04-30
US20220066169A1 (en) 2022-03-03
JP2022042923A (ja) 2022-03-15
JP6979113B1 (ja) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2022047989A1 (zh) 摄像光学镜头
WO2022011739A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2021253517A1 (zh) 摄像光学镜头
WO2022057036A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2021248577A1 (zh) 摄像光学镜头
WO2022016629A1 (zh) 摄像光学镜头
WO2022077620A1 (zh) 摄像光学镜头
WO2022126699A1 (zh) 摄像光学镜头
WO2022057046A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2022007029A1 (zh) 摄像光学镜头
WO2022062079A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2022088346A1 (zh) 摄像光学镜头
WO2022088347A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头
WO2022047988A1 (zh) 摄像光学镜头
WO2022088253A1 (zh) 摄像光学镜头
WO2022057048A1 (zh) 摄像光学镜头
WO2022016625A1 (zh) 摄像光学镜头
WO2022000657A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952232

Country of ref document: EP

Kind code of ref document: A1