WO2021241226A1 - 真贋判定部材及びその真正性判定方法 - Google Patents

真贋判定部材及びその真正性判定方法 Download PDF

Info

Publication number
WO2021241226A1
WO2021241226A1 PCT/JP2021/018013 JP2021018013W WO2021241226A1 WO 2021241226 A1 WO2021241226 A1 WO 2021241226A1 JP 2021018013 W JP2021018013 W JP 2021018013W WO 2021241226 A1 WO2021241226 A1 WO 2021241226A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
authenticity determination
polarized light
main surface
determination member
Prior art date
Application number
PCT/JP2021/018013
Other languages
English (en)
French (fr)
Inventor
謙一 原井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2022526865A priority Critical patent/JPWO2021241226A1/ja
Priority to CN202180035568.5A priority patent/CN115605353A/zh
Priority to EP21812477.4A priority patent/EP4159454A4/en
Publication of WO2021241226A1 publication Critical patent/WO2021241226A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching

Definitions

  • the present invention relates to an authenticity determination member and a method for determining authenticity thereof.
  • Patent Document 1 describes a cholesteric liquid crystal material having a property of reflecting circularly polarized light that rotates in the opposite direction to the other circularly polarized light that can pass through the base material on the front side of the base material that has a function of transmitting one of the left and right circularly polarized light.
  • a medium obtained by forming a printed image with a material having no such property is disclosed.
  • the print layer is formed of a material containing a metal pigment as a material that does not have the property of reflecting circularly polarized light that rotates in the opposite direction to the circularly polarized light that can pass through the substrate.
  • the degree of freedom of expression may be reduced.
  • the metallic color reflected image by the printed layer is not observed and it is simply black. This is because it is observed as an image.
  • freedom of expression is reduced, it may be difficult to determine the authenticity of the medium.
  • an authenticity determination member that includes a print layer containing a metal pigment and can obtain different reflection images depending on whether the image is observed from the front side or the back side; and the authenticity determination method of the authenticity determination member. ,It has been demanded.
  • the present inventor has made the base material layer of the authenticity determination member a reflective circular polarizing element, and contains a resin pigment which is a fragment of a resin layer having cholesteric regularity.
  • the present invention has been completed by finding that the above-mentioned problems can be solved by providing the printing layer of No. 1 and the second printing layer containing a metal pigment on the base material layer. That is, the present invention provides the following.
  • a base material layer that is a reflective circular polarizing element A first printing layer containing a resin pigment which is a fragment of the resin layer A1 having cholesteric regularity and provided on the base material layer, and An authenticity determination member containing a metal pigment having no circularly polarized light separation function and including a second printing layer provided on the base material layer.
  • the authenticity determination member according to [1] which is different from the reflected image (2).
  • the resin layer A1 has a reflectance of 40% or more at at least one wavelength in the visible wavelength band, and a half-value width of the reflection band having a reflectance of 35% or more and 50% or less is 350 nm or more. , [1] or [2]. [4] Of [1] to [3], the base material layer is a resin layer A2 having a cholesteric regularity, and the resin layer A1 and the resin layer A2 have the same cholesteric regularity in a twisting direction.
  • the authenticity determination member according to any one of the items.
  • the resin layer A2 has a reflectance of 40% or more at at least one wavelength in the visible wavelength band, and a half-value width of the reflection band having a reflectance of 35% or more and 50% or less is 350 nm or more. , [4].
  • the base material layer is a reflective linear polarizing element, a first ⁇ / 4 plate provided on one main surface of the reflective linear polarizing element, and the other of the reflective linear polarizing elements.
  • the step (2) of obtaining a reflected image (2) by injecting non-polarized light from the other main surface side of the authenticity determining member and observing the member, and the reflected image (1) and the reflected image (2) are different.
  • a method for determining the authenticity of an authenticity determining member which comprises a step (3) for determining that.
  • an authenticity determination member that includes a print layer containing a metal pigment and can obtain different reflection images depending on whether the image is observed from the front side or the back side; and the authenticity of the authenticity determination member. Gender determination method; can be provided.
  • FIG. 1 is a schematic plan view of an authenticity determination member according to an embodiment of the present invention as viewed from the thickness direction.
  • FIG. 2 is a diagram schematically showing a cut surface of FIG. 1 taken by line II-II.
  • FIG. 3 is an explanatory diagram when the authenticity determining member according to the embodiment of the present invention is observed from one main surface side.
  • FIG. 4 is an explanatory diagram when the authenticity determining member according to the embodiment of the present invention is observed from the other main surface side.
  • FIG. 5 is a schematic view showing an image when the authenticity determination member according to the embodiment of the present invention is irradiated with non-polarized light and observed.
  • FIG. 6 is a schematic view showing an image when the authenticity determination member according to the embodiment of the present invention in FIG.
  • FIG. 7 is a schematic plan view of the authenticity determination member according to the comparative example as viewed from the thickness direction.
  • FIG. 8 is a diagram schematically showing a cut surface by the line VIII-VIII of FIG. 7.
  • FIG. 9 is an explanatory diagram when the authenticity determination member according to the comparative example is observed from one main surface side.
  • FIG. 10 is an explanatory diagram when the authenticity determination member according to the comparative example is observed from the other main surface side.
  • the slow axis of the film or layer represents the slow axis in the plane of the film or layer unless otherwise specified.
  • (meth) acryloyl includes “acryloyl”, “methacryloyl” and combinations thereof.
  • circularly polarized light also includes elliptically polarized light.
  • the visible wavelength band means the wavelength range of visible light, and means the range of wavelengths of 380 nm or more and 830 nm or less.
  • the " ⁇ / 4 plate” includes not only rigid members but also flexible members such as resin films, unless otherwise specified.
  • the authenticity determination member includes a base material layer, a first printing layer provided on the base material layer, and a second printing layer provided on the base material layer.
  • the base material layer is a reflective circular polarizing element.
  • the first printing layer contains a resin pigment which is a fragment of the resin layer A1 having cholesteric regularity.
  • the second printed layer contains a metal pigment having no circularly polarized light separation function.
  • the base material layer is a reflective circular polarizing element.
  • the reflective circularly polarized light is a circularly polarized light having a clockwise rotation direction and a circularly polarized light having a counterclockwise rotation direction, which reflects the circularly polarized light having one rotation direction and having the other rotation direction. It means a polarizing element having a function of transmitting the light. Such a function is also referred to as a circularly polarized light separation function.
  • the reflective circular polarizing element may be a multilayer body including a base film or the like.
  • Examples of such a reflective circular polarizing element include (1) a resin layer having cholesteric regularity, (2) a reflective linear polarizing element, and a first one provided on one main surface of the reflective linear polarizing element.
  • a multi-layer body provided with a plate) can be mentioned.
  • the base material layer a layer containing a resin layer having cholesteric regularity is preferable, and a resin layer having cholesteric regularity is more preferable.
  • cholesteric regularity means that the molecular axes are aligned in a certain direction on one plane, but the direction of the molecular axes deviates at a slight angle in the next plane that overlaps with it, and further angles in the next plane. It is a structure in which the angle of the molecular axis in the plane shifts (twists) as it sequentially passes through the planes that are arranged in an overlapping manner. That is, when the molecules in the layer have cholesteric regularity, the molecules are aligned in the resin layer in such a manner as forming a layer of a large number of molecules.
  • the molecules are aligned so that the axis of the molecule is in a certain direction, and in the adjacent layer B, the molecules are displaced at an angle with the direction in the layer A.
  • the molecules are aligned in the direction, and in the layer C adjacent to the molecule, the molecules are aligned in a direction further deviated from the direction in the layer B at an angle.
  • the angles of the axes of the molecules are continuously deviated, and a structure in which the molecules are twisted is formed.
  • the structure in which the direction of the molecular axis is twisted in this way becomes an optically chiral structure.
  • the resin layer having a cholesteric regularity that can form the base material layer is also referred to as a cholesteric resin layer or a resin layer A2.
  • the reflection in the cholesteric resin layer reflects the circularly polarized light while maintaining its chirality.
  • the cholesteric resin layer preferably has a reflectance of 40% or more at at least one wavelength in the visible wavelength band. As a result, the reflected image observed by incident non-polarized light on the authenticity determination member becomes clear, and it becomes easy to determine the authenticity of the authenticity determination member.
  • the reflectance of the cholesteric resin layer is usually 50% or less.
  • the cholesteric resin layer preferably has a half-value width of a reflection band having a reflectance of 35% or more and 50% or less of 350 nm or more. Since the cholesteric resin layer exerts the circularly polarized light separation function in a wide wavelength range, the authenticity of the authenticity determination member can be determined in a wide wavelength range.
  • the reflected light of the cholesteric resin layer can be made into a color close to metallic white (silver), and the degree of freedom in design can be increased.
  • the upper limit of the half width is not particularly limited and may be the width over the entire visible light band. For example, it may be 500 nm or less, or 400 nm or less.
  • the wavelength at which the circularly polarized light separation function is exhibited generally depends on the pitch of the spiral structure in the cholesteric resin layer.
  • the pitch of the spiral structure is the distance in the plane normal direction until the direction of the molecular axis in the spiral structure gradually shifts continuously as the direction of the molecular axis advances in the plane, and then returns to the original molecular axis direction again. ..
  • By changing the size of the pitch of this spiral structure it is possible to change the wavelength at which the circularly polarized light separation function is exhibited.
  • Examples of the cholesteric resin layer capable of exhibiting the circularly polarized light separation function in a wide wavelength range are (i) the size of the pitch of the spiral structure.
  • Examples thereof include a cholesteric resin layer in which the above-mentioned is gradually changed, and (ii) a cholesteric resin layer in which the pitch size of the spiral structure is continuously changed.
  • the cholesteric resin layer can be obtained, for example, by providing a film of the cholesteric liquid crystal composition on an appropriate support for forming the resin layer and curing the film of the cholesteric liquid crystal composition.
  • the obtained layer can be used as it is as a cholesteric resin layer.
  • the cholesteric liquid crystal composition for forming the cholesteric resin layer for example, a composition containing a liquid crystal compound and capable of exhibiting a cholesteric liquid crystal phase when a film is formed on the support can be used.
  • the liquid crystal compound a liquid crystal compound which is a polymer compound and a polymerizable liquid crystal compound can be used.
  • the cholesteric liquid crystal composition may contain one liquid crystal compound alone, or may contain any combination of two or more liquid crystals.
  • a polymerizable liquid crystal compound In order to obtain high thermal stability, it is preferable to use a polymerizable liquid crystal compound.
  • a polymerizable liquid crystal compound By polymerizing such a polymerizable liquid crystal compound in a state of exhibiting cholesteric regularity, the film of the cholesteric liquid crystal composition can be cured to obtain a cured non-liquid crystal resin layer while exhibiting cholesteric regularity. can.
  • Examples of the polymerizable liquid crystal compound include a rod-shaped liquid crystal compound represented by the following general formula (1).
  • R 1 and R 2 each independently represent a polymerizable functional group.
  • polymerizable functional groups include carboxyl group, (meth) acryloyl group, epoxy group, thioepoxy group, mercapto group, isocyanate group, isothiocyanate group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group and allyl.
  • examples thereof include a group, a fumarate group, a cinnamoyl group, an oxazoline group, a hydroxyl group, an alkoxysilyl group, an amino group and the like.
  • D 1 and D 2 are independently saturated hydrocarbons having a single bond, a linear or branched methylene group having 1 to 20 carbon atoms, and an alkylene group. It represents a group selected from the group consisting of a hydrogen group and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
  • C 1 to C 4 are independently single-bonded, -O-, -S-, -S-S-, -CO-, -CS-, -OCO-, and -CH.
  • M represents a mesogen group.
  • M include azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoic acid esters, cyclohexanecarboxylics which may have an unsubstituted or substituent.
  • Two to four skeletons selected from the group of acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidins, alkoxy-substituted phenylpyrimidins, phenyldioxans, trans, alkenylcyclohexylbenzonitriles are -O.
  • R 3 and R 4 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms which may have a substituent includes a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group and 1 to 6 carbon atoms.
  • rod-shaped liquid crystal compound examples include the following compounds (B1) to (B10). In addition, one of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the concentration of the liquid crystal compound in the cholesteric liquid crystal composition is not particularly limited, but is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 14% by weight or more, and particularly preferably 15% by weight or more. It is preferably 40% by weight or less, more preferably 35% by weight or less, still more preferably 30% by weight or less.
  • the cholesteric liquid crystal composition may contain an orientation aid for assisting the orientation of the liquid crystal compound.
  • the orientation aid may be a substance having no liquid crystallinity.
  • orientation aid examples include compounds represented by the following general formula (2). R 6- A 1- Z-A 2- R 7 (2)
  • R 6 and R 7 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, a linear group having 1 to 20 carbon atoms, or A branched alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryloyl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and an optional bonding group may be present.
  • the alkyl group and the alkylene oxide group may not be substituted, and may be substituted with one or more halogen atoms. Further, if two or more substituents are present in each of the alkyl group and the alkylene oxide group, they may be the same or different. Further, the halogen atom, hydroxyl group, carboxyl group, (meth) acryloyl group, epoxy group, mercapto group, isocyanate group, amino group and cyano group are alkyl groups having 1 to 2 carbon atoms and / or alkylene oxides. It may be bonded to a group.
  • R 6 and R 7 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth) acryloyl group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
  • At least one of R 6 and R 7 is preferably a polymerizable functional group.
  • the compound represented by the general formula (2) is fixed in the liquid crystal layer at the time of curing to form a liquid crystal cured product layer which is a stronger film. can do.
  • the polymerizable functional group include those similar to those of a polymerizable liquid crystal compound, and among them, a carboxyl group, a (meth) acryloyl group, an epoxy group, a mercapto group, an isocyanate group, and an amino group are preferable.
  • a 1 and A 2 are independently 1,4-phenylene group, 1,4-cyclohexylene group, cyclohexene-1,4-diyl group, 4,4'-biphenylene group, respectively.
  • substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and an alkyl halide group. May be. Furthermore, if two or more substituents are present in each of A 1 and A 2, they may be the same or different.
  • a 1 and A 2 include a 1,4-phenylene group, a 4,4'-biphenylene group, and a 2,6-naphthylene group.
  • aromatic ring skeletons are relatively rigid as compared with the alicyclic skeleton, have a high affinity for the mesogen of the polymerizable liquid crystal compound, and have a higher orientation uniformity ability.
  • Specific examples of the compound represented by the general formula (2) being particularly preferable include, for example, the following compounds (A1) to (A10).
  • compound (A3) "*" represents a chiral center.
  • the cholesteric liquid crystal composition may contain a chiral agent, and preferably contains a chiral agent.
  • the twisting direction of the cholesteric resin layer can be appropriately selected depending on the type and structure of the chiral agent to be used. This can be achieved by using a chiral agent that imparts right-handedness when the twist is to the right, and by using a chiral agent that imparts left-handedness when the twisting direction is to the left.
  • Specific examples of the chiral agent include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, and JP-A.
  • JP-A-2000-290315 JP-A-6-072962, US Pat. No. 6,468,444, International Publication No. 98/00428, JP-A-2007-176870, etc.
  • it can be obtained as LC756 of BASF Palio Color.
  • one type of chiral agent may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of chiral agent can be arbitrarily set within a range that does not deteriorate the desired optical performance.
  • the specific amount of the chiral agent is, for example, 1% by weight to 60% by weight in the cholesteric liquid crystal composition.
  • the cholesteric liquid crystal composition may contain a polymerization initiator.
  • the polymerization initiator include a photopolymerization initiator.
  • the photopolymerization initiator for example, a known compound that generates a radical or an acid by ultraviolet rays or visible light can be used.
  • photopolymerization initiator examples include benzoin, benzyldimethylketal, benzophenone, biacetyl, acetophenone, Michler ketone, benzyl, benzylisobutyl ether, tetramethylthiummono (di) sulfide, 2,2-azobisisobutyronitrile, and the like.
  • 2,2-azobis-2,4-dimethylvaleronitrile benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenyl-propane-1-one , 1- (4-Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthioxanthone, methylbenzoylformate, 2,2 -Diethoxyacetophenone, ⁇ -ionone, ⁇ -bromostyrene, diazoaminobenzene, ⁇ -amylcinnamic aldehyde, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, 2-chlorobenzophenone, p, p'-dichloro Benzophenone
  • the cholesteric liquid crystal composition may contain a surfactant.
  • a surfactant for example, one that does not inhibit the orientation can be appropriately selected and used.
  • a surfactant for example, a nonionic surfactant containing a siloxane or an alkylfluoride group in a hydrophobic group portion is preferably mentioned.
  • oligomers having two or more hydrophobic group moieties in one molecule are particularly suitable.
  • Specific examples of these surfactants include OMNOVA's PolyFox PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-3320, PF-651, PF-652; Neos.
  • FTX-209F, FTX-208G, FTX-204D; surflon from Seimi Chemical Co., Ltd .; KH-40, S420; etc. can be used.
  • One type of surfactant may be used alone, or two or more types may be used in combination at any ratio.
  • the cholesteric liquid crystal composition may optionally contain a cross-linking agent in order to improve the film strength and durability after curing.
  • a cross-linking agent one that can increase the cross-linking density of the cholesteric resin layer and does not deteriorate the orientation uniformity can be appropriately selected and used.
  • Such an increase in the crosslink density can be achieved by a reaction that occurs at the same time as curing when the film of the liquid crystal composition is cured, a reaction that is promoted by performing a heat treatment after curing, or a reaction that naturally proceeds by moisture. Therefore, for example, any cross-linking agent that cures with ultraviolet rays, heat, humidity, or the like can be preferably used.
  • cross-linking agent examples include a polyfunctional acrylate compound; an aziridine compound; an isocyanate compound; a polyoxazoline compound having an oxazoline group in the side chain; an alkoxysilane compound;
  • one type of cross-linking agent may be used alone, or two or more types may be used in combination at any ratio.
  • the cholesteric liquid crystal composition may further contain other optional components as required.
  • this optional component include a solvent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer.
  • one of these optional components may be used alone, or two or more of them may be used in combination at any ratio. The amount of these arbitrary components can be arbitrarily set as long as the desired optical performance is not deteriorated.
  • the method for producing the cholesteric liquid crystal composition is not particularly limited, and the cholesteric liquid crystal composition can be produced by mixing the above components.
  • a film of the liquid crystal composition is provided on the base film.
  • a film of the liquid crystal composition is provided by applying the liquid crystal composition to the surface of the base film.
  • a film of the liquid crystal composition is usually provided on the alignment film.
  • the surface of the base film may be subjected to a treatment such as a corona discharge treatment and a rubbing treatment, if necessary.
  • the alignment treatment may be performed if necessary.
  • the alignment treatment can be performed, for example, by heating the film of the liquid crystal composition at 50 ° C. to 150 ° C. for 0.5 minutes to 10 minutes. By performing the alignment treatment, the liquid crystal composition in the film can be well oriented.
  • a curing treatment is usually performed.
  • the curing treatment can be performed, for example, by combining one or more times of light irradiation and a heating treatment.
  • the heating conditions are, for example, usually 40 ° C. or higher, preferably 50 ° C. or higher, and usually 200 ° C. or lower, preferably 140 ° C. or lower, for usually 1 second or longer, preferably 5 seconds or longer, and usually 3 minutes.
  • the time may be preferably 120 seconds or less.
  • the light used for light irradiation includes not only visible light but also ultraviolet rays and other electromagnetic waves.
  • Light irradiation can be performed, for example, by irradiating light having a wavelength of 200 nm to 500 nm for 0.01 seconds to 3 minutes. At this time, the energy of the irradiated light may be, for example, 0.01 mJ / cm 2 to 50 mJ / cm 2 .
  • a cholesteric resin layer having a polarization separation function can be obtained.
  • a relatively strong ultraviolet such 50mJ / cm 2 ⁇ 10,000mJ / cm 2
  • a cholesteric resin layer having high mechanical strength can be obtained.
  • the expansion of the reflection band and the irradiation of strong ultraviolet rays may be carried out under air, or a part or all of the steps thereof may be carried out in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). ..
  • the step of applying and curing the liquid crystal composition as described above is not limited to one time, and the application and curing may be repeated a plurality of times. This makes it possible to form a cholesteric resin layer including two or more layers. However, by using the liquid crystal composition described in the above example, a cholesteric resin layer containing a rod-shaped liquid crystal compound that is well oriented and having a thickness of 5 ⁇ m or more even by applying and curing the liquid crystal composition only once. Can be easily formed.
  • a multilayer body including (2) a reflective linear polarizing element, a first ⁇ / 4 plate, and a second ⁇ / 4 plate can be used.
  • Examples of the reflection type linear polarizing element included in such a multilayer body include a wire grid type linear polarizing element and a multilayer reflection type linear polarizing element (eg, “DBEF” manufactured by 3M Co., Ltd.).
  • the thickness of the base material layer is not particularly limited, but is preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, particularly preferably 4.5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably. Is 10 ⁇ m or less.
  • the resin pigment contained in the first printing layer is composed of fragments of the resin layer having cholesteric regularity.
  • the resin pigment can be produced by forming a resin layer having cholesteric regularity (hereinafter, also referred to as resin layer A1) and crushing this layer into fragments.
  • the resin layer A1 is provided with, for example, a film of the cholesteric liquid crystal composition on an appropriate support for forming the resin layer, similarly to the resin layer A2 having cholesteric regularity as the base material layer, and the cholesteric liquid crystal composition. It can be obtained by curing the film of an object.
  • the cholesteric liquid crystal composition for forming the cholesteric resin layer include the same examples and preferable examples as those of the cholesteric liquid crystal composition for forming the resin layer A2.
  • the resin layer A1 preferably has a reflectance of 40% or more at at least one wavelength in the visible wavelength band. As a result, the reflected image observed by incident non-polarized light on the authenticity determination member becomes clear, and it becomes easy to determine the authenticity of the authenticity determination member.
  • the reflectance of the resin layer A1 is usually 50% or less.
  • the resin layer A1 preferably has a half-value width of a reflection band having a reflectance of 35% or more and 50% or less of 350 nm or more. Since the resin layer A1 exerts a circularly polarized light separation function in a wide wavelength range, the authenticity of the authenticity determination member can be determined in a wide wavelength range. Further, the light reflected by the first printing layer containing the resin pigment composed of the fragments of the resin layer A1 can be made into a color close to metallic white (silver), and the degree of freedom in design can be increased.
  • the thickness of the resin layer A1 is not particularly limited, but is preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, particularly preferably 4.5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably. Is 10 ⁇ m or less.
  • the resin layer A2 and the resin layer A1 may be the same layer formed from the same cholesteric liquid crystal composition by the same method, or may be different layers from each other.
  • the resin layer A2 and the resin layer A1 have the same cholesteric regularity in the twisting direction. Having the cholesteric regularity in the resin layer A2 and the resin layer A1 in the same twisting direction is, for example, the type and structure of the chiral agent used in the cholesteric liquid crystal composition for forming the resin layer A2 or the resin layer A1. Can be achieved by appropriately selecting.
  • the resin layer A1 was formed on the base film and then the resin layer A1 was peeled off from the base film to obtain a resin layer piece.
  • examples thereof include a method of obtaining a resin pigment which is a fragment of the resin layer A2 by crushing the resin layer piece as it is or by further crushing it with a crusher or the like, and further specific examples thereof are described in Japanese Patent Application Laid-Open No. 2015-027743. The method can be mentioned.
  • the dimensions of the debris contained in the resin pigment can be arbitrarily set according to the printing method for forming the first print layer, etc., but when the first print layer is formed by the screen printing method, the resin pigment is used. Fragments that have passed through a sieve with an opening of 100 ⁇ m or less are preferable, and fragments that have passed through a sieve with an opening of 60 ⁇ m or less are more preferable.
  • the resin pigment is preferably debris that does not pass through a sieve having an opening of less than 5 ⁇ m.
  • the first print layer is provided on the substrate layer by any method.
  • the first printing layer is preferably provided on the base material layer by a printing method.
  • a printing method in addition to the method of transferring ink to the base material layer using a printing plate, ink is applied to the base material layer without using a printing plate as in the inkjet printing method.
  • the method of application is also included.
  • the first printing layer is provided on the base material layer by a screen printing method.
  • the first printing layer containing the resin pigment can be formed, for example, by transferring or applying an ink containing the resin pigment on the base material layer.
  • the content of the resin pigment in the ink is not particularly limited, but may be, for example, 1% by weight or more, for example, 5% by weight or more, for example, 15% by weight or less, for example, 10% by weight or less.
  • the ink containing the resin pigment may contain any component in addition to the resin pigment.
  • the optional component contained in the ink include a solvent (including a dispersion medium), a binder resin, a defoaming agent, a stabilizer, a wax, a surfactant and the like.
  • the binder resin include thermosetting resins and photocurable resins.
  • the thickness of the first print layer is not particularly limited and can be arbitrarily set according to the printing method for forming the first print layer and the like, but may be, for example, 30 ⁇ m to 50 ⁇ m.
  • the first printing layer is provided so as to be in contact with a part of one main surface of the base material layer and forms a pattern when viewed from the thickness direction of the authenticity determination member.
  • the pattern include, but are not limited to, figures such as quadrangles and triangles, and characters.
  • the second printed layer contains a metal pigment that does not have a circularly polarized light separation function. Not having a circularly polarized light separation function means that both circularly polarized light having one rotation direction and circularly polarized light having the other rotation direction are reflected at the same reflectance and the same transmittance. (The transmittance may be 0%.) It means that the material is transmitted.
  • the metal pigment usually includes a material having a metallic luster and not having a circularly polarized light separation function. Generally, the metal powder does not have a circularly polarized light separation function, and therefore can be used as a metal pigment that can be contained in the second printing layer. Further, a metal oxide such as silica can also be used as a material for a metal pigment.
  • metal pigment materials include aluminum, copper, silver, and silica.
  • powders and flakes of these materials can be used.
  • flakes obtained by forming a film of a metal oxide such as metal or silica on the surface of flakes made of a material other than metal, such as glass flakes, can also be used as a metal pigment.
  • the dimensions of the metal pigment can be arbitrarily set according to the printing method for forming the second print layer, etc., but when the second print layer is formed by the screen printing method, the metal pigment has an opening. Fragments that have passed through a sieve of 100 ⁇ m or less are preferable, and fragments that have passed through a sieve with an opening of 60 ⁇ m or less are more preferable.
  • the metal pigment is preferably debris that does not pass through a sieve having an opening of less than 5 ⁇ m.
  • the second printing layer is preferably provided on the base material layer by a printing method, and more preferably by a screen printing method.
  • the second printing layer containing the metal pigment can be formed, for example, by transferring or applying an ink containing the metal pigment on the base material layer.
  • the ink containing a metal pigment may contain any component in addition to the metal pigment. Examples of the optional component contained in the ink include components similar to those that can be contained in the ink containing the resin pigment.
  • the thickness of the second print layer is not particularly limited and can be arbitrarily set according to the printing method for forming the second print layer and the like, but may be, for example, 30 ⁇ m to 50 ⁇ m.
  • the second printed layer is provided so as to be in contact with a part of one main surface of the base material layer and forms a pattern when viewed from the thickness direction of the authenticity determination member.
  • the pattern include, but are not limited to, figures such as quadrangles and triangles, and characters.
  • the first print layer and the second print layer may have the same pattern or different patterns.
  • the first print layer and the second print layer are provided so as not to overlap each other when viewed from the thickness direction of the authenticity determination member.
  • the second print layer may be provided on the same main surface as the main surface of the base material layer provided with the first print layer, and is different from the main surface of the base material layer provided with the first print layer. It may be provided on the main surface. In one embodiment, the second print layer is provided on the same main surface as the main surface of the substrate layer on which the first print layer is provided.
  • FIG. 1 is a schematic plan view of an authenticity determination member according to an embodiment of the present invention as viewed from the thickness direction.
  • FIG. 2 is a diagram schematically showing a cut surface of FIG. 1 taken by line II-II.
  • FIG. 3 is an explanatory diagram when the authenticity determining member according to the embodiment of the present invention is observed from one main surface side.
  • FIG. 4 is an explanatory diagram when the authenticity determining member according to the embodiment of the present invention is observed from the other main surface side.
  • FIG. 1 is a schematic plan view of an authenticity determination member according to an embodiment of the present invention as viewed from the thickness direction.
  • FIG. 2 is a diagram schematically showing a cut surface of FIG. 1 taken by line II-II.
  • FIG. 3 is an explanatory diagram when the authenticity determining member according to the embodiment of the present invention is observed from one main surface side.
  • FIG. 4 is an explanatory diagram when the authenticity determining member according to the embodiment of the present invention is observed from the other main surface side.
  • FIG. 5 is a schematic view showing an image when the authenticity determination member according to the embodiment of the present invention is irradiated with non-polarized light and observed.
  • FIG. 6 is a schematic view showing an image when the authenticity determination member according to the embodiment of the present invention in FIG. 5 is turned upside down and irradiated with non-polarized light for observation.
  • FIG. 7 is a schematic plan view of the authenticity determination member according to the comparative example as viewed from the thickness direction.
  • FIG. 8 is a diagram schematically showing a cut surface by the line VIII-VIII of FIG. 7.
  • FIG. 9 is an explanatory diagram when the authenticity determination member according to the comparative example is observed from one main surface side.
  • FIG. 10 is an explanatory diagram when the authenticity determination member according to the comparative example is observed from the other main surface side.
  • the authenticity determining member 100 includes a base material layer 10, a first printing layer 20, and a second printing layer 30.
  • the base material layer 10 is a resin layer having a cholesteric regularity, which has a function as a reflective circular polarizing element, which transmits left circularly polarized light and reflects right circularly polarized light.
  • the first printed layer 20 contains fragments of a resin layer having the same torsional cholesteric regularity as the substrate layer 10. Similar to the base material layer 10, the first printed layer 20 has a circularly polarized light separation function that transmits left circularly polarized light and reflects right circularly polarized light.
  • the second printed layer 30 contains a metal pigment having no circularly polarized light separation function.
  • the first print layer 20 and the second print layer 30 form a pattern when viewed from the thickness direction (direction perpendicular to the paper surface) of the authenticity determination member 100.
  • the first print layer 20 and the second print layer 30 form a pattern of the number "8".
  • the first print layer 20 and the second print layer 30 are the main surface 10U of the main surface 10U and the main surface 10D, which are the two main surfaces of the base material layer 10. It is provided directly on the top.
  • the first print layer 20 and the second print layer 30 are arranged on the main surface 10U so as not to overlap each other.
  • the appearance of the image when the authenticity determination member 100 is observed from the main surface 10U side by incident non-polarized light from the main surface 10U side of the authenticity determination member 100 will be described with reference to FIG.
  • the first printed layer 20 has the above-mentioned circularly polarized light separation function, so that the left side It transmits light L2 L , which is circularly polarized light, and reflects light L4 R , which is right-handed circularly polarized light.
  • the reflected light from the first print layer 20 is visually recognized.
  • the light L2 L passes through the base material layer 10 and becomes the light L3 L.
  • the unpolarized light L5 RL When the unpolarized light L5 RL is incident on the second print layer 30 from the main surface 10U side, the light L5 RL is reflected by the metal pigment contained in the second print layer 30. As a result, the unpolarized light L6 RL is visually recognized as the reflected light by the second print layer 30. Since the reflected light from the first print layer 20 and the second print layer 30 is visually recognized, the number "8" is visually recognized as the reflected image (1) as shown in FIG.
  • the base material layer 10 has a function of transmitting left circularly polarized light and reflecting right circularly polarized light, so that it is a left circular light.
  • the polarized light L27 L is transmitted, but the right-handed circularly polarized light is not transmitted and does not reach the first printed layer 20. Since the first print layer 20 has the circularly polarized light separation function, the light reflected by the first print layer 20 is not visible.
  • the light L27 L which is the left circularly polarized light applied to the first print layer 20, passes through the first print layer 20 and becomes the light L28 L.
  • the base material layer 10 transmits the light L21 L which is left-polarized light.
  • the transmitted light L21 L is reflected by the metal pigment contained in the second print layer 30.
  • the reflected light by the second printing layer 30 is the light L22 R which is the right circularly polarized light.
  • the light L22 R is reflected by the base material layer 10, and the light L23 R, which is right-handed circularly polarized light, is incident on the second printing layer 30.
  • the light L23 R is reflected by the second print layer 30, and the rotation direction of the circularly polarized light is reversed to become the light L24 L which is left-handed circularly polarized light. Since the light L24 L reflected by the second printing layer 30 is left-handed circularly polarized light, it passes through the base material layer 10 and becomes light L25 L which is left-handed circularly polarized light. That is, the light reflected by the second print layer 30 is visually recognized as the light L25 L.
  • FIG. 6 is a diagram illustrating how an image looks when the authenticity determination member 100 in FIG. 5 is turned over with the axis R1 shown in FIG. 5 as a rotation axis and irradiated with non-polarized light. As shown in FIG. 6, since the reflected light by the first print layer 20 is not visually recognized and the reflected light by the second print layer 30 is visually recognized, the number "5" is visually recognized as the reflected image (2). NS.
  • the authenticity determination member 100 has a reflection image (1) obtained by incidentally observing a non-polarized light from the side of one main surface 10U and a non-polarized light incident from the side of the other main surface 10D. It is different from the reflected image (2) obtained by observing it. Therefore, the difference between the reflected image (1) and the reflected image (2) can be one of the determination conditions for authenticity of the authenticity determination member 100.
  • the base material layer 10 which is a reflective circular polarizing element is a resin layer having cholesteric regularity, but in another embodiment, the base material layer is a reflective linear polarizing element and the above. Includes a first ⁇ / 4 plate provided on one main surface of the reflective linear polarizing element and a second ⁇ / 4 plate provided on the other main surface of the reflective linear polarizing element. It may be a reflective circular polarizing element.
  • the authenticity determination member 500 includes a base material layer 510, a first print layer 520, and a second print layer 530.
  • the base material layer 510 has a function as an absorption type circular polarizing element that transmits left circularly polarized light and absorbs right circularly polarized light.
  • the first print layer 520 has a circularly polarized light separation function that transmits left circularly polarized light and reflects right circularly polarized light.
  • the second print layer 530 contains a metal pigment having no circularly polarized light separation function.
  • the first print layer 520 and the second print layer 530 form a pattern when viewed from the thickness direction (direction perpendicular to the paper surface) of the authenticity determination member 500.
  • the first print layer 520 and the second print layer 530 form a pattern of the number "8".
  • the base material layer 510 includes a retardation layer 512 having a function as a ⁇ / 4 plate, a linear polarizing element 511, and a retardation layer 513 having a function as a ⁇ / 4 plate. It is laminated in order.
  • the slow axis of the retardation layer 512, the absorption axis of the linear splitter 511, and the slow axis of the retardation layer 513 form an angle such that the transmitted light of the substrate layer 510 is polarized to the left. ..
  • the first print layer 520 and the second print layer 530 are the main surface 510U of the main surface 510U and the main surface 510D, which are the two main surfaces of the base material layer 10. It is provided directly on the top.
  • the first print layer 520 and the second print layer 530 are arranged on the main surface 510U so as not to overlap each other.
  • the transmitted linearly polarized light L33 ST becomes the left circularly polarized light L34 L by transmitting through the retardation layer 513.
  • the unpolarized light L36 RL is incident on the second print layer 530, the light L36 RL is reflected by the metal pigment contained in the second print layer 530.
  • the unpolarized light L37 RL is visually recognized as the reflected light by the second print layer 530. Since the reflected light from the first print layer 520 and the second print layer 530 is visually recognized, the number "8" is visually recognized as a reflected image.
  • the transmitted light L48 ST becomes light L49 L which is left-handed circularly polarized light by transmitting through the retardation layer 512.
  • the light L49 L is incident on the first print layer 520, but is not reflected by the first print layer 520 because it is left-handed circularly polarized light. Therefore, the reflected light from the first print layer 520 is not visible.
  • the light L49 L passes through the first print layer 520 and becomes the light L50 L.
  • the unpolarized light L40 RL incident from the side of the main surface 510D passes through the retardation layer 513 to become unpolarized light L41 RL , and a part of the light L41 RL passes through the linear splitter 511.
  • the light L43 L is reflected by the metal pigment contained in the second print layer 530, and the rotation direction of the circularly polarized light is reversed to become the light L44 R which is right-handed circularly polarized light.
  • the light L44 R is converted into light L45 ST which is linearly polarized light by passing through the retardation layer 512.
  • the optical L45 ST is in a direction parallel to the absorption axis of the linear polarizing element 511. It is linearly polarized light having the vibration direction of. Therefore, it is absorbed by the linear polarizing element 511. Therefore, the reflected light of the second print layer 530 is not visible. Therefore, unlike the authenticity determination member 100, when observed from the side of the main surface 510D, not only the reflected light by the first print layer 520 but also the reflected light by the second print layer 530 is not visually recognized.
  • the authenticity determination member 100 has the reflected light reflected by the second printing layer 30 regardless of whether it is observed from one main surface 10U or the other main surface 10D. Can be visually recognized as a metallic color. Utilizing this action, the authenticity determination member 100 can express various patterns on both the front surface and the back surface.
  • the authenticity determination member is suitably used for determining the authenticity of an article by attaching it to an article whose authenticity should be identified by utilizing the fact that the reflected images displayed on the front and back are different.
  • goods for which authenticity should be determined include goods such as cash vouchers, gift certificates, tickets, certificates, and security cards.
  • the authenticity determination member may be used as these articles themselves.
  • the authenticity determination member can also be used as a form such as a label for authenticity determination.
  • the authenticity determination member can determine the authenticity by utilizing the above-mentioned action.
  • the method for determining authenticity according to an embodiment of the present invention includes a step (1) of obtaining a reflected image (1) by incident non-polarized light from one main surface side of the authenticity determination member and observing the member.
  • the step (3) is included. Step (1) and step (2) are usually not performed at the same time. After the step (1) and the step (2), the step (3) is performed.
  • “Different” means that when the reflected image (1) and the reflected image (2) are compared, a part that is not in one image appears in the other image, and the reflected image (1) and the reflected image (1) are reflected. It usually does not include the case where the image (2) has a mirror image relationship.
  • Example 1 (1-1. Preparation of cholesteric liquid crystal composition) BASF's "Pariocolor LC242" as a polymerizable liquid crystal compound, BASF's “Pariocolor LC756” as a chiral agent, BASF's “IrgacureOXE02” as a photopolymerization initiator, and AGC Seimi Chemical's "Surflon S420” as a leveling agent. , And methyl ethyl ketone (MEK) as a solvent were mixed in the formulation shown in Table 1 to prepare a cholesteric liquid crystal composition (solid content 20% by weight) for forming a cholesteric resin layer.
  • the chemical structures of "Pariocolor LC242", “Palocolor LC756", and “IrgacureOXE02" are shown below.
  • the cholesteric liquid crystal composition prepared as described above was applied onto a cycloolefin polymer (COP) film using a # 10 wire bar to form a coating film of the liquid crystal composition.
  • the coating film of the liquid crystal composition was held at 140 ° C. for 2 minutes for orientation treatment, followed by irradiation treatment of the coating film with weak ultraviolet rays (wavelength 365 nm) of 25 mJ / cm 2, followed by 1 at 90 ° C.
  • a process consisting of a minute heating treatment was carried out, and then the coating film was cured by irradiating with ultraviolet rays of 2000 mJ / cm 2 in a nitrogen atmosphere.
  • a film F having a circularly polarized light separation function in which a cholesteric resin layer having a thickness of 5 ⁇ m was formed on the PET film, was produced.
  • the light reflectance of the cholesteric resin layer was measured using "V570" manufactured by JASCO Corporation in the wavelength range of 380 nm to 830 nm.
  • the reflectance was 40% or more at at least one wavelength in the wavelength range of 380 nm or more and 830 nm or less. From the obtained reflectance spectrum, the wavelength range (full width at half maximum), which is the half value of the maximum reflectance, was read in the reflection band where the reflectance was 35% or more and 50% or less, and it was 350 nm.
  • the right circularly polarizing plate has a function of absorbing left circularly polarized light and transmitting right circularly polarized light. Specifically, the reflected light from the cholesteric resin layer was observed through the right circular polarizing plate, and it was confirmed by observing the colored reflected light.
  • the film F was attached to the film delivery section in a direction in which the film F could be folded back with the cholesteric resin layer outside the PET film at the corners of the bar. Then, the film F was sent out from the film feeding unit in a state where tension was applied to the film F in the transport direction by the film collecting unit. At this time, the magnitude of the tension applied to the film was set to 80 N / m. In addition, air was injected from the nozzle at a pressure of 0.5 MPa.
  • the film F began to grow in the transport direction from the time when it was sent from the film delivery unit. Further, after that, the film F stretched beyond the tensile elongation at break of the cholesteric resin layer was folded back at the corner portion of the bar, and more cracks were formed.
  • the film F was conveyed to the nozzle and air was blown from the nozzle.
  • the cholesteric resin layer in which the cracks were formed was blown off as peeled pieces.
  • the peeled pieces of the obtained cholesteric resin layer were collected by a collector. Further, the PET film from which the cholesteric resin layer had been peeled off was wound up in a roll shape at the film recovery unit and recovered.
  • the collected exfoliated pieces were crushed with a cutter mill to form fragments of the cholesteric resin layer, and then passed through a sieve having an opening of 51 ⁇ m. Fragments of the cholesteric resin layer that passed through the sieve were collected and used as a resin pigment. Since the fragments of the resin layer constituting the resin pigment are produced from the cholesteric resin layer included in the film F as a raw material, they have the same cholesteric regularity in the twisting direction as the cholesteric resin layer included in the film F.
  • thermosetting medium (“LOV (E) -800” manufactured by Seiko Advance Co., Ltd.) so as to be 8% by weight based on the total amount of ink, and is used for forming the first printing layer.
  • Ink 1 was used.
  • the authenticity determination member 100 was manufactured by forming by a printing method.
  • Step (1) The authenticity determination member 100 was placed on white paper with the side on which the first print layer 20 and the second print layer 30 were printed (main surface 10U) facing up.
  • the authenticity determination member 100 placed on white paper was irradiated with non-polarized light from the side of the main surface 10U, and a reflected image was observed from the side of the main surface 10U.
  • the number "8" was observed.
  • the number "8" as the observed reflection image (1) was silver.
  • Step (2) Next, the authenticity determination member 100 is turned over with the axis R1 shown in FIG. 5 as the axis, and the surface on the side where the first print layer 20 and the second print layer 30 are not printed (referred to as the main surface 10D). Placed on white paper with the top facing up.
  • the authenticity determination member 100 was irradiated with unpolarized light from the side of the main surface 10D, and the reflected image was observed from the side of the main surface 10D. As a result, the reflected light by the first print layer 20 was not observed, the reflected light by the second print layer 30 was observed, and the number "5" was observed as shown in FIG. The number "5" as the observed reflection image (2) was silver.
  • Example 2 (2-6. Manufacture of authenticity judgment member)
  • a reflective circular polarizing element including a reflective linear polarizing element was prepared.
  • This reflective circularly polarized light has two retardation layers (Zeon Corporation's "Zeonoa Film ZD Series") that function as ⁇ / 4 plates on both sides of a reflective linear polarizing element ("DBEF" manufactured by 3M Corporation). ") Are laminated.
  • DBEF reflective linear polarizing element
  • two retardation layers are arranged on both sides of the reflective linear polarizing element so that the transmitted light is left-handed circularly polarized light.
  • a triangular pattern is printed on one surface of the substrate layer by a screen printing method using ink 1 as a first printing layer, and an ink 2 is used as a second printing layer to screen a triangular contour pattern.
  • An authenticity determination member was manufactured by printing by a printing method.
  • the pattern printed by the ink 2 follows the outline of the triangular pattern printed by the ink 1.
  • Ink 1 and ink 2 are prepared in the same manner as in Example 1.
  • Step (1) Next, the authenticity determination member was placed on white paper with the first print layer and the side on which the second print layer was printed (referred to as the first main surface) facing up.
  • the authenticity determination member placed on the white paper was irradiated with non-polarized light from the first main surface side, and the reflected image was observed from the first main surface side.
  • the reflected light from the first print layer and the second print layer was observed, and a triangle was observed.
  • the triangle as the observed reflection image (1) was silver.
  • Step (2) Next, the authenticity determination member was turned over and placed on white paper with the side on which the first print layer and the second print layer were not printed (referred to as the second main surface) facing up.
  • the authenticity determination member was irradiated with non-polarized light from the side of the second main surface, and the reflected image was observed from the side of the second main surface.
  • the reflected light from the first print layer triangle pattern
  • the reflected light from the second print layer triangle contour pattern
  • the outline of the triangle as the observed reflection image (2) was silver.
  • the first print layer 520 and the second print layer 530 are screen-printed on the surface of the base material layer 510 on the side of the retardation layer 512 using ink 1 and ink 2, respectively, so as to have the pattern shown in FIG.
  • the authenticity determination member 500 was manufactured by the method.
  • Ink 1 and ink 2 are prepared in the same manner as in Example 1.
  • the authenticity determination member 500 was placed on white paper with the side on which the first print layer 520 and the second print layer 530 were printed (referred to as the main surface 510U) facing up.
  • the authenticity determination member 500 placed on white paper was irradiated with non-polarized light from the side of the main surface 510U, and the reflected image was observed from the side of the main surface 510U. As a result, the number "8" was observed.
  • the number "8" as the observed reflection image (1) was silver.
  • the authenticity determination member 500 is turned inside out with the vertical direction of the paper surface of FIG. 7 as the axis, and the surface on the side where the first print layer 520 and the second print layer 530 are not printed (main surface 510D) is used. ) Is on top and placed on white paper. The authenticity determination member 500 was irradiated with unpolarized light from the side of the main surface 510D, and the reflected image was observed from the side of the main surface 510D. As a result, no silver reflection image was observed, only the black number "5" was observed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Polarising Elements (AREA)

Abstract

反射型円偏光子である基材層と、コレステリック規則性を有する樹脂層A1の破片である樹脂顔料を含み、前記基材層上に設けられた第一の印刷層と、円偏光分離機能を有さない金属顔料を含み、前記基材層上に設けられた第二の印刷層とを含む、真贋判定部材。真贋判定部材の一方の主面側から非偏光を入射させて観察し、反射像(1)を得る工程(1)、前記真贋判定部材の、他方の主面側から非偏光を入射させて観察し、反射像(2)を得る工程(2)、及び前記反射像(1)と前記反射像(2)とが異なることを判定する工程(3)を含む、真贋判定部材の真正性判定方法。

Description

真贋判定部材及びその真正性判定方法
 本発明は、真贋判定部材及びその真正性判定方法に関する。
 貴重な物品の偽造を防止するため、表から観察された場合と、裏から観察された場合とで、異なる画像が視認される媒体が知られている。特許文献1には、左右円偏光の一方を透過する機能を有する基材の表側に、基材を透過しうる一方の円偏光とは逆回転の円偏光を反射する特性を有するコレステリック液晶材料と、かかる特性を有さない材料とでそれぞれ印刷画像を形成して得られる媒体が開示されている。
特開2013-008113号公報
 特許文献1の技術では、基材を透過しうる一方の円偏光とは逆回転の円偏光を反射する特性を有さない材料として、金属顔料を含む材料で印刷層を形成した場合、印刷層による表現の自由度が低下する場合がある。それは、媒体の裏側(即ち、基材の、印刷層が設けられた面とは反対の面側)からかかる印刷層を観察すると、印刷層による金属色の反射像が観察されずに、単に黒い像として観察されるためである。表現の自由度が低下すると、媒体の真贋を判定することが難しくなる場合がある。
 したがって、金属顔料を含む印刷層を含み、表から観察された場合と、裏から観察された場合とで、異なる反射像を得ることのできる真贋判定部材;及び真贋判定部材の真正性判定方法が、求められている。
 本発明者は、前記課題を解決するべく、鋭意検討した結果、真贋判定部材の基材層を、反射型円偏光子とし、コレステリック規則性を有する樹脂層の破片である樹脂顔料を含む第一の印刷層と、金属顔料を含む第二の印刷層とを、基材層上に設けることにより、前記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
 [1] 反射型円偏光子である基材層と、
 コレステリック規則性を有する樹脂層A1の破片である樹脂顔料を含み、前記基材層上に設けられた第一の印刷層と、
 円偏光分離機能を有さない金属顔料を含み、前記基材層上に設けられた第二の印刷層とを含む、真贋判定部材。
 [2] 前記真贋判定部材の一方の主面側から非偏光を入射させて観察された反射像(1)と、前記真贋判定部材の他方の主面側から非偏光を入射させて観察された反射像(2)とが異なる、[1]に記載の真贋判定部材。
 [3] 前記樹脂層A1が、可視波長帯域の少なくとも一の波長において反射率が40%以上であり、且つ、反射率が35%以上50%以下である反射帯域の半値幅が350nm以上である、[1]又は[2]に記載の真贋判定部材。
 [4] 前記基材層が、コレステリック規則性を有する樹脂層A2であり、前記樹脂層A1と樹脂層A2とが、同一のねじれ方向のコレステリック規則性を有する、[1]~[3]のいずれか一項に記載の真贋判定部材。
 [5] 前記樹脂層A2が、可視波長帯域の少なくとも一の波長において反射率が40%以上であり、且つ、反射率が35%以上50%以下である反射帯域の半値幅が350nm以上である、[4]に記載の真贋判定部材。
 [6] 前記基材層が、反射型直線偏光子と、前記反射型直線偏光子の一方の主面上に設けられた第一のλ/4板と、前記反射型直線偏光子の他方の主面上に設けられた第二のλ/4板とを含む反射型円偏光子である、[1]又は[2]に記載の真贋判定部材。
 [7] [1]~[6]のいずれか一項に記載の真贋判定部材の一方の主面側から非偏光を入射させて観察し、反射像(1)を得る工程(1)、
 前記真贋判定部材の、他方の主面側から非偏光を入射させて観察し、反射像(2)を得る工程(2)、及び
 前記反射像(1)と前記反射像(2)とが異なることを判定する工程(3)を含む、真贋判定部材の真正性判定方法。
 本発明によれば、金属顔料を含む印刷層を含み、表から観察された場合と、裏から観察された場合とで、異なる反射像を得ることのできる真贋判定部材;及び真贋判定部材の真正性判定方法;を提供できる。
図1は、本発明の一実施形態に係る真贋判定部材を、厚み方向から見た模式的な平面図である。 図2は、図1のII-II線による切断面を模式的に示す図である。 図3は、本発明の一実施形態に係る真贋判定部材を一方の主面側から観察したときの説明図である。 図4は、本発明の一実施形態に係る真贋判定部材を他方の主面側から観察したときの説明図である。 図5は、本発明の一実施形態に係る真贋判定部材に非偏光を照射して観察したときの像を示す模式図である。 図6は、図5における本発明の一実施形態に係る真贋判定部材を裏返して、非偏光を照射して観察したときの像を示す模式図である。 図7は、比較例に係る真贋判定部材を、厚み方向から見た模式的な平面図である。 図8は、図7のVIII-VIII線による切断面を模式的に示す図である。 図9は、比較例に係る真贋判定部材を一方の主面側から観察したときの説明図である。 図10は、比較例に係る真贋判定部材を他方の主面側から観察したときの説明図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 複数の図面において共通に図示される要素には、同一の符号を付し、その説明を省略する場合がある。
 以下の説明において、フィルム又は層の遅相軸とは、別に断らない限り、当該フィルム又は層の面内における遅相軸を表す。
 以下の説明において、「(メタ)アクリロイル」の文言は、「アクリロイル」、「メタクリロイル」及びこれらの組み合わせを包含する。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。
 以下の説明において、円偏光には、楕円偏光も含まれる。
 以下の説明において、可視波長帯域とは、可視光の波長範囲を意味し、波長380nm以上830nm以下の範囲を意味する。
 以下の説明において、「λ/4板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 [1.真贋判定部材]
 本発明の一実施形態に係る真贋判定部材は、基材層と、前記基材層上に設けられた第一の印刷層と、前記基材層上に設けられた第二の印刷層とを含む。前記基材層は、反射型円偏光子である。前記第一の印刷層は、コレステリック規則性を有する樹脂層A1の破片である樹脂顔料を含む。前記第二の印刷層は、円偏光分離機能を有さない金属顔料を含む。
 [1.1.基材層]
 基材層は、反射型円偏光子である。反射型円偏光子とは、右回りの回転方向を有する円偏光及び左回りの回転方向を有する円偏光のうち、一方の回転方向を有する円偏光を反射し、他方の回転方向を有する円偏光を透過させうる機能を有する偏光子を意味する。かかる機能を、円偏光分離機能ともいう。
 反射型円偏光子は、基材フィルムなどを含む、複層体であってもよい。かかる反射型円偏光子の例としては、(1)コレステリック規則性を有する樹脂層、(2)反射型直線偏光子と、前記反射型直線偏光子の一方の主面上に設けられた第一のλ/4板と、前記反射型直線偏光子の他方の主面上に設けられた第二のλ/4板とを含む複層体(反射型直線偏光子の両面上に、λ/4板が設けられた複層体)が挙げられる。基材層としては、コレステリック規則性を有する樹脂層を含む層が好ましく、コレステリック規則性を有する樹脂層であることがより好ましい。
 ここで、コレステリック規則性とは、一平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、層内の分子がコレステリック規則性を有する場合、分子は、樹脂層内において、多数の分子の層をなす態様で整列する。かかる多数の分子の層の中のある層Aにおいては、分子の軸がある一定の方向となるよう分子が整列し、それに隣接する層Bでは、層Aにおける方向と角度を成してずれた方向に分子が整列し、それにさらに隣接する層Cでは層Bにおける方向と角度を成してさらにずれた方向に分子が整列する。このように、多数の分子の層において、分子の軸の角度が連続的にずれて、分子がねじれる構造が形成される。このように分子軸の方向がねじれてゆく構造は光学的にカイラルな構造となる。
 以下、基材層を構成しうるコレステリック規則性を有する樹脂層をコレステリック樹脂層又は樹脂層A2ともいう。コレステリック樹脂層における反射は、円偏光を、そのキラリティを維持したまま反射する。
 コレステリック樹脂層は、可視波長帯域の少なくとも一の波長において、反射率が40%以上であることが好ましい。これにより、真贋判定部材に非偏光を入射させて観察された反射像が明瞭となり、真贋判定部材の真正性を判定することが容易となる。コレステリック樹脂層の反射率は、通常50%以下である。
 また、コレステリック樹脂層は、反射率が35%以上50%以下である反射帯域の半値幅が350nm以上であることが好ましい。広い波長範囲においてコレステリック樹脂層が円偏光分離機能を発揮することにより、真贋判定部材の真正性判定を、広い範囲の波長において行うことができる。また、コレステリック樹脂層の反射光を、金属調の白色(銀色)に近い色にすることができ、デザインの自由度を高めることができる。半値幅の上限は、特に限定されず、可視光帯域の全域にわたる幅としうる。例えば500nm以下、又は400nm以下としうる。
 円偏光分離機能を発揮する波長は、一般に、コレステリック樹脂層におけるらせん構造のピッチに依存する。らせん構造のピッチとは、らせん構造において分子軸の方向が平面を進むに従って少しずつ角度が連続的にずれていき、そして再びもとの分子軸方向に戻るまでの平面法線方向の距離である。このらせん構造のピッチの大きさを変えることによって、円偏光分離機能を発揮する波長を変えることができる。前記の、反射帯域の半値幅が350nm以上であるコレステリック樹脂層のように、広い波長範囲において円偏光分離機能を発揮しうるコレステリック樹脂層の例としては、(i)らせん構造のピッチの大きさを段階的に変化させたコレステリック樹脂層、(ii)らせん構造のピッチの大きさを連続的に変化させたコレステリック樹脂層、などが挙げられる。
 コレステリック樹脂層は、例えば、樹脂層形成用の適切な支持体上にコレステリック液晶組成物の膜を設け、前記コレステリック液晶組成物の膜を硬化して得ることができる。得られた層は、そのままコレステリック樹脂層として用いることができる。
 コレステリック樹脂層を形成するためのコレステリック液晶組成物としては、例えば、液晶性化合物を含有し、支持体上に膜を形成した際にコレステリック液晶相を呈しうる組成物を用いることができる。ここで液晶性化合物としては、高分子化合物である液晶性化合物、及び重合性液晶性化合物を用いることができる。コレステリック液晶組成物は、液晶性化合物を1種単独で含んでいてもよく、2種以上の任意の組み合わせて含んでいてもよい。
 高い熱安定性を得る上では、重合性液晶性化合物を用いることが好ましい。かかる重合性液晶性化合物を、コレステリック規則性を呈した状態で重合させることにより、コレステリック液晶組成物の膜を硬化させ、コレステリック規則性を呈したまま硬化した非液晶性の樹脂層を得ることができる。
 重合性液晶性化合物の例としては、下記の一般式(1)で表される棒状液晶性化合物が挙げられる。
 R-C-D-C-M-C-D-C-R  (1)
 一般式(1)において、R及びRは、それぞれ独立して、重合性官能基を表す。
 重合性官能基の例としては、カルボキシル基、(メタ)アクリロイル基、エポキシ基、チオエポキシ基、メルカプト基、イソシアネート基、イソチオシアネート基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、ヒドロキシル基、アルコキシシリル基、及びアミノ基などが挙げられる。
 一般式(1)において、D及びDは、それぞれ独立して、単結合、炭素原子数1~20個の直鎖状又は分岐鎖状のメチレン基及びアルキレン基等の二価の飽和炭化水素基、並びに、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。
 一般式(1)において、C~Cは、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される基を表す。
 一般式(1)において、Mはメソゲン基を表す。Mの具体例を挙げると、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類の群から選択された2~4個の骨格が、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-等の結合基によって結合されて形成される基を表す。
 前記のメソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素原子数1~10のアルキル基、シアノ基、ニトロ基、-O-R、-O-C(=O)-R、-C(=O)-O-R、-O-C(=O)-O-R、-NR-C(=O)-R、-C(=O)-NR、または-O-C(=O)-NRを表す。
 ここで、R及びRは、水素原子又は炭素原子数1~10のアルキル基を表す。R及びRがアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、Rは、水素原子または炭素原子数1~6のアルキル基を表す。前記「置換基を有してもよい炭素原子数1~10個のアルキル基」における置換基としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~6個のアルコキシ基、炭素原子数2~8個のアルコキシアルコキシ基、炭素原子数3~15個のアルコキシアルコキシアルコキシ基、炭素原子数2~7個のアルコキシカルボニル基、炭素原子数2~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。
 棒状液晶性化合物の好ましい具体例としては、以下の化合物(B1)~(B10)が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 コレステリック液晶組成物中の液晶性化合物の濃度は、特に限定されないが、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは14重量%以上であり、特に好ましくは15重量%以上であり、好ましくは40重量%以下、より好ましくは35重量%以下、更に好ましくは30重量%以下である。
 コレステリック液晶組成物は、液晶性化合物の配向を助けるための配向助剤を含んでいてもよい。配向助剤は、液晶性を有さない物質であってもよい。
 配向助剤の例としては、下記一般式(2)で表される化合物が挙げられる。
 R-A-Z-A-R  (2)
 一般式(2)において、R及びRは、それぞれ独立して、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、任意の結合基が介在していてもよい(メタ)アクリロイル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基を表す。
 前記アルキル基及びアルキレンオキサイド基は、置換されていなくてもよく、ハロゲン原子で1つ以上置換されていてもよい。さらに、アルキル基及びアルキレンオキサイド基のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。
 また、前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリロイル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1~2個のアルキル基及び/又はアルキレンオキサイド基と結合していてもよい。
 R及びRとして好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリロイル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。
 R及びRの少なくとも一方は重合性官能基であることが好ましい。R及び/又はRとして重合性官能基を有することにより、前記一般式(2)で表される化合物が硬化時に液晶層中に固定され、より強固な膜である液晶硬化物層を形成することができる。ここで重合性官能基とは、例えば、重合性液晶性化合物と同様のものが挙げられ、中でもカルボキシル基、(メタ)アクリロイル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基が好ましい。
 一般式(2)において、A及びAはそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-ジイル基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-ジイル基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていなくてもよく、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。さらに、A及びAのそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。
 A及びAとして特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基が挙げられる。これらの芳香環骨格は脂環式骨格と比較して比較的剛直であり、重合性液晶性化合物のメソゲンとの親和性が高く、配向均一能がより高くなる。
 一般式(2)において、Zは単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される。Zとして特に好ましいものとしては、単結合、-OCO-及び-CH=N-N=CH-が挙げられる。
 一般式(2)で表される化合物として特に好ましい具体例としては、例えば、下記の化合物(A1)~(A10)が挙げられる。なお、化合物(A3)において、「*」はキラル中心を表す。
Figure JPOXMLDOC01-appb-C000002
 コレステリック液晶組成物は、カイラル剤を含んでいてもよく、カイラル剤を含むことが好ましい。通常、コレステリック樹脂層のねじれ方向は、使用するカイラル剤の種類及び構造により適宜選択できる。ねじれを右方向とする場合には、右旋性を付与するカイラル剤を用い、ねじれ方向を左方向とする場合には、左旋性を付与するカイラル剤を用いることで、実現できる。カイラル剤の具体例としては、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号公報、国際公開第98/00428号、特開2007-176870号公報、等に掲載されるものを適宜使用することができ、例えばBASF社パリオカラーのLC756として入手できる。また、カイラル剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 カイラル剤の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。カイラル剤の具体的な量は、コレステリック液晶組成物中で、例えば、1重量%~60重量%である。
 コレステリック液晶組成物は、重合開始剤を含んでいてもよい。
 重合開始剤の例としては、光重合開始剤が挙げられる。光重合開始剤としては、例えば、紫外線又は可視光線によってラジカル又は酸を発生させる公知の化合物が使用できる。
 光重合開始剤の具体例としては、ベンゾイン、ベンジルジメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナミックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、p,p’-ジクロロベンゾフェノン、p,p’-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタリン、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル-2-(o-ベンゾイルオキシム)]、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)などのカルバゾールオキシム化合物、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチレンスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。
 市販品としては、例えば、BASF社のイルガキュアOXE02などを用いることができる。
 重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 コレステリック液晶組成物は、界面活性剤を含んでいてもよい。界面活性剤としては、例えば、配向を阻害しないものを適宜選択して使用しうる。このような界面活性剤としては、例えば、疎水基部分にシロキサン又はフッ化アルキル基を含有するノニオン系界面活性剤が好適に挙げられる。中でも、1分子中に2個以上の疎水基部分を持つオリゴマーが特に好適である。これらの界面活性剤の具体例としては、OMNOVA社のPolyFoxのPF-151N、PF-636、PF-6320、PF-656、PF-6520、PF-3320、PF-651、PF-652;ネオス社のフタージェントのFTX-209F、FTX-208G、FTX-204D;セイミケミカル社のサーフロンの、KH-40、S420;等を用いることができる。
 界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 コレステリック液晶組成物は、硬化後の膜強度向上及び耐久性向上のために、任意に架橋剤を含有しうる。架橋剤としては、コレステリック樹脂層の架橋密度を高めることができ、かつ配向均一性を悪化させないものを適宜選択し用いることができる。かかる架橋密度の上昇は、液晶組成物の膜の硬化時に硬化と同時に起こる反応、硬化後に熱処理を行うことによる反応の促進、又は湿気により自然に進行する反応により達成されうる。そのため、例えば、紫外線、熱、湿気等で硬化する任意の架橋剤を好適に使用できる。
 架橋剤の例としては、多官能アクリレート化合物;アジリジン化合物;イソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;アルコキシシラン化合物;が挙げられる。また、架橋剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 コレステリック液晶組成物は、必要に応じてさらに他の任意成分を含有しうる。この任意成分の例としては、溶媒、ポットライフ向上のための重合禁止剤、耐久性向上のための酸化防止剤、紫外線吸収剤、及び、光安定化剤が挙げられる。また、これらの任意成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの任意成分の量は、所望する光学的性能を低下させない範囲で任意に設定しうる。
 コレステリック液晶組成物の製造方法は、特に限定されず、上記各成分を混合することにより製造することができる。
 前記の光硬化性のコレステリック液晶組成物を用意した後で、基材フィルム上にその液晶組成物の膜を設ける。通常、液晶組成物を基材フィルムの表面に塗布することにより、液晶組成物の膜を設ける。また、基材フィルムが配向膜を有する場合には、通常、配向膜上に液晶組成物の膜を設ける。さらに、液晶組成物を塗布する前に、必要に応じて、基材フィルムの表面にコロナ放電処理及びラビング処理等の処理を施してもよい。
 基材フィルム上に液晶組成物の膜を設けた後で、必要に応じて、配向処理を行ってもよい。配向処理は、例えば液晶組成物の膜を50℃~150℃で0.5分間~10分間加温することにより行いうる。配向処理を施すことにより、膜中の液晶組成物を良好に配向させることができる。
 その後、液晶組成物の膜を硬化させるために、通常、硬化処理を行う。硬化処理は、例えば、1回以上の光照射と加温処理との組み合わせにより行うことができる。
 加温条件は、例えば、通常40℃以上、好ましくは50℃以上、また、通常200℃以下、好ましくは140℃以下の温度において、通常1秒以上、好ましくは5秒以上、また、通常3分以下、好ましくは120秒以下の時間としうる。
 また、光照射に用いる光とは、可視光のみならず紫外線及びその他の電磁波をも含む。光照射は、例えば、波長200nm~500nmの光を0.01秒~3分照射することにより行うことができる。この際、照射される光のエネルギーは、例えば、0.01mJ/cm~50mJ/cm2としうる。
 0.01mJ/cm~50mJ/cm2の微弱な紫外線照射と加温とを複数回交互に繰り返すことにより、らせん構造のピッチの大きさを連続的に大きく変化させた、反射帯域の広い円偏光分離機能を有するコレステリック樹脂層を得ることができる。さらに、上記の微弱な紫外線照射等による反射帯域の拡張を行った後に、50mJ/cm~10,000mJ/cm2といった比較的強い紫外線を照射し、液晶性化合物を完全に重合させることにより、機械的強度の高いコレステリック樹脂層を得ることができる。上記の反射帯域の拡張及び強い紫外線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)中で行ってもよい。
 前記のような液晶組成物の塗布及び硬化の工程は、1回に限られず、塗布及び硬化を複数回繰り返して行ってもよい。これにより、2層以上を含むコレステリック樹脂層を形成できる。ただし、上記の例において説明した液晶組成物を用いることにより、1回のみの液晶組成物の塗布及び硬化によっても、良好に配向した棒状液晶性化合物を含み、かつ5μm以上といった厚みのコレステリック樹脂層を容易に形成することができる。
 反射型円偏光子としては、前記のとおり(2)反射型直線偏光子と、第一のλ/4板と、第二のλ/4板とを含む複層体を用いうる。かかる複層体に含まれる反射型直線偏光子の例としては、ワイヤグリッド型直線偏光子、多層反射型直線偏光子(例、3M社製「DBEF」)が挙げられる。
 基材層の厚みは、特に限定されないが、好ましくは3.0μm以上、より好ましくは4.0μm以上、特に好ましくは4.5μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは10μm以下である。
 [1.2.第一の印刷層]
 第一の印刷層に含まれる樹脂顔料は、コレステリック規則性を有する樹脂層の破片からなる。樹脂顔料は、コレステリック規則性を有する樹脂層(以下、樹脂層A1ともいう。)を形成し、この層を、破砕等して破片にすることにより製造できる。
 樹脂層A1は、例えば、前記基材層としての、コレステリック規則性を有する樹脂層A2と同様に、樹脂層形成用の適切な支持体上にコレステリック液晶組成物の膜を設け、前記コレステリック液晶組成物の膜を硬化して得ることができる。コレステリック樹脂層を形成するためのコレステリック液晶組成物の例としては、樹脂層A2を形成するためのコレステリック液晶組成物と同様の例及び好ましい例が挙げられる。
 樹脂層A1は、可視波長帯域の少なくとも一の波長において、反射率が40%以上であることが好ましい。これにより、真贋判定部材に非偏光を入射させて観察された反射像が明瞭となり、真贋判定部材の真正性を判定することが容易となる。樹脂層A1の反射率は、通常50%以下である。
 また、樹脂層A1は、反射率が35%以上50%以下である反射帯域の半値幅が350nm以上であることが好ましい。広い波長範囲において樹脂層A1が円偏光分離機能を発揮することにより、真贋判定部材の真正性判定を、広い範囲の波長において行うことができる。また、樹脂層A1の破片からなる樹脂顔料を含む第一の印刷層による反射光を、金属調の白色(銀色)に近い色にすることができ、デザインの自由度を高めることができる。
 樹脂層A1の厚みは、特に限定されないが、好ましくは3.0μm以上、より好ましくは4.0μm以上、特に好ましくは4.5μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、特に好ましくは10μm以下である。
 樹脂層A2と樹脂層A1とは、同一のコレステリック液晶組成物から、同一の方法により形成された同一の層であってもよいし、互いに異なる層であってもよい。
 樹脂層A2と樹脂層A1とは、同一のねじれ方向のコレステリック規則性を有することが好ましい。樹脂層A2及び樹脂層A1におけるコレステリック規則性を、同一のねじれ方向とすることは、例えば、樹脂層A2又は樹脂層A1を形成するためのコレステリック液晶組成物において、使用するカイラル剤の種類及び構造を、適宜選択することにより達成できる。
 前記樹脂層A1から樹脂顔料を製造する方法の例としては、基材フィルム上に樹脂層A1を形成した後、基材フィルムから樹脂層A1を剥離して樹脂層片を得て、得られた樹脂層片をそのまま、または、更に粉砕機などで粉砕して、樹脂層A2の破片である樹脂顔料を得る方法が挙げられ、さらなる具体例としては、特開2015-027743号公報に記載された方法が挙げられる。
 樹脂顔料に含まれる破片の寸法は、第一の印刷層を形成するための印刷方法などに応じて、任意に設定できるが、スクリーン印刷法により第一の印刷層を形成する場合、樹脂顔料は、目開きが100μm以下の篩を通過した破片が好ましく、目開きが60μm以下の篩を通過した破片であることがより好ましい。樹脂顔料は、目開きが5μm未満の篩を通過しない破片が好ましい。
 第一の印刷層は、任意の方法で基材層上に設けられる。第一の印刷層は、基材層上に、印刷法により設けることが好ましい。本明細書において、「印刷法」には、印刷版を用いて基材層にインクを転写する方法に加えて、インクジェット印刷法のように、印刷版を用いずに、基材層にインクを塗布する方法も含まれる。
 なかでも、第一の印刷層は、スクリーン印刷法により基材層上に設けられることが好ましい。
 樹脂顔料を含む第一の印刷層は、例えば、基材層上に、樹脂顔料を含むインクを転写又は塗布することにより形成できる。
 インクにおける樹脂顔料の含有量は、特に限定されないが、例えば1重量%以上、例えば5重量%以上、例えば15重量%以下、例えば10重量%以下としうる。
 樹脂顔料を含むインクは、前記樹脂顔料に加えて、任意の成分を含みうる。インクに含まれる任意の成分としては、溶媒(分散媒を含む)、バインダー樹脂、消泡剤、安定剤、ワックス、界面活性剤等が挙げられる。
 バインダー樹脂としては、熱硬化型樹脂及び光硬化型樹脂が挙げられる。
 第一の印刷層の厚みは、特に限定されず、第一の印刷層を形成する印刷方法などに応じて任意に設定できるが、例えば、30μm~50μmとしうる。
 第一の印刷層は、基材層の一方の主面の一部分に接するように設けられて、真贋判定部材の厚み方向から見て、パターンを形成していることが好ましい。パターンの例としては、特に限定されないが、四角形、三角形などの図形、文字などが挙げられる。
 [1.3.第二の印刷層]
 第二の印刷層は、円偏光分離機能を有さない金属顔料を含む。円偏光分離機能を有さないとは、円偏光のうち、一方の回転方向を有する円偏光及び他方の回転方向を有する円偏光の両方を、互いに同じ反射率で反射し、かつ互いに同じ透過率(透過率は、0%であってもよい。)で透過させることを意味する。金属顔料は、通常、金属光沢を有する材料であって、円偏光分離機能を有さない材料を含む。通常、金属の粉体は、円偏光分離機能を有さないため、第二の印刷層に含まれうる金属顔料として用いうる。また、シリカなどの金属酸化物も、金属顔料の材料として用いうる。
 金属顔料の材料の例としては、アルミニウム、銅、銀、シリカが挙げられる。金属顔料として、これら材料の粉体、フレークを用いうる。また、ガラスフレークなどの、金属以外を材料とするフレークの表面に、金属又はシリカなどの金属酸化物の膜を形成して得られるフレークも、金属顔料として用いうる。
 金属顔料の寸法は、第二の印刷層を形成するための印刷方法などに応じて、任意に設定できるが、スクリーン印刷法により第二の印刷層を形成する場合、金属顔料は、目開きが100μm以下の篩を通過した破片が好ましく、目開きが60μm以下の篩を通過した破片であることがより好ましい。金属顔料は、目開きが5μm未満の篩を通過しない破片が好ましい。
 第二の印刷層は、基材層上に、印刷法により設けることが好ましく、なかでもスクリーン印刷法により設けられることが好ましい。
 金属顔料を含む第二の印刷層は、例えば、基材層上に、金属顔料を含むインクを転写又は塗布することにより形成できる。
 金属顔料を含むインクは、前記金属顔料に加えて、任意の成分を含みうる。インクに含まれる任意の成分としては、前記樹脂顔料を含むインクに含まれうる成分と同様の成分が挙げられる。
 第二の印刷層の厚みは、特に限定されず、第二の印刷層を形成する印刷方法などに応じて任意に設定できるが、例えば、30μm~50μmとしうる。
 第二の印刷層は、基材層の一方の主面の一部分に接するように設けられて、真贋判定部材の厚み方向から見て、パターンを形成していることが好ましい。パターンの例としては、特に限定されないが、四角形、三角形などの図形、文字などが挙げられる。第一の印刷層と、第二の印刷層とは、同じパターンであっても、異なったパターンであってもよい。
 第一の印刷層と、第二の印刷層とは、真贋判定部材の厚み方向から見て、重ならないように設けられていることが好ましい。
 第二の印刷層は、第一の印刷層が設けられた基材層主面と同じ主面上に設けられていてもよく、第一の印刷層が設けられた基材層主面と異なる主面上に設けられていてもよい。一実施形態では、第二の印刷層は、第一の印刷層が設けられた基材層主面と同じ主面上に設けられる。
 [1.4.真贋判定部材の作用]
 以下、本発明の一実施形態に係る真贋判定部材の作用について、図を用いて説明する。図1は、本発明の一実施形態に係る真贋判定部材を、厚み方向から見た模式的な平面図である。図2は、図1のII-II線による切断面を模式的に示す図である。図3は、本発明の一実施形態に係る真贋判定部材を一方の主面側から観察したときの説明図である。図4は、本発明の一実施形態に係る真贋判定部材を他方の主面側から観察したときの説明図である。図5は、本発明の一実施形態に係る真贋判定部材に非偏光を照射して観察したときの像を示す模式図である。図6は、図5における本発明の一実施形態に係る真贋判定部材を裏返して、非偏光を照射して観察したときの像を示す模式図である。図7は、比較例に係る真贋判定部材を、厚み方向から見た模式的な平面図である。図8は、図7のVIII-VIII線による切断面を模式的に示す図である。図9は、比較例に係る真贋判定部材を一方の主面側から観察したときの説明図である。図10は、比較例に係る真贋判定部材を他方の主面側から観察したときの説明図である。
 図1に示したとおり、本発明の一実施形態に係る真贋判定部材100は、基材層10と、第一の印刷層20と、第二の印刷層30とを含む。基材層10は、左円偏光を透過させ、右円偏光を反射する、反射型円偏光子としての機能を有する、コレステリック規則性を有する樹脂層である。第一の印刷層20は、基材層10と同一のねじれ方向のコレステリック規則性を有する樹脂層の破片を含む。第一の印刷層20は、基材層10と同様に、左円偏光を透過させ、右円偏光を反射する円偏光分離機能を有する。第二の印刷層30は、円偏光分離機能を有さない金属顔料を含む。第一の印刷層20と第二の印刷層30とは、真贋判定部材100の厚み方向(紙面と垂直な方向)から見て、パターンを形成している。本実施形態では、第一の印刷層20と第二の印刷層30とで、数字の「8」のパターンを形成している。図2に示すとおり、第一の印刷層20と第二の印刷層30とは、基材層10の二つの主面である、主面10U及び主面10Dのうち、一方の主面10Uの上に直接設けられている。第一の印刷層20と第二の印刷層30とは、互いに重ならないように主面10Uの上に配置されている。
 真贋判定部材100の主面10U側から非偏光を入射させて、主面10U側から真贋判定部材100を観察した場合の、像の見え方について、図3を用いて説明する。図3に示したとおり、主面10Uの側から非偏光である光L1RLを第一の印刷層20に入射させると、第一の印刷層20は前記の円偏光分離機能を有するので、左円偏光である光L2を透過させ、右円偏光である光L4を反射する。その結果、第一の印刷層20による反射光が視認される。光L2は、基材層10を透過し、光L3となる。
 第二の印刷層30に、主面10U側から非偏光である光L5RLを入射させると、光L5RLは第二の印刷層30に含まれる金属顔料により反射される。その結果、第二の印刷層30による反射光として、非偏光である光L6RLが視認される。
 第一の印刷層20及び第二の印刷層30による反射光が視認されるので、図5に示すとおり、反射像(1)として、数字の「8」が視認される。
 次いで、真贋判定部材100の主面10Dの側から非偏光を入射させて、主面10D側から真贋判定部材100を観察した場合の、像の見え方について、図4を用いて説明する。図4に示したとおり、主面10D側から非偏光である光L26RLを入射させると、基材層10は、左円偏光を透過させ、右円偏光を反射する機能を有するので、左円偏光である光L27は透過するが、右円偏光は透過されず、第一の印刷層20に到達しない。第一の印刷層20は、前記の円偏光分離機能を有するので、第一の印刷層20による反射光は、視認されない。第一の印刷層20に照射された左円偏光である光L27は、第一の印刷層20を透過し、光L28となる。
 第二の印刷層30に、主面10D側から、非偏光である光L20RLを入射させると、基材層10は左円偏光である光L21を透過させる。透過した光L21は、第二の印刷層30に含まれる金属顔料により反射される。その際、金属反射により、円偏光の回転方向は逆となるので、第二の印刷層30による反射光は、右円偏光である光L22となる。光L22は、基材層10により反射されて、右円偏光である光L23が第二の印刷層30に入射する。光L23は、第二の印刷層30により反射されて、円偏光の回転方向が逆となり、左円偏光である光L24となる。第二の印刷層30により反射された光L24は、左円偏光であるので、基材層10を透過して、左円偏光である光L25となる。すなわち、第二の印刷層30による反射光が、光L25として視認される。
 以上のとおり、第一の印刷層20による反射光は視認されず、第二の印刷層30による反射光が視認される。図6は、図5における真贋判定部材100を、図5に示す軸R1を回転軸として裏返して、非偏光を照射して観察した場合の像の見え方を説明する図である。図6に示すとおり、第一の印刷層20による反射光は視認されず、第二の印刷層30による反射光が視認されるので、反射像(2)として、数字の「5」が視認される。
 以上説明したとおり、真贋判定部材100は、一方の主面10Uの側から非偏光を入射させて観察して得られた反射像(1)と、他方の主面10Dの側から非偏光を入射させて観察して得られた反射像(2)とが、異なる。したがって、反射像(1)と反射像(2)とが異なることを、真贋判定部材100が真正であることの判定条件の一つとすることができる。
 なお、本実施形態では、反射型円偏光子である基材層10は、コレステリック規則性を有する樹脂層であるが、別の実施形態では、基材層を、反射型直線偏光子と、前記反射型直線偏光子の一方の主面上に設けられた第一のλ/4板と、前記反射型直線偏光子の他方の主面上に設けられた第二のλ/4板とを含む反射型円偏光子としてもよい。
 次いで、本発明に係る真贋判定部材の作用と対比するために、基材層が反射型円偏光子ではなく、吸収型の円偏光子である場合の真贋判定部材について作用を説明する。
 図7に示したとおり、真贋判定部材500は、基材層510と、第一の印刷層520と、第二の印刷層530とを含む。基材層510は、左円偏光を透過させ、右円偏光を吸収する、吸収型円偏光子としての機能を有する。第一の印刷層520は、左円偏光を透過させ、右円偏光を反射する円偏光分離機能を有する。第二の印刷層530は、円偏光分離機能を有さない金属顔料を含む。第一の印刷層520と第二の印刷層530とは、真贋判定部材500の厚み方向(紙面と垂直な方向)から見て、パターンを形成している。本例では、真贋判定部材100と同様に、第一の印刷層520と第二の印刷層530とで、数字の「8」のパターンを形成している。図8に示すとおり、基材層510は、λ/4板としての機能を有する位相差層512と、直線偏光子511と、λ/4板としての機能を有する位相差層513とが、この順で積層されてなる。位相差層512の遅相軸と、直線偏光子511の吸収軸と、位相差層513の遅相軸とは、基材層510の透過光が左円偏光となるような角度をなしている。図8に示すとおり、第一の印刷層520と第二の印刷層530とは、基材層10の二つの主面である、主面510U及び主面510Dのうち、一方の主面510Uの上に直接設けられている。第一の印刷層520と第二の印刷層530とは、互いに重ならないように主面510Uの上に配置されている。
 真贋判定部材500の主面510U側から、非偏光を入射させて主面510U側から真贋判定部材500を観察した場合の、像の見え方について、図9を用いて説明する。図9に示したとおり、主面510Uの側から非偏光である光L30RLを第一の印刷層520に入射させると、左円偏光である光L31を透過させ、右円偏光である光L35を反射する。その結果、第一の印刷層520による反射光が視認される。光L31は、位相差層512を透過して直線偏光である光L32STとなり、直線偏光子511を透過する。透過した直線偏光であるL33STは、位相差層513を透過することにより、左円偏光である光L34となる。
 非偏光である光L36RLを第二の印刷層530に入射させると、光L36RLは第二の印刷層530に含まれる金属顔料により反射される。その結果、第二の印刷層530による反射光として、非偏光である光L37RLが視認される。
 第一の印刷層520及び第二の印刷層530による反射光が視認されるので、反射像として数字の「8」が視認される。
 次いで、真贋判定部材500の主面510D側から非偏光を入射させて、主面510D側から真贋判定部材500を観察した場合の、像の見え方について、図10を用いて説明する。図10に示したとおり、主面510Dの側から非偏光である光L46RLを入射させると、光L46RLは位相差層513を透過する。透過した、非偏光である光L47RLのうち、直線偏光子511の吸収軸と平行方向の振動方向を有する直線偏光が吸収され、吸収軸と垂直方向の振動方向を有する直線偏光である、光L48STのみが透過する。透過した光L48STは、位相差層512を透過することにより、左円偏光である光L49となる。光L49は、第一の印刷層520に入射するが、左円偏光であるので、第一の印刷層520に反射されない。したがって、第一の印刷層520による反射光は視認されない。光L49は、第一の印刷層520を透過し、光L50となる。
 主面510Dの側から入射された非偏光である光L40RLは、位相差層513を通過して非偏光である光L41RLとなり、光L41RLのうち一部の光が直線偏光子511を通過して直線偏光である光L42STとなり、光L42STは、位相差層512を透過することにより、左円偏光である光L43となる。光L43は、第二の印刷層530に含まれる金属顔料により反射されて、円偏光の回転方向が逆となり、右円偏光である光L44となる。光L44は、位相差層512を透過することにより、直線偏光である光L45STに変換される。第二の印刷層530による反射により、入射光の光L43に対して反射光の光L44の回転方向が逆転している結果、光L45STは、直線偏光子511の吸収軸と平行方向の振動方向を有する直線偏光である。そのため、直線偏光子511により吸収される。したがって、第二の印刷層530の反射光は視認されない。
 よって、真贋判定部材100と異なり、主面510Dの側から観察した場合、第一の印刷層520による反射光のみならず、第二の印刷層530による反射光も視認されない。
 これに対して、本発明の一実施形態である真贋判定部材100は、一方の主面10Uから観察しても、他方の主面10Dから観察しても、第二の印刷層30による反射光を金属色として視認できる。この作用を利用して、真贋判定部材100は、表面及び裏面の両面に、様々なパターンを表現することができる。
 [1.5.真贋判定部材の用途]
 真贋判定部材は、表と裏とで、表示される反射像が異なることを利用して、真正性を識別すべき物品に付して物品の真正性を判定するために好適に用いられる。真正性を判定すべき物品の例としては、金券、商品券、チケット、証明書、セキュリティカード等の物品が挙げられる。真贋判定部材をこれら物品そのものとしてもよい。真贋判定部材は、真正性判定用のラベルなどの形態として用いることもできる。
 [2.真贋判定部材の真正性判定方法]
 本発明の一実施形態に係る真贋判定部材は、前記作用を利用することにより、真正性を判定できる。
 本発明の一実施形態に係る真贋判定部材の判定方法は、真贋判定部材の一方の主面側から非偏光を入射させて観察し、反射像(1)を得る工程(1)、前記真贋判定部材の、他方の主面側から非偏光を入射させて観察し、反射像(2)を得る工程(2)、及び前記反射像(1)と前記反射像(2)とが異なることを判定する工程(3)を含む。
 工程(1)と工程(2)とは、通常同時に行われない。工程(1)及び工程(2)の後に、工程(3)が行われる。
 異なるとは、反射像(1)と反射像(2)とを比較した場合に、一方の像にはない部分が、他方の像に現れていることを意味し、反射像(1)と反射像(2)とが、鏡像の関係にある場合を通常含まない。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 [実施例1]
 (1-1.コレステリック液晶組成物の調製)
 重合性液晶化合物としてBASF社製「Paliocolor LC242」と、カイラル剤としてBASF社製「Paliocolor LC756」と、光重合開始剤としてBASF社製「IrgacureOXE02」と、レベリング剤としてAGCセイミケミカル社製「サーフロンS420」と、溶剤としてメチルエチルケトン(MEK)とを、表1記載の配合で混合することにより、コレステリック樹脂層を形成するためのコレステリック液晶組成物(固形分20重量%)を調製した。
 「Paliocolor LC242」、「Paliocolor LC756」、及び「IrgacureOXE02」の化学構造を下記に示す。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-T000004
 (1-2.コレステリック樹脂層の作製)
 シクロオレフィンポリマー(COP)フィルム上に、前記のとおり調製したコレステリック液晶組成物を#10のワイヤーバーを使用して塗布し、液晶組成物の塗膜を形成した。液晶組成物の塗膜を、140℃で2分間保持して配向処理し、次いで当該塗膜に対して25mJ/cmの微弱な紫外線(波長365nm)の照射処理と、それに続く90℃で1分間の加温処理とからなるプロセスを実施し、次いで窒素雰囲気下で2000mJ/cmの紫外線を照射して、塗膜を硬化させた。これにより、厚み5μmのコレステリック樹脂層がPETフィルム上に形成されている、円偏光分離機能を有するフィルムFを作成した。コレステリック樹脂層について、波長380nm~波長830nmの範囲で、日本分光社製「V570」を用いて光線反射率を測定した。その結果、波長380nm以上830nm以下の範囲の少なくとも一の波長において、反射率が40%以上であった。得られた反射率スペクトルから、反射率が35%以上50%以下である反射帯域において、最大の反射率の半値である波長範囲(半値幅)を読み取ったところ、350nmであった。コレステリック樹脂層が右円偏光を反射することを、コレステリック樹脂層を、右円偏光板を通して観察することにより確認した。ここで、右円偏光板は、左円偏光を吸収し、右円偏光を透過させる機能を有する。具体的には、右円偏光板を通してコレステリック樹脂層からの反射光を観察し、色付いた反射光が見える事により確認した。
 (1-3.コレステリック樹脂層の破片(樹脂顔料)の製造)
 以下に述べるように、特開2015-027743号公報の実施例記載の方法を参照して、フィルムFからコレステリック樹脂層を剥離して、破片とし、樹脂顔料として用いた。
 フィルム送出部、剥離部、及び、フィルム回収部を備える製造装置を用意した。剥離部は、鋭角に設けられた角部分を有するバー、及び、角部分の直ぐ下流に設けられた空気を噴射しうるノズルを備えていた。この際、バーの角部分の角度は、フィルムFを角度θ=30°~60°で折り返せるように設定した。角部分はR=0.2mm~0.3mmの面取り構造となっている。
 フィルム送出部に、バーの角部分においてPETフィルムよりもコレステリック樹脂層を外にしてフィルムFを折り返せる向きで、フィルムFを取り付けた。そして、フィルム回収部によってフィルムFに対して搬送方向に張力を与えた状態で、フィルム送出部からフィルムFを送り出した。この際、フィルムに与える張力の大きさは、80N/mに設定した。また、ノズルからは空気を圧力0.5MPaで噴射させた。
 フィルムFは、フィルム送出部から送出された時点から搬送方向に伸び始めた。さらに、その後、コレステリック樹脂層の引張破断伸度以上に伸びたフィルムFは、バーの角部分において折り返され、更に多くの亀裂が形成された。
 その後、フィルムFはノズルまで搬送され、ノズルから空気を吹き付けられた。この空気により、亀裂が形成されたコレステリック樹脂層は剥離片となって吹き飛ばされた。
 その後、得られたコレステリック樹脂層の剥離片を回収器により回収した。また、コレステリック樹脂層を剥離されたPETフィルムは、フィルム回収部でロール状に巻き取って回収した。
 回収した剥離片を、カッターミルで粉砕してコレステリック樹脂層の破片とし、次いで、目開き51μmの篩を通した。篩を通過したコレステリック樹脂層の破片を回収して、樹脂顔料とした。樹脂顔料を構成する、樹脂層の破片は、フィルムFが備えるコレステリック樹脂層を原料として製造されているので、フィルムFが備えるコレステリック樹脂層と、同一のねじれ方向のコレステリック規則性を有する。
 (1-4.樹脂顔料を含むインクの調製)
 得られた樹脂顔料を、熱硬化型メジウム(セイコーアドバンス社製「LOV(E)-800」)に、インク全量に対して8重量%となるように加えて、第一の印刷層形成用のインク1とした。
 (1-5.金属顔料を含むインクの調製)
 アルミニウムの粉末(堀金箔紛株式会社社製「スタンダードNo.60」)を熱硬化型メジウム(セイコーアドバンス社製「LOV(E)-800」)に、インク全量に対して10重量%となるように加えて、第二の印刷層形成用のインク2とした。
 (1-6.真贋判定部材の製造)
 基材層10としてのフィルムFの、コレステリック樹脂層の面に、図1に示すパターンとなるように第一の印刷層20及び第二の印刷層30をそれぞれインク1及びインク2を用いてスクリーン印刷法により形成し、真贋判定部材100を製造した。
 (1-7.工程(1))
 真贋判定部材100を、第一の印刷層20及び第二の印刷層30が印刷された側の面(主面10Uとする。)を上にして白い紙の上に載せた。白い紙の上に載せた真贋判定部材100に、主面10Uの側から非偏光を照射して、主面10Uの側から反射像を観察した。その結果、図5に示すとおりに、数字の「8」が観察された。観察された反射像(1)としての数字の「8」は、銀色であった。
 (1-8.工程(2))
 次いで、真贋判定部材100を、図5に示す軸R1を軸にして裏返して、第一の印刷層20及び第二の印刷層30が印刷されていない側の面(主面10Dとする。)を上にして白い紙の上に載せた。真贋判定部材100に、主面10Dの側から非偏光を照射して、主面10Dの側から反射像を観察した。その結果、第一の印刷層20による反射光は観察されず、第二の印刷層30による反射光が観察されて、図6に示すとおりに、数字の「5」が観察された。観察された反射像(2)としての数字の「5」は、銀色であった。
 (1-9.工程(3))
 反射像(1)としての数字の「8」と、反射像(2)としての数字の「5」とは、明らかに異なり、鏡像の関係でもない。
 [実施例2]
 (2-6.真贋判定部材の製造)
 基材層として、反射型直線偏光子を含む、反射型円偏光子を用意した。この反射型円偏光子は、反射型直線偏光子(3M社製「DBEF」)の両面に、λ/4板としての機能を有する二枚の位相差層(日本ゼオン社製「ゼオノアフィルム ZDシリーズ」)が積層されている。この円偏光板では、透過光が左円偏光となるように、反射型直線偏光子の両面に二枚の位相差層が配置されている。
 基材層の一方の面に、第一の印刷層としてインク1を用いて三角形のパターンをスクリーン印刷法により印刷し、また第二の印刷層としてインク2を用いて、三角形の輪郭パターンをスクリーン印刷法により印刷して、真贋判定部材を製造した。
 インク2により印刷されたパターンは、インク1により印刷された三角形のパターンの輪郭に沿うものである。インク1及びインク2は、実施例1と同様にして調整されたものである。
 (2-7.工程(1))
 次いで、真贋判定部材を、第一の印刷層及び第二の印刷層が印刷された側の面(第一の主面とする。)を上にして白い紙の上に載せた。白い紙の上に載せた真贋判定部材に、第一の主面側から非偏光を照射して、第一の主面の側から反射像を観察した。その結果、第一の印刷層及び第二の印刷層による反射光が観察されて、三角形が観察された。観察された反射像(1)としての三角形は、銀色であった。
 (2-8.工程(2))
 次いで、真贋判定部材を裏返して、第一の印刷層及び第二の印刷層が印刷されていない側の面(第二の主面とする。)を上にして白い紙の上に載せた。真贋判定部材に、第二の主面の側から非偏光を照射して、第二の主面の側から反射像を観察した。その結果、第一の印刷層(三角形のパターン)による反射光は観察されず、第二の印刷層(三角形の輪郭パターン)による反射光が観察されて、三角形の輪郭のみが観察された。観察された反射像(2)としての三角形の輪郭は、銀色であった。
 (2-9.工程(3))
 反射像(1)として三角形と、反射像(2)としての三角形の輪郭とは、明らかに異なり、鏡像の関係でもない。
 また、反射像(2)としての三角形の輪郭は、黒色ではなく銀色であり、反射像(1)における三角形の輪郭の色と変わらなかった。
 [比較例1]
 (C1-6.真贋判定部材の製造)
 基材層510として、吸収型の円偏光板を用意した。この円偏光板は、吸収型の直線偏光子511(サンリッツ社製「HLC2-5618S」)の両面に、λ/4板としての機能を有する、位相差層512及び位相差層513(いずれも日本ゼオン社製「ゼオノアフィルム ZDシリーズ」)が積層されてなる。この円偏光板では、透過光が左円偏光となるように、位相差層512及び位相差層513と直線偏光子511とが配置されている。
 基材層510の、位相差層512の側の面に、図7に示すパターンとなるように第一の印刷層520及び第二の印刷層530をそれぞれインク1及びインク2を用いてスクリーン印刷法により形成し、真贋判定部材500を製造した。インク1及びインク2は、実施例1と同様にして調製されたものである。
 (C1-7.工程(1))
 次いで、真贋判定部材500を、第一の印刷層520及び第二の印刷層530が印刷された側の面(主面510Uとする。)を上にして白い紙の上に載せた。白い紙の上に載せた真贋判定部材500に、主面510Uの側から非偏光を照射して、主面510Uの側から反射像を観察した。その結果、数字の「8」が観察された。観察された反射像(1)としての数字の「8」は、銀色であった。
 (C1-8.工程(2))
 次いで、真贋判定部材500を、図7の紙面の縦方向を軸にして裏返して、第一の印刷層520及び第二の印刷層530が印刷されていない側の面(主面510Dとする。)を上にして白い紙の上に載せた。真贋判定部材500に、主面510Dの側から非偏光を照射して、主面510Dの側から反射像を観察した。その結果、銀色の反射像は観察されず、黒色の数字の「5」が観察されるのみであった。
 (C1-9.工程(3))
 前記のとおり、反射像(1)は得られたが、銀色の反射像(2)は得られなかった。
 10   基材層
 10U  主面
 10D  主面
 100  真贋判定部材
 20   第一の印刷層
 30   第二の印刷層
 500  真贋判定部材
 510  基材層
 510U 主面
 510D 主面
 511  直線偏光子
 512  位相差層
 513  位相差層
 520  第一の印刷層
 530  第二の印刷層

Claims (7)

  1.  反射型円偏光子である基材層と、
     コレステリック規則性を有する樹脂層A1の破片である樹脂顔料を含み、前記基材層上に設けられた第一の印刷層と、
     円偏光分離機能を有さない金属顔料を含み、前記基材層上に設けられた第二の印刷層とを含む、真贋判定部材。
  2.  前記真贋判定部材の一方の主面側から非偏光を入射させて観察された反射像(1)と、前記真贋判定部材の他方の主面側から非偏光を入射させて観察された反射像(2)とが異なる、請求項1に記載の真贋判定部材。
  3.  前記樹脂層A1が、可視波長帯域の少なくとも一の波長において反射率が40%以上であり、且つ、反射率が35%以上50%以下である反射帯域の半値幅が350nm以上である、請求項1又は2に記載の真贋判定部材。
  4.  前記基材層が、コレステリック規則性を有する樹脂層A2であり、前記樹脂層A1と樹脂層A2とが、同一のねじれ方向のコレステリック規則性を有する、請求項1~3のいずれか1項に記載の真贋判定部材。
  5.  前記樹脂層A2が、可視波長帯域の少なくとも一の波長において反射率が40%以上であり、且つ、反射率が35%以上50%以下である反射帯域の半値幅が350nm以上である、請求項4に記載の真贋判定部材。
  6.  前記基材層が、反射型直線偏光子と、前記反射型直線偏光子の一方の主面上に設けられた第一のλ/4板と、前記反射型直線偏光子の他方の主面上に設けられた第二のλ/4板とを含む反射型円偏光子である、請求項1又は2に記載の真贋判定部材。
  7.  請求項1~6のいずれか一項に記載の真贋判定部材の一方の主面側から非偏光を入射させて観察し、反射像(1)を得る工程(1)、
     前記真贋判定部材の、他方の主面側から非偏光を入射させて観察し、反射像(2)を得る工程(2)、及び
     前記反射像(1)と前記反射像(2)とが異なることを判定する工程(3)を含む、真贋判定部材の真正性判定方法。
PCT/JP2021/018013 2020-05-28 2021-05-12 真贋判定部材及びその真正性判定方法 WO2021241226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022526865A JPWO2021241226A1 (ja) 2020-05-28 2021-05-12
CN202180035568.5A CN115605353A (zh) 2020-05-28 2021-05-12 真伪判断构件及其真实性判断方法
EP21812477.4A EP4159454A4 (en) 2020-05-28 2021-05-12 ELEMENT FOR DETERMINING AUTHENTICITY AND METHOD FOR DETERMINING AUTHENTICITY THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020093633 2020-05-28
JP2020-093633 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241226A1 true WO2021241226A1 (ja) 2021-12-02

Family

ID=78723389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018013 WO2021241226A1 (ja) 2020-05-28 2021-05-12 真贋判定部材及びその真正性判定方法

Country Status (4)

Country Link
EP (1) EP4159454A4 (ja)
JP (1) JPWO2021241226A1 (ja)
CN (1) CN115605353A (ja)
WO (1) WO2021241226A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189966A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体及び物品
WO2023189967A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672962A (ja) 1992-08-28 1994-03-15 Asahi Denka Kogyo Kk 光学活性フェニル化合物
JP2000255200A (ja) * 1999-03-05 2000-09-19 Dainippon Printing Co Ltd 偽造防止体及び偽造判別方法
JP2000290315A (ja) 1999-04-08 2000-10-17 Asahi Denka Kogyo Kk 重合性光学活性化合物
US6468444B1 (en) 1999-03-25 2002-10-22 Basf Aktiengesellschaft Chiral compounds and their use as chiral dopants for producing cholesteric liquid crystal compositions
JP2003066214A (ja) 2001-08-22 2003-03-05 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルタの製造方法
JP2003313187A (ja) 2002-04-18 2003-11-06 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003342219A (ja) 2002-05-27 2003-12-03 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2004115414A (ja) 2002-09-25 2004-04-15 Asahi Denka Kogyo Kk 光学活性化合物及び該光学活性化合物を含有した液晶組成物
JP2004338257A (ja) * 2003-05-16 2004-12-02 Nhk Spring Co Ltd 対象物の識別媒体及び識別方法
JP2005289881A (ja) 2004-03-31 2005-10-20 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2007176870A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd キラル剤
WO2008032411A1 (en) * 2006-09-11 2008-03-20 Dai Nippon Printing Co., Ltd. Device for discriminating authenticity and substrate enabling the discrimination of authenticity
JP2013008113A (ja) 2011-06-23 2013-01-10 National Printing Bureau 真偽判別媒体
JP2014174471A (ja) * 2013-03-12 2014-09-22 Nippon Zeon Co Ltd 識別媒体、物品の識別方法、及び積層構造体
JP2015027743A (ja) 2013-07-30 2015-02-12 日本ゼオン株式会社 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
US9800428B2 (en) 2013-02-20 2017-10-24 Panasonic Intellectual Property Corporation Of America Control method for information apparatus and computer-readable recording medium
US20200049871A1 (en) * 2016-10-24 2020-02-13 Yingqiu Jiang Optical device with reflective multicolored and emissive images

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231380A (ja) * 2002-02-12 2003-08-19 Nhk Spring Co Ltd 対象物の識別媒体及び識別方法
JP4390265B2 (ja) * 2004-04-14 2009-12-24 大日本印刷株式会社 真偽判定用媒体、真偽判定用媒体ラベル、真偽判定用媒体転写シート、真偽判定可能なシート、および真偽判定可能な情報記録体
WO2011092922A1 (ja) * 2010-01-28 2011-08-04 日本発條株式会社 識別媒体およびその識別方法
JP2011232681A (ja) * 2010-04-30 2011-11-17 Nippon Zeon Co Ltd プライバシーフィルム及び液晶表示装置
JP2013018178A (ja) * 2011-07-11 2013-01-31 National Printing Bureau 真偽判別可能な印刷物
JP2014141057A (ja) * 2012-12-27 2014-08-07 Nippon Zeon Co Ltd 識別用表示媒体
WO2014181799A1 (ja) * 2013-05-08 2014-11-13 富士フイルム株式会社 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法
EP3163335A4 (en) * 2014-06-30 2018-03-14 Zeon Corporation Identification medium, method for producing identification medium, and method for using identification medium
WO2020004155A1 (ja) * 2018-06-29 2020-01-02 日本ゼオン株式会社 識別媒体、真正性判定方法、及び物品
WO2020066886A1 (ja) * 2018-09-28 2020-04-02 日本ゼオン株式会社 スレッド材、偽造防止用紙及びその製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672962A (ja) 1992-08-28 1994-03-15 Asahi Denka Kogyo Kk 光学活性フェニル化合物
JP2000255200A (ja) * 1999-03-05 2000-09-19 Dainippon Printing Co Ltd 偽造防止体及び偽造判別方法
US6468444B1 (en) 1999-03-25 2002-10-22 Basf Aktiengesellschaft Chiral compounds and their use as chiral dopants for producing cholesteric liquid crystal compositions
JP2000290315A (ja) 1999-04-08 2000-10-17 Asahi Denka Kogyo Kk 重合性光学活性化合物
JP2003066214A (ja) 2001-08-22 2003-03-05 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルタの製造方法
JP2003313187A (ja) 2002-04-18 2003-11-06 Fuji Photo Film Co Ltd 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法
JP2003342219A (ja) 2002-05-27 2003-12-03 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2004115414A (ja) 2002-09-25 2004-04-15 Asahi Denka Kogyo Kk 光学活性化合物及び該光学活性化合物を含有した液晶組成物
JP2004338257A (ja) * 2003-05-16 2004-12-02 Nhk Spring Co Ltd 対象物の識別媒体及び識別方法
JP2005289881A (ja) 2004-03-31 2005-10-20 Asahi Denka Kogyo Kk 光学活性化合物及び該化合物を含有した液晶組成物
JP2007176870A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd キラル剤
WO2008032411A1 (en) * 2006-09-11 2008-03-20 Dai Nippon Printing Co., Ltd. Device for discriminating authenticity and substrate enabling the discrimination of authenticity
JP2013008113A (ja) 2011-06-23 2013-01-10 National Printing Bureau 真偽判別媒体
US9800428B2 (en) 2013-02-20 2017-10-24 Panasonic Intellectual Property Corporation Of America Control method for information apparatus and computer-readable recording medium
JP2014174471A (ja) * 2013-03-12 2014-09-22 Nippon Zeon Co Ltd 識別媒体、物品の識別方法、及び積層構造体
JP2015027743A (ja) 2013-07-30 2015-02-12 日本ゼオン株式会社 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
US20200049871A1 (en) * 2016-10-24 2020-02-13 Yingqiu Jiang Optical device with reflective multicolored and emissive images

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189966A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体及び物品
WO2023189967A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 識別媒体

Also Published As

Publication number Publication date
CN115605353A (zh) 2023-01-13
JPWO2021241226A1 (ja) 2021-12-02
EP4159454A1 (en) 2023-04-05
EP4159454A4 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
TWI377223B (en) Biaxial film iii
WO2021241226A1 (ja) 真贋判定部材及びその真正性判定方法
WO2019131966A1 (ja) 光学素子、導光素子および画像表示装置
JP6142714B2 (ja) 樹脂薄膜の剥離片の製造方法、樹脂薄膜顔料の製造方法、塗料、偽造防止物品、セキュリティ物品及び加飾性物品
CN111936897B (zh) 胆甾醇型液晶层及其制造方法、层叠体、光学各向异性体、反射膜、防伪介质及判定方法
JP7396275B2 (ja) 識別媒体、真正性判定方法、及び物品
KR102285177B1 (ko) 액정 필름의 제조 방법 및 기능성 필름의 제조 방법
CN107848274B (zh) 胆甾型树脂层叠体、制造方法及用途
WO2016002765A1 (ja) 識別媒体、識別媒体の製造方法、及び、識別媒体の使用方法
WO2020261923A1 (ja) 表示媒体、真正性判定方法、及び表示媒体を含む物品
JP4802479B2 (ja) 重合性ビナフタレン誘導体
JP6307864B2 (ja) 真正性識別用の識別媒体の製造方法
JP7428137B2 (ja) 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
WO2018079130A1 (ja) 透過加飾フィルム
US11634636B2 (en) Method for manufacturing resin thin film stripped pieces
WO2019230840A1 (ja) 識別媒体及び識別媒体の真正性を識別する方法
US20220289988A1 (en) Composite pigment, identification medium, and authenticity determination method
WO2019230782A1 (ja) 識別媒体及び識別媒体の真正性を識別する方法
WO2021020243A1 (ja) 複合顔料、識別媒体及び真正性判定方法
WO2023189967A1 (ja) 識別媒体
WO2023189966A1 (ja) 識別媒体及び物品
TWI840375B (zh) 辨識媒介、真實性判定方法及被辨識物品
WO2022168699A1 (ja) 光学積層体及びその真正性の判別方法、並びに物品
JP7434831B2 (ja) 偏光フィルム、円偏光板及び有機エレクトロルミネッセンス表示装置
KR20230135588A (ko) 광학 적층체 및 그 진정성의 판정 방법, 그리고 물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812477

Country of ref document: EP

Effective date: 20230102