WO2022009617A1 - 溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置 - Google Patents

溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置 Download PDF

Info

Publication number
WO2022009617A1
WO2022009617A1 PCT/JP2021/022519 JP2021022519W WO2022009617A1 WO 2022009617 A1 WO2022009617 A1 WO 2022009617A1 JP 2021022519 W JP2021022519 W JP 2021022519W WO 2022009617 A1 WO2022009617 A1 WO 2022009617A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
pulverized coal
metal temperature
coal ratio
blast furnace
Prior art date
Application number
PCT/JP2021/022519
Other languages
English (en)
French (fr)
Inventor
佳也 橋本
峻平 滋野
稜介 益田
昂希 内田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2021544846A priority Critical patent/JP7107444B2/ja
Priority to CN202180047144.0A priority patent/CN115735011A/zh
Priority to EP21837717.4A priority patent/EP4155421A4/en
Priority to KR1020227044204A priority patent/KR20230011401A/ko
Priority to US18/010,985 priority patent/US20230251036A1/en
Priority to BR112023000085A priority patent/BR112023000085A2/pt
Publication of WO2022009617A1 publication Critical patent/WO2022009617A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/004Fuel quantity

Definitions

  • the present invention relates to a hot metal temperature control method, an operation guidance method, a blast furnace operation method, a hot metal manufacturing method, a hot metal temperature control device, and an operation guidance device.
  • Hot metal temperature is an important control index in the blast furnace process in the steel industry. This hot metal temperature is mainly controlled by manipulating the Pulverized Coal Ratio (PCR), which indicates the flow rate of pulverized coal per ton of hot metal.
  • PCR Pulverized Coal Ratio
  • blast furnace operations have been carried out under conditions of low coke ratio and high pulverized coal ratio in order to pursue rationalization of raw material and fuel costs, and the furnace condition is likely to become unstable. Therefore, there is a great need to reduce the variation in hot metal temperature.
  • the blast furnace process since the blast furnace process operates in a state where it is filled with solids, it has the characteristics that the heat capacity of the entire process is large and the time constant of the response to the operation (operation action) is long. Furthermore, there is wasted time on the order of several hours before the raw material charged from the upper part of the blast furnace (top of the furnace) drops to the lower part of the blast furnace (lower part of the furnace). Therefore, in order to control the hot metal temperature, it is essential to optimize the manipulated variable of the manipulated variable based on the future furnace heat prediction.
  • Patent Document 1 proposes a furnace heat prediction method using a physical model.
  • the gas reduction rate parameters included in the physical model are adjusted so as to match the composition of the current furnace top gas, and the furnace heat is used using the parameter-adjusted physical model. Is predicted.
  • the conventional hot metal temperature control method has a problem that the control performance deteriorates when the raw material descent rate (unloading) changes due to the fluctuation of the air permeability.
  • the direct instrumental variable by the operator is the pulverized coal flow rate [kg / min] blown from the tuyere.
  • iron forming rate the hot metal production rate
  • t / min the hot metal production rate
  • the iron forming speed is roughly proportional to the oxygen flow rate supplied into the furnace, but even if this oxygen flow rate is constant, if the air permeability in the furnace deteriorates, the bulk density of the raw material temporarily decreases, and the bulk density of the raw material decreases. The unloading becomes gradual. In such a case, the hot metal temperature control method using the conventional physical model has a problem that the control accuracy is lowered.
  • the present invention has been made in view of the above, and is a method for controlling hot metal temperature, a method for operating guidance, a method for operating a blast furnace, and a method for manufacturing hot metal, which are not easily affected by fluctuations in unloading due to fluctuations in air permeability. , It is an object of the present invention to provide a hot metal temperature control device and an operation guidance device.
  • the hot metal temperature control method keeps the hot metal temperature predicted by a physical model capable of calculating the state in the blast furnace within a preset target range.
  • the first control loop for calculating the target value of the pulverized coal ratio and the manipulated amount of the pulverized coal flow rate for compensating for the deviation between the target value of the pulverized coal ratio and the actual value of the current pulverized coal ratio.
  • the manipulated variable of all the manipulated variables among a plurality of preset manipulated variables using the physical model is constant for a predetermined period.
  • Step response calculation step to calculate the step response indicating the response of the hot metal temperature when changed to, and the operation of the pulverized coal ratio to keep the hot metal temperature within the target range based on the free response and the step response.
  • the target value of the pulverized coal ratio calculated by the first control loop in advance.
  • the pulverized coal ratio deviation calculation step for calculating the deviation of the pulverized coal ratio from the calculated actual value of the iron forming speed, and the deviation of the pulverized coal ratio and the actual value of the iron forming speed of the pulverized coal flow rate.
  • the method for controlling the hot metal temperature according to the present invention is the above-mentioned invention, in which the operation amount of all the operation variables among the plurality of operation variables is constant for a predetermined period in the PCR operation amount calculation step.
  • the operation amount of the pulverized coal ratio is calculated so that the predicted value of the hot metal temperature after the lapse of a predetermined period is included in the upper and lower limit values of the hot metal temperature set in advance.
  • the operation guidance method presents the operation amount of the pulverized coal flow rate calculated by the above-mentioned hot metal temperature control method, thereby operating the blast furnace. Includes steps to assist.
  • the operation method of the blast furnace according to the present invention is the blast furnace according to the operation amount of the pulverized coal flow rate calculated by the hot metal temperature control method according to any one of the above. Includes steps to control.
  • the method for producing hot metal according to the present invention controls the blast furnace according to the operation amount of the pulverized coal flow rate calculated by the above-mentioned method for controlling the hot metal temperature, and manufactures hot metal. Includes steps to do.
  • the hot metal temperature control device keeps the hot metal temperature predicted by a physical model capable of calculating the state in the blast furnace within a preset target range.
  • the first control loop for calculating the target value of the pulverized coal ratio and the manipulated amount of the pulverized coal flow rate for compensating for the deviation between the target value of the pulverized coal ratio and the actual value of the current pulverized coal ratio. It is provided with a second control loop for calculating and a means for executing.
  • the operation guidance device operates the blast furnace by presenting the operation amount of the pulverized coal flow rate calculated by the above-mentioned hot metal temperature control device.
  • the hot metal temperature control method the operation guidance method, the blast furnace operation method, the hot metal manufacturing method, the hot metal temperature control device and the operation guidance device according to the present invention, the influence of the unloading fluctuation due to the fluctuation of the air permeability.
  • the hot metal temperature can be controlled without receiving the hot metal. Therefore, highly efficient and stable operation of the blast furnace can be realized.
  • FIG. 1 is a block diagram showing a schematic configuration of a hot metal temperature control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of input variables and output variables of a physical model used in the hot metal temperature control method according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing the structure of a control loop in the hot metal temperature control method according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a prediction result of the hot metal temperature by a physical model in the hot metal temperature control method according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a step response of the hot metal temperature to a change in the pulverized coal ratio in the hot metal temperature control method according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a hot metal temperature control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of input variables and output variables of a physical model used in the hot metal temperature control method according
  • FIG. 6 is a diagram showing the result of applying the hot metal temperature control method according to the embodiment of the present invention to the actual operation of the blast furnace. Specifically, the deviation of the actual value from the target value of the hot metal temperature, the operation amount of the pulverized coal ratio by this control and the operator, the transition of the target value and the actual value of the pulverized coal ratio, and the operation of the pulverized coal flow rate by this control and the operator. It is a figure which shows the quantity.
  • the hot metal temperature control method, the operation guidance method, the blast furnace operation method, the hot metal manufacturing method, the hot metal temperature control device, and the operation guidance device according to the embodiment of the present invention will be described with reference to the drawings.
  • the control device 100 includes an information processing device 101, an input device 102, and an output device 103.
  • the information processing device 101 is composed of a general-purpose device such as a personal computer or a workstation, and includes a RAM 111, a ROM 112, and a CPU 113.
  • the RAM 111 temporarily stores a processing program and processing data related to the processing executed by the CPU 113, and functions as a working area of the CPU 113.
  • the ROM 112 stores a control program 112a that executes the hot metal temperature control method according to the embodiment of the present invention, and a processing program and processing data that control the operation of the entire information processing apparatus 101.
  • the CPU 113 controls the operation of the entire information processing apparatus 101 according to the control program 112a and the processing program stored in the ROM 112.
  • the CPU 113 functions as a free response calculation means for performing a free response calculation step, a step response calculation means for performing a step response calculation step, and a PCR operation amount calculation means for performing a PCR operation amount calculation step. ..
  • the CPU 113 includes a PCR target value calculation means for performing a PCR target value calculation step, a pulverized coal ratio deviation calculation means for performing a pulverized coal ratio deviation calculation step, a PCI operation amount calculation means for performing a PCI operation amount calculation step, and a PCI set value calculation. It functions as a PCI setting value calculation means for performing steps.
  • the input device 102 is composed of devices such as a keyboard, a mouse pointer, and a numeric keypad, and is operated when various information is input to the information processing device 101.
  • the output device 103 is composed of a display device, a printing device, and the like, and outputs various processing information of the information processing device 101.
  • the physical model used in the present invention is the same as that described in Reference 1 (Michiharu Hanedano et al .: “Study of burning operation by blast furnace unsteady model”, Iron and Steel, vol.68, p.2369). It is composed of a group of partial differential equations considering multiple physical phenomena such as reduction of iron ore, heat exchange between iron ore and coke, and melting of iron ore. Further, the physical model used in the present invention is a physical model capable of calculating variables (output variables) indicating the state in the blast furnace in the unsteady state (hereinafter referred to as "unsteady model").
  • the main things that change with time in the boundary conditions given to this unsteady model are as follows.
  • the main output variables formed by the unsteady model are as follows. (1) Gas utilization rate in the furnace ( ⁇ CO): CO 2 / (CO + CO 2 ) (2) Coke and iron temperature (3) Degree of oxidation of iron ore (4) Raw material drop rate (5) Sol Roth carbon amount (Sol Roth carbon amount) (6) Hot metal temperature (7) Hot metal making speed (hot metal generation speed) (8) Amount of heat loss in the furnace body: Amount of heat taken by the cooling water when the furnace body is cooled by the cooling water.
  • the time step (time interval) when calculating the output variable is set to 30 minutes.
  • the time step is variable depending on the purpose and is not limited to the value of the present embodiment.
  • a control loop executed by the hot metal temperature control method according to the present embodiment will be described.
  • a double-structured control loop including a first control loop (HMT control loop) and a second control loop (PCR control loop).
  • HMT control loop a first control loop
  • PCR control loop a second control loop
  • target PCR the target value of the pulverized coal ratio
  • the manipulated amount of the pulverized coal flow rate for compensating for the deviation between the target value of the pulverized coal ratio (target PCR) and the actual value of the current pulverized coal ratio (actual PCR) is calculated. ..
  • the hot metal temperature control method includes a free response calculation step, a step response calculation step, a PCR operation amount calculation step, a PCR target value calculation step, a pulverized coal ratio deviation calculation step, a PCI operation amount calculation step, and a PCI set value.
  • the calculation steps are performed in this order.
  • the above non-stationary model can be expressed, for example, as the following equations (1) and (2).
  • x (t) is a state variable calculated in the unsteady model (temperature of coke and iron, degree of oxidation of iron ore, rate of descent of raw materials, etc.)
  • y. (T) is a hot metal temperature (HMT) which is a control variable.
  • C is a matrix or a function for extracting a control variable from the state variables calculated in the unsteady model.
  • u (t) in the above equation (1) is an air flow rate, an enriched oxygen flow rate, a pulverized coal flow rate, an air moisture content, an air temperature, and a coke ratio, which are input variables of the unsteady model.
  • the response y 0 of the control variable (here, the hot metal temperature) obtained in this way is referred to as a “free response” in the present embodiment.
  • FIG. 4 shows an example of the prediction results of some of the manipulated variables (input variables) (coke ratio CR, pulverized coal flow rate PCI, blast moisture BM) and hot metal temperature HMT.
  • the calculated value of the hot metal temperature HMT in the past section is calculated using the actual manipulated variables in the past.
  • Step response calculation step the response of the hot metal temperature HMT is shown when the manipulated amount of the pulverized coal ratio is changed in steps by a unit amount among a plurality of manipulated variables (input variables) using the above non-stationary model. Calculate the step response.
  • the free response Y 0 of the hot metal temperature HMT obtained in the free response calculation step is shown by the solid line in FIG. 5 (b).
  • the response of the hot metal temperature HMT when the pulverized coal ratio PCR is increased by 10 kg / t at time 0 while retaining other instrumental variables is shown. It is calculated by the following formulas (5) and (6).
  • the increase in the pulverized coal flow rate PCI is obtained by multiplying the increase in the pulverized coal ratio PCR by the current iron forming speed. Further, in the above equation (5), the operation of increasing the pulverized coal flow rate PCI is set as ⁇ u 1.
  • the response y 1 of the hot metal temperature HMT obtained in this step is shown by the broken line in FIG. 5 (b).
  • the operating range of the pulverized coal ratio PCR is determined so that the future hot metal temperature HMT falls within the target range (target HMT). That is, in this step, the manipulated variable ⁇ PCR of the pulverized coal ratio for keeping the hot metal temperature HMT within the target range is calculated based on the free response obtained in the free response calculation step and the step response obtained in the step response calculation step.
  • the manipulated variable ⁇ PCR of the pulverized coal ratio is calculated as shown in the following formula (7). That is, when the manipulated variable of all the manipulated variables (input variables) is constant for a predetermined period, the predicted value of the hot metal temperature HMT after the elapse of the predetermined period is the preset hot metal temperature HMT.
  • the instrumental amount ⁇ PCR of the pulverized coal ratio is calculated so as to be included in the upper and lower limit values. Since the time required from when the iron ore is put into the furnace to when it is discharged to the outside of the furnace is about 8 hours, the prediction interval of the hot metal temperature HMT in the following formula (7) is set to 10 hours.
  • the control section is set to one step for the sake of simplification of the control logic.
  • T 10 pre is a predicted value of the hot metal temperature HMT after 10 hours
  • T U is the upper limit of the hot metal temperature HMT
  • T L is the lower limit of the hot metal temperature HMT
  • S 10 PCR is The value after 10 hours of the step response of the hot metal temperature HMT to the change of the pulverized coal ratio PCR.
  • PCR target value calculation step (PCR target value calculation step) Subsequently, as shown in the following formula (8), the manipulated variable ⁇ PCR of the pulverized coal ratio obtained in the PCR manipulated variable calculation step is added to the target value PCR 0 ref of the current pulverized coal ratio managed by the operator. Thereby, the target value PCR ref of the pulverized coal ratio is calculated.
  • the contents described above correspond to the first control loop (HMT control loop) in FIG.
  • Step to calculate pulverized coal ratio deviation In this step, the deviation (deviation of the pulverized coal ratio) between the target value PCR ref of the pulverized coal ratio obtained in the PCR target value calculation step and the actual value of the current pulverized coal ratio is calculated.
  • the iron forming speed is obtained by obtaining the difference between the amount of oxygen contained in the hot air blown from the tuyere of the blast furnace and the amount of oxygen contained in the gas discharged from the top of the furnace. be able to.
  • the actual value of the current pulverized coal ratio was obtained from the frequency of raw material charging at the nearest 8 charges based on the pig iron equivalent amount of iron oxide contained in the raw material layer (charge) charged into the blast furnace. That is, assuming that the charge number currently being charged is N, the number of raw material layers existing in the furnace is A, the charging start time of the i-th charge is Time [i], and the pig iron conversion amount is Pig [i].
  • the current iron forming speed Prod (t) can be calculated by the following equation (9).
  • the pig iron conversion amount Pig in the above formula (9) more specifically indicates the weight obtained by converting the portion to be pig iron with respect to the weight of the raw material put into the blast furnace.
  • the number of raw material layers is traced back by the A layer only in order to obtain the iron forming speed by the amount of pig iron contained in the raw material layer at the tuyere height.
  • the amount of pig iron charged into the blast furnace is divided by the time required to charge the raw materials for the nearest 8 charges to obtain the amount of pig iron charged within that time, that is, the pig iron production speed. You can ask. Since the iron forming speed fluctuates greatly when calculated based on the actual value in a short period of time, it is desirable to smooth it in a period of about 1 to 3 hours.
  • the average of 8 charges is used, which corresponds to about 2 hours in normal operation.
  • PCI operation amount calculation step In this step, when the deviation ⁇ PCR of the pulverized coal ratio occurs, the manipulated amount ⁇ PCI of the pulverized coal flow rate for compensating the deviation ⁇ PCR is calculated by the following formula (11).
  • the set value (set PCI) of the pulverized coal flow rate is calculated by adding the manipulated amount ⁇ PCI of the pulverized coal flow rate obtained in the PCI operation amount calculation step to the set value of the current pulverized coal flow rate.
  • the contents described above correspond to the second control loop (PCR control loop) in FIG.
  • FIG. 6 is an example showing the result of applying the hot metal temperature control method according to the present embodiment to the actual operation of the blast furnace.
  • FIG. 6A shows the deviation of the actual value with respect to the target value of the hot metal temperature.
  • the solid line shows the actual value of the hot metal temperature (actual HMT), and the broken line shows the target value of the hot metal temperature (target HMT).
  • FIG. 6B shows a comparison result between the manipulated amount ⁇ PCR of the pulverized coal ratio by this control and the manipulated amount of the pulverized coal ratio actually operated by the operator.
  • the triangular mark indicates the operation by this control
  • the circle mark indicates the operation by the operator.
  • FIG. 6 (c) shows the comparison result of the transition of the target value and the actual value of the pulverized coal ratio.
  • the broken line shows the actual value of the pulverized coal ratio (actual PCR)
  • the solid line shows the target value of the pulverized coal ratio (target PCR).
  • the vertical axis of the figure shows the deviation from the typical value of the pulverized coal ratio.
  • this "typical value of the pulverized coal ratio” the average value of the pulverized coal ratio at the time of normal operation of the blast furnace can be used.
  • FIG. 6D shows a comparison result between the operation amount ⁇ PCI of the pulverized coal flow rate by this control and the operation amount of the actual pulverized coal flow rate operated by the operator as in the conventional case.
  • the triangular mark indicates the operation by this control
  • the circle mark indicates the operation by the operator.
  • the "main control" in FIGS. 6 (b) and 6 (d) is also the result of a test conducted in a format in which guidance is given to the operator, not completely automatic control.
  • the operator operates generally according to the guidance and can keep the hot metal temperature near the target value.
  • the action of lowering the pulverized coal flow rate is output together with the pulverized coal ratio from 11:00 to 12:00. Then, as a result of the operator performing the operation by this control, the hot metal temperature is kept near the target value.
  • the operation of the pulverized coal flow rate is operated between 18:00 and 20:00 even if the operation amount ⁇ PCR of the pulverized coal ratio is zero.
  • the operation of the quantity ⁇ PCI is output.
  • the pulverized coal ratio PCR is maintained near the target value, and as shown in the part F of FIG. 6 (a), the fluctuation of the hot metal temperature is suppressed. .. From the above, the usefulness of the hot metal temperature control method according to the present embodiment in the actual operation was shown.
  • the fluctuation of the air permeability is caused.
  • the hot metal temperature can be controlled without being affected by fluctuations in unloading. Therefore, highly efficient and stable operation of the blast furnace can be realized.
  • the manipulated amount of the pulverized coal flow rate can be calculated by the control loop having a double structure (see FIG. 3) including the HMT control loop and the PCR control loop. Automatic control of hot metal temperature can be realized.
  • the hot metal temperature control method, the operation guidance method, the blast furnace operation method, the hot metal manufacturing method, the hot metal temperature control device, and the operation guidance device according to the present invention are concretely described by embodiments and examples for carrying out the invention.
  • the gist of the present invention is not limited to these descriptions, and must be broadly interpreted based on the description of the scope of claims. Needless to say, various changes, modifications, etc. based on these descriptions are also included in the gist of the present invention.
  • Control device 101 Information processing device 102 Input device 103 Output device 111 RAM 112 ROM 112a Control program 113 CPU

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Feedback Control In General (AREA)

Abstract

溶銑温度の制御方法は、高炉内の状態を計算可能な物理モデルによって予測した溶銑温度が、予め設定された目標範囲に収まるように、微粉炭比の目標値を算出する第一の制御ループと、微粉炭比の目標値と現在の微粉炭比の実績値との偏差を補償するための、微粉炭流量の操作量を算出する第二の制御ループと、を実行する。

Description

溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置
 本発明は、溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置に関する。
 製鉄業における高炉プロセスにおいて、溶銑温度は重要な管理指標である。この溶銑温度は、主に溶銑1トン当りの微粉炭流量を示す微粉炭比(Pulverized Coal Ratio:PCR)を操作することにより制御される。近年の高炉操業は、原燃料コストの合理化を追及すべく、低コークス比および高微粉炭比の条件下で行われており、炉況が不安定化しやすい。そのため、溶銑温度ばらつきの低減のニーズが大きい。
 また、高炉プロセスは、固体が充填された状態で操業を行うため、プロセス全体の熱容量が大きく、操作(操業アクション)に対する応答の時定数が長いという特徴を有している。更に、高炉の上部(炉頂部)から装入された原料が高炉の下部(炉下部)に降下するまでには数時間オーダーの無駄時間が存在する。そのため、溶銑温度を制御するためには、将来の炉熱予測に基づいた操作変数の操作量の適正化が必須となる。
 このような背景から、特許文献1では、物理モデルを利用した炉熱予測方法が提案されている。特許文献1に記載された炉熱予測方法では、現在の炉頂ガスの組成に合致するように、物理モデルに含まれるガス還元速度パラメータを調整し、パラメータ調整後の物理モデルを用いて炉熱を予測している。
特開平11-335710号公報
 しかしながら、従来の溶銑温度の制御方法では、通気性の変動に起因して原料降下速度(荷下り)の変化が生じた場合に制御性能が低下する課題がある。オペレータによる直接的な操作変数は、羽口から吹き込まれる微粉炭流量[kg/min]である。しかし、この微粉炭流量が一定であっても、溶銑の生産速度(以下、「造銑速度」という)「t/min」が変化すると、微粉炭流量と造銑速度との比によって算出される微粉炭比(PCR)が変動し、溶銑温度に変動が生じてしまう。
 造銑速度は、炉内に供給される酸素流量に概ね比例するが、この酸素流量が一定であっても、炉内の通気性が悪化した場合は一時的に原料の嵩密度が低下し、荷下りが緩やかとなる。このような場合において、従来の物理モデルを利用した溶銑温度の制御方法では、制御精度が低下することが課題であった。
 本発明は、上記に鑑みてなされたものであって、通気性の変動に起因した荷下りの変動の影響を受けづらい溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る溶銑温度の制御方法は、高炉内の状態を計算可能な物理モデルによって予測した溶銑温度が、予め設定された目標範囲に収まるように、微粉炭比の目標値を算出する第一の制御ループと、前記微粉炭比の目標値と現在の微粉炭比の実績値との偏差を補償するための、微粉炭流量の操作量を算出する第二の制御ループと、を実行する。
 また、本発明に係る溶銑温度の制御方法は、前記第一の制御ループが、前記物理モデルを用いて、予め設定された複数の操作変数のうち、全ての操作変数の操作量が所定期間一定である場合の、溶銑温度の応答を示す自由応答を算出する自由応答算出ステップと、前記物理モデルを用いて、前記複数の操作変数のうち、前記微粉炭比の操作量を単位量だけステップ状に変化させた場合の、溶銑温度の応答を示すステップ応答を算出するステップ応答算出ステップと、前記自由応答および前記ステップ応答に基づいて、溶銑温度を前記目標範囲に収めるための微粉炭比の操作量を算出するPCR操作量算出ステップと、前記微粉炭比の操作量を、現在の微粉炭比の目標値に加算することにより、微粉炭比の目標値を算出するPCR目標値算出ステップと、を含む。
 また、本発明に係る溶銑温度の制御方法は、前記第二の制御ループが、前記第一の制御ループによって算出される前記微粉炭比の目標値と、前記微粉炭比の実績値と、予め算出された造銑速度の実績値とから、微粉炭比の偏差を算出する微粉炭比偏差算出ステップと、前記微粉炭比の偏差と前記造銑速度の実績値とから、前記微粉炭流量の操作量を算出するPCI操作量算出ステップと、を含む。
 また、本発明に係る溶銑温度の制御方法は、上記発明において、前記PCR操作量算出ステップが、前記複数の操作変数のうち、全ての操作変数の操作量が所定期間一定である場合の、前記所定期間経過後の溶銑温度の予測値が、予め設定された溶銑温度の上下限値に含まれるように、前記微粉炭比の操作量を算出する。
 また、本発明に係る溶銑温度の制御方法は、上記発明において、前記造銑速度の実績値が、操作量を計算する時点から所定時間前までの、高炉に投入される原料、または、前記高炉の羽口から吹き込む熱風および炉頂から出るガスに基づいて算出される。
 上述した課題を解決し、目的を達成するために、本発明に係る操業ガイダンス方法は、上記の溶銑温度の制御方法によって算出された微粉炭流量の操作量を提示することにより、高炉の操業を支援するステップを含む。
 上述した課題を解決し、目的を達成するために、本発明に係る高炉の操業方法は、上記のいずれか一項に記載の溶銑温度の制御方法によって算出された微粉炭流量の操作量に従って高炉を制御するステップを含む。
 上述した課題を解決し、目的を達成するために、本発明に係る溶銑の製造方法は、上記の溶銑温度の制御方法によって算出された微粉炭流量の操作量に従って高炉を制御し、溶銑を製造するステップを含む。
 上述した課題を解決し、目的を達成するために、本発明に係る溶銑温度の制御装置は、高炉内の状態を計算可能な物理モデルによって予測した溶銑温度が、予め設定された目標範囲に収まるように、微粉炭比の目標値を算出する第一の制御ループと、前記微粉炭比の目標値と現在の微粉炭比の実績値との偏差を補償するための、微粉炭流量の操作量を算出する第二の制御ループと、を実行する手段を備える。
 上述した課題を解決し、目的を達成するために、本発明に係る操業ガイダンス装置は、上記の溶銑温度の制御装置によって算出された微粉炭流量の操作量を提示することにより、高炉の操業を支援する手段を備える。
 本発明に係る溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置によれば、通気性の変動に起因した荷下りの変動の影響を受けることなく、溶銑温度を制御することができる。従って、高炉の高効率かつ安定的な操業を実現することができる。
図1は、本発明の実施形態に係る溶銑温度の制御装置の概略的な構成を示すブロック図である。 図2は、本発明の実施形態に係る溶銑温度の制御方法で用いる物理モデルの入力変数および出力変数の一例を示す図である。 図3は、本発明の実施形態に係る溶銑温度の制御方法における制御ループの構造を示す図である。 図4は、本発明の実施形態に係る溶銑温度の制御方法において、物理モデルによる溶銑温度の予測結果を示す図である。 図5は、本発明の実施形態に係る溶銑温度の制御方法において、微粉炭比の変化に対する溶銑温度のステップ応答を示す図である。 図6は、本発明の実施形態に係る溶銑温度の制御方法を高炉の実操業に適用した結果を示す図である。具体的には、溶銑温度の目標値に対する実績値の偏差、本制御およびオペレータによる微粉炭比の操作量、微粉炭比の目標値および実績値の推移、本制御およびオペレータによる微粉炭流量の操作量、を示す図である。
 本発明の実施形態に係る溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置について、図面を参照しながら説明する。
〔溶銑温度の制御装置の構成〕
 まず、本発明の実施形態に係る溶銑温度の制御装置(以下、「制御装置」という)の構成について、図1を参照しながら説明する。制御装置100は、情報処理装置101と、入力装置102と、出力装置103と、を備えている。
 情報処理装置101は、パーソナルコンピュータやワークステーション等の汎用の装置によって構成され、RAM111、ROM112およびCPU113を備えている。RAM111は、CPU113が実行する処理に関する処理プログラムや処理データを一時的に記憶し、CPU113のワーキングエリアとして機能する。
 ROM112は、本発明の実施形態に係る溶銑温度の制御方法を実行する制御プログラム112aと、情報処理装置101全体の動作を制御する処理プログラムや処理データを記憶している。
 CPU113は、ROM112内に記憶されている制御プログラム112aおよび処理プログラムに従って情報処理装置101全体の動作を制御する。このCPU113は、後記する溶銑温度の制御方法において、自由応答算出ステップを行う自由応答算出手段、ステップ応答算出ステップを行うステップ応答算出手段およびPCR操作量算出ステップを行うPCR操作量算出手段として機能する。また、CPU113は、PCR目標値算出ステップを行うPCR目標値算出手段、微粉炭比偏差算出ステップを行う微粉炭比偏差算出手段、PCI操作量算出ステップを行うPCI操作量算出手段およびPCI設定値算出ステップを行うPCI設定値算出手段として機能する。
 入力装置102は、キーボード、マウスポインタ、テンキー等の装置によって構成され、情報処理装置101に対して各種情報を入力する際に操作される。出力装置103は、表示装置や印刷装置等によって構成され、情報処理装置101の各種処理情報を出力する。
〔物理モデルの構成〕
 次に、本発明の実施形態に係る溶銑温度の制御方法で用いる物理モデルについて説明する。本発明で用いる物理モデルは、参考文献1(羽田野道春ら:“高炉非定常モデルによる火入れ操業の検討”,鉄と鋼,vol.68,p.2369)記載の方法と同様に、鉄鉱石の還元、鉄鉱石とコークスとの間の熱交換、および鉄鉱石の融解等の複数の物理現象を考慮した偏微分方程式群から構成されている。また、本発明で用いる物理モデルは、非定常状態における高炉内の状態を示す変数(出力変数)を計算可能な物理モデルである(以下、「非定常モデル」という)。
 図2に示すように、この非定常モデルに対して与える境界条件の中で時間変化する主なもの(入力変数,高炉の操作変数(操業因子ともいう))は、以下の通りである。
(1)炉頂におけるコークス比(CR)[kg/t]:溶銑1トン当たりのコークスの投入量
(2)送風流量(BV)[Nm/min]:高炉に送風される空気の流量
(3)富化酸素流量(BVO)[Nm/min]:高炉に吹き込まれる富化酸素の流量
(4)送風温度(BT)[℃]:高炉に送風される空気の温度
(5)微粉炭流量(微粉炭吹込み量、PCI)[kg/min]:溶銑生成量1トンに対して使用される微粉炭の重量
(6)送風湿分(BM)[g/Nm]:高炉に送風される空気の湿度
 また、非定常モデルによって形成される主な出力変数は、以下の通りである。
(1)炉内におけるガス利用率(ηCO):CO/(CO+CO
(2)コークスや鉄の温度
(3)鉄鉱石の酸化度
(4)原料の降下速度
(5)ソルーションロスカーボン量(ソルロスカーボン量)
(6)溶銑温度
(7)造銑速度(溶銑生成速度)
(8)炉体ヒートロス量:冷却水により炉体を冷却した際に冷却水が奪う熱量
 本発明では、出力変数を計算する際のタイムステップ(時間間隔)は30分とした。但し、タイムステップは目的に応じて可変であり、本実施形態の値に限定されることはない。この非定常モデルを用いることにより、時々刻々変化する溶銑温度および造銑速度を含む出力変数を計算する。
〔制御ループ〕
 次に、本実施形態に係る溶銑温度の制御方法で実行する制御ループについて説明する。本実施形態に係る溶銑温度の制御方法では、図3に示すように、第一の制御ループ(HMT制御ループ)と、第二の制御ループ(PCR制御ループ)とからなる二重構造の制御ループを実行する。第一の制御ループでは、高炉内の状態を計算可能な非定常モデルによって予測した溶銑温度が、予め設定された目標範囲(目標HMT)に収まるように、微粉炭比の目標値(目標PCR)を算出する。また、第二の制御ループでは、微粉炭比の目標値(目標PCR)と現在の微粉炭比の実績値(実績PCR)との偏差を補償するための、微粉炭流量の操作量を算出する。
〔溶銑温度の制御方法〕
 次に、上記の非定常モデルを用いた本実施形態に係る溶銑温度の制御方法について説明する。本実施形態に係る溶銑温度の制御方法は、自由応答算出ステップ、ステップ応答算出ステップ、PCR操作量算出ステップ、PCR目標値算出ステップ、微粉炭比偏差算出ステップ、PCI操作量算出ステップおよびPCI設定値算出ステップをこの順で行う。上記の非定常モデルは、例えば下記式(1)、(2)のように示すことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、上記式(1)、(2)において、x(t)は非定常モデル内で計算される状態変数(コークスや鉄の温度、鉄鉱石の酸化度、原料の降下速度等)、y(t)は制御変数である溶銑温度(Hot Metal Temperature:HMT)である。また、Cは非定常モデル内で計算される状態変数の中から制御変数を抽出するための行列または関数である。
 また、上記式(1)におけるu(t)は、非定常モデルの入力変数である、送風流量、富化酸素流量、微粉炭流量、送風湿分、送風温度およびコークス比である。このu(t)は、「u(t)=(BV(t),BVO(t),PCI(t),BM(t),BT(t),CR(t))」で表すことができる。
(自由応答算出ステップ)
 まず、現在の全ての操作変数の操作量が一定に保たれたことを仮定して、将来の溶銑温度HMTの予測計算を行う。すなわち本ステップでは、上記の非定常モデルを用いて、予め設定された複数の操作変数(入力変数)のうち、全ての操作変数の操作量が所定期間一定である場合の、溶銑温度HMTの応答を算出する。本ステップでは、具体的には、現在の時間ステップをt=0と置き、下記式(3)、(4)を用いて、将来の溶銑温度HMTを算出する。また、非定常モデルによる現時点の溶銑温度の推定値と、現時点の実際の溶銑温度との間に推定誤差が生じている場合は、必要に応じて、以下のような処理を行ってもよい。すなわち、非定常モデルによる計算値に推定誤差を加算することにより、実績値とのバイアス誤差を解消する補正を実施してもよい。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 このようにして求めた制御変数(ここでは溶銑温度)の応答yのことを、本実施形態では「自由応答」と称する。図4に、操作変数(入力変数)の一部(コークス比CR、微粉炭流量PCI、送風湿分BM)および溶銑温度HMTの予測結果の一例を示す。なお、過去の区間における溶銑温度HMTの計算値は、過去の実際の操作変数を用いて計算されている。
(ステップ応答算出ステップ)
 本ステップでは、上記の非定常モデルを用いて、複数の操作変数(入力変数)のうち、微粉炭比の操作量を単位量だけステップ状に変化させた場合の、溶銑温度HMTの応答を示すステップ応答を算出する。
 ここで、自由応答算出ステップで求めた溶銑温度HMTの自由応答Yを、図5(b)の実線で示す。本ステップでは、図5(a)の破線で示すように、他の操作変数を保持したまま、時刻0において微粉炭比PCRを10kg/tだけ増加させた際の、溶銑温度HMTの応答を、下記式(5)、(6)により算出する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 微粉炭流量PCIの増加量は、微粉炭比PCRの増加分に現在の造銑速度を乗じることにより求める。また、上記式(5)では、微粉炭流量PCIを増加させる操作をΔuと置いている。本ステップで求めた溶銑温度HMTの応答yを、図5(b)の破線で示す。
 続いて、上記のように求めた溶銑温度HMTの応答y(図5(b)の破線参照)と溶銑温度HMTの自由応答y(同図の実線参照)との差分を取ることにより、微粉炭比PCRの変化に対する溶銑温度HMTのステップ応答を算出する。ここで、単位量に対するステップ応答とするため、出力を10で割っている。
(PCR操作量算出ステップ)
 続いて、将来の溶銑温度HMTが目標範囲(目標HMT)に収まるように微粉炭比PCRの操作幅を決定する。すなわち本ステップでは、自由応答算出ステップで求めた自由応答およびステップ応答算出ステップで求めたステップ応答に基づいて、溶銑温度HMTを目標範囲に収めるための微粉炭比の操作量ΔPCRを算出する。
 本ステップでは、過剰な操業アクションを避けつつ溶銑温度HMTを目標範囲に収めるために、下記式(7)に示すように、微粉炭比の操作量ΔPCRを算出する。すなわち、複数の操作変数(入力変数)のうち、全ての操作変数の操作量が所定期間一定である場合の、所定期間経過後の溶銑温度HMTの予測値が、予め設定された溶銑温度HMTの上下限値に含まれるように、微粉炭比の操作量ΔPCRを算出する。なお、鉄鉱石が炉に投入されてから炉外に排出されるまでの所要時間は8時間程度であることから、下記式(7)における溶銑温度HMTの予測区間は10時間と設定した。また、制御ロジックの単純化のため制御区間は1ステップとした。
Figure JPOXMLDOC01-appb-M000007
 上記式(7)において、T10 preは、10時間後の溶銑温度HMTの予測値、Tは、溶銑温度HMTの上限値、Tは、溶銑温度HMTの下限値、S10 PCRは、微粉炭比PCRの変化に対する溶銑温度HMTのステップ応答の10時間後の値、である。このような制御則とすることにより、T10 preが目標範囲内に収まっている間は、微粉炭比の操作量ΔPCRがゼロとなるため、操作量変更に伴うオペレータの作業負荷を低減することが可能となる。
(PCR目標値算出ステップ)
 続いて、下記式(8)に示すように、PCR操作量算出ステップで求めた微粉炭比の操作量ΔPCRを、オペレータが管理している現在の微粉炭比の目標値PCR refに加算することにより、微粉炭比の目標値PCRrefを算出する。以上で説明した内容が、図3の第一の制御ループ(HMT制御ループ)に相当する。
Figure JPOXMLDOC01-appb-M000008
(微粉炭比偏差算出ステップ)
 本ステップでは、PCR目標値算出ステップで求めた微粉炭比の目標値PCRrefと、現在の微粉炭比の実績値との偏差(微粉炭比の偏差)を算出する。
 ここで、現在の微粉炭比の実績値(実績PCR)を算出するためには、微粉炭流量の実績値と造銑速度の実績値との比を求める必要がある。造銑速度の求め方としては、例えば酸素収支によって求める方法や、高炉に投入される原料層(チャージ)に含まれる酸化鉄の銑鉄換算量によって求める方法等がある。例えば酸素収支から造銑速度を求める場合、高炉の羽口から吹き込む熱風に含まれる酸素の量と、炉頂から出るガスに含まれる酸素の量との差分を求めることにより、造銑速度を求めることができる。
 本実施形態では、高炉に投入される原料層(チャージ)に含まれる酸化鉄の銑鉄換算量に基づいて、至近8チャージでの原料投入の頻度から現在の微粉炭比の実績値を求めた。すなわち、現在装入中のチャージ番号をN、炉内に存在する原料層の数をA、i番目のチャージの装入開始時刻をTime[i]、銑鉄換算量をPig[i]とすると、現在の造銑速度Prod(t)は、下記式(9)によって算出することができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、上記式(9)の銑鉄換算量Pigは、より具体的には、高炉に投入される原料の重量に対して、銑鉄になる部分を換算した重量のことを示している。また、上記式(9)において、原料層の数をA層だけ過去に遡っているのは、羽口高さにおける原料層に含まれる銑鉄量によって造銑速度を求めるためである。上記式(9)に示すように、高炉に投入した銑鉄量を、至近8チャージ分の原料の装入に要した時間で割ることにより、当該時間内に投入した銑鉄量、すなわち造銑速度を求めることができる。造銑速度は、短期間の実績値に基づいて計算すると変動が大きいため、1~3時間程度の範囲の期間で平滑化することが望ましい。ここでは、8チャージの平均としているが、通常操業において2時間程度の時間に相当する。
 続いて、微粉炭比の目標値PCRrefと、現在の微粉炭比の実績値との偏差δPCRを、下記式(10)により算出する。
Figure JPOXMLDOC01-appb-M000010
(PCI操作量算出ステップ)
 本ステップでは、微粉炭比の偏差δPCRが生じている場合に、当該偏差δPCRを補償するための微粉炭流量の操作量ΔPCIを、下記式(11)により算出する。
Figure JPOXMLDOC01-appb-M000011
(PCI設定値算出ステップ)
 本ステップでは、PCI操作量算出ステップで求めた微粉炭流量の操作量ΔPCIを、現在の微粉炭流量の設定値に加算することにより、微粉炭流量の設定値(設定PCI)を算出する。以上で説明した内容が、図3の第二の制御ループ(PCR制御ループ)に相当する。以上の処理により、溶銑温度HMTを制御するための適切な微粉炭流量PCIの操作が可能となる。また、通気性の変動に起因して荷下りの変動が生じた場合であっても、上記式(9)~(11)からなるPCR制御ループによって微粉炭比PCRの変動を抑制することが可能となるため、溶銑温度HMTのばらつきを低減することが可能となる。
〔実施例〕
 図6は、本実施形態に係る溶銑温度の制御方法を高炉の実操業に適用した結果を示す実施例である。図6(a)は、溶銑温度の目標値に対する実績値の偏差を示している。同図において、実線は溶銑温度の実績値(実績HMT)を、破線は溶銑温度の目標値(目標HMT)を、示している。また、図6(b)は、本制御による微粉炭比の操作量ΔPCRと、オペレータが操作した実績の微粉炭比の操作量との比較結果を示している。同図において、三角印は本制御による操作を、丸印はオペレータによる操作を、示している。
 また、図6(c)は、微粉炭比の目標値および実績値の推移の比較結果を示している。同図において、破線は微粉炭比の実績値(実績PCR)を、実線は微粉炭比の目標値(目標PCR)を、示している。また、同図の縦軸は、微粉炭比の典型値からの偏差を示している。この「微粉炭比の典型値」としては、高炉の正常操業時における微粉炭比の平均値等を用いることができる。
 また、図6(d)は、本制御による微粉炭流量の操作量ΔPCIと、従来と同様にオペレータが操作した実績の微粉炭流量の操作量との比較結果を示している。同図において、三角印は本制御による操作を、丸印はオペレータによる操作を、示している。なお、図6(b)および図6(d)の「本制御」についても、完全な自動制御ではなく、オペレータにガイダンスを行う形式で試験を行った結果である。
 図6(a)に示すように、オペレータは概ねガイダンス通りに操作を行い、溶銑温度を目標値近傍に保つことができている。例えば図6(b)のA部および図6(d)のB部に示すように、11時~12時の間は、微粉炭比とともに微粉炭流量の下げアクションが出力されている。そして、オペレータが本制御による操作を実施した結果、溶銑温度は目標値近傍に保たれている。
 また、図6(b)のC部および図6(d)のD部に示すように、18時~20時の間は、微粉炭比の操作量ΔPCRがゼロであっても、微粉炭流量の操作量ΔPCIの操作が出力されている。その結果、図6(c)のE部に示すように、微粉炭比PCRが目標値近傍に保たれ、図6(a)のF部に示すように、溶銑温度の変動が抑えられている。以上により、本実施形態に係る溶銑温度の制御方法の実操業における有用性が示された。
〔操業ガイダンス方法〕
 本実施形態に係る溶銑温度の制御方法を操業ガイダンス方法に適用することも可能である。この場合、前記した溶銑温度の制御方法における自由応答算出ステップ、ステップ応答算出ステップ、PCR操作量算出ステップ、PCR目標値算出ステップ、微粉炭比偏差算出ステップおよびPCI操作量算出ステップに加えて、以下のステップを行う。すなわち、PCI操作量算出ステップで算出された微粉炭流量の操作量ΔPCIを、例えば出力装置103を介してオペレータに提示することにより、高炉の操業を支援するステップを行う。
〔高炉の操業方法〕
 本実施形態に係る溶銑温度の制御方法を高炉の操業方法に適用することも可能である。この場合、前記した溶銑温度の制御方法における自由応答算出ステップ、ステップ応答算出ステップ、PCR操作量算出ステップ、PCR目標値算出ステップ、微粉炭比偏差算出ステップおよびPCI操作量算出ステップに加えて、以下のステップを行う。すなわち、PCI操作量算出ステップで算出された微粉炭流量の操作量ΔPCIに従って高炉を制御するステップを行う。
〔溶銑の製造方法〕
 本実施形態に係る溶銑温度の制御方法を溶銑の製造方法に適用することも可能である。この場合、前記した溶銑温度の制御方法における自由応答算出ステップ、ステップ応答算出ステップ、PCR操作量算出ステップ、PCR目標値算出ステップ、微粉炭比偏差算出ステップおよびPCI操作量算出ステップに加えて、以下のステップを行う。すなわち、PCI操作量算出ステップで算出された微粉炭流量の操作量ΔPCIに従って高炉を制御し、溶銑を製造するステップを行う。
 以上説明したような本実施形態に係る溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置によれば、通気性の変動に起因した荷下りの変動の影響を受けることなく、溶銑温度を制御することができる。従って、高炉の高効率かつ安定的な操業を実現することができる。
 また、従来の溶銑温度の制御方法では、例えば微粉炭比のガイダンスを行い、そのガイダンスに従ってオペレータが微粉炭流量を操作するに留まっていた。一方、本実施形態に係る溶銑温度の制御方法では、HMT制御ループPCR制御ループとからなる二重構造の制御ループ(図3参照)によって、微粉炭流量の操作量を算出することができるため、溶銑温度の自動制御を実現することができる。
 以上、本発明に係る溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。
 100 制御装置
 101 情報処理装置
 102 入力装置
 103 出力装置
 111 RAM
 112 ROM
 112a 制御プログラム
 113 CPU

Claims (10)

  1.  高炉内の状態を計算可能な物理モデルによって予測した溶銑温度が、予め設定された目標範囲に収まるように、微粉炭比の目標値を算出する第一の制御ループと、
     前記微粉炭比の目標値と現在の微粉炭比の実績値との偏差を補償するための、微粉炭流量の操作量を算出する第二の制御ループと、
     を実行する溶銑温度の制御方法。
  2.  前記第一の制御ループは、
     前記物理モデルを用いて、予め設定された複数の操作変数のうち、全ての操作変数の操作量が所定期間一定である場合の、溶銑温度の応答を示す自由応答を算出する自由応答算出ステップと、
     前記物理モデルを用いて、前記複数の操作変数のうち、前記微粉炭比の操作量を単位量だけステップ状に変化させた場合の、溶銑温度の応答を示すステップ応答を算出するステップ応答算出ステップと、
     前記自由応答および前記ステップ応答に基づいて、溶銑温度を前記目標範囲に収めるための微粉炭比の操作量を算出するPCR操作量算出ステップと、
     前記微粉炭比の操作量を、現在の微粉炭比の目標値に加算することにより、微粉炭比の目標値を算出するPCR目標値算出ステップと、
     を含む請求項1に記載の溶銑温度の制御方法。
  3.  前記第二の制御ループは、
     前記第一の制御ループによって算出される前記微粉炭比の目標値と、前記微粉炭比の実績値と、予め算出された造銑速度の実績値とから、微粉炭比の偏差を算出する微粉炭比偏差算出ステップと、
     前記微粉炭比の偏差と前記造銑速度の実績値とから、前記微粉炭流量の操作量を算出するPCI操作量算出ステップと、
     を含む請求項1または請求項2に記載の溶銑温度の制御方法。
  4.  前記PCR操作量算出ステップは、前記複数の操作変数のうち、全ての操作変数の操作量が所定期間一定である場合の、前記所定期間経過後の溶銑温度の予測値が、予め設定された溶銑温度の上下限値に含まれるように、前記微粉炭比の操作量を算出する請求項2に記載の溶銑温度の制御方法。
  5.  前記造銑速度の実績値は、操作量を計算する時点から所定時間前までの、高炉に投入される原料、または、前記高炉の羽口から吹き込む熱風および炉頂から出るガスに基づいて算出される請求項3に記載の溶銑温度の制御方法。
  6.  請求項1から請求項5のいずれか一項に記載の溶銑温度の制御方法によって算出された微粉炭流量の操作量を提示することにより、高炉の操業を支援するステップを含む操業ガイダンス方法。
  7.  請求項1から請求項5のいずれか一項に記載の溶銑温度の制御方法によって算出された微粉炭流量の操作量に従って高炉を制御するステップを含む高炉の操業方法。
  8.  請求項1から請求項5のいずれか一項に記載の溶銑温度の制御方法によって算出された微粉炭流量の操作量に従って高炉を制御し、溶銑を製造するステップを含む溶銑の製造方法。
  9.  高炉内の状態を計算可能な物理モデルによって予測した溶銑温度が、予め設定された目標範囲に収まるように、微粉炭比の目標値を算出する第一の制御ループと、
     前記微粉炭比の目標値と現在の微粉炭比の実績値との偏差を補償するための、微粉炭流量の操作量を算出する第二の制御ループと、
     を実行する手段を備える溶銑温度の制御装置。
  10.  請求項9に記載の溶銑温度の制御装置によって算出された微粉炭流量の操作量を提示することにより、高炉の操業を支援する手段を備える操業ガイダンス装置。
PCT/JP2021/022519 2020-07-06 2021-06-14 溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置 WO2022009617A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021544846A JP7107444B2 (ja) 2020-07-06 2021-06-14 溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置
CN202180047144.0A CN115735011A (zh) 2020-07-06 2021-06-14 铁水温度的控制方法及装置、操作指导方法及装置、高炉的操作方法、及铁水的制造方法
EP21837717.4A EP4155421A4 (en) 2020-07-06 2021-06-14 HOT METAL TEMPERATURE REGULATION METHOD, OPERATION GUIDANCE METHOD, BLAST FURNACE OPERATION METHOD, HOT METAL PRODUCTION METHOD, HOT METAL TEMPERATURE REGULATION DEVICE, AND OPERATION GUIDE DEVICE
KR1020227044204A KR20230011401A (ko) 2020-07-06 2021-06-14 용선 온도의 제어 방법, 조업 가이던스 방법, 고로의 조업 방법, 용선의 제조 방법, 용선 온도의 제어 장치 및 조업 가이던스 장치
US18/010,985 US20230251036A1 (en) 2020-07-06 2021-06-14 Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
BR112023000085A BR112023000085A2 (pt) 2020-07-06 2021-06-14 Método para controlar temperatura de metal quente, método de orientação de operação, método para operar um alto-forno, método para produzir metal quente, dispositivo para controlar temperatura de metal quente e dispositivo de orientação de operação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116369 2020-07-06
JP2020-116369 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022009617A1 true WO2022009617A1 (ja) 2022-01-13

Family

ID=79552921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022519 WO2022009617A1 (ja) 2020-07-06 2021-06-14 溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置

Country Status (8)

Country Link
US (1) US20230251036A1 (ja)
EP (1) EP4155421A4 (ja)
JP (1) JP7107444B2 (ja)
KR (1) KR20230011401A (ja)
CN (1) CN115735011A (ja)
BR (1) BR112023000085A2 (ja)
TW (1) TWI794865B (ja)
WO (1) WO2022009617A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335710A (ja) 1998-05-22 1999-12-07 Sumitomo Metal Ind Ltd 高炉炉熱予測方法
JP2008146322A (ja) * 2006-12-08 2008-06-26 Nippon Steel Corp 製造プロセスの操業状態の予測方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2020029596A (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123209A (en) * 1977-04-18 1978-10-31 Moore James E Briquetting plant
JPS6018721B2 (ja) * 1978-02-27 1985-05-11 住友金属工業株式会社 高炉の操業方法
JPS6013042B2 (ja) * 1978-08-28 1985-04-04 株式会社神戸製鋼所 高炉操業法
JPS63171809A (ja) * 1987-01-09 1988-07-15 Nkk Corp 酸素高炉の炉熱制御方法
JPH11222610A (ja) * 1998-02-06 1999-08-17 Nkk Corp 高炉の炉熱制御方法
JP4307129B2 (ja) * 2003-04-08 2009-08-05 新日本製鐵株式会社 プロセスの状態類似事例検索方法及び状態予測方法、並びにコンピュータ読み取り可能な記憶媒体
CN100383506C (zh) * 2004-05-28 2008-04-23 黄瑞湄 热交换节能效益计量方法及其装置
CN201607652U (zh) * 2009-12-14 2010-10-13 中国电子科技集团公司第四十八研究所 一种快速回温控制***
TWI450969B (zh) * 2012-01-19 2014-09-01 China Steel Corp 高爐鐵水溫度之估測方法
JP5546675B1 (ja) * 2012-12-07 2014-07-09 新日鉄住金エンジニアリング株式会社 高炉の操業方法及び溶銑の製造方法
CN103336541B (zh) * 2013-06-27 2015-08-26 西安电炉研究所有限公司 热风加热试验装置温度跟踪保护控制***及其控制方法
CN105953207B (zh) * 2016-05-20 2018-05-08 华北电力大学(保定) 一种高品质的电站锅炉汽温控制***
JP6493447B2 (ja) * 2016-08-02 2019-04-03 Jfeスチール株式会社 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
JP6531782B2 (ja) * 2016-08-02 2019-06-19 Jfeスチール株式会社 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
JP6729514B2 (ja) * 2017-07-19 2020-07-22 Jfeスチール株式会社 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
CN108490790A (zh) * 2018-05-09 2018-09-04 东南大学 一种基于多目标优化的过热汽温自抗扰串级控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335710A (ja) 1998-05-22 1999-12-07 Sumitomo Metal Ind Ltd 高炉炉熱予測方法
JP2008146322A (ja) * 2006-12-08 2008-06-26 Nippon Steel Corp 製造プロセスの操業状態の予測方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2020029596A (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO, YOSHINARI: "Research on Realizing a Blast Furnace Molten Iron Temperature Control System", DISSERTATION, 1 April 2020 (2020-04-01), Kyoto University, pages 1 - 128, XP055898971, Retrieved from the Internet <URL:https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244579/2/djohk00708.pdf> *
MICHIHARU HATANO ET AL.: "Investigation of Blow-in Operation through the Blast Furnace Dynamic Model", IRON AND STEEL, vol. 68, pages 2369
OTSUKA YOSHIHISA, KONISHI MASAMI, MAKI TAKESHI: "Control Model of Hot Metal Temperature in the Blast Furnace and its Application to Re-Start Operation Planning", JOURNAL OF THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS, vol. 13, no. 3, 15 March 2000 (2000-03-15), pages 105 - 114, XP093011979 *

Also Published As

Publication number Publication date
TWI794865B (zh) 2023-03-01
EP4155421A4 (en) 2023-10-25
KR20230011401A (ko) 2023-01-20
TW202210985A (zh) 2022-03-16
CN115735011A (zh) 2023-03-03
US20230251036A1 (en) 2023-08-10
JPWO2022009617A1 (ja) 2022-01-13
JP7107444B2 (ja) 2022-07-27
BR112023000085A2 (pt) 2023-01-31
EP4155421A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
WO2022009621A1 (ja) 操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、操業ガイダンス装置
JP6729514B2 (ja) 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
CN104781426B (zh) 高炉的操作方法以及铁水的制造方法
JP2018024935A (ja) 溶銑温度予測方法、溶銑温度予測装置、高炉の操業方法、操業ガイダンス装置、溶銑温度制御方法、及び溶銑温度制御装置
JP2023025646A (ja) 制御装置、方法及びプログラム
WO2022009617A1 (ja) 溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置
JP6915754B2 (ja) プロセスの制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法およびプロセスの制御装置
CN111500807B (zh) 高炉炉墙粘结的治理方法
JP3099322B2 (ja) 高炉炉熱管理方法
WO2024048310A1 (ja) プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置
JP7384150B2 (ja) 操業ガイダンス方法、高炉の操業方法、溶銑の製造方法及び操業ガイダンス装置
WO2024048214A1 (ja) プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置
JP7067533B2 (ja) 溶銑のSi濃度予測方法、操業ガイダンス方法、高炉の操業方法、溶鋼の製造方法および溶銑のSi濃度予測装置
JP2022152721A (ja) 高炉の操業方法
JP2022148377A (ja) 高炉の操業方法
CN115655999A (zh) 一种基于炉身静压力判断炉缸死料柱状态的方法及***
JP2022048698A (ja) 高炉の制御装置、高炉の操業方法、及びプログラム
JP2725529B2 (ja) 高炉における装入物分布制御方法
JPS60262910A (ja) 高炉の残銑・滓レベルの調整法
JP2003096509A (ja) 高炉操業方法
JPH0128803B2 (ja)
JPS6157363B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021544846

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044204

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021837717

Country of ref document: EP

Effective date: 20221222

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000085

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023000085

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230103

NENP Non-entry into the national phase

Ref country code: DE