WO2021220574A1 - センサモジュール - Google Patents

センサモジュール Download PDF

Info

Publication number
WO2021220574A1
WO2021220574A1 PCT/JP2021/004541 JP2021004541W WO2021220574A1 WO 2021220574 A1 WO2021220574 A1 WO 2021220574A1 JP 2021004541 W JP2021004541 W JP 2021004541W WO 2021220574 A1 WO2021220574 A1 WO 2021220574A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
angular velocity
axis
signal
detection result
Prior art date
Application number
PCT/JP2021/004541
Other languages
English (en)
French (fr)
Inventor
勲 服部
稔夫 山崎
岳志 森
祐嗣 鈴木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021220574A1 publication Critical patent/WO2021220574A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5698Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using acoustic waves, e.g. surface acoustic wave gyros
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present disclosure relates to a sensor module in general, and more particularly to a sensor module including a sensor and a support member for supporting the sensor.
  • Patent Document 1 Conventionally, a capacitive bulk ultrasonic disc gyroscope is known (see Patent Document 1).
  • the capacitive bulk ultrasonic disk gyroscope (angular velocity sensor) of Patent Document 1 is formed by semiconductor micromachining technology and detects the angular velocity by detecting the physical quantity related to the Coriolis force generated in the bulk ultrasonic vibrating object. do.
  • the angular velocity sensor when mounting the above-mentioned angular velocity sensor (gyroscope) on the support board, mounting errors may be included. That is, the sensor module to which the angular velocity sensor is attached may not be able to utilize the sufficient performance of the high-performance angular velocity sensor because it includes an error due to the attachment with respect to the original mounting position and mounting angle of the angular velocity sensor. In particular, if the mounting angle of the angular velocity sensor deviates from the reference position, the sensitivity of the sensor module decreases.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a sensor module capable of suppressing the influence of the deviation amount of the mounting angle of the sensor module from the mounting reference position on the sensitivity of the sensor module.
  • the sensor module includes a support member, an angular velocity sensor, an inclination sensor, and a control unit.
  • the angular velocity sensor is mounted on the support member and detects the angular velocity.
  • the tilt sensor detects the tilt of the angular velocity sensor.
  • the control unit can communicate with the angular velocity sensor and the tilt sensor.
  • the control unit outputs an angular velocity signal and a tilt signal.
  • the angular velocity signal is a signal based on the detection result output from the angular velocity signal and the alignment data regarding the amount of deviation of the angular velocity sensor from the reference position with respect to the support member.
  • the tilt signal includes a detection result output from the tilt sensor.
  • FIG. 1 is a schematic view of an angular velocity sensor of a sensor module according to an embodiment.
  • FIG. 2 is an external view of the angular velocity sensor of the same sensor module.
  • FIG. 3 is a cross-sectional view of X1-X1 of the angular velocity sensor of the same sensor module.
  • FIG. 4A is a diagram illustrating the operating principle of the angular velocity sensor.
  • FIG. 4B is a diagram illustrating the operating principle of the angular velocity sensor.
  • FIG. 5 is a diagram showing a configuration of a sensor module according to an embodiment.
  • FIG. 6 is a diagram for explaining the mounting inclination of the sensor module of the same.
  • FIG. 7A is a diagram illustrating the sensitivity of the other axis of the sensor module of the same.
  • FIG. 7B is a diagram illustrating a method of correcting the sensor sensitivity of the sensor module.
  • the direction opposite to the gravitational acceleration is defined as the + Z-axis direction
  • the plane perpendicular to the Z-axis is defined as the XY plane.
  • the X-axis and the Y-axis are orthogonal, the X-axis and the Z-axis are orthogonal, and the Y-axis and the Z-axis are orthogonal.
  • the sensor module 1 includes an angular velocity sensor 2, an inclination sensor 3, a control unit 4, a memory 5, and a support member 6.
  • the sensor module 1 converts physical quantities such as rotation angular velocity, rotation angle, and angular velocity into electrical signals, for example. That is, the sensor module 1 of the present embodiment functions as a transducer that converts a physical quantity into an electric signal.
  • the sensor module 1 is used for various devices such as home appliances, mobile terminals, cameras, wearable terminals, game machines, vehicles (including automobiles and two-wheeled vehicles), drones, and moving objects such as aircraft or ships. Be done. In this embodiment, an in-vehicle sensor module is assumed, but it is not intended to be limited to an in-vehicle sensor module.
  • the angular velocity sensor 2 is also called a gyro sensor, and in the present embodiment, the angular velocity sensor 2 detects the angular velocity of the sensor module 1.
  • the angular velocity sensor 2 is an angular velocity sensor having a structure utilizing BAW (Bulk Acoustic Wave) vibration, and is superior in noise and bias stability, and has a high Q value.
  • the bias stability is an angle error accumulated per hour.
  • the angular velocity sensor 2 according to the present embodiment is suitable when relatively high-precision angular velocity detection is required as in the automatic driving technology of a vehicle.
  • the angular velocity sensor 2 according to the present embodiment can be adopted even when high-precision angular velocity detection is not required.
  • the angular velocity sensor 2 is, for example, a uniaxial angular velocity sensor in the Z-axis direction, and is also called 1DOF (Degree of Freedom).
  • the angular velocity sensor 2 detects the angular velocity of the sensor module 1.
  • the angular velocity sensor 2 is mounted on the support member 6.
  • the mounting deviation of the angular velocity sensor 2 with respect to the control unit 4 with respect to the control unit 4, that is, the alignment information is acquired in the manufacturing process of the sensor module 1.
  • the mounting deviation is defined as the difference between the mounted inclination of the angular velocity sensor 2 and the originally mounted reference position with reference to the control unit 4.
  • the tilt sensor 3 includes an acceleration sensor 30 in this embodiment.
  • the acceleration sensor 30 is a sensor that measures acceleration, tilt, impact, vibration, and the like.
  • the acceleration sensor 30 is a low gravity acceleration type MEMS (Micro Electro Mechanical Systems) sensor.
  • the low gravitational acceleration type used in this embodiment includes a capacitance method, a piezo resistance method, a heat detection method, and the like.
  • the acceleration sensor 30 may be a PZT (abbreviation of lead titanium zirconate (Pb (Zr, Ti) O 3 )) acceleration sensor or the like, in addition to the MEMS sensor.
  • control unit 4 includes an ASIC (Application specific integrated circuit) that is connected to the angular velocity sensor 2 and the tilt sensor 3 and converts signals from various sensors into electrical signals.
  • ASIC Application specific integrated circuit
  • the sensor module 1 includes an angular velocity sensor 2, an inclination sensor 3, a control unit 4, a memory 5, and a support member 6. Further, as shown in FIGS. 2 and 3, the sensor module 1 further includes a pedestal 9, a bonding wire 10, a case 11, and an auxiliary member 12.
  • the angular velocity sensor 2 is an angular velocity sensor having a structure utilizing BAW vibration.
  • the angular velocity sensor 2 according to the present embodiment includes a bulk ultrasonic resonance element 7 and a substrate 8.
  • the bulk ultrasonic resonance element 7 includes a movable portion 71, a plurality of (eight in FIG. 1) electrodes 72, and a polycrystalline silicon wiring 74.
  • the movable portion 71 is, for example, a resonance element and is formed in a disk shape (disk shape) having a circular shape in a plan view in the Z-axis direction.
  • the movable portion 71 is a non-piezoelectric material such as single crystal or polycrystalline silicon, and does not need to be made of a piezoelectric material.
  • the moving portion 71 may be made of a semiconductor or metal material such as silicon carbide, gallium nitride, aluminum nitride or quartz.
  • the plurality of electrodes 72 are arranged at equal intervals around the disk-shaped movable portion 71.
  • the bulk ultrasonic resonance element 7 has a capacitive gap 73 between each electrode 72 and the movable portion 71.
  • the plurality of electrodes 72 include a plurality of (here, four) driving electrodes 721 and a plurality of (here, four) detection electrodes 722. A constant capacitance is generated between the plurality of electrodes 72 and the movable portion 71.
  • FIGS. 4A and 4B are conceptual diagrams for explaining the operating principle of the bulk ultrasonic resonance element 7.
  • the bulk ultrasonic resonance element 7 is a high frequency (MHz band) driven capacitive bulk ultrasonic gyroscope.
  • the movable portion 71 vibrates due to the Coriolis force so as to repeatedly expand and contract in two directions (X-axis direction and Y-axis direction) orthogonal to each other on a plane orthogonal to the central axis thereof. do.
  • the bulk ultrasonic resonance element 7 outputs the amount of deformation (movement amount) of the movable portion 71 as an electric signal. That is, as shown in FIG. 4B, the amount of deformation of the movable portion 71 appears as a change in the capacitance between the movable portion 71 and the detection electrode 722, so that the bulk ultrasonic resonance element 7 has this capacitance. Outputs an electrical signal according to the change in.
  • the bulk ultrasonic resonance element 7 is an element that outputs an electric signal according to the physical quantity to be detected.
  • the detection target is the angular velocity around the Z axis
  • the bulk ultrasonic resonance element 7 outputs an electric signal corresponding to the angular velocity around the Z axis.
  • the central portion of the movable portion 71 and one of the plurality of drive electrodes 721, the drive electrode 721, are connected by the polycrystalline silicon wiring 74.
  • the polycrystalline silicon wiring 74 supplies a DC bias to the movable portion 71.
  • the substrate 8 is formed on a flat plate and has a thickness in the Z-axis direction.
  • the element surface 81 of the substrate 8 faces the bulk ultrasonic resonance element 7 in the Z-axis direction. That is, the bulk ultrasonic resonance element 7 is arranged on the element surface 81 side of the substrate 8.
  • the insulating layer 14 may be patterned on the element surface 81 of the substrate 8. That is, the bulk ultrasonic resonance element 7 may be provided with an insulating layer 14 between the bulk ultrasonic resonance element 7 and the element surface 81. In the present embodiment, the insulating layer 14 is provided between the bulk ultrasonic resonance element 7 and the element surface 81.
  • the substrate 8 has a substantially circular shape (disk shape) in a plan view in the Z-axis direction like the bulk ultrasonic resonance element 7 shown in FIG.
  • the substrate 8 is, for example, a silicon substrate.
  • the support member 6 has a substantially square shape in a plan view as an example.
  • the support member 6 is an ASIC package. That is, the support member 6 has a configuration in which the processing circuit 62 is built as a semiconductor chip in a package such as a resin package having electrical insulation. Therefore, the bulk ultrasonic resonance element 7 is mounted on one surface (support surface 61) of the support member 6 as an ASIC package.
  • the bulk ultrasonic resonance element 7 is fixed to the support surface 61 of the support member 6.
  • the term "fixed” as used in the present disclosure means that the state is kept in a fixed position by various means. That is, it means that the bulk ultrasonic resonance element 7 is in a state of not moving with respect to the support surface 61 of the support member 6.
  • the means for fixing the bulk ultrasonic resonance element 7 to the support surface 61 of the support member 6 for example, an appropriate means such as adhesion, adhesion, brazing, welding or crimping can be adopted.
  • the means for fixing the bulk ultrasonic resonance element 7 to the support surface 51 is adhesion with a silicone-based adhesive.
  • the support member 6 is formed to be one size larger than the angular velocity sensor 2, and the bulk ultrasonic resonance element 7 is fixed to the central portion of the support surface 51.
  • the pedestal 9 is, for example, ceramic. As shown in FIG. 3, the pedestal 9 fixes the support member 6 on the upper side of the pedestal 9, and the support member 6 fixes the bulk ultrasonic resonance element 7.
  • the sensor module 1 has a structure in which the bulk ultrasonic resonance element 7 is laminated on the substrate 8 and the electrode surface of the bulk ultrasonic resonance element 7 integrated with the substrate 8 is fixed to the pedestal 9, so-called. It has a face-down structure.
  • the pedestal 9 is a mounting substrate, and the support member 6 and the pedestal 9 are electrically connected by a bonding wire 10 as shown in FIG.
  • the case 11 has a case main body 111 and a flange portion 112.
  • FIG. 2 is an external view of the sensor module 1
  • FIG. 3 is a cross-sectional view taken along the line X1-X1 of FIG.
  • the case body 111 has a rounded (R) shape with curved corners.
  • the flange portion 112 is a portion protruding outward from the outer peripheral edge of the case body 111.
  • an appropriate means such as adhesion, adhesion, brazing, welding or crimping can be adopted as adhesion, adhesion, brazing, welding or crimping can be adopted.
  • the fixing means between the pedestal 9 and the case 11 is adhesive.
  • the case 11 is airtightly coupled to the pedestal 9, so that an airtight space is formed between the case 11 and the pedestal 9. Therefore, the bulk ultrasonic resonance element 7 and the like are housed in the airtight space, and it is possible to suppress the influence of humidity and the like on the sensor module 1.
  • the auxiliary member 12 is provided with the auxiliary member 12 on the lower side of the pedestal 9 in FIG.
  • the auxiliary member 12 is made by molding a plurality of wirings with resin, and functions as an electrode routing and a cushioning material for the sensor module 1.
  • the sensor module 1 has a processing circuit 62.
  • the processing circuit 62 is provided in the ASIC as the support member 6 in the present embodiment.
  • the processing circuit 62 executes processing related to the electric signal output from the bulk ultrasonic resonance element 7.
  • the control unit 4 is provided on the support member 6.
  • the support member 6 includes a processing circuit 62 that executes processing related to an electric signal output from the bulk ultrasonic resonance element 7.
  • the processing circuit 62 converts an analog electric signal (analog signal) output from the bulk ultrasonic resonance element 7 into a digital signal.
  • the processing circuit 62 executes appropriate processing such as noise removal and temperature compensation. Further, the processing circuit 62 gives a drive signal for driving the bulk ultrasonic resonance element 7 to the bulk ultrasonic resonance element 7.
  • the processing circuit 62 may execute arithmetic processing such as integration processing or differentiation processing, for example.
  • the processing circuit 62 executes integration processing on the electric signal output from the bulk ultrasonic resonance element 7, and the sensor module 1 obtains the integrated value of the angular velocity around the Z axis, that is, the angular velocity around the Z axis. It is possible.
  • the processing circuit 62 executes the differential processing on the electric signal output from the bulk ultrasonic resonance element 7, the sensor module 1 has the differential value of the angular velocity around the Z axis, that is, the angle around the Z axis. It is possible to obtain the acceleration.
  • the angular velocity sensor 2 is installed on the support surface 61 of the support member 6. Depending on the mounting accuracy at this time, mounting deviation with respect to the control unit 4 occurs.
  • the tilt sensor 3 includes a so-called acceleration sensor 30 in this embodiment.
  • the acceleration sensor 30 includes a first sensor 31, a second sensor 32, and a third sensor 33.
  • the first sensor 31 detects the acceleration of the first axis (here, the X axis).
  • the second sensor 32 detects the acceleration of the second axis (here, the Y axis) orthogonal to the first axis X.
  • the third sensor 33 detects the acceleration of the third axis (here, the Z axis) orthogonal to the first axis X and the second axis Y. That is, the acceleration sensor 30 is a three-axis acceleration sensor.
  • the acceleration sensor 30 is a MEMS chip using MEMS technology in this embodiment. Compared with the case where the X-axis, Y-axis, and Z-axis sensors are separately provided, the acceleration sensor 30 is configured as a MEMS chip having a monolithic structure, so that the orthogonality of the three axes is higher. In this embodiment, the tilt sensor 3 has a monolithic structure.
  • the sensor module 1 further includes a 3-axis angular velocity sensor 37.
  • the 3-axis angular velocity sensor 37 has a fourth sensor 34, a fifth sensor 35, and a sixth sensor 36.
  • the fourth sensor 34 detects the angular velocity of the first axis, that is, the X axis.
  • the fifth sensor 35 detects the angular velocity of the second axis, that is, the Y axis.
  • the sixth sensor 36 detects the angular velocity of the third axis, that is, the Z axis.
  • the fourth sensor 34, the fifth sensor 35, and the sixth sensor 36 are 3-axis angular velocity sensors composed of one chip in the present embodiment. That is, the 3-axis angular velocity sensor 37 includes a 3-axis angular velocity sensor in which the 4th sensor 34, the 5th sensor 35, and the 6th sensor 36 are integrated into one chip.
  • the tilt sensor 3 includes a 3-axis angular velocity sensor 37 and a 3-axis acceleration sensor 30, and the 3-axis angular velocity sensor 37 and the 3-axis acceleration sensor 30 are configured by one chip. That is, the tilt sensor 3 is a 6-axis inertial sensor including a 3-axis acceleration sensor 30 and a 3-axis angular velocity sensor 37. By realizing the 3-axis acceleration sensor 30 and the 3-axis angular velocity sensor 37 on a single chip, the 6-axis high orthogonality is higher than when the 3-axis acceleration sensor 30 and the 3-axis angular velocity sensor 37 are separately provided. Has sex.
  • the tilt sensor 3 is installed on the support surface 61 of the support member 6. Depending on the mounting accuracy at this time, mounting deviation with respect to the control unit 4 occurs.
  • the memory 5 is composed of a device selected from ROM (Read Only Memory), RAM (Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), and the like.
  • the memory 5 stores alignment data regarding the amount of deviation of the angular velocity sensor 2 from the reference position with respect to the support member 6.
  • the rotation axis C is defined as the detection axis of the sensor module 1.
  • the sensor module 1 is installed so that the rotation axis C is perpendicular to the horizontal plane 64.
  • the detection axis D is also defined in the angular velocity sensor 2.
  • Each angular velocity sensor 2 is installed on the support member 6 so that the detection axis D of the angular velocity sensor 2 is perpendicular to the support member 6.
  • the control unit 4 is set to be able to communicate with the angular velocity sensor 2 and the tilt sensor 3. Further, the control unit 4 is set so as to be able to communicate with the memory 5.
  • the control unit 4 is installed on the support member 6 in the present embodiment.
  • the attitude information of the control unit 4 with respect to the gravitational acceleration is grasped in the manufacturing process of the sensor module 1.
  • the posture information is information on the installation state of the control unit 4 with respect to the gravitational acceleration, and is information on alignment.
  • the angle formed by the second surface 63 of the support member 6 and the horizontal plane 64 is set to the alignment deviation amount ⁇ as shown in FIG.
  • the control unit 4 is connected to the angular velocity sensor 2 and the tilt sensor 3 and converts the signals of the angular velocity sensor 2 and the tilt sensor 3 into electrical signals. For example, the control unit 4 converts the capacitance change of the MEMS detected by the acceleration sensor 30 into an electric signal (voltage).
  • the control unit 4 is set so that it can be connected to the memory 5.
  • the control unit 4 outputs an angular velocity signal and a tilt signal.
  • the angular velocity signal is a signal based on the detection result output from the angular velocity sensor 2 and the alignment data regarding the amount of deviation of the angular velocity sensor 2 from the reference position with respect to the support member 6.
  • the tilt signal includes the detection result output from the tilt sensor 3.
  • Alignment data is acquired in advance with the angular velocity sensor 2 and the tilt sensor 3 mounted on the support member 6.
  • the control unit 4 corrects the detection result of the angular velocity sensor 2 based on the detection result of the tilt sensor 3.
  • the gradient signal includes a first signal, a second signal, and a third signal.
  • the first signal is a signal based on the detection result of the first sensor that detects the acceleration of the first axis.
  • the second signal is a signal based on the detection result of the second sensor that detects the acceleration of the second axis.
  • the third signal is a signal based on the detection result of the third sensor that detects the acceleration of the third axis. More specifically, the first signal is a signal representing acceleration in the first axis.
  • the second signal is a signal representing acceleration in the second axis.
  • the third signal is a signal representing acceleration in the third axis.
  • the first signal, the second signal, and the third signal are signals used for obtaining the inclination of the angular velocity sensor 2 and for correcting the detection result of the angular velocity sensor 2.
  • control unit 4 shifts the axis for detecting the angular velocity of the angular velocity sensor 2 based on the first signal, the second signal, and the third signal included in the tilt signal and the alignment data stored in the memory 5. Detect the quantity ⁇ .
  • the control unit 4 corrects the detection result of the angular velocity sensor 2 using the deviation amount ⁇ , and outputs the corrected detection result as an angular velocity signal. Further, the control unit 4 outputs the output of the tilt sensor together with the angular velocity signal.
  • the control unit 4 corrects the signal of the angular velocity sensor 2 by using the detection result of the 3-axis angular velocity sensor 37 included in the tilt sensor 3.
  • the outputs from the 4th sensor, the 5th sensor, and the 6th sensor are the 4th signal, the 5th signal, and the 6th signal.
  • the fourth signal is a signal based on the detection result of the fourth sensor that detects the angular velocity of the first axis.
  • the fifth signal is a signal based on the detection result of the fifth sensor that detects the angular velocity of the second axis.
  • the sixth signal is a signal based on the detection result of the sixth sensor that detects the angular velocity of the third axis.
  • the fourth signal is a signal representing acceleration in the first axis.
  • the fifth signal is a signal representing acceleration in the second axis.
  • the sixth signal is a signal representing acceleration in the third axis.
  • the rotation axis C which is the original detection axis of the angular velocity sensor 2, and the Z axis, which is the third axis, coincide with each other.
  • the rotation component of the three-dimensional space of the angular velocity sensor 2 is output as a fourth signal, a fifth signal, and a sixth signal by the three-axis angular velocity sensor 37. Since the sixth signal and the output of the angular velocity sensor 2 should match, it can be used for confirming and correcting the detection result of the angular velocity sensor 2.
  • the fourth signal and the fifth signal are components that are not originally detected, they can be corrected by introducing an offset so as to cancel the fourth signal and the fifth signal.
  • the control unit 4 corrects the signal of the angular velocity sensor 2 by using the signal of the three-axis angular velocity sensor 37.
  • the sensor module 1 can grasp the attitude information of the control unit 4 with respect to the gravitational acceleration in the manufacturing process of the sensor module 1. In other words, in the manufacturing process of the sensor module 1, the inclination due to mounting when the control unit 4 is attached to the support member 6 is grasped.
  • the tilt sensor 3 includes a 3-axis acceleration sensor 30 and a 3-axis angular velocity sensor 37.
  • the attitude information of the 3-axis accelerometer 30 with respect to the control unit 4 of the 3-axis accelerometer 30 is output from the 3-axis accelerometer 30.
  • the posture information means the mounting accuracy to the mounting target and the mounting state.
  • the output of the 3-axis accelerometer is the attitude information of the 3-axis accelerometer 30 with respect to the control unit 4.
  • the control unit 4 stores the obtained attitude information of the acceleration of the three axes in the memory 5.
  • the angular velocity sensor 2 is a uniaxial angular velocity sensor (1DOF).
  • the angular velocity sensor 2 is mounted on the support member 6.
  • the control unit 4 acquires the sensitivity output when the attitude information with respect to the gravitational acceleration of the control unit 4 is changed at some points.
  • the control unit 4 acquires the outputs of the angular velocity sensor 2 at various angles and searches for the portion having the highest sensitivity.
  • the sensitivity of the angular velocity sensor 2 is maximized at the point where the rotation axis C and the detection axis D coincide with each other.
  • the control unit 4 changes the measurement axis for each point to be measured. By measuring several points, the control unit 4 can estimate which point will be the maximum output of the angular velocity sensor 2.
  • the control unit 4 stores the posture information regarding the maximum point in the memory 5.
  • the mounting error of the sensor module 1 when mounted on a vehicle may have a tilt with respect to the gravitational acceleration depending on, for example, the tilt of the mounting location, the tightening method of the screws, and the like. Therefore, the amount of alignment error in the actual mounting of the sensor module 1 is absolutely determined from the information (detection result) of the 3-axis acceleration sensor 30 and the alignment information already stored in the memory 5.
  • the slope as a value can be calculated. For example, if you have an output database of the 3-axis accelerometer 30, you can tell how many times it is tilted just by looking at the output of the 3-axis accelerometer.
  • the tilt of the mounting can be found only by looking at the output of the 3-axis accelerometer 30.
  • the angular velocity sensor 2 may be corrected accordingly.
  • the 3-axis angular velocity sensor 37 supplements the 3-axis acceleration sensor and can be used for verification. By detecting the detected result of the corrected angular velocity sensor 2 with the 3-axis angular velocity sensor 37, the corrected angular velocity sensor 2 can be checked.
  • the true inclination of the support member 6 with respect to the gravitational acceleration and the output of the three-axis acceleration sensor 30 are correlated. If there is a correlation, the inclination of the support member 6 can be determined from the output of the three-axis acceleration sensor 30. Similarly, even in the mounted sensor module 1, the inclination of the sensor module 1 can be found by looking at the output of the three-axis acceleration sensor 30. Therefore, if the misalignment amount of the sensor module 1 is known, the control unit 4 can correct the angular velocity sensor 2 from the offset amount at the time of mounting on the vehicle. That is, the alignment can be adjusted again after being mounted on the car.
  • the corrected sensitivity is Si
  • the alignment error is ⁇
  • cos ⁇ is represented by Equation 1
  • the corrected sensitivity Si is represented by Equation 2 below.
  • Si represent the absolute values of Sa and Si, respectively.
  • the corrected sensitivity Si can be calculated from the alignment deviation amount ⁇ and the measurement sensitivity Sa.
  • Sensitivity is correctly output in order to perform sensitivity correction for other axes that performs sensitivity correction based on angle information.
  • the sensor sensitivity is S and the components of the X-axis, Y-axis, and Z-axis are Sx, Sy, and Sz, respectively
  • the Z-axis other-axis sensitivity Sensor is represented by the following equation 3.
  • the sensor module 1 includes a support member 6, an angular velocity sensor 2, an inclination sensor 3, and a control unit 4.
  • the angular velocity sensor 2 is mounted on the support member 6 and detects the angular velocity.
  • the tilt sensor 3 detects the tilt of the angular velocity sensor 2.
  • the control unit 4 can communicate with the angular velocity sensor 2 and the tilt sensor 3.
  • the control unit 4 outputs an angular velocity signal and a tilt signal.
  • the angular velocity signal is a signal based on the detection result output from the angular velocity sensor and the alignment data regarding the amount of deviation of the angular velocity sensor 2 from the reference position with respect to the support member 6.
  • the tilt signal includes the detection result output from the tilt sensor 3.
  • the sensor module 1 capable of correcting the sensitivity of the angular velocity sensor module.
  • the alignment error of the sensor module 1 can be corrected.
  • the tilt sensor 3 is configured to be an acceleration sensor using MEMS, but is not limited to this configuration.
  • the tilt sensor 3 may be composed of a mercury switch.
  • the 3-axis acceleration sensor 30 has a configuration using MEMS, but is not limited to this configuration.
  • MEMS three 1-axis accelerometers using MEMS may be used, or three non-MEMS type accelerometers may be used.
  • the 3-axis acceleration sensor 30 may use a piezo resistance type semiconductor type acceleration sensor.
  • the control unit 4 is configured to correct the detection result of the angular velocity sensor 2 by using the signal from the 3-axis angular velocity sensor 37, but the configuration is not limited to this. If the detection result of the corrected angular velocity sensor 2 is appropriate, the control unit 4 may output the corrected detection result as an angular velocity signal. That is, the 3-axis angular velocity sensor 37 of the tilt sensor 3 may check the angular velocity signal corrected by the control unit 4. Specifically, the control unit 4 corrects the angular velocity sensor 2 from the inclination of the angular velocity sensor 2 detected by the three-axis acceleration sensor 30. By comparing the corrected result of the angular velocity sensor 2 with the detection result of the three-axis angular velocity sensor 37, the control unit 4 can check whether the detection result of the angular velocity sensor 2 is correctly corrected.
  • the three-axis acceleration sensor 30 and the three-axis angular velocity sensor 37 are used to correct the detection result of the angular velocity sensor 2, but the configuration is not limited to this.
  • the detection result of the angular velocity sensor 2 may be corrected by the three-axis acceleration sensor 30 without using the three-axis angular velocity sensor 37.
  • the bulk ultrasonic resonance element 7 has a face-down element structure, but is not limited to this configuration.
  • the bulk ultrasonic resonance element 7 may have a face-up element structure.
  • the bulk ultrasonic resonance element 7 is not limited to the element using the MEMS technology, and may be another element.
  • the support member 6 is an ASIC package including the processing circuit 62 is not an essential configuration for the sensor module 1, and an appropriate configuration can be adopted for the support member 6. That is, the support member 6 does not have to be a member including an electronic component, and may be a simple structure such as a plate material. Further, the shape and material of the support member 6 are not limited to the examples shown in the embodiment. For example, the support member 6 may have a rectangular shape, a circular shape, or the like in a plan view. Further, the support member 6 may be, for example, a member made of resin, silicon, ceramic, or the like.
  • control unit 4 and the support member 6 are configured to include a separate ASIC, but the configuration is not limited to this.
  • the control unit 4 and the support member 6 may be configured to include the same ASIC. That is, the ASIC package as the support member 6 may be a circuit including the control unit 4 and the processing circuit 62.
  • the memory 5 may be configured to be removable from the sensor module 1.
  • the memory 5 is not an essential configuration for the sensor module 1, and the memory 5 does not have to be mounted on the sensor module 1. It suffices if it is configured so that it can be connected to an external storage device.
  • the sensor module 1 has only a QR code (Quick Reference Code) (registered trademark), and the alignment information of the sensor module 1 may be stored in the cloud.
  • the bulk ultrasonic resonance element 7 is not limited to one physical quantity, and may be configured to detect a plurality of physical quantities.
  • the bulk ultrasonic resonance element 7 may detect the angular velocity and the acceleration.
  • the sensor module (1) of the first aspect includes a support member (6), an angular velocity sensor (2), an inclination sensor (3), and a control unit (4).
  • the angular velocity sensor (2) is mounted on the support member (6) and detects the angular velocity.
  • the tilt sensor (3) detects the tilt of the angular velocity sensor (2).
  • the control unit (4) can communicate with the angular velocity sensor (2) and the tilt sensor (3).
  • the control unit (4) outputs an angular velocity signal and a tilt signal.
  • the angular velocity signal is a signal based on the detection result output from the angular velocity sensor and the alignment data regarding the amount of deviation of the angular velocity sensor (2) from the reference position with respect to the support member (6).
  • the tilt signal includes the detection result output from the tilt sensor (3).
  • the sensor module (1) capable of suppressing the influence of the deviation amount ( ⁇ ) of the mounting angle of the sensor module (1) from the mounting reference position on the sensitivity of the sensor module. Further, it is possible to provide a sensor module (1) capable of correcting the sensitivity of the sensor module (1) including the angular velocity sensor (2) even after mounting the sensor module (1).
  • the tilt sensor (3) includes an acceleration sensor (30).
  • the tilt sensor (3) can detect the tilt with high accuracy by including the acceleration sensor (30).
  • the tilt sensor (3) is the first sensor (31), the second sensor (32), and the third sensor (33). And, including.
  • the first sensor (31) detects the acceleration of the first axis (X).
  • the second sensor (32) detects the acceleration of the second axis (Y) orthogonal to the first axis (X).
  • the third sensor (33) detects the acceleration of the third axis orthogonal to the first axis (X) and the second axis (Y).
  • the control unit (4) corrects the detection result of the angular velocity sensor (2) based on the detection result of the tilt sensor (3).
  • the accuracy of the correction of the angular velocity sensor (2) can be improved by using the 3-axis acceleration sensor (30).
  • the tilt signal includes a first signal, a second signal, and a third signal.
  • the first signal is based on the detection result of the first sensor (31).
  • the second signal is based on the detection result of the second sensor (32).
  • the third signal is based on the detection result of the third sensor (33).
  • the control unit (4) detects the amount of deviation ( ⁇ ) of the axis that detects the angular velocity of the angular velocity sensor (2) based on the first signal, the second signal, the third signal, and the alignment data.
  • the detection result of the angular velocity sensor (2) is corrected using the deviation amount ( ⁇ ), and the corrected detection result is output as an angular velocity signal.
  • control unit 4 determines the amount of axial deviation ( ⁇ ) for detecting the angular velocity of the angular velocity sensor (2) based on the first signal, the second signal, the third signal, and the alignment data. Highly accurate correction can be performed by detecting and correcting the detection result of the angular velocity sensor (2) using the deviation amount ( ⁇ ).
  • the tilt sensor (3) has a monolithic structure.
  • the orthogonality of the three orthogonal axes of the tilt sensor (3) is higher than that in the case of not having a monolithic structure. Therefore, the accuracy of correcting the angular velocity sensor (2) is improved.
  • the alignment data is a state in which the angular velocity sensor (2) and the inclination sensor (3) are mounted on the support member (6). Obtained in advance at.
  • alignment information can be acquired in a relatively simple configuration.
  • the sensor module (1) of the seventh aspect further includes a fourth sensor (34), a fifth sensor (35), and a sixth sensor (36) in the third or fourth aspect.
  • the fourth sensor (34) detects the angular velocity with the first axis (X) as the rotation axis.
  • the fifth sensor (35) detects the angular velocity with the second axis (Y) as the rotation axis.
  • the sixth sensor (36) detects the angular velocity with the third axis (Z) as the rotation axis.
  • the control unit (4) further uses the fourth sensor (34), the fifth sensor (35), and the sixth sensor (36) to correct the detection result of the angular velocity sensor (2).
  • the accuracy of correction is improved by using the fourth sensor (34), the fifth sensor (35), and the sixth sensor (36) in addition to the angular velocity sensor (2).
  • the control unit (4) uses the fourth sensor (34), the fifth sensor (35), and the sixth sensor (36) to perform the angular velocity.
  • the detection result of the sensor (2) is corrected, and if the detection result of the corrected angular velocity sensor (2) is appropriate, the corrected detection result is output as an angular velocity signal.
  • the accuracy of the correction is improved by checking the detected detection result after the correction by using the fourth sensor (34), the fifth sensor (35) and the sixth sensor (36) in a complementary manner.
  • the sensor module (1) of the ninth aspect further includes a memory (5) that stores alignment data and can be connected to the control unit (4) in any one of the first to eighth aspects.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Acoustics & Sound (AREA)
  • Gyroscopes (AREA)

Abstract

センサモジュールの取付基準位置からの取付角度のずれ量がセンサモジュールの感度に与える影響を抑制することができるセンサモジュールを提供する。センサモジュール(1)は、支持部材(6)と、角速度センサ(2)と、傾斜センサ(3)と、制御部(4)と、を備える。角速度センサ(2)は、支持部材(6)に実装され、角速度を検出する。傾斜センサ(3)は、角速度センサ(2)の傾きを検出する。制御部(4)は、角速度センサ(2)及び傾斜センサ(3)と通信可能である。制御部(4)は、角速度信号と、傾斜信号と、を出力する。角速度信号は、角速度センサから出力された検出結果と、角速度センサ(2)の支持部材(6)に対する基準位置からのずれ量に関するアライメントデータと、に基づく信号である。傾斜信号は、傾斜センサ(3)から出力された検出結果を含む。

Description

センサモジュール
 本開示は、一般にセンサモジュールに関し、より詳細にはセンサと、センサを支持する支持部材と、を備えるセンサモジュールに関する。
 従来、容量式バルク超音波ディスクジャイロスコープが知られている(特許文献1参照)。特許文献1の容量式バルク超音波ディスクジャイロスコープ(角速度センサ)は、半導体微小加工技術により形成され、バルク超音波振動する物体に生起されるコリオリ力に関連する物理量を検出することで角速度を検出する。
 一方で、上述した角速度センサ(ジャイロスコープ)を支持基板に取り付けるときに、取付誤差を含むことがある。つまり、角速度センサを取り付けたセンサモジュールは、角速度センサの本来の取付位置、取付角度に対して取り付けによる誤差を含み、高性能な角速度センサの十分な性能を生かせない可能性があった。特に、角速度センサの取付角度が基準位置からずれると、センサモジュールの感度が低下する。
特開2009-531707号公報
 本開示は上記課題に鑑みてなされ、センサモジュールの取付基準位置からの取付角度のずれ量がセンサモジュールの感度に与える影響を抑制することができるセンサモジュールを提供することを目的とする。
 本開示の一態様に係るセンサモジュールは、支持部材と、角速度センサと、傾斜センサと、制御部と、を備える。前記角速度センサは前記支持部材に実装され、角速度を検出する。前記傾斜センサは、前記角速度センサの傾きを検出する。前記制御部は、前記角速度センサ及び前記傾斜センサと通信可能である。前記制御部は、角速度信号と、傾斜信号と、を出力する。前記角速度信号は、前記角速度信号から出力された検出結果と前記角速度センサの前記支持部材に対する基準位置からのずれ量に関するアライメントデータとに基づく信号である。前記傾斜信号は、前記傾斜センサから出力された検出結果を含む。
図1は、一実施形態に係るセンサモジュールの角速度センサの模式図である。 図2は、同上のセンサモジュールの角速度センサの外観図である。 図3は、同上のセンサモジュールの角速度センサのX1-X1断面図である。 図4Aは、角速度センサの動作原理を説明する図である。図4Bは角速度センサの動作原理を説明する図である。 図5は、一実施形態に係るセンサモジュールの構成を示す図である。 図6は、同上のセンサモジュールの実装傾きを説明する図である。 図7Aは、同上のセンサモジュールの他軸感度を説明する図である。図7Bは、センサモジュールのセンサ感度の補正方法を説明する図である。
 以下に説明する各実施形態及び変形例は、本開示の一例に過ぎず、本開示は、実施形態及び変形例に限定されない。実施形態及び変形例以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。また、重力加速度とは反対向きの方向を+Z軸方向とし、Z軸に垂直な平面をX-Y平面とする。X軸とY軸とは直交し、X軸とZ軸とは直交し、Y軸とZ軸とは直交する。図1~図4B、図6及び図7では、X軸、Y軸、Z軸を明示している。
 (実施形態)
 以下、本実施形態に係るセンサモジュール1について、図1~図7Bを用いて説明する。
 (1)概要
 本実施形態に係るセンサモジュール1は、図6に示すように、角速度センサ2と、傾斜センサ3と、制御部4と、メモリ5と、支持部材6と、を含んでいる。
 センサモジュール1は、例えば、回転角速度、回転角及び角速度等の物理量を、電気信号に変換する。すなわち、本実施形態のセンサモジュール1は、物理量を電気信号に変換するトランスデューサとして機能する。センサモジュール1は、例えば、家電機器、携帯端末、カメラ、ウェアラブル端末、ゲーム機、又は車両(自動車及び二輪自動車等を含む)、ドローン、航空機若しくは船舶等の移動体等の、様々な機器に用いられる。本実施形態では、車載のセンサモジュールを想定しているが、車載のセンサモジュールに限定する意図ではない。
 角速度センサ2は、ジャイロセンサとも言い、本実施形態では、角速度センサ2は、センサモジュール1の角速度を検出対象とする。角速度センサ2は、図1~図3に示すように、BAW(Bulk Acoustic Wave)振動を利用した構造を有する角速度センサであり、ノイズ、バイアス安定性に優位性があり、Q値が高い。ここで、バイアス安定性とは、1時間あたりに蓄積される角度誤差のことである。例えば、車両の自動運転技術のように、比較的、高精度の角速度の検出が要求される場合に、本実施形態に係る角速度センサ2は好適である。ただし、高精度の角速度の検出が要求されない場合であっても、本実施形態に係る角速度センサ2は採用可能である。
 本実施形態では、角速度センサ2は、例えば、Z軸方向の1軸角速度センサであり、1DOF(Degree of Freedom)とも呼ばれる。角速度センサ2は、センサモジュール1の角速度を検出する。
 図6に示すように、角速度センサ2は、支持部材6に実装されている。制御部4を基準とした制御部4に対する角速度センサ2の実装ずれ、すなわちアライメント情報は、センサモジュール1の製造工程において取得される。ここで、実装ずれとは、制御部4を基準として、角速度センサ2の実装された傾きと本来実装される基準位置との差異を実装ずれとしている。
 傾斜センサ3は、本実施形態では、加速度センサ30を含んでいる。加速度センサ30は、加速度、傾き、衝撃、振動等を計測するセンサである。本実施形態では、加速度センサ30は、低重力加速度タイプのMEMS(Micro Electro Mechanical Systems)センサである。本実施形態で用いるような低重力加速度タイプでは、静電容量方式、ピエゾ抵抗方式、熱検知方式等の方式がある。加速度センサ30は、MEMSセンサ以外には、PZT(チタン・ジルコン酸鉛(Pb(Zr,Ti)O)の略称)加速度センサ等であってもよい。
 制御部4は、本実施形態では、角速度センサ2や傾斜センサ3に接続され、各種センサからの信号を電気信号に変換するASIC(Application specific integrated circuit)を含む。
 (2)構成
 以下に、本実施形態に係るセンサモジュール1の詳細な構成について、図1~図7Bを参照して説明する。
 本実施形態では、センサモジュール1は、図6に示すように、角速度センサ2と、傾斜センサ3と、制御部4と、メモリ5と、支持部材6と、を備えている。また、センサモジュール1は、図2及び図3に示すように、台座9と、ボンディングワイヤ10と、ケース11と、補助部材12と、を更に備えている。
 角速度センサ2は、図1に示すように、BAW振動を利用した構造を有する角速度センサである。本実施形態に係る角速度センサ2は、図1に示すように、バルク超音波共振素子7と、基板8と、を備えている。バルク超音波共振素子7は、可動部71と、複数(図1では8つ)の電極72と、多結晶シリコン配線74と、を備える。可動部71は、例えば、共振素子であって、Z軸方向の平面視において円形状となる円盤状(ディスク状)に形成されている。ここで、可動部71は、単結晶又は多結晶シリコン等の非圧電性物質であって、圧電性材料から製作されていることを必要としない。可動部71は、例えば、シリコン炭化物、窒化ガリウム、窒化アルミニウム又は石英等の半導体又は金属材料にて構成されていてもよい。
 複数の電極72は、ディスク状の可動部71の周囲に等間隔に配置されている。バルク超音波共振素子7は、それぞれの電極72と可動部71との間には容量性間隙73を有する。複数の電極72は、複数(ここでは4つ)の駆動用電極721と、複数(ここでは4つ)の検出用電極722と、を含んでいる。複数の電極72と可動部71との間には、一定の静電容量が生じている。
 各駆動用電極721に駆動信号を印加して可動部71を一定の速度で振動させている状態において、可動部71に加わる角速度に応じてコリオリ力が発生する。コリオリ力が発生した場合、一定であった静電容量に変化が生じる。バルク超音波共振素子7は、検出用電極722において、静電容量の変化を検出することにより、角速度を検出する。
 バルク超音波共振素子7の動作について、図4A及び図4Bを参照して説明する。図4A及び図4Bは、バルク超音波共振素子7の動作原理を説明するための概念図である。
 本実施形態では、一例として、バルク超音波共振素子7は、高周波(MHz帯域)駆動の容量式バルク超音波ジャイロスコープである。
 図4Aに示すように、可動部71は、コリオリ力により、その中心軸に直交する平面で、互いに直交する2方向(X軸方向及びY軸方向)に交互に伸縮する変形を繰り返すように振動する。バルク超音波共振素子7は、可動部71の変形量(移動量)を電気信号として出力する。すなわち、図4Bに示すように、可動部71の変形量は、可動部71と検出用電極722との間の静電容量の変化として現れるため、バルク超音波共振素子7は、この静電容量の変化に応じた電気信号を出力する。
 バルク超音波共振素子7は、検出対象である物理量に応じた電気信号を出力する素子である。本実施形態では、検出対象はZ軸周りの角速度であるので、バルク超音波共振素子7は、Z軸周りの角速度に応じた電気信号を出力する。
 バルク超音波共振素子7では、可動部71の中央部と複数の駆動用電極721のうち1つの駆動用電極721が多結晶シリコン配線74で接続されている。多結晶シリコン配線74は、直流バイアスを可動部71に供給している。
 基板8は、図1及び図3に示すように、平板上に形成されており、Z軸方向に厚みを有している。
 基板8の素子面81は、バルク超音波共振素子7とZ軸方向において対向している。すなわち、バルク超音波共振素子7は、基板8の素子面81側に配置されている。ここで、基板8の素子面81には絶縁層14をパターニングしてもよい。つまり、バルク超音波共振素子7は、素子面81との間に絶縁層14が設けられてもよい。本実施形態では、バルク超音波共振素子7と素子面81との間に絶縁層14が設けられている。本実施形態では、一例として、基板8は、図1に示すバルク超音波共振素子7と同様にZ軸方向の平面視において略円形状(ディスク状)である。基板8は、例えば、シリコン基板である。
 支持部材6は、本実施形態では、一例として、平面視において略正方形状である。ここで、支持部材6は、ASICのパッケージである。つまり、支持部材6は、電気絶縁性を有する樹脂パッケージ等のパッケージに半導体チップとして処理回路62を内蔵した構成である。このため、バルク超音波共振素子7は、ASICのパッケージとしての支持部材6の一表面(支持面61)に実装される。
 支持部材6の支持面61には、バルク超音波共振素子7が固定されている。本開示で言う「固定」は、種々の手段により、一定の位置に留まる状態とされていることを意味する。つまり、バルク超音波共振素子7は、支持部材6の支持面61に対して動かない状態とされていることを意味する。
 支持部材6の支持面61にバルク超音波共振素子7を固定する手段として、例えば、接着、粘着、ろう付け、溶着又は圧着等の適宜の手段を採用することができる。本実施形態では、一例として、支持面51にバルク超音波共振素子7を固定する手段は、シリコーン系の接着剤による接着である。支持部材6は、角速度センサ2よりも一回り大きく形成されており、バルク超音波共振素子7は、支持面51の中央部に固定されている。
 台座9は、本実施形態では、例えば、セラミックである。台座9は、図3に示すように、台座9の上側に支持部材6を固定し、支持部材6はバルク超音波共振素子7を固定する。本実施形態では、センサモジュール1は、基板8に対してバルク超音波共振素子7を積層し、基板8と一体となったバルク超音波共振素子7の電極面を台座9に固定する構造、いわゆるフェイスダウン構造を有する。台座9は実装基板であり、支持部材6と台座9とは、図3に示すようにボンディングワイヤ10によって電気的に接続されている。
 ケース11は、図2及び図3に示すように、ケース本体111とフランジ部112と、を有する。図2はセンサモジュール1の外観図、図3は図2のX1-X1断面図である。ケース本体111は、各角部が湾曲したアール(R)形状を有している。フランジ部112は、ケース本体111の外周縁から外側に突出した部位である。ケース11は、このフランジ部112を台座9に対するケース11の固定手段としては、例えば、接着、粘着、ろう付け、溶着又は圧着等の適宜の手段を採用可能である。本実施形態では、一例として、台座9とケース11との固定手段は、接着である。
 ここで、本実施形態では、ケース11は台座9に対して気密結合されることにより、ケース11と台座9との間には、気密空間が形成される。このため、バルク超音波共振素子7等は、気密空間に収容されることになり、センサモジュール1に対する湿度等の影響を抑制することが可能である。
 補助部材12は、図2において台座9の下側には補助部材12が設けられている。補助部材12は、複数の配線を樹脂モールドしたもので、センサモジュール1に対して、電極の引き回しや緩衝材として機能する。
 本実施形態に係るセンサモジュール1は、図3に示すように、処理回路62を有している。処理回路62は、本実施形態では、支持部材6としてのASICに設けられている。処理回路62は、バルク超音波共振素子7から出力される電気信号に関する処理を実行する。本実施形態では、制御部4は、支持部材6に設けられている。言い換えれば、支持部材6は、バルク超音波共振素子7から出力される電気信号に関する処理を実行する処理回路62を含んでいる。
 本実施形態では、処理回路62は、バルク超音波共振素子7から出力されるアナログ電気信号(アナログ信号)を、デジタル信号に変換する。処理回路62は、ノイズ除去及び温度補償等の適宜の処理を実行する。さらに、処理回路62は、バルク超音波共振素子7に対して、バルク超音波共振素子7を駆動するための駆動信号を与える。
 また、処理回路62は、例えば、積分処理又は微分処理といった演算処理を実行してもよい。例えば、処理回路62は、バルク超音波共振素子7から出力される電気信号について積分処理を実行することで、センサモジュール1は、Z軸周りの角速度の積分値、つまりZ軸周りの角速度を求めることが可能である。一方、例えば、処理回路62が、バルク超音波共振素子7から出力される電気信号について微分処理を実行することで、センサモジュール1は、Z軸周りの角速度の微分値、つまりZ軸周りの角加速度を求めることが可能である。
 角速度センサ2は、支持部材6の支持面61に設置される。このときの取付精度によって、制御部4に対する実装ずれが生じる。
 傾斜センサ3は、本実施形態では、いわゆる加速度センサ30を含んでいる。加速度センサ30は、第1センサ31と、第2センサ32と、第3センサ33と、を含んでいる。第1センサ31は、第1軸(ここでは、X軸)の加速度を検出する。第2センサ32は、第1軸Xと直交する第2軸(ここでは、Y軸)の加速度を検出する。第3センサ33は、第1軸X及び第2軸Yと直交する第3軸(ここでは、Z軸)の加速度を検出する。つまり、加速度センサ30は、3軸の加速度センサである。
 加速度センサ30は、本実施形態ではMEMS技術を用いたMEMSチップである。加速度センサ30は、X軸、Y軸、Z軸の3軸のセンサが別々に設けられる場合に比べて、モノリシック構造のMEMSチップとして構成されることで、3軸の直交性がより高くなる。本実施形態では、傾斜センサ3は、モノリシック構造である。
 センサモジュール1は、3軸角速度センサ37を更に備える。3軸角速度センサ37は、第4センサ34、第5センサ35及び第6センサ36を、有する。第4センサ34は、第1軸、つまりX軸の角速度を検出する。第5センサ35は、第2軸、つまりY軸の角速度を検出する。第6センサ36は、第3軸、つまりZ軸の角速度を検出する。第4センサ34、第5センサ35及び第6センサ36は、本実施形態では1チップで構成された、3軸の角速度センサである。つまり、3軸角速度センサ37は、第4センサ34、第5センサ35及び第6センサ36が1チップ化された3軸の角速度センサを含む。
 本実施形態では、傾斜センサ3は、3軸角速度センサ37と、3軸の加速度センサ30と、を含み、3軸角速度センサ37及び3軸の加速度センサ30を1チップで構成している。つまり、傾斜センサ3は、3軸の加速度センサ30と3軸角速度センサ37を含んだ6軸慣性センサである。3軸の加速度センサ30と3軸角速度センサ37を1チップで実現していることにより、3軸の加速度センサ30と3軸角速度センサ37とを別々に設ける場合に比べて、6軸の高い直交性を有している。
 傾斜センサ3は、支持部材6の支持面61に設置されている。このときの取付精度によって、制御部4に対する実装ずれが生じる。
 メモリ5は、ROM(Read Only Memory)、RAM(Random Access Memory)、又はEEPROM(Electrically Erasable Programmable Read Only Memory)等から選択されるデバイスで構成される。
 メモリ5は、角速度センサ2の支持部材6に対する基準位置からのずれ量に関するアライメントデータを記憶している。ここで、センサモジュール1において、図6に示すように、センサモジュール1の検出軸として回転軸Cを定義する。回転軸Cが水平面64に垂直になるようにセンサモジュール1は設置される。これに対して、角速度センサ2においても検出軸Dを定義する。角速度センサ2の検出軸Dが支持部材6に垂直となるように各角速度センサ2は支持部材6に設置される。支持部材6に角速度センサ2が取り付けられた場合に、取付精度によりアライメント誤差が存在するため、回転軸Cと検出軸Dは一致しない可能性がある。ここで、回転軸Cと検出軸Dが一致する位置を基準位置としている。
 制御部4は、角速度センサ2及び傾斜センサ3と通信可能に設定されている。また、制御部4は、メモリ5と相互に通信可能に設定されている。制御部4は、本実施形態では、支持部材6に設置される。制御部4の重力加速度に対する姿勢情報は、センサモジュール1の製造工程において把握されている。ここで、姿勢情報とは、重力加速度に対する制御部4の設置状態に関する情報であり、アライメントに関する情報である。
 最後に車載用として、センサモジュール1が取り付けられるときに実装ずれが発生する可能性がある。本実施形態では、支持部材6の第2面63と、水平面64とのなす角を図6に示すようにアライメントのずれ量θとしている。
 (3)動作概要
 制御部4は、角速度センサ2及び傾斜センサ3と接続され、角速度センサ2及び傾斜センサ3の信号を電気信号に変換している。例えば、制御部4は、加速度センサ30で検出されたMEMSの容量変化を電気信号(電圧)に変換している。
 制御部4は、メモリ5に接続可能に設定されている。
 制御部4は、角速度信号と、傾斜信号と、を出力する。角速度信号は、角速度センサ2から出力された検出結果と、角速度センサ2の支持部材6に対する基準位置からのずれ量に関するアライメントデータと、に基づく信号である。傾斜信号は、傾斜センサ3から出力された検出結果を含む。
 アライメントデータは、支持部材6に角速度センサ2及び傾斜センサ3が実装された状態において、あらかじめ取得されている。
 制御部4は傾斜センサ3の検出結果に基づいて角速度センサ2の検出結果を補正する。傾斜信号は、第1信号と、第2信号と、第3信号と、を含んでいる。ここで、第1信号とは、第1軸の加速度を検出する第1センサの検出結果に基づく信号である。第2信号とは、第2軸の加速度を検出する第2センサの検出結果に基づく信号である。第3信号とは、第3軸の加速度を検出する第3センサの検出結果に基づく信号である。より詳細には、第1信号は、第1軸における加速度を表す信号である。第2信号は、第2軸における加速度を表す信号である。第3信号は、第3軸における加速度を表す信号である。第1信号、第2信号及び第3信号は、角速度センサ2の傾きを求めるため、及び角速度センサ2の検出結果を補正するために用いる信号である。
 具体的には、制御部4は、傾斜信号に含まれる第1信号、第2信号及び第3信号と、メモリ5の記憶するアライメントデータとに基づいた角速度センサ2の角速度を検出する軸のずれ量θを検出する。制御部4は、ずれ量θを用いて角速度センサ2の検出結果を補正し、補正後の検出結果を角速度信号として出力する。また、制御部4は、角速度信号とともに、傾斜センサの出力を出力する。
 制御部4は、傾斜センサ3に含まれる3軸角速度センサ37の検出結果を用いて、角速度センサ2の信号を補正する。具体的には、第4センサ、第5センサ及び第6センサからの出力を第4信号、第5信号及び第6信号とする。ここで、第4信号とは、第1軸の角速度を検出する第4センサの検出結果に基づく信号である。第5信号とは、第2軸の角速度を検出する第5センサの検出結果に基づく信号である。第6信号とは、第3軸の角速度を検出する第6センサの検出結果に基づく信号である。より詳細には、第4信号は、第1軸における加速度を表す信号である。第5信号は、第2軸における加速度を表す信号である。第6信号は、第3軸における加速度を表す信号である。角速度センサ2の本来の検出軸である回転軸Cと、第3軸であるZ軸は一致する。角速度センサ2の3次元空間の回転成分は、3軸角速度センサ37によって、第4信号、第5信号及び第6信号として出力される。第6信号と角速度センサ2の出力は一致するはずなので、角速度センサ2の検知結果の確認及び補正に用いることができる。また、第4信号及び第5信号については、本来は検出されない成分であるので、第4信号及び第5信号を相殺するようにオフセットを導入することによって補正することができる。以上により、制御部4は、3軸角速度センサ37の信号を用いることによって、角速度センサ2の信号を補正する。
 (4)補正方法
 本実施形態のセンサモジュール1の補正方法について説明する。
 センサモジュール1は、センサモジュール1の製造工程において、制御部4の重力加速度に対する姿勢情報は、製造工程上において把握することができる。言い換えると、センサモジュール1の製造工程において、制御部4が支持部材6に取り付けられたときの実装による傾きは把握されている。
 傾斜センサ3のアライメント情報の把握方法について説明する。傾斜センサ3は、本実施形態では、3軸の加速度センサ30と、3軸角速度センサ37と、を含んでいる。センサモジュール1の製造工程において、傾斜センサ3が支持部材6に取り付けられると、3軸の加速度センサ30の制御部4に対する3軸の加速度センサ30の姿勢情報は、3軸の加速度センサ30の出力によって把握することができる。姿勢情報とは、取付対象への取付精度、設置状態を意味している。例えば、ここでは、3軸の加速度センサの出力は、制御部4に対する3軸の加速度センサ30の姿勢情報となっている。
 制御部4は、得られた3軸の加速度の姿勢情報をメモリ5に記憶させておく。
 次に、角速度センサ2のアライメント情報の把握方法について説明する。角速度センサ2は、上述したように、1軸角速度センサ(1DOF)である。角速度センサ2は支持部材6に実装される。センサモジュール1の製造工程において、角速度センサ2は実装された状態で、制御部4は何点か制御部4の重力加速度に対する姿勢情報を変えたときの感度出力を取得する。具体的には、制御部4は様々な角度での角速度センサ2の出力を取得して、感度が一番大きくなる部分を探索する。角速度センサ2の感度が最大となるのは、図6に示すように、回転軸Cと、検出軸Dと、が一致する点である。制御部4は、測定する各点について、測定する軸を変更する。制御部4は何点か測定することによって、どこが角速度センサ2の出力の最大となる点になるか、推定することができる。
 制御部4は、最大となる点に関する姿勢情報をメモリ5に記憶させる。
 車載時における取付誤差について説明する。センサモジュール1の車載時の取付誤差は、例えば、取り付ける場所の傾き、ねじの締め方等によって、重力加速度に対して傾きを持つ可能性がある。このため、実際のセンサモジュール1の取り付けにおいて、どれぐらいのアライメント誤差を有するかについては、3軸の加速度センサ30の情報(検出結果)と、すでにメモリ5に記憶されているアライメント情報から、絶対値としての傾きを算出することができる。例えば、3軸の加速度センサ30の出力データベースを有しているとすると、3軸の加速度センサの出力を見ただけで、何度傾いているかが分かる。同様に、何度か傾いて実装してしまった場合にも、3軸の加速度センサ30の出力を見るだけで実装の傾きが判明する。ずれ量θが判明すると、角速度センサ2をその分補正すればよい。3軸角速度センサ37は3軸の加速度センサを補い、検算に用いることができる。補正された角速度センサ2の検出結果を3軸角速度センサ37で検出することにより、補正結果を検算することができる。
 本実施形態では、支持部材6の重力加速度に対する本当の傾きと、3軸の加速度センサ30の出力と、は相関が取れている。相関が取れている状態であれば、3軸の加速度センサ30の出力から支持部材6の傾きが判明する。同様に、実装されたセンサモジュール1であっても、3軸の加速度センサ30の出力を見れば、センサモジュール1の傾きが判明する。このため、センサモジュール1のアライメントのずれ量が判明していれば、制御部4は、車載時のオフセット量から角速度センサ2を補正することができる。つまり、車に搭載後にもう一度アライメント調整をすることができる。
 測定感度をSa、補正後感度をSi、アライメント誤差をθとすると、cosθは数1で表わされるので、補正後感度Siは、以下の数2で表わされる。なお、|Sa|,|Si|はそれぞれSa,Siの絶対値を表している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 つまり、アライメントのずれ量θと測定感度Saから補正後感度Siが算出できる。
 角度情報を基にして感度補正を実施する他軸感度補正を行うために、感度が正しく出力される。ここで、センサ感度をSとし、X軸、Y軸、Z軸の成分をそれぞれSx,Sy,Szとすると、Z軸の他軸感度Senszは、以下の数3で表わされる。
Figure JPOXMLDOC01-appb-M000003
 (5)利点
 センサモジュール1は、支持部材6と、角速度センサ2と、傾斜センサ3と、制御部4と、を備える。角速度センサ2は、支持部材6に実装され、角速度を検出する。傾斜センサ3は、角速度センサ2の傾きを検出する。制御部4は、角速度センサ2及び傾斜センサ3と通信可能である。制御部4は、角速度信号と、傾斜信号と、を出力する。角速度信号は、角速度センサから出力された検出結果と、角速度センサ2の支持部材6に対する基準位置からのずれ量に関するアライメントデータと、に基づく信号である。傾斜信号は、傾斜センサ3から出力された検出結果を含む。
 この構成によると、角速度センサモジュールの感度を補正することができるセンサモジュール1を提供することができる。
 センサモジュール1を実装した状態において、センサモジュール1のアライメント誤差を補正することができる。
 (6)変形例
 以下に、変形例について列記する。なお、以下に説明する変形例は、上記実施形態と適宜組み合わせて適用可能である。
 傾斜センサ3は、MEMSを用いた加速度センサである構成としたが、この構成に限定されない。例えば、傾斜センサ3は、水銀スイッチで構成されてもよい。
 3軸の加速度センサ30は、MEMSを用いた構成としたが、この構成に限定されない。3軸の加速度センサ30は、MEMSを用いた1軸加速度センサを3つ用いてもよいし、非MEMS式の加速度センサを3つ用いてもよい。例えば、3軸の加速度センサ30は、ピエゾ抵抗式半導体型加速度センサを用いてもよい。
 制御部4は、3軸角速度センサ37からの信号を用いて角速度センサ2の検出結果を補正する構成としたが、この構成に限定されない。制御部4は、補正後の角速度センサ2の検出結果が適切である場合には補正後の検出結果を角速度信号として出力してもよい。すなわち、傾斜センサ3の3軸角速度センサ37は、制御部4により補正された角速度信号を検算してもよい。具体的には、制御部4は、3軸の加速度センサ30で検出した角速度センサ2の傾きから、角速度センサ2の補正を実施する。制御部4は、補正された角速度センサ2の結果と、3軸角速度センサ37の検出結果と、を比較することで、角速度センサ2の検出結果が正しく補正されているか、検算することができる。
 実施形態では3軸の加速度センサ30と3軸角速度センサ37を用いて角速度センサ2の検出結果を補正する構成としたが、この構成に限定されない。3軸角速度センサ37を用いずに角速度センサ2の検出結果を3軸の加速度センサ30で補正してもよい。
 バルク超音波共振素子7はフェイスダウンの素子構造を有する構成としたが、この構成に限定されない。バルク超音波共振素子7はフェイスアップの素子構造を有する構成であってもよい。
 バルク超音波共振素子7は、MEMS技術を用いた素子に限らず、他の素子であってもよい。
 支持部材6が処理回路62を含むASICのパッケージであることは、センサモジュール1に必須の構成ではなく、支持部材6についても適宜の構成を採用可能である。つまり、支持部材6は、電子部品を含む部材でなくてもよく、単なる板材等の構造体であってもよい。さらに、支持部材6の形状及び材質は、実施形態で示した例に限らない。例えば、支持部材6は、平面視において長方形状又は円形状等であってもよい。さらに、支持部材6は、例えば、樹脂製、シリコン製又はセラミック製等の部材であってもよい。
 制御部4と支持部材6とは別個のASICを含む構成としたが、この構成に限定されない。制御部4と支持部材6は同一のASICを含む構成であってもよい。つまり、支持部材6としてのASICのパッケージは、制御部4と、処理回路62と、を含む回路であってもよい。
 メモリ5は、センサモジュール1から取り外し可能に構成されていてもよい。
 メモリ5は、センサモジュール1に必須の構成ではなく、メモリ5はセンサモジュール1に搭載されていなくてもよい。外部の記憶装置と接続可能に構成されていればよい。例えば、センサモジュール1にはQRコード(Quick Reference Code)(登録商標)だけが付いていて、センサモジュール1のアライメント情報は、クラウドで記憶しておいてもよい。
 バルク超音波共振素子7は、1つの物理量に限らず、複数の物理量を検出する構成であってもよい。例えば、バルク超音波共振素子7は、角速度と加速度とを検出してもよい。
 (まとめ)
 以上、説明したように、第1の態様のセンサモジュール(1)は、支持部材(6)と、角速度センサ(2)と、傾斜センサ(3)と、制御部(4)と、を備える。角速度センサ(2)は、支持部材(6)に実装され、角速度を検出する。傾斜センサ(3)は、角速度センサ(2)の傾きを検出する。制御部(4)は、角速度センサ(2)及び傾斜センサ(3)と通信可能である。制御部(4)は、角速度信号と、傾斜信号と、を出力する。角速度信号は、角速度センサから出力された検出結果と、角速度センサ(2)の支持部材(6)に対する基準位置からのずれ量に関するアライメントデータと、に基づく信号である。傾斜信号は、傾斜センサ(3)から出力された検出結果を含む。
 この構成によると、センサモジュール(1)の取付基準位置からの取付角度のずれ量(θ)がセンサモジュールの感度に与える影響を抑制することができるセンサモジュール(1)を提供することができる。また、角速度センサ(2)を含むセンサモジュール(1)の感度を、センサモジュール(1)の実装後にも補正することができるセンサモジュール(1)を提供することができる。
 第2の態様のセンサモジュール(1)では、第1の態様において、傾斜センサ(3)は加速度センサ(30)を含む。
 この構成によると、傾斜センサ(3)は、加速度センサ(30)を含むことで、傾斜を精度よく検出することができる。
 第3の態様のセンサモジュール(1)では、第1又は第2の態様において、傾斜センサ(3)は、第1センサ(31)と、第2センサ(32)と、第3センサ(33)と、を含む。第1センサ(31)は、第1軸(X)の加速度を検出する。第2センサ(32)は、第1軸(X)と直交する第2軸(Y)の加速度を検出する。第3センサ(33)は、第1軸(X)及び第2軸(Y)と直交する第3軸の加速度を検出する。制御部(4)は、傾斜センサ(3)の検出結果に基づいて角速度センサ(2)の検出結果を補正する。
 この構成によると、3軸の加速度センサ(30)を用いることで、角速度センサ(2)の補正の精度を向上させることができる。
 第4の態様のセンサモジュール(1)では、第3の態様において、傾斜信号は、第1信号と、第2信号と、第3信号と、を含む。第1信号は、第1センサ(31)の検出結果に基づく。第2信号は、第2センサ(32)の検出結果に基づく。第3信号は、第3センサ(33)の検出結果に基づく。制御部(4)は、第1信号と、第2信号と、第3信号と、アライメントデータと、に基づいた角速度センサ(2)の角速度を検出する軸のずれ量(θ)を検出して、ずれ量(θ)を用いて角速度センサ(2)の検出結果を補正し、補正後の検出結果を角速度信号として出力する。
 この構成によると、制御部4は、第1信号と、第2信号と、第3信号と、アライメントデータと、に基づいた角速度センサ(2)の角速度を検出する軸のずれ量(θ)を検出して、ずれ量(θ)を用いて角速度センサ(2)の検出結果を補正することで精度の高い補正を行うことができる。
 第5の態様のセンサモジュール(1)では、第1~第4のいずれかの態様において、傾斜センサ(3)は、モノリシック構造である。
 この構成によると、傾斜センサ(3)の直交する3軸の直交性は、モノリシック構造ではない場合と比較して、高くなる。このため、角速度センサ(2)を補正する精度が向上する。
 第6の態様のセンサモジュール(1)では、第1~第5のいずれかの態様において、アライメントデータは、支持部材(6)に角速度センサ(2)及び傾斜センサ(3)が実装された状態においてあらかじめ取得される。
 この構成によると、比較的単純な構成においてアライメント情報を取得することができる。
 第7の態様のセンサモジュール(1)では、第3又は第4の態様において、第4センサ(34)、第5センサ(35)及び第6センサ(36)を、更に備える。第4センサ(34)は、第1軸(X)を回転軸とする角速度を検出する。第5センサ(35)は、第2軸(Y)を回転軸とする角速度を検出する。第6センサ(36)は、第3軸(Z)を回転軸とする角速度を検出する。制御部(4)は、第4センサ(34)、第5センサ(35)及び第6センサ(36)を、更に用いて、角速度センサ(2)の検出結果を補正する。
 この構成によると、角速度センサ(2)に加えて相補的に第4センサ(34)、第5センサ(35)及び第6センサ(36)を用いることで、補正の精度が向上する。
 第8の態様のセンサモジュール(1)では、第7の態様において、制御部(4)は、第4センサ(34)、第5センサ(35)及び第6センサ(36)を用いて、角速度センサ(2)の検出結果を補正し、補正後の角速度センサ(2)の検出結果が適切である場合には補正後の検出結果を角速度信号として出力する。
 この構成によると、相補的に第4センサ(34)、第5センサ(35)及び第6センサ(36)を用いて、補正後の検出結果を検算することで、補正の精度が向上する。
 第9の態様のセンサモジュール(1)では、第1~第8のいずれかの態様において、アライメントデータを記憶し、制御部(4)と接続可能なメモリ(5)を、更に備える。
 この構成によると、アライメントデータをあらかじめ記憶しておくことで、それを参照して、角速度センサ(2)の感度を補正することができる。
  1  センサモジュール
  2  角速度センサ
  3  傾斜センサ
  4  制御部
  5  メモリ
  30  加速度センサ
  31  第1センサ
  32  第2センサ
  33  第3センサ
  34  第4センサ
  35  第5センサ
  36  第6センサ
  X  第1軸
  Y  第2軸
  Z  第3軸
  θ  ずれ量

Claims (9)

  1.  支持部材と、
     前記支持部材に実装され、角速度を検出する角速度センサと、
     前記角速度センサの傾きを検出する傾斜センサと、
     前記角速度センサ及び前記傾斜センサと通信可能である制御部と、を備え、
     前記制御部は、
     前記角速度センサから出力された検出結果と前記角速度センサの前記支持部材に対する基準位置からのずれ量に関するアライメントデータとに基づいた角速度信号と、
     前記傾斜センサから出力された検出結果を含む傾斜信号と、を出力する、
     センサモジュール。
  2.  前記傾斜センサは加速度センサを含む、
     請求項1に記載のセンサモジュール。
  3.  前記傾斜センサは、第1センサと、第2センサと、第3センサと、を含み、
     前記第1センサは、第1軸の加速度を検出し、
     前記第2センサは、前記第1軸と直交する第2軸の加速度を検出し、
     前記第3センサは、前記第1軸及び前記第2軸と直交する第3軸の加速度を検出し、
     前記制御部は、前記傾斜センサの検出結果に基づいて前記角速度センサの検出結果を補正する、
     請求項1又は2に記載のセンサモジュール。
  4.  前記傾斜信号は、
      前記第1センサの検出結果に基づく第1信号と、
      前記第2センサの検出結果に基づく第2信号と、
      前記第3センサの検出結果に基づく第3信号と、を含み、
     前記制御部は、前記第1信号と、前記第2信号と、前記第3信号と、前記アライメントデータと、に基づいた前記角速度センサの角速度を検出する軸のずれ量を検出して、前記ずれ量を用いて前記角速度センサの検出結果を補正し、補正後の検出結果を前記角速度信号として出力する、
     請求項3に記載のセンサモジュール。
  5.  前記傾斜センサは、モノリシック構造である、
     請求項1~4のいずれか1項に記載のセンサモジュール。
  6.  前記アライメントデータは、前記支持部材に前記角速度センサ及び前記傾斜センサが実装された状態においてあらかじめ取得される、
     請求項1~5のいずれか1項に記載のセンサモジュール。
  7.  第4センサ、第5センサ及び第6センサ、を更に備え、
     第4センサは、前記第1軸を回転軸とする角速度を検出し、
     第5センサは、前記第2軸を回転軸とする角速度を検出し、
     第6センサは、前記第3軸を回転軸とする角速度を検出し、
     前記制御部は前記第4センサ、前記第5センサ及び前記第6センサを、更に用いて、前記角速度センサの検出結果を補正する、
     請求項3又は4に記載のセンサモジュール。
  8.  前記制御部は前記第4センサ、前記第5センサ及び前記第6センサを用いて、前記角速度センサの検出結果を補正し、補正後の前記角速度センサの検出結果が適切である場合には補正後の検出結果を前記角速度信号として出力する、
     請求項7に記載のセンサモジュール。
  9.  前記アライメントデータを記憶し、前記制御部と接続可能なメモリを、更に備える、
     請求項1~8のいずれか1項に記載のセンサモジュール。
PCT/JP2021/004541 2020-04-28 2021-02-08 センサモジュール WO2021220574A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020079591 2020-04-28
JP2020-079591 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220574A1 true WO2021220574A1 (ja) 2021-11-04

Family

ID=78331926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004541 WO2021220574A1 (ja) 2020-04-28 2021-02-08 センサモジュール

Country Status (1)

Country Link
WO (1) WO2021220574A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058045A (ja) * 2004-08-18 2006-03-02 Nissin Kogyo Co Ltd 車載用装置
JP2009014732A (ja) * 2008-08-07 2009-01-22 Pioneer Electronic Corp 取付け角度検出装置
JP2016084086A (ja) * 2014-10-28 2016-05-19 トヨタ自動車株式会社 移動体のセンサ校正方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058045A (ja) * 2004-08-18 2006-03-02 Nissin Kogyo Co Ltd 車載用装置
JP2009014732A (ja) * 2008-08-07 2009-01-22 Pioneer Electronic Corp 取付け角度検出装置
JP2016084086A (ja) * 2014-10-28 2016-05-19 トヨタ自動車株式会社 移動体のセンサ校正方法

Similar Documents

Publication Publication Date Title
JP5205725B2 (ja) 角速度センサ
JP4687577B2 (ja) 慣性センサ
US8857258B2 (en) Inertial force sensor
EP2000769B1 (en) Inertia force sensor
JP2005315826A (ja) 多軸センサを有する力センサ装置における応力検出方法及び、この方法を用いる力センサ装置。
JP5481634B2 (ja) 慣性センサを収容するモールド構造およびそれを用いたセンサシステム
JP6926568B2 (ja) 物理量センサー、電子機器および移動体
US9035400B2 (en) Micro electro mechanical systems device
WO2021220574A1 (ja) センサモジュール
JPH0783667A (ja) 角速度センサ
JP2002243450A (ja) 角速度センサ、加速度センサ及び角速度/加速度兼用センサ
US20100011859A1 (en) Angular velocity sensor
JP2017058303A (ja) センサーデバイス、および、センサーデバイスの製造方法
JP4626858B2 (ja) 角速度センサ素子
JP2007256234A (ja) 慣性力センサ
JP4858215B2 (ja) 複合センサ
JP5125138B2 (ja) 複合センサ
JP7403069B2 (ja) 物理量センサ
JPH06249667A (ja) 角速度センサ
JP2008190887A (ja) センサ
JP2007198778A (ja) 慣性力センサ
JP2023124099A (ja) 慣性計測システムの製造方法
JP2019178906A (ja) ジャイロセンサー並びにそれを用いた電子機器及び移動体
JP2015014517A (ja) 振動子、電子デバイス、電子機器および移動体
JP2011069728A (ja) 多軸加速度センサー、多軸加速度検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP