WO2022044585A1 - Method for manufacturing metal-filled microstructure - Google Patents

Method for manufacturing metal-filled microstructure Download PDF

Info

Publication number
WO2022044585A1
WO2022044585A1 PCT/JP2021/026287 JP2021026287W WO2022044585A1 WO 2022044585 A1 WO2022044585 A1 WO 2022044585A1 JP 2021026287 W JP2021026287 W JP 2021026287W WO 2022044585 A1 WO2022044585 A1 WO 2022044585A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin layer
insulating film
filled microstructure
conductor
Prior art date
Application number
PCT/JP2021/026287
Other languages
French (fr)
Japanese (ja)
Inventor
順二 川口
吉則 堀田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022545520A priority Critical patent/JPWO2022044585A1/ja
Priority to CN202180050316.XA priority patent/CN115956144A/en
Priority to KR1020237006062A priority patent/KR20230043153A/en
Publication of WO2022044585A1 publication Critical patent/WO2022044585A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32

Definitions

  • the present invention relates to a method for manufacturing a metal-filled microstructure that removes the resin layer covering the surface of the oxide film after heating, and more particularly to a method for manufacturing a metal-filled microstructure in which the resin layer is heated in an atmosphere having an oxygen partial pressure of 10,000 Pa or less. ..
  • a structure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years, for example, as an anisotropic conductive member.
  • An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection can be obtained between the electronic component and the circuit board simply by applying pressure. Therefore, the electronic component such as a semiconductor element can be used. It is widely used as an electrical connection member, an inspection connector for performing a functional inspection, and the like.
  • electronic components such as semiconductor devices are significantly downsized. Electronic components such as conventional wire bonding methods that directly connect wiring boards, flip chip bonding, thermocompression bonding, etc. may not be able to sufficiently guarantee the stability of electrical connections of electronic components.
  • An anisotropic conductive member is attracting attention as a connecting member.
  • an anisotropic conductive member for example, in Patent Document 1, one surface of an aluminum substrate is anodized, and micropores and micropores existing on one surface of the aluminum substrate in the thickness direction are used.
  • an alkaline aqueous solution containing a metal M1 having a higher hydrogen overvoltage than aluminum is used to make a barrier of the anodic oxide film.
  • the metal filling step of performing electrolytic plating treatment to fill the inside of the micropore with the metal M2, and the metal filling step the aluminum substrate is removed.
  • Patent Document 1 has a resin layer forming step of providing a resin layer on the surface of the anodic oxide film on the side where the aluminum substrate is not provided, after the metal filling step and before the substrate removing step.
  • Patent Document 1 a resin layer is provided on the surface of the anodic oxide film on the side where the aluminum substrate is not provided.
  • the metal-filled microstructure is used, for example, for the electrical connection of two semiconductor chips. In this case, it is necessary to peel off the above-mentioned resin layer.
  • the metal-filled microstructure of Patent Document 1 is used for electrical connection between two semiconductor chips as described above, the electrical conductivity between the semiconductor chips may not be sufficient. A metal-filled microstructure with good electrical conductivity is desired.
  • An object of the present invention is to provide a method for manufacturing a metal-filled microstructure having good electrical conductivity.
  • one aspect of the present invention has a plurality of conductors provided in a state of penetrating the insulating film in the thickness direction and being electrically insulated from each other, and the conductor is an insulating film.
  • a method for producing a metal-filled microstructure which comprises a heating step of heating the layer and a removing step of removing the resin layer heated by the heating step from the insulating film, wherein the resin layer contains a heat-removable adhesive. Is to provide.
  • the oxygen partial pressure of the atmosphere is preferably 1.0 Pa or less.
  • the partial pressure of the inert gas in the atmosphere is preferably 85% or more of the total pressure in the atmosphere.
  • the partial pressure of the reducing gas in the atmosphere is preferably 85% or more of the total pressure in the atmosphere.
  • the total pressure of the atmosphere is preferably 5.0 Pa or less.
  • the conductor preferably contains a base metal.
  • the plurality of conductors preferably have a conductor having a cross-sectional area of 20 ⁇ m 2 or less in a cross section perpendicular to the longitudinal direction of the conductor. It is preferable that the temperature reached by the resin layer in the heating step is 150 ° C. or lower. It is preferable that the conductor protrudes from both sides in the thickness direction of the insulating film, and the resin layer is provided on both sides in the thickness direction of the insulating film.
  • the insulating film is preferably an anodic oxide film.
  • Metal-filled microstructure] 1 to 8 are schematic cross-sectional views showing an example of a method for manufacturing a metal-filled microstructure according to an embodiment of the present invention in order of steps.
  • the metal-filled microstructure 10 is provided with an insulating film 12 having electrical insulating properties and an insulating film 12 penetrating the insulating film 12 in the thickness direction Dt and being electrically insulated from each other. It has a plurality of conductors 14 and the like. The conductor 14 projects from at least one surface of the insulating film 12 in the thickness direction Dt.
  • the conductor 14 projects from at least one surface in the thickness direction Dt of the insulating film 12, it is preferable that the conductor 14 projects from the front surface 12a or the back surface 12b in a configuration that projects from one surface.
  • the insulating film 12 is composed of, for example, an anodic oxide film 15.
  • the plurality of conductors 14 are arranged on the insulating film 12 in a state of being electrically insulated from each other.
  • the insulating film 12 has a plurality of pores 13 penetrating in the thickness direction Dt.
  • Conductors 14 are provided in the plurality of pores 13.
  • the conductor 14 projects from the surface 12a of the insulating film 12 in the thickness direction Dt.
  • the metal-filled microstructure 10 has anisotropic conductivity in which conductors 14 are arranged in a state of being electrically insulated from each other.
  • the metal-filled microstructure 10 has conductivity in the thickness direction Dt, but the conductivity in the direction parallel to the surface 12a of the insulating film 12 is sufficiently low.
  • the outer shape of the metal-filled microstructure 10 is not particularly limited, and is, for example, a quadrangle or a circle.
  • the outer shape of the metal-filled microstructure 10 can be shaped according to the application, ease of manufacture, and the like.
  • a method for manufacturing a metal-filled microstructure an example in which the insulating film is composed of an anodic oxide film of aluminum will be described.
  • An aluminum substrate is used to form an anodic oxide film of aluminum. Therefore, in an example of the method for manufacturing a structure, first, as shown in FIG. 1, an aluminum substrate 30 is prepared. The size and thickness of the aluminum substrate 30 are appropriately determined according to the thickness of the insulating film 12 of the finally obtained metal-filled microstructure 10 (see FIG. 8), the apparatus to be processed, and the like.
  • the aluminum substrate 30 is, for example, a rectangular plate material.
  • the metal substrate is not limited to the aluminum substrate, and a metal substrate capable of forming the electrically insulating insulating film 12 can be used.
  • the surface 30a (see FIG. 1) on one side of the aluminum substrate 30 is anodized.
  • the surface 30a (see FIG. 1) on one side of the aluminum substrate 30 is anodized, and as shown in FIG. 2, the insulating film 12 having a plurality of pores 13 extending in the thickness direction Dt of the aluminum substrate 30. That is, the anodic oxide film 15 is formed.
  • a barrier layer 31 is present at the bottom of each pore 13.
  • the above-mentioned anodizing step is called an anodizing treatment step.
  • the insulating film 12 having the plurality of pores 13 has the barrier layer 31 at the bottom of the pores 13, but the barrier layer 31 shown in FIG. 2 is removed.
  • an insulating film 12 (see FIG. 3) having a plurality of pores 13 without the barrier layer 31 is obtained.
  • the step of removing the barrier layer 31 is referred to as a barrier layer removing step.
  • the barrier layer removing step the barrier layer 31 of the insulating film 12 is removed by using an alkaline aqueous solution containing ions of the metal M1 having a higher hydrogen overvoltage than aluminum, and at the same time, the bottom 32c of the pores 13 (see FIG. 3).
  • a metal layer 35a (see FIG. 3) made of a metal (metal M1) is formed on the surface 32d (see FIG. 3). As a result, the aluminum substrate 30 exposed to the pores 13 is covered with the metal layer 35a.
  • the alkaline aqueous solution containing the ion of the metal M1 may further contain an aluminum ion-containing compound (sodium aluminate, aluminum hydroxide, aluminum oxide, etc.).
  • the content of the aluminum ion-containing compound is preferably 0.1 to 20 g / L, more preferably 0.3 to 12 g / L, and even more preferably 0.5 to 6 g / L in terms of the amount of aluminum ions.
  • the metal layer 35a can be used as an electrode for electrolytic plating.
  • a metal 35b is used for plating, and the plating proceeds starting from the metal layer 35a formed on the surface 32d (see FIG. 3) of the bottom 32c (see FIG. 3) of the pore 13.
  • the metal 35b constituting the conductor 14 is filled inside the pores 13 of the insulating film 12.
  • a conductive conductor 14 is formed. It should be noted that the metal layer 35a and the metal 35b are collectively filled with the metal 35.
  • the step of filling the pores 13 of the insulating film 12 with the metal 35b is called a metal filling step.
  • the conductor 14 is not limited to being made of metal, and a conductive substance can be used. Electroplating is used in the metal filling step, and the metal filling step will be described in detail later.
  • the surface 12a of the insulating film 12 corresponds to one surface of the insulating film 12. After the metal filling step, as shown in FIG. 5, a part of the surface 12a of the insulating film 12 on the side where the aluminum substrate 30 is not provided is removed in the thickness direction Dt after the metal filling step, and the insulating film 12 is filled in the metal filling step.
  • the metal 35 is projected from the surface 12a of the insulating film 12.
  • the step of projecting the conductor 14 from the surface 12a of the insulating film 12 is referred to as a surface metal projecting step.
  • the resin layer 16 is formed on the surface 12a of the insulating film 12 on which the projecting portion 14a of the conductor 14 is formed, as shown in FIG. As a result, the surface of the insulating film from which the conductor protrudes is covered with the resin layer, and the structure 18 is obtained.
  • the process of preparing the structure 18 is called a preparation process.
  • the step of forming the resin layer 16 covering the surface of the insulating film 12 on which the conductor 14 protrudes is referred to as a resin layer forming step.
  • the resin layer 16 contains a heat-removable adhesive.
  • the aluminum substrate 30 is removed from the structure 18 as shown in FIG. The step of removing the aluminum substrate 30 is called a substrate removing step.
  • the step of heating the resin layer 16 is called a heating step.
  • a semiconductor wafer heating device used for manufacturing a semiconductor element can be used.
  • the heating step is performed, for example, in a metal container used for heating a semiconductor wafer in a semiconductor manufacturing apparatus.
  • the structure 18 after removing the substrate is placed in the container, and the oxygen partial pressure in the container is set to 10,000 Pa or less.
  • the total pressure and partial pressure of the atmosphere in the heating step can be measured using, for example, a pressure gauge. Thereby, the above-mentioned oxygen partial pressure can be measured.
  • the partial pressure of the inert gas and the partial pressure of the reducing gas which will be described later, can also be measured.
  • the oxygen partial pressure for example, the oxygen partial pressure can be adjusted by degassing.
  • the heating step is not limited to an atmosphere in which the oxygen partial pressure is 10,000 Pa or less. It is preferable that the temperature reached by the resin layer in the heating step is 150 ° C. or lower. When the temperature reached by the resin layer in the heating step is 150 ° C. or lower, the electrical conductivity becomes good.
  • the step of removing the resin layer 16 from the insulating film 12 is referred to as a removal step.
  • the method for removing the resin layer 16 is not particularly limited, and the resin layer 16 is removed using, for example, a tool such as tweezers.
  • the insulating film 12 may be peeled from the resin layer 16 by using a tool such as tweezers.
  • the atmosphere of the removing step does not have to be the same as the atmosphere of the heating step, and may be, for example, an atmospheric atmosphere.
  • FIG. 9 to 11 are schematic cross-sectional views showing another example of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • the metal 35, that is, the conductor 14, which has been partially removed and filled in the metal filling step, may be projected from the back surface 12b of the insulating film 12. As a result, the protruding portion 14b is obtained.
  • the above-mentioned front surface metal protrusion step and back surface metal protrusion step may have both steps, but may have one of the front surface metal protrusion step and the back surface metal protrusion step.
  • the front surface metal projecting process and the back surface metal projecting process correspond to the "projection process", and the front surface metal projecting process and the back surface metal projecting process are both projecting processes.
  • the structure 18 has a protruding portion 14a and a protruding portion in which the conductor 14 protrudes from the front surface 12a and the back surface 12b of the insulating film 12, that is, from both sides of the insulating film 12 in the thickness direction Dt.
  • a configuration having 14b may be used.
  • a resin layer 16 is formed on the back surface 12b of the insulating film 12 shown in FIG. 9, and resin layers 16 are provided on both sides of the anodic oxide film in the thickness direction Dt.
  • the above-mentioned heating step and the removal step of the resin layer 16 are carried out on the structure 18 to obtain a metal-filled microstructure 10 having the protruding portions 14a and the protruding portions 14b shown in FIG.
  • the barrier layer 31 is not only removed but also the pores 13 are removed by removing the barrier layer using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum.
  • a metal layer 35a of the metal M1 that is less likely to generate hydrogen gas than aluminum is formed on the aluminum substrate 30 exposed at the bottom.
  • the in-plane uniformity of the metal filling becomes good. It is considered that this is because the generation of hydrogen gas by the plating solution was suppressed and the metal filling by the electrolytic plating proceeded easily.
  • a holding step of holding the voltage of 95% or more and 105% or less of the voltage (holding voltage) selected from the range of less than 30% of the voltage in the anodic oxidation treatment step for a total of 5 minutes or more is provided. It has been found that the uniformity of metal filling during the plating treatment is greatly improved by combining the application of an alkaline aqueous solution containing the ions of the metal M1. Therefore, it is preferable to have a holding step. Although the detailed mechanism is unknown, in the barrier layer removal step, a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum substrate and the anodic oxide film. It is considered that this is because the reception can be suppressed and the uniformity of dissolution of the barrier layer is improved.
  • a metal layer 35a made of a metal (metal M1) was formed at the bottom of the pores 13, but the present invention is not limited to this, and only the barrier layer 31 is removed to form the pores 13.
  • the aluminum substrate 30 is exposed on the bottom.
  • the aluminum substrate 30 may be used as an electrode for electrolytic plating with the aluminum substrate 30 exposed.
  • an aluminum anodic oxide film is used because pores having a desired average diameter are formed and a conductor is easily formed as described above.
  • the anodic oxide film of aluminum is not limited, and an anodic oxide film of valve metal can be used. Therefore, valve metal is used as the metal substrate.
  • examples of the valve metal include, for example, the above-mentioned aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like.
  • an aluminum anodic oxide film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
  • the thickness of the anodic oxide film is the same as the thickness ht of the insulating film 12 described above.
  • the metal substrate is used for manufacturing a structure and is a substrate for forming an anodic oxide film.
  • a metal substrate on which an anodic oxide film can be formed is used, and a metal substrate composed of the above-mentioned valve metal can be used.
  • an aluminum substrate is used as the metal substrate because it is easy to form the anodic oxide film as the anodic oxide film.
  • the aluminum substrate used to form the insulating film 12 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; low-purity aluminum (for example, for example).
  • the surface of one side of the aluminum substrate on which the anodic oxide film is formed by the anodic oxidation treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99. It is more preferably .99% by mass or more. When the aluminum purity is in the above range, the regularity of the micropore arrangement is sufficient.
  • the aluminum substrate is not particularly limited as long as it can form an anodic oxide film, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
  • the surface of one side of the aluminum substrate to be anodized is previously heat-treated, degreased and mirror-finished.
  • the heat treatment, the degreasing treatment, and the mirror finish treatment the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
  • the mirror finish treatment before the anodic oxidation treatment is, for example, electrolytic polishing, and for the electrolytic polishing, for example, an electrolytic polishing liquid containing phosphoric acid is used.
  • anodizing process For the anodizing treatment, a conventionally known method can be used, but from the viewpoint of increasing the regularity of the micropore arrangement and ensuring the anisotropic conductivity of the structure, a self-regular method or a constant voltage treatment should be used. Is preferable.
  • the self-regularization method and the constant voltage treatment of the anodizing treatment the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
  • the method for manufacturing the structure may include a holding step.
  • the holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more.
  • the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step.
  • This is a step of performing electrolytic treatment for 5 minutes or more.
  • the "voltage in the anodizing treatment” is a voltage applied between the aluminum and the counter electrode, and for example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. The average value.
  • the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably present, and more preferably 5% or more and 20% or less.
  • the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
  • the holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
  • the voltage in the holding step may be set by continuously or stepwise reducing the voltage from the voltage in the anodic oxidation treatment step to the voltage in the holding step, but for the reason of further improving the in-plane uniformity, the anodic oxidation treatment is performed. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the step.
  • the above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step, for example, by lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
  • the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted.
  • the anodic oxide film having a plurality of micropores has a barrier layer (not shown) at the bottom of the micropores as described above. It has a barrier layer removing step for removing the barrier layer.
  • the barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
  • the barrier layer removing step described above the barrier layer is removed, and a conductor layer made of the metal M1 is formed at the bottom of the micropores.
  • the hydrogen overvoltage means the voltage required for hydrogen to be generated.
  • the hydrogen overvoltage of aluminum (Al) is ⁇ 1.66 V (Journal of the Chemical Society of Japan, 1982, (8)). , P1305-1313).
  • Metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
  • the barrier layer is removed as described above because it causes a substitution reaction with the metal M2 to be filled in the anodizing treatment step described later and has less influence on the electrical characteristics of the metal to be filled inside the micropores.
  • the metal M1 used in the step is preferably a metal having a higher ionization tendency than the metal M2 used in the metal filling step described later.
  • examples of the metal M1 used in the barrier layer removing step described above include Zn, Fe, Ni, Sn and the like. Above all, it is preferable to use Zn and Ni, and it is more preferable to use Zn.
  • examples of the metal M1 used in the barrier layer removing step described above include Zn and Fe, and among them, Zn is preferably used.
  • the method of removing the barrier layer using such an alkaline aqueous solution containing the metal M1 is not particularly limited, and examples thereof include the same methods as those of conventionally known chemical etching treatments.
  • ⁇ Chemical etching process> To remove the barrier layer by chemical etching treatment, for example, the structure after the above-mentioned anodic oxidation treatment step is immersed in an alkaline aqueous solution, the inside of the micropores is filled with the alkaline aqueous solution, and then the micropores of the anodic oxide film are opened. Only the barrier layer can be selectively dissolved by a method of contacting the surface on the portion side with a pH buffer solution or the like.
  • the alkaline aqueous solution containing the above-mentioned metal M1 it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C. Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C.
  • sodium hydroxide aqueous solution 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
  • a buffer solution corresponding to the above-mentioned alkaline aqueous solution can be appropriately used.
  • the immersion time in the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, still more preferably 8 to 90 minutes, and preferably 10 to 90 minutes. Especially preferable. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
  • the pores 13 can also be formed by expanding the diameter of the micropores and removing the barrier layer.
  • pore wide processing is used to increase the diameter of the micropores.
  • the pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore size of the micropores.
  • An aqueous solution of an inorganic acid such as hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
  • the barrier layer at the bottom of the micropores can also be removed by the pore wide treatment, and by using the sodium hydroxide aqueous solution in the pore wide treatment, the diameter of the micropores is expanded and the barrier layer is removed.
  • the metal to be filled as a conductor in the pores 13 described above to form a conductor and the metal constituting the metal layer are made of a material having an electrical resistivity of 103 ⁇ ⁇ cm or less. It is preferable to have.
  • Specific examples of the above-mentioned metals are preferably gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and zinc (Zn). ..
  • copper (Cu), gold (Au), aluminum (Al), nickel (Ni) are preferable, and copper (Cu) and gold (Au) are preferable from the viewpoint of electrical conductivity and formation by a plating method. ) Is more preferable, and copper (Cu) is further preferable.
  • ⁇ Plating method> As the plating method for filling the inside of the pores with metal, for example, an electrolytic plating method or an electroless plating method can be used. Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer. Therefore, when metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis. The rest time is required to be 10 seconds or more, preferably 30 to 60 seconds. It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
  • the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V.
  • constant potential electrolysis it is desirable that cyclic voltammetry can be used in combination, and potentiometer devices such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
  • plating liquid As the plating solution, a conventionally known plating solution can be used. Specifically, when precipitating copper, an aqueous solution of copper sulfate is generally used, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the electrolytic solution. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L. When depositing gold, it is desirable to use a sulfuric acid solution of tetrachlorogold and perform plating by AC electrolysis.
  • the plating solution preferably contains a surfactant.
  • a surfactant known ones can be used.
  • Sodium lauryl sulfate which is conventionally known as a surfactant to be added to the plating solution, can be used as it is.
  • Both ionic (cationic / anionic / bidirectional) and nonionic (nonionic) hydrophilic portions can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated.
  • a cation beam activator is desirable.
  • the concentration of the surfactant in the plating solution composition is preferably 1% by mass or less. In the electroless plating method, it takes a long time to completely fill the pores composed of pores having a high aspect with metal, so it is desirable to fill the pores with metal by using the electrolytic plating method.
  • the substrate removing step is a step of removing the above-mentioned aluminum substrate after the metal filling step.
  • the method for removing the aluminum substrate is not particularly limited, and for example, a method for removing by melting is preferable.
  • a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
  • a treatment liquid preferably has a dissolution rate in aluminum of 1 ⁇ m / min or more, more preferably 3 ⁇ m / min or more, and further preferably 5 ⁇ m / min or more.
  • the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
  • a pH hydrogen ion index
  • the treatment liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum.
  • a gold compound for example, platinum chloride acid
  • these fluorides, these chlorides and the like are preferably blended.
  • an acid aqueous solution base is preferable, and a chloride blend is preferable.
  • a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
  • the composition of the treatment liquid for dissolving aluminum is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
  • the acid or alkali concentration of the treatment liquid for dissolving aluminum is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L. Further, the treatment temperature using the treatment liquid for dissolving aluminum is preferably ⁇ 10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
  • the above-mentioned melting of the aluminum substrate is performed by bringing the aluminum substrate after the above-mentioned plating step into contact with the above-mentioned treatment liquid.
  • the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • a support may be provided on the insulating film 12, for example.
  • the support preferably has the same outer shape as the insulating film 12. By attaching a support, handleability is increased.
  • an acid aqueous solution or an alkaline aqueous solution that does not dissolve the metal constituting the conductor 14 but dissolves the insulating film 12 that is, aluminum oxide (Al 2 O 3 ) is used. ..
  • the insulating film 12 is partially removed by bringing the above-mentioned aqueous acid solution or alkaline aqueous solution into contact with the insulating film 12 having the pores 13 filled with metal.
  • the method of bringing the above-mentioned acid aqueous solution or alkaline aqueous solution into contact with the insulating film 12 is not particularly limited, and examples thereof include a dipping method and a spraying method. Of these, the dipping method is preferable.
  • an aqueous acid solution When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Of these, an aqueous solution containing no chromic acid is preferable because it is excellent in safety.
  • the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 60 ° C.
  • an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes.
  • the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated.
  • a cleaning treatment may be performed between the immersion treatments.
  • the metal 35 that is, the conductor 14 is projected from the front surface 12a or the back surface 12b of the insulating film 12, but the conductor 14 is preferably projected from the front surface 12a or the back surface 12b of the insulating film 12 by 10 nm to 1000 nm. It is more preferable to project from 50 nm to 500 nm. That is, the amount of protrusion of the insulating film 12 of the protruding portion 14a from the front surface 12a and the amount of protrusion of the conductor 14 from the back surface 12b of the insulating film 12 of the protruding portion 14b are preferably 10 nm to 1000 nm, more preferably 50 nm to 500 nm, respectively. be.
  • the cross section of the metal-filled microstructure 10 is observed with an electrolytic discharge scanning electron microscope at a magnification of 20,000 times, and the height of the protrusions of the conductor is 10 points. The measured average value.
  • the inside of the pore 13 is filled with a conductive substance such as metal, and then the insulating film 12 and the end portion of the conductive substance such as metal are formed. It is preferable to selectively remove the anodic oxide film after processing the particles so that they have the same planar shape.
  • heat treatment can be performed for the purpose of reducing the distortion in the conductor 14 generated by the metal filling.
  • the heat treatment is preferably carried out in a reducing atmosphere from the viewpoint of suppressing the oxidation of the metal, specifically, the oxygen concentration is preferably 20 Pa or less, and more preferably carried out under vacuum.
  • the vacuum means a state of a space in which at least one of the gas density and the atmospheric pressure is lower than that of the atmosphere. Further, it is preferable that the heat treatment is performed while applying stress to the insulating film 12 for the purpose of straightening.
  • this is a step of forming a resin layer that covers the surface of the insulating film from which the conductor protrudes.
  • the resin layer is provided to protect the conductor and to improve the transportability.
  • the resin layer forming step is a step to be carried out after the above-mentioned metal filling step, after the surface metal projecting step, and before the substrate removing step.
  • the resin layer contains a heat-removable adhesive as described above.
  • the resin layer is more preferably a film with an adhesive layer whose adhesiveness is weakened by heat treatment and which can be peeled off.
  • the method of attaching the above-mentioned film with an adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device or laminator.
  • Examples of the film with an adhesive layer whose adhesiveness is weakened by the above-mentioned heat treatment and which can be peeled off include a heat-peelable resin layer.
  • the heat-peeling type resin layer has adhesive strength at room temperature and can be easily peeled off only by heating, and most of them mainly use effervescent microcapsules or the like.
  • Specific examples of the adhesive constituting the adhesive layer include a rubber adhesive, an acrylic adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, and a polyamide adhesive. , Urethane-based pressure-sensitive adhesives, styrene-diene block copolymerization-based pressure-sensitive adhesives, and the like.
  • the heating step is a step for facilitating the removal of the resin layer in order to remove the resin layer. Moreover, when the resin layer is simply heated, it may be oxidized depending on the metal species constituting the conductor and the electric resistance may increase. Therefore, when a metal-filled microstructure is used as an anisotropic conductive member and a semiconductor chip is electrically connected, the electrical conductivity may decrease. However, by carrying out the heating step in an atmosphere having an oxygen partial pressure of 10,000 Pa or less, an increase in electrical resistance is suppressed, and when a semiconductor chip is electrically connected, electrical conductivity is improved. In the heating step, the oxygen partial pressure of the atmosphere is 10,000 Pa or less, but it is preferably 1.0 Pa or less. When the oxygen partial pressure is 10,000 Pa or less, the oxidation of the conductor is suppressed, but the smaller the oxygen partial pressure is, the more preferable it is because the oxidation is suppressed regardless of the metal type of the conductor.
  • the heating step can have the atmosphere shown below.
  • the partial pressure of the inert gas in the atmosphere is preferably 85% or more of the total pressure of the atmosphere.
  • the oxygen partial pressure can be relatively reduced and the oxidation of the conductor can be suppressed.
  • the partial pressure of the inert gas for example, the partial pressure of the inert gas can be adjusted by adjusting the supply amount of the inert gas into the container in which the heating step is carried out.
  • the partial pressure of the reducing gas in the atmosphere is preferably 85% or more of the total pressure of the atmosphere. If the partial pressure of the reducing gas in the atmosphere is 85% or more of the total pressure, the oxygen partial pressure can be relatively reduced, and the oxidation of the conductor can also be suppressed.
  • the reducing gas is preferably a gas that has a small reaction with the conductor.
  • the partial pressure of the reducing gas can be adjusted by adjusting the supply amount of the reducing gas into the container in which the heating step is carried out.
  • the inert gas is not particularly limited, but is, for example, a rare gas such as helium gas, neon gas, and argon gas, or nitrogen gas.
  • the inert gas the above-mentioned various gases may be used alone, or at least two gases may be mixed.
  • the reducing gas is not particularly limited, but is, for example, hydrogen gas, carbon monoxide gas, or a hydrocarbon gas such as CH 4 , C 3 H 8 , or C 4 H 10 .
  • the reducing gas the above-mentioned various gases may be used alone, or at least two gases may be mixed.
  • the total pressure of the atmosphere in the heating step is preferably 5.0 Pa or less.
  • the oxygen partial pressure of the atmosphere becomes small and the oxidation of the conductor can be suppressed, which is preferable.
  • the total pressure of the atmosphere can be reduced to 5.0 Pa or less by, for example, reducing the pressure in the container using a vacuum pump.
  • the oxygen partial pressure may be lowered by degassing as described above, the atmosphere may be replaced by the inert gas or the reducing gas, or the atmosphere may be replaced by the inert gas and the reducing gas. It may be replaced.
  • the heating conditions in the heating step are preferably 80 to 350 ° C., more preferably 90 to 250 ° C., and most preferably 100 to 200 ° C.
  • the temperature reached by the resin layer in the heating step is preferably 150 ° C. or lower. In the heating step, if the temperature is lower than the above temperature range, it becomes difficult to peel off the resin layer. On the other hand, if the temperature is high, the filling metal is oxidized, that is, the conductor is oxidized, and defects such as cracks or cracks in the structure are caused.
  • the removal step is not particularly limited as long as the resin layer can be removed. Further, the removal step does not have to have the same atmosphere as the heating step, and after heating the resin layer, for example, it may be taken out from the container used in the heating step and carried out in an atmospheric atmosphere.
  • a part of the surface of the aluminum substrate may be anodized using a mask layer having a desired shape.
  • the structure 18 shown in FIG. 7 from which the substrate has been removed is an embodiment intended to be supplied in a state of being wound around the winding core 21 in a roll shape.
  • the metal-filled microstructure 10 is used as an anisotropic conductive member
  • the resin layer 16 is removed by carrying out the above-mentioned heating step and the removal step of the resin layer 16.
  • the metal-filled microstructure 10 can be used as the anisotropic conductive member.
  • a winding step of winding the metal-filled microstructure 10 into a roll shape with the above-mentioned resin layer 16 after the above-mentioned arbitrary resin layer forming step It is preferable to have.
  • the winding method in the above-mentioned winding step is not particularly limited, and examples thereof include a method of winding on a winding core 21 (see FIG. 12) having a predetermined diameter and a predetermined width.
  • the average thickness of the metal-filled microstructure 10 excluding the resin layer 16 is preferably 30 ⁇ m or less, preferably 5 to 20 ⁇ m. Is more preferable.
  • the metal-filled microstructure 10 excluding the resin layer is machined by FIB (Focused Ion Beam) in the thickness direction, and the cross section thereof is surfaced by a field emission scanning electron microscope (FE-SEM). It can be calculated by taking a photograph (magnification 50,000 times) and using it as an average value measured at 10 points.
  • the production method of the present invention includes a polishing step, a surface smoothing step, a protective film forming treatment, and a washing treatment described in paragraphs [0049] to [0057] of International Publication No. 2015/029881. You may have.
  • various processes and types as shown below can be applied from the viewpoint of handling in manufacturing and the use of the metal-filled microstructure 10 as an anisotropic conductive member.
  • the substrate removing step described above there may be a step of fixing the metal-filled microstructure on a silicon wafer using wax and thinning the layer by polishing. Then, after the step of thinning, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed. Next, a temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the wax is melted by heating to peel off the silicon wafer, and the surface on the side of the peeled metal-filled microstructure is peeled off. On the other hand, the above-mentioned back surface metal protrusion step can be performed. Although solid wax may be used, sky coat (manufactured by Nikka Seiko Co., Ltd.) or the like can be used to improve the uniformity of coating thickness.
  • the aluminum substrate is subjected to a rigid substrate (for example, a silicon wafer, a glass substrate) using a temporary adhesive, wax or a functional adsorption film. Etc.), it may have a step of thinning the surface of the above-mentioned anodic oxide film on the side where the above-mentioned aluminum substrate is not provided by polishing. Then, after the step of thinning, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
  • a rigid substrate for example, a silicon wafer, a glass substrate
  • a resin material for example, epoxy resin, polyimide resin, etc.
  • a rigid substrate for example, epoxy resin, polyimide resin, etc.
  • For pasting with a resin material select one whose adhesive strength is greater than the adhesive strength with a temporary adhesive or the like, and after pasting with the resin material, the rigid substrate pasted first is peeled off, and the above-mentioned substrate is attached.
  • the removal step, the polishing step, and the back surface metal protrusion processing step can be performed in order.
  • Q-chuck registered trademark
  • the functional adsorption film Q-chuck (registered trademark) (manufactured by Maruishi Sangyo Co., Ltd.) or the like can be used.
  • the metal-filled microstructure is provided as a product in a state of being attached to a rigid substrate (for example, a silicon wafer, a glass substrate, etc.) by a peelable layer.
  • a rigid substrate for example, a silicon wafer, a glass substrate, etc.
  • the metal-filled microstructure is used as a joining member, the surface of the metal-filled microstructure is temporarily adhered to the device surface, the rigid substrate is peeled off, and then the device to be connected is attached.
  • the upper and lower devices can be joined by a metal-filled microstructure by installing in an appropriate place and heat-pressing.
  • a heat peeling layer may be used, or a photopeeling layer may be used in combination with a glass substrate.
  • each of the above-mentioned steps can be performed on a single sheet, or can be continuously processed on a web using an aluminum coil as a raw material. Further, in the case of continuous treatment, it is preferable to install an appropriate cleaning step and drying step between each step.
  • a metal-filled microstructure in which a metal is filled inside a through hole derived from a micropore provided in an insulating base material made of an anodic oxide film of an aluminum substrate.
  • the body is obtained.
  • the anisotropic conductive member described in JP-A-2008-270158 that is, in an insulating base material (anodized film of an aluminum substrate having micropores).
  • the insulating film 12 is formed of a conductor and makes a plurality of conductors 14 electrically insulated from each other.
  • the insulating film has an electrical insulating property.
  • the insulating film 12 has a plurality of pores 13 on which the conductor 14 is formed.
  • the insulating film is made of, for example, an inorganic material.
  • As the insulating film for example, one having an electrical resistivity of about 10 14 ⁇ ⁇ cm can be used.
  • the insulating film is composed of, for example, an anodic oxide film.
  • the insulating film may be made of, for example, a metal oxide, a metal nitride, glass, silicon carbide, ceramics such as silicon nitride, a carbon base material such as diamond-like carbon, polyimide, a composite material thereof, or the like. ..
  • a ceramic material or an inorganic material containing 50% by mass or more of a carbon material may be formed on an organic material having through holes.
  • the length of the insulating film 12 in the thickness direction Dt is preferably in the range of 1 to 1000 ⁇ m, more preferably in the range of 5 to 500 ⁇ m, and in the range of 10 to 300 ⁇ m. It is more preferable to be inside. When the thickness of the insulating film 12 is within this range, the handleability of the insulating film 12 is improved.
  • the thickness ht of the insulating film 12 is preferably 30 ⁇ m or less, and more preferably 5 to 20 ⁇ m, from the viewpoint of ease of winding.
  • the thickness of the anodic oxide film is determined by cutting the anodic oxide film with a focused ion beam (FIB) in the thickness direction Dt and taking a surface photograph (magnification 5) of the cross section with a field emission scanning electron microscope (FE-SEM). It is a value calculated as an average value measured at 10 points by taking a picture (10,000 times).
  • the distance between the conductors 14 in the insulating film 12 is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 20 nm to 60 nm. When the distance between the conductors 14 in the insulating film 12 is within the above range, the insulating film 12 sufficiently functions as an electrically insulating partition wall of the conductor 14.
  • the distance between the conductors means the width between the adjacent conductors
  • the cross section of the metal-filled microstructure 10 is observed with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times, and the distance between the adjacent conductors is observed.
  • the average diameter of the pores is preferably 1 ⁇ m or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, even more preferably 40 to 200 nm, and even more preferably 50 to 100 nm. Most preferably.
  • the conductor 14 having the above average diameter can be obtained.
  • the average diameter of the pores 13 is obtained by photographing the surface of the insulating film 12 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope.
  • the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more pores can be obtained.
  • the maximum value of the distance between the ends of the pore portions was measured. That is, since the shape of the opening of the pore is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the pore portion is set as the opening diameter. Therefore, for example, even in the case of a pore having a shape in which two or more pores are integrated, this is regarded as one pore, and the maximum value of the distance between the ends of the pore portions is set as the opening diameter. ..
  • the plurality of conductors 14 are provided in the anodic oxide film in a state of being electrically insulated from each other.
  • the plurality of conductors 14 have electrical conductivity.
  • the conductor is composed of a conductive substance.
  • the conductive substance is not particularly limited, and examples thereof include metals. Specific examples of the metal preferably include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) and the like. From the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, copper and gold are more preferable, and copper is most preferable.
  • copper is a base metal, but it may be a base metal.
  • Base metals are easily oxidized in the air, but in the method for producing a metal-filled microstructure, even if the conductor is made of a base metal, a metal-filled microstructure having good electrical conductivity can be obtained.
  • oxide conductive substances can be mentioned. Examples of the oxide conductive substance include tin oxide (ITO) doped with indium.
  • ITO tin oxide
  • the conductor may be made of a conductive resin containing nanoparticles such as Cu or Ag.
  • the height H of the conductor 14 in the thickness direction Dt is preferably 10 to 300 ⁇ m, more preferably 20 to 30 ⁇ m.
  • the plurality of conductors preferably have a conductor having a cross-sectional area of 20 ⁇ m 2 or less in the longitudinal direction of the conductor, that is, a cross section perpendicular to the thickness direction Dt of the insulating film 12.
  • a conductor having a cross-sectional area of 20 ⁇ m 2 or less has a diameter d of about 3.99 ⁇ m or less.
  • the average diameter d of the conductor 14 is more preferably 1 ⁇ m or less, further preferably 5 to 500 nm, further preferably 20 to 400 nm, and even more preferably 40 to 200 nm. Most preferably, it is 50 to 100 nm.
  • the density of the conductor 14 is preferably 20,000 pieces / mm 2 or more, more preferably 2 million pieces / mm 2 or more, further preferably 10 million pieces / mm 2 or more, and 50 million pieces / mm 2. It is particularly preferable that it is / mm 2 or more, and most preferably 100 million pieces / mm 2 or more.
  • the distance p between the centers of the adjacent conductors 14 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
  • the average diameter of the conductor is obtained by photographing the surface of the anodic oxide film from directly above at a magnification of 100 to 10000 times using a scanning electron microscope.
  • the magnification in the photographed image, at least 20 conductors having an annular shape around them are extracted, the diameters thereof are measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the conductors.
  • the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more conductors can be obtained.
  • the maximum value of the distance between the ends of the conductor portion was measured. That is, since the shape of the opening of the conductor is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the conductor portion is set as the opening diameter. Therefore, for example, even in the case of a conductor having a shape in which two or more conductors are integrated, this is regarded as one conductor, and the maximum value of the distance between the ends of the conductor portions is set as the opening diameter.
  • the protrusion is part of the conductor and is columnar.
  • the protruding portion is preferably cylindrical because it can increase the contact area with the object to be joined.
  • the average protruding length of the protruding portion 14a and the average length of the protruding portion 14b are preferably 30 nm to 500 nm, and the upper limit is more preferably 100 nm or less.
  • a cross-sectional image of the protrusion is obtained using a field emission scanning electron microscope as described above, and the height of the protrusion is determined based on the cross-sectional image. It is the average value measured by measuring 10 points each.
  • the resin layer is provided on at least one of the front surface and the back surface of the anodic oxide film, and for example, the protruding portion of the conductor is embedded. That is, the resin layer covers the end portion of the conductor protruding from the anodic oxide film and protects the protruding portion.
  • the resin layer preferably exhibits fluidity in a temperature range of, for example, 50 ° C to 200 ° C and cures at 200 ° C or higher. The resin layer will be described in detail later.
  • the average protruding length of the conductor 14 is preferably less than the average thickness of the resin layer 16. If the average protrusion length of the protrusion 14a and the average length of the protrusion 14b of the conductor 14 are both less than the average thickness of the resin layer 16, the protrusions 14a and 14b are both the resin layer of the resin layer 16. It is embedded in the portion 20a, and the conductor 14 is protected by the resin layer 16.
  • the average thickness of the resin layer 16 is the average distance from the front surface 12a of the insulating film 12 or the average distance from the back surface 12b of the insulating film 12.
  • the resin layer 16 is cut in the thickness direction Dt of the metal-filled microstructure 10, and a cross-sectional observation of the cut cross section is performed using a field emission scanning electron microscope (FE-SEM).
  • the distances from the surface 12a of the insulating film 12 are measured at 10 points corresponding to the resin layer, and the average value of the measured values at 10 points is used. Further, the distances from the back surface 12b of the insulating film 12 are measured at 10 points corresponding to the resin layer, and the average value of the measured values at 10 points is used.
  • the average thickness of the resin layer is preferably 200 to 1000 nm, more preferably 400 to 600 nm. When the average thickness of the resin layer is 200 to 1000 nm as described above, the effect of protecting the protruding portion of the conductor 14 can be sufficiently exhibited.
  • the metal-filled microstructure 10 is cut in the thickness direction Dt, and a field emission scanning electron microscope (FE-SEM) is used. It is an average value obtained by observing the cross section of the cut cross section and measuring 10 points corresponding to each size.
  • FE-SEM field emission scanning electron microscope
  • FIG. 14 is a schematic view showing an example of a laminated device using the metal-filled microstructure of the embodiment of the present invention.
  • the laminated device 40 shown in FIG. 14 uses the above-mentioned metal-filled microstructure 10 (see FIGS. 8 and 11) as an anisotropic conductive member 45 exhibiting anisotropic conductivity.
  • the semiconductor element 42, the anisotropic conductive member 45, and the semiconductor element 44 are joined in this order in the stacking direction Ds and electrically connected.
  • the conductor 14 see FIGS. 8 and 11 of the metal-filled microstructure 10 (see FIGS.
  • the laminated device 40 is in the form of joining one semiconductor element 44 to one semiconductor element 42, but is not limited thereto. It may be in the form of joining three semiconductor elements via an anisotropic conductive member 45. In this case, the laminated device is composed of three semiconductor elements and two anisotropic conductive members 45.
  • the laminated device 40 is not limited to the one having a semiconductor element, and may be a substrate having an electrode.
  • the substrate having an electrode is, for example, a wiring board, an interposer, or the like.
  • the form of the laminated device is not particularly limited, and for example, SoC (System on a chip), SiP (System in Package), PoP (Package on Package), PiP (Package in Package), CSP (Chip). Scale Package), TSV (Through Silicon Via) and the like.
  • the laminated device 40 may have a semiconductor element that functions as an optical sensor.
  • a semiconductor element and a sensor chip (not shown) are laminated in the stacking direction Ds.
  • the sensor chip may be provided with a lens.
  • the semiconductor element is formed with a logic circuit, and its configuration is not particularly limited as long as it can process the signal obtained by the sensor chip.
  • the sensor chip has an optical sensor that detects light.
  • the optical sensor is not particularly limited as long as it can detect light, and for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • the configuration of the lens is not particularly limited as long as it can condense light on the sensor chip, and for example, a lens called a microlens is used.
  • the semiconductor element 42, the semiconductor element 44, and the semiconductor element 46 described above those having an element region (not shown) can be used.
  • the element region will be described later.
  • An element constituent circuit or the like is formed in the element region, and the semiconductor element is provided with, for example, a rewiring layer (not shown).
  • a semiconductor element having a logic circuit and a semiconductor element having a memory circuit can be combined. Further, all the semiconductor elements may have a memory circuit, or all the semiconductor elements may have a logic circuit.
  • the combination of the semiconductor elements in the laminated device 40 may be a combination of a sensor, an actuator, an antenna or the like, a memory circuit and a logic circuit, and is appropriately determined according to the application of the laminated device 40 and the like.
  • the semiconductor element As the object to be joined of the structure, the semiconductor element is exemplified as described above, but for example, the object has an electrode or an element region.
  • the device having an electrode include a semiconductor device that exerts a specific function by itself, but also includes a device in which a plurality of devices are gathered to exert a specific function. Further, those that only transmit electric signals such as wiring members are included, and printed wiring boards and the like are also included in those having electrodes.
  • the element region is an region in which various element constituent circuits and the like for functioning as an electronic element are formed.
  • a memory circuit such as a flash memory
  • MEMS Micro Electro Mechanical Systems
  • MEMS Micro Electro Mechanical Systems
  • sensors include sensors, actuators, antennas and the like.
  • Sensors include various sensors such as acceleration, sound, and light.
  • an element component circuit or the like is formed in the element region, and an electrode (not shown) is provided for electrically connecting the semiconductor chip to the outside.
  • the element region has an electrode region on which an electrode is formed.
  • the electrode in the element region is, for example, a Cu post.
  • the electrode region is basically a region including all the formed electrodes. However, if the electrodes are provided separately, the region where each electrode is provided is also referred to as an electrode region.
  • the form of the structure may be a single piece such as a semiconductor chip, a form such as a semiconductor wafer, or a form of a wiring layer. Further, the structure is bonded to the object to be bonded, but the object to be bonded is not particularly limited to the above-mentioned semiconductor element or the like, for example, a semiconductor element in a wafer state, a semiconductor element in a chip state, or a printed wiring. Plates, heat sinks, etc. are the objects to be joined.
  • semiconductor element 42 and semiconductor element 44 may include, for example, a logic LSI (Large Scale Integration) (for example, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific).
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • ASSP Application Specific
  • Microprocessor for example, CPU (Central Processing Unit), GPU (Graphics Processing Unit), etc.), Memory (for example, DRAM (Dynamic Random Access Memory), HMC (Hybrid Memory Cube), MRAM (MagneticRAM: Magnetic memory) and PCM (Phase-Change Memory), ReRAM (Resistive RAM), FeRAM (Ferroelectric RAM: ferroelectric memory), flash memory (NAND (Not AND) flash), etc.) , LED (Light Emitting Diode), (for example, microflash of mobile terminal, in-vehicle, projector light source, LCD backlight, general lighting, etc.), power device, analog IC (Integrated Circuit), (for example, DC (Direct Current)) )-DC (Direct Current) converters, isolated gate bipolar transistors (IGBTs), etc.), MEMS (Micro Electro Mechanical Systems), (eg, acceleration sensors, pressure sensors, oscillators, gyro sensors, etc.), wireless (eg, GPS (eg, GPS (eg, GPS (
  • the semiconductor element is, for example, one complete, and the semiconductor element alone exhibits a specific function such as a circuit or a sensor.
  • the semiconductor element may have an interposer function. Further, for example, it is possible to stack a plurality of devices such as a logic chip having a logic circuit and a memory chip on a device having an interposer function. Further, in this case, even if the electrode size is different for each device, the bonding can be performed.
  • the laminated device is not limited to a one-to-many form in which a plurality of semiconductor elements are bonded to one semiconductor element, but is a form in which a plurality of semiconductor elements and a plurality of semiconductor elements are bonded. It may be in a plurality of to multiple forms.
  • the present invention is basically configured as described above. Although the method for producing the metal-filled microstructure of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or changes have been made without departing from the gist of the present invention. Of course, it is also good.
  • a TEG chip (daisy chain pattern) and an interposer manufactured by Waltz Co., Ltd. were prepared, and these were installed above and below the chip bonder, and the alignment was adjusted in advance. After adjusting the alignment, the prepared metal-filled microstructures were superposed on the Cu post side of the interposer installed on the lower side, and a room temperature joining device (WP-100 (model), manufactured by PMT Co., Ltd.) was used. Heat crimping was performed under the conditions of a temperature of 250 ° C. for 1 minute and 6 MPa, and the bonding was performed. For the sample after joining, the electrical resistance between the chip wirings was measured.
  • Example 1 The metal-filled microstructure of Example 1 will be described.
  • [Metal-filled microstructure] ⁇ Manufacturing of aluminum substrate> Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: A molten metal containing 0.03% by mass, the balance of which is Al and an aluminum alloy of unavoidable impurities is prepared, and after the molten metal treatment and filtration are performed, an ingot having a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill). ) Made by the casting method.
  • the surface was scraped to an average thickness of 10 mm by a surface mill, kept at 550 ° C for about 5 hours, and when the temperature dropped to 400 ° C, the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate. Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, the thickness was finished to 1.0 mm by cold rolling to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material. After making this aluminum substrate 1030 mm wide, each of the following treatments was performed.
  • JIS Japanese Industrial Standards
  • the above-mentioned aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow rate of 3.0 m / min.
  • the cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.).
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • Electrolytic polishing liquid composition ⁇ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ Pure water 160mL ⁇ Sulfuric acid 150mL ⁇ Ethylene glycol 30mL
  • the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regularization method according to the procedure described in JP-A-2007-204802.
  • the aluminum substrate after the electrolytic polishing treatment was subjected to pre-anodizing treatment for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow velocity of 3.0 m / min. ..
  • the pre-anodized aluminum substrate was subjected to a film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid (liquid temperature: 50 ° C.) for 12 hours. Then, a reanodizing treatment was performed for 3 hours and 45 minutes with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min, and an anode having a film thickness of 30 ⁇ m. An oxide film was obtained.
  • the cathode was a stainless steel electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source.
  • a NeoCool BD36 manufactured by Yamato Kagaku Co., Ltd.
  • a pair stirrer PS-100 manufactured by EYELA Tokyo Rika Kikai Co., Ltd. was used as the stirring and heating device.
  • the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • etching treatment was performed in which zinc oxide was dissolved in an aqueous sodium hydroxide solution (50 g / l) so as to have a concentration of 2000 ppm and immersed at 30 ° C. for 150 seconds to perform an etching treatment on the anodized film.
  • the barrier layer at the bottom of the micropores was removed and zinc was simultaneously deposited on the surface of the exposed aluminum substrate.
  • the average thickness of the anodic oxide film after the barrier layer removing step was 30 ⁇ m.
  • ⁇ Metal filling process> an aluminum substrate was used as a cathode and platinum was used as a cathode to perform electrolytic plating. Specifically, a copper plating solution having the composition shown below was used and constant current electrolysis was performed to prepare a metal-filled microstructure in which nickel was filled inside the micropores.
  • a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
  • ⁇ Surface metal protrusion process> The structure after the metal filling step is immersed in an aqueous sodium hydroxide solution (concentration: 5% by mass, liquid temperature: 20 ° C.), and the immersion time is adjusted so that the height of the protruding portion is 400 nm, and the aluminum anode is used. The surface of the oxide film was selectively melted to prepare a structure in which copper, which is a filling metal, was projected.
  • an aqueous sodium hydroxide solution concentration: 5% by mass, liquid temperature: 20 ° C.
  • ⁇ Substrate removal process> the aluminum substrate was dissolved and removed by immersing it in a mixed solution of copper chloride / hydrochloric acid to prepare a metal-filled microstructure having an average thickness of 30 ⁇ m.
  • the diameter of the conduction path in the produced metal-filled microstructure was 60 nm
  • the pitch between the conduction paths was 100 nm
  • the density of the conduction path was 57.7 million pieces / mm 2 .
  • ⁇ Back side metal protrusion process> The structure after the metal filling step is immersed in an aqueous sodium hydroxide solution (concentration: 5% by mass, liquid temperature: 20 ° C.), and the immersion time is adjusted so that the height of the protruding portion is 400 nm, and the aluminum anode is used. The surface of the oxide film was selectively melted to prepare a structure in which copper, which is a filling metal, was projected.
  • an aqueous sodium hydroxide solution concentration: 5% by mass, liquid temperature: 20 ° C.
  • the structure was placed in the container. After that, when the total pressure was 100%, the partial pressure of each gas was 80% nitrogen and 20% oxygen, and the total pressure was 4.0 ⁇ 10 ⁇ 2 Pa.
  • the resin layer was heated at a temperature of 120 ° C. for 2 minutes using a heater, and then the resin layer was peeled off.
  • the pressure inside the container was reduced using a vacuum pump to adjust the total pressure.
  • Example 2 In Example 2, when the total pressure is 100%, the partial pressure of each gas is 80% nitrogen and 20% oxygen, except that the total pressure is 4.0 Pa. It was produced in the same manner as above. (Example 3) In Example 3, when the total pressure is 100%, the partial pressure of each gas is 80% nitrogen and 20% oxygen, except that the total pressure is 1.0 ⁇ 10 4 Pa. Was produced in the same manner as in Example 1. (Example 4) In Example 4, when the total pressure is 100%, the partial pressure of each gas is 99.8% nitrogen and 0.2% oxygen, and the total pressure is 1.0 ⁇ 106 Pa. It was produced in the same manner as in Example 1 except that. (Example 5) In Example 5, when the total pressure is 100%, the partial pressure of each gas is 99.8% argon and 0.2% oxygen, and the total pressure is 1.0 ⁇ 106 Pa. It was produced in the same manner as in Example 1 except that.
  • Example 6 In Example 6, when the total pressure is 100%, the partial pressure of each gas is 99.8% hydrogen and 0.2% oxygen, and the total pressure is 1.0 ⁇ 10 6 Pa. It was produced in the same manner as in Example 1 except that.
  • Example 7 (Example 7) In Example 7, when the total pressure is 100%, the partial pressure of each gas is 99.998% nitrogen and 0.002% oxygen, except that the total pressure is 4.0 Pa. was produced in the same manner as in Example 1.
  • Example 8 In Example 8, when the total pressure is 100%, the partial pressure of each gas is 99.998% argon and 0.002% oxygen, except that the total pressure is 4.0 Pa. was produced in the same manner as in Example 1.
  • Example 9 In Example 9, when the total pressure is 100%, the partial pressure of each gas is 99.998% for hydrogen and 0.002% for oxygen, except that the total pressure is 4.0 Pa. Was produced in the same manner as in Example 1.
  • Example 10 In Example 10, the heat-peeling type resin base material with an adhesive layer was changed to Riva Alpha (registered trademark) 3195VS (manufactured by Nitto Denko KK) in the resin layer forming step. Regarding the atmosphere of the heating step, when the total pressure was 100%, the partial pressure of each gas was 80% nitrogen and 20% oxygen, and the total pressure was 1.0 ⁇ 10 4 Pa. The resin layer was heated at a temperature of 170 ° C. for 2 minutes to prepare the same as in Example 1 except that the resin layer was peeled off.
  • Riva Alpha registered trademark
  • 3195VS manufactured by Nitto Denko KK
  • Example 11 In Example 11, when the total pressure is 100%, the partial pressure of each gas is 99.998% nitrogen and 0.002% oxygen, except that the total pressure is 4.0 Pa. was produced in the same manner as in Example 10.
  • Example 12 Example 12 was produced in the same manner as in Example 3 except that the heat-peeling type resin base material with an adhesive layer was changed to SomaTac TE PS-2021TE (manufactured by SOMAR Corporation) in the resin layer forming step.
  • Comparative Example 1 Comparative Example 1 was produced in the same manner as in Example 12 except that the total pressure of the atmosphere in the heating step was 1.0 ⁇ 10 6 Pa.
  • Examples 1 to 12 had lower electrical resistance and better electrical conductivity than Comparative Example 1.
  • Comparative Example 1 the oxygen partial pressure exceeded 10,000 Pa in the atmosphere of the heating step, and the electric resistance became large.
  • Examples 1, 2, 7 to 9 and 11 the oxygen partial pressure was 1.0 Pa or less, the electric resistance was further small, and the electric conductivity was further good. From Examples 1 to 3, the lower the total pressure, the smaller the electric resistance and the better the electric conductivity. From Examples 3 and 10 and Examples 7 and 11, the lower the heating temperature, the smaller the electric resistance and the better the electric conductivity.
  • Metal-filled microstructure 12 Insulation film 12a Surface 12b Back surface 13 Pore 14 Conductor 14a Projection 14b Projection 15 Anodized oxide film 16 Resin layer 18 Structure 21 Winding core 30 Aluminum substrate 30a Surface 31 Barrier layer 32c Bottom 32d Surface 35 Metal 35a Metal layer 35b Metal 40 Laminated device 42 Semiconductor element 44 Semiconductor element 45 Anotropically conductive member Ds Laminating direction Dt Thickness direction H Height d Average diameter ht Thickness p Center-to-center distance

Abstract

Provided is a method for manufacturing a metal-filled microstructure having good electric conductivity. The method for manufacturing a metal-filled microstructure has: a preparation step for preparing a structure having a plurality of conductors and a resin layer, the conductors being provided in a state of penetrating a dielectric film in a thickness direction and of being electrically insulated from each other, the conductors sticking out from one face of the dielectric film in the thickness direction, the face of the dielectric film, where the conductors stick out, being covered with the resin layer; a heating step for heating at least the resin layer in an atmosphere where an oxygen partial pressure is at most 10000 Pa; and a removal step for removing the resin layer heated in the heating step, from the dielectric film. The resin layer includes a heat-releasable adhesive.

Description

金属充填微細構造体の製造方法Manufacturing method of metal-filled microstructure
 本発明は、陽極酸化膜の厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた複数の導体が、陽極酸化膜の厚み方向における少なくとも一方の面から突出し、導体が突出する陽極酸化膜の面を覆う樹脂層を加熱後に除去する金属充填微細構造体の製造方法に関し、特に、樹脂層の加熱を、酸素分圧が10000Pa以下の雰囲気で行う金属充填微細構造体の製造方法に関する。 In the present invention, a plurality of conductors that penetrate in the thickness direction of the anodic oxide film and are electrically insulated from each other protrude from at least one surface in the thickness direction of the anodic oxide film, and the conductors protrude from the anode. The present invention relates to a method for manufacturing a metal-filled microstructure that removes the resin layer covering the surface of the oxide film after heating, and more particularly to a method for manufacturing a metal-filled microstructure in which the resin layer is heated in an atmosphere having an oxygen partial pressure of 10,000 Pa or less. ..
 絶縁性基材に設けられた複数の貫通孔に金属等の導電性物質が充填されてなる構造体は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電性部材としての用途が期待されている。
 異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材、及び機能検査を行う際の検査用コネクタ等として広く使用されている。
 特に、半導体素子等の電子部品は、ダウンサイジング化が顕著である。従来のワイヤーボンディングのような配線基板を直接接続する方式、フリップチップボンディング、及びサーモコンプレッションボンディング等では、電子部品の電気的な接続の安定性を十分に保証することができない場合があるため、電子接続部材として異方導電性部材が注目されている。
A structure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years, for example, as an anisotropic conductive member. Is expected to be used.
An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection can be obtained between the electronic component and the circuit board simply by applying pressure. Therefore, the electronic component such as a semiconductor element can be used. It is widely used as an electrical connection member, an inspection connector for performing a functional inspection, and the like.
In particular, electronic components such as semiconductor devices are significantly downsized. Electronic components such as conventional wire bonding methods that directly connect wiring boards, flip chip bonding, thermocompression bonding, etc. may not be able to sufficiently guarantee the stability of electrical connections of electronic components. An anisotropic conductive member is attracting attention as a connecting member.
 異方導電性部材の製造方法として、例えば、特許文献1には、アルミニウム基板の片側の表面に陽極酸化処理を施し、アルミニウム基板の片側の表面に、厚み方向に存在するマイクロポアとマイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する陽極酸化処理工程と、陽極酸化処理工程の後に、アルミニウムよりも水素過電圧の高い金属M1を含むアルカリ水溶液を用いて、陽極酸化膜のバリア層を除去するバリア層除去工程と、バリア層除去工程の後に、電解めっき処理を施してマイクロポアの内部に金属M2を充填する金属充填工程と、金属充填工程の後に、アルミニウム基板を除去し、金属充填微細構造体を得る基板除去工程と、を有する金属充填微細構造体の製造方法が記載されている。特許文献1では、金属充填工程の後であって基板除去工程の前に、陽極酸化膜のアルミニウム基板が設けられていない側の表面に、樹脂層を設ける樹脂層形成工程を有する。 As a method for manufacturing an anisotropic conductive member, for example, in Patent Document 1, one surface of an aluminum substrate is anodized, and micropores and micropores existing on one surface of the aluminum substrate in the thickness direction are used. After the anodic oxidation treatment step of forming an anodic oxide film having a barrier layer existing at the bottom and the anodic oxidation treatment step, an alkaline aqueous solution containing a metal M1 having a higher hydrogen overvoltage than aluminum is used to make a barrier of the anodic oxide film. After the barrier layer removing step of removing the layer, the metal filling step of performing electrolytic plating treatment to fill the inside of the micropore with the metal M2, and the metal filling step, the aluminum substrate is removed. A substrate removing step for obtaining a metal-filled microstructure and a method for manufacturing the metal-filled microstructure having the metal-filled microstructure are described. Patent Document 1 has a resin layer forming step of providing a resin layer on the surface of the anodic oxide film on the side where the aluminum substrate is not provided, after the metal filling step and before the substrate removing step.
特許第6535098号公報Japanese Patent No. 6535098
 上述の特許文献1では、陽極酸化膜のアルミニウム基板が設けられていない側の表面に樹脂層が設けられている。金属充填微細構造体は、例えば、2つの半導体チップの電気的な接続に利用される。この場合、上述の樹脂層を剥がす必要がある。特許文献1の金属充填微細構造体を、上述のように2つの半導体チップの電気的な接続に利用した場合、半導体チップ間の電気伝導性が十分ではないことがある。電気伝導性が良好な金属充填微細構造体が望まれている。 In the above-mentioned Patent Document 1, a resin layer is provided on the surface of the anodic oxide film on the side where the aluminum substrate is not provided. The metal-filled microstructure is used, for example, for the electrical connection of two semiconductor chips. In this case, it is necessary to peel off the above-mentioned resin layer. When the metal-filled microstructure of Patent Document 1 is used for electrical connection between two semiconductor chips as described above, the electrical conductivity between the semiconductor chips may not be sufficient. A metal-filled microstructure with good electrical conductivity is desired.
 本発明の目的は、電気伝導性が良好な金属充填微細構造体の製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a metal-filled microstructure having good electrical conductivity.
 上述の目的を達成するために、本発明の一態様は、絶縁膜を厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた、複数の導体とを有し、導体が絶縁膜の厚み方向における少なくとも一方の面から突出しており、導体が突出している絶縁膜の面を覆う樹脂層を有する構造体を用意する準備工程と、酸素分圧が10000Pa以下の雰囲気にて、少なくとも樹脂層を加熱する加熱工程と、加熱工程により加熱された樹脂層を、絶縁膜から除去する除去工程とを有し、樹脂層は、熱剥離性接着剤を含む、金属充填微細構造体の製造方法を提供するものである。 In order to achieve the above object, one aspect of the present invention has a plurality of conductors provided in a state of penetrating the insulating film in the thickness direction and being electrically insulated from each other, and the conductor is an insulating film. In the preparatory step of preparing a structure having a resin layer that covers the surface of the insulating film that protrudes from at least one surface in the thickness direction of the conductor and the conductor protrudes, and in an atmosphere where the oxygen partial pressure is 10,000 Pa or less, at least the resin. A method for producing a metal-filled microstructure, which comprises a heating step of heating the layer and a removing step of removing the resin layer heated by the heating step from the insulating film, wherein the resin layer contains a heat-removable adhesive. Is to provide.
 加熱工程は、雰囲気の酸素分圧が1.0Pa以下であることが好ましい。
 加熱工程は、雰囲気の不活性ガスの分圧が、雰囲気の全圧の85%以上であることが好ましい。
 加熱工程は、雰囲気の還元性ガスの分圧が、雰囲気の全圧の85%以上であることが好ましい。
 加熱工程は、雰囲気の全圧が5.0Pa以下であることが好ましい。
In the heating step, the oxygen partial pressure of the atmosphere is preferably 1.0 Pa or less.
In the heating step, the partial pressure of the inert gas in the atmosphere is preferably 85% or more of the total pressure in the atmosphere.
In the heating step, the partial pressure of the reducing gas in the atmosphere is preferably 85% or more of the total pressure in the atmosphere.
In the heating step, the total pressure of the atmosphere is preferably 5.0 Pa or less.
 導体は、卑金属を含むことが好ましい。
 複数の導体は、導体の長手方向に対して垂直な断面における断面積が20μm以下の導体を有することが好ましい。
 加熱工程における樹脂層の到達温度が150℃以下であることが好ましい。
 導体は、絶縁膜の厚み方向における両面から、それぞれ突出しており、樹脂層は、絶縁膜の厚み方向における両面に、それぞれ設けられていることが好ましい。
 絶縁膜は、陽極酸化膜であることが好ましい。
The conductor preferably contains a base metal.
The plurality of conductors preferably have a conductor having a cross-sectional area of 20 μm 2 or less in a cross section perpendicular to the longitudinal direction of the conductor.
It is preferable that the temperature reached by the resin layer in the heating step is 150 ° C. or lower.
It is preferable that the conductor protrudes from both sides in the thickness direction of the insulating film, and the resin layer is provided on both sides in the thickness direction of the insulating film.
The insulating film is preferably an anodic oxide film.
 本発明によれば、電気伝導性が良好な金属充填微細構造体を得ることができる。 According to the present invention, it is possible to obtain a metal-filled microstructure having good electrical conductivity.
本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の一例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of an example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の他の例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of another example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の他の例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of another example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の金属充填微細構造体の製造方法の他の例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of another example of the manufacturing method of the metal-filled microstructure of the embodiment of this invention. 本発明の実施形態の異方導電性部材の供給形態の一例を示す模式的斜視図である。It is a schematic perspective view which shows an example of the supply form of the anisotropic conductive member of embodiment of this invention. 本発明の実施形態の異方導電性部材の供給形態の一例を示す模式的斜視図である。It is a schematic perspective view which shows an example of the supply form of the anisotropic conductive member of embodiment of this invention. 本発明の実施形態の金属充填微細構造体を用いた接合体の一例を示す模式図である。It is a schematic diagram which shows an example of the bonded body using the metal-filled microstructure of the embodiment of this invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の金属充填微細構造体の製造方法を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 温度及び時間について、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 また、平行等も特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
Hereinafter, the method for producing the metal-filled microstructure of the present invention will be described in detail based on the preferred embodiments shown in the attached drawings.
It should be noted that the figures described below are exemplary for explaining the present invention, and the present invention is not limited to the figures shown below.
In the following, "-" indicating the numerical range includes the numerical values described on both sides. For example, when ε a is a numerical value α b to a numerical value β c , the range of ε a is a range including the numerical value α b and the numerical value β c , and is expressed in mathematical symbols as α b ≤ ε a ≤ β c .
Unless otherwise stated, temperature and time include error ranges generally tolerated in the art.
Further, unless otherwise specified, parallelism and the like include an error range generally acceptable in the relevant technical field.
[金属充填微細構造体]
 図1~図8は本発明の実施形態の金属充填微細構造体の製造方法の一例を工程順に示す模式的断面図である。
 金属充填微細構造体10は、例えば、図8に示すように、電気的な絶縁性を有する絶縁膜12と、絶縁膜12を厚み方向Dtに貫通し、互いに電気的に絶縁された状態で設けられた、複数の導体14とを有する。導体14は、絶縁膜12の厚み方向Dtにおける少なくとも一方の面から突出している。導体14が、絶縁膜12の厚み方向Dtにおける少なくとも一方の面から突出する場合、片側の面から突出する構成では、表面12a又は裏面12bから突出することが好ましい。金属充填微細構造体10において、絶縁膜12は、例えば、陽極酸化膜15で構成される。
[Metal-filled microstructure]
1 to 8 are schematic cross-sectional views showing an example of a method for manufacturing a metal-filled microstructure according to an embodiment of the present invention in order of steps.
As shown in FIG. 8, for example, the metal-filled microstructure 10 is provided with an insulating film 12 having electrical insulating properties and an insulating film 12 penetrating the insulating film 12 in the thickness direction Dt and being electrically insulated from each other. It has a plurality of conductors 14 and the like. The conductor 14 projects from at least one surface of the insulating film 12 in the thickness direction Dt. When the conductor 14 projects from at least one surface in the thickness direction Dt of the insulating film 12, it is preferable that the conductor 14 projects from the front surface 12a or the back surface 12b in a configuration that projects from one surface. In the metal-filled microstructure 10, the insulating film 12 is composed of, for example, an anodic oxide film 15.
 複数の導体14は、絶縁膜12に、互いに電気的に絶縁された状態で配置されている。この場合、例えば、絶縁膜12は、厚み方向Dtに貫通する複数の細孔13を有する。複数の細孔13に導体14が設けられている。導体14は、絶縁膜12の厚み方向Dtにおける表面12aから突出している。
 金属充填微細構造体10は、導体14が互いに電気的に絶縁された状態で配置された、異方導電性を有するものである。金属充填微細構造体10は、厚み方向Dtに導電性を有するが、絶縁膜12の表面12aに平行な方向における導電性が十分に低い。
The plurality of conductors 14 are arranged on the insulating film 12 in a state of being electrically insulated from each other. In this case, for example, the insulating film 12 has a plurality of pores 13 penetrating in the thickness direction Dt. Conductors 14 are provided in the plurality of pores 13. The conductor 14 projects from the surface 12a of the insulating film 12 in the thickness direction Dt.
The metal-filled microstructure 10 has anisotropic conductivity in which conductors 14 are arranged in a state of being electrically insulated from each other. The metal-filled microstructure 10 has conductivity in the thickness direction Dt, but the conductivity in the direction parallel to the surface 12a of the insulating film 12 is sufficiently low.
 金属充填微細構造体10の外形は、特に限定されるものではなく、例えば、四角形、又は円形である。金属充填微細構造体10の外形は、用途、作製しやすさ等に応じた形状とすることができる。 The outer shape of the metal-filled microstructure 10 is not particularly limited, and is, for example, a quadrangle or a circle. The outer shape of the metal-filled microstructure 10 can be shaped according to the application, ease of manufacture, and the like.
[金属充填微細構造体の製造方法]
 金属充填微細構造体の製造方法の一例では、絶縁膜がアルミニウムの陽極酸化膜で構成されるものを例にして説明する。アルミニウムの陽極酸化膜を形成するために、アルミニウム基板を用いる。このため、構造体の製造方法の一例では、まず、図1に示すように、アルミニウム基板30を用意する。
 アルミニウム基板30は、最終的に得られる金属充填微細構造体10(図8参照)の絶縁膜12の厚み、加工する装置等に応じて大きさ及び厚みが適宜決定されるものである。アルミニウム基板30は、例えば、四角形状の板材である。なお、アルミニウム基板に限定されるものではなく、電気的に絶縁な絶縁膜12を形成できる金属基板を用いることができる。
[Manufacturing method of metal-filled microstructure]
In an example of a method for manufacturing a metal-filled microstructure, an example in which the insulating film is composed of an anodic oxide film of aluminum will be described. An aluminum substrate is used to form an anodic oxide film of aluminum. Therefore, in an example of the method for manufacturing a structure, first, as shown in FIG. 1, an aluminum substrate 30 is prepared.
The size and thickness of the aluminum substrate 30 are appropriately determined according to the thickness of the insulating film 12 of the finally obtained metal-filled microstructure 10 (see FIG. 8), the apparatus to be processed, and the like. The aluminum substrate 30 is, for example, a rectangular plate material. The metal substrate is not limited to the aluminum substrate, and a metal substrate capable of forming the electrically insulating insulating film 12 can be used.
 次に、アルミニウム基板30の片側の表面30a(図1参照)を陽極酸化処理する。これにより、アルミニウム基板30の片側の表面30a(図1参照)が陽極酸化されて、図2に示すように、アルミニウム基板30の厚み方向Dtに延在する複数の細孔13を有する絶縁膜12、すなわち、陽極酸化膜15が形成される。各細孔13の底部にはバリア層31が存在する。上述の陽極酸化する工程を陽極酸化処理工程という。
 複数の細孔13を有する絶縁膜12には、上述のようにそれぞれ細孔13の底部にバリア層31が存在するが、図2に示すバリア層31を除去する。これにより、バリア層31のない、複数の細孔13を有する絶縁膜12(図3参照)を得る。なお、上述のバリア層31を除去する工程をバリア層除去工程という。
 バリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いることにより、絶縁膜12のバリア層31を除去すると同時に、細孔13の底部32c(図3参照)の面32d(図3参照)に金属(金属M1)からなる金属層35a(図3参照)を形成する。これにより、細孔13に露出したアルミニウム基板30は金属層35aにより被覆される。これにより、細孔13へめっきによる金属充填の際に、めっきが進行しやすくなり、細孔に金属が十分に充填されないことが抑制され、細孔への金属の未充填等が抑制され、導体14の形成不良が抑制される。
 なお、上述の金属M1のイオンを含むアルカリ水溶液は更にアルミニウムイオン含有化合物(アルミン酸ソーダ、水酸化アルミニウム、酸化アルミニウム等)を含んでもよい。アルミニウムイオン含有化合物の含有量は、アルミニウムイオンの量に換算して0.1~20g/Lが好ましく、0.3~12g/Lがより好ましく、0.5~6g/Lが更に好ましい。
Next, the surface 30a (see FIG. 1) on one side of the aluminum substrate 30 is anodized. As a result, the surface 30a (see FIG. 1) on one side of the aluminum substrate 30 is anodized, and as shown in FIG. 2, the insulating film 12 having a plurality of pores 13 extending in the thickness direction Dt of the aluminum substrate 30. That is, the anodic oxide film 15 is formed. A barrier layer 31 is present at the bottom of each pore 13. The above-mentioned anodizing step is called an anodizing treatment step.
As described above, the insulating film 12 having the plurality of pores 13 has the barrier layer 31 at the bottom of the pores 13, but the barrier layer 31 shown in FIG. 2 is removed. As a result, an insulating film 12 (see FIG. 3) having a plurality of pores 13 without the barrier layer 31 is obtained. The step of removing the barrier layer 31 is referred to as a barrier layer removing step.
In the barrier layer removing step, the barrier layer 31 of the insulating film 12 is removed by using an alkaline aqueous solution containing ions of the metal M1 having a higher hydrogen overvoltage than aluminum, and at the same time, the bottom 32c of the pores 13 (see FIG. 3). A metal layer 35a (see FIG. 3) made of a metal (metal M1) is formed on the surface 32d (see FIG. 3). As a result, the aluminum substrate 30 exposed to the pores 13 is covered with the metal layer 35a. As a result, when the pores 13 are filled with metal by plating, the plating is facilitated, the pores are suppressed from being sufficiently filled with metal, the pores are suppressed from being unfilled with metal, and the conductor is suppressed. The poor formation of 14 is suppressed.
The alkaline aqueous solution containing the ion of the metal M1 may further contain an aluminum ion-containing compound (sodium aluminate, aluminum hydroxide, aluminum oxide, etc.). The content of the aluminum ion-containing compound is preferably 0.1 to 20 g / L, more preferably 0.3 to 12 g / L, and even more preferably 0.5 to 6 g / L in terms of the amount of aluminum ions.
 次に、厚み方向Dtに延在する複数の細孔13を有する絶縁膜12の表面12aからめっきを行う。この場合、金属層35aを電解めっきの電極として用いることができる。めっきには金属35bを用い、細孔13の底部32c(図3参照)の面32d(図3参照)に形成された金属層35aを起点にして、めっきが進行する。これにより、図4に示すように、絶縁膜12の細孔13の内部に、導体14を構成する金属35bが充填される。細孔13の内部に金属35bを充填することにより、導電性を有する導体14が形成される。なお、金属層35aと金属35bとをまとめて充填した金属35という。
 絶縁膜12の細孔13に金属35bを充填する工程を、金属充填工程という。上述のように、導体14は金属で構成することに限定されるものではなく、導電性物質を用いることができる。金属充填工程には、電解めっきが用いられ、金属充填工程については後に詳細に説明する。なお、絶縁膜12の表面12aが絶縁膜12の一方の面に相当する。
 金属充填工程の後に、図5に示すように、金属充填工程の後に絶縁膜12のアルミニウム基板30が設けられていない側の表面12aを厚み方向Dtに一部除去し、金属充填工程で充填した金属35を絶縁膜12の表面12aよりも突出させる。すなわち、導体14を絶縁膜12の表面12aよりも突出させる。これにより、突出部14aが得られる。導体14を絶縁膜12の表面12aよりも突出させる工程を、表面金属突出工程という。
Next, plating is performed from the surface 12a of the insulating film 12 having a plurality of pores 13 extending in the thickness direction Dt. In this case, the metal layer 35a can be used as an electrode for electrolytic plating. A metal 35b is used for plating, and the plating proceeds starting from the metal layer 35a formed on the surface 32d (see FIG. 3) of the bottom 32c (see FIG. 3) of the pore 13. As a result, as shown in FIG. 4, the metal 35b constituting the conductor 14 is filled inside the pores 13 of the insulating film 12. By filling the inside of the pores 13 with the metal 35b, a conductive conductor 14 is formed. It should be noted that the metal layer 35a and the metal 35b are collectively filled with the metal 35.
The step of filling the pores 13 of the insulating film 12 with the metal 35b is called a metal filling step. As described above, the conductor 14 is not limited to being made of metal, and a conductive substance can be used. Electroplating is used in the metal filling step, and the metal filling step will be described in detail later. The surface 12a of the insulating film 12 corresponds to one surface of the insulating film 12.
After the metal filling step, as shown in FIG. 5, a part of the surface 12a of the insulating film 12 on the side where the aluminum substrate 30 is not provided is removed in the thickness direction Dt after the metal filling step, and the insulating film 12 is filled in the metal filling step. The metal 35 is projected from the surface 12a of the insulating film 12. That is, the conductor 14 is projected from the surface 12a of the insulating film 12. As a result, the protruding portion 14a is obtained. The step of projecting the conductor 14 from the surface 12a of the insulating film 12 is referred to as a surface metal projecting step.
 表面金属突出工程の後に、導体14の突出部14aが形成された、絶縁膜12の表面12aに、図6に示すように樹脂層16を形成する。これにより、導体が突出している絶縁膜の面が樹脂層で覆われて、構造体18が得られる。構造体18を用意する工程を準備工程という。
 また、導体14が突出している絶縁膜12の面を覆う樹脂層16を形成する工程を、樹脂層形成工程という。樹脂層16は熱剥離性接着剤を含む。
 樹脂層形成工程の後に、構造体18に対して、図7に示すようにアルミニウム基板30を除去する。アルミニウム基板30を除去する工程を基板除去工程という。
After the surface metal projecting step, the resin layer 16 is formed on the surface 12a of the insulating film 12 on which the projecting portion 14a of the conductor 14 is formed, as shown in FIG. As a result, the surface of the insulating film from which the conductor protrudes is covered with the resin layer, and the structure 18 is obtained. The process of preparing the structure 18 is called a preparation process.
Further, the step of forming the resin layer 16 covering the surface of the insulating film 12 on which the conductor 14 protrudes is referred to as a resin layer forming step. The resin layer 16 contains a heat-removable adhesive.
After the resin layer forming step, the aluminum substrate 30 is removed from the structure 18 as shown in FIG. The step of removing the aluminum substrate 30 is called a substrate removing step.
 次に、構造体18に対して、酸素分圧が10000Pa以下の雰囲気にて、少なくとも樹脂層16を加熱する。樹脂層16を加熱する工程を加熱工程という。
 加熱工程には、半導体素子の製造に用いられる、半導体ウエハの加熱装置を用いることができる。
 加熱工程は、例えば、半導体製造装置のうち、半導体ウエハの加熱に用いる金属製の容器内で行われる。容器内に、基板除去後の構造体18を配置し、容器内の酸素分圧を10000Pa以下にする。
 なお、加熱工程における雰囲気の全圧、及び分圧は、例えば、圧力ゲージを用いて測定できる。これにより、上述の酸素分圧を測定できる。また、後述の不活性ガスの分圧、及び還元性ガスの分圧も測定できる。
 酸素分圧については、例えば、脱気により酸素分圧を調整することができる。
 なお、加熱工程は、酸素分圧が10000Pa以下の雰囲気に限定されるものではない。加熱工程における樹脂層の到達温度が150℃以下であることが好ましい。加熱工程における樹脂層の到達温度が150℃以下であると、電気伝導性が良好になる。
Next, at least the resin layer 16 is heated with respect to the structure 18 in an atmosphere having an oxygen partial pressure of 10,000 Pa or less. The step of heating the resin layer 16 is called a heating step.
In the heating step, a semiconductor wafer heating device used for manufacturing a semiconductor element can be used.
The heating step is performed, for example, in a metal container used for heating a semiconductor wafer in a semiconductor manufacturing apparatus. The structure 18 after removing the substrate is placed in the container, and the oxygen partial pressure in the container is set to 10,000 Pa or less.
The total pressure and partial pressure of the atmosphere in the heating step can be measured using, for example, a pressure gauge. Thereby, the above-mentioned oxygen partial pressure can be measured. In addition, the partial pressure of the inert gas and the partial pressure of the reducing gas, which will be described later, can also be measured.
Regarding the oxygen partial pressure, for example, the oxygen partial pressure can be adjusted by degassing.
The heating step is not limited to an atmosphere in which the oxygen partial pressure is 10,000 Pa or less. It is preferable that the temperature reached by the resin layer in the heating step is 150 ° C. or lower. When the temperature reached by the resin layer in the heating step is 150 ° C. or lower, the electrical conductivity becomes good.
 次に、加熱工程により加熱された樹脂層16を、図8に示すように絶縁膜12から除去する。これにより、金属充填微細構造体10が得られる。
 なお、樹脂層16を、絶縁膜12から除去する工程を除去工程という。除去工程では、樹脂層16の除去方法は、特に限定されるものではなく、例えば、ピンセット等の工具を使って除去する。除去工程では、ピンセット等の工具使って、絶縁膜12を樹脂層16から剥離してもよい。なお、除去工程の雰囲気は、加熱工程の雰囲気と同じである必要はなく、例えば、大気雰囲気でもよい。
Next, the resin layer 16 heated by the heating step is removed from the insulating film 12 as shown in FIG. As a result, the metal-filled microstructure 10 is obtained.
The step of removing the resin layer 16 from the insulating film 12 is referred to as a removal step. In the removing step, the method for removing the resin layer 16 is not particularly limited, and the resin layer 16 is removed using, for example, a tool such as tweezers. In the removing step, the insulating film 12 may be peeled from the resin layer 16 by using a tool such as tweezers. The atmosphere of the removing step does not have to be the same as the atmosphere of the heating step, and may be, for example, an atmospheric atmosphere.
 図9~図11は本発明の実施形態の金属充填微細構造体の製造方法の他の例を工程順に示す模式的断面図である。
 また、図7に示す基板除去工程の後に、図9に示すように、基板除去工程の後に絶縁膜12のアルミニウム基板30が設けられていた側の面、すなわち、裏面12bを厚み方向Dtに一部除去し、金属充填工程で充填した金属35、すなわち、導体14を絶縁膜12の裏面12bよりも突出させてもよい。これにより、突出部14bが得られる。
 上述の表面金属突出工程及び裏面金属突出工程は、両方の工程を有する態様であってもよいが、表面金属突出工程及び裏面金属突出工程のうち、一方の工程を有する態様であってもよい。表面金属突出工程及び裏面金属突出工程が「突出工程」に該当しており、表面金属突出工程及び裏面金属突出工程はいずれも突出工程である。
 構造体18としては、図9に示すように、絶縁膜12の表面12a及び裏面12bから、すなわち、絶縁膜12の厚み方向Dtにおける両面から、それぞれ導体14が突出した、突出部14aと突出部14bとを有する構成でもよい。
9 to 11 are schematic cross-sectional views showing another example of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in order of steps.
Further, after the substrate removing step shown in FIG. 7, as shown in FIG. 9, the surface on the side where the aluminum substrate 30 of the insulating film 12 is provided after the substrate removing step, that is, the back surface 12b is one in the thickness direction Dt. The metal 35, that is, the conductor 14, which has been partially removed and filled in the metal filling step, may be projected from the back surface 12b of the insulating film 12. As a result, the protruding portion 14b is obtained.
The above-mentioned front surface metal protrusion step and back surface metal protrusion step may have both steps, but may have one of the front surface metal protrusion step and the back surface metal protrusion step. The front surface metal projecting process and the back surface metal projecting process correspond to the "projection process", and the front surface metal projecting process and the back surface metal projecting process are both projecting processes.
As shown in FIG. 9, the structure 18 has a protruding portion 14a and a protruding portion in which the conductor 14 protrudes from the front surface 12a and the back surface 12b of the insulating film 12, that is, from both sides of the insulating film 12 in the thickness direction Dt. A configuration having 14b may be used.
 図9に示す絶縁膜12の裏面12bに、図10に示すように、樹脂層16を形成して、陽極酸化膜の厚み方向Dtにおける両面に、それぞれ樹脂層16を設ける。
 次に、構造体18に対して、上述の加熱工程及び樹脂層16の除去工程を実施して、図11に示す突出部14aと突出部14bとを有する金属充填微細構造体10が得られる。
As shown in FIG. 10, a resin layer 16 is formed on the back surface 12b of the insulating film 12 shown in FIG. 9, and resin layers 16 are provided on both sides of the anodic oxide film in the thickness direction Dt.
Next, the above-mentioned heating step and the removal step of the resin layer 16 are carried out on the structure 18 to obtain a metal-filled microstructure 10 having the protruding portions 14a and the protruding portions 14b shown in FIG.
 なお、上述のバリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いてバリア層を除去することにより、バリア層31を除去するだけでなく、細孔13の底部に露出したアルミニウム基板30にアルミニウムよりも水素ガスが発生しにくい金属M1の金属層35aが形成される。その結果、金属充填の面内均一性が良好となる。これは、めっき液による水素ガスの発生が抑制され、電解めっきによる金属充填が進行しやすくなったと考えられる。
 また、バリア層除去工程において、陽極酸化処理工程における電圧の30%未満の範囲から選択される電圧(保持電圧)の95%以上105%以下の電圧に通算5分以上保持する保持工程を設け、金属M1のイオンを含むアルカリ水溶液を適用することを組み合わせることにより、めっき処理時の金属充填の均一性が大きく良化することを見出している。このため、保持工程があることが好ましい。
 詳しいメカニズムは不明だが、バリア層除去工程において、金属M1のイオンを含むアルカリ水溶液を用いることでバリア層下部に金属M1の層が形成され、これによりアルミニウム基板と陽極酸化膜との界面がダメージを受けることを抑制することができ、バリア層の溶解の均一性が向上したためと考えられる。
In the above-mentioned barrier layer removing step, the barrier layer 31 is not only removed but also the pores 13 are removed by removing the barrier layer using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum. A metal layer 35a of the metal M1 that is less likely to generate hydrogen gas than aluminum is formed on the aluminum substrate 30 exposed at the bottom. As a result, the in-plane uniformity of the metal filling becomes good. It is considered that this is because the generation of hydrogen gas by the plating solution was suppressed and the metal filling by the electrolytic plating proceeded easily.
Further, in the barrier layer removing step, a holding step of holding the voltage of 95% or more and 105% or less of the voltage (holding voltage) selected from the range of less than 30% of the voltage in the anodic oxidation treatment step for a total of 5 minutes or more is provided. It has been found that the uniformity of metal filling during the plating treatment is greatly improved by combining the application of an alkaline aqueous solution containing the ions of the metal M1. Therefore, it is preferable to have a holding step.
Although the detailed mechanism is unknown, in the barrier layer removal step, a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum substrate and the anodic oxide film. It is considered that this is because the reception can be suppressed and the uniformity of dissolution of the barrier layer is improved.
 なお、バリア層除去工程において、細孔13の底部に金属(金属M1)からなる金属層35aを形成したが、これに限定されるものではなく、バリア層31だけを除去し、細孔13の底にアルミニウム基板30を露出させる。アルミニウム基板30を露出させた状態で、アルミニウム基板30を電解めっきの電極として用いてもよい。 In the barrier layer removing step, a metal layer 35a made of a metal (metal M1) was formed at the bottom of the pores 13, but the present invention is not limited to this, and only the barrier layer 31 is removed to form the pores 13. The aluminum substrate 30 is exposed on the bottom. The aluminum substrate 30 may be used as an electrode for electrolytic plating with the aluminum substrate 30 exposed.
〔陽極酸化膜〕
 陽極酸化膜は、上述のように、所望の平均径を有する細孔が形成され、導体を形成しやすいという理由から、例えば、アルミニウムの陽極酸化膜が用いられる。しかしながら、アルミニウムの陽極酸化膜に限定されるものではなく、バルブ金属の陽極酸化膜を用いることができる。このため、金属基板は、バルブ金属が用いられる。
 ここで、バルブ金属としては、具体的には、例えば、上述のアルミニウム、これ以外に、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化膜であることが好ましい。このため、アルミニウム基板を用いて、構造体を製造することが好ましい。
 陽極酸化膜の厚みは、上述の絶縁膜12の厚みhtと同じである。
[Anode oxide film]
As the anodic oxide film, for example, an aluminum anodic oxide film is used because pores having a desired average diameter are formed and a conductor is easily formed as described above. However, the anodic oxide film of aluminum is not limited, and an anodic oxide film of valve metal can be used. Therefore, valve metal is used as the metal substrate.
Here, examples of the valve metal include, for example, the above-mentioned aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, an aluminum anodic oxide film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
The thickness of the anodic oxide film is the same as the thickness ht of the insulating film 12 described above.
〔金属基板〕
 金属基板は、構造体の製造に用いられるものであり、陽極酸化膜を形成するための基板である。金属基板は、例えば、上述のように、陽極酸化膜が形成できる金属基板が用いられ、上述のバルブ金属で構成されるものを用いることができる。例えば、金属基板には、上述のように、陽極酸化膜として陽極酸化膜を形成しやすいという理由から、アルミニウム基板が用いられる。
[Metal substrate]
The metal substrate is used for manufacturing a structure and is a substrate for forming an anodic oxide film. As the metal substrate, for example, as described above, a metal substrate on which an anodic oxide film can be formed is used, and a metal substrate composed of the above-mentioned valve metal can be used. For example, as described above, an aluminum substrate is used as the metal substrate because it is easy to form the anodic oxide film as the anodic oxide film.
〔アルミニウム基板〕
 絶縁膜12を形成するために用いられるアルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
[Aluminum substrate]
The aluminum substrate used to form the insulating film 12 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; low-purity aluminum (for example, for example). A substrate on which high-purity aluminum is vapor-deposited on (recycled material); a substrate on which the surface of silicon wafer, quartz, glass, etc. is coated with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate on which aluminum is laminated; etc. ..
 アルミニウム基板のうち、陽極酸化処理により陽極酸化膜を形成する片側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上述の範囲であると、マイクロポア配列の規則性が十分となる。
 アルミニウム基板は、陽極酸化膜を形成することができれば、特に限定されるものでなく、例えば、JIS(Japanese Industrial Standards) 1050材が用いられる。
The surface of one side of the aluminum substrate on which the anodic oxide film is formed by the anodic oxidation treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99. It is more preferably .99% by mass or more. When the aluminum purity is in the above range, the regularity of the micropore arrangement is sufficient.
The aluminum substrate is not particularly limited as long as it can form an anodic oxide film, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
 アルミニウム基板のうち陽極酸化処理される片側の表面は、予め熱処理、脱脂処理及び鏡面仕上げ処理が施されていることが好ましい。
 ここで、熱処理、脱脂処理及び鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。
 陽極酸化処理の前の鏡面仕上げ処理は、例えば、電解研磨であり、電解研磨には、例えば、リン酸を含有する電解研磨液が用いられる。
It is preferable that the surface of one side of the aluminum substrate to be anodized is previously heat-treated, degreased and mirror-finished.
Here, regarding the heat treatment, the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
The mirror finish treatment before the anodic oxidation treatment is, for example, electrolytic polishing, and for the electrolytic polishing, for example, an electrolytic polishing liquid containing phosphoric acid is used.
〔陽極酸化処理工程〕
 陽極酸化処理は、従来公知の方法を用いることができるが、マイクロポア配列の規則性を高くし、構造体の異方導電性を担保する観点から、自己規則化法又は定電圧処理を用いることが好ましい。
 ここで、陽極酸化処理の自己規則化法及び定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落及び[図3]に記載された各処理と同様の処理を施すことができる。
[Anodizing process]
For the anodizing treatment, a conventionally known method can be used, but from the viewpoint of increasing the regularity of the micropore arrangement and ensuring the anisotropic conductivity of the structure, a self-regular method or a constant voltage treatment should be used. Is preferable.
Here, regarding the self-regularization method and the constant voltage treatment of the anodizing treatment, the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
〔保持工程〕
 構造体の製造方法は保持工程を有してもよい。保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧に通算5分以上保持する工程である。言い換えると、保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧で通算5分以上電解処理を施す工程である。
 ここで、「陽極酸化処理における電圧」とは、アルミニウムと対極間に印加する電圧であり、例えば、陽極酸化処理による電解時間が30分であれば、30分の間に保たれている電圧の平均値をいう。
[Holding process]
The method for manufacturing the structure may include a holding step. The holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more. This is the process of holding. In other words, the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step. This is a step of performing electrolytic treatment for 5 minutes or more.
Here, the "voltage in the anodizing treatment" is a voltage applied between the aluminum and the counter electrode, and for example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. The average value.
 陽極酸化膜の側壁厚み、すなわち、細孔の深さに対してバリア層の厚みを適切な厚みに制御する観点から、保持工程における電圧が、陽極酸化処理における電圧の5%以上25%以下であることが好ましく、5%以上20%以下であることがより好ましい。 From the viewpoint of controlling the thickness of the side wall of the anodizing film, that is, the thickness of the barrier layer to an appropriate thickness with respect to the depth of the pores, the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably present, and more preferably 5% or more and 20% or less.
 また、面内均一性がより向上する理由から、保持工程における保持時間の合計が、5分以上20分以下であることが好ましく、5分以上15分以下であることがより好ましく、5分以上10分以下であることが更に好ましい。
 また、保持工程における保持時間は、通算5分以上であればよいが、連続5分以上であることが好ましい。
Further, for the reason that the in-plane uniformity is further improved, the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
The holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
 更に、保持工程における電圧は、陽極酸化処理工程における電圧から保持工程における電圧まで連続的又は段階的に降下させて設定してもよいが、面内均一性が更に向上する理由から、陽極酸化処理工程の終了後、1秒以内に、上述の保持電圧の95%以上105%以下の電圧に設定することが好ましい。 Further, the voltage in the holding step may be set by continuously or stepwise reducing the voltage from the voltage in the anodic oxidation treatment step to the voltage in the holding step, but for the reason of further improving the in-plane uniformity, the anodic oxidation treatment is performed. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the step.
 上述の保持工程は、例えば、上述の陽極酸化処理工程の終了時に電解電位を降下させることにより、上述の陽極酸化処理工程と連続して行うこともできる。
 上述の保持工程は、電解電位以外の条件については、上述の従来公知の陽極酸化処理と同様の電解液及び処理条件を採用することができる。
 特に、保持工程と陽極酸化処理工程とを連続して施す場合は、同様の電解液を用いて処理することが好ましい。
The above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step, for example, by lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
In the above-mentioned holding step, with respect to conditions other than the electrolytic potential, the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted.
In particular, when the holding step and the anodizing treatment step are continuously performed, it is preferable to perform the treatment using the same electrolytic solution.
 複数のマイクロポアを有する陽極酸化膜には、上述のようにマイクロポアの底部にバリア層(図示せず)が存在する。このバリア層を除去するバリア層除去工程を有する。 The anodic oxide film having a plurality of micropores has a barrier layer (not shown) at the bottom of the micropores as described above. It has a barrier layer removing step for removing the barrier layer.
〔バリア層除去工程〕
 バリア層除去工程は、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いて、陽極酸化膜のバリア層を除去する工程である。
 上述のバリア層除去工程により、バリア層が除去され、かつ、マイクロポアの底部に、金属M1からなる導電体層が形成されることになる。
 ここで、水素過電圧(hydrogen overvoltage)とは、水素が発生するのに必要な電圧をいい、例えば、アルミニウム(Al)の水素過電圧は-1.66Vである(日本化学会誌,1982、(8),p1305-1313)。なお、アルミニウムの水素過電圧よりも高い金属M1の例及びその水素過電圧の値を以下に示す。
 <金属M1及び水素(1N H2SO4)過電圧>
 ・白金(Pt):0.00V
 ・金(Au):0.02V
 ・銀(Ag):0.08V
 ・ニッケル(Ni):0.21V
 ・銅(Cu):0.23V
 ・錫(Sn):0.53V
 ・亜鉛(Zn):0.70V
[Barrier layer removal process]
The barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
By the barrier layer removing step described above, the barrier layer is removed, and a conductor layer made of the metal M1 is formed at the bottom of the micropores.
Here, the hydrogen overvoltage means the voltage required for hydrogen to be generated. For example, the hydrogen overvoltage of aluminum (Al) is −1.66 V (Journal of the Chemical Society of Japan, 1982, (8)). , P1305-1313). An example of the metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
<Metal M1 and hydrogen (1NH 2 SO 4 ) overvoltage>
-Platinum (Pt): 0.00V
-Gold (Au): 0.02V
-Silver (Ag): 0.08V
-Nickel (Ni): 0.21V
-Copper (Cu): 0.23V
-Tin (Sn): 0.53V
-Zinc (Zn): 0.70V
 本発明においては、後述する陽極酸化処理工程において充填する金属M2と置換反応を起こし、マイクロポアの内部に充填される金属の電気的な特性に与える影響が少なくなる理由から、上述のバリア層除去工程で用いる金属M1は、後述する金属充填工程で用いる金属M2よりもイオン化傾向が高い金属であることが好ましい。
 具体的には、後述する金属充填工程の金属M2として銅(Cu)を用いる場合には、上述のバリア層除去工程で用いる金属M1としては、例えば、Zn、Fe、Ni、Sn等が挙げられ、中でも、Zn、Niを用いるのが好ましく、Znを用いるのがより好ましい。
 また、後述する金属充填工程の金属M2としてNiを用いる場合には、上述のバリア層除去工程で用いる金属M1としては、例えば、Zn、Fe等が挙げられ、中でも、Znを用いるのが好ましい。
In the present invention, the barrier layer is removed as described above because it causes a substitution reaction with the metal M2 to be filled in the anodizing treatment step described later and has less influence on the electrical characteristics of the metal to be filled inside the micropores. The metal M1 used in the step is preferably a metal having a higher ionization tendency than the metal M2 used in the metal filling step described later.
Specifically, when copper (Cu) is used as the metal M2 in the metal filling step described later, examples of the metal M1 used in the barrier layer removing step described above include Zn, Fe, Ni, Sn and the like. Above all, it is preferable to use Zn and Ni, and it is more preferable to use Zn.
When Ni is used as the metal M2 in the metal filling step described later, examples of the metal M1 used in the barrier layer removing step described above include Zn and Fe, and among them, Zn is preferably used.
 このような金属M1を含むアルカリ水溶液を用いてバリア層を除去する方法は特に限定されず、例えば、従来公知の化学的エッチング処理と同様の方法が挙げられる。 The method of removing the barrier layer using such an alkaline aqueous solution containing the metal M1 is not particularly limited, and examples thereof include the same methods as those of conventionally known chemical etching treatments.
 <化学エッチング処理>
 化学エッチング処理によるバリア層の除去は、例えば、上述の陽極酸化処理工程後の構造物をアルカリ水溶液に浸漬させ、マイクロポアの内部にアルカリ水溶液を充填させた後に、陽極酸化膜のマイクロポアの開口部側の表面にpH緩衝液に接触させる方法等により、バリア層のみを選択的に溶解させることができる。
<Chemical etching process>
To remove the barrier layer by chemical etching treatment, for example, the structure after the above-mentioned anodic oxidation treatment step is immersed in an alkaline aqueous solution, the inside of the micropores is filled with the alkaline aqueous solution, and then the micropores of the anodic oxide film are opened. Only the barrier layer can be selectively dissolved by a method of contacting the surface on the portion side with a pH buffer solution or the like.
 ここで、上述の金属M1を含むアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。また、アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、更に15~45℃が好ましく、更に20~35℃であるのが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液、0.5g/L、30℃の水酸化カリウム水溶液等が好適に用いられる。
 なお、pH緩衝液としては、上述したアルカリ水溶液に対応した緩衝液を適宜使用することができる。
Here, as the alkaline aqueous solution containing the above-mentioned metal M1, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C.
Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
As the pH buffer solution, a buffer solution corresponding to the above-mentioned alkaline aqueous solution can be appropriately used.
 また、アルカリ水溶液への浸せき時間は、5~120分であるのが好ましく、8~120分であるのがより好ましく、8~90分であるのが更に好ましく、10~90分であるのが特に好ましい。なかでも、10~60分であるのが好ましく、15~60分であるのがより好ましい。 The immersion time in the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, still more preferably 8 to 90 minutes, and preferably 10 to 90 minutes. Especially preferable. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
 細孔13は、マイクロポアを拡径し、かつバリア層を除去して形成することもできる。この場合、マイクロポアの拡径には、ポアワイド処理が用いられる。ポアワイド処理は、陽極酸化膜を、酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、マイクロポアの孔径を拡大する処理である、ポアワイド処理には、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液、又は水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等の水溶液を用いることができる。
 なお、ポアワイド処理でも、マイクロポアの底部のバリア層を除去することができ、ポアワイド処理において水酸化ナトリウム水溶液を用いることにより、マイクロポアが拡径され、かつバリア層が除去される。
The pores 13 can also be formed by expanding the diameter of the micropores and removing the barrier layer. In this case, pore wide processing is used to increase the diameter of the micropores. The pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore size of the micropores. An aqueous solution of an inorganic acid such as hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
The barrier layer at the bottom of the micropores can also be removed by the pore wide treatment, and by using the sodium hydroxide aqueous solution in the pore wide treatment, the diameter of the micropores is expanded and the barrier layer is removed.
〔金属充填工程〕
 <金属充填工程に用いられる金属>
 金属充填工程において、導体を形成するために、上述の細孔13の内部に導電体として充填される金属、及び金属層を構成する金属は、電気抵抗率が103Ω・cm以下の材料であることが好ましい。上述の金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、及び亜鉛(Zn)が好適に例示される。
 なお、導電体としては、電気伝導性、及びめっき法による形成の観点から、銅(Cu)、金(Au)、アルミニウム(Al)、ニッケル(Ni)が好ましく、銅(Cu)、金(Au)がより好ましく、銅(Cu)が更に好ましい。
[Metal filling process]
<Metal used in the metal filling process>
In the metal filling step, the metal to be filled as a conductor in the pores 13 described above to form a conductor and the metal constituting the metal layer are made of a material having an electrical resistivity of 103 Ω · cm or less. It is preferable to have. Specific examples of the above-mentioned metals are preferably gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and zinc (Zn). ..
As the conductor, copper (Cu), gold (Au), aluminum (Al), nickel (Ni) are preferable, and copper (Cu) and gold (Au) are preferable from the viewpoint of electrical conductivity and formation by a plating method. ) Is more preferable, and copper (Cu) is further preferable.
 <めっき法>
 細孔の内部に金属を充填するめっき法としては、例えば、電解めっき法又は無電解めっき法を用いることができる。
 ここで、着色等に用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、電解めっき法により金属を充填する場合は、パルス電解又は定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒であることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
<Plating method>
As the plating method for filling the inside of the pores with metal, for example, an electrolytic plating method or an electroless plating method can be used.
Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer.
Therefore, when metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis. The rest time is required to be 10 seconds or more, preferably 30 to 60 seconds.
It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS株式会社、北斗電工株式会社、IVIUM社等のポテンショスタット装置を用いることができる。 Further, the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V. When performing constant potential electrolysis, it is desirable that cyclic voltammetry can be used in combination, and potentiometer devices such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
(めっき液)
 めっき液は、従来公知のめっき液を用いることができる。
 具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであることが好ましく、100~200g/Lであるのがより好ましい。また、電解液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであることが好ましい。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
(Plating liquid)
As the plating solution, a conventionally known plating solution can be used.
Specifically, when precipitating copper, an aqueous solution of copper sulfate is generally used, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the electrolytic solution. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L.
When depositing gold, it is desirable to use a sulfuric acid solution of tetrachlorogold and perform plating by AC electrolysis.
 めっき液は、界面活性剤を含むことが好ましい。
 界面活性剤としては公知のものを使用することができる。従来メッキ液に添加する界面活性剤として知られているラウリル硫酸ナトリウムをそのまま使用することもできる。親水性部分がイオン性(カチオン性・アニオン性・双性)のもの、非イオン性(ノニオン性)のものいずれも利用可能であるが、メッキ対象物表面への気泡の発生等を回避する点でカチオン線活性剤が望ましい。めっき液組成における界面活性剤の濃度は1質量%以下であることが望ましい。
 なお、無電解めっき法では、アスペクトの高い細孔からなる孔中に金属を完全に充填には長時間を要するので、電解めっき法を用いて細孔に金属を充填することが望ましい。
The plating solution preferably contains a surfactant.
As the surfactant, known ones can be used. Sodium lauryl sulfate, which is conventionally known as a surfactant to be added to the plating solution, can be used as it is. Both ionic (cationic / anionic / bidirectional) and nonionic (nonionic) hydrophilic portions can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated. A cation beam activator is desirable. The concentration of the surfactant in the plating solution composition is preferably 1% by mass or less.
In the electroless plating method, it takes a long time to completely fill the pores composed of pores having a high aspect with metal, so it is desirable to fill the pores with metal by using the electrolytic plating method.
〔基板除去工程〕
 基板除去工程は、金属充填工程の後に、上述のアルミニウム基板を除去する工程である。アルミニウム基板を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。
[Substrate removal process]
The substrate removing step is a step of removing the above-mentioned aluminum substrate after the metal filling step. The method for removing the aluminum substrate is not particularly limited, and for example, a method for removing by melting is preferable.
 <アルミニウム基板の溶解>
 上述のアルミニウム基板の溶解は、陽極酸化膜を溶解しにくく、アルミニウムを溶解しやすい処理液を用いることが好ましい。
 このような処理液は、アルミニウムに対する溶解速度が、1μm/分以上であることが好ましく、3μm/分以上であることがより好ましく、5μm/分以上であることが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となることが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pH(水素イオン指数)が4以下又は8以上となる処理液であることが好ましく、そのpHが3以下又は9以上であることがより好ましく、2以下又は10以上であることが更に好ましい。
<Dissolution of aluminum substrate>
For the above-mentioned dissolution of the aluminum substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
Such a treatment liquid preferably has a dissolution rate in aluminum of 1 μm / min or more, more preferably 3 μm / min or more, and further preferably 5 μm / min or more. Similarly, the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
Specifically, it is preferably a treatment liquid containing at least one metal compound having a lower ionization tendency than aluminum and having a pH (hydrogen ion index) of 4 or less or 8 or more, and the pH is 3 or less or It is more preferably 9 or more, and further preferably 2 or less or 10 or more.
 アルミニウムを溶解する処理液としては、酸又はアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであることが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドすることが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、アルミニウムを溶解する処理液の組成は、特に限定されるものではく、例えば、臭素/メタノール混合物、臭素/エタノール混合物、及び王水等を用いることができる。
The treatment liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum. , A gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like are preferably blended.
Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
In particular, a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of the treatment liquid for dissolving aluminum is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
 また、アルミニウムを溶解する処理液の酸又はアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、アルミニウムを溶解する処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
The acid or alkali concentration of the treatment liquid for dissolving aluminum is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
Further, the treatment temperature using the treatment liquid for dissolving aluminum is preferably −10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
 また、上述のアルミニウム基板の溶解は、上述のめっき工程後のアルミニウム基板を上述の処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 Further, the above-mentioned melting of the aluminum substrate is performed by bringing the aluminum substrate after the above-mentioned plating step into contact with the above-mentioned treatment liquid. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
 なお、絶縁膜12に、例えば、支持体を設けてもよい。支持体は絶縁膜12と同じ外形状であることが好ましい。支持体を取り付けることにより、取扱い性が増す。 A support may be provided on the insulating film 12, for example. The support preferably has the same outer shape as the insulating film 12. By attaching a support, handleability is increased.
〔突出工程〕
 上述の絶縁膜12の一部除去には、例えば、導体14を構成する金属を溶解せず、絶縁膜12、すなわち、酸化アルミニウム(Al)を溶解する酸水溶液又はアルカリ水溶液が用いられる。上述の酸水溶液又はアルカリ水溶液を、金属が充填された細孔13を有する絶縁膜12に接触させることにより、絶縁膜12を一部除去する。上述の酸水溶液又はアルカリ水溶液を絶縁膜12に接触させる方法は、特に限定されず、例えば、浸漬法及びスプレー法が挙げられる。中でも浸漬法が好ましい。
[Protrusion process]
For the partial removal of the above-mentioned insulating film 12, for example, an acid aqueous solution or an alkaline aqueous solution that does not dissolve the metal constituting the conductor 14 but dissolves the insulating film 12, that is, aluminum oxide (Al 2 O 3 ) is used. .. The insulating film 12 is partially removed by bringing the above-mentioned aqueous acid solution or alkaline aqueous solution into contact with the insulating film 12 having the pores 13 filled with metal. The method of bringing the above-mentioned acid aqueous solution or alkaline aqueous solution into contact with the insulating film 12 is not particularly limited, and examples thereof include a dipping method and a spraying method. Of these, the dipping method is preferable.
 酸水溶液を用いる場合は、硫酸、リン酸、硝酸及び塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。中でもクロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1~10質量%であることが好ましい。酸水溶液の温度は、25~60℃であることが好ましい。
 また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液又は0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Of these, an aqueous solution containing no chromic acid is preferable because it is excellent in safety. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 60 ° C.
When an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
 酸水溶液又はアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であるのがより好ましく、15~60分であるのが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。 The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes. Here, the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
 また、金属35、すなわち、導体14を絶縁膜12の表面12a又は裏面12bより突出させる程度であるが、導体14を絶縁膜12の表面12a又は裏面12bよりも10nm~1000nm突出させることが好ましく、50nm~500nm突出させることがより好ましい。すなわち、突出部14aの絶縁膜12の表面12aからの突出量、突出部14bの絶縁膜12の裏面12bからの導体14の突出量は、それぞれ10nm~1000nmが好ましく、より好ましくは50nm~500nmである。
 導体14の突出部14a,14bの高さは、金属充填微細構造体10の断面を電解放出形走査型電子顕微鏡により2万倍の倍率で観察し、導体の突出部の高さを10点で測定した平均値をいう。
Further, the metal 35, that is, the conductor 14 is projected from the front surface 12a or the back surface 12b of the insulating film 12, but the conductor 14 is preferably projected from the front surface 12a or the back surface 12b of the insulating film 12 by 10 nm to 1000 nm. It is more preferable to project from 50 nm to 500 nm. That is, the amount of protrusion of the insulating film 12 of the protruding portion 14a from the front surface 12a and the amount of protrusion of the conductor 14 from the back surface 12b of the insulating film 12 of the protruding portion 14b are preferably 10 nm to 1000 nm, more preferably 50 nm to 500 nm, respectively. be.
As for the heights of the protrusions 14a and 14b of the conductor 14, the cross section of the metal-filled microstructure 10 is observed with an electrolytic discharge scanning electron microscope at a magnification of 20,000 times, and the height of the protrusions of the conductor is 10 points. The measured average value.
 導体14の突出部の高さを厳密に制御する場合は、細孔13の内部に、金属等の導電性物質を充填した後、絶縁膜12と、金属等の導電性物質の端部とを同一平面状になるように加工した後、陽極酸化膜を選択的に除去することが好ましい。
 また、上述の金属の充填後、又は突出工程の後に、金属の充填に伴い発生した導体14内の歪みを軽減する目的で、加熱処理を施すことができる。
 加熱処理は、金属の酸化を抑制する観点から還元性雰囲気で施すことが好ましく、具体的には、酸素濃度が20Pa以下で行うことが好ましく、真空下で行うことがより好ましい。ここで、真空とは、大気よりも、気体密度及び気圧のうち、少なくとも一方が低い空間の状態をいう。
 また、加熱処理は、矯正の目的で、絶縁膜12に応力を加えながら行うことが好ましい。
When the height of the protruding portion of the conductor 14 is strictly controlled, the inside of the pore 13 is filled with a conductive substance such as metal, and then the insulating film 12 and the end portion of the conductive substance such as metal are formed. It is preferable to selectively remove the anodic oxide film after processing the particles so that they have the same planar shape.
Further, after the above-mentioned metal filling or after the projecting step, heat treatment can be performed for the purpose of reducing the distortion in the conductor 14 generated by the metal filling.
The heat treatment is preferably carried out in a reducing atmosphere from the viewpoint of suppressing the oxidation of the metal, specifically, the oxygen concentration is preferably 20 Pa or less, and more preferably carried out under vacuum. Here, the vacuum means a state of a space in which at least one of the gas density and the atmospheric pressure is lower than that of the atmosphere.
Further, it is preferable that the heat treatment is performed while applying stress to the insulating film 12 for the purpose of straightening.
〔樹脂層形成工程〕
 上述のように、導体が突出している絶縁膜の面を覆う樹脂層を形成する工程である。樹脂層は、導体の保護、更には搬送性の向上から設ける。
 樹脂層形成工程は、上述の金属充填工程の後、表面金属突出工程の後であって、基板除去工程の前に、実施する工程である。
[Resin layer forming process]
As described above, this is a step of forming a resin layer that covers the surface of the insulating film from which the conductor protrudes. The resin layer is provided to protect the conductor and to improve the transportability.
The resin layer forming step is a step to be carried out after the above-mentioned metal filling step, after the surface metal projecting step, and before the substrate removing step.
 樹脂層は、上述のように熱剥離性接着剤を含むものである。樹脂層は、搬送性の観点と、異方導電性部材として使用しやすくする観点から、加熱処理により粘着性が弱くなり、剥離可能となる粘着層付きフィルムであるのがより好ましい。
 上述の粘着層付きフィルムを貼り付ける方法は特に限定されず、従来公知の表面保護テープ貼付装置又はラミネーターを用いて貼り付けることができる。
The resin layer contains a heat-removable adhesive as described above. From the viewpoint of transportability and ease of use as an anisotropic conductive member, the resin layer is more preferably a film with an adhesive layer whose adhesiveness is weakened by heat treatment and which can be peeled off.
The method of attaching the above-mentioned film with an adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device or laminator.
 上述の加熱処理により粘着性が弱くなり、剥離可能となる粘着層付きフィルムとしては、熱剥離型の樹脂層が挙げられる。
 ここで、熱剥離型の樹脂層は、常温では粘着力があり、加熱するだけで容易に剥離可能なもので、主に発泡性のマイクロカプセル等を用いたものが多い。
 また、粘着層を構成する粘着剤としては、具体的には、例えば、ゴム系粘着剤、アクリル系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、及びスチレン-ジエンブロック共重合体系粘着剤等が挙げられる。
Examples of the film with an adhesive layer whose adhesiveness is weakened by the above-mentioned heat treatment and which can be peeled off include a heat-peelable resin layer.
Here, the heat-peeling type resin layer has adhesive strength at room temperature and can be easily peeled off only by heating, and most of them mainly use effervescent microcapsules or the like.
Specific examples of the adhesive constituting the adhesive layer include a rubber adhesive, an acrylic adhesive, a vinyl alkyl ether adhesive, a silicone adhesive, a polyester adhesive, and a polyamide adhesive. , Urethane-based pressure-sensitive adhesives, styrene-diene block copolymerization-based pressure-sensitive adhesives, and the like.
 熱剥離型の樹脂層の市販品としては、例えば、WS5130C02、WS5130C10等のインテリマー〔登録商標〕テープ(ニッタ株式会社製);ソマタック〔登録商標〕TEシリーズ(ソマール株式会製);No.3198、No.3198LS、No.3198M、No.3198MS、No.3198H、No.3195、No.3196、No.3195M、No.3195MS、No.3195H、No.3195HS、No.3195V、No.3195VS、No.319Y-4L、No.319Y-4LS、No.319Y-4M、No.319Y-4MS、No.319Y-4H、No.319Y-4HS、No.319Y-4LSC、No.31935MS、No.31935HS、No.3193M、No.3193MS等のリバアルファ〔登録商標〕シリーズ(日東電工株式会社製);等が挙げられる。 Commercially available products of the heat-peeling type resin layer include, for example, Intellimar [registered trademark] tapes (manufactured by Nitta Corporation) such as WS5130C02 and WS5130C10; Somatac [registered trademark] TE series (manufactured by Somar Corporation); 3198, No. 3198LS, No. 3198M, No. 3198MS, No. 3198H, No. 3195, No. 3196, No. 3195M, No. 3195MS, No. 3195H, No. 3195HS, No. 3195V, No. 3195VS, No. 319Y-4L, No. 319Y-4LS, No. 319Y-4M, No. 319Y-4MS, No. 319Y-4H, No. 319Y-4HS, No. 319Y-4LSC, No. 31935MS, No. 31935HS, No. 3193M, No. Riva Alpha [registered trademark] series (manufactured by Nitto Denko KK) such as 3193MS; etc. may be mentioned.
〔加熱工程〕
 加熱工程は、樹脂層を除去するために、樹脂層を除去しやすくするための工程である。しかも、樹脂層を単に加熱した場合、導体を構成する金属種によっては酸化されて電気抵抗の上昇してしまうことがある。このため、金属充填微細構造体を異方導電性部材に用いて、半導体チップを電気的に接続した場合、電気伝導性が低下することがある。しかしながら、加熱工程を、酸素分圧が10000Pa以下の雰囲気で実施することにより、電気抵抗の上昇が抑制され、半導体チップを電気的に接続した場合、電気伝導性が良好になる。
 加熱工程は、雰囲気の酸素分圧が10000Pa以下であるが、1.0Pa以下であること好ましい。酸素分圧が10000Pa以下であれば、導体の酸化が抑制されるが、酸素分圧が小さい程、導体の金属種によらずに酸化が抑制されるため好ましい。
[Heating process]
The heating step is a step for facilitating the removal of the resin layer in order to remove the resin layer. Moreover, when the resin layer is simply heated, it may be oxidized depending on the metal species constituting the conductor and the electric resistance may increase. Therefore, when a metal-filled microstructure is used as an anisotropic conductive member and a semiconductor chip is electrically connected, the electrical conductivity may decrease. However, by carrying out the heating step in an atmosphere having an oxygen partial pressure of 10,000 Pa or less, an increase in electrical resistance is suppressed, and when a semiconductor chip is electrically connected, electrical conductivity is improved.
In the heating step, the oxygen partial pressure of the atmosphere is 10,000 Pa or less, but it is preferably 1.0 Pa or less. When the oxygen partial pressure is 10,000 Pa or less, the oxidation of the conductor is suppressed, but the smaller the oxygen partial pressure is, the more preferable it is because the oxidation is suppressed regardless of the metal type of the conductor.
 加熱工程は、以下に示す雰囲気とすることができる。例えば、雰囲気の全圧を100%とするとき、雰囲気の不活性ガスの分圧が、雰囲気の全圧の85%以上であることが好ましい。雰囲気における不活性ガスの分圧が、全圧の85%以上であれば、相対的に酸素分圧を小さくでき、しかも導体の酸化も抑制できる。
 なお、不活性ガスの分圧については、例えば、加熱工程を実施する容器内への不活性ガスの供給量を調整することにより不活性ガスの分圧を調整できる。
 また、加熱工程において、例えば、雰囲気の全圧を100%とするとき、雰囲気の還元性ガスの分圧が、雰囲気の全圧の85%以上であることが好ましい。雰囲気における還元性ガスの分圧が、全圧の85%以上であれば、相対的に酸素分圧を小さくでき、しかも導体の酸化も抑制できる。なお、還元性ガスは導体との反応が小さいガスであることが好ましい。
 なお、還元性ガスの分圧については、例えば、加熱工程を実施する容器内への還元性ガスの供給量を調整することにより還元性ガスの分圧を調整できる。
The heating step can have the atmosphere shown below. For example, when the total pressure of the atmosphere is 100%, the partial pressure of the inert gas in the atmosphere is preferably 85% or more of the total pressure of the atmosphere. When the partial pressure of the inert gas in the atmosphere is 85% or more of the total pressure, the oxygen partial pressure can be relatively reduced and the oxidation of the conductor can be suppressed.
Regarding the partial pressure of the inert gas, for example, the partial pressure of the inert gas can be adjusted by adjusting the supply amount of the inert gas into the container in which the heating step is carried out.
Further, in the heating step, for example, when the total pressure of the atmosphere is 100%, the partial pressure of the reducing gas in the atmosphere is preferably 85% or more of the total pressure of the atmosphere. If the partial pressure of the reducing gas in the atmosphere is 85% or more of the total pressure, the oxygen partial pressure can be relatively reduced, and the oxidation of the conductor can also be suppressed. The reducing gas is preferably a gas that has a small reaction with the conductor.
Regarding the partial pressure of the reducing gas, for example, the partial pressure of the reducing gas can be adjusted by adjusting the supply amount of the reducing gas into the container in which the heating step is carried out.
<不活性ガス>
 不活性ガスは、特に限定されるものではないが、例えば、ヘリウムガス、ネオンガス、及びアルゴンガス等の希ガス、又は窒素ガス等である。不活性ガスとしては、上述の各種のガスを単独で用いてもよいが、少なくとも2つのガスを混合してもよい。
<還元性ガス>
 還元性ガスは、特に限定されるものではないが、例えば、水素ガス、一酸化炭素ガス、又は、CH、C、もしくはC10等の炭化水素ガスである。還元性ガスとしては、上述の各種のガスを単独で用いてもよいが、少なくとも2つのガスを混合してもよい。
 また、加熱工程の雰囲気の全圧は5.0Pa以下であることが好ましい。加熱工程の雰囲気の全圧が5.0Pa以下であれば、雰囲気の酸素分圧が小さくなり、導体の酸化を抑制できるため好ましい。雰囲気の全圧は、例えば、真空ポンプを用いて容器内の圧力を小さくすることにより5.0Pa以下にできる。
<Inert gas>
The inert gas is not particularly limited, but is, for example, a rare gas such as helium gas, neon gas, and argon gas, or nitrogen gas. As the inert gas, the above-mentioned various gases may be used alone, or at least two gases may be mixed.
<Reducing gas>
The reducing gas is not particularly limited, but is, for example, hydrogen gas, carbon monoxide gas, or a hydrocarbon gas such as CH 4 , C 3 H 8 , or C 4 H 10 . As the reducing gas, the above-mentioned various gases may be used alone, or at least two gases may be mixed.
Further, the total pressure of the atmosphere in the heating step is preferably 5.0 Pa or less. When the total pressure of the atmosphere in the heating step is 5.0 Pa or less, the oxygen partial pressure of the atmosphere becomes small and the oxidation of the conductor can be suppressed, which is preferable. The total pressure of the atmosphere can be reduced to 5.0 Pa or less by, for example, reducing the pressure in the container using a vacuum pump.
<加熱工程の雰囲気>
 加熱工程の雰囲気は、上述のように脱気により酸素分圧を下げてもよいし、不活性ガス又は還元性ガスにより大気を置換してもよいし、不活性ガス及び還元性ガスにより大気を置換してもよい。
 加熱工程における加熱条件は、温度が80~350℃であることが好ましく、温度が90~250℃であることがより好ましく、温度が100~200℃であることが最も好ましい。なお、加熱工程における樹脂層の到達温度が150℃以下であることが好ましい。加熱工程において、上述の温度範囲よりも温度が低いと、樹脂層を剥離しにくくなる。一方、温度が高いと充填金属の酸化が進行、すなわち、導体の酸化が進行したり、構造体のヒビ又は割れ等の欠陥の原因となる。
<Atmosphere of heating process>
As for the atmosphere of the heating step, the oxygen partial pressure may be lowered by degassing as described above, the atmosphere may be replaced by the inert gas or the reducing gas, or the atmosphere may be replaced by the inert gas and the reducing gas. It may be replaced.
The heating conditions in the heating step are preferably 80 to 350 ° C., more preferably 90 to 250 ° C., and most preferably 100 to 200 ° C. The temperature reached by the resin layer in the heating step is preferably 150 ° C. or lower. In the heating step, if the temperature is lower than the above temperature range, it becomes difficult to peel off the resin layer. On the other hand, if the temperature is high, the filling metal is oxidized, that is, the conductor is oxidized, and defects such as cracks or cracks in the structure are caused.
〔除去工程〕
 加熱工程後に、樹脂層を除去する工程である。除去工程は、樹脂層を除去することができれば、特に限定されるものではない。
 また、除去工程は、加熱工程と同じ雰囲気である必要はなく、樹脂層を加熱した後、例えば、加熱工程に用いた容器から取り出し、大気雰囲気で実施してもよい。
[Removal process]
This is a step of removing the resin layer after the heating step. The removal step is not particularly limited as long as the resin layer can be removed.
Further, the removal step does not have to have the same atmosphere as the heating step, and after heating the resin layer, for example, it may be taken out from the container used in the heating step and carried out in an atmospheric atmosphere.
 <他の製造工程>
 所望の形状のマスク層を用いてアルミニウム基板の表面の一部に陽極酸化処理を施してもよい。
<Other manufacturing processes>
A part of the surface of the aluminum substrate may be anodized using a mask layer having a desired shape.
〔巻取工程〕
 なお、基板除去された、図7に示す構造体18は、図12に示すように、巻き芯21にロール状に巻き取られた状態で供給することを意図した態様である。例えば、金属充填微細構造体10を異方導電性部材として使用する時に、上述の加熱工程及び樹脂層16の除去工程を実施して、樹脂層16(図13参照)を除去する。これにより、例えば、金属充填微細構造体10を異方導電性部材として使用することができる。
 金属充填微細構造体10の搬送性が更に向上する理由から、上述の任意の樹脂層形成工程の後に上述の樹脂層16を有する状態で金属充填微細構造体10をロール状に巻き取る巻取工程を有していることが好ましい。
 ここで、上述の巻取工程における巻き取り方法は特に限定されず、例えば、所定径及び所定幅の巻き芯21(図12参照)に巻き取る方法が挙げられる。
[Winding process]
As shown in FIG. 12, the structure 18 shown in FIG. 7 from which the substrate has been removed is an embodiment intended to be supplied in a state of being wound around the winding core 21 in a roll shape. For example, when the metal-filled microstructure 10 is used as an anisotropic conductive member, the resin layer 16 (see FIG. 13) is removed by carrying out the above-mentioned heating step and the removal step of the resin layer 16. Thereby, for example, the metal-filled microstructure 10 can be used as the anisotropic conductive member.
For the reason that the transportability of the metal-filled microstructure 10 is further improved, a winding step of winding the metal-filled microstructure 10 into a roll shape with the above-mentioned resin layer 16 after the above-mentioned arbitrary resin layer forming step. It is preferable to have.
Here, the winding method in the above-mentioned winding step is not particularly limited, and examples thereof include a method of winding on a winding core 21 (see FIG. 12) having a predetermined diameter and a predetermined width.
 また、上述の巻取工程における巻き取りやすさの観点から、樹脂層16(図13参照)を除く金属充填微細構造体10の平均厚みが30μm以下であることが好ましく、5~20μmであることがより好ましい。なお、平均厚みは、樹脂層を除く金属充填微細構造体10を厚さ方向に対してFIB(Focused Ion Beam)で切削加工し、その断面を電界放射型走査電子顕微鏡(FE-SEM)により表面写真(倍率50000倍)を撮影し、10点測定した平均値とする等の方法で算出できる。 Further, from the viewpoint of ease of winding in the above-mentioned winding step, the average thickness of the metal-filled microstructure 10 excluding the resin layer 16 (see FIG. 13) is preferably 30 μm or less, preferably 5 to 20 μm. Is more preferable. For the average thickness, the metal-filled microstructure 10 excluding the resin layer is machined by FIB (Focused Ion Beam) in the thickness direction, and the cross section thereof is surfaced by a field emission scanning electron microscope (FE-SEM). It can be calculated by taking a photograph (magnification 50,000 times) and using it as an average value measured at 10 points.
〔その他の処理工程〕
 本発明の製造方法は、上述の各工程以外に、国際公開第2015/029881号の[0049]~[0057]段落に記載された研磨工程、表面平滑化工程、保護膜形成処理、水洗処理を有していてもよい。
 また、製造上のハンドリング性、及び金属充填微細構造体10を異方導電性部材として用いる観点から、以下に示すような、種々のプロセス及び形式を適用することができる。
[Other processing processes]
In addition to the above-mentioned steps, the production method of the present invention includes a polishing step, a surface smoothing step, a protective film forming treatment, and a washing treatment described in paragraphs [0049] to [0057] of International Publication No. 2015/029881. You may have.
In addition, various processes and types as shown below can be applied from the viewpoint of handling in manufacturing and the use of the metal-filled microstructure 10 as an anisotropic conductive member.
 <仮接着剤を使用したプロセス例>
 本発明においては、上述の基板除去工程の後に、金属充填微細構造体を仮接着剤(Temporary Bonding Materials)を用いてシリコンウエハ上に固定し、研磨により薄層化する工程を有していてもよい。
 次いで、薄層化の工程の後、表面を十分に洗浄した後に、上述の表面金属突出工程を行うことができる。
 次いで、金属を突出させた表面に、先の仮接着剤よりも接着力の強い仮接着剤を塗布してシリコンウエハ上に固定した後、先の仮接着剤で接着していたシリコンウエハを剥離し、剥離した金属充填微細構造体側の表面に対して、上述の裏面金属突出工程を行うことができる。
<Process example using temporary adhesive>
In the present invention, even if the above-mentioned substrate removing step is followed by a step of fixing the metal-filled microstructure on a silicon wafer using a temporary bonding material and thinning the layer by polishing. good.
Then, after the step of thinning, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
Next, a temporary adhesive having a stronger adhesive force than the previous temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the silicon wafer bonded with the previous temporary adhesive is peeled off. Then, the above-mentioned back surface metal projecting step can be performed on the surface of the peeled metal-filled microstructure side.
 <WAXを使用したプロセス例>
 本発明においては、上述の基板除去工程の後に、金属充填微細構造体をワックスを用いてシリコンウエハ上に固定し、研磨により薄層化する工程を有していてもよい。
 次いで、薄層化の工程の後、表面を十分に洗浄した後に、上述の表面金属突出工程を行うことができる。
 次いで、金属を突出させた表面に、仮接着剤を塗布してシリコンウエハ上に固定した後、加熱により先のワックスを溶解させてシリコンウエハを剥離し、剥離した金属充填微細構造体側の表面に対して、上述の裏面金属突出工程を行うことができる。
 なお、固形ワックスを使っても構わないが、スカイコート(日化精工社製)等を使うと塗布厚均一性の向上を図ることができる。
<Process example using WAX>
In the present invention, after the substrate removing step described above, there may be a step of fixing the metal-filled microstructure on a silicon wafer using wax and thinning the layer by polishing.
Then, after the step of thinning, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
Next, a temporary adhesive is applied to the surface on which the metal is projected and fixed on the silicon wafer, and then the wax is melted by heating to peel off the silicon wafer, and the surface on the side of the peeled metal-filled microstructure is peeled off. On the other hand, the above-mentioned back surface metal protrusion step can be performed.
Although solid wax may be used, sky coat (manufactured by Nikka Seiko Co., Ltd.) or the like can be used to improve the uniformity of coating thickness.
 <基板除去処理を後から行うプロセス例>
 本発明においては、上述の金属充填工程の後であって上述の基板除去工程の前に、アルミニウム基板を仮接着剤、ワックス又は機能性吸着フィルムを用いて剛性基板(例えば、シリコンウエハ、ガラス基板等)に固定した後に、上述の陽極酸化膜の上述のアルミニウム基板が設けられていない側の表面を研磨により薄層化する工程を有していてもよい。
 次いで、薄層化の工程の後、表面を十分に洗浄した後に、上述の表面金属突出工程を行うことができる。
 次いで、金属を突出させた表面に、絶縁性材料である樹脂材料(例えば.エポキシ樹脂、ポリイミド樹脂等)を塗布したのち、その表面に上述と同様の手法で剛性基板を貼り付けることができる。樹脂材料による貼り付けは、接着力が仮接着剤等による接着力よりも大きくなるようなものを選択し、樹脂材料による貼り付けの後に、最初に貼り付けた剛性基板は剥離し、上述した基板除去工程、研磨工程及び裏面金属突出処理工程を順に行うことができる。
 なお、機能性吸着フィルムとしては、Q-chuck(登録商標)(丸石産業株式会社製)等を使用することができる。
<Process example of performing substrate removal processing later>
In the present invention, after the metal filling step described above and before the substrate removing step described above, the aluminum substrate is subjected to a rigid substrate (for example, a silicon wafer, a glass substrate) using a temporary adhesive, wax or a functional adsorption film. Etc.), it may have a step of thinning the surface of the above-mentioned anodic oxide film on the side where the above-mentioned aluminum substrate is not provided by polishing.
Then, after the step of thinning, after thoroughly cleaning the surface, the above-mentioned surface metal projecting step can be performed.
Next, a resin material (for example, epoxy resin, polyimide resin, etc.), which is an insulating material, is applied to the surface on which the metal is projected, and then a rigid substrate can be attached to the surface by the same method as described above. For pasting with a resin material, select one whose adhesive strength is greater than the adhesive strength with a temporary adhesive or the like, and after pasting with the resin material, the rigid substrate pasted first is peeled off, and the above-mentioned substrate is attached. The removal step, the polishing step, and the back surface metal protrusion processing step can be performed in order.
As the functional adsorption film, Q-chuck (registered trademark) (manufactured by Maruishi Sangyo Co., Ltd.) or the like can be used.
 本発明においては、金属充填微細構造体が剥離可能な層によって剛体基板(例えば、シリコンウエハ、ガラス基板等)に貼り付けられた状態で製品として供されることが好ましい。
 このような供給形態においては、金属充填微細構造体を接合部材として利用する場合には、金属充填微細構造体の表面をデバイス表面に仮接着し、剛体基板を剥離した後に接続対象となるデバイスを適切な場所に設置し、加熱圧着することで上下のデバイスを金属充填微細構造体によって接合することができる。
 また、剥離可能な層には、熱剥離層を用いても構わないし、ガラス基板との組合せで光剥離層を用いても構わない。
In the present invention, it is preferable that the metal-filled microstructure is provided as a product in a state of being attached to a rigid substrate (for example, a silicon wafer, a glass substrate, etc.) by a peelable layer.
In such a supply form, when the metal-filled microstructure is used as a joining member, the surface of the metal-filled microstructure is temporarily adhered to the device surface, the rigid substrate is peeled off, and then the device to be connected is attached. The upper and lower devices can be joined by a metal-filled microstructure by installing in an appropriate place and heat-pressing.
Further, as the peelable layer, a heat peeling layer may be used, or a photopeeling layer may be used in combination with a glass substrate.
 また、本発明の製造方法においては、上述した各工程は、各工程を枚葉で行うことも可能であるし、アルミニウムのコイルを原反としてウェブで連続処理することもできる。
 また、連続処理する場合には各工程間に適切な洗浄工程、乾燥工程を設置することが好ましい。
Further, in the production method of the present invention, each of the above-mentioned steps can be performed on a single sheet, or can be continuously processed on a web using an aluminum coil as a raw material.
Further, in the case of continuous treatment, it is preferable to install an appropriate cleaning step and drying step between each step.
 このような各処理工程を有する本発明の製造方法により、アルミニウム基板の陽極酸化膜からなる絶縁性基材に設けられたマイクロポア由来の貫通孔の内部に金属が充填されてなる金属充填微細構造体が得られる。
 具体的には、本発明の製造方法により、例えば、特開2008-270158号公報に記載された異方導電性部材、すなわち、絶縁性基材(マイクロポアを有するアルミニウム基板の陽極酸化膜)中に、導電性部材(金属)からなる複数の導通路が、互いに絶縁された状態で上述の絶縁性基材を厚み方向に貫通し、かつ、上述の各導通路の一端が上述の絶縁性基材の一方の面において露出し、上述の各導通路の他端が上述の絶縁性基材の他方の面において露出した状態で設けられる異方導電性部材を得ることができる。
According to the manufacturing method of the present invention having each of such treatment steps, a metal-filled microstructure in which a metal is filled inside a through hole derived from a micropore provided in an insulating base material made of an anodic oxide film of an aluminum substrate. The body is obtained.
Specifically, according to the production method of the present invention, for example, in the anisotropic conductive member described in JP-A-2008-270158, that is, in an insulating base material (anodized film of an aluminum substrate having micropores). In addition, a plurality of conduction paths made of a conductive member (metal) penetrate the above-mentioned insulating base material in the thickness direction in a state of being insulated from each other, and one end of each of the above-mentioned conduction paths is the above-mentioned insulating group. It is possible to obtain an anisotropic conductive member which is exposed on one surface of the material and is provided in a state where the other end of each of the above-mentioned conduction paths is exposed on the other surface of the above-mentioned insulating base material.
 以下、金属充填微細構造体の構成についてより具体的に説明する。
〔絶縁膜〕
 絶縁膜12は、導電体で構成された、複数の導体14を互いに電気的に絶縁された状態にするものである、絶縁膜は、電気的な絶縁性を有する。また、絶縁膜12は、導体14が形成される複数の細孔13を有する。
 絶縁膜は、例えば、無機材料からなる。絶縁膜は、例えば、1014Ω・cm程度の電気抵抗率を有するものを用いることができる。
 なお、「無機材料からなり」とは、高分子材料と区別するための規定であり、無機材料のみから構成された絶縁性基材に限定する規定ではなく、無機材料を主成分(50質量%以上)とする規定である。絶縁膜は、上述のように、例えば、陽極酸化膜で構成される。
 また、絶縁膜は、例えば、金属酸化物、金属窒化物、ガラス、シリコンカーバイド、シリコンナイトライド等のセラミックス、ダイヤモンドライクカーボン等のカーボン基材、ポリイミド、これらの複合材料等により構成することもできる。絶縁膜としては、これ以外に、例えば、貫通孔を有する有機素材上に、セラミックス材料又はカーボン材料を50質量%以上含む無機材料で成膜したものであってもよい。
Hereinafter, the configuration of the metal-filled microstructure will be described more specifically.
[Insulating film]
The insulating film 12 is formed of a conductor and makes a plurality of conductors 14 electrically insulated from each other. The insulating film has an electrical insulating property. Further, the insulating film 12 has a plurality of pores 13 on which the conductor 14 is formed.
The insulating film is made of, for example, an inorganic material. As the insulating film, for example, one having an electrical resistivity of about 10 14 Ω · cm can be used.
In addition, "consisting of an inorganic material" is a regulation for distinguishing from a polymer material, and is not limited to an insulating base material composed only of an inorganic material, but an inorganic material as a main component (50% by mass). The above). As described above, the insulating film is composed of, for example, an anodic oxide film.
Further, the insulating film may be made of, for example, a metal oxide, a metal nitride, glass, silicon carbide, ceramics such as silicon nitride, a carbon base material such as diamond-like carbon, polyimide, a composite material thereof, or the like. .. As the insulating film, for example, a ceramic material or an inorganic material containing 50% by mass or more of a carbon material may be formed on an organic material having through holes.
 絶縁膜12の厚み方向Dtにおける長さ、すなわち、絶縁膜12の厚みは、1~1000μmの範囲内であるのが好ましく、5~500μmの範囲内であるのがより好ましく、10~300μmの範囲内であるのが更に好ましい。絶縁膜12の厚みがこの範囲であると、絶縁膜12の取り扱い性が良好となる。
 絶縁膜12の厚みhtは、巻き取りやすさの観点から、30μm以下であることが好ましく、5~20μmであることがより好ましい。
 なお、陽極酸化膜の厚みは、陽極酸化膜を厚み方向Dtに対して集束イオンビーム(FIB)で切削加工し、その断面を電界放射型走査電子顕微鏡(FE-SEM)により表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出した値である。
 絶縁膜12における各導体14の間隔は、5nm~800nmであることが好ましく、10nm~200nmであることがより好ましく、20nm~60nmであることが更に好ましい。絶縁膜12における各導体14の間隔が上述の範囲であると、絶縁膜12が、導体14の電気絶縁性の隔壁として十分に機能する。
 ここで、各導体の間隔とは、隣接する導体間の幅をいい、金属充填微細構造体10の断面を電解放出形走査型電子顕微鏡により20万倍の倍率で観察し、隣接する導体間の幅を10点で測定した平均値をいう。
The length of the insulating film 12 in the thickness direction Dt, that is, the thickness of the insulating film 12 is preferably in the range of 1 to 1000 μm, more preferably in the range of 5 to 500 μm, and in the range of 10 to 300 μm. It is more preferable to be inside. When the thickness of the insulating film 12 is within this range, the handleability of the insulating film 12 is improved.
The thickness ht of the insulating film 12 is preferably 30 μm or less, and more preferably 5 to 20 μm, from the viewpoint of ease of winding.
The thickness of the anodic oxide film is determined by cutting the anodic oxide film with a focused ion beam (FIB) in the thickness direction Dt and taking a surface photograph (magnification 5) of the cross section with a field emission scanning electron microscope (FE-SEM). It is a value calculated as an average value measured at 10 points by taking a picture (10,000 times).
The distance between the conductors 14 in the insulating film 12 is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 20 nm to 60 nm. When the distance between the conductors 14 in the insulating film 12 is within the above range, the insulating film 12 sufficiently functions as an electrically insulating partition wall of the conductor 14.
Here, the distance between the conductors means the width between the adjacent conductors, and the cross section of the metal-filled microstructure 10 is observed with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times, and the distance between the adjacent conductors is observed. The average value of the width measured at 10 points.
<細孔の平均直径>
 細孔の平均直径は、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることが更に好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。細孔13の平均直径dが1μm以下であり、上述の範囲であると、上述の平均直径を有する導体14を得ることができる。
 細孔13の平均直径は、走査型電子顕微鏡を用いて絶縁膜12の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている細孔を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を細孔の平均直径として算出する。
 なお、倍率は、細孔を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、細孔部分の端部間の距離の最大値を測定した。すなわち、細孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、細孔部分の端部間の距離の最大値を開口径とする。したがって、例えば、2以上の細孔が一体化したような形状の細孔の場合にも、これを1つの細孔とみなし、細孔部分の端部間の距離の最大値を開口径とする。
<Average diameter of pores>
The average diameter of the pores is preferably 1 μm or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, even more preferably 40 to 200 nm, and even more preferably 50 to 100 nm. Most preferably. When the average diameter d of the pores 13 is 1 μm or less and is in the above range, the conductor 14 having the above average diameter can be obtained.
The average diameter of the pores 13 is obtained by photographing the surface of the insulating film 12 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 pores having an annular shape around them are extracted, the diameter thereof is measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the pores.
As the magnification, the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more pores can be obtained. For the opening diameter, the maximum value of the distance between the ends of the pore portions was measured. That is, since the shape of the opening of the pore is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the pore portion is set as the opening diameter. Therefore, for example, even in the case of a pore having a shape in which two or more pores are integrated, this is regarded as one pore, and the maximum value of the distance between the ends of the pore portions is set as the opening diameter. ..
〔導体〕
 複数の導体14は、上述のように、陽極酸化膜において、互いに電気的に絶縁された状態で設けられている。
 複数の導体14は、電気導電性を有する。導体は、導電性物質で構成される。導電性物質は、特に限定されるものではなく、金属が挙げられる。金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、及びニッケル(Ni)等が好適に例示される。電気伝導性の観点から、銅、金、アルミニウム、及びニッケルが好ましく、銅及び金がより好ましく、銅が最も好ましい。金属のうち、銅は卑金属であるが、卑金属でもよい。卑金属は、空気中で酸化されやすいが、金属充填微細構造体の製造方法では、導体を卑金属で構成しても、電気伝導性が良好な金属充填微細構造体を得ることができる。
 金属以外に、酸化物導電物質が挙げられる。酸化物導電物質としては、例えば、インジウムがドープされたスズ酸化物(ITO)等が例示される。しかしながら、金属は酸化物導電体に比して延性等に優れ変形しやすく、接合際の圧縮でも変形しやすいため、金属で構成することが好ましい。
 また、例えば、Cu又はAg等のナノ粒子を含有する導電性樹脂で導体を構成することもできる。
 厚み方向Dtにおける導体14の高さHは、10~300μmであることが好ましく、20~30μmであることがより好ましい。
〔conductor〕
As described above, the plurality of conductors 14 are provided in the anodic oxide film in a state of being electrically insulated from each other.
The plurality of conductors 14 have electrical conductivity. The conductor is composed of a conductive substance. The conductive substance is not particularly limited, and examples thereof include metals. Specific examples of the metal preferably include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) and the like. From the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, copper and gold are more preferable, and copper is most preferable. Of the metals, copper is a base metal, but it may be a base metal. Base metals are easily oxidized in the air, but in the method for producing a metal-filled microstructure, even if the conductor is made of a base metal, a metal-filled microstructure having good electrical conductivity can be obtained.
In addition to metals, oxide conductive substances can be mentioned. Examples of the oxide conductive substance include tin oxide (ITO) doped with indium. However, it is preferable to use a metal because the metal has excellent ductility and is easily deformed as compared with the oxide conductor and is easily deformed even by compression at the time of joining.
Further, for example, the conductor may be made of a conductive resin containing nanoparticles such as Cu or Ag.
The height H of the conductor 14 in the thickness direction Dt is preferably 10 to 300 μm, more preferably 20 to 30 μm.
 <導体の形状>
 複数の導体は、導体の長手方向、すなわち、絶縁膜12の厚み方向Dtに対して垂直な断面における断面積が20μm以下の導体を有することが好ましい。断面積が20μm以下の導体は、直径dで約3.99μm以下である。
 また、導体14の平均直径dは1μm以下であることがより好ましく、5~500nmであることが更に好ましく、20~400nmであることが更により好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。
 導体14の密度は、2万個/mm2以上であることが好ましく、200万個/mm2以上であることがより好ましく、1000万個/mm2以上であることが更に好ましく、5000万個/mm2以上であることが特に好ましく、1億個/mm2以上であることが最も好ましい。
 更に、隣接する各導体14の中心間距離pは、20nm~500nmであることが好ましく、40nm~200nmであることがより好ましく、50nm~140nmであることが更に好ましい。
 導体の平均直径は、走査型電子顕微鏡を用いて陽極酸化膜の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている導体を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を導体の平均直径として算出する。
 なお、倍率は、導体を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、導体部分の端部間の距離の最大値を測定した。すなわち、導体の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、導体部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の導体が一体化したような形状の導体の場合にも、これを1つの導体とみなし、導体部分の端部間の距離の最大値を開口径とする。
<Conductor shape>
The plurality of conductors preferably have a conductor having a cross-sectional area of 20 μm 2 or less in the longitudinal direction of the conductor, that is, a cross section perpendicular to the thickness direction Dt of the insulating film 12. A conductor having a cross-sectional area of 20 μm 2 or less has a diameter d of about 3.99 μm or less.
Further, the average diameter d of the conductor 14 is more preferably 1 μm or less, further preferably 5 to 500 nm, further preferably 20 to 400 nm, and even more preferably 40 to 200 nm. Most preferably, it is 50 to 100 nm.
The density of the conductor 14 is preferably 20,000 pieces / mm 2 or more, more preferably 2 million pieces / mm 2 or more, further preferably 10 million pieces / mm 2 or more, and 50 million pieces / mm 2. It is particularly preferable that it is / mm 2 or more, and most preferably 100 million pieces / mm 2 or more.
Further, the distance p between the centers of the adjacent conductors 14 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
The average diameter of the conductor is obtained by photographing the surface of the anodic oxide film from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 conductors having an annular shape around them are extracted, the diameters thereof are measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the conductors.
As the magnification, the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more conductors can be obtained. For the opening diameter, the maximum value of the distance between the ends of the conductor portion was measured. That is, since the shape of the opening of the conductor is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the conductor portion is set as the opening diameter. Therefore, for example, even in the case of a conductor having a shape in which two or more conductors are integrated, this is regarded as one conductor, and the maximum value of the distance between the ends of the conductor portions is set as the opening diameter.
 <突出部>
 突出部は導体の一部であり、柱状である。突出部は、接合対象との接触面積を大きくできることから、円柱状であることが好ましい。
 突出部14aの平均突出長さ及び突出部14bの平均長さは、30nm~500nmが好ましく、上限値としては100nm以下であることがより好ましい。
 突出部14aの平均突出長さ及び突出部14bの平均長さは、上述のように電界放出形走査型電子顕微鏡を用いて突出部の断面画像を取得し、断面画像に基づき、突出部の高さを、それぞれ10点測定し、測定した平均値である。
<Protruding part>
The protrusion is part of the conductor and is columnar. The protruding portion is preferably cylindrical because it can increase the contact area with the object to be joined.
The average protruding length of the protruding portion 14a and the average length of the protruding portion 14b are preferably 30 nm to 500 nm, and the upper limit is more preferably 100 nm or less.
For the average protrusion length of the protrusion 14a and the average length of the protrusion 14b, a cross-sectional image of the protrusion is obtained using a field emission scanning electron microscope as described above, and the height of the protrusion is determined based on the cross-sectional image. It is the average value measured by measuring 10 points each.
 〔樹脂層〕
 樹脂層は、上述のように陽極酸化膜の表面及び裏面のうち、少なくとも一方の面に設けられており、例えば、導体の突出部を埋設するものである。すなわち、樹脂層は、陽極酸化膜から突出した導体の端部を被覆し、突出部を保護する。
 樹脂層は、上述の機能を発揮するために、例えば、50℃~200℃の温度範囲で流動性を示し、200℃以上で硬化するものであることが好ましい。樹脂層については後に詳細に説明する。
[Resin layer]
As described above, the resin layer is provided on at least one of the front surface and the back surface of the anodic oxide film, and for example, the protruding portion of the conductor is embedded. That is, the resin layer covers the end portion of the conductor protruding from the anodic oxide film and protects the protruding portion.
In order to exert the above-mentioned functions, the resin layer preferably exhibits fluidity in a temperature range of, for example, 50 ° C to 200 ° C and cures at 200 ° C or higher. The resin layer will be described in detail later.
 導体14の平均突出長さは、樹脂層16の平均厚さ未満であることが好ましい。導体14の突出部14aの平均突出長さ及び突出部14bの平均長さは、いずれも樹脂層16の平均厚さ未満であれば、突出部14a、14bは、いずれも樹脂層16の樹脂層部20aに埋設され、導体14が樹脂層16により保護される。
 樹脂層16の平均厚さは、絶縁膜12の表面12aからの平均距離、又は絶縁膜12の裏面12bからの平均距離である。上述の樹脂層16の平均厚さは、樹脂層を金属充填微細構造体10の厚み方向Dtに切断し、電界放射型走査電子顕微鏡(FE-SEM)を用いて切断断面の断面観察を行い、樹脂層に該当する、10箇所について絶縁膜12の表面12aからの距離を測定し、10点の測定値の平均値である。また、樹脂層に該当する、10箇所について絶縁膜12の裏面12bからの距離を測定し、10点の測定値の平均値である。
 樹脂層の平均厚さは、200~1000nmであることが好ましく、より好ましくは400~600nmである。樹脂層の平均厚さが上述の200~1000nmであれば、導体14の突出部を保護する効果が十分に発揮できる。
The average protruding length of the conductor 14 is preferably less than the average thickness of the resin layer 16. If the average protrusion length of the protrusion 14a and the average length of the protrusion 14b of the conductor 14 are both less than the average thickness of the resin layer 16, the protrusions 14a and 14b are both the resin layer of the resin layer 16. It is embedded in the portion 20a, and the conductor 14 is protected by the resin layer 16.
The average thickness of the resin layer 16 is the average distance from the front surface 12a of the insulating film 12 or the average distance from the back surface 12b of the insulating film 12. For the average thickness of the resin layer 16 described above, the resin layer is cut in the thickness direction Dt of the metal-filled microstructure 10, and a cross-sectional observation of the cut cross section is performed using a field emission scanning electron microscope (FE-SEM). The distances from the surface 12a of the insulating film 12 are measured at 10 points corresponding to the resin layer, and the average value of the measured values at 10 points is used. Further, the distances from the back surface 12b of the insulating film 12 are measured at 10 points corresponding to the resin layer, and the average value of the measured values at 10 points is used.
The average thickness of the resin layer is preferably 200 to 1000 nm, more preferably 400 to 600 nm. When the average thickness of the resin layer is 200 to 1000 nm as described above, the effect of protecting the protruding portion of the conductor 14 can be sufficiently exhibited.
 なお、金属充填微細構造体10の各部位の大きさについては、特に断りがなければ、金属充填微細構造体10を厚み方向Dtに切断し、電界放射型走査電子顕微鏡(FE-SEM)を用いて切断断面の断面観察を行い、各サイズに該当する箇所を10点測定した平均値である。 Regarding the size of each part of the metal-filled microstructure 10, unless otherwise specified, the metal-filled microstructure 10 is cut in the thickness direction Dt, and a field emission scanning electron microscope (FE-SEM) is used. It is an average value obtained by observing the cross section of the cut cross section and measuring 10 points corresponding to each size.
[積層デバイス]
 図14は本発明の実施形態の金属充填微細構造体を用いた積層デバイスの一例を示す模式図である。なお、図14に示す積層デバイス40は、上述の金属充填微細構造体10(図8、及び図11参照)を、異方導電性を示す異方導電性部材45として用いたものである。
 図14に示す積層デバイス40は、例えば、半導体素子42と異方導電性部材45と半導体素子44とがこの順で積層方向Dsに接合され、かつ電気的に接続されたものである。異方導電性部材45は、金属充填微細構造体10(図8、及び図11参照)の導体14(図8、及び図11参照)が積層方向Dsと平行に配置されており、積層デバイス40は積層方向Dsに導電性を有する。
 積層デバイス40は、1つの半導体素子42に対して1つの半導体素子44を接合する形態であるが、これ限定されるものではない。異方導電性部材45を介して、3つの半導体素子を接合する形態でもよい。この場合、3つの半導体素子と2つの異方導電性部材45とにより積層デバイスが構成される。
 積層デバイス40は、半導体素子を有するものに限定されるものではなく、電極を有する基板であってもよい。電極を有する基板は、例えば、配線基板、及びインターポーザー等である。
 なお、積層デバイスの形態は、特に限定されるものではなく、例えば、SoC(System on a chip)、SiP(System in Package)、PoP(Package on Package)、PiP(Package in Package)、CSP(Chip Scale Package)、TSV(Through Silicon Via)等が挙げられる。
[Laminate device]
FIG. 14 is a schematic view showing an example of a laminated device using the metal-filled microstructure of the embodiment of the present invention. The laminated device 40 shown in FIG. 14 uses the above-mentioned metal-filled microstructure 10 (see FIGS. 8 and 11) as an anisotropic conductive member 45 exhibiting anisotropic conductivity.
In the laminated device 40 shown in FIG. 14, for example, the semiconductor element 42, the anisotropic conductive member 45, and the semiconductor element 44 are joined in this order in the stacking direction Ds and electrically connected. In the anisotropic conductive member 45, the conductor 14 (see FIGS. 8 and 11) of the metal-filled microstructure 10 (see FIGS. 8 and 11) is arranged in parallel with the stacking direction Ds, and the laminated device 40 is arranged. Has conductivity in the stacking direction Ds.
The laminated device 40 is in the form of joining one semiconductor element 44 to one semiconductor element 42, but is not limited thereto. It may be in the form of joining three semiconductor elements via an anisotropic conductive member 45. In this case, the laminated device is composed of three semiconductor elements and two anisotropic conductive members 45.
The laminated device 40 is not limited to the one having a semiconductor element, and may be a substrate having an electrode. The substrate having an electrode is, for example, a wiring board, an interposer, or the like.
The form of the laminated device is not particularly limited, and for example, SoC (System on a chip), SiP (System in Package), PoP (Package on Package), PiP (Package in Package), CSP (Chip). Scale Package), TSV (Through Silicon Via) and the like.
 積層デバイス40は、光学センサーとして機能する半導体素子を有するものでもよい。例えば、半導体素子とセンサチップ(図示せず)とが積層方向Dsに積層されている。センサチップにはレンズが設けられていてもよい。
 この場合、半導体素子は、ロジック回路が形成されたものであり、センサチップで得られる信号を処理することができれば、その構成は特に限定されるものではない。
 センサチップは、光を検出する光センサーを有するものである。光センサーは、光を検出することができれば、特に限定されるものではなく、例えば、CCD(Charge Coupled Device)イメージセンサー又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサーが用いられる。
 レンズは、センサチップに光を集光することができれば、その構成は特に限定されるものではなく、例えば、マイクロレンズと呼ばれるものが用いられる。
The laminated device 40 may have a semiconductor element that functions as an optical sensor. For example, a semiconductor element and a sensor chip (not shown) are laminated in the stacking direction Ds. The sensor chip may be provided with a lens.
In this case, the semiconductor element is formed with a logic circuit, and its configuration is not particularly limited as long as it can process the signal obtained by the sensor chip.
The sensor chip has an optical sensor that detects light. The optical sensor is not particularly limited as long as it can detect light, and for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
The configuration of the lens is not particularly limited as long as it can condense light on the sensor chip, and for example, a lens called a microlens is used.
 なお、上述の半導体素子42、半導体素子44及び半導体素子46は、素子領域(図示せず)を有するものを用いることができる。素子領域については後述の通りである。素子領域は素子構成回路等が形成されており、半導体素子には、例えば、再配線層(図示せず)が設けられている。
 積層デバイスでは、例えば、論理回路を有する半導体素子と、メモリ回路を有する半導体素子の組合せとすることができる。また、半導体素子を全てメモリ回路を有するものとしてもよく、また、全て論理回路を有するものとしてもよい。また、積層デバイス40における半導体素子の組合せとしては、センサー、アクチュエーター及びアンテナ等と、メモリ回路と論理回路との組み合わせでもよく、積層デバイス40の用途等に応じて適宜決定されるものである。
As the semiconductor element 42, the semiconductor element 44, and the semiconductor element 46 described above, those having an element region (not shown) can be used. The element region will be described later. An element constituent circuit or the like is formed in the element region, and the semiconductor element is provided with, for example, a rewiring layer (not shown).
In the laminated device, for example, a semiconductor element having a logic circuit and a semiconductor element having a memory circuit can be combined. Further, all the semiconductor elements may have a memory circuit, or all the semiconductor elements may have a logic circuit. Further, the combination of the semiconductor elements in the laminated device 40 may be a combination of a sensor, an actuator, an antenna or the like, a memory circuit and a logic circuit, and is appropriately determined according to the application of the laminated device 40 and the like.
〔構造体の接合対象物〕
 構造体の接合対象物は、上述のように半導体素子を例示したが、例えば、電極又は素子領域を有するものである。電極を有するものとしては、例えば、単体で特定の機能を発揮する半導体素子等が例示されるが、複数のものが集まって特定の機能を発揮するものも含まれる。更には、配線部材等の電気信号を伝達するだけのものも含まれ、プリント配線板等も電極を有するものに含まれる。
 素子領域とは、電子素子として機能するための各種の素子構成回路等が形成された領域である。素子領域には、例えば、フラッシュメモリ等のようなメモリ回路、マイクロプロセッサ及びFPGA(field-programmable gate array)等のような論理回路が形成された領域、無線タグ等の通信モジュールならびに配線が形成された領域である。素子領域には、これ以外にMEMS(Micro Electro Mechanical Systems)が形成されてもよい。MEMSとしては、例えば、センサー、アクチュエーター及びアンテナ等が挙げられる。センサーには、例えば、加速度、音、及び光等の各種のセンサーが含まれる。
 上述のように、素子領域は素子構成回路等が形成されており、半導体チップを外部と電気的に接続するために電極(図示せず)が設けられている。素子領域は電極が形成された電極領域を有する。なお、素子領域の電極とは、例えば、Cuポストである。電極領域とは、基本的には、形成された全ての電極を含む領域のことである。しかしながら、電極が離散して設けられていれば、各電極が設けられている領域のことも電極領域という。
 構造体の形態としては、半導体チップのように個片化されたものでも、半導体ウエハのような形態でもよく、配線層の形態でもよい。
 また、構造体は、接合対象物と接合されるが、接合対象物は、上述の半導体素子等に特に限定されるものではなく、例えば、ウエハ状態の半導体素子、チップ状態の半導体素子、プリント配線板、及びヒートシンク等が接合対象物となる。
[Structure joining object]
As the object to be joined of the structure, the semiconductor element is exemplified as described above, but for example, the object has an electrode or an element region. Examples of the device having an electrode include a semiconductor device that exerts a specific function by itself, but also includes a device in which a plurality of devices are gathered to exert a specific function. Further, those that only transmit electric signals such as wiring members are included, and printed wiring boards and the like are also included in those having electrodes.
The element region is an region in which various element constituent circuits and the like for functioning as an electronic element are formed. In the element area, for example, a memory circuit such as a flash memory, an area in which a logic circuit such as a microprocessor and an FPGA (field-programmable gate array) is formed, a communication module such as a wireless tag, and wiring are formed. Area. In addition to this, MEMS (Micro Electro Mechanical Systems) may be formed in the element region. Examples of MEMS include sensors, actuators, antennas and the like. Sensors include various sensors such as acceleration, sound, and light.
As described above, an element component circuit or the like is formed in the element region, and an electrode (not shown) is provided for electrically connecting the semiconductor chip to the outside. The element region has an electrode region on which an electrode is formed. The electrode in the element region is, for example, a Cu post. The electrode region is basically a region including all the formed electrodes. However, if the electrodes are provided separately, the region where each electrode is provided is also referred to as an electrode region.
The form of the structure may be a single piece such as a semiconductor chip, a form such as a semiconductor wafer, or a form of a wiring layer.
Further, the structure is bonded to the object to be bonded, but the object to be bonded is not particularly limited to the above-mentioned semiconductor element or the like, for example, a semiconductor element in a wafer state, a semiconductor element in a chip state, or a printed wiring. Plates, heat sinks, etc. are the objects to be joined.
〔半導体素子〕
 上述の半導体素子42、及び半導体素子44は、上述のもの以外に、例えば、ロジックLSI(Large Scale Integration)(例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、ASSP(Application Specific Standard Product)等)、マイクロプロセッサ(例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等)、メモリ(例えば、DRAM(Dynamic Random Access Memory)、HMC(Hybrid Memory Cube)、MRAM(MagneticRAM:磁気メモリ)とPCM(Phase-Change Memory:相変化メモリ)、ReRAM(Resistive RAM:抵抗変化型メモリ)、FeRAM(Ferroelectric RAM:強誘電体メモリ)、フラッシュメモリ(NAND(Not AND)フラッシュ)等)、LED(Light Emitting Diode)、(例えば、携帯端末のマイクロフラッシュ、車載用、プロジェクタ光源、LCDバックライト、一般照明等)、パワー・デバイス、アナログIC(Integrated Circuit)、(例えば、DC(Direct Current)-DC(Direct Current)コンバータ、絶縁ゲートバイポーラトランジスタ(IGBT)等)、MEMS(Micro Electro Mechanical Systems)、(例えば、加速度センサー、圧力センサー、振動子、ジャイロセンサ等)、ワイヤレス(例えば、GPS(Global Positioning System)、FM(Frequency Modulation)、NFC(Nearfieldcommunication)、RFEM(RF Expansion Module)、MMIC(Monolithic Microwave Integrated Circuit)、WLAN(WirelessLocalAreaNetwork)等)、ディスクリート素子、BSI(Back Side Illumination)、CIS(Contact Image Sensor)、カメラモジュール、CMOS(Complementary Metal Oxide Semiconductor)、Passiveデバイス、SAW(Surface Acoustic Wave)フィルタ、RF(Radio Frequency)フィルタ、RFIPD(Radio Frequency Integrated Passive Devices)、BB(Broadband)等が挙げられる。
 半導体素子は、例えば、1つで完結したものであり、半導体素子単体で、回路又はセンサー等の特定の機能を発揮するものである。半導体素子は、インターポーザー機能を有するものであってもよい。また、例えば、インターポーザー機能を有するデバイス上に、論理回路を有する論理チップ、及びメモリーチップ等の複数のデバイスを積層することも可能である。また、この場合、それぞれのデバイスごとに電極サイズが異なっていても接合することができる。
 なお、積層デバイスとしては、1つの半導体素子に複数の半導体素子を接合する形態である1対複数の形態に限定されるものではなく、複数の半導体素子と複数の半導体素子とを接合する形態である複数対複数の形態でもよい。
[Semiconductor device]
In addition to the above, the above-mentioned semiconductor element 42 and semiconductor element 44 may include, for example, a logic LSI (Large Scale Integration) (for example, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), ASSP (Application Specific). Standard Product), etc.), Microprocessor (for example, CPU (Central Processing Unit), GPU (Graphics Processing Unit), etc.), Memory (for example, DRAM (Dynamic Random Access Memory), HMC (Hybrid Memory Cube), MRAM (MagneticRAM: Magnetic memory) and PCM (Phase-Change Memory), ReRAM (Resistive RAM), FeRAM (Ferroelectric RAM: ferroelectric memory), flash memory (NAND (Not AND) flash), etc.) , LED (Light Emitting Diode), (for example, microflash of mobile terminal, in-vehicle, projector light source, LCD backlight, general lighting, etc.), power device, analog IC (Integrated Circuit), (for example, DC (Direct Current)) )-DC (Direct Current) converters, isolated gate bipolar transistors (IGBTs), etc.), MEMS (Micro Electro Mechanical Systems), (eg, acceleration sensors, pressure sensors, oscillators, gyro sensors, etc.), wireless (eg, GPS (eg, GPS) Global Positioning System), FM (Frequency Modulation), NFC (Nearfield communication), RFEM (RF Expansion Module), MMIC (Monolithic Microwave Integrated Circuit), WLAN (WirelessLocalAreaNetwork), etc.), Discrete element, BSI (Back Side Illumination), CIS ( Contact I mage Sensor), camera module, CMOS (Complementary Metal Oxide Semiconductor), Passive device, SAW (Surface Acoustic Wave) filter, RF (Radio Frequency) filter, RFIPD (Radio Frequency Integrated Passive Devices), BB (Broadband), etc. ..
The semiconductor element is, for example, one complete, and the semiconductor element alone exhibits a specific function such as a circuit or a sensor. The semiconductor element may have an interposer function. Further, for example, it is possible to stack a plurality of devices such as a logic chip having a logic circuit and a memory chip on a device having an interposer function. Further, in this case, even if the electrode size is different for each device, the bonding can be performed.
The laminated device is not limited to a one-to-many form in which a plurality of semiconductor elements are bonded to one semiconductor element, but is a form in which a plurality of semiconductor elements and a plurality of semiconductor elements are bonded. It may be in a plurality of to multiple forms.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の金属充填微細構造体の製造方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. Although the method for producing the metal-filled microstructure of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or changes have been made without departing from the gist of the present invention. Of course, it is also good.
 以下に実施例を挙げて本発明の特徴を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、及び、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 本実施例では、実施例1~実施例12の金属充填微細構造体及び比較例1の金属充填微細構造体を作製した。実施例1~実施例12及び比較例1の金属充填微細構造体について、導電性を評価した。導電性の評価結果を下記表1に示す。以下、導電性の評価について説明する。
Hereinafter, the features of the present invention will be described in more detail with reference to examples. The materials, reagents, amounts of substances and their ratios, operations and the like shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
In this example, the metal-filled microstructures of Examples 1 to 12 and the metal-filled microstructures of Comparative Example 1 were produced. The metal-filled microstructures of Examples 1 to 12 and Comparative Example 1 were evaluated for conductivity. The evaluation results of conductivity are shown in Table 1 below. Hereinafter, the evaluation of conductivity will be described.
<導電性>
 株式会社ウォルツ製のTEGチップ(デイジーチェインパターン)及びインターポーザーを用意し、これらをチップボンダーの上下に設置し、予めアライメントを調整した。
 アライメント調整後、下側に設置したインターポーザーのCuポスト側に、作製した各金属充填微細構造体を重ね合わせ、常温接合装置(WP-100(型式)、株式会社PMT社製)を用いて、温度250℃、1分間、6MPaの条件で加熱圧着をし、接合した。接合後のサンプルについて、チップ配線間の電気抵抗を測定した。
<Conductivity>
A TEG chip (daisy chain pattern) and an interposer manufactured by Waltz Co., Ltd. were prepared, and these were installed above and below the chip bonder, and the alignment was adjusted in advance.
After adjusting the alignment, the prepared metal-filled microstructures were superposed on the Cu post side of the interposer installed on the lower side, and a room temperature joining device (WP-100 (model), manufactured by PMT Co., Ltd.) was used. Heat crimping was performed under the conditions of a temperature of 250 ° C. for 1 minute and 6 MPa, and the bonding was performed. For the sample after joining, the electrical resistance between the chip wirings was measured.
 以下、実施例1~実施例12及び比較例1について説明する。
(実施例1)
 実施例1の金属充填微細構造体について説明する。
[金属充填微細構造体]
 <アルミニウム基板の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理及びろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS(Japanese Industrial Standards) 1050材のアルミニウム基板を得た。
 このアルミニウム基板を幅1030mmにした後、以下に示す各処理を施した。
Hereinafter, Examples 1 to 12 and Comparative Example 1 will be described.
(Example 1)
The metal-filled microstructure of Example 1 will be described.
[Metal-filled microstructure]
<Manufacturing of aluminum substrate>
Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: A molten metal containing 0.03% by mass, the balance of which is Al and an aluminum alloy of unavoidable impurities is prepared, and after the molten metal treatment and filtration are performed, an ingot having a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill). ) Made by the casting method.
Next, the surface was scraped to an average thickness of 10 mm by a surface mill, kept at 550 ° C for about 5 hours, and when the temperature dropped to 400 ° C, the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate.
Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, the thickness was finished to 1.0 mm by cold rolling to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material.
After making this aluminum substrate 1030 mm wide, each of the following treatments was performed.
 <電解研磨処理>
 上述のアルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<Electropolishing treatment>
The above-mentioned aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and the power supply was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.). The flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
(Electrolytic polishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
<陽極酸化処理工程>
 次いで、電解研磨処理後のアルミニウム基板に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、3時間45分の再陽極酸化処理を施し、膜厚30μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理及び再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<Anodizing process>
Next, the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regularization method according to the procedure described in JP-A-2007-204802.
The aluminum substrate after the electrolytic polishing treatment was subjected to pre-anodizing treatment for 5 hours with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow velocity of 3.0 m / min. ..
Then, the pre-anodized aluminum substrate was subjected to a film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid (liquid temperature: 50 ° C.) for 12 hours.
Then, a reanodizing treatment was performed for 3 hours and 45 minutes with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min, and an anode having a film thickness of 30 μm. An oxide film was obtained.
In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless steel electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. A NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and a pair stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Further, the flow velocity of the electrolytic solution was measured using a vortex type flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
<バリア層除去工程>
 次いで、陽極酸化処理工程後に、水酸化ナトリウム水溶液(50g/l)に酸化亜鉛を2000ppmとなるように溶解したアルカリ水溶液を用いて、30℃で150秒間浸漬させるエッチング処理を施し、陽極酸化膜のマイクロポア(細孔)の底部にあるバリア層を除去し、かつ、露出したアルミニウム基板の表面に同時に亜鉛を析出させた。
 また、バリア層除去工程後の陽極酸化膜の平均厚みは30μmであった。
<Barrier layer removal process>
Next, after the anodizing treatment step, an etching treatment was performed in which zinc oxide was dissolved in an aqueous sodium hydroxide solution (50 g / l) so as to have a concentration of 2000 ppm and immersed at 30 ° C. for 150 seconds to perform an etching treatment on the anodized film. The barrier layer at the bottom of the micropores was removed and zinc was simultaneously deposited on the surface of the exposed aluminum substrate.
The average thickness of the anodic oxide film after the barrier layer removing step was 30 μm.
<金属充填工程>
 次いで、アルミニウム基板を陰極にし、白金を正極にして電解めっき処理を施した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、マイクロポアの内部にニッケルが充填された金属充填微細構造体を作製した。ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
(銅めっき液組成及び条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・温度 25℃
 ・電流密度 10A/dm
<Metal filling process>
Next, an aluminum substrate was used as a cathode and platinum was used as a cathode to perform electrolytic plating.
Specifically, a copper plating solution having the composition shown below was used and constant current electrolysis was performed to prepare a metal-filled microstructure in which nickel was filled inside the micropores. Here, for constant current electrolysis, a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
(Copper plating solution composition and conditions)
・ Copper sulfate 100g / L
・ Sulfuric acid 50g / L
・ Hydrochloric acid 15g / L
・ Temperature 25 ℃
・ Current density 10A / dm 2
 マイクロポアに金属を充填した後の陽極酸化膜の表面をFE-SEMで観察し、1000個のマイクロポアにおける金属による封孔の有無を観察して封孔率(封孔マイクロポアの個数/1000個)を算出したところ、98%であった。
 また、マイクロポアに金属を充填した後の陽極酸化膜を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、マイクロポアの内部を確認したところ、封孔されたマイクロポアにおいては、その内部が金属で完全に充填されていることが分かった。
Observe the surface of the anodic oxide film after filling the micropores with metal with FE-SEM, and observe the presence or absence of metal sealing in 1000 micropores, and the sealing ratio (number of sealing micropores / 1000). When the number) was calculated, it was 98%.
In addition, the anodized oxide film after filling the micropores with metal is cut by FIB in the thickness direction, and a surface photograph (magnification of 50,000 times) of the cross section is taken by FE-SEM to show the inside of the micropores. Upon confirmation, it was found that the inside of the sealed micropore was completely filled with metal.
<表面金属突出工程>
 金属充填工程後の構造体を、水酸化ナトリウム水溶液(濃度:5質量%、液温度:20℃)に浸漬させ、突出部分の高さが400nmとなるように浸漬時間を調整してアルミニウムの陽極酸化膜の表面を選択的に溶解し、充填金属である銅を突出させた構造体を作製した。
<Surface metal protrusion process>
The structure after the metal filling step is immersed in an aqueous sodium hydroxide solution (concentration: 5% by mass, liquid temperature: 20 ° C.), and the immersion time is adjusted so that the height of the protruding portion is 400 nm, and the aluminum anode is used. The surface of the oxide film was selectively melted to prepare a structure in which copper, which is a filling metal, was projected.
<樹脂層形成工程>
アルミニウム基板が設けられていない側の表面に、熱剥離型の粘着層付き樹脂基材(リバアルファ 3195MS、日東電工株式会社製)を貼り付けた。
<Resin layer forming process>
A heat-peelable resin base material with an adhesive layer (Riva Alpha 3195MS, manufactured by Nitto Denko KK) was attached to the surface on the side where the aluminum substrate was not provided.
<基板除去工程>
 次いで、塩化銅/塩酸の混合溶液に浸漬させることによりアルミニウム基板を溶解して除去し、平均厚み30μmの金属充填微細構造体を作製した。
 作製された金属充填微細構造体における導通路の直径は60nmであり、導通路間のピッチは100nmであり、導通路の密度は5770万個/mmであった。
<Substrate removal process>
Next, the aluminum substrate was dissolved and removed by immersing it in a mixed solution of copper chloride / hydrochloric acid to prepare a metal-filled microstructure having an average thickness of 30 μm.
The diameter of the conduction path in the produced metal-filled microstructure was 60 nm, the pitch between the conduction paths was 100 nm, and the density of the conduction path was 57.7 million pieces / mm 2 .
<裏面金属突出工程>
 金属充填工程後の構造体を、水酸化ナトリウム水溶液(濃度:5質量%、液温度:20℃)に浸漬させ、突出部分の高さが400nmとなるように浸漬時間を調整してアルミニウムの陽極酸化膜の表面を選択的に溶解し、充填金属である銅を突出させた構造体を作製した。
<Back side metal protrusion process>
The structure after the metal filling step is immersed in an aqueous sodium hydroxide solution (concentration: 5% by mass, liquid temperature: 20 ° C.), and the immersion time is adjusted so that the height of the protruding portion is 400 nm, and the aluminum anode is used. The surface of the oxide film was selectively melted to prepare a structure in which copper, which is a filling metal, was projected.
<加熱工程及び除去工程>
 容器内に構造体を配置した。その後、容器内の雰囲気について、全圧を100%とするとき、各気体の分圧を窒素80%、酸素20%とし、全圧を4.0×10-2Paの雰囲気にした。樹脂層を、ヒータを用いて温度120℃で2分間加熱した後、樹脂層を剥離した。真空ポンプを用いて容器内の圧力を減圧して、全圧を調整した。
 なお、混合ガスについては所望の全圧に対してガス比と同じになるよう注入した。例えば、ガス比がN:O=80:20で、全圧を4.0Paとすると、Nパージ(窒素パージ)した後、真空ポンプを用いて3.2Paまで減圧して調整した後、Oガスを注入して全圧を4.0Paとした。
 また、樹脂層の剥離は、大気雰囲気で行った。
<Heating process and removal process>
The structure was placed in the container. After that, when the total pressure was 100%, the partial pressure of each gas was 80% nitrogen and 20% oxygen, and the total pressure was 4.0 × 10 −2 Pa. The resin layer was heated at a temperature of 120 ° C. for 2 minutes using a heater, and then the resin layer was peeled off. The pressure inside the container was reduced using a vacuum pump to adjust the total pressure.
The mixed gas was injected so as to have the same gas ratio with respect to the desired total pressure. For example, assuming that the gas ratio is N 2 : O 2 = 80:20 and the total pressure is 4.0 Pa, after N 2 purge (nitrogen purge), the pressure is reduced to 3.2 Pa using a vacuum pump and adjusted. , O 2 gas was injected to bring the total pressure to 4.0 Pa.
Further, the resin layer was peeled off in an atmospheric atmosphere.
(実施例2)
 実施例2は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が窒素80%、酸素20%であり、全圧が4.0Paであること以外は実施例1と同様に作製した。
(実施例3)
 実施例3は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が窒素80%、酸素20%であり、全圧が1.0×10Paであること以外は実施例1と同様に作製した。
(実施例4)
 実施例4は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が窒素99.8%、酸素0.2%であり、全圧が1.0×10Paであること以外は実施例1と同様に作製した。
(実施例5)
 実施例5は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧がアルゴン99.8%、酸素0.2%であり、全圧が1.0×10Paであること以外は実施例1と同様に作製した。
(Example 2)
In Example 2, when the total pressure is 100%, the partial pressure of each gas is 80% nitrogen and 20% oxygen, except that the total pressure is 4.0 Pa. It was produced in the same manner as above.
(Example 3)
In Example 3, when the total pressure is 100%, the partial pressure of each gas is 80% nitrogen and 20% oxygen, except that the total pressure is 1.0 × 10 4 Pa. Was produced in the same manner as in Example 1.
(Example 4)
In Example 4, when the total pressure is 100%, the partial pressure of each gas is 99.8% nitrogen and 0.2% oxygen, and the total pressure is 1.0 × 106 Pa. It was produced in the same manner as in Example 1 except that.
(Example 5)
In Example 5, when the total pressure is 100%, the partial pressure of each gas is 99.8% argon and 0.2% oxygen, and the total pressure is 1.0 × 106 Pa. It was produced in the same manner as in Example 1 except that.
(実施例6)
 実施例6は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が水素99.8%、酸素0.2%であり、全圧が1.0×10Paであること以外は実施例1と同様に作製した。
(Example 6)
In Example 6, when the total pressure is 100%, the partial pressure of each gas is 99.8% hydrogen and 0.2% oxygen, and the total pressure is 1.0 × 10 6 Pa. It was produced in the same manner as in Example 1 except that.
(実施例7)
 実施例7は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が窒素99.998%、酸素0.002%であり、全圧が4.0Paであること以外は実施例1と同様に作製した。
(Example 7)
In Example 7, when the total pressure is 100%, the partial pressure of each gas is 99.998% nitrogen and 0.002% oxygen, except that the total pressure is 4.0 Pa. Was produced in the same manner as in Example 1.
(実施例8)
 実施例8は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧がアルゴン99.998%、酸素0.002%であり、全圧が4.0Paであること以外は実施例1と同様に作製した。
(Example 8)
In Example 8, when the total pressure is 100%, the partial pressure of each gas is 99.998% argon and 0.002% oxygen, except that the total pressure is 4.0 Pa. Was produced in the same manner as in Example 1.
(実施例9)
 実施例9は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が水素99.998%、酸素0.002%であり、全圧が4.0Paであること以外は実施例1と同様に作製した。
(実施例10)
 実施例10は、樹脂層形成工程において熱剥離型の粘着層付き樹脂基材をリバアルファ(登録商標)3195VS(日東電工株式会社製)に変更した。加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧を窒素80%、酸素20%とし、全圧を1.0×10Paとした。樹脂層を温度170℃で2分間、加熱して、樹脂層を剥離したこと以外は実施例1と同様に作製した。
(Example 9)
In Example 9, when the total pressure is 100%, the partial pressure of each gas is 99.998% for hydrogen and 0.002% for oxygen, except that the total pressure is 4.0 Pa. Was produced in the same manner as in Example 1.
(Example 10)
In Example 10, the heat-peeling type resin base material with an adhesive layer was changed to Riva Alpha (registered trademark) 3195VS (manufactured by Nitto Denko KK) in the resin layer forming step. Regarding the atmosphere of the heating step, when the total pressure was 100%, the partial pressure of each gas was 80% nitrogen and 20% oxygen, and the total pressure was 1.0 × 10 4 Pa. The resin layer was heated at a temperature of 170 ° C. for 2 minutes to prepare the same as in Example 1 except that the resin layer was peeled off.
(実施例11)
 実施例11は、加熱工程の雰囲気について、全圧を100%とするとき、各気体の分圧が窒素99.998%、酸素0.002%であり、全圧が4.0Paであること以外は実施例10と同様に作製した。
(実施例12)
 実施例12は、樹脂層形成工程において熱剥離型の粘着層付き樹脂基材をソマタックTE PS-2021TE(株式会社ソマール社製)に変更した以外は実施例3と同様に作製した。
(比較例1)
 比較例1は、加熱工程の雰囲気の全圧を1.0×10Paとした以外は実施例12と同様に作製した。
(Example 11)
In Example 11, when the total pressure is 100%, the partial pressure of each gas is 99.998% nitrogen and 0.002% oxygen, except that the total pressure is 4.0 Pa. Was produced in the same manner as in Example 10.
(Example 12)
Example 12 was produced in the same manner as in Example 3 except that the heat-peeling type resin base material with an adhesive layer was changed to SomaTac TE PS-2021TE (manufactured by SOMAR Corporation) in the resin layer forming step.
(Comparative Example 1)
Comparative Example 1 was produced in the same manner as in Example 12 except that the total pressure of the atmosphere in the heating step was 1.0 × 10 6 Pa.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~実施例12は、比較例1に比して、電気抵抗が小さく、電気伝導性が良好であった。
 比較例1は、加熱工程の雰囲気において、酸素分圧が10000Paを超えており、電気抵抗が大きくなった。
 実施例1、2、7~9、11は、酸素分圧が1.0Pa以下であり、電気抵抗が更に小さく、電気伝導性が更に良好であった。
 実施例1~3から、全圧は低い方が、電気抵抗が小さく、電気伝導性が良好であった。
 実施例3、10と、実施例7、11とから、加熱温度は低い方が、電気抵抗が小さく、電気伝導性が良好であった。
As shown in Table 1, Examples 1 to 12 had lower electrical resistance and better electrical conductivity than Comparative Example 1.
In Comparative Example 1, the oxygen partial pressure exceeded 10,000 Pa in the atmosphere of the heating step, and the electric resistance became large.
In Examples 1, 2, 7 to 9 and 11, the oxygen partial pressure was 1.0 Pa or less, the electric resistance was further small, and the electric conductivity was further good.
From Examples 1 to 3, the lower the total pressure, the smaller the electric resistance and the better the electric conductivity.
From Examples 3 and 10 and Examples 7 and 11, the lower the heating temperature, the smaller the electric resistance and the better the electric conductivity.
 10 金属充填微細構造体
 12 絶縁膜
 12a 表面
 12b 裏面
 13 細孔
 14 導体
 14a 突出部
 14b 突出部
 15 陽極酸化膜
 16 樹脂層
 18 構造体
 21 巻き芯
 30 アルミニウム基板
 30a 表面
 31 バリア層
 32c 底部
 32d 面
 35 金属
 35a 金属層
 35b 金属
 40 積層デバイス
 42 半導体素子
 44 半導体素子
 45 異方導電性部材
 Ds 積層方向
 Dt 厚み方向
 H  高さ
 d  平均直径
 ht 厚み
 p  中心間距離
10 Metal-filled microstructure 12 Insulation film 12a Surface 12b Back surface 13 Pore 14 Conductor 14a Projection 14b Projection 15 Anodized oxide film 16 Resin layer 18 Structure 21 Winding core 30 Aluminum substrate 30a Surface 31 Barrier layer 32c Bottom 32d Surface 35 Metal 35a Metal layer 35b Metal 40 Laminated device 42 Semiconductor element 44 Semiconductor element 45 Anotropically conductive member Ds Laminating direction Dt Thickness direction H Height d Average diameter ht Thickness p Center-to-center distance

Claims (10)

  1.  絶縁膜を厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた、複数の導体とを有し、前記導体が前記絶縁膜の前記厚み方向における少なくとも一方の面から突出しており、前記導体が突出している前記絶縁膜の前記面を覆う樹脂層を有する構造体を用意する準備工程と、
     酸素分圧が10000Pa以下の雰囲気にて、少なくとも前記樹脂層を加熱する加熱工程と、
     前記加熱工程により加熱された前記樹脂層を、前記絶縁膜から除去する除去工程とを有し、
     前記樹脂層は、熱剥離性接着剤を含む、金属充填微細構造体の製造方法。
    It has a plurality of conductors that penetrate the insulating film in the thickness direction and are provided in a state of being electrically insulated from each other, and the conductors project from at least one surface of the insulating film in the thickness direction. A preparatory step for preparing a structure having a resin layer covering the surface of the insulating film from which the conductor protrudes, and a preparatory step.
    A heating step of heating at least the resin layer in an atmosphere having an oxygen partial pressure of 10,000 Pa or less,
    It has a removal step of removing the resin layer heated by the heating step from the insulating film.
    A method for producing a metal-filled microstructure in which the resin layer contains a heat-removable adhesive.
  2.  前記加熱工程は、前記雰囲気の前記酸素分圧が1.0Pa以下である、請求項1に記載の金属充填微細構造体の製造方法。 The method for manufacturing a metal-filled microstructure according to claim 1, wherein the heating step is the method for producing a metal-filled microstructure according to claim 1, wherein the oxygen partial pressure in the atmosphere is 1.0 Pa or less.
  3.  前記加熱工程は、前記雰囲気の不活性ガスの分圧が、前記雰囲気の全圧の85%以上である、請求項1又は2に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to claim 1 or 2, wherein in the heating step, the partial pressure of the inert gas in the atmosphere is 85% or more of the total pressure in the atmosphere.
  4.  前記加熱工程は、前記雰囲気の還元性ガスの分圧が、前記雰囲気の全圧の85%以上である、請求項1~3のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 3, wherein in the heating step, the partial pressure of the reducing gas in the atmosphere is 85% or more of the total pressure in the atmosphere.
  5.  前記加熱工程は、前記雰囲気の全圧が5.0Pa以下である、請求項1~4のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 4, wherein the heating step is a method for producing a metal-filled microstructure according to any one of claims 1 to 4, wherein the total pressure of the atmosphere is 5.0 Pa or less.
  6.  前記導体は、卑金属を含む、請求項1~5のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for manufacturing a metal-filled microstructure according to any one of claims 1 to 5, wherein the conductor contains a base metal.
  7.  複数の前記導体は、前記導体の長手方向に対して垂直な断面における断面積が20μm以下の導体を有する、請求項1~5のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 5, wherein the plurality of conductors have a conductor having a cross-sectional area of 20 μm 2 or less in a cross section perpendicular to the longitudinal direction of the conductor. ..
  8.  前記加熱工程における前記樹脂層の到達温度が150℃以下である、請求項1~7のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to any one of claims 1 to 7, wherein the temperature reached by the resin layer in the heating step is 150 ° C. or lower.
  9.  前記導体は、前記絶縁膜の前記厚み方向における両面から、それぞれ突出しており、
     前記樹脂層は、前記絶縁膜の前記厚み方向における両面に、それぞれ設けられている、請求項1~8のいずれか1項に記載の金属充填微細構造体の製造方法。
    The conductor protrudes from both sides of the insulating film in the thickness direction.
    The method for producing a metal-filled microstructure according to any one of claims 1 to 8, wherein the resin layer is provided on both sides of the insulating film in the thickness direction.
  10.  前記絶縁膜は、陽極酸化膜である、請求項1~9のいずれか1項に記載の金属充填微細構造体の製造方法。 The method for manufacturing a metal-filled microstructure according to any one of claims 1 to 9, wherein the insulating film is an anodic oxide film.
PCT/JP2021/026287 2020-08-24 2021-07-13 Method for manufacturing metal-filled microstructure WO2022044585A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022545520A JPWO2022044585A1 (en) 2020-08-24 2021-07-13
CN202180050316.XA CN115956144A (en) 2020-08-24 2021-07-13 Method for producing metal-filled microstructure
KR1020237006062A KR20230043153A (en) 2020-08-24 2021-07-13 Manufacturing method of metal-filled microstructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140860 2020-08-24
JP2020-140860 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022044585A1 true WO2022044585A1 (en) 2022-03-03

Family

ID=80353165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026287 WO2022044585A1 (en) 2020-08-24 2021-07-13 Method for manufacturing metal-filled microstructure

Country Status (5)

Country Link
JP (1) JPWO2022044585A1 (en)
KR (1) KR20230043153A (en)
CN (1) CN115956144A (en)
TW (1) TW202208695A (en)
WO (1) WO2022044585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090865A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Conductive film and manufacturing method therefor, and semiconductor device and manufacturing method therefor
WO2017057150A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Method for manufacturing metal-filled microstructure device
WO2018037805A1 (en) * 2016-08-24 2018-03-01 富士フイルム株式会社 Storage method
WO2019039071A1 (en) * 2017-08-25 2019-02-28 富士フイルム株式会社 Structure, structure manufacturing method, laminate, and semiconductor package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090865A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Conductive film and manufacturing method therefor, and semiconductor device and manufacturing method therefor
WO2017057150A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Method for manufacturing metal-filled microstructure device
WO2018037805A1 (en) * 2016-08-24 2018-03-01 富士フイルム株式会社 Storage method
WO2019039071A1 (en) * 2017-08-25 2019-02-28 富士フイルム株式会社 Structure, structure manufacturing method, laminate, and semiconductor package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure

Also Published As

Publication number Publication date
CN115956144A (en) 2023-04-11
JPWO2022044585A1 (en) 2022-03-03
TW202208695A (en) 2022-03-01
KR20230043153A (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7100166B2 (en) Anodizing method and manufacturing method of anisotropic conductive member
JP6818707B2 (en) Metal film, structure, composite material, method of manufacturing structure, and method of manufacturing composite material
JP6084709B2 (en) MICROSTRUCTURE, MULTILAYER WIRING BOARD, SEMICONDUCTOR PACKAGE, AND MICROSTRUCTURE MANUFACTURING METHOD
JP6535098B2 (en) Method of manufacturing metal-filled microstructure
TWI723250B (en) Method for manufacturing metal-filled microstructure
JP2019153415A (en) Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body
TW201611674A (en) Anisotropically conductive member and multilayer wiring substrate
JP6976883B2 (en) Anotropically conductive member, manufacturing method of anisotropically conductive member, bonded body and electronic device
WO2022044585A1 (en) Method for manufacturing metal-filled microstructure
JP7394956B2 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
JP6412587B2 (en) Multilayer wiring board
WO2022158277A1 (en) Plating solution and method for producing metal-filled structure
WO2022163260A1 (en) Structure, method for producing anisotropic conductive member and composition for forming protective layer
WO2022138151A1 (en) Metal-filled microstructure, and method for producing metal-filled microstructure
JP6600285B2 (en) Manufacturing method of multilayer wiring board
WO2021153112A1 (en) Method for manufacturing metal-filled microstructure
JPWO2019065095A1 (en) Manufacturing method of metal-filled microstructure and insulating base material
TW202305839A (en) Method of manufacturing the structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545520

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006062

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861015

Country of ref document: EP

Kind code of ref document: A1