WO2024048310A1 - プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置 - Google Patents

プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置 Download PDF

Info

Publication number
WO2024048310A1
WO2024048310A1 PCT/JP2023/029754 JP2023029754W WO2024048310A1 WO 2024048310 A1 WO2024048310 A1 WO 2024048310A1 JP 2023029754 W JP2023029754 W JP 2023029754W WO 2024048310 A1 WO2024048310 A1 WO 2024048310A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
metal temperature
pig iron
iron making
air permeability
Prior art date
Application number
PCT/JP2023/029754
Other languages
English (en)
French (fr)
Inventor
佳也 橋本
稜介 益田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024048310A1 publication Critical patent/WO2024048310A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace

Definitions

  • the present disclosure relates to a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control device.
  • Hot metal temperature is an important management index in the blast furnace process in the steel industry, and is mainly controlled by adjusting the reducing agent ratio.
  • blast furnace operations have been carried out under conditions of low coke ratios and high pulverized coal ratios in order to pursue rationalization of raw material and fuel costs, and the furnace conditions tend to become unstable. Therefore, it is necessary to suppress variations in hot metal temperature.
  • the blast furnace process operates with solids filled, so the heat capacity of the entire process is large, and the time constant of response to action is long. Furthermore, it may take several hours, for example, for the raw material charged in the upper part of the furnace to descend to the lower part of the furnace. Therefore, in order to control the hot metal temperature, appropriate operations based on future furnace heat predictions are required.
  • pig iron making rate In the blast furnace process, it is required to control the hot metal temperature and maintain the pig iron production rate (hereinafter referred to as "pig iron making rate") near a target value.
  • the air flow rate is manipulated.
  • the blast flow rate it is also necessary to take into account the response delay caused by the long time constant of the blast furnace mentioned above.
  • a blast furnace control method based on prediction there is a method using a physical model as disclosed in Patent Document 1, for example.
  • blow-by if the air flow rate is increased, the pressure loss within the furnace (furnace pressure loss) will increase, and if the pressure loss exceeds the weight of the raw material, there is a risk that blow-through etc. will occur. If blow-by occurs, it will greatly affect the hot metal temperature and pig iron making rate. Therefore, if an abnormality is observed in the ventilation condition such as a pressure drop inside the furnace, it is necessary to stabilize the unloading of raw materials by lowering the air flow rate.
  • Patent Document 1 controls only the hot metal temperature, and does not propose to control the pig iron making rate and the air permeability at the same time. Conventionally, avoiding blow-throughs and the like has relied heavily on operating techniques (manual operations) based on the experience of skilled operators.
  • the purpose of the present disclosure which was made to solve the above problems, is to provide a process control method, a blast furnace operating method, a hot metal manufacturing method, and a process control device that can predict and control the state of a blast furnace with high accuracy.
  • Our goal is to provide the following.
  • a process control method includes: Obtain the hot metal temperature, pig iron making rate and air permeability of the blast furnace using observed values or calculated values, Based on the target value of the hot metal temperature, the target value of the pig iron making rate, the management value of the air permeability, and the obtained observed value or calculated value, the hot metal temperature, the pig iron making rate, and the air ventilation are determined. control the degree at the same time.
  • the manipulated variable in the first operation step is one or more of a blast flow rate, a blast oxygen flow rate, a pulverized coal ratio, a blast moisture content, a blast temperature, a coke ratio, and an oven top pressure.
  • a blast furnace operating method includes: Operating conditions are changed using the manipulated variables operated by the process control method of any one of (1) to (3).
  • Hot metal is produced using the blast furnace operated by the blast furnace operating method of (4).
  • a process control device includes: Obtain the hot metal temperature, pig iron making rate, and air permeability of the blast furnace using observed values or calculated values, and obtain the target value of the hot metal temperature, the target value of the pig iron making rate, and the control value of the air permeability, and the obtained observation.
  • the method further includes a control unit that simultaneously controls the hot metal temperature, the pig iron making rate, and the air permeability based on the value or the calculated value.
  • (6) comprising a storage unit that stores a physical model capable of calculating the internal state of the blast furnace;
  • the control unit includes: a hot metal temperature control unit that obtains a target hot metal temperature that is a target value of the hot metal temperature and calculates a manipulated variable of the pulverized coal ratio so that the hot metal temperature becomes the target hot metal temperature; an iron making speed control unit that acquires a target pig iron making speed that is a target value of the pig iron making speed and calculates a manipulated variable of a blowing flow rate so that the pig iron making speed becomes the target pig iron making speed; an air permeability control unit that obtains the upper limit of the air permeability and calculates manipulated variables of the air flow rate and coke ratio so that the air permeability does not exceed the upper limit;
  • the hot metal temperature control section, the pig iron making speed control section, and the air permeability control section are configured to control the future hot metal temperature, the pig iron making speed, and the air permeability
  • the hot metal temperature control section and the pig iron making speed control section determine the deviation between the predicted value and the target value of the hot metal temperature and the pig iron making speed, and determine the pulverized coal ratio and the air blowing flow rate for eliminating the deviation.
  • Find the amount of operation of The air permeability control unit determines the manipulated variables of the ventilation flow rate and coke ratio based on the predicted value of the air permeability and the upper limit value of the air permeability, The hot metal temperature control section, the pig iron making speed control section, and the air permeability control section simultaneously control the hot metal temperature, the pig iron making speed, and the air permeability.
  • FIG. 1 is a diagram showing manipulated variables and control variables in a blast furnace process.
  • FIG. 2 is a diagram illustrating a process control method according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing the relationship between the blast flow rate, coke ratio, pulverized coal ratio, and iron making speed.
  • FIG. 4 is a diagram showing the relationship between the blowing flow rate, the coke ratio, the pulverized coal ratio, and the pressure loss in the furnace.
  • FIG. 5 is a diagram showing input/output information of a physical model used in the present disclosure.
  • FIG. 6 is a diagram showing simulation results when the target pig iron making speed is 6.4 [t/min].
  • FIG. 7 is a diagram showing simulation results when the target iron making speed is 6.6 [t/min].
  • FIG. 8 is a diagram illustrating a configuration example of a process control device according to an embodiment of the present disclosure.
  • FIG. 1 shows the basic operating variables and control variables in the blast furnace process (steps in blast furnace operation).
  • a control variable is a variable that must be controlled in operation, but cannot be or is difficult to manipulate directly, and is changed through a correlated manipulated variable.
  • the pulverized coal ratio or coke ratio is mainly manipulated in order to set the hot metal temperature to a target value.
  • the coke ratio or the air flow rate is mainly controlled.
  • the air flow rate is mainly manipulated.
  • the air permeability in this embodiment, the pressure loss in the furnace, which directly affects the blow-through, is used.
  • Furnace pressure loss is the difference between blast pressure and furnace top pressure (furnace top pressure).
  • Furnace top pressure In addition to the pressure drop in the furnace, there are various indicators of ventilation, such as ventilation resistance and shaft-to-face differential pressure. Therefore, as the air permeability, another air permeability index may be used instead of the furnace pressure drop, or a combination of a plurality of air permeability indices may be used.
  • FIG. 2 is a diagram showing the processing of the process control method according to the present embodiment.
  • the process control method according to the present embodiment uses, for example, cascade control described in Reference Document 1 (Japanese Patent No. 7107444).
  • control for calculating the target pulverized coal ratio (PCR) (hot metal temperature control in Figure 2) and control for calculating the pulverized coal flow rate required for the target PCR (PCR follow-up control in Figure 2) are performed. It is done continuously.
  • Hot metal temperature control can obtain a target hot metal temperature, which is a target value of hot metal temperature (HMT), and calculate a target PCR using a physical model described below.
  • the process control method according to the present embodiment also includes iron making speed control and air permeability control.
  • a target pig iron making speed which is a target value of pig iron making rate (Production rate: Prod) is acquired, and a manipulated variable of a blowing flow rate (BV) is calculated using a physical model described below.
  • the air permeability control obtains the upper limit of the furnace pressure drop ( ⁇ P), and calculates the manipulated variables of the air flow rate and coke ratio using a physical model to be described later.
  • the actual value (which may be an observed value or a calculated value) in a plant including a blast furnace may be fed back for updating the physical model used in each control.
  • PCR pulverized coal ratio
  • HMT hot metal temperature
  • ⁇ P pressure drop in the furnace
  • Prod iron making rate
  • FIGS. 1 and 2 the correspondence between control variables and correlated manipulated variables in the blast furnace process is not limited to that shown in FIGS. 1 and 2.
  • hot metal temperature control it is possible to manipulate the air humidity instead of the pulverized coal ratio (PCR).
  • pig iron making speed control it is possible to manipulate the blown oxygen flow rate instead of the blown air flow rate.
  • an individual controller in constructing a multivariable control system as shown in FIG. 2, an individual controller (hot metal temperature control , air permeability control, pig iron making speed control).
  • Hot metal temperature is controlled by a cascade control that manipulates pulverized coal ratio (PCR) and pulverized coal flow rate.
  • Air permeability is controlled by manipulating the air flow rate and coke ratio.
  • the pig iron making speed is controlled by manipulating the air flow rate.
  • PCR pulverized coal ratio
  • a change in the pulverized coal flow rate affects the pig iron making rate.
  • FIG. 3 is a diagram showing the relationship between blast flow rate (BV), coke ratio (CR), pulverized coal ratio (PCR), and iron making rate (Prod).
  • FIG. 4 is a diagram showing the relationship between the blowing flow rate, coke ratio, pulverized coal ratio, and furnace pressure loss ( ⁇ P).
  • the solid line and the broken line indicate the case where the coke ratio and the pulverized coal ratio are replaced under the condition that the reducing agent ratio (the total value of the coke ratio and the pulverized coal ratio) is constant. If the reducing agent ratio is constant, as shown in FIG. 3, the blast flow rate (BV) and the iron making rate (Prod) are in a substantially proportional relationship.
  • the blast flow rate (BV) and the iron making rate (Prod) are in a substantially proportional relationship.
  • the manipulated variable of the air flow rate was determined according to the deviation between the predicted value of the iron making speed based on the physical model and the target value. Furthermore, as shown in FIG. 4, if the coke ratio (CR) decreases, the furnace pressure drop ( ⁇ P) increases even if the blast flow rate (BV * ) is the same. During blast furnace operation, when the pressure drop ( ⁇ P) in the furnace exceeds the upper limit (threshold), the coke ratio is increased and the blast flow rate is simultaneously lowered to stabilize the unloading of raw materials and reduce the pressure drop in the furnace. When the coke ratio is below the upper limit, it is preferable to gradually reduce the coke ratio.
  • the pressure drop in the furnace is controlled so as not to exceed the upper limit, and when the pressure loss in the furnace is less than the upper limit, it is possible to reduce the cost of operation by gradually reducing the coke ratio.
  • control is performed in this manner, the value of the pressure drop in the furnace changes near the upper limit.
  • the process control method first obtains the hot metal temperature, pig iron making rate, and air permeability of the blast furnace using observed values or calculated values. Then, the hot metal temperature, the pig iron making speed, and the air permeability are simultaneously controlled based on the target value of the hot metal temperature, the target value of the pig iron making speed, the management value of the air permeability, and the obtained observed value or calculated value. More specifically, the processing of this control method includes the following steps 1 to 3.
  • Step 1 the future hot metal temperature and pig iron production rate are predicted using a physical model.
  • Step 1 is a free-response prediction step in which predicted values of future hot metal temperature, pig iron making rate, and air permeability are determined when the current operating variables are held.
  • step 2 the manipulated variables are manipulated so that the predicted values of the hot metal temperature and pig iron making rate in step 1 match the target values.
  • Step 2 is a first operation step in which the deviation between the predicted value and the target value is determined, the amount of operation to eliminate the deviation is determined, and the manipulated variable is adjusted.
  • the manipulated variables are the pulverized coal ratio and the air flow rate.
  • the manipulated variables may be, for example, one or more of the following: blast flow rate, blast oxygen flow rate, pulverized coal ratio, blast moisture, blast temperature, coke ratio, and furnace top pressure.
  • step 3 based on the predicted value of air permeability in step 1 and the upper limit of air permeability, the manipulated variable of the manipulated variable that has a correlation with air permeability is determined.
  • the upper limit of air permeability is an example of a management value for managing air permeability.
  • Step 3 corresponds to the second operating step.
  • the air permeability is the pressure drop in the furnace, and if the predicted value of the pressure drop in the furnace exceeds a set upper limit, the ventilation condition is considered to be abnormal, and the operation of reducing the air flow rate and increasing the coke ratio is performed. Execute.
  • step 2 and step 3 are not executed in a fixed order such that one is executed after the other, but are executed so as to simultaneously control the hot metal temperature, pig iron making rate, and air permeability.
  • the physical model used in the present disclosure is similar to the model of the method described in Reference 2 (Michiharu Hadano et al., "Study of burning operation using an unsteady blast furnace model", Tetsu-to-Hagane, vol. 68, p. 2369). It is. In other words, it calculates the state inside the blast furnace (furnace) in an unsteady state, which is composed of a group of partial differential equations that take into account physical phenomena such as reduction of ore, heat exchange between ore and coke, and melting of ore.
  • a possible physical model is used. This physical model may be referred to as an unsteady model below.
  • the main ones that change over time are blast flow rate, blast oxygen flow rate, pulverized coal flow rate, blast moisture, blast temperature, coke ratio, and furnace top pressure. It is.
  • These input variables are operating variables or operating factors of the blast furnace.
  • the blast flow rate, the blast oxygen flow rate, and the pulverized coal flow rate are the flow rates of air, oxygen, and pulverized coal sent to the blast furnace, respectively.
  • the blast humidity is the humidity of the air sent to the blast furnace.
  • the blowing temperature is the temperature of the air sent to the blast furnace.
  • the coke ratio is the coke ratio at the top of the furnace, and is the weight of coke used for one ton of hot metal production.
  • the main output variables of the unsteady model are gas utilization rate, solution loss carbon amount (sol loss carbon amount), reducing agent ratio, pig iron making rate, hot metal temperature, and furnace pressure drop.
  • the time interval of calculation is not particularly limited, it is 30 minutes in this embodiment. In this embodiment, the time difference between "t+1" and "t" in the unsteady model equation described later is 30 minutes.
  • the unsteady model can be expressed by the following equations (1) and (2).
  • x(t) is a state variable calculated within the unsteady model.
  • State variables include, for example, coke temperature, iron temperature, ore oxidation degree, and raw material fall rate.
  • u(t) is the input variable described above, and is a variable that can be operated by the operator who operates the blast furnace.
  • the input variables are blast flow rate BV (t), blast oxygen flow rate BVO (t), pulverized coal flow rate PCI (t), blast moisture BM (t), blast temperature BT (t), and coke ratio CR (t).
  • ⁇ PCR which is the manipulated variable of the pulverized coal ratio (PCR) [kg/t]
  • PCR pulverized coal ratio
  • y f,1 (t) represents the free response of the hot metal temperature.
  • y U,1 and y L,1 are the upper and lower limits of the target hot metal temperature (target range of hot metal temperature), respectively.
  • max (p, q) and min (p, q) are functions that output the larger value and the smaller value of p and q, respectively. From the viewpoint of preventing excessive operation, the operation amount is set to zero as long as the predicted value is within the target range of the hot metal temperature. That is, in Equation (5), if the predicted value of the free response of the hot metal temperature does not exceed the upper limit of the target hot metal temperature, the output of the max function becomes zero.
  • Equation (5) if the predicted value of the free response of the hot metal temperature does not fall below the lower limit of the target hot metal temperature, the output of the min function becomes zero.
  • S PCR is the amount of change in hot metal temperature after T 1 hour when the pulverized coal ratio (PCR) is manipulated by a unit amount (1 [kg/t]). S PCR can be determined using another physical model or a step response test in actual operation.
  • T1 is a time step that defines the future time to predict. As an example, T 1 may be 16, in which case the temperature of the hot metal 8 hours (30 minutes x 16) ahead is predicted. Further, a is a coefficient and a positive number.
  • the control for determining ⁇ PCR according to equation (5) corresponds to the hot metal temperature control in FIG. 2.
  • a target PCR is determined based on ⁇ PCR determined by hot metal temperature control, and the pulverized coal flow rate (PCI) is adjusted to follow the target PCR by PCR follow-up control as in Reference 1 above. is manipulated.
  • PCI pulverized coal flow rate
  • ⁇ BV which is the manipulated variable of the blast flow rate (BV) [Nm 3 /min]
  • y f,2 (t) represents the free response of iron making rate.
  • y U,2 and y L,2 are the upper limit and lower limit of the target pig iron making speed (target range of pig iron making speed), respectively. From the viewpoint of preventing excessive operation, the operation amount is set to zero as long as the predicted value is within the target range of iron making speed. That is, in Equation (6), if the predicted value of the free response of the pig iron making speed does not exceed the upper limit of the target pig iron making speed, the output of the max function becomes zero. Further, in Equation (6), if the predicted value of the free response of the pig iron making speed does not fall below the lower limit of the target pig iron making speed, the output of the min function becomes zero.
  • S BV is the amount of change in the iron making speed after T 2 hours when the blast flow rate (BV) is controlled by a unit amount (1 [Nm 3 /min]).
  • the SBV can be determined using another physical model or a step response test in actual operation.
  • T2 is the time step that defines the future time to predict. As an example, T 2 may be 4, in which case the pig iron making rate for 2 hours (30 minutes x 4) ahead is predicted.
  • b is a coefficient and is a positive number.
  • the control for determining ⁇ BV according to equation (6) corresponds to the iron making speed control in FIG. 2.
  • the manipulated variable of coke ratio (CR) [kg/t] is calculated using the following equations (7) and (8).
  • ⁇ CR which is ⁇ CR
  • ⁇ BV which is an additional manipulated variable of the air flow rate (BV) [Nm 3 /min] are determined.
  • the coke ratio is indicated by the amount of coke input [kg] per ton of hot metal.
  • y f,3 (t) represents the free response of pressure drop in the furnace.
  • y U,3 is the upper limit of the pressure drop in the furnace.
  • T3 may be 1, in which case the furnace pressure drop is predicted for 30 minutes ahead.
  • c, d, and e are coefficients, each of which is a positive number. Control for determining ⁇ CR and ⁇ BV according to equations (7) and (8) corresponds to the air permeability control in FIG.
  • FIG. 6 is a diagram showing simulation results when the target iron making rate is 6.4 [t/min] using the above process control. That is, in the simulation of FIG. 6, the pulverized coal ratio (PCR), blast flow rate (BV), and coke ratio (CR) were manipulated.
  • the target hot metal temperature was 1500°C. Further, the upper limit of the pressure drop in the furnace was 100 [kPa]. Regarding hot metal temperature and pig iron making rate, the upper and lower limits of the target range are the same.
  • the coke ratio (CR) decreases according to the manipulated variable according to the predicted value of the furnace pressure drop ( ⁇ P).
  • the target PCR in hot metal temperature control is increased from 55 to 70 hours.
  • PCI pulverized coal flow rate
  • the actual PCR follows the target PCR. Due to the decrease in the coke ratio (CR) and the increase in the pulverized coal ratio (PCR), the pressure drop ( ⁇ P) in the furnace increases from 30 to 70 [hours].
  • the ventilation flow rate (BV) is decreased and the coke ratio (CR) is increased by the ventilation control. ing. Since the pressure drop ( ⁇ P) in the furnace fell below the upper limit between 72 and 75 [hours], an operation was performed to increase the blast flow rate (BV), and as a result, the iron making rate (Prod) was approaching the target value. In this way, the coke ratio (CR) is lowered and the blast flow rate (BV) is adjusted within the range where the pressure drop in the furnace ( ⁇ P) does not exceed the upper limit, and the hot metal temperature (HMT) and iron making rate (Prod) are adjusted. The target hot metal temperature and target pig iron making rate were achieved.
  • FIG. 7 is a diagram showing simulation results when the target iron making rate is 6.6 [t/min] using the above process control.
  • the conditions except for the target pig iron making speed are the same as in the case of FIG. 6. Similar to the example in Fig. 6, the coke ratio (CR) is lowered and the blast flow rate (BV) is adjusted within the range where the pressure drop ( ⁇ P) in the furnace does not exceed the upper limit, and the hot metal temperature (HMT) and pig iron making are adjusted. Regarding the speed (Prod), the target hot metal temperature and target pig iron making rate were achieved. However, when the target pig iron making speed is increased, a larger blowing flow rate (BV) is required, and therefore the furnace pressure drop ( ⁇ P) tends to reach the upper limit.
  • BV blowing flow rate
  • the required coke ratio (CR) increases.
  • the coke ratio (CR) was about 305 [kg/t] on average, but in the example of FIG. 7, it increased to 325 [kg/t] on average.
  • FIG. 8 is a diagram illustrating a configuration example of a process control device 10 according to an embodiment.
  • the process control device 10 includes a communication section 11, a storage section 12, and a control section 13.
  • the control section 13 includes a hot metal temperature control section 14 , an iron making speed control section 15 , an air permeability control section 16 , and a PCR follow-up control section 17 .
  • the process control device 10 executes the process control method described above.
  • the process control device 10 may display information such as the operating amount on a display unit such as a liquid crystal display.
  • the communication unit 11 is configured to include a communication module for communicating with the host system.
  • the host system includes a process computer that manages processes in the plant including the blast furnace.
  • the communication unit 11 may include a communication module compatible with mobile communication standards such as 4G (4th Generation) and 5G (5th Generation).
  • the communication unit 11 may include, for example, a communication module compatible with wired or wireless LAN standards.
  • the control unit 13 can obtain information such as a target hot metal temperature, a target iron making rate, and an upper limit of pressure drop in the furnace from the host system via the communication unit 11. Further, the control unit 13 can output information on the manipulated variables that have been operated, that is, the manipulated variables that reflect the calculated manipulated variables, to the host system via the communication unit 11.
  • the storage unit 12 stores the above physical model.
  • the storage unit 12 also stores programs and data related to control of the blast furnace process.
  • the storage unit 12 may include any storage device such as a semiconductor storage device, an optical storage device, and a magnetic storage device.
  • a semiconductor storage device may include, for example, a semiconductor memory.
  • the storage unit 12 may include multiple types of storage devices.
  • the control unit 13 controls and manages each functional unit constituting the process control device 10 and the entire process control device 10.
  • the control unit 13 also acquires data used for control. That is, the control unit 13 acquires the hot metal temperature, pig iron making rate, and air permeability of the blast furnace using observed values or calculated values.
  • the control unit 13 is configured to include at least one processor such as a CPU (Central Processing Unit) to control and manage various functions.
  • the control unit 13 may be composed of one processor or a plurality of processors.
  • the processor that constitutes the control section 13 functions as a hot metal temperature control section 14, an ironmaking speed control section 15, an air permeability control section 16, and a PCR follow-up control section 17 by reading out and executing a program from the storage section 12. It's fine.
  • the hot metal temperature control unit 14 obtains a target hot metal temperature, which is a target value of the hot metal temperature, and calculates the manipulated variable of the pulverized coal ratio so that the hot metal temperature becomes the target hot metal temperature.
  • the hot metal temperature control section 14 is a functional section that executes "hot metal temperature control" in FIG. 2.
  • the pig iron making speed control unit 15 obtains a target pig iron making speed which is a target value of the pig iron making speed, and calculates the manipulated variable of the air blowing flow rate so that the pig iron making speed becomes the target pig iron making speed.
  • the pig iron making speed control section 15 is a functional section that executes the "iron making speed control" shown in FIG. 2 .
  • the air permeability control unit 16 obtains the upper limit of the air permeability (furnace pressure loss in this embodiment) and calculates the manipulated variables of the air flow rate and coke ratio so that the air permeability does not exceed the upper limit.
  • the air permeability control section 16 is a functional section that executes the "air permeability control" shown in FIG.
  • the PCR follow-up control unit 17 acquires the pulverized coal ratio (target PCR), which is a target value determined by the hot metal temperature control unit 14, and controls the pulverized coal flow rate (PCI) to follow the target PCR by PCR follow-up control. Calculate the amount of operation.
  • target PCR pulverized coal ratio
  • PCI pulverized coal flow rate
  • the hot metal temperature control section 14, the pig iron making speed control section 15, and the air permeability control section 16 are individual controllers for controlling the hot metal temperature (HMT), the pig iron making speed (Prod), and the pressure drop in the furnace ( ⁇ P). , it is possible to realize control that takes into account the interference between manipulated variables.
  • the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16 each execute step 1 (free response prediction step) using a physical model. , find predicted values of hot metal temperature, pig iron making rate and air permeability.
  • the hot metal temperature control section 14 and the pig iron making speed control section 15 each execute step 2 (first operation step) to obtain the operation amounts of the pulverized coal ratio and the air flow rate.
  • the air permeability control unit 16 executes step 3 (second operation step), determines the ventilation state in the furnace based on the predicted value of the air permeability (furnace pressure loss in this embodiment), and determines whether the ventilation state is correct.
  • the air permeability control unit 16 executes an operation to reduce the coke ratio.
  • the hot metal temperature control section 14, pig iron making speed control section 15, and air permeability control section 16, which are constructed as individual controllers, can simultaneously control the hot metal temperature, pig iron making speed, and air permeability. can.
  • a process control method executed by the process control device 10 may be used as part of the blast furnace operating method.
  • the manipulated variables manipulated in the process control method described above may be used to change operating conditions in the operation of a blast furnace.
  • such a method of operating a blast furnace can be carried out as part of a manufacturing method of manufacturing hot metal.
  • raw material iron ore is melted and reduced to become pig iron, which is tapped as hot metal, and the blast furnace may be operated according to this operating method.
  • the process control device 10 may be realized, for example, by a computer separate from the process computer that controls the operation of the blast furnace, or may be realized by the process computer.
  • a computer includes, for example, a memory, a hard disk drive (storage device), a CPU (processing unit), and a display device such as a display.
  • Various functions can be realized by organically cooperating hardware such as a CPU and memory with a program.
  • the storage unit 12 may be realized, for example, by a storage device.
  • the control unit 13 may be realized by, for example, a CPU.
  • the process control method, blast furnace operating method, hot metal manufacturing method, and process control device 10 operate the manipulated variables based on the hot metal temperature, pig iron making rate, and air permeability with the above configuration. At the same time, the condition of the blast furnace can be predicted and controlled with high precision.
  • the configuration of the process control device 10 shown in FIG. 8 is an example.
  • the process control device 10 may not include all of the components shown in FIG.
  • the process control device 10 may include components other than those shown in FIG.
  • the process control device 10 may further include a display section.
  • Process control device 11 Communication section 12 Storage section 13 Control section 14 Hot metal temperature control section 15 Iron making speed control section 16 Air permeability control section 17 PCR follow-up control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

高炉の状態を高精度に予測して制御することが可能なプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置が提供される。プロセスの制御方法は、高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得し、溶銑温度の目標値(目標溶銑温度)、造銑速度の目標値(目標造銑速度)及び通気度の管理値(炉内圧損上限)と、取得された観測値又は計算値とに基づいて、溶銑温度、造銑速度及び通気度を同時に制御する。

Description

プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置
 本開示は、プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置に関する。
 製鉄業における高炉プロセスにおいて溶銑温度(Hot Metal Temperature:HMT)は重要な管理指標であり、主に還元材比を調整することで制御されている。近年の高炉操業は、原燃料コストの合理化を追及すべく、低コークス比及び高微粉炭比の条件下で行われており、炉況が不安定化しやすい。そのため、溶銑温度のばらつきを抑える必要がある。
 また高炉プロセスは、固体が充填された状態で操業を行うためプロセス全体の熱容量が大きく、アクションに対する応答の時定数が長いという特徴がある。さらに、炉上部で装入された原料が炉下部に降下するまでに、例えば数時間を要することがある。そのため溶銑温度の制御のためには、将来の炉熱予測に基づく適切な操作が必要である。
 高炉プロセスでは、溶銑温度を制御するとともに、銑鉄の生産速度(以下「造銑速度」と称される)を目標値近傍に保つことが求められる。造銑速度を制御するために、例えば送風流量が操作される。送風流量の操作についても、上記で述べた高炉の長い時定数に由来する応答の遅れを考慮する必要がある。予測に基づいた高炉の制御方法として、例えば特許文献1のような物理モデルを用いるものがある。
特開平11-335710号公報
 ここで、送風流量を増加させると炉内の圧力損失(炉内圧損)が大きくなり、圧力損失が原料の自重を上回ると吹き抜け等が生じるおそれがある。吹き抜け等が生じると、溶銑温度及び造銑速度に大きな影響を与える。そのため、炉内圧損等の通気状態に異常が見られる場合には、送風流量を低下させることによって原料の荷下りを安定化させる操作が必要になる。
 したがって、高炉におけるプロセスの制御では、溶銑温度、造銑速度及び通気状態を示す通気度を同時に制御する必要がある。特許文献1の技術は、溶銑温度のみを制御するものであり、造銑速度及び通気度を同時に制御することについて提案するものでない。従来、吹き抜け等の回避は、熟練オペレータの経験に基づく操業技術(手動操業)への依存が大きかった。
 以上の問題を解決すべくなされた本開示の目的は、高炉の状態を高精度に予測して制御することが可能なプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置を提供することにある。
 (1)本開示の一実施形態に係るプロセスの制御方法は、
 高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得し、
 前記溶銑温度の目標値、前記造銑速度の目標値及び前記通気度の管理値と、前記取得された前記観測値又は前記計算値とに基づいて、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御する。
 (2)本開示の一実施形態として、(1)において、
 前記高炉の内部の状態を計算可能な物理モデルを用いて現在の操作変数が保持された場合の将来の前記溶銑温度、前記造銑速度及び前記通気度の予測値を求める自由応答予測ステップと、
 前記自由応答予測ステップで求められた前記溶銑温度及び前記造銑速度の予測値と目標値との偏差を求めて、前記偏差を解消するための操作変数の操作量を求める第1の操作ステップと、
 前記自由応答予測ステップで求められた前記通気度の予測値と前記通気度の上限値とに基づいて、操作変数である送風流量及びコークス比の操作量を求める第2の操作ステップと、を含み、
 前記第1の操作ステップ及び前記第2の操作ステップは、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御するように実行される。
 (3)本開示の一実施形態として、(2)において、
 前記第1の操作ステップにおける前記操作変数は、送風流量、送風酸素流量、微粉炭比、送風湿分、送風温度、コークス比及び炉頂圧のうちの1つ以上である。
 (4)本開示の一実施形態に係る高炉の操業方法は、
 (1)から(3)のいずれかのプロセスの制御方法によって操作された操作変数を用いて操業条件を変更する。
 (5)本開示の一実施形態に係る溶銑の製造方法は、
 (4)の高炉の操業方法によって操業される前記高炉を用いて溶銑を製造する。
 (6)本開示の一実施形態に係るプロセスの制御装置は、
 高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得し、前記溶銑温度の目標値、前記造銑速度の目標値及び前記通気度の管理値と、前記取得された前記観測値又は前記計算値とに基づいて、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御する制御部を備える。
 (7)本開示の一実施形態として、(6)において、
 前記高炉の内部の状態を計算可能な物理モデルを記憶する記憶部を備え、
 前記制御部は、
  前記溶銑温度の目標値である目標溶銑温度を取得して、前記溶銑温度が前記目標溶銑温度となるように、微粉炭比の操作量を算出する溶銑温度制御部と、
  前記造銑速度の目標値である目標造銑速度を取得して、前記造銑速度が前記目標造銑速度となるように、送風流量の操作量を算出する造銑速度制御部と、
  前記通気度の上限を取得して、前記通気度が前記上限を超えないように、前記送風流量及びコークス比の操作量を算出する通気度制御部と、を含み、
 前記溶銑温度制御部、前記造銑速度制御部及び前記通気度制御部は、前記物理モデルを用いて現在の操作変数が保持された場合の将来の前記溶銑温度、前記造銑速度及び前記通気度の予測値を求め、
 前記溶銑温度制御部及び前記造銑速度制御部は、前記溶銑温度及び前記造銑速度の予測値と目標値との偏差を求めて、前記偏差を解消するための前記微粉炭比及び前記送風流量の操作量を求め、
 前記通気度制御部は、前記通気度の予測値と通気度の上限値とに基づいて、操作変数である送風流量及びコークス比の操作量を求め、
 前記溶銑温度制御部、前記造銑速度制御部及び前記通気度制御部は、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御する。
 本開示によれば、高炉の状態を高精度に予測して制御することが可能なプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置を提供することができる。
図1は、高炉プロセスにおける操作変数と制御変数を示す図である。 図2は、本開示の一実施形態に係るプロセスの制御方法を示す図である。 図3は、送風流量、コークス比及び微粉炭比と造銑速度との関係を示す図である。 図4は、送風流量、コークス比及び微粉炭比と炉内圧損との関係を示す図である。 図5は、本開示で用いられる物理モデルの入出力情報を示す図である。 図6は、目標造銑速度が6.4[t/min]の場合のシミュレーション結果を示す図である。 図7は、目標造銑速度が6.6[t/min]の場合のシミュレーション結果を示す図である。 図8は、本開示の一実施形態に係るプロセスの制御装置の構成例を示す図である。
 以下、図面を参照して本開示の一実施形態に係るプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置が説明される。
 図1は高炉プロセス(高炉の操業での工程)における基本的な操作変数と制御変数を示す。制御変数は、操業において制御すべき変数であるが、直接的な操作ができない又は直接的な操作が困難な変数であって、相関のある操作変数を介して変更される。高炉の操業において、溶銑温度を目標値とするために、主に微粉炭比又はコークス比が操作される。高炉の通気性(通気度)を良好に保つために、主にコークス比又は送風流量が操作される。また、造銑速度を目標値とするために、主に送風流量が操作される。ここで、通気度として、本実施形態では、吹き抜けに直接的に影響がある炉内圧損が用いられる。炉内圧損は、送風圧力と炉頂圧(炉頂の圧力)との差である。炉内圧損以外に、通気抵抗、対面シャフト差圧など様々な通気性の指標が存在する。そのため、通気度として、炉内圧損に代えて別の通気性の指標が用いられてよいし、複数の通気性の指標の組み合わせが用いられてよい。
 図2は、本実施形態に係るプロセスの制御方法の処理を示す図である。本実施形態に係るプロセスの制御方法では、例えば参考文献1(特許第7107444号公報)に記載されるカスケード制御が使用される。カスケード制御では、目標とする微粉炭比(PCR)を算出する制御(図2の溶銑温度制御)と、目標PCRに必要な微粉炭流量を算出する制御(図2のPCR追従制御)と、が連続して行われる。溶銑温度制御は、溶銑温度(HMT)の目標値である目標溶銑温度を取得して、後述の物理モデルを用いて目標PCRを算出することができる。本実施形態に係るプロセスの制御方法は、造銑速度制御及び通気度制御も含む。造銑速度制御は、造銑速度(Production rate:Prod)の目標値である目標造銑速度を取得して、後述の物理モデルを用いて、送風流量(BV)の操作量を算出する。通気度制御は、炉内圧損(ΔP)の上限である炉内圧損上限を取得して、後述の物理モデルを用いて、送風流量及びコークス比の操作量を算出する。ここで、高炉を含むプラントでの実績値(観測値又は計算値であり得る)は各制御で用いられる物理モデルの更新などのために、フィードバックされてよい。図2の例では、微粉炭比(PCR)、溶銑温度(HMT)、炉内圧損(ΔP)及び造銑速度(Prod)の実績値が、それぞれ実績PCR、実績HMT、実績ΔP及び実績Prodとして示されている。また、高炉プロセスにおける制御変数と相関のある操作変数との対応付けは図1及び図2に示すものに限定されない。例えば溶銑温度制御では微粉炭比(PCR)に代えて送風湿分を操作することが可能である。また、例えば造銑速度制御では送風流量に代えて送風酸素流量を操作することが可能である。
 本実施形態では、図2に示すような多変数制御系の構築において、溶銑温度(HMT)、炉内圧損(ΔP)、造銑速度(Prod)を制御するための個別のコントローラ(溶銑温度制御、通気度制御、造銑速度制御)が構築されている。溶銑温度は、微粉炭比(PCR)と微粉炭流量を操作するカスケード制御によって制御される。通気度は、送風流量及びコークス比の操作により制御される。造銑速度は、送風流量の操作により制御される。ここで、例えば溶銑温度制御において微粉炭流量を操作した場合に、微粉炭流量の変化は造銑速度に影響する。この影響は、造銑速度制御における物理モデルによって反映されて、送風流量の操作量として算出され、算出された送風流量の操作量が反映されることで造銑速度が目標値近傍に保たれる。本実施形態では、上記のように個別のコントローラが構築されているが、それぞれの操作変数同士の干渉を考慮した制御を実現可能である。つまり、溶銑温度制御と造銑速度制御は干渉するが、他方の操作変数の操作に基づく変動を、自己の操作変数の操作によって吸収する外乱除去特性を有する制御系として構築されており、干渉の影響を低減できる。また、通気度については、炉内圧損の上限を考慮した制御系として構築されている。溶銑温度制御、造銑速度制御は、それぞれ、通気度制御における操作変数の操作に基づく変動も、外乱除去特性によって、自己の操作変数の操作によって吸収することができる。
 図3は、送風流量(BV)、コークス比(CR)及び微粉炭比(PCR)と造銑速度(Prod)との関係を示す図である。また、図4は、送風流量、コークス比及び微粉炭比と炉内圧損(ΔP)との関係を示す図である。実線及び破線は、還元材比(コークス比と微粉炭比の合計値)が一定の条件下で、コークス比と微粉炭比とを置換したケースを示している。還元材比が一定であれば、図3の通り、送風流量(BV)と造銑速度(Prod)はほぼ比例の関係にある。図3の例の制御シミュレーションでは、物理モデルによる造銑速度の予測値と目標値との偏差に応じて送風流量の操作量が求められた。また、図4の通り、コークス比(CR)が低減すれば、同じ送風流量(BV)であっても炉内圧損(ΔP)が上昇する。高炉の操業では、炉内圧損(ΔP)が上限(閾値)を超えた場合に、コークス比を上昇させると同時に送風流量を低下させることで原料の荷下がりを安定化させて、炉内圧損が上限以下の場合に、徐々にコークス比を低減させていくことが好ましい。原則として炉内圧損が上限を超えないように制御を行い、炉内圧損が上限以下の場合には、徐々にコークス比を低減させることによって操業のコストを低減させることが可能になる。このように制御が行われる場合に、炉内圧損の値は上限の近傍で推移する。
 本実施形態に係るプロセスの制御方法は、概略として、まず高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得する。そして、溶銑温度の目標値、造銑速度の目標値及び通気度の管理値と、取得された観測値又は計算値とに基づいて、溶銑温度、造銑速度及び通気度が同時に制御される。より具体的に説明すると、この制御方法の処理は以下のステップ1~3を含む。
 まず、ステップ1として、物理モデルを用いて将来の溶銑温度及び造銑速度が予測される。ステップ1は、自由応答予測ステップであって、現在の操作変数が保持された場合の将来の溶銑温度、造銑速度及び通気度の予測値を求める。
 次に、ステップ2として、ステップ1での溶銑温度及び造銑速度の予測値が目標値と合致するように、操作変数の操作を実行する。ステップ2は、第1の操作ステップであって、予測値と目標値との偏差を求めて、偏差を解消するための操作量が求められ、操作変数が調整される。本実施形態において、操作変数は微粉炭比及び送風流量である。ただし、上記のように、高炉プロセスにおける制御変数と相関のある操作変数との対応付けは図1に示すものに限定されない。操作変数は、例えば送風流量、送風酸素流量、微粉炭比、送風湿分、送風温度、コークス比及び炉頂圧のうちの1つ以上であってよい。
 また、ステップ3として、ステップ1での通気度の予測値と通気度の上限とに基づいて、通気度と相関を有する操作変数の操作量が求められる。通気度の上限は、通気度を管理する管理値の一例である。ステップ3は、第2の操作ステップに対応する。本実施形態において、通気度は炉内圧損であって、炉内圧損の予測値が設定されている上限を超えると通気状態が異常であるとして、送風流量の低下及びコークス比の上昇の操作を実行する。上限を超えない場合、つまり炉内圧損の予測値が上限以下の場合に、コークス比の低減の操作を実行する。ここで、ステップ2とステップ3とは、一方が他方の後に実行されるといった実行順が固定されるものでなく、溶銑温度、造銑速度及び通気度を同時に制御するように実行される。
 本開示において用いられる物理モデルは、参考文献2(羽田野道春ら、「高炉非定常モデルによる火入れ操業の検討」、鉄と鋼、vol.68、p.2369)に記載の方法のモデルと同様である。すなわち、鉱石の還元、鉱石とコークスとの間の熱交換及び鉱石の融解等の物理現象を考慮した偏微分方程式群から構成された、非定常状態における高炉の内部(炉内)の状態を計算可能な物理モデルが用いられる。この物理モデルを、以下において非定常モデルと称することがある。
 図5に示すように、非定常モデルに与えられる入力変数の中で時間変化する主なものは、送風流量、送風酸素流量、微粉炭流量、送風湿分、送風温度、コークス比及び炉頂圧である。これらの入力変数は高炉の操作変数又は操業因子である。送風流量、送風酸素流量、微粉炭流量は、それぞれ、高炉に送られる空気、酸素、微粉炭の流量である。送風湿分は、高炉に送られる空気の湿度である。送風温度は、高炉に送られる空気の温度である。コークス比は、炉頂部におけるコークス比であって、1トンの溶銑生成量に対して使用されるコークス重量である。
 また、非定常モデルの主な出力変数は、ガス利用率、ソルーションロスカーボン量(ソルロスカーボン量)、還元材比、造銑速度、溶銑温度及び炉内圧損である。非定常モデルを用いて時々刻々変化する溶銑温度、造銑速度及び炉内圧損を計算可能である。計算の時間間隔は特に限定されないが、本実施形態において30分である。後述する非定常モデルの式の「t+1」と「t」との時間差が、本実施形態では30分である。
 非定常モデルを以下の式(1)及び式(2)により表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここでx(t)は非定常モデル内で計算される状態変数である。状態変数は、例えばコークスの温度、鉄の温度、鉱石の酸化度、原料の降下速度などである。y(t)は制御変数である溶銑温度、造銑速度及び通気度(炉内圧損)である。溶銑温度、造銑速度及び通気度をそれぞれy(t)、y(t)及びy(t)として区別することがある。つまり、y(t)=(y(t),y(t),y(t))と表すことができる。u(t)は上記の入力変数であって、高炉の操業を行うオペレータが操作可能な変数である。つまり、入力変数は、送風流量BV(t)、送風酸素流量BVO(t)、微粉炭流量PCI(t)、送風湿分BM(t)、送風温度BT(t)、コークス比CR(t)、炉頂圧TGP(t)である。u(t)=(BV(t),BVO(t),PCI(t),BM(t),BT(t),CR(t),TGP(t))で表すことができる。
 まず現在の入力変数の値が一定に保たれたことを仮定して将来の制御変数の予測計算をおこなう。現在の時間ステップをtとして、以下の式(3)及び式(4)を用いて将来の制御変数が予測される。このようにして求められた制御変数の応答y(t)は自由応答と称される。
Figure JPOXMLDOC01-appb-M000002
 次に溶銑温度の目標値と予測値との偏差を解消するように、以下の式(5)によって、微粉炭比(PCR)[kg/t]の操作量であるΔPCRが求められる。ここで、ΔPCRで表される操作量は前回操作量(PCR)に対する増減値を算出するものである。他の操作量についてもΔの意味は同様である。
Figure JPOXMLDOC01-appb-M000003
 ここでyf,1(t)は溶銑温度の自由応答を示す。yU,1、yL,1はそれぞれ目標溶銑温度(溶銑温度の目標範囲)の上限、下限である。max(p,q)、min(p,q)は、それぞれpとqのうち大きい値、小さい値を出力とする関数である。過度な操作を防止する観点から、予測値が溶銑温度の目標範囲内である限り、操作量はゼロに設定される。つまり、式(5)において、溶銑温度の自由応答の予測値が目標溶銑温度の上限を超えない場合には、max関数の出力はゼロになる。また、式(5)において、溶銑温度の自由応答の予測値が目標溶銑温度の下限を下回らない場合には、min関数の出力はゼロになる。SPCRは微粉炭比(PCR)を単位量(1[kg/t])だけ操作した場合のT時間後の溶銑温度の変化量である。SPCRは別の物理モデル又は実操業におけるステップ応答試験などにより求めることが可能である。Tは予測する将来の時間を定める時間ステップである。一例としてTは16であってよく、このとき8時間(30分×16)先の溶銑温度が予測される。また、aは係数であって正の数である。式(5)に従ってΔPCRを求める制御が図2の溶銑温度制御に対応する。図2に示すように、溶銑温度制御によって求められたΔPCRに基づいて目標PCRが定められ、上記の参考文献1のようなPCR追従制御によって、目標PCRに追従するように微粉炭流量(PCI)が操作される。
 また、造銑速度についても目標値と予測値との偏差を解消するように、以下の式(6)によって、送風流量(BV)[Nm/min]の操作量であるΔBVが求められる。
Figure JPOXMLDOC01-appb-M000004
 ここでyf,2(t)は造銑速度の自由応答を示す。yU,2、yL,2はそれぞれ目標造銑速度(造銑速度の目標範囲)の上限、下限である。過度な操作を防止する観点から、予測値が造銑速度の目標範囲内である限り、操作量はゼロに設定される。つまり、式(6)において、造銑速度の自由応答の予測値が目標造銑速度の上限を超えない場合には、max関数の出力はゼロになる。また、式(6)において、造銑速度の自由応答の予測値が目標造銑速度の下限を下回らない場合には、min関数の出力はゼロになる。SBVは送風流量(BV)を単位量(1[Nm/min])だけ操作した場合のT時間後の造銑速度の変化量である。SBVは別の物理モデル又は実操業におけるステップ応答試験などにより求めることが可能である。Tは予測する将来の時間を定める時間ステップである。一例としてTは4であってよく、このとき2時間(30分×4)先の造銑速度が予測される。また、bは係数であって正の数である。式(6)に従ってΔBVを求める制御が図2の造銑速度制御に対応する。
 さらに、通気度の一例である炉内圧損(ΔP)[kPa]の予測値に応じて、以下の式(7)及び式(8)によって、コークス比(CR)[kg/t]の操作量であるΔCR及び送風流量(BV)[Nm/min]の追加の操作量であるΔBVが求められる。ここで、コークス比は、溶銑1トン当たりのコークスの投入量[kg]で示される。
Figure JPOXMLDOC01-appb-M000005
 ここでyf,3(t)は炉内圧損の自由応答を示す。yU,3は炉内圧損の上限である。上記のように操業コスト低減の観点から、炉内圧損が上限に近くなるように操作が行われる。一例としてTは1であってよく、このとき30分先の炉内圧損が予測される。また、c、d及びeは係数であってそれぞれ正の数である。式(7)及び式(8)に従ってΔCR及びΔBVを求める制御が図2の通気度制御に対応する。
 図6は、上記のプロセス制御による、目標造銑速度が6.4[t/min]の場合のシミュレーション結果を示す図である。すなわち、図6のシミュレーションでは、溶銑温度(HMT)、造銑速度(Prod)及び通気度の一例である炉内圧損(ΔP)の非定常モデルを用いた予測値に基づいて、微粉炭比(PCR)、送風流量(BV)及びコークス比(CR)を操作した。目標溶銑温度は1500℃であった。また、炉内圧損の上限値は100[kPa]であった。溶銑温度及び造銑速度について、目標範囲の上限と下限とは同じである。
 例えば30~70[hour]において、炉内圧損(ΔP)の予測値に応じた操作量に従って、コークス比(CR)が低下している。コークス比の低下による熱の低下を補償するために、55~70[hour]において、溶銑温度制御における目標PCRを上昇させている。また、PCR追従制御によって微粉炭流量(PCI)を操作することで、目標PCRに実績PCRが追従している。コークス比(CR)の低下及び微粉炭比(PCR)の上昇によって、30~70[hour]において炉内圧損(ΔP)が上昇している。ここで、72[hour]のタイミングで炉内圧損(ΔP)が上限(目標上限)を超えると、通気度制御によって送風流量(BV)の低下及びコークス比(CR)の上昇の操作が行われている。72~75[hour]において炉内圧損(ΔP)が上限を下回ったため、送風流量(BV)を上昇させる操作が行われ、その結果、造銑速度(Prod)が目標値に近づいている。このように、炉内圧損(ΔP)が上限を超えない範囲で、コークス比(CR)の低下と送風流量(BV)の調整が行われて、溶銑温度(HMT)及び造銑速度(Prod)については目標溶銑温度及び目標造銑速度が達成された。
 図7は、上記のプロセス制御による、目標造銑速度が6.6[t/min]の場合のシミュレーション結果を示す図である。目標造銑速度を除く条件は、図6の場合と同じである。図6の例と同様に、炉内圧損(ΔP)が上限を超えない範囲で、コークス比(CR)の低下と送風流量(BV)の調整が行われて、溶銑温度(HMT)及び造銑速度(Prod)については目標溶銑温度及び目標造銑速度が達成された。ただし、目標造銑速度を上昇させると、より多くの送風流量(BV)が必要となるため、炉内圧損(ΔP)が上限に達しやすくなる。通気度を確保するため、すなわち炉内圧損(ΔP)が上限を超えないようにするため、必要なコークス比(CR)が上昇する。図6の例においてコークス比(CR)は平均で約305[kg/t]であったが、図7の例において平均で325[kg/t]に上昇している。
 図8は、一実施形態に係るプロセスの制御装置10の構成例を示す図である。図8に示すように、本実施形態に係るプロセスの制御装置10は、通信部11と、記憶部12と、制御部13と、を備える。制御部13は、溶銑温度制御部14と、造銑速度制御部15と、通気度制御部16と、PCR追従制御部17と、を備える。プロセスの制御装置10は、上記のプロセスの制御方法を実行する。ここで、プロセスの制御装置10は、送風流量、コークス比又は微粉炭比を操作する場合に、例えば操作量などの情報を液晶ディスプレイなどの表示部に表示させてよい。
 通信部11は、上位システムと通信するための通信モジュールを含んで構成される。上位システムは、高炉を含むプラントでのプロセスを管理するプロセスコンピュータを含む。通信部11は、例えば4G(4th Generation)、5G(5th Generation)などの移動体通信規格に対応する通信モジュールを含んでよい。通信部11は、例えば有線又は無線のLAN規格に対応する通信モジュールを含んでよい。制御部13は、通信部11を介して、上位システムから目標溶銑温度、目標造銑速度及び炉内圧損上限などの情報を取得できる。また、制御部13は、通信部11を介して、操作を実行した操作変数、すなわち算出した操作量を反映した操作変数の情報を上位システムに出力することができる。
 記憶部12は、上記の物理モデルを記憶する。また、記憶部12は、高炉プロセスの制御に関するプログラム及びデータを記憶する。記憶部12は、半導体記憶デバイス、光記憶デバイス及び磁気記憶デバイスなどの任意の記憶デバイスを含んでよい。半導体記憶デバイスは例えば半導体メモリを含んでよい。記憶部12は、複数の種類の記憶デバイスを含んでよい。
 制御部13は、プロセスの制御装置10を構成する各機能部及びプロセスの制御装置10の全体を制御及び管理する。制御部13は制御に用いられるデータの取得も実行する。つまり、制御部13は、高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得する。制御部13は、種々の機能を制御及び管理するために、例えばCPU(Central Processing Unit)のような少なくとも1つのプロセッサを含んで構成される。制御部13は、1つのプロセッサで構成されてよいし、複数のプロセッサで構成されてよい。制御部13を構成するプロセッサは、記憶部12からプログラムを読みだして実行することによって、溶銑温度制御部14、造銑速度制御部15、通気度制御部16及びPCR追従制御部17として機能してよい。
 溶銑温度制御部14は、溶銑温度の目標値である目標溶銑温度を取得して、溶銑温度が目標溶銑温度となるように、微粉炭比の操作量を算出する。溶銑温度制御部14は、図2の「溶銑温度制御」を実行する機能部である。
 造銑速度制御部15は、造銑速度の目標値である目標造銑速度を取得して、造銑速度が目標造銑速度となるように、送風流量の操作量を算出する。造銑速度制御部15は、図2の「造銑速度制御」を実行する機能部である。
 通気度制御部16は、通気度(本実施形態において炉内圧損)の上限を取得して、通気度が上限を超えないように、送風流量及びコークス比の操作量を算出する。通気度制御部16は、図2の「通気度制御」を実行する機能部である。
 PCR追従制御部17は、溶銑温度制御部14によって定められた目標値である微粉炭比(目標PCR)を取得して、PCR追従制御によって、目標PCRに追従するように微粉炭流量(PCI)の操作量を算出する。PCR追従制御部17は、図2の「PCR追従制御」を実行する機能部である。
 溶銑温度制御部14、造銑速度制御部15及び通気度制御部16は、溶銑温度(HMT)、造銑速度(Prod)、炉内圧損(ΔP)を制御するための個別のコントローラであって、操作変数同士の干渉を考慮した制御を実現可能である。
 上記のステップ1~3を用いて説明すると、溶銑温度制御部14、造銑速度制御部15及び通気度制御部16は、それぞれ物理モデルを用いてステップ1(自由応答予測ステップ)を実行して、溶銑温度、造銑速度及び通気度の予測値を求める。溶銑温度制御部14及び造銑速度制御部15は、それぞれステップ2(第1の操作ステップ)を実行して、微粉炭比及び送風流量の操作量を求める。通気度制御部16は、ステップ3(第2の操作ステップ)を実行して、通気度(本実施形態において炉内圧損)の予測値に基づいて炉内の通気状態を判定し、通気状態が異常と判定する場合に、送風流量の低下及びコークス比の上昇の操作を実行する。通気度制御部16は、通気状態が異常でないと判定する場合に、コークス比の低減の操作を実行する。ここで、上記のように、個別のコントローラとして構築される溶銑温度制御部14、造銑速度制御部15及び通気度制御部16は、溶銑温度、造銑速度及び通気度を同時に制御することができる。
 高炉の操業方法の一部として、プロセスの制御装置10によって実行されるプロセスの制御方法が用いられてよい。例えば上記のプロセスの制御方法において操作された操作変数は、高炉の操業における操業条件の変更に用いられてよい。また、このような高炉の操業方法は、溶銑を製造する製造方法の一部として実行され得る。高炉において原料の鉄鉱石が溶解、還元されて銑鉄となり、溶銑として出銑されるが、高炉はこの操業方法に従って操業されてよい。
 プロセスの制御装置10は、例えば高炉の操業を制御するプロセスコンピュータと別のコンピュータで実現されてよいし、プロセスコンピュータで実現されてよい。コンピュータは、例えばメモリ及びハードディスクドライブ(記憶装置)、CPU(処理装置)、ディスプレイなどの表示装置を備える。各種機能は、CPU、メモリ等のハードウエアとプログラムとを有機的に協働させることにより実現され得る。記憶部12は、例えば記憶装置で実現されてよい。制御部13は、例えばCPUで実現されてよい。
 以上のように、本実施形態に係るプロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置10は、上記構成によって溶銑温度、造銑速度及び通気度に基づく操作変数の操作を同時に行って、高炉の状態を高精度に予測して制御できる。
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラム又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。
 図8に示されるプロセスの制御装置10の構成は一例である。プロセスの制御装置10は、図8に示す構成要素の全てを含まなくてよい。また、プロセスの制御装置10は、図8に示す以外の構成要素を備えてよい。例えば、プロセスの制御装置10は、さらに表示部を備える構成であってよい。
 10 プロセスの制御装置
 11 通信部
 12 記憶部
 13 制御部
 14 溶銑温度制御部
 15 造銑速度制御部
 16 通気度制御部
 17 PCR追従制御部

Claims (7)

  1.  高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得し、
     前記溶銑温度の目標値、前記造銑速度の目標値及び前記通気度の管理値と、前記取得された前記観測値又は前記計算値とに基づいて、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御する、プロセスの制御方法。
  2.  前記高炉の内部の状態を計算可能な物理モデルを用いて現在の操作変数が保持された場合の将来の前記溶銑温度、前記造銑速度及び前記通気度の予測値を求める自由応答予測ステップと、
     前記自由応答予測ステップで求められた前記溶銑温度及び前記造銑速度の予測値と目標値との偏差を求めて、前記偏差を解消するための操作変数の操作量を求める第1の操作ステップと、
     前記自由応答予測ステップで求められた前記通気度の予測値と前記通気度の上限値とに基づいて、操作変数である送風流量及びコークス比の操作量を求める第2の操作ステップと、を含み、
     前記第1の操作ステップ及び前記第2の操作ステップは、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御するように実行される、請求項1に記載のプロセスの制御方法。
  3.  前記第1の操作ステップにおける前記操作変数は、送風流量、送風酸素流量、微粉炭比、送風湿分、送風温度、コークス比及び炉頂圧のうちの1つ以上である、請求項2に記載のプロセスの制御方法。
  4.  請求項1から3のいずれか一項に記載のプロセスの制御方法によって操作された操作変数を用いて操業条件を変更する、高炉の操業方法。
  5.  請求項4に記載の高炉の操業方法によって操業される前記高炉を用いて溶銑を製造する、溶銑の製造方法。
  6.  高炉の溶銑温度、造銑速度及び通気度を観測値又は計算値によって取得し、前記溶銑温度の目標値、前記造銑速度の目標値及び前記通気度の管理値と、前記取得された前記観測値又は前記計算値とに基づいて、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御する制御部を備える、プロセスの制御装置。
  7.  前記高炉の内部の状態を計算可能な物理モデルを記憶する記憶部を備え、
     前記制御部は、
      前記溶銑温度の目標値である目標溶銑温度を取得して、前記溶銑温度が前記目標溶銑温度となるように、微粉炭比の操作量を算出する溶銑温度制御部と、
      前記造銑速度の目標値である目標造銑速度を取得して、前記造銑速度が前記目標造銑速度となるように、送風流量の操作量を算出する造銑速度制御部と、
      前記通気度の上限を取得して、前記通気度が前記上限を超えないように、前記送風流量及びコークス比の操作量を算出する通気度制御部と、を含み、
     前記溶銑温度制御部、前記造銑速度制御部及び前記通気度制御部は、前記物理モデルを用いて現在の操作変数が保持された場合の将来の前記溶銑温度、前記造銑速度及び前記通気度の予測値を求め、
     前記溶銑温度制御部及び前記造銑速度制御部は、前記溶銑温度及び前記造銑速度の予測値と目標値との偏差を求めて、前記偏差を解消するための前記微粉炭比及び前記送風流量の操作量を求め、
     前記通気度制御部は、前記通気度の予測値と通気度の上限値とに基づいて、操作変数である送風流量及びコークス比の操作量を求め、
     前記溶銑温度制御部、前記造銑速度制御部及び前記通気度制御部は、前記溶銑温度、前記造銑速度及び前記通気度を同時に制御する、請求項6に記載のプロセスの制御装置。
PCT/JP2023/029754 2022-08-31 2023-08-17 プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置 WO2024048310A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138750A JP2024034492A (ja) 2022-08-31 2022-08-31 プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置
JP2022-138750 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048310A1 true WO2024048310A1 (ja) 2024-03-07

Family

ID=90099436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029754 WO2024048310A1 (ja) 2022-08-31 2023-08-17 プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置

Country Status (2)

Country Link
JP (1) JP2024034492A (ja)
WO (1) WO2024048310A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085221A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 高炉操業方法
WO2022009621A1 (ja) * 2020-07-06 2022-01-13 Jfeスチール株式会社 操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、操業ガイダンス装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085221A1 (ja) * 2019-10-31 2021-05-06 Jfeスチール株式会社 高炉操業方法
WO2022009621A1 (ja) * 2020-07-06 2022-01-13 Jfeスチール株式会社 操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、操業ガイダンス装置

Also Published As

Publication number Publication date
JP2024034492A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
TWI788892B (zh) 作業指導方法、高爐之作業方法、鐵水之製造方法、作業指導裝置
WO2021014782A1 (ja) 学習モデル生成方法、学習モデル生成装置、高炉の溶銑温度制御方法、高炉の溶銑温度制御ガイダンス方法、及び溶銑の製造方法
WO2024048310A1 (ja) プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置
JP2023025646A (ja) 制御装置、方法及びプログラム
WO2024048214A1 (ja) プロセスの制御方法、高炉の操業方法、溶銑の製造方法及びプロセスの制御装置
JPH02115311A (ja) 高炉の炉熱制御方法
WO2021014923A1 (ja) プロセスの制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法およびプロセスの制御装置
CN110059940A (zh) 一种炼钢-连铸界面衔接节能方法及***
WO2022009617A1 (ja) 溶銑温度の制御方法、操業ガイダンス方法、高炉の操業方法、溶銑の製造方法、溶銑温度の制御装置および操業ガイダンス装置
CN111500807B (zh) 高炉炉墙粘结的治理方法
WO2024053568A1 (ja) 焼結プロセスの制御方法、操業ガイダンス方法、焼結鉱の製造方法、焼結プロセスの制御装置、操業ガイダンス装置、焼結操業ガイダンスシステム及び端末装置
WO2024060289A1 (zh) 一种高炉炉温自动调节方法、终端设备及存储介质
EP4343006A1 (en) Molten iron temperature prediction method, operation guidance method, molten iron production method, molten iron temperature prediction device, operation guidance device, blast furnace operation guidance system, blast furnace operation guidance server, and terminal device
JP6933196B2 (ja) 高炉の荷下り速度予測モデルの学習方法、高炉の荷下り速度予測方法、高炉の操業ガイダンス方法、高炉の荷下り速度制御方法、溶銑の製造方法、高炉の操業方法、及び高炉の荷下り速度予測モデルの学習装置
JP7384326B1 (ja) 高炉の溶銑温度予測方法、高炉の溶銑温度予測モデルの学習方法、高炉の操業方法、高炉の溶銑温度予測装置、高炉の溶銑温度予測システムおよび端末装置
JP2724365B2 (ja) 高炉の操業方法
JP7464016B2 (ja) 高炉のスラグレベル推定方法、操業ガイダンス方法、溶銑の製造方法、高炉のスラグレベル推定装置及び操業ガイダンス装置
TWI820544B (zh) 供給熱量推定方法、供給熱量推定裝置及高爐之操作方法
JP2022091600A (ja) 操業ガイダンス方法、高炉の操業方法、溶銑の製造方法及び操業ガイダンス装置
JPS60262910A (ja) 高炉の残銑・滓レベルの調整法
JP2022108041A (ja) 学習モデル生成方法、学習モデル生成装置、高炉の制御ガイダンス方法、及び溶銑の製造方法
JP2022048698A (ja) 高炉の制御装置、高炉の操業方法、及びプログラム
CN115655999A (zh) 一种基于炉身静压力判断炉缸死料柱状态的方法及***
JPS6318008A (ja) 高炉炉底温度差の制御方法
JPS61238904A (ja) 操業変更時の高炉内ガス流分布調整法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860073

Country of ref document: EP

Kind code of ref document: A1