JP2015014517A - 振動子、電子デバイス、電子機器および移動体 - Google Patents

振動子、電子デバイス、電子機器および移動体 Download PDF

Info

Publication number
JP2015014517A
JP2015014517A JP2013141367A JP2013141367A JP2015014517A JP 2015014517 A JP2015014517 A JP 2015014517A JP 2013141367 A JP2013141367 A JP 2013141367A JP 2013141367 A JP2013141367 A JP 2013141367A JP 2015014517 A JP2015014517 A JP 2015014517A
Authority
JP
Japan
Prior art keywords
piezoelectric
connecting portion
piezoelectric element
center
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013141367A
Other languages
English (en)
Inventor
史生 市川
Fumio Ichikawa
史生 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013141367A priority Critical patent/JP2015014517A/ja
Publication of JP2015014517A publication Critical patent/JP2015014517A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】センサー素子に対して角速度あるいは加速度が付加されていない状態でも検出される角速度信号あるいは加速度信号を容易に相殺させる振動子を提供する。
【解決手段】基部と、前記基部から延出している検出腕と、前記基部の一端から前記検出腕の延出方向と交差する方向に延出している第1連結部と、前記基部の他端から前記検出腕の延出方向と交差する方向に延出している第2連結部と、前記第1連結部から前記第1連結部の延出方向と交差する方向に延出している第1振動腕と、前記第2連結部から前記第2連結部の延出方向と交差する方向に延出している第2振動腕と、を備え、前記第1連結部と、前記第2連結部と、には、圧電部が備えられている振動子。
【選択図】図1

Description

本発明は、振動子、電子デバイス、電子機器および移動体に関する。
デジタルカメラやビデオカメラ等に搭載される手ぶれ補正装置に備える振動制御補正や、自動車などの車両に搭載される車体姿勢制御装置あるいはカーナビゲーションシステムにおける自社位置検出装置に備えるジャイロセンサーとして、振動ジャイロセンサーが知られている(特許文献1)。
特許文献1に記載の角速度と加速度を検出する慣性センサー(ジャイロセンサー)では、角速度検出部と加速度検出部とを有する検出素子を備えている。検出素子は直交する第1、第2アームと、第1アームの一端を支持する支持部と、を有し、第2アームを振動させて、角速度あるいは加速度に起因する検出素子の状態変化に基づき、角速度あるいは加速度を検出する構成となっている。
しかし、特許文献1に開示された慣性センサーでは、面内振動される第2アームが正確に振動面内で屈曲振動しない、たとえば第2アームの形状のばらつきや、一対の第2アームの互いのアンバランスなどによる面外振動が混在し、正確な角速度、あるいは加速度が検出できない虞があった。これに対して特許文献2では、斜め振動、いわゆる面外振動を抑制する方法が開示されている。
特許文献2に記載の角速度センサー素子では、音叉状水晶片の音叉振動が励振される音叉腕の稜線部にレーザーによる微小切削部を音叉腕の長さ方向に順次形成された切削部を構成し、斜め振動を抑制することが開示されている。
特開2009−222475号公報 特開2008−209215号公報
しかし、特許文献2に開示された斜め振動の抑制方法では、製造途中の段階での調整工程が必要となり、センサー素子から完成品としてのセンサーデバイスに至る過程における斜め振動を発生させる変動要因に対しての調整ができないものであった。そこで、センサー素子に対して角速度あるいは加速度が付加されていない状態でも検出される角速度信号あるいは加速度信号、いわゆる「0点出力(詳細は後述)」を容易に相殺させる振動子を提供する。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
〔適用例1〕本適用例の振動子は、基部と、前記基部から延出している検出腕と、前記基部の一端から前記検出腕の延出方向と交差する方向に延出している第1連結部と、前記基部の他端から前記検出腕の延出方向と交差する方向に延出している第2連結部と、前記第1連結部から前記第1連結部の延出方向と交差する方向に延出している第1振動腕と、前記第2連結部から前記第2連結部の延出方向と交差する方向に延出している第2振動腕と、を備え、前記第1連結部と、前記第2連結部と、には、圧電部が備えられていることを特徴とする。
本来、振動子に備える第1振動腕および第2振動腕は所定の振動数で励振されているが、振動子に検出すべき角速度が付加されていない状態においては、検出腕は励振されずに静止した状態にある。これは、第1振動腕と第2振動腕とが対称性をもって振動していることにより得られる状態である。しかし、振動子の製造上の誤差、いわゆるばらつきによって、振動子の対称性、特に第1振動腕と第2振動腕との対称性が損なわれてしまう。このことによって、振動子に角速度などの外力が付加されない、すなわち静的な状態においても、第1振動腕および第2振動腕の振動が、第1連結部および第2連結部を経由して基体に漏れてしまう。この漏れた振動、いわゆる振動漏れが基体から延設される第1検出腕および第2検出腕を励振させ、あたかも角速度などの外力が付加された信号が出力されてしまう。この現象による出力信号は、「漏れ信号」あるいは「自己振動成分」などとも呼ばれるが、本発明の明細書中では「0点出力」と呼ぶ。
本適用例の振動子によれば、例えば製造ばらつきによって発生する第1連結部および第2連結部の漏れ振動の挙動を、第1連結部および第2連結部に備える圧電部を伸縮もしくは圧縮させることで相殺することができる。従って、第1振動腕および第2振動腕からの振動漏れが基体へ伝わることが抑制され、0点出力が発生しない、正確に振動子に付加される角速度などを検出することができる振動子を得ることができる。また、振動子の製造上のばらつきによる0点出力を、上述の通り、第1連結部および第2連結部に備える圧電部を伸縮もしくは圧縮させることで相殺できるため、部品加工の歩留まりを上げることが可能となり、振動子の生産性を高め、コストダウンを図ることができる。また、ノイズ信号を完全に除去するのではなく、ノイズ信号を所定の値となるように制御してもよい。このようにすることで、例えばノイズ信号を利用した電子デバイスの故障診断に適用することができる。
更に、振動子が、例えば振動子に異物が付着したり、振動子が破損したりして、故障が発生した場合に、振動子の0点出力の大きさが変化する。この0点出力の大きさの変化を監視することにより、振動子に故障が発生したか否かを判定することができる。
〔適用例2〕上述の適用例において、前記第1連結部における重心を通り、前記第1連結部の延出方向に沿った第1仮想線と、前記第2連結部における重心を通り、前記第2連結部の延出方向に沿った第2仮想線と、が定義され、前記第1連結部の平面視において、前記第1連結部の第1主面、および前記第1主面に対して裏面にあたる第3主面の少なくとも一方に第1の圧電部が備えられ、前記第2連結部の平面視において、前記第2連結部の第2主面、および前記第2主面に対して裏面にあたる第4主面の少なくとも一方に第2の圧電部が備えられ、前記第1連結部の平面視において、前記第1の圧電部の中心と前記第1仮想線との距離をd1とし、前記第2連結部の平面視において、前記第2の圧電部の中心と前記第2仮想線との距離をd2とした場合、
d1>0
d2>0
であることを特徴とする。
例えば製造ばらつきによって第1連結部および第2連結部の屈曲振動が励振されることにより、第1連結部および第2連結部の内部には引張応力と圧縮応力とが発生する。この引張応力から圧縮応力に変位する、すなわち応力の発生していない領域は、連結部の重心を通る仮想線近傍に存在する。従って、上述の適用例によれば、第1連結部および第2連結部の振動による応力が生じない領域としての重心を通る仮想線に対して、平面視において第1の圧電部および第2の圧電部の中心位置が重ならないように第1の圧電部および第2の圧電部を配置することにより、製造ばらつきによって発生する第1連結部および第2連結部の漏れ振動の挙動をより確実に相殺をすることができる。
〔適用例3〕上述の適用例において、前記第1連結部および前記第2連結部の延出方向に交差する軸をY軸とし、Y軸の一方をY(+)方向、他方をY(−)方向、とした場合、前記第1の圧電部の中心が、前記第1仮想線に対してY(+)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(−)方向に配置されている、または、前記第1の圧電部の中心が、前記第1仮想線に対してY(−)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(+)方向に配置されていることを特徴とする。
上述の適用例によれば、第1連結部に備える第1の圧電部と、第2連結部に備える第2の圧電部と、に同相の電圧を付加することにより、振動子の0点出力を抑制することができる。
〔適用例4〕上述の適用例において、前記第1連結部および前記第2連結部の延出方向に交差する軸をY軸とし、Y軸の一方をY(+)方向、他方をY(−)方向、とした場合、前記第1の圧電部の中心が、前記第1仮想線に対してY(+)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(+)方向に配置されている、または、前記第1の圧電部の中心が、前記第1仮想線に対してY(−)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(−)方向に配置されていることを特徴とする。
上述の適用例によれば、第1連結部に備える第1の圧電部と、第2連結部に備える第2の圧電部と、に逆相の電圧を付加することにより、振動子の0点出力を抑制することができる。
〔適用例5〕上述の適用例において、前記第1連結部における重心を通り、前記第1連結部の延出方向に沿った第1仮想線と、前記第2連結部における重心を通り、前記第2連結部の延出方向に沿った第2仮想線と、が定義され、前記第1連結部の平面視において、前記第1連結部の第1主面、および前記第1主面に対して裏面にあたる第3主面の少なくとも一方に第1の圧電部が備えられ、前記第2連結部の平面視において、前記第2連結部の第2主面、および前記第2主面に対して裏面にあたる第4主面の少なくとも一方に第2の圧電部が備えられ、前記第1の圧電部は第1圧電素子と第2圧電素子と、を備え、前記第2の圧電部は第3圧電素子と第4圧電そしと、を備え、前記第1連結部の平面視にて、前記第1仮想線と前記第1圧電素子の中心との距離をd11、前記第1仮想線と前記第2圧電素子の中心との距離をd12とし、前記第2連結部の平面視にて、前記第2仮想線と前記第3圧電素子の中心との距離をd21、前記第2仮想線と前記第4圧電素子の中心との距離をd22とした場合、
d11>0
d12>0
d21>0
d22>0
であり、前記第1連結部および前記第2連結部の延出方向に交差する軸をY軸とし、Y軸の一方をY(+)方向、他方をY(−)方向、とした場合、前記第1圧電素子および前記第2圧電素子のどちらか一方の圧電素子の中心が、前記第1仮想線に対してY(+)方向に配置され、他方の圧電素子の中心が、前記第1仮想線に対してY(−)方向に配置され、前記第3圧電素子および前記第4圧電素子のどちらか一方の圧電素子の中心が、前記第2仮想線に対してY(+)方向に配置され、他方の圧電素子の中心が、前記第2仮想線に対してY(−)方向に配置されていることを特徴とする。
上述の適用例によれば、第1連結部は、備えられる第1の圧電部の、互いに逆相で電荷が付加される第1圧電素子と第2圧電素子とによって、製造ばらつきによる漏れ振動をより強く相殺することできる。同様に、第2連結部は、備えられる第2の圧電部の、互いに逆相で電圧が付加される第3圧電素子と第4圧電素子とによって、製造ばらつきによる漏れ振動をより強く相殺することできる。
〔適用例6〕上述の適用例において、前記第1連結部の平面視における前記第1連結部の第1主面と、前記第1主面に対して裏側にあたる第3主面と、を繋ぐ側面に第3の圧電部が備えられ、前記第2連結部の平面視における前記第2連結部の第2主面と、前記第2主面に対して裏面にあたる第4主面と、を繋ぐ側面に第4の圧電素子が備えられていることを特徴とする。
製造ばらつきによって第1連結部および第2連結部の屈曲振動が励振されることにより、第1連結部および第2連結部の内部には引張応力と圧縮応力とが発生する。この引張応力および圧縮応力は、第1連結部および第2連結部の表裏の主面を繋ぐ側面で最大となる。従って、上述の適用例によれば、製造ばらつきによる漏れ振動によって励振される第1連結部および第2連結部に発生する内部の引張応力あるいは圧縮応力が最大となる側面に第1の圧電部および第2の圧電部を備えることにより、振動子の0点出力を抑制することができる。
〔適用例7〕本適用例の電子デバイスは、上述に記載の振動子と、前記振動子を振動させる駆動回路と、前記検出腕の振動を検出する検出回路と、前記駆動回路からの出力信号と、前記検出回路からの出力信号と、に基づいて前記圧電部を駆動させる補正信号生成回路と、を備えることを特徴とする。
本適用例の電子デバイスによれば、0点出力が抑制され、正確に角速度などの外力を検出することができる。
〔適用例8〕本適用例の電子機器は、上述に記載の振動子、あるいは電子デバイスを備えることを特徴とする。
本適用例の電子機器によれば、0点出力が抑制され、正確に角速度などの外力を検出することができ、安定した動作を得ることができる。
〔適用例9〕本適用例の移動体は、上述に記載の振動子、電子デバイス、あるいは電子機器を備えることを特徴とする。
本適用例の移動体によれば、0点出力が抑制され、正確に角速度などの外力を検出することができ、安定した動作を得ることができる。
第1実施形態に係る振動子を示し、(a)は平面図、(b)は(a)に示すA−A´部の断面図、(c)は(a)に示すB−B´部の断面図、(d)は(a)に示すC−C´部の断面図。 第1実施形態に係る振動子の動作を説明する平面図であり、(a)は静的な状態を示す図、(b)は角速度が付加された状態を示す図。 第1実施形態に係る振動子の連結部に備える圧電素子の動作を説明する平面図。 第1実施形態に係る振動子のその他の形態を示す平面図。 その他の形態に係る振動子の連結部に備える圧電素子の動作を説明する平面図。 第2実施形態に係る振動子を示す、(a)は平面図、(b)は(a)に示すD−D´部の拡大断面図。 第2実施形態に係る振動子の連結部に備える圧電素子の動作を説明する平面図。 第3実施形態に係る振動子を示す、(a)は平面図、(b)は(a)に示すE−E´部の断面図、(c)は(a)に示すF−F´部の断面図。 第3実施形態に係る振動子の連結部に備える圧電素子の動作を説明する平面図。 第3実施形態に係る振動子のその他の形態を示す平面図。 第4実施形態に係るセンサーデバイスを示す、(a)は平面図、(b)は(a)に示すM−M´部の断面図。 第5実施形態に係る電子機器としてのスマートフォンを示す外観図。 第5実施形態に係る電子機器としてのデジタルスチルカメラを示す外観図。 第6実施形態に係る移動体としての自動車を示す外観図。
以下、図面を参照して、本発明に係る実施形態を説明する。
(第1実施形態)
図1は第1実施形態に係る振動子を示し、(a)は平面図、(b)は(a)に示すA−A´部の断面図、(c)は(a)に示すB−B´部の断面図、(d)は(a)に示すC−C´部の断面図である。
図1(a)に示す振動子100は、シリコン(Si)などの半導体、あるいは非圧電性の絶縁材から構成することができ、本実施形態ではシリコン基材により形成された振動子100を例示する。振動子100は、後述する電子デバイスとしてのセンサーデバイスとして構成する場合に、パッケージの基板に接続される基部10を備えている。基部10からは、図示するX方向に互いに反対方向に延出する第1連結部21と、第2連結部22と、を備えている。
第1連結部21からは第1振動部31aがY方向に延出し、第1振動部31aのY方向の両端には錘部31bが形成され、第1振動腕31が構成される。第2連結部22からは第2振動部32aがY方向に延出し、第2振動部32aのY方向の両端には錘部32bが形成され、第2振動腕32が構成される。
更に基部10は、第1連結部21、第2連結部22が延出されるX方向に交差するY方向の一方に延出する第1検出部41aと、第1検出部41aの端部に形成された錘部41bとを備える第1検出腕41と、Y方向の他方に延出する第2検出部42aと、第2検出部42aの端部に形成された錘部42bとを備える第2検出腕42と、を備えている。
第1振動腕31の第1振動部31aの平面視における一方の面31cには、Y方向に並行して圧電素子51,52が形成されている。また、第2振動腕32の第2振動部32aの平面視における一方の面32cには、Y方向に並行して圧電素子53,54が形成されている。圧電素子51は、図1(b)に示すように、第1振動部31aの面31c表面から下部電極層51a、圧電体層51b、上部電極層51cの順に積層された構成となっている。同様に、圧電素子52は、下部電極層52a、圧電体層52b、上部電極層52cの順に積層され、圧電素子53は、下部電極層53a、圧電体層53b、上部電極層53cの順に積層され、圧電素子54は、下部電極層54a、圧電体層54b、上部電極層54cの順に積層され、構成されている。
また、平面視における第1検出部41aの一方の面41cには、Y方向に並行して圧電素子61,62が形成され、第2検出部42aの一方の面42cには、Y方向に並行して圧電素子63,64が形成されている。圧電素子61は、図1(b)に示すように、面41c表面から下部電極層61a、圧電体層61b、上部電極層61cの順に積層された構成となっている。同様に、圧電素子62は、下部電極層62a、圧電体層62b、上部電極層62cの順に積層され、圧電素子63は、下部電極層63a、圧電体層63b、上部電極層63cの順に積層され、圧電素子64は、下部電極層64a、圧電体層64b、上部電極層64cの順に積層され、構成されている。なお、上述した圧電素子51,52,53,54,61,62,63,64は、一方の面31c,32c,41c,42cに形成されているが、反対の面を含めた両方の面に形成されてもよい。
第1連結部21には、第1連結部21の平面視における第1主面としての一方の面21aに第1の圧電部としての圧電素子71が形成され、第2連結部22の第2主面としての一方の面22aに第2の圧電部としての圧電素子72が形成されている。圧電素子71は、図1(c)に示すように、面21a表面から下部電極層71a、圧電体層71b、上部電極層71cの順に積層された構成となっている。同様に、圧電素子72は、図1(d)に示すように、面22a表面から下部電極層72a、圧電体層72b、上部電極層72cの順に積層された構成となっている。上述の第1主面(面21a)は、第1振動腕31の面内振動の振動面に沿った面であり、第2主面(面22a)は、第2振動腕32の面内振動の振動面に沿った面である。
第1連結部21に形成される圧電素子71は、図1(a),(c)に示すように、第1連結部21(図示点状ハッチング部)の重心G1を通るX方向に延伸される仮想直線L1に対して、圧電素子71の平面視形状の中心P1がY(−)方向に距離d1離間させて形成されている。また、第2連結部22に形成される圧電素子72は、図1(a),(d)に示すように、第2連結部22(図示点状ハッチング部)の重心G2を通るX方向に延伸される仮想直線L2に対して、圧電素子72の平面視形状の中心P2がY(+)方向に距離d2離間させて形成されている。このとき、
d1>0
d2>0
であること、言い換えると、
d1≠0
d2≠0
であることが圧電素子71,72の形成条件となる。
次に上述した振動子100の動作について説明する。図2(a)は、振動子100の静的な状態における第1振動腕31および第2振動腕32の動作状態を示す平面図である。図2(a)に示すように、振動子100は角速度などの外力が付加されていない、すなわち静的な状態において、第1振動部31aに備えられた圧電素子51,52を構成する図1(b)に示す下部電極層51a,52a,53a,54aと上部電極層51c,52c,53c,54cとの間に駆動信号となる電圧が印加され、圧電体層51b,52b,53b,54bが伸縮し、第1振動部31aおよび第2振動部32aを面内屈曲振動させる。この屈曲振動は、錘部31b,32bが互いに離間および接近する、図2(a)に示すR方向の振動が所定の周波数で励振される。
次に、図2(a)で示した静的状態の振動子100にZ軸周りの角速度が加わると、図2(b)に示す動作状態となる。図2(b)に示すように、振動子100にZ軸周りの角速度ωが付加されると、第1振動腕31および第2振動腕32には、それぞれコリオリ力が働く。このコリオリ力により、第1連結部21および第2連結部22に図示する矢印S方向の屈曲振動が発生する。この矢印S方向の屈曲振動を打ち消すように、第1検出腕41および第2検出腕42が矢印で示すr方向の屈曲振動が励振される。
第1検出腕41の第1検出部41aに形成された圧電素子61,62は、r方向の屈曲振動に合わせて圧電素子61,62に備える圧電体層61b,62b(図1(b)参照)は伸縮あるいは屈曲し、表面電荷が生じる。生じた表面電荷は、下部電極層61a,62aと上部電極層61c,62cを介して出力信号として取り出される。また同様に、第2検出腕42の第2検出部42aに形成された圧電素子63,64は、r方向の屈曲振動に合わせて圧電素子63,64に備える圧電体層63b,64b(図1(b)参照)は伸縮あるいは屈曲し、表面電荷が生じる。生じた表面電荷は、下部電極層63a,64aと上部電極層63c,64cを介して出力信号として取り出される。取り出された第1検出腕41と第2検出腕42とからの出力信号から角速度ωが求められる。
上述した図2(a)に示すような、第1振動腕31と第2振動腕32とが所定の周波数で面内振動し、その振動は基部10には伝わらず、第1検出腕41および第2検出腕42は振動しない静的な状態は、理想的な形、すなわち正確に対称性をもって第1振動腕31と第2振動腕32とが製造された振動子100において実現する。しかしながら、製造上のばらつき(加工誤差)から0点出力を発生してしまう。
0点出力とは、前述したが、ばらつき等により第1振動腕31と第2振動腕32との固有振動数に差異が生じることにより生じてしまう。このことにより、第1振動腕31と第2振動腕32との屈曲振動の対称性が損なわれ、第1連結部21、第2連結部22、そして基部10を介して第1検出腕41および第2検出腕42に機械的に振動が漏れてしまい、第1検出腕41および第2検出腕42は励振されてしまう。従って、振動子100に角速度ωが付加されていない状態であっても、第1検出腕41あるいは第2検出腕42に設けられている検出素子である圧電素子61,62,63,64から信号が出力されてしまう。この出力のことを0点出力と呼ぶ。
図3は、第1連結部21に備える圧電素子71、および第2連結部22に備える圧電素子72の動作を説明する平面図である。上述した0点出力によって、振動子100に備える第1連結部21および第2連結部22は、図3(a)に示す状態と図3(b)に示す状態を交互に繰り返す屈曲振動が励振される。図3(a)に示す状態において、第1連結部21内部には、Y(−)側の領域では引張応力fs1が発生し、Y(+)側の領域では圧縮応力fc1が発生し、第2連結部22内部には、Y(+)の領域では引張応力fs2が発生し、Y(−)の領域では圧縮応力fc2が発生する。
図1(a),(c),(d)で説明したように、第1連結部21に備える圧電素子71の中心P1は、第1連結部21の重心G1を通る仮想線L1よりY(−)の領域に位置するように配置されている。この圧電素子71に第1連結部21のY(−)の領域に生じる引張応力fs1に対応した圧縮応力Fc1を発生させるように、圧電素子71の下部電極層71aと上部電極層71cとの間に電界を生じさせ、圧電体層71bを収縮させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
同様に、第2連結部22においても、第2連結部22に備える圧電素子72の中心P2は、第2連結部22の重心G2を通る仮想線L2よりY(+)の領域に位置するように配置されている。この圧電素子72に第2連結部22のY(+)の領域に生じる引張応力fs2に対応した圧縮応力Fc2を発生させるように、圧電素子72の下部電極層72aと上部電極層72cとの間に電界を生じさせ、圧電体層72bを収縮させる。これにより、製造ばらつきによる第2連結部22の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
次に、図3(b)に示す状態において、第1連結部21内部には、Y(+)方向では引張応力fs3が発生し、Y(−)側の領域では圧縮応力fc3が発生し、第2連結部22内部には、Y(−)側の領域では引張応力fs4が発生し、Y(+)方向の領域では圧縮応力fc4が発生する。そこで、圧電素子71に第1連結部21のY(−)の領域に生じる圧縮応力fc3に対応した引張応力Fs3を発生させるように、圧電素子71の下部電極層71aと上部電極層71cとの間に電界を生じさせ、圧電体層71bを伸張させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
同様に、第2連結部22においても、圧電素子72に第2連結部22のY(+)側の領域に生じる圧縮応力fc4に対応した引張応力Fs4を発生させるように、圧電素子72の下部電極層72aと上部電極層72cとの間に電界を生じさせ、圧電体層72bを伸張させる。これにより、製造ばらつきによる第2連結部22の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
上述したように、振動子100では、第1連結部21に形成された圧電素子71と、第2連結部22に形成された圧電素子72と、に同相の電界を付加することにより、製造ばらつきによる基部10を介した第1検出部41aおよび第2検出部42aへの振動漏れを抑制することがでる。従って、振動子100に角速度が付加された場合の検出部41a,42aからの検出信号は、製造ばらつきによるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。また、ノイズ信号を完全に除去するのではなく、ノイズ信号を所定の値となるように制御してもよい。このようにすることで、例えばノイズ信号を利用した電子デバイスの故障診断に適用することができる。
更に、振動子100が、例えば振動子100に異物が付着したり、振動子100が破損したりして、故障が発生した場合に、振動子100の0点出力の大きさが変化する。従って、0点出力の大きさの変化を監視することにより、振動子100に故障が発生したか否かを判定することができる。例えば、0点出力の閾値としての上下限基準値を設け、その上下限基準値を超えた場合に振動子100に故障が発生したと判定することができる。
なお、本実施形態の係る振動子100では、第1連結部21に備える圧電素子71の中心P1は、第1連結部21の重心G1を通る仮想線L1よりY(−)方向に位置するように配置し、第2連結部22に備える圧電素子72の中心P2は、第2連結部22の重心G2を通る仮想線L2よりY(+)方向に位置するように配置されている。しかし、これに限定されず、第1連結部21に備える圧電素子71の中心P1は、第1連結部21の重心G1を通る仮想線L1よりY(+)方向に位置するように配置し、第2連結部22に備える圧電素子72の中心P2は、第2連結部22の重心G2を通る仮想線L2よりY(−)方向に位置するように配置してもよい。
また、本実施形態に係る振動子100は、シリコン(Si)基材により形成された振動子100を例示したが、これに限定されず、水晶などの圧電材料を用いてもよい。
図4は、本実施形態に係る振動子100のその他の形態を示す平面図である。なお、図4に示す振動子110は、第1連結部21および第2連結部22に形成される圧電素子の配置が異なるものであり、その他の構成要素は振動子100と同じであるので、同じ構成要素には同じ符号を付し、説明は省略する。
図4に示す振動子110は、第1連結部21には、第1連結部21の平面視における第1主面としての一方の面21aに第1の圧電部としての圧電素子73が形成され、第2連結部22の第2主面としての一方の面22aに第2の圧電部としての圧電素子74が形成されている。第1連結部21に形成される圧電素子73は、図4に示すように、第1連結部21(図示点ハッチング部)の重心G1を通るX方向の仮想直線L1に対して、圧電素子73の平面視形状の中心P3がY(−)方向に距離d3離間させて配設される。また、第2連結部22に形成される圧電素子74は、図4に示すように、第2連結部22(図示点ハッチング部)の重心G2を通るX方向の仮想直線L2に対して、圧電素子74の平面視形状の中心P4がY(−)方向に距離d4離間させて配設される。すなわち、圧電素子73,74共に、連結部21,22の重心G1,G2を通る仮想線L1,L2に対して同じ方向のY(−)方向に離間するように配置されている。
このとき、
d3>0
d4>0
であること、言い換えると、
d3≠0
d4≠0
であることが圧電素子73,74の形成条件となる。このように形成された圧電素子73,74の動作を図5により説明する。
図5は、第1連結部21に備える圧電素子73、および第2連結部22に備える圧電素子74の動作を説明する平面図である。上述した製造ばらつきによって、振動子110に備える第1連結部21および第2連結部22は、図5(a)に示す状態と図5(b)に示す状態を交互に繰り返す屈曲振動が励振される。図5(a)に示す状態において、第1連結部21内部には、Y(−)側の領域では引張応力fs1が発生し、Y(+)側の領域では圧縮応力fc1が発生し、第2連結部22内部には、Y(+)方向では引張応力fs2が発生し、Y(−)側の領域では圧縮応力fc2が発生する。
図4で説明したように、第1連結部21に備える圧電素子73の中心P3は、第1連結部21の重心G1を通る仮想線L1よりY(−)方向に位置するように配置されている。この圧電素子73に第1連結部21のY(−)側の領域に生じる引張応力fs1に対応した圧縮応力Fc3を発生させるように、圧電素子73を収縮させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
また、第2連結部22においては、第2連結部22に備える圧電素子74の中心P4も、第2連結部22の重心G2を通る仮想線L2よりY(−)方向に位置するように配置されている。この圧電素子74に第2連結部22のY(−)側の領域に生じる圧縮応力fc2に対応した引張応力Fs4を発生させるように、圧電素子74を伸張させる。これにより、製造ばらつきによる第2連結部22の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
次に、図5(b)に示す状態において、第1連結部21内部には、Y(+)側の領域では引張応力fs3が発生し、Y(−)側の領域では圧縮応力fc3が発生し、第2連結部22内部には、Y(−)側の領域では引張応力fs4が発生し、Y(+)側の領域では圧縮応力fc4が発生する。そこで、圧電素子73に第1連結部21のY(−)側の領域に生じる圧縮応力fc3に対応した引張応力Fs3を発生させるように、圧電素子73を伸張させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
また、第2連結部22においても、圧電素子74に第2連結部22のY(−)側の領域に生じる引張応力fs4に対応した圧縮応力Fc4を発生させるように、圧電素子74を収縮させる。これにより、製造ばらつきによる第2連結部22の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
上述したように、振動子110では、第1連結部21に形成された圧電素子73と、第2連結部22に形成された圧電素子74と、に逆相の電界を付加することにより、製造ばらつきによる基部10を介した第1検出部41aおよび第2検出部42aへの振動漏れを抑制することがでる。従って、振動子110に角速度が付加された場合の検出部41a,42aからの検出信号は、0点出力によるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。また、ノイズ信号を完全に除去するのではなく、ノイズ信号を所定の値となるように制御してもよい。このようにすることで、例えばノイズ信号を利用した電子デバイスの故障診断に適用することができる。
更に、振動子100が、例えば振動子100に異物が付着したり、振動子100が破損したりして、故障が発生した場合に、振動子100の0点出力の大きさが変化する。この0点出力の大きさの変化を監視することにより、振動子100に故障が発生したか否かを判定することができる。
(第2実施形態)
図6は、第2実施形態に係る振動子200を示し、(a)は平面図、(b)は(a)に示すD−D´部の拡大断面図である。なお、本実施形態にかかる振動子200は、第1実施形態に係る振動子100に対して、第1連結部21および第2連結部22に形成される圧電素子の配置のみ異なるものであり、振動子100と同じ構成要素には同じ符号を付し、説明は省略する。
図6(a)に示すように、第1連結部21の面21aには、第1圧電素子75Aと第2圧電素子75Bと、を備える第1の圧電部としての第1圧電部75が形成されている。また、第2連結部22の面22aには、第3圧電素子76Aと第4圧電素子76Bと、を備える第2の圧電部としての第2圧電部76が形成されている。そして、図6(b)に示すように第1圧電素子75Aは、第1連結部21の面21a上に、下部電極層75Aa、圧電体層75Ab、上部電極層75Acの順に積層されて形成されている。同様に、第2圧電素子75Bは、第1連結部21の面21a上に、下部電極層75Ba、圧電体層75Bb、上部電極層75Bcの順に積層されて形成されている。また、第2連結部22の面22a上に形成される第2圧電部76も、下部電極層76Aa,76Ba、圧電体層76Ab,76Bb、上部電極層76Ac,76Bcが順に積層されて第3圧電素子76Aと第4圧電素子76Bとが形成される。
第1圧電部75を構成する第1圧電素子75Aと第2圧電素子75Bとは、次のように配置されている。第1圧電部75では、第1圧電素子75Aの平面視における中心P51は、第1連結部21の重心G1を通るX方向に延伸される仮想線L1に対してY(+)方向に距離d51離間させて配置され、第2圧電素子75Bの平面視における中心P52は、第1連結部21の重心G1を通るX方向に延伸される仮想線L1に対してY(−)方向に距離d52離間させて配置される。
また、第2圧電部76では、第3圧電素子76Aの平面視における中心P61は、第2連結部22の重心G2を通るX方向に延伸される仮想線L2に対してY(+)方向に距離d61離間させて配置され、第4圧電素子76Bの平面視における中心P62は、第2連結部22の重心G2を通るX方向に延伸される仮想線L2に対してY(−)方向に距離d62離間させて配置される。このとき、
d51>0
d52>0
であり、
d61>0
d62>0
であること、言い換えると、
d51≠0
d52≠0
であり、
d61≠0
d62≠0
であることが第1圧電部75および第2圧電部76における圧電素子75A,75B,76A,76Bの形成条件となる。
図7は、振動子200における第1圧電部75、および第2圧電部76の動作を説明する平面図である。上述した製造ばらつきによって、振動子110に備える第1連結部21および第2連結部22は、図7(a)に示す状態と図7(b)に示す状態を交互に繰り返す屈曲振動が励振される。図7(a)に示す状態において、第1連結部21内部には、Y(−)側の領域では引張応力fs1が発生し、Y(+)側の領域では圧縮応力fc1が発生し、第2連結部22内部には、Y(+)側の領域では引張応力fs2が発生し、Y(−)側の領域では圧縮応力fc2が発生する。
図6で説明したように、第1連結部21に備える第1圧電部75の第1圧電素子75Aの中心P51は、第1連結部21の重心G1を通る仮想線L1よりY(+)方向に位置するように配置されている。この第1圧電素子75Aに第1連結部21のY(+)側の領域に生じる圧縮応力fc1に対応した引張応力Fs51を発生させるように、第1圧電素子75Aを伸張させる。更に、第1圧電部75の第2圧電素子75Bの中心P52は、第1連結部21の重心G1を通る仮想線L1よりY(−)方向に位置するように配置されている。この第2圧電素子75Bに第1連結部21のY(−)側の領域に生じる引張応力fs1に対応した圧縮応力Fc51を発生させるように、第2圧電素子75Bを収縮させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
また、第2連結部22では、第2連結部22に備える第2圧電部76の第3圧電素子76Aの中心P61は、第2連結部22の重心G2を通る仮想線L2よりY(+)方向に位置するように配置されている。この第3圧電素子76Aに第2連結部22のY(+)側の領域に生じる引張応力fs2に対応した圧縮応力Fc61を発生させるように、第3圧電素子76Aを収縮させる。更に、第2圧電部76の第4圧電素子76Bの中心P62は、第2連結部22の重心G2を通る仮想線L2よりY(−)方向に位置するように配置されている。この第4圧電素子76Bに第2連結部22のY(−)側の領域に生じる圧縮応力fc2に対応した引張応力Fs61を発生させるように、第4圧電素子76Bを伸張させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
次に、図7(b)に示す状態において、第1連結部21内部には、Y(+)側の領域では引張応力fs3が発生し、Y(−)側の領域では圧縮応力fc3が発生し、第2連結部22内部には、Y(−)側の領域では引張応力fs4が発生し、Y(+)側の領域では圧縮応力fc4が発生する。このとき、第1連結部21に備える第1圧電部75の第1圧電素子75Aの中心P51は、第1連結部21の重心G1を通る仮想線L1よりY(+)方向に位置するように配置されている。この第1圧電素子75Aに第1連結部21のY(+)側の領域に生じる引張応力fs3に対応した引張応力Fc52を発生させるように、第1圧電素子75Aを収縮させる。更に、第1圧電部75の第2圧電素子75Bの中心P52は、第1連結部21の重心G1を通る仮想線L1よりY(−)方向に位置するように配置されている。この第2圧電素子75Bに第1連結部21のY(−)側の領域に生じる圧縮応力fc3に対応した引張応力Fs52を発生させるように、第2圧電素子75Bを伸張させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
また、第2連結部22では、第2連結部22に備える第2圧電部76の第3圧電素子76Aの中心P61は、第2連結部22の重心G2を通る仮想線L2よりY(+)方向に位置するように配置されている。この第3圧電素子76Aに第2連結部22のY(+)側の領域に生じる圧縮応力fc4に対応した引張応力Fs62を発生させるように、第3圧電素子76Aを伸張させる。更に、第2圧電部76の第4圧電素子76Bの中心P62は、第2連結部22の重心G2を通る仮想線L2よりY(−)方向に位置するように配置されている。この第4圧電素子76Bに第2連結部22のY(−)側の領域に生じる引張応力fs4に対応した圧縮応力Fc62を発生させるように、第4圧電素子76Bを収縮させる。これにより、製造ばらつきによる第1連結部21の屈曲を矯正し、基部10から検出部41a,42aへの振動漏れを抑制することができる。
上述したように、振動子110では、第1連結部21に形成された圧電素子73と、第2連結部22に形成された圧電素子74と、に逆相の電界を付加することにより、製造ばらつきによる基部10を介した第1検出部41aおよび第2検出部42aへの振動漏れを抑制することがでる。従って、振動子110に角速度が付加された場合の検出部41a,42aからの検出信号は、0点出力によるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。
(第3実施形態)
図8は、第3実施形態に係る振動子300を示し、(a)は平面図、(b)は(a)に示すE−E´部の断面図、(c)は(a)に示すF−F´部の断面図である。なお、本実施形態にかかる振動子300は、第1実施形態に係る振動子100に対して、第1連結部21および第2連結部22に形成される圧電素子の配置のみ異なるものであり、振動子100と同じ構成要素には同じ符号を付し、説明は省略する。
図8(a),(b)に示すように、振動子300の第1連結部21の第1主面21aと、第1主面21aの裏面である第2主面21bと、を繋ぐ一方の側面21cに第3の圧電部としての圧電素子81を備えている。また、第2連結部22の第1主面22aと、第1主面22aの裏面である第2主面22bと、を繋ぐ一方の側面22dに第4の圧電部としての圧電素子82を備えている。
本実施形態に係る振動子300では、圧電素子81は第1連結部21のY(−)方向の側面21cに配置され、圧電素子82は第2連結部22のY(+)方向の側面22dに配置されている。圧電素子81は、圧電素子81が形成される側面21c上に下部電極層81a、圧電体層81b、上部電極層81cの順にY(−)方向に積層されている。また、圧電素子82は、圧電素子82が形成される側面22d上に下部電極層82a、圧電体層82b、上部電極層82cの順にY(+)方向に積層されている。
図9は、振動子300における圧電素子81,82の動作を説明する平面図である。上述した製造ばらつきによって、振動子300に備える第1連結部21および第2連結部22は、図9(a)に示す状態と図9(b)に示す状態を交互に繰り返す屈曲振動が励振される。図9(a)に示す状態において、第1連結部21内部には、Y(−)側の領域では引張応力fs1が発生し、Y(+)の領域では圧縮応力fc1が発生し、第2連結部22内部には、Y(+)側の領域では引張応力fs2が発生し、Y(−)側の領域では圧縮応力fc2が発生する。また、図9(b)に示す状態において、第1連結部21内部には、Y(+)側の領域では引張応力fs3が発生し、Y(−)側の領域では圧縮応力fc3が発生し、第2連結部22内部には、Y(−)側の領域では引張応力fs4が発生し、Y(+)側の領域では圧縮応力fc4が発生する。
図9(a)に示す状態において、第1連結部21のY(−)方向の側面21cに形成された圧電素子81には、第1連結部21のY(−)側の領域に生じる引張応力fs1に対応した圧縮応力Fc81を発生させるように、圧電素子81を収縮させる。そして、第2連結部22のY(+)方向の側面22dに形成された圧電素子82には、第2連結部22のY(+)側の領域に生じる引張応力fs2に対応した圧縮応力Fc82を発生させるように、圧電素子82を収縮させる。これにより、製造ばらつきによる第1連結部21および第2連結部22の屈曲が矯正される。
そして、図9(b)に示す状態において、第1連結部21のY(−)側の領域に生じる圧縮応力fc3に対応した引張応力Fs81を発生させるように、圧電素子81を伸張させる。そして、第2連結部22のY(+)側の領域に生じる圧縮応力fc4に対応した引張応力Fs82を発生させるように、圧電素子82を伸張させる。これにより、製造ばらつきによる第1連結部21および第2連結部22の屈曲が矯正される。このように製造ばらつきによる振動腕31,32からの振動漏れにより励振される連結部21,22の屈曲振動は、連結部21,22の側面に形成された圧電素子81,82によって矯正され、基部10から検出部41a,42aへの振動漏れを抑制することができる。従って、正確な角速度を測定できる振動子300を得ることができる。
上述したように、振動子300では、第1連結部21に形成された圧電素子81と、第2連結部22に形成された圧電素子82と、に同相の電界を付加することにより、製造ばらつきによる基部10を介した第1検出部41aおよび第2検出部42aへの振動漏れを抑制することがでる。従って、振動子300に角速度が付加された場合の検出部41a,42aからの検出信号は、0点出力によるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。
図10は、第3実施形態に係る振動子300のその他の形態を示す平面模式図であり、振動子300と同じ構成要素への図示、あるいは符号の付与、および説明は省略する。図10(a)に示す振動子310は、第1圧電部としての圧電素子83が第1連結部21のY(−)方向の側面21cに配置され、第2圧電部としての圧電素子84も第2連結部22のY(−)方向の側面22cに配置されている。このように圧電素子83,84が配置された振動子310では、圧電素子83と圧電素子84とは逆相で駆動されることにより、0点出力によるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。なお、本例では第1連結部21および第2連結部22のY(−)方向の側面21c,22cに圧電素子83,84が配置されているが、Y(+)方向の側面21d,22dに圧電素子83,84が配置されてもよい。
図10(b)に示す振動子320は、第1連結部21に配設される第1圧電部85は、第1連結部21のY(−)方向の側面21cに形成された圧電素子85aと、第1連結部21のY(+)方向の側面21dに形成された圧電素子85bと、により構成される。また、第2連結部22に配設される第2圧電部86は、第2連結部22のY(−)方向の側面22cに形成された圧電素子86aと、第2連結部22のY(+)方向の側面22dに形成された圧電素子86bと、により構成される。このように圧電部85,86が配置された振動子320では、連結部21,22の互いに異なるY方向側面に形成された圧電素子、すなわち、圧電素子85aと圧電素子86bとが同相で駆動され、圧電素子85bと圧電素子86aとが同相で、且つ圧電素子85aおよび圧電素子86bとは逆相で駆動される。このように圧電部85,86が配置された振動子320では、0点出力によるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。
(第4実施形態)
図11は、上述した実施形態に係る振動子100,110,120,200,300,310,320のいずれかを備える電子デバイスとしてのセンサーデバイスを示し、(a)は蓋部を省略した平面図、(b)は(a)に示すM−M´部の断面図である。なお、本実施形態では第1実施形態に係る振動子100を例示して説明する。図11(a),(b)に示すように、パッケージ1100にICチップ1200と振動子100とを収納し、センサーデバイス1000が構成される。パッケージ1100は、凹部1110aを有するベース1110と、ベース1110の凹部1110aの開口に蓋体1120を接合し、ICチップ1200と振動子100とが収納される凹部1110aを気密封止する。
ICチップ1200は、上述した実施形態に係る振動子100,110,120,200,300,310,320の第1振動腕31および第2振動腕32を励振駆動させる駆動回路と、第1検出腕41および第2検出腕42からの出力信号を検出する検出回路と、振動子100,110,120,200,300,310,320の0点出力を検出する0点出力検出回路と、0点出力の検出信号から第1連結部21と第2連結部22に備える圧電部を励振駆動させる補正信号生成回路と、を少なくとも備えている。なお、ICチップ1200は本形態に係るセンサーデバイス1000では、パッケージ1100の内部に収納された形態を説明するが、これに限定されず、パッケージ1100の外部、例えば回路基板などにICチップ1200が配置されてもよい。
ICチップ1200には複数の接続端子1200aが設けられており、ベース1110の凹部1110aの底面部1110bに設けられた複数のIC内部端子1130に、ボンディングワイヤー1300によって電気的に接続されている。また、ICチップ1200は、ベース1110の底面部1110bに、例えばエポキシ樹脂系、あるいはアクリル樹脂系など接着剤を含む接合部材1400により接合されている。
パッケージ1100に収納される振動子100は、図11(a)に示すように基部10から支持腕101が延出し、その先端は支持部102に接続されている。なお、上述の第1実施形態から第3実施形態に係る振動子100,110,120,200,300,310,320では、説明の便宜上、支持腕101、支持部102は図示を省略してある。
支持部102には、図示しない振動子100に備える配線の接続端子が形成され、その接続端子と、ベース1110の底面部1110bに形成された複数のセンサー内部端子1140と、例えば、半田、銀ペースト、導電性接着剤などの導電性固定部材1500によって電気的に接続され、振動子100がベース1110に固定されている。また、IC内部端子1130の一部とセンサー内部端子1140は図示しないパッケージ1100の内部配線によって電気的に接続され、IC内部端子1130の一部は図示しないパッケージ1100の外部接続端子に電気的に接続されている。
このようにして得られるセンサーデバイス1000は、0点出力による振動漏れが抑制された振動子100を備えることにより、角速度が付加された場合に、0点出力によるノイズ信号が除去された、正確な信号として得ることができ、正確な角速度を計測することができる。
(第5実施形態)
第5実施形態に係る電子機器として、第1実施形態から第3実施形態に係る振動子100,110,120,200,300,310,320いずれか、もしくは第4実施形態に係るセンサーデバイス1000を備えるスマートフォンおよびデジタルスチルカメラについて説明する。なお、本実施形態ではセンサーデバイス1000を例示して説明するが、振動子100,110,120,200,300,310、もしくは320が組み込まれた電子回路基板を備える形態のスマートフォンおよびデジタルスチルカメラであってもよい。
図12はスマートフォン2000を示す外観図である。スマートフォン2000には、スマートフォン2000の姿勢を検出するセンサーデバイス1000が組み込まれている。センサーデバイス1000が組み込まれることにより、いわゆるモーションセンシングが実施され、スマートフォン2000の姿勢を検出することができる。センサーデバイス1000の検出信号は、例えばマイクロコンピューターチップ2100(以下、MPU2100という)に供給され、MPU2100はモーションセンシングに応じてさまざまな処理を実行することができる。その他、モーションセンシングは、携帯電話機、携帯型ゲーム機、ゲームコントローラー、カーナビゲーションシステム、ポインティングシステム、ヘッドマウンティングディスプレイ、タブレットパソコンなどの電子機器でセンサーデバイス1000を組み込むことにより、利用することができる。
図13はデジタルスチルカメラ3000(以下、カメラ3000という)を示す外観図である。カメラ3000には、カメラ3000の姿勢を検出するセンサーデバイス1000が組み込まれている。組み込まれたセンサーデバイス1000の検出信号は手ぶれ補正装置3100に供給される。手ぶれ補正装置3100はセンサーデバイス1000の検出信号に応じて、例えばレンズセット3200内の特定のレンズを移動させ、手ぶれによる画像不良を抑制することができる。また、デジタルビデオカメラへセンサーデバイス1000および手ぶれ補正装置3100を組み込むことによりカメラ3000と同様に手ぶれの補正をすることができる。
(第6実施形態)
第1実施形態から第3実施形態に係る振動子100,110,120,200,300,310,320もしくは第4実施形態に係るセンサーデバイス1000を備える第6実施形態としての移動体の具体例として、自動車について説明する。図14は、第6実施形態に係る自動車4000の外観図である。図14に示すように、自動車4000にはセンサーデバイス1000が組み込まれている。センサーデバイス1000は車体4100の姿勢を検出する。センサーデバイス1000の検出信号は車体姿勢制御装置4200に供給される。車体姿勢制御装置4200は供給された信号に基づき車体4100の姿勢状態を演算し、例えば車体4100の姿勢の応じた緩衝装置(いわゆるサスペンション)の硬軟を制御したり、個々の車輪4300の制動力を制御したりすることができる。このようなセンサーデバイス1000を用いた姿勢制御は、二足歩行ロボット、航空機、あるいはラジコンヘリコプターなどの玩具に利用することができる。
10…気体、21…第1連結部、22…第2連結部、31…第1振動腕、32…第2振動腕、41…第1検出腕、42…第2検出腕、51,52,53,54,61,62,63,64,71,72…圧電素子、100…振動子。

Claims (9)

  1. 基部と、
    前記基部から延出している検出腕と、
    前記基部の一端から前記検出腕の延出方向と交差する方向に延出している第1連結部と、
    前記基部の他端から前記検出腕の延出方向と交差する方向に延出している第2連結部と、
    前記第1連結部から前記第1連結部の延出方向と交差する方向に延出している第1振動腕と、
    前記第2連結部から前記第2連結部の延出方向と交差する方向に延出している第2振動腕と、を備え、
    前記第1連結部と、前記第2連結部と、には、圧電部が備えられている、
    ことを特徴とする振動子。
  2. 前記第1連結部における重心を通り、前記第1連結部の延出方向に沿った第1仮想線と、前記第2連結部における重心を通り、前記第2連結部の延出方向に沿った第2仮想線と、が定義され、
    前記第1連結部の平面視において、前記第1連結部の第1主面、および前記第1主面に対して裏面にあたる第3主面の少なくとも一方に第1の圧電部が備えられ、
    前記第2連結部の平面視において、前記第2連結部の第2主面、および前記第2主面に対して裏面にあたる第4主面の少なくとも一方に第2の圧電部が備えられ、
    前記第1連結部の平面視において、前記第1の圧電部の中心と前記第1仮想線との距離をd1とし、前記第2連結部の平面視において、前記第2の圧電部の中心と前記第2仮想線との距離をd2とした場合、
    d1>0
    d2>0
    である、
    ことを特徴とする請求項1に記載の振動子。
  3. 前記第1連結部および前記第2連結部の延出方向に交差する軸をY軸とし、Y軸の一方をY(+)方向、他方をY(−)方向、とした場合、
    前記第1の圧電部の中心が、前記第1仮想線に対してY(+)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(−)方向に配置されている、
    または、前記第1の圧電部の中心が、前記第1仮想線に対してY(−)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(+)方向に配置されている、
    ことを特徴とする請求項2に記載の振動子。
  4. 前記第1連結部および前記第2連結部の延出方向に交差する軸をY軸とし、Y軸の一方をY(+)方向、他方をY(−)方向、とした場合、
    前記第1の圧電部の中心が、前記第1仮想線に対してY(+)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(+)方向に配置されている、
    または、前記第1の圧電部の中心が、前記第1仮想線に対してY(−)方向に配置され、前記第2の圧電部の中心が、前記第2仮想線に対してY(−)方向に配置されている、
    ことを特徴とする請求項2に記載の振動子。
  5. 前記第1連結部における重心を通り、前記第1連結部の延出方向に沿った第1仮想線と、前記第2連結部における重心を通り、前記第2連結部の延出方向に沿った第2仮想線と、が定義され、
    前記第1連結部の平面視において、前記第1連結部の第1主面、および前記第1主面に対して裏面にあたる第3主面の少なくとも一方に第1の圧電部が備えられ、
    前記第2連結部の平面視において、前記第2連結部の第2主面、および前記第2主面に対して裏面にあたる第4主面の少なくとも一方に第2の圧電部が備えられ、
    前記第1の圧電部は第1圧電素子と第2圧電素子と、を備え、
    前記第2の圧電部は第3圧電素子と第4圧電素子と、を備え、
    前記第1連結部の平面視にて、前記第1仮想線と前記第1圧電素子の中心との距離をd11、前記第1仮想線と前記第2圧電素子の中心との距離をd12とし、前記第2連結部の平面視にて、前記第2仮想線と前記第3圧電素子の中心との距離をd21、前記第2仮想線と前記第4圧電素子の中心との距離をd22とした場合、
    d11>0
    d12>0
    d21>0
    d22>0
    であり、
    前記第1連結部および前記第2連結部の延出方向に交差する軸をY軸とし、Y軸の一方をY(+)方向、他方をY(−)方向、とした場合、
    前記第1圧電素子および前記第2圧電素子のどちらか一方の圧電素子の中心が、前記第1仮想線に対してY(+)方向に配置され、他方の圧電素子の中心が、前記第1仮想線に対してY(−)方向に配置され、
    前記第3圧電素子および前記第4圧電素子のどちらか一方の圧電素子の中心が、前記第2仮想線に対してY(+)方向に配置され、他方の圧電素子の中心が、前記第2仮想線に対してY(−)方向に配置されている、
    ことを特徴とする請求項1に記載の振動子。
  6. 前記第1連結部の平面視における前記第1連結部の第1主面と、前記第1主面に対して裏側にあたる第3主面と、を繋ぐ側面に第3の圧電部が備えられ、
    前記第2連結部の平面視における前記第2連結部の第2主面と、前記第2主面に対して裏面にあたる第4主面と、を繋ぐ側面に第4の圧電素子が備えられている、
    ことを特徴とする請求項1に記載の振動子。
  7. 請求項1から6のいずれか一項に記載の振動子と、
    前記振動子を振動させる駆動回路と、
    前記検出腕の振動を検出する検出回路と、
    前記駆動回路からの出力信号と、前記検出回路からの出力信号と、に基づいて前記圧電部を駆動させる補正信号生成回路と、を備える、
    ことを特徴とする電子デバイス。
  8. 請求項1から6のいずれか一項に記載の振動子、あるいは請求項7に記載の電子デバイスを備える、
    ことを特徴とする電子機器。
  9. 請求項1から6のいずれか一項に記載の振動子、あるいは請求項7に記載の電子デバイス、あるいは請求項8に記載の電子機器を備える、
    ことを特徴とする移動体。
JP2013141367A 2013-07-05 2013-07-05 振動子、電子デバイス、電子機器および移動体 Pending JP2015014517A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141367A JP2015014517A (ja) 2013-07-05 2013-07-05 振動子、電子デバイス、電子機器および移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141367A JP2015014517A (ja) 2013-07-05 2013-07-05 振動子、電子デバイス、電子機器および移動体

Publications (1)

Publication Number Publication Date
JP2015014517A true JP2015014517A (ja) 2015-01-22

Family

ID=52436328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141367A Pending JP2015014517A (ja) 2013-07-05 2013-07-05 振動子、電子デバイス、電子機器および移動体

Country Status (1)

Country Link
JP (1) JP2015014517A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084480A (ja) * 2016-11-24 2018-05-31 セイコーエプソン株式会社 物理量センサー、電子機器及び移動体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084480A (ja) * 2016-11-24 2018-05-31 セイコーエプソン株式会社 物理量センサー、電子機器及び移動体

Similar Documents

Publication Publication Date Title
JP6160027B2 (ja) 振動片およびジャイロセンサー並びに電子機器および移動体
JP4415382B2 (ja) 振動ジャイロ素子、振動ジャイロ素子の支持構造およびジャイロセンサ
JP5682267B2 (ja) 角速度センサ
JP6007541B2 (ja) 振動片およびその製造方法並びにジャイロセンサーおよび電子機器および移動体
JP6171475B2 (ja) 振動片の製造方法
CN107003129B (zh) 传感器装置、陀螺仪传感器和电子设备
US9400180B2 (en) Angular velocity sensor and detection element used therein
JP2016099269A (ja) ジャイロセンサー、電子機器、および移動体
JP6323034B2 (ja) 機能素子、電子デバイス、電子機器、および移動体
JP6926568B2 (ja) 物理量センサー、電子機器および移動体
TWI598569B (zh) 振動片及陀螺儀感測器以及電子機器及移動體
JP5974629B2 (ja) 振動片、振動片の製造方法、角速度センサー、電子機器、移動体
JP5970690B2 (ja) センサー素子、センサーユニット、電子機器及びセンサーユニットの製造方法
CN102840858B (zh) 弯曲振动片以及电子设备
JP2017173208A (ja) 回路装置、物理量検出装置、電子機器及び移動体
JP2013186029A (ja) 振動片、センサーユニットおよび電子機器
US8453503B2 (en) Vibrating reed, vibrator, physical quantity sensor, and electronic apparatus
JP5353616B2 (ja) 振動ジャイロ素子、振動ジャイロ素子の支持構造およびジャイロセンサ
JP2016085192A (ja) 振動素子、電子デバイス、電子機器および移動体
JP6210345B2 (ja) ジャイロセンサー素子、ジャイロセンサーユニット、電子機器及びジャイロセンサーユニットの製造方法
JP2015014517A (ja) 振動子、電子デバイス、電子機器および移動体
JP2013234873A (ja) 振動片およびその製造方法並びにジャイロセンサーおよび電子機器および移動体
JP2015137991A (ja) 機能素子、センサーデバイス、電子機器、および移動体
JP2015149590A (ja) 振動素子の製造方法、振動素子、電子デバイス、電子機器および移動体
JP5824492B2 (ja) 振動ジャイロ素子およびジャイロセンサ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150113