WO2021213101A1 - 投影设备 - Google Patents

投影设备 Download PDF

Info

Publication number
WO2021213101A1
WO2021213101A1 PCT/CN2021/081912 CN2021081912W WO2021213101A1 WO 2021213101 A1 WO2021213101 A1 WO 2021213101A1 CN 2021081912 W CN2021081912 W CN 2021081912W WO 2021213101 A1 WO2021213101 A1 WO 2021213101A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanometer
coil
substrate
sub
axis
Prior art date
Application number
PCT/CN2021/081912
Other languages
English (en)
French (fr)
Inventor
崔荣荣
曹利明
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180030082.2A priority Critical patent/CN115427885A/zh
Publication of WO2021213101A1 publication Critical patent/WO2021213101A1/zh
Priority to US17/731,596 priority patent/US20220256129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a projection device.
  • the projection device needs to remove some pixels in the image to be projected and display the processed image.
  • the image to be projected to ensure that the projection device can display the processed image to be projected.
  • the effect of the final displayed image is poor.
  • the projection display device cannot restore the display.
  • a pixel shifting device such as a galvanometer
  • a galvanometer can be added to vibrate at different positions, so that the light beams transmitted through the lens can be misaligned and superimposed, so as to superimpose the picture, using the persistence effect of human vision, at least Two misplaced and superimposed pictures will look like one picture, the clarity of the picture is improved, and the resolution is improved in terms of visual effects, so that even a projection device with a low-resolution light valve can achieve "high resolution" "The projection of the image.
  • the installation of the galvanometer components not only needs to consider the space and volume, but also pay attention to the vibration during the work of the galvanometer that may cause resonance of the housing, which in turn may cause noise and reduce the user experience.
  • the embodiment of the present disclosure provides a projection device, including: a light source for emitting a three-color light beam; a light valve for modulating and outputting the three-color light beam; a galvanometer located between the light valve and the projection lens It is used to change the position of the light beam output by the light valve under the control of the drive current; the projection lens is used to image the light beams at different positions output by the galvanometer; wherein, the galvanometer includes a circuit board and is arranged at The optical mirror on the circuit board, the circuit board is used to drive the optical mirror to flip under electromagnetic action.
  • FIG. 1 is a schematic diagram of an optical path architecture of a projection device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the hardware structure of a projection device provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a projection display method provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a first frame of sub-image displayed on a projection screen when the galvanometer is in the original position according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a first frame of sub-image displayed on a projection screen when the galvanometer is deflected according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of the deflection position of the galvanometer during the rotation of the galvanometer along different axes according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a second frame of sub-image displayed on a projection screen when another galvanometer mirror is deflected according to an embodiment of the present disclosure
  • FIG. 8 is a waveform diagram of a galvanometer driving current for driving a galvanometer to deflect along a second axis according to an embodiment of the present disclosure
  • FIG. 9 is another waveform diagram of a galvanometer driving current for driving a galvanometer to deflect along a second axis according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of another sub-image of the third frame displayed on the projection screen when the galvanometer is deflected according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of still another sub-image of the fourth frame displayed on the projection screen when the galvanometer is deflected according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of another sub-image of the first frame displayed on the projection screen when the galvanometer is deflected according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a galvanometer provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a circuit board in a galvanometer provided by an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of an optical mirror surface in a galvanometer provided by an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of driving a galvanometer to deflect according to an embodiment of the present disclosure
  • FIG. 17 is a schematic diagram of a driving galvanometer provided by an embodiment of the present disclosure that uses the second axis as the rotation axis to deflect in the fourth direction.
  • the laser projection device as shown in FIG. 1 includes a light source 30.
  • the light source 30 may include a three-color laser chip integrated on a package unit, or it may be three groups of monochromatic laser light emitting units, which can emit red laser and blue laser light. Laser and green laser.
  • the light source 30 may also be composed of a laser and a wavelength conversion device, and the wavelength conversion device may be a fluorescent wheel, which can be excited to emit fluorescence.
  • the light source 30 is a three-color laser light source as an example for description.
  • the full-color laser projection device also includes a reflection combining lens 70, a lens assembly 80, a diffuser 90, a light pipe 100, a total internal reflection (TIR) prism 110, a projection lens 120, and a projection screen 130.
  • the lens assembly 80 includes a first lens 801, a second lens 802 and a third lens 803.
  • the three-color laser beams emitted by the light source 30 are combined and output by the reflection light combining lens 70, they are incident on the first lens 801 to collect light, diffuse and uniform light through the diffusion wheel 90, and then pass through the light pipe 100 for total reflection and uniform light.
  • the diffusion wheel 90 can achieve the effect of eliminating speckles by diffusing and uniform light.
  • the blue laser, red laser and green laser after being homogenized through the light pipe 100 are time-sharing shaped by the second lens 802 and the third lens 803, and enter the TIR prism 110 for total reflection, and after incident to the light valve 40, the light valve 40 The reflected light beam is transmitted and output through the TIR prism again.
  • the galvanometer set between the light valve 40 and the projection lens 120 will deflect the lens under the drive control, so that when the light beam reflected by the light valve 40 is transmitted, different times The light beam will be displaced, and the light spot will be misaligned. In this way, the alternately misaligned light beam will be incident on the projection lens 120, so that the phenomenon of image misalignment and superimposition will also be formed on the projection screen. Due to the phenomenon of persistence of human vision, if the dislocation and superimposed images are related, visually, the amount of information of the image will increase, the definition will be improved, and the effect of resolution enhancement will be achieved.
  • the laser projection device shown in FIG. 1 will be used as an application scenario to describe the projection display process.
  • the projection device may include a display control assembly 10, at least one laser driving assembly 20, a light source 30, a light valve 40, a galvanometer driving assembly 50, and a galvanometer 60.
  • the light source 30 may include at least one laser driving assembly.
  • the component 20 corresponds to at least one group of lasers.
  • the at least one refers to one or more, and multiple refers to two or more.
  • the at least one group refers to one or more groups, and the multiple groups refers to two or more than two groups, and each group of lasers may include one or more lasers.
  • the display control component 10 may be a digital light processing chip (digital light processing chip, DLPC).
  • the display control component 10 may be DLPC6540.
  • the light source 30 may be a laser light source, and the laser light source may include a blue laser, a red laser, and a green laser.
  • the light valve 40 may be a digital micro-mirror device (DMD).
  • the galvanometer 60 can be used to shift the sub-images of different frames to different positions on the projection screen, so as to realize the superimposed display of the sub-images of the multiple frames, thereby achieving the effect of expanding the resolution of the projection device.
  • the galvanometer 60 may have four deflection positions, that is, the galvanometer 60 may shift the sub-image to four different positions on the projection screen. It is also possible that the galvanometer 60 is switched between two positions, that is, it has two deflection positions.
  • the display control component 10 is used to obtain a multi-frame sub-image, the multi-frame sub-image is obtained by decomposing the target image to be projected, the resolution of the target image is greater than the resolution of the light valve, and the resolution of each sub-image is not greater than The resolution of the light valve.
  • the display control component 10 is connected to each laser driving component 20, and is used to output at least one enable signal corresponding to the three primary colors of each frame of sub-image, and transmit the at least one enable signal to the corresponding laser driving component respectively 20. And, output at least one laser current control signal corresponding to the three primary colors of each frame of sub-images one-to-one, and transmit the at least one laser current control signal to the corresponding laser driving component 20 respectively.
  • Each laser drive assembly 20 is connected to a corresponding group of lasers, and is used to provide a corresponding laser drive current to the laser connected to it in response to the received enable signal and laser current control signal.
  • Each laser is used to emit laser light under the driving of the laser driving current provided by the corresponding laser driving assembly 20.
  • the display control component 10 is also used to control the light valve 40 to flip according to the primary color gradation value of the pixel in each frame of the sub-image during the sequential irradiation of the three primary colors light emitted by the laser to the light valve 40, so as to convert the multi-frame sub-images.
  • the images are projected onto the projection screen in turn through the projection lens.
  • the display control component 10 is also used for transmitting the galvano mirror current control signal corresponding to the sub-image to the galvano mirror driving component in the process of projecting and displaying each frame of the sub-image.
  • the galvanometer drive assembly 50 is used to provide the galvanometer drive current to the galvanometer 60 under the control of the galvanometer current control signal to drive the galvanometer 60 to deflect. Wherein, the galvanometer current control signals corresponding to the sub-images of different frames are different.
  • the galvanometer 60 may include a circuit board 61 and an optical mirror 62 that are stacked.
  • the circuit board 61 may include a substrate 610 and a plurality of coil groups 611.
  • the substrate 610 has a first hollow area L0 and a first edge area L1 surrounding the first hollow area L0.
  • the plurality of coil groups 611 are located in the first edge area L1.
  • the galvanometer drive current is provided to drive the optical mirror 62 to deflect.
  • the first hollow area L0 is an area through which the light after being totally reflected by the TIR lens 110 passes.
  • the substrate 610 may be a printed circuit board (PCB), the accuracy of the flatness of the substrate 610 may be 0.1 millimeter (mm), and the accuracy of the flatness of the substrate 610 is completely consistent with the galvanometer
  • PCB printed circuit board
  • the substrate 610 can be directly used as the support plate of the galvanometer without adding an additional support plate for the galvanometer, thereby simplifying the overall structure of the galvanometer and reducing the manufacturing cost .
  • Each coil group may include one or more coils, and the number of turns of each coil may be n0 turns, where n0 is a positive integer greater than zero.
  • the number of turns, wire diameter, wiring shape, and wiring layer number of each coil can be designed according to actual needs.
  • the optical mirror surface 62 may include a carrier plate 620, an optical glass 621 located on a side of the carrier plate 620 close to the circuit board 61, and a plurality of magnetic components 622, and each magnetic component 622 corresponds to a coil group 611.
  • FIG. 15 shows two magnetic components 622 corresponding to the two coil sets 611 in FIG. 14.
  • each coil group 611 is used to interact with the magnetic component 622 under the drive of a driving current to drive the optical glass 621 to rotate along a rotation axis, and the rotation axes corresponding to different coil groups 611 intersect.
  • the material of the carrying plate 620 may be a metal material.
  • the polarities of the ends of the plurality of magnetic components 622 close to the carrying plate may all be the same polarity.
  • the polarities of the ends of the plurality of magnetic components 622 away from the carrying plate are also the same polarity. For example, if the polarities of the ends of the plurality of magnetic components 622 close to the carrying plate are all N poles, the polarities of the ends of the plurality of magnetic components 622 far away from the carrying plate are all S poles. If the polarities of the ends of the plurality of magnetic components 622 close to the carrying plate are all S poles, the polarities of the ends of the plurality of magnetic components 622 far away from the carrying plate are all N poles.
  • the carrying board 620 has a second hollow area L2 and a second edge area L3 surrounding the second hollow area L2.
  • the optical glass 621 covers the second hollow area L2, the plurality of magnetic components 622 are located in the second edge area L3, and the orthographic projection of the optical glass 621 on the substrate 610 and the orthographic projection of the second hollow area L2 on the substrate 610 Both overlap with the first hollow area L0, and each coil group 611 overlaps with the orthographic projection of a corresponding magnetic component 622 on the substrate 610.
  • the center point of the orthographic projection of the optical glass 621 on the substrate 610 and the center point of the orthographic projection of the second hollow area L2 on the substrate 610 both overlap with the center point of the first hollow area L0.
  • the first hollowed-out area L0 and the second hollowed-out area L1 may be referred to as clear apertures.
  • the shape of the optical glass 621 is symmetrical.
  • the optical glass 621 may be a square, and the rotation axis may be the first axis X or the second axis Y.
  • the first axis X is parallel to one side of the optical glass 621
  • the second axis Y is parallel to the other side of the optical glass 621.
  • the first axis X and the second axis Y may be perpendicular.
  • the optical glass 621 may also be circular or rectangular.
  • the transmittance of the optical glass 621 is greater than or equal to 98%, and the thickness of the optical glass 621 may be in the range of (2.05 mm, 1.95 mm).
  • the optical glass 621 The refractive index can be 1.523.
  • each coil group 611 may include a first coil and a second coil, one end of the first coil is connected to the anode, and the other end of the first coil is connected to one end of the second coil. The other end of the second coil is connected to the negative electrode.
  • each magnetic component 622 may include a first magnetic component 6220 and a second magnetic component 6221.
  • the first coil is arranged around a first central region R1, and the first central region R1 overlaps with the orthographic projection of the first magnetic component 6220 on the substrate 610.
  • the second coil is arranged around a second central area R2, and the second central area R2 overlaps with the orthographic projection of the second magnetic component 6221 on the substrate 610.
  • first magnetic component 6220 and the second magnetic component 6221 may both be strip-shaped magnetic components.
  • first central area R1 and the second central area R2 may be strip-shaped areas.
  • the first hollowed-out area L0 and the second hollowed-out area L2 may both be centrally symmetrical areas, for example, both may be square.
  • the plurality of coil groups 622 may include a first coil group and a second coil group.
  • the optical mirror 62 may include two magnetic components 622.
  • the first coil and the second coil in each coil group 611 are oppositely arranged on two sides of the first hollowed-out area L0, and the coils in different coil groups 611 are located on different sides of the first hollowed-out area L0.
  • the first hollowed-out area L0 and the second hollowed-out area L2 may both be rectangular or circular.
  • first hollowed-out area L0, the second hollowed-out area L2 and the optical glass 621 are the same.
  • first axis and the second axis may be the axis of the first hollow area, that is, the two coils in the first coil group are arranged on both sides of the first axis, and the two coils in the second coil group The coils are oppositely arranged on both sides of the second shaft.
  • the central area surrounded by each coil in the first coil group 622 on the substrate 610 is parallel to the first axis X.
  • the first coil group 622 includes a first coil C0 and a second coil C1, and the first coil C0 and the second coil C1 are oppositely arranged on both sides of the long side of the first hollow area L0.
  • one end of the first coil C0 is connected to the positive pole AX+
  • the other end of the first coil C0 is connected to one end of the second coil C1
  • the other end of the second coil C1 is connected to the negative pole AX-
  • the first coil C0 is connected to the negative pole AX-.
  • the coil C0 and the second coil C1 can be connected in series to form a current channel.
  • the central area surrounded by each coil in the second coil group 622 on the substrate 610 is parallel to the second axis Y.
  • the second coil group 622 includes a first coil B0 and a second coil B1, and the first coil B0 and the second coil B1 are oppositely arranged on both sides of the short side of the first hollow area L0.
  • one end of the first coil B0 is connected to the positive pole AY+
  • the other end of the first coil B0 is connected to one end of the second coil B1
  • the other end of the second coil B1 is connected to the negative pole AY-
  • the first The coil B0 and the second coil B1 can be connected in series to form another current channel.
  • the substrate 610 may include a first sub-substrate and a second sub-substrate.
  • Each layer of the sub-substrate is provided with a first coil group and a second coil group, and the coils on the sub-substrates of different layers can pass through ⁇ Hole connection.
  • One end of the first coil located in the first sub-substrate is connected to the anode, and the other end of the first coil located in the first sub-substrate can pass through the first via hole and one end of the first coil located in the second sub-substrate connect.
  • the other end of the first coil located on the second sub-substrate is connected to one end of the second coil located on the second sub-substrate, and the other end of the second coil located on the second sub-substrate can be connected to the One end of the second coil on the first sub-substrate is connected, and the other end of the second coil on the first sub-substrate is connected to the negative electrode.
  • the first coil on the first sub-substrate, the first coil on the second sub-substrate, the second coil on the first sub-substrate, and the second coil on the second sub-substrate may be composed of It is a continuous coil.
  • the top wiring of each coil on the first sub-substrate is represented by a solid line
  • the bottom wiring is represented by a dashed line.
  • the coil is led out from the pin 3 of the socket 09 on the first sub-substrate, and after n0 turns are wound counterclockwise around the first central region R1, the first coil C0 is formed on the first sub-substrate.
  • the coil is changed from the first sub-substrate to the second sub-substrate through the first via 01. And continue to wind n0 turns counterclockwise around the first central area R1 on the second sub-substrate to form the first coil C0 on the second sub-substrate. After that, the coil is continuously wound around the second central region R2 on the second sub-substrate with n0 turns in a clockwise direction to form the second coil C1 on the second sub-substrate.
  • the coil is switched from the second sub-substrate to the first sub-substrate through the second via 02, and n0 turns are wound clockwise around the second central area R2 of the first sub-substrate to form on the first sub-substrate The second coil C1.
  • the socket 09 is connected to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 can provide the galvanometer drive current to the first coil C0 and the second coil C1 through the pins of the socket 09.
  • each coil group 611 is a winding realized by wiring on the substrate 610. This simplifies the process and greatly reduces the cost. And because there is a three-dimensional gap between any two adjacent turns of the coil, after the coil group is energized, this winding method helps the coils in the coil group to dissipate heat, thereby avoiding the effect of excessively high coil temperature.
  • the deflection of the galvanometer ensures the accuracy and reliability of the deflection of the galvanometer.
  • the wiring material of the substrate 610 is copper, the non-wiring area of each layer of the substrate is grounded with copper, and effective heat dissipation is realized. Therefore, after the coil assembly 611 is energized, the substrate 610 can quickly dissipate heat in a large area, thereby further ensuring vibration The accuracy and reliability of mirror deflection.
  • the substrate 610 may include even-numbered sub-substrates.
  • the substrate 610 may include two-layer sub-substrates, four sub-substrates, or eight-layer sub-substrates.
  • the embodiment of the present disclosure does not limit the number of layers of the sub-substrate. By increasing the number of layers of the sub-substrate, the number of turns of the coil can be increased, and the magnetic field between the corresponding magnetic components can be enhanced, thereby increasing the magnetic force of the optical mirror surface flipping.
  • the number of layers of the sub-substrates can be increased by reducing the size of each sub-substrate to ensure that the number of turns of the coil remains unchanged, thereby ensuring that the magnetic force generated by the magnetic field between the magnetic components corresponding to the coil remains unchanged.
  • the second edge area L3 may include four corner areas 03, and the circuit board 61 may also include four elastic pads arranged on the substrate 610, which are respectively elastic pads G1, elastic gasket G2, elastic gasket G3 and elastic gasket G4.
  • Each elastic gasket is used to be fixedly connected to a corner area 03 of the second edge area L3, and the orthographic projection of each elastic gasket on the substrate 610 and a corner area 03 of the second edge area L3 are on the substrate 610 The orthographic projections overlap.
  • each elastic gasket can be pasted with a vertex area 03 of the second edge area L3.
  • each elastic gasket may be triangular, and each vertex area 03 is a triangular area, and the size of each elastic gasket is the same as the size of a corresponding vertex area 03.
  • each elastic gasket may be an equilateral triangle, and correspondingly, each vertex area 03 may be an equilateral triangle area.
  • the flatness accuracy of each elastic gasket is greater than or equal to 0.1mm, and each elastic gasket has a thickness, which can support the optical mirror 62.
  • the equilateral The three corners of the triangle are processed in radians.
  • the second edge area L3 is further provided with a plurality of third hollowed-out areas L4, and the plurality of third hollowed-out areas L4 surround the second hollowed-out area L2.
  • a connecting shaft 04 between any two adjacent third hollow areas L4 that is, there is no communication between any two adjacent third hollow areas L4, thereby forming a first axis X and a second axis Y
  • the plurality of third hollowed-out areas L4 may include four third hollowed-out areas L4, thereby forming edge sub-regions 05 on the second edge area L3.
  • the orthographic projection of the optical glass 621 on the substrate 610 and the orthographic projection of the second hollow area L2 on the substrate 610 are both located in the first hollow area L0, and the optical glass 621 is on the substrate
  • the orthographic projection on 610 covers the orthographic projection of the second hollow area L2 on the substrate 610.
  • the center point of the orthographic projection of the optical glass 621 on the substrate 610 and the center point of the orthographic projection of the second hollowed-out area L2 on the substrate 610 are both located in the first hollowed-out area L0 and are both aligned with the first hollowed-out area.
  • the center points of L0 coincide.
  • the size of the first hollow area L0 depends on the size of the light spot in the optical path of the projection device, that is, the size of the light after being totally reflected by the TIR lens 110.
  • the size of the first hollow area L0 is greater than the size of the light spot, and the size of the first hollow area L0 is greater than the size of the optical glass 621, so as to ensure that the light after being totally reflected by the TIR lens 110 can be completely projected on the projection screen, and There will be no loss of brightness.
  • the dashed area 051 shown in FIG. 15 is the same size as the first hollowed-out area L0.
  • the size of the optical glass 621 is larger than the size of the second hollowed-out area L2, so as to ensure that the optical glass 621 can cover the second hollowed-out area L2.
  • the size of the optical glass 621 may be 23 mm ⁇ 23 mm
  • the size of the first hollow area L0 may be 24 mm ⁇ 24 mm
  • the size of the second hollow area L2 may be 21 mm ⁇ 21 mm.
  • the optical glass 621 is first bonded to the second edge area L3 of the carrier plate 620, so that the optical glass 621 covers the second hollow area L2. Then, the first magnetic component 6220 and the second magnetic component 6221 in each magnetic component 622 are bonded on both sides of the second hollowed-out area L2, and different magnetic components are located on different sides of the second hollowed-out area L2, thereby obtaining an optical mirror surface 62.
  • the elastic gasket G1, the elastic gasket G2, the elastic gasket G3, and the elastic gasket G4 in the substrate are pasted with a corresponding vertex area 03 in the above-mentioned optical mirror surface 62, thereby obtaining a galvanometer 60.
  • the optical mirror surface 62 in the galvanometer 60 is located on the side close to the light valve 40, that is, the bearing plate 620 in the optical mirror surface 62 is located on the side close to the light valve 40, because the surface of the bearing plate 620 is smooth.
  • the mirror surface material is so that the smooth mirror surface side is close to the light valve side.
  • the first edge region L1 may also include a plurality of through holes, and the plurality of through holes are used to fix the substrate 61 on the bracket in the projection device using materials such as screws or shock absorbers, so as to fix the galvanometer 60 Fixed on the bracket.
  • there are at least three through holes for example, four through holes may be included, namely through hole S1, through hole S2, through hole S3, and through hole S4, and each through hole may be a screw hole.
  • the size and volume of the galvanometer provided by the embodiments of the present disclosure are small, which is conducive to the miniaturization design of the projection device.
  • the structure of the galvanometer is plate-shaped, and it is convenient to pass through at least three fixing parts and the inner wall of the housing when it is installed and fixed in the housing. This kind of fixed connection can transmit the vibration of the galvanometer in multiple directions, so that the amplitude in each direction will be small, which can greatly reduce the noise, for example, it can be as low as 20 decibels (20dB) in specific applications. .
  • the substrate 61 is further provided with an electrically erasable programmable read only memory (EEPROM) 06 and a temperature sensor (TS) 07.
  • EEPROM electrically erasable programmable read only memory
  • TS 07 temperature sensor
  • the EEPROM 06 and TS 07 are respectively connected through the I2C socket 09.
  • TS 07 can detect the ambient temperature of the coil group on the substrate in real time, and send the ambient temperature to the display control component 10.
  • the display control component 10 can detect whether the ambient temperature is within the temperature range.
  • the display control component 10 can send a calibration parameter acquisition instruction to the EEPROM 06, and the calibration parameter acquisition instruction carries the ambient temperature.
  • the EEPROM 06 receives the ambient temperature, it can acquire the correction parameter corresponding to the ambient temperature from the corresponding relationship between the temperature and the correction parameter stored in advance, and send the acquired correction parameter to the display control component 10.
  • the display control assembly 10 can adjust the galvanometer current control signal transmitted to the galvanometer drive assembly 50 according to the correction parameters, and then adjust the galvanometer drive current provided by the galvanometer drive assembly 50 to the galvanometer, so as to eliminate the temperature effect on the galvanometer deflection in time.
  • the correction parameter may be the amplitude of the galvanometer current control signal.
  • the driving process of the galvanometer 60 is described by taking the galvanometer drive assembly 50 to drive the galvanometer 60 with the second axis Y as the rotation axis to deflect in the third direction and the fourth direction as an example.
  • the magnetic component 622 shown in FIG. 16 and the carrier plate pasted with optical glass are shown separately.
  • the polarities of the first magnetic component 6220 and the second magnetic component 6221 provided in the optical mirror 62 close to the coil are both N poles.
  • the optical glass 621 is at the position 004.
  • the galvanometer drive assembly 50 provides a positive galvanometer drive current to the second coil group for driving the galvanometer to rotate with the second axis as the rotation axis, for example, to the first coil B0 and the second coil shown in FIG.
  • both the first coil B0 and the second coil B1 generate a magnetic field, which is similar to the magnetic field of the magnetic component 622, and produces an N pole and an S pole.
  • the end pointed by the thumb of the right hand is the N pole of the first coil B0, that is, the first coil B0 is close to the optical mirror 62
  • the side of the first coil B0 is the N pole
  • the side of the first coil B0 away from the optical mirror surface 62 is the S pole.
  • the right-hand spiral rule and the direction of the current of the second coil B1 it can be obtained that the side of the second coil B1 close to the optical mirror 62 is an S pole, and the side of the second coil B1 away from the optical mirror 62 is an N pole.
  • the first magnetic component 6220 corresponding to the first coil B0 is an N pole, so the first coil B0 and the first magnetic component 6220 There will be mutual repulsive forces. Since the first coil B0 is fixed on the substrate 61 and the substrate 61 is fixed on the structural member, the substrate 61 will not move. According to the principle of acting force and reaction force, the first magnetic component 6220 will receive an upward force, so that the first magnetic component 6220 drives the optical glass 621 to shift upward.
  • the second magnetic component 6221 corresponding to the second coil B1 is an N pole
  • the second coil B1 and the second magnetic component 6221 are attracted to each other.
  • the second magnetic component 6221 will drive the optical glass 621 to deviate downward.
  • the left and right sides of the optical glass 621 are simultaneously subjected to a counterclockwise rotation force. Under the action of this force, the optical glass 621 deflects counterclockwise with the second axis Y as the rotation axis until the substrate and the carrier plate After the elastic force between 620 is balanced, the optical glass 621 stops rotating and remains unchanged.
  • the optical glass 621 is deflected from the position 004 shown in FIG. 16 to the position 005, thereby realizing the shift of the light, that is, the movement of the light spot, and further realizing the movement of the position of the image to be displayed on the projection screen.
  • Coil B1 provides reverse galvanometer drive current, that is, when the galvanometer drive current flows in from pin 6 of socket 09 and flows out from pin 5 (the pin 6 is the negative electrode AY- of the current, and the pin 5 is the current Positive AY+).
  • the side of the first coil B0 that is energized close to the optical mirror 62 is an S pole
  • the side of the first coil B0 away from the optical mirror 62 is an N pole.
  • An attractive force is generated between the first coil B0 and the first magnetic component 6220, whereby the first magnetic component 6220 drives the optical glass 621 to shift downward.
  • the side of the second coil B1 that is energized close to the optical mirror 62 is the N pole
  • the side of the second coil B1 away from the optical mirror 62 is the S pole.
  • a mutually repulsive force is generated between the second coil B1 and the second magnetic component 6222, so that the second magnetic component 6222 drives the optical glass 621 to shift upward.
  • the left and right sides of the optical glass 621 are simultaneously subjected to a clockwise rotation force.
  • the optical glass 621 Under the action of the force, the optical glass 621 is deflected in the clockwise direction with the second axis Y as the rotation axis until the substrate and the carrier are After the elastic force between the plates is balanced, the optical glass 621 stops rotating and remains unchanged. This realizes that the optical glass 621 is shifted from the position 005 shown in FIG. 16 to another position, thereby realizing the shift of the light spot from the position 005 to another position, thereby realizing the position of the image to be displayed on the projection screen Mobile.
  • the galvanometer drive assembly 50 drives the galvanometer 60 along the first axis X as the rotation axis to deflect in the first direction and the second direction, you can refer to the galvanometer drive assembly 50 to drive the galvanometer with the second axis Y as the rotation axis.
  • the process of deflection in the third direction and the fourth direction will not be described again in the embodiments of the present disclosure.
  • the galvanometer 60 deflects the first angle ⁇ 1 in the third direction (counterclockwise) with the second axis Y as the rotation axis, the thickness of the optical glass 621 is h, and the thickness of the optical glass 621
  • the refractive index is n
  • the length of the refracted light inside the optical glass 621 is L
  • the refraction angle is ⁇ . Since the light is incident perpendicularly along the direction of the third axis Z, according to the right angle relationship, the incident angle of the incident light is equal to the first angle. ⁇ 1.
  • the incident angle of the refractive optics inside the optical glass 621 is also ⁇ .
  • the exit angle of the light emitted by the optical glass 621 is equal to the incident angle ⁇ 1, so the output of the optical glass 621
  • the light parallel to the incident light is emitted along the Z axis direction of the third axis.
  • the pixel offset distance d1 is only related to the deflection angle ⁇ 1 of the galvanometer 60, the refractive index n of the optical glass 621, and the thickness h of the optical glass 621. After the galvanometer is assembled, the refractive index n and the thickness h of the optical glass 621 are both determined values. Therefore, the offset distance d1 of the pixel mainly changes with the deflection angle of the galvanometer.
  • the display control assembly 10 sends the galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 provides the galvanometer drive current to the galvanometer 60 to drive the galvanometer to take the first axis X as The rotation axis is deflected in the first direction or the second direction, or the galvanometer 60 is driven to deflect in the third direction or the fourth direction with the second axis Y as the rotation axis. That is, there are four cases of the deflection of the galvanometer, and the principles of the four cases are the same.
  • the projection device may further include a power supply 150, a startup control component 160, and a program storage component 170.
  • the main control chip 00 is respectively connected to the startup control component 160 and the display control component 10
  • the power supply 150 is connected to the laser driving component 20
  • the program storage component 170 is connected to the display control component 10.
  • the main control chip 00 sends a startup command to the startup control component 160.
  • the startup control component 160 starts to work after receiving the startup command, and outputs 1.1 volts (V), 1.8V to the display control component in turn according to the power-on sequence of the startup control component 160. , 3.3V, 2.5V and 5V to supply power to the display control component 10.
  • the startup control component 160 sends a power sense (POSENSE) signal and a power good (PWRGOOD) signal to the display control component 10.
  • the display control component 10 receives two control signals After that, the program is read from the external program storage component 170 and initialized, and the entire projection device starts to work at this time.
  • the display control component 10 configures the activation control component 160 through a serial peripheral interface (SPI) communication, and instructs the activation control component 160 to start powering the light valve 40. After that, the control component 160 is activated to output 3 voltages to the light valve 40, which are respectively a voltage bias (VBIAS) of 18V, a voltage reset (VRST) of -14V, and a voltage offset (VOFS) of 10V, after the voltage of the light valve 40 is normal, the light valve 40 starts to work.
  • the display control circuit 10 sends the primary color gradation value of the sub-image to the light valve 40 through a high-speed serial interface (HSSI) at 594 MHz to realize the sub-image.
  • the power supply in the projection equipment is converted from 100V to 240V alternating current to direct current by the power board to supply power to each component.
  • FIG. 3 shows a schematic diagram of a projection display method, which can be applied to the projection device shown in FIG. 1 and FIG. 2. As shown in Figure 3, the method may include:
  • Step 301 Obtain multiple frames of sub-images.
  • the multiple frames of sub-images are obtained by decomposing the target image to be projected, the resolution of the target image is greater than the resolution of the light valve, and the resolution of each sub-image frame after division is not greater than the resolution of the light valve, for example, it may be equal to the resolution of the light valve.
  • the resolution of the valve is the resolution of the valve.
  • the resolution of the target image may be M ⁇ N, where M is the number of pixels in each row of the target image, and N is the number of pixels in each column.
  • the resolution of the light valve is M1 ⁇ N1, where M1 is the number of pixels in each row of the image that the light valve can project and display, and the N1 is the number of pixels in each column.
  • the resolution of each frame of sub-image may be m1 ⁇ n1, where m1 is the number of pixels in each row of the sub-image of each frame, and n1 is the number of pixels in each column.
  • the M, N, M1, N1, m1, and n1 are all positive integers greater than 1, and the M is greater than M1, N is greater than N1, m1 is not greater than M1, and n1 is not greater than N1.
  • the resolution of the target image may be 3840 ⁇ 2160, that is, M is 3840 and N is 2160.
  • the resolution of the light valve may be 1920 ⁇ 1080, that is, M1 is 1920, and N1 is 1080.
  • the resolution of the target image is 1920 ⁇ 1080, that is, m1 is 1920 and n1 is 1080.
  • the resolution of the target image of 3840 ⁇ 2160 is greater than the resolution of the light valve of 1920 ⁇ 1080, and the resolution of each frame of sub-images of 1920 ⁇ 1080 is equal to the resolution of the light valve of 1920 ⁇ 1080.
  • the projection device may further include a main control chip 00.
  • the display control component 10 may be connected to the main control chip 00.
  • the main control chip 00 can decode the image signal of the target image to be projected, and send the decoded image signal of the target image to the
  • the display control component 10 can receive the image signal of the decoded target image sent by the main control chip 00.
  • the display control component 10 may divide the received decoded image signal of the target image into a plurality of sub-image signals, so as to realize the division of the target image into multiple frames of sub-images.
  • the image signal may be a 4K (that is, 3840 ⁇ 2160) video signal or a digital TV signal
  • each frame of the divided sub-image signal may be a 2K (1920 ⁇ 1080) video signal or a digital TV signal.
  • Step 302 Transmit at least one enable signal corresponding to the three primary colors of each frame of sub-images to the corresponding laser driving components respectively.
  • the display control component 10 is connected to each laser driving component 20. After dividing the target image to be projected into multiple frames of sub-images, the display control component 10 may output at least one enable signal corresponding to the three primary colors of each frame of sub-images, and transmit the at least one enable signal to The corresponding laser drive assembly 20.
  • Step 303 At least one laser current control signal corresponding to the three primary colors of each frame of sub-images is respectively transmitted to the corresponding laser driving component.
  • the display control component 10 may also output at least one laser current control signal corresponding to the three primary colors of each frame of sub-images, and The at least one laser current control signal is transmitted to the corresponding laser driving component 20.
  • the laser current control signal is used to instruct the laser driving component 20 to provide a corresponding laser driving current to the laser connected to it to drive the laser to emit laser light.
  • the laser current control signal may be a pulse width modulation (PWM) signal.
  • Step 304 Control the light valve to flip according to the primary color gradation values of the pixels in each frame of sub-images, so as to sequentially project and display the multiple frames of sub-images on the projection screen.
  • the display control component 10 can control the light valve 40 to flip according to the primary color gradation values of the pixels in each frame of sub-images, depending on the length of time the micromirror in the light valve flips. Realize the color scale value of the primary color, cooperate with the corresponding color light irradiated on the light valve to form the gray scale of the three primary colors of the corresponding pixel, and then project the multi-frame sub-images to the projection screen in turn, and control the deflection of the galvanometer. The multiple frames of sub-images are displayed on different positions of the projection screen.
  • the multiple frames of sub-images may include four frames of sub-images.
  • the display control component 10 can control the light valve 40 to flip according to the primary color gradation value of the pixel in each frame of sub-image, so that the multiple frames of sub-images can be projected and displayed in sequence.
  • the primary color gradation value may be red green blue (RGB) gradation value.
  • Step 305 In the process of projecting and displaying each frame of sub-images, the galvanometer current control signal corresponding to the sub-image is transmitted to the galvanometer driving component.
  • the display control component 10 may transmit the galvanometer current control signal corresponding to one frame of sub-image to the galvanometer drive component 50, and the galvanometer current control signal is used for
  • the galvanometer drive assembly 50 is controlled to provide a galvanometer drive current to the galvanometer 60 to drive the galvanometer 60 to deflect.
  • the galvanometer current control signals corresponding to the different frames of sub-images are different, so that multiple frames of sub-images can be projected to different positions on the projection screen, and then the multi-frame sub-images can be superimposed and displayed, which can then be realized in The target image is displayed on the projection screen.
  • the galvanometer drive current is used to drive the galvanometer 60 to deflect with at least one of the first axis and the second axis as the rotation axis, and the first axis and the second axis intersect.
  • the first axis and the second axis may be perpendicular.
  • the galvanometer 60 may be quadrilateral, the first axis may be parallel to one side of the galvanometer 60, and the second axis may be parallel to the other side of the galvanometer 60.
  • the galvanometer 60 may be rectangular, and the first axis and the second axis may be perpendicular.
  • the galvanometer 60 may include a circuit board and an optical mirror that are stacked, and the circuit board may include a first coil group and a second coil group.
  • the two coils in the first coil group are arranged on opposite sides of the first axis.
  • the two coils in the second coil group are oppositely arranged on both sides of the second shaft.
  • the galvanometer current control signal is used to control the galvanometer drive assembly 50 to provide the galvanometer drive current to the first coil group to drive the optical mirror surface to deflect with the first axis as the rotation axis; and/or, the galvanometer current control signal is used for
  • the galvanometer drive assembly 50 is controlled to provide a galvanometer drive current to the second coil group to drive the optical mirror to deflect with the second axis as the rotation axis.
  • the optical mirror can be deflected with the first axis as the rotation axis, or the optical mirror can be deflected with the second axis as the rotation axis, or the optical mirror can be deflected with the first axis as the rotation axis and the second axis as the rotation axis at the same time .
  • the light valve 40 receives the illumination of the three primary colors sequentially, and when the light valve 40 receives the illumination of the target primary color light among the three primary colors, the display control component 10 can set the corresponding sub-images
  • the galvanometer current control signal of the image is transmitted to the galvanometer drive assembly 50, and the galvanometer current control signal is used to control the galvanometer drive assembly to provide the galvanometer drive current to the galvanometer to drive the galvanometer 60 to deflect, and then the galvanometer 60 remains inactive. Change, thereby completing the display of one frame of sub-images.
  • the display control component 10 and the galvanometer driving component 50 can drive the galvanometer 60 to deflect again, and so on, so as to realize the projected display of the sub-images of different frames to different positions on the projection screen.
  • the target primary color light may be blue primary color light. Since the human eye is not sensitive to blue, when the light valve 40 receives the blue primary color light from the three primary colors, the galvanometer 60 is driven to flip, and the human eye will not see the image shift obviously, ensuring The display effect of the image.
  • the light valve 40 receives the illumination of the three primary colors sequentially, and when the light valve 40 receives the illumination of the target primary color light among the three primary colors, the display control The assembly 10 can transmit the first galvanometer current control signal to the galvanometer driving assembly 50.
  • the first galvanometer current control signal is used to control the galvanometer drive assembly 50 to drive the galvanometer 60 to use the first axis as the rotation axis to deflect the first angle in the first direction, and to drive the galvanometer 60 to use the second axis as the rotation axis along the first angle.
  • the first angle is deflected in three directions.
  • the first galvanometer current control signal is used to control the galvanometer drive assembly 50 to drive the galvanometer 60 to deflect the second angle in the first direction with the first axis as the rotation axis.
  • the light valve 40 receives the illumination of the three primary colors sequentially, and when the light valve 40 receives the illumination of the target primary color light among the three primary colors, the display control component 10 can
  • the second galvanometer current control signal is transmitted to the galvanometer driving assembly 50.
  • the second galvanometer current control signal is used to control the galvanometer drive assembly 50 to drive the galvanometer 60 to deflect the second angle in the fourth direction with the second axis as the rotation axis.
  • the light valve 40 receives the light of the three primary colors sequentially, and when the light valve 40 receives the light of the target primary color among the three primary colors, the display control component 10 can
  • the third galvanometer current control signal is transmitted to the galvanometer driving assembly 50.
  • the third galvanometer current control signal is used to control the galvanometer drive assembly 50 to drive the galvanometer 60 to deflect the second angle in the second direction with the first axis as the rotation axis.
  • the display control component 10 can set the fourth The galvanometer current control signal is transmitted to the galvanometer drive assembly 50.
  • the fourth galvanometer current control signal is used to control the galvanometer drive assembly 50 to drive the galvanometer 60 to deflect the second angle in the third direction with the second axis as the rotation axis.
  • first direction is opposite to the second direction
  • third direction is opposite to the fourth direction
  • first direction and the third direction may both be clockwise directions.
  • the second direction and the fourth direction may both be counterclockwise.
  • the second angle is equal to twice the first angle.
  • the second axis Y can be the horizontal axis
  • the third axis Z A first coordinate system is established for the vertical axis
  • a second coordinate system can be established by taking the third axis Z as the horizontal axis and the first axis X as the vertical axis.
  • the third axis Z is perpendicular to the first axis X and the second axis Y respectively.
  • the galvanometer 60 is perpendicular to the incident light, that is, the light is perpendicularly incident to the galvanometer 60 in a direction parallel to the third axis Z.
  • (3) in Figure 4 is the third coordinate system of the projection screen.
  • the horizontal axis of the third coordinate system is X1 and the vertical axis is Y1.
  • the center point pixel in the first frame of sub-image may be located at the origin o of the third coordinate system.
  • the galvanometer 60 shown in FIG. 4 is a side view of the galvanometer 60, that is, the side surface of the galvanometer 60, which is perpendicular to the light incident surface of the galvanometer 60.
  • the light valve 40 sequentially receives the illumination of the three primary colors, and when the light valve 40 receives the illumination of the blue primary color of the three primary colors, the The display control assembly 10 can transmit the first galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 provides the first galvanometer drive to the first coil group and the second coil group in the galvanometer 60, respectively.
  • Current Referring to (1) and (2) in FIG. 5, the galvanometer 60 can be driven by the first galvanometer drive current to deflect along the first direction F1 (that is, clockwise) with the first axis X as the rotation axis.
  • the first angle ⁇ 1, and the second axis Y is used as the rotation axis to deflect the first angle ⁇ 1 along the third direction F3 (ie, the clockwise direction).
  • F3 the third direction
  • the center point pixel in the first frame of sub-image A is offset by a distance d1 in the negative direction of the X1 axis
  • the center point pixel in the first frame of the sub-image A is offset by a distance d1 in the negative direction of the Y1 axis.
  • the final coordinate of the center point pixel in the first sub-frame image A in the third coordinate system is (-d1, -d1), that is, the center point pixel in the first sub-frame image A Located at the a position of the third coordinate system.
  • FIG. 6 shows a schematic diagram of the deflection position of the galvanometer during the deflection of the galvanometer with different axes as the rotation axis.
  • the schematic diagram includes a first curve and a second curve, and the first curve represents the distance that the galvanometer deflects relative to the initial position during the deflection of the galvanometer with the first axis X as the rotation axis.
  • the second curve represents the distance that the galvanometer deflects relative to the initial position during the deflection of the galvanometer with the second axis Y as the rotation axis.
  • the horizontal axis of each curve is time t, and the vertical axis is the offset distance s of the galvanometer.
  • the galvanometer 60 is shifted from the initial position to the negative direction of the second axis Y with the first axis X as the rotation axis, and the second axis Y is the rotation axis.
  • the axis is deflected from the initial position to the negative direction of the first axis X.
  • FIG. 8 is a waveform diagram of a galvanometer driving current for driving a galvanometer to deflect along a second axis provided by an embodiment of the present disclosure.
  • the horizontal axis of the waveform diagram is time t, and the vertical axis is the magnitude of the drive current I.
  • the galvanometer drive current changes from a positive number to a negative number, or the galvanometer drive current changes from a negative number to a positive number, it indicates that the direction of the galvanometer drive current has changed.
  • the light valve 40 receives the light of the three primary colors sequentially, and the light valve 40 receives the blue primary color of the light of the three primary colors.
  • the display control assembly 10 can transmit the second galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 is used to drive the galvanometer to rotate on the second axis to the galvanometer 60
  • the shaft-rotating first coil group provides the second galvanometer drive current.
  • the waveform of the second galvanometer drive current can refer to the t1 and t2 segments in the current waveform diagram shown in FIG.
  • the negative direction of X is deflected to the positive direction of the first axis X, and the t2 section is used to control the galvanometer 60 to remain unchanged.
  • the central point pixel of the second frame of sub-image B is offset along the negative direction of the Y1 axis by a distance d2 to the positive direction of Y1, and the central point pixel in the second frame of sub-image B is offset in the negative direction of the X1 axis.
  • the coordinates of the center point pixel in the second sub-frame image in the third coordinate system are (-d1, d1), that is, the center point pixel in the second sub-frame image B is located at the first At position b in the three-coordinate system.
  • the light valve 40 receives the light of the three primary colors sequentially, and when the light valve 40 receives the light of the blue primary color of the three primary colors, the galvanometer 60 uses the second axis Y as the rotation axis from the first The negative direction of one axis X is deflected to the positive direction of the first axis X, and the first axis X is not used as the rotation axis, that is, the galvanometer 60 remains unchanged in the negative direction of the second axis Y.
  • the second galvanometer drive current is t2
  • the galvanometer 60 remains unchanged at this time, that is, the galvanometer 60 is no longer Deflection until the second frame of sub-image B is displayed.
  • the light valve 40 receives the light of the three primary colors sequentially, and the light valve 40 receives the light of the blue primary color among the three primary colors.
  • the display control assembly 10 can transmit the third galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 is used to drive the galvanometer to rotate with the first axis as the rotation axis.
  • the first coil group provides the third galvanometer drive current.
  • the galvanometer 60 is driven by the third galvanometer drive current to deflect the second angle ⁇ 2 along the second direction F2 (counterclockwise) with the first axis X as the rotation axis.
  • the center point pixel of the third frame of sub-image C is offset along the negative direction of the X1 axis by a distance d2 to the positive direction of the X1 axis.
  • the offset distance d2 remains unchanged.
  • the final coordinate of the center point pixel of the third sub-frame image C in the third coordinate system is (d1, d1), that is, the center point pixel of the third sub-frame image C is located in the third coordinate system.
  • the light valve 40 receives the light of the three primary colors sequentially, and when the light valve 40 receives the light of the blue primary color of the three primary colors, the galvanometer 60 takes the first axis X as the rotation axis and rotates from the first axis to the first axis X.
  • the negative direction of the second axis Y is deflected to the positive direction of the second axis Y, and does not rotate with the second axis Y as the rotation axis, that is, the galvanometer 60 remains unchanged in the positive direction of the first axis X.
  • the galvanometer lens 60 remains unchanged, that is, the galvanometer lens 60 is no longer deflected until the third frame of sub-image C is displayed.
  • the light valve 40 receives the light of the three primary colors sequentially, and the light valve 40 receives the blue primary color of the light of the three primary colors.
  • the display control assembly 10 can transmit the fourth galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 is used to drive the galvanometer to rotate on the second axis to the galvanometer 60
  • the axis-rotating second coil group provides a fourth galvanometer drive current.
  • the fourth galvanometer drive current is the t3 section and t4 section in the current waveform diagram shown in FIG. 8.
  • the t3 section current is used to drive the galvanometer 60 Taking the second axis Y as the rotation axis to deflect from the positive direction of the first axis X to the negative direction of the first axis X, the t4 segment is used to control the galvanometer 60 to remain unchanged.
  • the galvanometer 60 is driven by the fourth galvanometer drive current to deflect a second angle ⁇ 2 along the third direction F3 (i.e., clockwise) with the second axis Y as the rotation axis.
  • the center point pixel of the fourth frame of sub-image D is offset along the positive direction of the Y1 axis by a distance d2 to the negative direction of the Y1 axis, and the center point pixel of the fourth frame of sub-image D is offset in the positive direction of the X1 axis.
  • the distance d2 remains unchanged.
  • the coordinates of the center point pixel of the fourth frame of sub-image D in the third coordinate system are (d1, -d1), that is, the center point pixel of the fourth frame of sub-image D is located at the first At the d position of the three-coordinate system.
  • the mirror surface of the galvanometer is the reference surface for starting the vibration.
  • the positive and negative swing amplitude of the mirror surface is relatively small, and the deformation of the metal shrapnel of the galvanometer is small.
  • the positive and negative swing is easy to recover the elastic force of the metal shrapnel, and the design requirements for the metal structure are relatively low, and it is easier to realize.
  • the driving current waveform is positive and negative, the amplitude of the driving current can be relatively small.
  • the current shown in Figure 8 is in both positive and negative directions, so that the amplitude of the positive or negative direction only needs to reach 2.7/2 ⁇ m, so the required drive current will also be Smaller.
  • FIG. 9 provides a waveform diagram of another galvanometer driving current that drives the galvanometer to deflect along the second axis.
  • the horizontal axis of the waveform diagram is time t, and the vertical axis is the magnitude of the drive current I.
  • the waveform of the driving current of the second galvanometer can refer to the t1 and t2 segments in the current waveform diagram shown in FIG.
  • the initial position of is deflected to the positive direction of the first axis X, and the t2 section is used to control the galvanometer 60 to remain unchanged.
  • the center point pixel of the second frame image B is offset from the initial position of the Y1 axis by a distance d to the positive direction of the Y1 axis, and finally the center point pixel of the second frame image B is coordinated in the third coordinate system It is (0, d), that is, the center point pixel of the second sub-frame image B is located at position b in the third coordinate system.
  • the light valve 40 receives the light of the three primary colors sequentially, and when the light valve 40 receives the light of the blue primary color of the three primary colors, the galvanometer 60 uses the second axis Y as the rotation axis from the first The initial position of the one axis X is deflected to the positive direction of the first axis X and does not rotate with the first axis X as the rotation axis, that is, the galvanometer 60 remains unchanged at the initial position of the second axis Y. After that, when the light valve 40 sequentially receives the green primary color light and the red primary color light of the three primary colors, referring to FIG. The mirror 60 no longer deflects until the sub-image B of the second frame is displayed.
  • the light valve 40 sequentially receives the light of the three primary colors, and the light valve 40 receives the blue primary color of the three primary colors.
  • the display control assembly 10 can transmit the third galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 is used to drive the galvanometer to the galvanometer 60 to take the first axis X as The first coil group whose rotating shaft rotates provides the third galvanometer drive current.
  • the galvanometer 60 is driven by the third galvanometer drive current to deflect the target angle ⁇ along the third direction F3 (ie, counterclockwise) with the first axis X as the rotation axis.
  • the center point pixel of the sub-image C of the third frame is offset from the initial position of the X1 axis by a distance d to the positive direction of the X1 axis, and the center point of the sub-image C of the third frame The offset distance d of the pixel in the positive direction of the Y1 axis remains unchanged.
  • the coordinates of the center point pixel of the third sub-frame image C in the third coordinate system are (d, d), that is, the center point pixel of the third sub-frame image C is located at the position c of the third coordinate system.
  • the light valve 40 receives the light of the three primary colors sequentially, and when the light valve 40 receives the light of the blue primary color of the three primary colors, the galvanometer 60 takes the first axis X as the rotation axis, and The initial position of the second axis Y is deflected to the positive direction of the second axis Y, and will not rotate with the second axis Y as the rotation axis, that is, the galvanometer 60 remains unchanged in the positive direction of the first axis X.
  • the galvanometer lens 60 remains unchanged, that is, the galvanometer lens 60 is no longer deflected until the third frame of sub-image C is displayed.
  • the light valve 40 receives the light of the three primary colors sequentially, and the light valve 40 receives the blue primary color of the light of the three primary colors.
  • the display control assembly 10 can transmit the fourth galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 is used to drive the galvanometer to the galvanometer 60 to take the second axis Y as The second coil group rotating by the rotating shaft provides the fourth galvanometer drive current.
  • the fourth galvanometer drive current is t3 and t4 in the current waveform diagram shown in FIG. 9, and the current in the t3 section is used to drive the galvanometer. Deflection from the positive direction of the first axis X shown in (1) in FIG. 7 to the initial position of the first axis X, the t4 segment is used to drive the galvanometer to remain unchanged.
  • the direction of the current is unidirectional, that is, it is always positive.
  • the current direction of the galvanometer drive current can remain unchanged, so the deflection direction of the galvanometer 60 is a fixed direction .
  • the single-direction swing amplitude of the mirror is large, and the structural design of the galvanometer and the elasticity of the metal dome are high.
  • the driving circuit is simple and the cost is relatively low.
  • the light valve 40 receives the light of the three primary colors sequentially, and when the light valve 40 receives the light of the blue primary color of the three primary colors, the galvanometer 60 uses the second axis Y as the rotation axis from the first The positive direction of the one axis X is deflected to the negative direction of the first axis X, and the first axis X is not used as the rotation axis, that is, the galvanometer 60 remains unchanged in the positive direction of the second axis Y.
  • the galvanometer 60 remains unchanged, that is, the galvanometer 60 does not It is deflected again until the display of the fourth frame of sub-image D is completed.
  • the first sub-frame image A, the second sub-frame image B, the third sub-frame image C, and the fourth sub-frame image D are superimposed and displayed on the projection screen, thereby achieving high-resolution display on a low-resolution projection device Rate the target image.
  • the light valve 40 sequentially receives the light of the three primary colors, and the light valve 40 receives the light of the three primary colors.
  • the display control assembly 10 can transmit the first galvanometer current control signal to the galvanometer drive assembly 50, and the galvanometer drive assembly 50 is used to drive the galvanometer to the first galvanometer drive assembly 50.
  • the axis X provides the first galvanometer drive current for the first coil group rotating by the rotating shaft.
  • the galvanometer 60 is driven by the first galvanometer drive current to deflect the second angle ⁇ 2 along the first direction F1 (ie, clockwise direction) with the first axis X as the rotation axis.
  • the central point pixel of the first frame of sub-image A of the next frame of target image is offset along the X1 axis from the positive direction by a distance d2 to the negative direction of the X1 axis.
  • the offset distance d2 of the center point pixel in the negative direction of the Y1 axis remains unchanged.
  • the coordinates of the center point pixel of the first frame of sub-image A of the next frame of target image in the third coordinate system are (-d1, -d1), that is, the center of the first frame of sub-image A of the next frame of target image
  • the point pixel is located at position a in the third coordinate system.
  • the waveform of the galvanometer drive current can be a sine wave regardless of whether it is bipolar (with positive and negative directions) or unipolar (with only one direction, such as a positive direction).
  • the sine wave has less harmonic components, less noise generated in the electromagnetic drive process, and less electromagnetic torque required, which can reduce the heating of the coil.
  • the galvanometer drive assembly 50 provides the galvanometer drive current with alternating current directions to the galvanometer mirror 60 to drive the galvanometer mirror 60 to deflect in two directions with the first axis or the second axis as the rotation axis.
  • the amplitude of the galvanometer drive current is small, so when the galvanometer 60 is deflected with the first axis or the second axis as the rotation axis, the amplitude of deflection in each direction is small, and the amount of deformation of the bearing plate in the galvanometer 60 Smaller.
  • This method of driving the galvanometer has lower requirements on the structure of the bearing plate, and reduces the damage rate of the bearing plate, prolongs the service life of the bearing plate, and further extends the service life of the galvanometer.
  • step 304 and step 305 can be performed at the same time.
  • Any person skilled in the art can easily conceive of a change method within the technical scope disclosed in the present disclosure, which should be covered by the protection scope of the present disclosure, and therefore will not be repeated.
  • the embodiments of the present disclosure provide a projection device that can transmit the galvanometer current control signal corresponding to the sub-image to the galvanometer drive assembly during the process of projecting and displaying each frame of sub-images, so that
  • the galvanometer drive component provides the galvanometer drive current to the galvanometer to drive the galvanometer to deflect. Since the galvanometer current control signals corresponding to different frames of sub-images are different, the galvanometer can be driven to deflect to different positions, so that the multi-frame sub-images can be superimposed and displayed on the projection screen without losing the pixel information of the target image. , To display the high-resolution target image on a low-resolution projection device.
  • the galvanometer is composed of a circuit board and an optical mirror surface provided on the circuit board.
  • the circuit board is provided with a hollow area corresponding to the optical mirror surface, and the driving component-coil used to drive the optical mirror surface vibration is directly printed on the circuit board, which is different from the winding type in traditional products.
  • the coil is greatly reduced. This simplifies the connection structure with the optical glass. At the same time, laying copper wires on the circuit board around the coil facilitates rapid heat dissipation.
  • the optical mirror surface is adhered to the hollow area of the circuit board through elastic gaskets, which makes the entire galvanometer structure appear as a plate, which is convenient for installation inside the projection device.
  • the above-mentioned structure arrangement also makes the noise low, and the plate-like structure is fixedly installed It is also easy to achieve surface fixation through multiple fixation, which reduces the transmission of vibration in all directions, thereby helping to reduce noise.
  • the above-mentioned laser projection device can achieve the purpose of miniaturization and low noise of the projection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种投影设备,包括:光源(30),用于发出三色光束;光阀(40),用于对三色光束进行调制并输出;振镜(60),位于光阀(40)和投影镜头(120)之间,用于在驱动电流控制下改变光阀输出的光束的位置;投影镜头(120),用于对经振镜(60)输出的不同位置的光束进行成像;其中,振镜(60)包括电路板(61)以及设置于电路板上的光学镜面(62),电路板(61)用于驱动光学镜面(62)在电磁作用下进行翻转。

Description

投影设备
相关申请的交叉引用
本申请要求在2020年4月20日提交中国专利局、申请号为202010313356.6,发明名称为激光投影设备的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及一种投影设备。
背景技术
目前,投影设备在显示待投影图像的过程中,若确定投影设备的分辨率小于待投影图像的分辨率,则投影设备需要将该待投影图像中的部分像素进行去除处理,并显示处理后的待投影图像,以确保该投影设备能够显示该处理后的待投影图像。但是,由于投影设备需要将该待投影图像中的部分像素进行去除处理,使得最终显示的图像效果较差。
从而受限于光阀分辨率的情况下,即使待显示目标图像的分辨率较高,投影显示设备也无法还原显示。
一种相关技术方案中,可以增加像素偏移装置,比如振镜,在不同的位置振动,能够让透射其镜片的光束进行错位叠加,从而进行画面的叠加,利用人眼视觉暂留效应,至少两幅错位叠加的画面会看起来是一幅画面,画面的清晰度提高,在视觉效果上实现了分辨率的提升,从而即便是具有低分辨率光阀的投影设备也可以实现“高分辨率”图像的投射。但振镜部件的安装既要考虑空间体积,同时也要注意到振镜工作过程中的振动可能引起壳体的共振,进而带来噪声,用户体验感降低。
发明内容
本公开实施例提供了一种投影设备,包括:光源,用于发出三色光束;光阀,用于对所述三色光束进行调制并输出;振镜,位于所述光阀和投影镜头之间,用于在驱动电流控制下改变所述光阀输出的光束的位置;投影镜头,用于对经振镜输出的不同位置的光束进行成像;其中,所述振镜包括电路板以及设置于电路板上的光学镜面,所述电路板用于驱动所述光学镜面在电磁作用下进行翻转。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的 附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种投影设备光路架构示意图;
图2是本公开实施例提供的一种投影设备的硬件结构示意图;
图3是本公开实施例提供的一种投影显示方法的流程图;
图4是本公开实施例提供的一种振镜处于原始位置时第一帧子图像在投影屏幕显示的示意图;
图5是本公开实施例提供的一种振镜偏转时第一帧子图像在投影屏幕显示的示意图;
图6是本公开实施例提供的一种振镜沿不同的轴旋转的过程中振镜偏转位置的示意图;
图7是本公开实施例提供的另一种振镜偏转时第二帧子图像在投影屏幕显示的示意图;
图8是本公开实施例提供的一种驱动振镜沿第二轴偏转的振镜驱动电流的波形图;
图9是本公开实施例提供的一种驱动振镜沿第二轴偏转的振镜驱动电流的另一波形图;
图10是本公开实施例提供的又一种振镜偏转时第三帧子图像在投影屏幕显示的示意图;
图11是本公开实施例提供的再一种振镜偏转时第四帧子图像在投影屏幕显示的示意图;
图12是本公开实施例提供的又一种振镜偏转时第一帧子图像在投影屏幕显示的示意图;
图13是本公开实施例提供的一种振镜的结构示意图;
图14是本公开实施例提供的一种振镜中的电路板的结构示意图;
图15是本公开实施例提供的一种振镜中的光学镜面的结构示意图;
图16是本公开实施例提供的一种驱动振镜偏转的示意图;
图17是本公开实施例提供的一种驱动振镜以第二轴为旋转轴沿第四方向偏转的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
如图1所示的激光投影设备,包括光源30,光源30可以包括集成设置在一个封装单元上的三色激光芯片,也可以是三组单色的激光发光单元,可以发出红色激光,蓝色激光和绿色激光。
以及,光源30也可以是激光和波长转换装置构成,波长转换装置可以荧光轮,可以受激发出荧光。在本示例中,以光源30为三色激光光源为例进行说明。
以及参见图1,该全色激光投影设备还包括反射合光镜片70、透镜组件80、扩散轮90、光导管100、全内反射(total internal reflection,TIR)棱镜110、投影镜头120和投影 屏幕130。其中,该透镜组件80包括第一透镜801、第二透镜802和第三透镜803。
光源30发出的三色激光光束经过反射合光镜片70合束输出后,入射第一透镜801聚光,透过扩散轮90扩散匀光,再经过光导管100进行全反射匀光。其中扩散轮90通过扩散匀光可以起到消散斑的效果。之后经过光导管100匀光后的蓝色激光、红色激光和绿色激光分时经过第二透镜802和第三透镜803整形,并进入TIR棱镜110全反射,入射至光阀40后,光阀40反射光束并再次经过TIR棱镜透射输出,此时设置于光阀40与投影镜头120之间的振镜会在驱动控制下发生镜片的偏转,从而在透射光阀40反射的光束时,不同时刻的光束会发生位移,进而光斑发生错位,这样交替发生错位的光束会入射至投影镜头120中,从而在投影画面上也会形成画面错位叠加的现象。由于人眼视觉暂留现象,错位叠加的画面如果是相关联的,则在视觉上,图像的信息量增加,清晰度提高,达到了分辨率提升的效果。
下面示例中均将以图1所示的激光投影设备为应用场景,对投影显示过程进行说明。
如图2所示,该投影设备可以包括显示控制组件10、至少一个激光器驱动组件20、光源30、光阀40、振镜驱动组件50以及振镜60,该光源30可以包括与至少一个激光器驱动组件20一一对应的至少一组激光器。该至少一个是指一个或多个,多个是指两个或两个以上。该至少一组是指一组或多组,多组是指两组或两组以上,每组激光器可以包括一个或多个激光器。
其中,该显示控制组件10可以为数字光处理芯片(digital light processing chip,DLPC)。示例的,该显示控制组件10可以为DLPC 6540。该光源30可以为激光光源,该激光光源可以包括蓝色激光器、红色激光器和绿色激光器。该光阀40可以为数字微镜器件(digital micro-mirror device,DMD)。该振镜60可以用于将不同帧子图像偏移至投影屏幕的不同位置,从而实现该多帧子图像的叠加显示,进而达到扩展投影设备的分辨率的效果。可选的,该振镜60可以具有四个偏转位置,即该振镜60可以将子图像偏移至投影屏幕的四个不同位置。也可以,振镜60在两个位置之间进行切换,即具有两个偏转位置。
该显示控制组件10用于获取多帧子图像,该多帧子图像由待投影的目标图像分解得到,该目标图像的分辨率大于光阀的分辨率,该每帧子图像的分辨率不大于光阀的分辨率。
该显示控制组件10与每个激光器驱动组件20连接,用于输出与每帧子图像的三种基色一一对应的至少一个使能信号,将至少一个使能信号分别传输至对应的激光器驱动组件20,以及,输出与每帧子图像的三种基色一一对应的至少一个激光电流控制信号,将至少一个激光电流控制信号分别传输至对应的激光器驱动组件20。
每个激光器驱动组件20与对应的一组激光器连接,用于响应于接收到的使能信号和激光电流控制信号,向其所连接的激光器提供对应的激光驱动电流。
每个激光器用于在对应的激光器驱动组件20提供的激光驱动电流的驱动下发出激光。
显示控制组件10还用于在激光器发出的三基色光时序性的照射至光阀40的过程中,根据每帧子图像中像素的基色色阶值控制光阀40进行翻转,以将多帧子图像通过投影镜头依次投影至投影屏幕上。
显示控制组件10还用于在投影显示每帧子图像的过程中,向振镜驱动组件传输对应子图像的振镜电流控制信号。
振镜驱动组件50用于在振镜电流控制信号的控制下向振镜60提供振镜驱动电流,以驱动振镜60偏转。其中,该不同帧子图像对应的振镜电流控制信号不同。
在图1所示的激光投影设备中,应用了如图13-图15所示的振镜结构。参考图13,该振镜60可以包括层叠设置的电路板61和光学镜面62。参考图14,该电路板61可以包括基板610以及多个线圈组611。例如,图14中示出了两个线圈组611。该基板610具有第一镂空区域L0和围绕第一镂空区域L0的第一边缘区域L1,该多个线圈组611位于该第一边缘区域L1,振镜驱动组件50用于向每个线圈组611提供振镜驱动电流,以驱动光学镜面62偏转。该第一镂空区域L0为经过TIR透镜110全反射后的光线穿过的区域。
在一具体实施中,该基板610可以为印刷电路板(printed circuit board,PCB),该基板610的平面度的精度可以为0.1毫米(mm),该基板610的平面度的精度完全符合振镜对固定支撑板的平面度的精度的要求,因此该基板610可以直接作为振镜的支撑板,而不需要为该振镜额外增加支撑板,由此简化了振镜整体结构,降低了制造成本。
该每个线圈组可以包括一个或多个线圈,每个线圈的匝数可以为n0匝,该n0为大于0的正整数。并且,每个线圈的匝数、导线直径、布线形状以及布线层数可以根据实际需求设计。
参考图15,该光学镜面62可以包括承载板620、位于承载板620靠近电路板61的一侧的光学玻璃621和多个磁性组件622,该每个磁性组件622与一个线圈组611对应。例如,图15中示出了与图14中的两个线圈组611对应的两个磁性组件622。其中,每个线圈组611用于在驱动电流的驱动下,与磁性组件622相互作用,以驱动光学玻璃621沿一个旋转轴转动,且不同的线圈组611所对应的旋转轴相交。可选的,该承载板620的材料可以为金属材料。该多个磁性组件622靠近承载板的一端的极性可以均为同一极性,相应的,该多个磁性组件622远离承载板的一端的极性也均为同一极性。例如,若该多个磁性组件622靠近承载板的一端的极性均为N极,则该多个磁性组件622远离承载板的一端的极性均为S极。若该多个磁性组件622靠近承载板的一端的极性均为S极,则该多个磁性组件622远离承载板的一端的极性均为N极。
其中,该承载板620具有第二镂空区域L2和围绕第二镂空区域L2的第二边缘区域L3。该光学玻璃621覆盖第二镂空区域L2,该多个磁性组件622位于第二边缘区域L3,且该光学玻璃621在基板610上的正投影以及该第二镂空区域L2在基板610上的正投影 均与第一镂空区域L0重叠,该每个线圈组611与对应的一个磁性组件622在基板610上的正投影重叠。可选的,该光学玻璃621在基板610上的正投影的中心点以及该第二镂空区域L2在基板610上的正投影的中心点均与第一镂空区域L0的中心点重叠。该第一镂空区域L0和第二镂空区域L1可以称为通光孔径。
可选的,参考图15,该光学玻璃621的形状中心对称,例如,该光学玻璃621可以为正方形,该旋转轴可以为第一轴X,或者第二轴Y。该第一轴X平行于该光学玻璃621的一边,该第二轴Y平行于该光学玻璃621的另一边。该第一轴X和第二轴Y可以垂直。可选的,该光学玻璃621还可以为圆形或者矩形。
示例的,该光学玻璃621的透射率大于或者等于98%,且该光学玻璃621的厚度的范围可以为(2.05mm,1.95mm),对于波长为590纳米(nm)的光线,该光学玻璃621的折射率可以为1.523。
可选的,参考图14,该每个线圈组611可以包括第一线圈和第二线圈,该第一线圈的一端与正极连接,该第一线圈的另一端与第二线圈的一端连接,该第二线圈的另一端与负极连接。参考图15,该每个磁性组件622可以包括第一磁性组件6220和第二磁性组件6221。
参考图14和图15,该第一线圈围绕第一中心区域R1设置,该第一中心区域R1与该第一磁性组件6220在基板610上的正投影重叠。该第二线圈围绕第二中心区域R2设置,该第二中心区域R2与该第二磁性组件6221在基板610上的正投影重叠。
示例的,该第一磁性组件6220和第二次磁性组件6221可以均为条形磁性组件。相应的,第一中心区域R1和第二中心区域R2可以为条形区域。
参考图14和图15,该第一镂空区域L0和第二镂空区域L2可以均为中心对称区域,例如可以均为正方形,该多个线圈组622可以包括第一线圈组和第二线圈组,该光学镜面62可以包括两个磁性组件622。其中,该每个线圈组611中的第一线圈和第二线圈均相对设置在第一镂空区域L0的两侧,且不同线圈组611中的线圈位于第一镂空区域L0的不同侧。可选的,该第一镂空区域L0和第二镂空区域L2也可以均为矩形或者圆形。该第一镂空区域L0、第二镂空区域L2以及光学玻璃621的形状相同。可选的,第一轴和第二轴可以为第一镂空区域的轴线,即该第一线圈组中的两个线圈相对设置在第一轴的两侧,该第二线圈组中的两个线圈相对设置在该第二轴的两侧。
示例的,参考图14,该基板610上的第一线圈组622中每个线圈所围绕的中心区域均与第一轴X平行。例如,该第一线圈组622包括第一线圈C0和第二线圈C1,该第一线圈C0和第二线圈C1相对设置在第一镂空区域L0的长边的两侧。其中,该第一线圈C0的一端与正极AX+连接,该第一线圈C0的另一端与和该第二线圈C1的一端连接,该第二线圈C1的另一端与负极AX-连接,该第一线圈C0和第二线圈C1可以串联组成一个电流通道。
该基板610上的第二线圈组622中每个线圈所围绕的中心区域均与第二轴Y平行。例如,该第二线圈组622包括第一线圈B0和第二线圈B1,该第一线圈B0和第二线圈B1相对设置在第一镂空区域L0的短边的两侧。其中,该第一线圈B0的一端与正极AY+连接,该第一线圈B0的另一端与和该第二线圈B1的一端连接,该第二线圈B1的另一端与负极AY-连接,该第一线圈B0和第二线圈B1可以串联组成另一个电流通道。
可选的,该基板610可以包括第一子基板和第二子基板,该每层子基板上均设置有第一线圈组和第二线圈组,该不同层的子基板上的线圈可以通过过孔连接。位于该第一子基板中的第一线圈的一端与正极连接,位于该第一子基板中的第一线圈的另一端可以通过第一过孔与位于第二子基板上的第一线圈的一端连接。位于位于第二子基板上的第一线圈的另一端与位于第二子基板上的第二线圈的一端连接,位于第二子基板上的第二线圈的另一端可以通过第二过孔与位于第一子基板上的第二线圈的一端连接,位于第一子基板上的第二线圈的另一端与负极连接。
在本公开实施例中,该第一子基板上的第一线圈、第二子基板上的第一线圈、该第一子基板上的第二线圈以及第二子基板上的第二线圈可以组成为一个连续的线圈。参考图14,以第一线圈C0和第二线圈C1为例,该第一子基板上中每个线圈的顶层布线以实线表示,底层布线以虚线表示。将线圈从该第一子基板上的插座09的引脚3引出,围绕第一中心区域R1逆时针方向绕线n0匝后,在第一子基板上形成第一线圈C0。之后将该线圈通过第一过孔01由第一子基板换层到第二子基板。并继续围绕第二子基板上的第一中心区域R1逆时针方向绕线n0匝,在第二子基板上形成第一线圈C0。之后,继续将该线圈围绕第二子基板上的第二中心区域R2顺时针方向绕线n0匝,在第二子基板上形成第二线圈C1。之后,将该线圈通过第二过孔02由第二子基板切换到第一子基板,并围绕第一子基板的第二中心区域R2顺时针方向绕线n0匝,在第一子基板上形成第二线圈C1。最后将该线圈与插座09的引脚4连接。其中,该插座09与振镜驱动组件50连接,该振镜驱动组件50可以通过插座09的引脚向第一线圈C0和第二线圈C1提供振镜驱动电流。
在本公开实施例中,每个线圈的各匝按照有间隙性绕线方式印制于PCB板的基板上,即每个线圈组611均是通过基板610上的走线来实现的绕线,由此简化了工艺加工,大大降低成本。且由于该任意相邻两匝线圈之间存在空间立体的间隙,因此在为线圈组通电后,该种绕线方式有助于线圈组中的线圈散热,从而避免出现线圈的温度过高而影响振镜偏转的情况,确保了振镜偏转的精度以及可靠性。且由于基板610的布线材料为铜,基板每层非布线区域铺铜接地,并实现有效散热,因此在为线圈组611通电后,该基板610能够快速进行大面积的散热,从而进一步确保了振镜偏转的精度以及可靠性。
可选的,该基板610可以包括偶数层子基板,例如该基板610可以包括2层子基板、4子基板或者8层子基板。本公开实施例对子基板的层数不做限定。通过增加子基板的层 数,能够增加线圈的匝数,增强对应的磁性组件之间的磁场,从而增加光学镜面发生翻转的磁力。或者可以通过缩小每个子基板的尺寸来增加子基板的层数以保证线圈的匝数不变,进而确保线圈对应的磁性组件之间的磁场产生的磁力不变。
可选的,参考图14和图15,该第二边缘区域L3可以包括四个顶角区域03,该电路板61还可以包括设置在基板610上的四个弹性垫片,分别为弹性垫片G1、弹性垫片G2、弹性垫片G3和弹性垫片G4。每个弹性垫片用于与第二边缘区域L3的一个顶角区域03固定连接,且每个弹性垫片在基板610上的正投影与第二边缘区域L3的一个顶角区域03在基板610上的正投影重叠。示例的,该每个弹性垫片可以与第二边缘区域L3的一个顶角区域03粘贴。
可选的,每个弹性垫片可以为三角形,且每个顶角区域03为三角形区域,且每个弹性垫片的尺寸与对应的一个顶角区域03的尺寸相同。示例的,该每个弹性垫片可以均为等边三角形,相应的,该每个顶角区域03可以为等边三角形区域。该每个弹性垫片的平面度的精度大于或者等于0.1mm,且该每个弹性垫片具有厚度,由此可以支撑起光学镜面62,另外为了避免装配过程中刮伤手,可以将等边三角形的三个角进行弧度处理。
可选的,参考图15,该第二边缘区域L3中还设置有多个第三镂空区域L4,多个第三镂空区域L4环绕第二镂空区域L2。且任意相邻的两个第三镂空区域L4之间存在连接轴04,即该任意相邻的两个第三镂空区域L4之间存在不连通,从而形成以第一轴X和第二轴Y为旋转轴旋转的光学镜面62。示例的,该多个第三镂空区域L4可以包括四个第三镂空区域L4,由此在第二边缘区域L3上形成边缘子区域05。通过在第二边缘区域设置多个第三镂空区域,可以减轻光学镜面的重量。
可选的,参考图14和图15,该光学玻璃621在基板610上的正投影以及第二镂空区域L2在基板610上的正投影均位于第一镂空区域L0内,且光学玻璃621在基板610上的正投影覆盖第二镂空区域L2在基板610上的正投影。可选的,该光学玻璃621在基板610上的正投影的中心点以及第二镂空区域L2在基板610上的正投影的中心点均位于第一镂空区域L0内,且均与第一镂空区域L0的中心点重合。
在本公开实施例中,该第一镂空区域L0的尺寸取决于投影设备的光路中光斑的尺寸,也即是经过TIR透镜110全反射后的光线的尺寸。该第一镂空区域L0的尺寸大于该光斑的尺寸,且该第一镂空区域L0的尺寸大于光学玻璃621的尺寸,从而确保经过TIR透镜110全反射后的光线能够完全投射到投影屏幕上,且不会有亮度的损失。图15所示的虚线区域051即与该第一镂空区域L0的尺寸相同。
该光学玻璃621的尺寸大于第二镂空区域L2的尺寸,从而确保光学玻璃621可以覆盖该第二镂空区域L2。示例的,该光学玻璃621的尺寸可以为23mm×23mm,该第一镂空区域L0的尺寸可以为24mm×24mm,该第二镂空区域L2的尺寸为21mm×21mm。
参考图13、图14和图15,在形成振镜60的过程中,首先将光学玻璃621粘接到承载板620的第二边缘区域L3上,以使该光学玻璃621覆盖该第二镂空区域L2。之后将每个磁性组件622中的第一磁性组件6220和第二磁性组件6221粘接在第二镂空区域L2的两侧,且不同磁性组件位于第二镂空区域L2的不同侧,从而得到光学镜面62。之后将基板中的弹性垫片G1、弹性垫片G2、弹性垫片G3和弹性垫片G4与上述光学镜面62中对应的一个顶角区域03粘贴,由此得到振镜60。
可选的,该振镜60中的光学镜面62位于靠近光阀40的一侧,即该光学镜面62中的承载板620位于靠近光阀40的一侧,由于承载板620的板面为光滑的镜面材质,从而该光滑镜面侧靠近光阀侧。在光学镜面62未发生偏转时,即该光学镜面62的镜面与水平面平行时,该承载板620可以反射照射至承载板620上的光,从而有助于整个光学镜面62散热,降低了基板的温度,避免振镜因吸收过多热量而损坏。
参考图14,该第一边缘区域L1还可以包括多个通孔,该多个通孔用于使用螺丝或减震件等材料将基板61固定在投影设备中的支架上,进而将振镜60固定在该支架上。示例的,该多个通孔至少为三个,比如可以包括四个通孔,分别为通孔S1,通孔S2,通孔S3和通孔S4,该每个通孔可以为螺丝孔。
本公开实施例提供的振镜的尺寸和体积较小,有利于投影设备的小型化设计,上述振镜结构呈现板状,在安装固定壳体内时也便于通过至少三个固定件与壳体内壁的多处连接,这种固定连接方式可以将振镜的振动向多个方向传递,从而在各个方向的振幅都会较小,可以大大降低噪音,比如在具体应用时可低至20分贝(20dB)。
在本公开实施例中,参考图14,该基板61还设置有带电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)06和温度传感器(temperature sensor,TS)07。该EEPROM 06和TS 07分别通过I2C插座09连接。线圈在通电后,TS 07可以实时检测基板上线圈组的环境温度,并将该环境温度发送至显示控制组件10。显示控制组件10在接收到该环境温度后,可以检测该环境温度是否处于温度范围内。若该环境温度未处于温度范围内,表明该线圈组和承载板的环境温度异常,即该环境温度会对线圈组的电流和承载板的变形都造成影响,因为热胀冷缩会影响承载板的变形量,从而影响振镜偏转的精度。则显示控制组件10可以向该EEPROM 06发送校正参数获取指令,该校正参数获取指令中携带有该环境温度。该EEPROM 06在接收到该环境温度后,可以从预先存储的温度与校正参数的对应关系中获取该环境温度对应的校正参数,并将获取到的校正参数发送至显示控制组件10。显示控制组件10可以根据该校正参数调整向振镜驱动组件50传输的振镜电流控制信号,进而调整振镜驱动组件50向振镜提供的振镜驱动电流,从而及时消除温度对振镜偏转的精度的影响。该校正参数可以为振镜电流控制信号的幅值。
下述以振镜驱动组件50驱动振镜60以第二轴Y为旋转轴沿第三方向和第四方向偏转为例,对振镜60的驱动过程进行说明。为了便于说明,图16所示的磁性组件622和粘贴有光学玻璃的承载板分开表示。参考图16,光学镜面62中设置的第一磁性组件6220和第二磁性组件6221靠近线圈一端的极性均为N极。
当振镜驱动组件50未向振镜60提供振镜驱动电流时,光学玻璃621处于位置004处。当振镜驱动组件50向用于驱动振镜以第二轴为旋转轴转动的第二线圈组提供正向的振镜驱动电流时,例如向图16所示的第一线圈B0和第二线圈B1提供正向的振镜驱动电流,即振镜驱动电流从插座09的引脚5流入,从引脚6流出时(该引脚5为电流的正极AY+,该引脚6为电流的负极AY-),第一线圈B0和第二线圈B1均产生磁场,此磁场与磁性组件622的磁场类似,会产生N极和S极。根据右手螺旋定则,用右手握住线圈,右手四指的弯曲方向与电流的方向一致,则右手大拇指所指的一端是第一线圈B0的N极,即第一线圈B0靠近光学镜面62的一侧为N极,该第一线圈B0远离该光学镜面62的一侧为S极。根据右手螺旋定则和第二线圈B1的电流的方向,可以得到该第二线圈B1靠近光学镜面62的一侧为S极,该第二线圈B1远离该光学镜面62的一侧为N极。
参考图16,由于该第一线圈B0靠近光学镜面62的一侧为N极,该第一线圈B0对应的第一磁性组件6220为N极,因此该第一线圈B0和第一磁性组件6220之间会产生相互排斥的作用力。由于第一线圈B0固定在基板61上,该基板61固定在结构件上,因此该基板61不会发生移动。根据作用力和反作用力的原理,该第一磁性组件6220会受到向上的作用力,由此该第一磁性组件6220带动光学玻璃621向上偏移。同时由于第二线圈B1靠近光学镜面62的一侧为S极,该第二线圈B1对应的第二磁性组件6221为N极,因此该第二线圈B1和第二磁性组件6221之间产生相互吸引的作用力,由此该第二磁性组件6221会带动光学玻璃621向下偏移。在该过程中,光学玻璃621左右两侧同时受到逆时针旋转的作用力,在该作用力的作用下,光学玻璃621以第二轴Y为旋转轴沿逆时针方向偏转,直到基板与承载板620之间的弹力平衡后,该光学玻璃621停止旋转并保持不变。由此,光学玻璃621从图16所示的位置004偏转至位置005处,从而实现了光线的偏移,即光斑的移动,进而实现了待显示的图像在投影屏幕上的位置的移动。
当振镜驱动组件50向用于驱动振镜以第二轴Y为旋转轴转动的第二线圈组提供反向的振镜驱动电流时,例如向图16所示的第一线圈B0和第二线圈B1提供反向的振镜驱动电流,即振镜驱动电流从插座09的引脚6流入,从引脚5流出时(该引脚6为电流的负极AY-,该引脚5为电流的正极AY+)。根据右手螺旋定则和第一线圈B0的电流方向,通电后的第一线圈B0靠近光学镜面62的一侧为S极,该第一线圈B0远离光学镜面62的一侧为N极。该第一线圈B0与第一磁性组件6220之间产生相互吸引的作用力,由此该第一磁性组件6220带动光学玻璃621向下偏移。同时根据右手螺旋定则和第二线圈B1的电流 方向,通电后的第二线圈B1靠近光学镜面62的一侧为N极,该第二线圈B1远离该光学镜面62的一侧为S极,该第二线圈B1和第二磁性组件6222之间产生相互排斥的作用力,由此该第二磁性组件6222带动光学玻璃621向上偏移。在该过程中,光学玻璃621左右两侧同时受到顺时针旋转的作用力,在该作用力的作用下,该光学玻璃621以第二轴Y为旋转轴沿顺时针方向偏转,直到基板与承载板之间的弹力平衡后,该光学玻璃621停止旋转并保持不变。由此实现光学玻璃621从图16所示的位置005偏移至另一位置处,从而实现光斑由从位置005到另一个位置的偏移,进而实现了待显示的图像在投影屏幕上的位置的移动。
同理,振镜驱动组件50驱动振镜60沿第一轴X为旋转轴沿第一方向和第二方向偏转的过程,可以参考振镜驱动组件50驱动振镜以第二轴Y为旋转轴沿第三方向和第四方向偏转的过程,本公开实施例再次不再赘述。
在本公开实施例中,参考图17,假设振镜60以第二轴Y为旋转轴沿第三方向(逆时针方向)偏转第一角度θ1,光学玻璃621的厚度为h,光学玻璃621的折射率为n,光学玻璃621的内部折射光线的长度为L,折射角为ɑ,由于光线沿第三轴Z的方向垂直入射,根据直角关系,该入射光的入射角等于该第一角度为θ1。且由于在光学玻璃621面上的法线平行,因此光学玻璃621内部折射光学的入射角也为ɑ,则根据折射定理光学玻璃621出射光线的出射角等于入射角θ1,所以光学玻璃621的出射光线平行入射光线沿第三轴Z轴方向射出。
参考图17的(一),振镜驱动组件50未向振镜60提供振镜驱动电流时,光线沿第三轴Z垂直入射,振镜60的第一轴X和第二轴Y均与输入的光线垂直。入射光沿垂直于第一轴X和第二轴Y的方向直接出射。参考图17的(二),在振镜60以第二轴Y为旋转轴逆时针偏转第一角度θ1时,出射光相较于振镜60在图17的(一)所示的状态,出射光沿第一轴X的正方向的偏移距离为d1,该d1为待投影的目标图像中的像素在投影屏幕上偏移的距离。
假设光学玻璃621的内部折射光线与Z轴的夹角为β,折射角为ɑ,振镜60以第二轴Y为旋转轴逆时针偏转第一角度θ1,则该β=θ1-ɑ,折射率
Figure PCTCN2021081912-appb-000001
其中,光学玻璃621的内部折射光线的长度
Figure PCTCN2021081912-appb-000002
Figure PCTCN2021081912-appb-000003
Figure PCTCN2021081912-appb-000004
Figure PCTCN2021081912-appb-000005
Figure PCTCN2021081912-appb-000006
Figure PCTCN2021081912-appb-000007
由该公式可以看出,像素的偏移距离d1只与振镜60的偏转角度θ1,光学玻璃621的折射率n以及光学玻璃621的厚度h相关。在振镜组装完成后,该光学玻璃621的折射率n和厚度h均为确定的数值,因此像素的偏移距离d1主要随着振镜偏转的角度的改变而改变。
示例的,如经过2K分辨率的光阀最终投影显示的图像中像素的边长为5.4微米(um),为实现4K分辨率的图像显示,则振镜每次偏移距离d1等于二分之一×像素的边长,即d1=2.7um。
在本公开实施例中,显示控制组件10向振镜驱动组件50发送振镜电流控制信号,该振镜驱动组件50向振镜60提供振镜驱动电流,以驱动振镜以第一轴X为旋转轴沿第一方向或者第二方向偏转,或者驱动振镜60以第二轴Y为旋转轴沿第三方向或者第四方向偏转。即振镜的偏转共有四种情况,该四种情况的原理相同。
以及,在本公开实施例中,参考图2,若该投影设备为投影电视机,该投影设备还可以包括电源150、启动控制组件160和程序存储组件170。该主控制芯片00分别与启动控制组件160和显示控制组件10连接,电源150与激光器驱动组件20连接,程序存储组件170与显示控制组件10连接。
主控制芯片00向启动控制组件160发送启动命令,启动控制组件160在接收到该启动命令后开始工作,按照启动控制组件160的上电时序依次向显示控制组件输出1.1伏(V),1.8V,3.3V,2.5V和5V以给显示控制组件10供电。之后在供电电压及时序正确后,启动控制组件160向显示控制组件10发送电源感应(power sense,POSENSE)信号和电源正常(power good,PWRGOOD)信号,显示控制组件10在接收到两个控制信号后,从外接的程序存储组件170中读取程序并进行初始化,此时整个投影设备开始工作。显示控制组件10通过串行外设接口(serial peripheral interface,SPI)通信配置启动控制组件160,并指示该启动控制组件160向光阀40开始供电。之后启动控制组件160向光阀40输出3个电压,分别为电压偏置(voltage bias,VBIAS)为18V,电压复位(voltage reset,VRST)为-14V,电压偏移(voltage offset,VOFS)为10V,在光阀40的电压正常后,该光阀40开始工作。显示控制电路10通过高速串行接口(high-speed serial interface,HSSI)以594MHz向光阀40发送子图像的基色色阶值,以实现子图像。投影设备中的供电由电源板将100V~240V的交流电转换为直流电为各个组件供电。
基于应用上述振镜结构的激光投影设备,图3示出了一种投影显示方法示意图,该投影显示方法可以应用于图1和图2所示的投影设备。如图3所示,该方法可以包括:
步骤301、获取多帧子图像。
其中,多帧子图像由待投影的目标图像分解得到,该目标图像的分辨率大于光阀的分辨率,划分后的每帧子图像的分辨率不大于光阀的分辨率,例如可以等于光阀的分辨率。
可选的,目标图像的分辨率可以为M×N,该M为该目标图像中每行像素的个数,该N为每列像素的个数。该光阀的分辨率为M1×N1,该M1为该光阀能够投影显示的图像中每行像素的个数,该N1为每列像素的个数。该每帧子图像的分辨率可以为m1×n1,该m1为该每帧子图像中每行像素的个数,该n1为每列像素的个数。该M、N、M1、N1、m1和n1均为大于1的正整数,且该M大于M1,N大于N1,m1不大于M1,n1不大于N1。
示例的,该目标图像的分辨率可以为3840×2160,即M为3840,该N为2160。该光阀的分辨率可以为1920×1080,即M1为1920,该N1为1080。该目标图像的分辨率1920×1080,即m1为1920,n1为1080。该目标图像的分辨率3840×2160大于光阀的分辨率1920×1080,每帧子图像的分辨率1920×1080等于该光阀的分辨率1920×1080。
在本公开实施例中,若该投影设备为投影电视机,则该投影设备还可以包括主控制芯片00,参考图2,该显示控制组件10可以与主控制芯片00连接。投影设备在投影显示待投影的目标图像时,该主控制芯片00可以将待投影的目标图像的图像信号进行解码,并以60赫兹(HZ)的频率将解码后的目标图像的图像信号发送至显示控制组件10,相应的,该显示控制组件10可以接收到该主控制芯片00发送的该解码后的目标图像的图像信号。之后,显示控制组件10可以根据接收到的解码后的目标图像的图像信号划分为多个子图像信号,以实现将目标图像划分为多帧子图像。
示例的,该图像信号可以为4K(即3840×2160)视频信号或数字电视信号,该划分后的每帧子图像信号可以为2K(1920×1080)视频信号或数字电视信号。
步骤302、将每帧子图像的三种基色一一对应的至少一个使能信号分别传输至对应的激光器驱动组件。
在本公开实施例中,如图2所示,该显示控制组件10与每个激光器驱动组件20连接。显示控制组件10在将待投影的目标图像划分为多帧子图像后,可以输出该每帧子图像的三种基色一一对应的至少一个使能信号,并将该至少一个使能信号传输至对应的激光器驱动组件20。
步骤303、将每帧子图像的三种基色一一对应的至少一个激光电流控制信号分别传输至对应的激光器驱动组件。
在本公开实施例中,显示控制组件10在将待投影的目标图像划分为多帧子图像后,还可以输出该每帧子图像的三种基色一一对应的至少一个激光电流控制信号,并将该至少一个激光电流控制信号传输至对应的激光器驱动组件20。该激光电流控制信号用于指示激光器驱动组件20向其所连接的激光器提供对应的激光驱动电流,以驱动激光器发出激光。 其中,该激光电流控制信号可以是脉冲宽度调制(pulse width modulation,PWM)信号。
步骤304、根据每帧子图像中像素的基色色阶值控制光阀进行翻转,以将多帧子图像依次投影显示至投影屏幕上。
在本公开实施例中,在控制激光器开始发出激光后,显示控制组件10可以根据每帧子图像中像素的基色色阶值控制光阀40进行翻转,以光阀中微镜翻转的时间长短来实现该基色色阶值,配合对应照射到光阀上的对应颜色光,形成了对应像素三基色的灰阶,进而将该多帧子图像依次投影显示至投影屏幕,并通过控制振镜偏转将该多帧子图像显示至投影屏幕的不同位置。
在本公开实施例中,该多帧子图像可以包括四帧子图像。在每个激光器发出的激光照射至光阀40时,显示控制组件10可以根据每帧子图像中像素的基色色阶值控制光阀40进行翻转,以将该多帧子图像依次投影显示至投影屏幕。例如,该基色色阶值可以为红色绿色蓝色(red green blue,RGB)色阶值。
步骤305、在投影显示每帧子图像的过程中,将对应子图像的振镜电流控制信号传输至振镜驱动组件。
在本公开实施例中,在投影显示每帧子图像的过程中,显示控制组件10可以将对应一帧子图像的振镜电流控制信号传输至振镜驱动组件50,该振镜电流控制信号用于控制振镜驱动组件50向振镜60提供振镜驱动电流,以驱动该振镜60偏转。其中,该不同帧子图像对应的振镜电流控制信号不同,由此可以实现将多帧子图像投影至投影屏幕上的不同位置,进而实现该多帧子图像的叠加显示,进而即可实现在该投影屏幕上显示该目标图像。
在本公开实施例中,该振镜驱动电流用于驱动振镜60以第一轴和第二轴中的至少一个为旋转轴偏转,该第一轴与第二轴相交。可选的,该第一轴和第二轴可以垂直。该振镜60可以为四边形,该第一轴可以平行于该振镜60的一边,该第二轴可以平行于振镜60的另一边。例如,该振镜60可以为矩形,该第一轴和第二轴可以垂直。
该振镜60可以包括层叠设置的电路板和光学镜面,该电路板可以包括第一线圈组和第二线圈组,该第一线圈组中的两个线圈相对设置在第一轴的两侧,第二线圈组中的两个线圈相对设置在第二轴的两侧。该振镜电流控制信号用于控制振镜驱动组件50向第一线圈组提供振镜驱动电流,以驱动光学镜面以第一轴为旋转轴偏转;和/或,该振镜电流控制信号用于控制振镜驱动组件50向第二线圈组提供振镜驱动电流,以驱动光学镜面以第二轴为旋转轴偏转。即该光学镜面可以以第一轴为旋转轴偏转,或者,该光学镜面可以以第二轴为旋转轴偏转,或者该光学镜面可以同时以第一轴为旋转轴和第二轴为旋转轴偏转。
在投影显示每帧子图像的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中目标基色光的照射时,显示控制组件10可以将对应子图像的振镜电流控制信号传输至振镜驱动组件50,该振镜电流控制信号用于控制振镜驱动组件向振镜提 供振镜驱动电流,以驱动振镜60偏转,之后振镜60保持不变,由此完成一帧子图像的显示。之后在显示下一帧子图像时显示控制组件10和振镜驱动组件50可以再次驱动振镜60偏转,依次类推,从而实现将不同帧子图像投影显示至投影屏幕的不同位置处。
其中,该目标基色光可以为蓝色基色光。由于人眼对蓝色不敏感,因此在光阀40接收到三基色光中蓝色基色光的照射时,驱动振镜60翻转,人眼并不会明显的看到图像的偏移,确保了图像的显示效果。
可选的,在投影显示第一帧子图像的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中目标基色光的照射时,该显示控制组件10可以将第一振镜电流控制信号传输至振镜驱动组件50。该第一振镜电流控制信号用于控制振镜驱动组件50驱动振镜60以第一轴为旋转轴沿第一方向偏转第一角度,并驱动振镜60以第二轴为旋转轴沿第三方向偏转第一角度。或者,该第一振镜电流控制信号用于控制振镜驱动组件50驱动振镜60以第一轴为旋转轴沿第一方向偏转第二角度。
在投影显示第二帧子图像的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中目标基色光的照射时,该显示控制组件10可以将第二振镜电流控制信号传输至振镜驱动组件50。该第二振镜电流控制信号用于控制振镜驱动组件50驱动振镜60以第二轴为旋转轴沿第四方向偏转第二角度。
在投影显示第三帧子图像的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中目标基色光的照射时,该显示控制组件10可以将第三振镜电流控制信号传输至振镜驱动组件50。该第三振镜电流控制信号用于控制振镜驱动组件50驱动振镜60以第一轴为旋转轴沿第二方向偏转第二角度。
当投影显示第四帧子图像时,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中目标基色光的照射时,该显示控制组件10可以将第四振镜电流控制信号传输至振镜驱动组件50。该第四振镜电流控制信号用于控制振镜驱动组件50驱动振镜60以第二轴为旋转轴沿第三方向偏转第二角度。
其中,该第一方向与第二方向相反,该第三方向与第四方向相反。示例的,该第一方向和第三方向可以均为顺时针方向。该第二方向和第四方向可以均为逆时针方向。该第二角度等于两倍的第一角度。
示例的,假设第一方向和第三方向为顺时针方向,第二方向和第四方向为逆时针方向,则如图4所示,可以以第二轴Y为横轴,以第三轴Z为纵轴建立第一坐标系,并可以以第三轴Z为横轴,以第一轴X为纵轴,建立第二坐标系。其中,该第三轴Z分别垂直于该第一轴X和第二轴Y。参考图4中的(一)和(二),若振镜驱动组件50未向振镜60提供振镜驱动电流,该振镜60处于原始位置。此时,振镜60与入射光线垂直,即光线沿平行于第三轴Z的方向垂直入射至振镜60。图4中的(三)是投影屏幕的第三坐标系,该第三 坐标系的横轴为X1,纵轴为Y1。在振镜60处于原始位置时,该第一帧子图像中的中心点像素可以位于该第三坐标系的原点o处。
需要说明的是,图4中所示的振镜60为振镜60的侧视图,即振镜60的侧面,该侧面垂直于振镜60的入光面。
参考图5,在投影显示第一帧子图像A的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第一振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50分别向该振镜60中的第一线圈组和第二线圈组提供第一振镜驱动电流。参考图5中的(一)和(二),该振镜60可以在该第一振镜驱动电流的驱动下,以第一轴X为旋转轴沿第一方向F1(即顺时针方向)偏转第一角度θ1,并以第二轴Y为旋转轴沿第三方向F3(即顺时针方向)偏转第一角度θ1。由此可以实现第一帧子图像A中的中心点像素在X1轴的负方向上偏移距离d1,第一帧子图像A中的中心点像素在Y1轴的负方向上偏移距离d1。参考图5中的(二),最终该第一子帧图像A中的中心点像素在第三坐标系的坐标为(-d1,-d1),即第一子帧图像A中的中心点像素位于第三坐标系的a位置处。
图6示出了振镜以不同的轴为旋转轴偏转过程中振镜的偏转位置的示意图。该示意图中包括第一曲线和第二曲线,该第一曲线表示的是振镜以第一轴X为旋转轴偏转的过程中振镜相对于初始位置偏转的距离。第二曲线表示的是振镜以第二轴Y为旋转轴偏转的过程中振镜相对于初始位置偏转的距离。该每个曲线的横轴为时间t,纵轴为振镜的偏移距离s。
参考图6,在投影显示第一帧子图像A的过程中,该振镜60以第一轴X为旋转轴从初始位置偏移至第二轴Y的负方向,以第二轴Y为旋转轴从初始位置偏转至第一轴X的负方向。之后,在光阀40依次接收到三基色光中的绿色基色光和红色基色光时,该振镜60保持不变,即振镜60不再偏转直至该第一帧子图像A显示完成。
图8是本公开实施例提供的一种驱动振镜沿第二轴偏转的振镜驱动电流的波形图。该波形图的横轴为时间t,纵轴为驱动电流I的大小。当振镜驱动电流由正数变为负数,或者该振镜驱动电流由负数变为正数时,表明振镜驱动电流的方向发生变化。参考图6、图7和图8,在投影显示第二帧子图像B的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第二振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50向该振镜60中用于驱动振镜以第二轴为旋转轴转动的第一线圈组提供第二振镜驱动电流。该第二振镜驱动电流的波形可以参考图8所示的电流波形图中的t1段和t2段,该t1段的电流用于驱动振镜60以第二轴Y为旋转轴由第一轴X的负方向偏转至第一轴X的正方向,该t2段用于控制振镜60保持不变。
在该第二振镜驱动电流为t1段时,参考图7中的(一),该振镜60在该第二振镜驱动 电流的驱动下以第二轴Y为旋转轴沿第四方向F4(即逆时针方向)偏转第二角度θ2,该θ2=2×θ1。由此实现,第二帧子图像B的中心点像素沿Y1轴的负方向偏移距离d2至Y1的正方向,该第二帧子图像B中的中心点像素在X1轴的负方向的偏移距离d1保持不变,该d2=2×d1。参考图7中的(二),最终该第二子帧图像中的中心点像素在第三坐标系的坐标为(-d1,d1),即第二子帧图像B中的中心点像素位于第三坐标系的b位置处。参考图6,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该振镜60以第二轴Y为旋转轴由第一轴X的负方向偏转至第一轴X的正方向,并且不会以第一轴X为旋转轴旋转,即振镜60在第二轴Y的负方向上保持不变。之后,在光阀40依次接收到三基色光中的绿色基色光和红色基色光时,该第二振镜驱动电流为t2段,此时该振镜60保持不变,即振镜60不再偏转直至该第二帧子图像B显示完成。
参考图6和图10,在投影显示第三帧子图像C的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第三振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50向该振镜60中用于驱动振镜以第一轴为旋转轴转动的第一线圈组提供第三振镜驱动电流。参考图10中的(一),该振镜60在该第三振镜驱动电流的驱动下以第一轴X为旋转轴沿第二方向F2(逆时针方向)偏转第二角度θ2。由此实现,第三帧子图像C的中心点像素沿X1轴的负方向偏移距离d2至X1轴的正方向,该第三帧子图像C中的中心点像素在Y1轴的正方向的偏移距离d2保持不变。
参考图10中的(二),最终该第三子帧图像C的中心点像素在该第三坐标系的坐标为(d1,d1),即第三子帧图像C的中心点像素位于第三坐标系的c位置处。参考图6,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该振镜60以第一轴X为旋转轴由第二轴Y的负方向偏转至第二轴Y的正方向,并且不会以第二轴Y为旋转轴旋转,即振镜60在第一轴X的正方向上保持不变。之后,在光阀40依次接收到三基色光中的绿色基色光和红色基色光时,该振镜60保持不变,即振镜60不再偏转直至该第三帧子图像C显示完成。
参考图6、图8和图11,在投影显示第四帧子图像D的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第四振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50向该振镜60中用于驱动振镜以第二轴为旋转轴转动的第二线圈组提供第四振镜驱动电流,该第四振镜驱动电流为图8所示的电流波形图中的t3段和t4段,该t3段的电流用于驱动振镜60以第二轴Y为旋转轴由第一轴X的正方向偏转至第一轴X的负方向,该t4段用于控制振镜60保持不变。
在该第四振镜驱动电流为t3段时。参考图11中的(一),该振镜60在该第四振镜驱 动电流的驱动下以第二轴Y为旋转轴沿第三方向F3(即顺时针方向)偏转第二角度θ2。由此实现第四帧子图像D的中心点像素沿Y1轴的正方向偏移距离d2至Y1轴的负方向,该第四帧子图像D的中心点像素在X1轴的正方向的偏移距离d2保持不变。参考图11中的(二),最终该第四帧子图像D的中心点像素在该第三坐标系的坐标为(d1,-d1),即第四帧子图像D的中心点像素位于第三坐标系的d位置处。
当投影设备中应用以图8示例的驱动电流波形使振镜进行摆动时,相对于振镜的镜面为启振基准面,镜面正负摆动幅度相对小,对振镜的金属弹片的变形量小,正负摆动易于金属弹片弹力恢复,对金属结构设计要求相对低,更容易实现。
且由于驱动电流波形是正负对称的,驱动电流的幅值可以相对较小。比如要在一个方向要实现2.7μm的位移,而图8所示的电流是正负两个方向的,这样正或负方向只需达到2.7/2μm的幅度就可以,因此需要的驱动电流也会较小。
作为本申请的另一实施例,图9提供了另一种驱动振镜沿第二轴偏转的振镜驱动电流的波形图。该波形图的横轴为时间t,纵轴为驱动电流I的大小。
该第二振镜驱动电流的波形可以参考图9所示的电流波形图中的t1段和t2段,该t1段的电流用于驱动振镜以第二轴Y为旋转轴由第一轴X的初始位置偏转至第一轴X的正方向,该t2段用于控制振镜60保持不变。
在该第二振镜驱动电流为t1段时,参考图7中的(一)和(二),该振镜60在该第二振镜驱动电流的驱动下以第二轴Y为旋转轴沿第二方向F2(即逆时针方向)偏转目标角度θ。由此实现,第二帧子图像B的中心点像素从Y1轴的初始位置偏移距离d至Y1轴的正方向,最终该第二子帧图像B的中心点像素在第三坐标系的坐标为(0,d),即第二子帧图像B的中心点像素位于第三坐标系的b位置处。
参考图6,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该振镜60以第二轴Y为旋转轴由第一轴X的初始位置偏转至第一轴X的正方向,并且不会以第一轴X为旋转轴旋转,即振镜60在第二轴Y的初始位置上保持不变。之后,在光阀40依次接收到三基色光中的绿色基色光和红色基色光时,参考图9,该第二振镜驱动电流为t2段,此时该振镜60保持不变,即振镜60不再偏转直至该第二帧子图像B显示完成。
参考图6、图7和图10,在投影显示第三帧子图像C的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第三振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50向该振镜60中用于驱动振镜以第一轴X为旋转轴转动的第一线圈组提供第三振镜驱动电流。参考图10中的(一),该振镜60在该第三振镜驱动电流的驱动下以第一轴X为旋转轴沿第三方向F3(即逆时针方向)偏转目标角度θ。
参考图10中的(二),由此实现,第三帧子图像C的中心点像素由X1轴的初始位置偏移距离d至X1轴的正方向,该第三帧子图像C的中心点像素在Y1轴的正方向的偏移距离d保持不变。最终该第三子帧图像C的中心点像素在该第三坐标系的坐标为(d,d),即第三子帧图像C的中心点像素位于第三坐标系的c位置处。参考图6,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该振镜60以第一轴X为旋转轴,由第二轴Y的初始位置偏转至第二轴Y的正方向,并且不会以第二轴Y为旋转轴旋转,即振镜60在第一轴X的正方向上保持不变。之后,在光阀40依次接收到三基色光中的绿色基色光和红色基色光时,该振镜60保持不变,即振镜60不再偏转直至该第三帧子图像C显示完成。
参考图6、图7和图10,在投影显示第四帧子图像D的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第四振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50向该振镜60中用于驱动振镜以第二轴Y为旋转轴转动的第二线圈组提供第四振镜驱动电流,该第四振镜驱动电流为图9所示的电流波形图中的t3段和t4段,该t3段的电流用于驱动振镜由图7中(一)所示的第一轴X的正方向偏转至第一轴X的初始位置,该t4段用于驱动振镜保持不变。
而在图9所示的振镜驱动电流中,电流方向是单向的,即始终都是正的,该振镜驱动电流的电流方向可以保持不变,因此该振镜60的偏转方向为固定方向。则为了实现同等程度的摆动,则镜面单方向摆动幅度大,对振镜结构设计及金属弹片弹性要求高,但是图9所示的驱动方式中,驱动电路简单,成本相对较低。
参考图6,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该振镜60以第二轴Y为旋转轴由第一轴X的正方向偏转至第一轴X的负方向,并且不会以第一轴X为旋转轴旋转,即振镜60在第二轴Y的正方向上保持不变。之后,在光阀40依次接收到三基色光中的绿色基色光和红色基色光时,此时该第四振镜驱动电流为t4段时,该振镜60保持不变,即振镜60不再偏转直至该第四帧子图像D显示完成。由此实现在投影屏幕上叠加显示第一子帧图像A、第二子帧图像B、第三子帧图像C和第四子帧图像D,从而实现在低分辨率的投影设备上显示高分辨率的目标图像。
参考图6和图12,在投影显示下一帧目标图像的第一帧子图像A的过程中,光阀40时序性的接收三基色光的照射,且在光阀40接收到三基色光中蓝色基色光的照射时,该显示控制组件10可以将第一振镜电流控制信号传输至振镜驱动组件50,该振镜驱动组件50向该振镜60中用于驱动振镜以第一轴X为旋转轴转动的第一线圈组提供第一振镜驱动电流。参考图12,该振镜60在该第一振镜驱动电流的驱动下以第一轴X为旋转轴沿第一方向F1(即顺时针方向)偏转第二角度θ2。由此实现下一帧目标图像的第一帧子图像A 的中心点像素沿X1轴由正方向偏移距离d2至X1轴的负方向,该下一帧目标图像的第一帧子图像A的中心点像素在Y1轴的负方向的偏移距离d2保持不变。最终该下一帧目标图像的第一帧子图像A的中心点像素在该第三坐标系的坐标为(-d1,-d1),即下一帧目标图像的第一帧子图像A的中心点像素位于第三坐标系的a位置处。之后,在激光器照射至光阀40的光线的颜色依次变为绿色和红色时,该振镜60保持不变,即振镜60不再偏转直至该下一帧目标图像的第一帧子图像A显示完成,依次类推,在投影屏幕上显示多帧目标图像。
在本公开实施例中,该振镜驱动电流的波形无论是采用双极性(具有正负方向),还是单极性(仅具有一个方向,比如正方向)驱动方式,均可以为正弦波,相比于方波,该正弦波的谐波分量较少,在实现电磁驱动过程中所产生的噪声少,且所需的电磁转矩较小,可以降低线圈的发热。
在本公开实施例中,振镜驱动组件50通过向振镜60提供电流方向交替变化的振镜驱动电流,驱动振镜60以第一轴或第二轴为旋转轴在两个方向上偏转。该振镜驱动电流的幅值较小,因此振镜60以第一轴或者第二轴为旋转轴偏转时,在每个方向上偏转的幅度较小,振镜60中的承载板的变形量较小。该种驱动振镜的方法对承载板结构的要求较低,且降低了承载板的损坏率,延长了承载板的使用寿命,进而延长了振镜的使用寿命。
需要说明的是,本公开实施例提供的投影显示方法步骤的先后顺序可以进行适当调整,例如,步骤304和步骤305可以同时执行。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供了一种投影设备,该投影设备可以在投影显示每帧子图像的过程中,将对应子图像的振镜电流控制信号传输至振镜驱动组件,以使振镜驱动组件向振镜提供振镜驱动电流,驱动该振镜偏转。由于不同帧子图像对应的振镜电流控制信号不同,因此可以驱动振镜偏转至不同的位置,从而将该多帧子图像叠加显示至投影屏幕上,在不损失目标图像的像素信息的情况下,实现在低分辨率的投影设备上显示该高分辨率的目标图像。
以及,在本示例中,振镜是由电路板和设置于电路板上的光学镜面构成。电路板上设置有镂空区域,对应设置有光学镜面,且将用于驱动光学镜面振动的驱动组件-线圈直接印制于电路板上,而不同于传统产品中的缠绕式,一方面大大减少线圈的空间,简化与光学玻璃之间的连接结构,同时,线圈周围的电路板上铺设铜线利于快速散热。
光学镜面通过弹性垫片粘接于电路板镂空区域处,一方面使得整个振镜结构呈现板状,便于在投影设备内部安装,同时上述结构设置也使得噪声低,且板状的结构在固定安装时也容易通过多处固定实现面固定的方式,减轻振动在各个方向上的传递,从而利于减噪。 上述激光投影设备能够实现投影设备的小型化和低噪声目的。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种投影设备,其特征在于,所述投影设备包括:
    光源,用于发出三色光束;
    光阀,用于对所述三色光束进行调制并输出;
    振镜,位于所述光阀和投影镜头之间,用于在驱动电流控制下改变所述光阀输出的光束的位置;
    投影镜头,用于对经所述振镜输出的不同位置的光束进行成像;
    其中,所述振镜包括电路板以及设置于电路板上的光学镜面,所述电路板用于驱动所述光学镜面在电磁作用下进行翻转。
  2. 根据权利要求1所述的投影设备,其特征在于,
    所述电路板包括:基板以及多个线圈组;所述基板具有第一镂空区域和围绕所述第一镂空区域的第一边缘区域,
    所述多个线圈组印制于所述第一边缘区域;
    以及,所述第一镂空区域处设置有所述光学镜面。
  3. 根据权利要求2所述的投影设备,其特征在于,
    所述光学镜面包括:承载板、位于所述承载板靠近所述电路板的一侧的光学玻璃和多个磁性组件,每个所述磁性组件与一个所述线圈组对应;
    其中,所述承载板具有第二镂空区域和围绕所述第二镂空区域的第二边缘区域,所述光学玻璃覆盖所述第二镂空区域,所述多个磁性组件位于所述第二边缘区域,且所述光学玻璃在所述基板上的正投影以及所述第二镂空区域在所述基板上的正投影均与所述第一镂空区域重叠。
  4. 根据权利要求3所述的投影设备,其特征在于,每个所述线圈组包括第一线圈和第二线圈,所述第一线圈的一端与正极连接,所述第一线圈的另一端与所述第二线圈的一端连接,所述第二线圈的另一端与负极连接;每个所述磁性组件包括第一磁性组件和第二磁性组件;
    所述第一线圈围绕第一中心区域设置,所述第一中心区域与所述第一磁性组件在所述基板上的正投影重叠;
    所述第二线圈围绕第二中心区域设置,所述第二中心区域与所述第二磁性组件在所述基板上的正投影重叠。
  5. 根据权利要求3所述的投影设备,其特征在于,所述第一镂空区域和所述第二镂空区域均为中心对称区域;所述多个线圈组包括第一线圈组和第二线圈组,所述光学镜面包括两个所述磁性组件;
    其中,每个所述线圈组中的所述第一线圈和所述第二线圈均相对设置在所述第一镂空区域的两侧,且不同所述线圈组中的线圈位于所述第一镂空区域的不同侧。
  6. 根据权利要求2-5任一所述的投影设备,其特征在于,每个所述线圈组的各匝按照有间隙性绕线方式印制于所述基板上。
  7. 根据权利要求2-5任一所述的投影设备,其特征在于,所述基板至少为两层,至少一个所述线圈组可从所述基板的底层打空切换至所述基板的顶层。
  8. 根据权利要求7所述的投影设备,其特征在于,所述基板包括第一子基板和第二子基板;每层所述子基板上均设置有第一线圈组和第二线圈组;
    位于所述第一子基板中的所述第一线圈的一端与所述正极连接,位于所述第一子基板中的所述第一线圈的另一端通过第一过孔与位于所述第二子基板上的所述第一线圈的一端连接;
    位于所述第二子基板上的所述第一线圈的另一端与位于所述第二子基板上的所述第二线圈的一端连接,位于所述第二子基板上的所述第二线圈的另一端通过第二过孔与位于所述第一子基板上的所述第二线圈的一端连接,位于所述第一子基板上的所述第二线圈的另一端与所述负极连接。
  9. 根据权利要求3所述的投影设备,其特征在于,所述基板包括四个弹性垫片,所述第二边缘区域包括四个顶角区域,每个所述弹性垫片与所述第二边缘区域的一个顶角区域固定连接,所述弹性垫片用于支撑所述光学镜面。
  10. 根据权利要求3所述的投影设备,其特征在于,所述第二边缘区域还设置有多个第三镂空区域,多个所述第三镂空区域环绕所述第二镂空区域,且任意相邻的两个所述第三镂空区域之间存在连接轴,所述连接轴为所述光学镜面的旋转轴。
  11. 根据权利要求3或10所述的投影设备,其特征在于,所述承载板为金属材料,每个所述磁性组件靠近所述承载板的一端与远离所述承载板的另一端的极性相反。
  12. 根据权利要求3或10所述的投影设备,其特征在于,所述光学玻璃用于透射光束,所述光学玻璃的厚度范围为1.95mm~2.05mm,所述光学玻璃为圆形或矩形。
  13. 根据权利要求3或10所述的投影设备,其特征在于,所述光学玻璃的尺寸大于所述第二镂空区域的尺寸,所述光学玻璃粘接于所述承载板的第二边缘区域上;
    多个所述磁性组件粘接于所述第二镂空区域的不同侧。
  14. 根据权利要求3或10所述的投影设备,其特征在于,所述承载板的板面为光滑镜面,所述承载板的光滑镜面侧承载有所述光学玻璃,且所述光滑镜面侧靠近所述光阀。
  15. 根据权利要求2所述的投影设备,其特征在于,所述第一边缘区域还包括多个通孔,所述通孔用于将所述电路板进行固定。
  16. 根据权利要求3所述的投影设备,其特征在于,
    所述投影设备还包括振镜驱动组件,用于向每个所述线圈组提供振镜驱动电流,以驱动所述光学镜面偏转;
    每个所述线圈组用于在所述驱动电流的驱动下,与所述磁性组件相互作用,以驱动所述光学玻璃沿一个旋转轴转动,且不同的所述线圈组所对应的旋转轴相交。
  17. 根据权利要求16所述的投影设备,其特征在于,所述振镜驱动电流用于驱动所述振镜以第一轴和第二轴中的至少一个为旋转轴偏转,所述第一轴与所述第二轴互相垂直。
  18. 根据权利要求16所述的投影设备,其特征在于,所述振镜驱动电流的电流方向正负交替变化,驱动所述振镜;或者,所述振镜驱动电流的电流方向不变,驱动所述振镜。
  19. 根据权利要求18所述的投影设备,其特征在于,所述振镜驱动电流的波形为正弦波。
PCT/CN2021/081912 2020-04-20 2021-03-19 投影设备 WO2021213101A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180030082.2A CN115427885A (zh) 2020-04-20 2021-03-19 投影设备
US17/731,596 US20220256129A1 (en) 2020-04-20 2022-04-28 Projection apparatus and projection display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010313356.6 2020-04-20
CN202010313356.6A CN113534577B (zh) 2020-04-20 2020-04-20 激光投影设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082122 Continuation-In-Part WO2021213105A1 (zh) 2020-04-20 2021-03-22 光学引擎

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081911 Continuation-In-Part WO2021213100A1 (zh) 2020-04-20 2021-03-19 投影显示方法及投影设备

Publications (1)

Publication Number Publication Date
WO2021213101A1 true WO2021213101A1 (zh) 2021-10-28

Family

ID=78093718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081912 WO2021213101A1 (zh) 2020-04-20 2021-03-19 投影设备

Country Status (2)

Country Link
CN (2) CN113534577B (zh)
WO (1) WO2021213101A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534577B (zh) * 2020-04-20 2022-09-02 青岛海信激光显示股份有限公司 激光投影设备
TWI836971B (zh) * 2023-04-27 2024-03-21 佳世達科技股份有限公司 雷射投影設備

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140511A1 (en) * 2004-11-12 2006-06-29 Wei-Sheng Chang Image shifting module and optical projection device
CN101770071A (zh) * 2008-12-30 2010-07-07 财团法人工业技术研究院 光学扫描组件
CN102162919A (zh) * 2010-02-23 2011-08-24 精工爱普生株式会社 光扫描仪以及图像形成装置
CN103399402A (zh) * 2013-08-13 2013-11-20 国家纳米科学中心 一种电磁驱动微型二维扫描镜装置
CN107003498A (zh) * 2014-10-08 2017-08-01 奥普托图尼股份公司 用于倾斜光学元件特别是镜的装置
CN110602470A (zh) * 2019-09-20 2019-12-20 青岛海信激光显示股份有限公司 投影显示***及其控制方法
CN110764253A (zh) * 2018-07-26 2020-02-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种二维矢量扫描微镜
CN211826864U (zh) * 2020-04-20 2020-10-30 青岛海信激光显示股份有限公司 激光投影设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193189B (zh) * 2010-03-01 2012-11-28 财团法人工业技术研究院 光学多环扫描元件
JP2016038505A (ja) * 2014-08-08 2016-03-22 惠州市大亜湾永昶電子工業有限公司 レンズ駆動装置
CN107643594B (zh) * 2016-07-20 2020-05-22 苏州希景微机电科技有限公司 扫描镜装置
JP6993567B2 (ja) * 2017-09-29 2022-02-03 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール、およびカメラ搭載装置
CN110082999B (zh) * 2018-01-26 2021-11-16 中强光电股份有限公司 投影机、光学引擎及画素偏移装置
CN108873368A (zh) * 2018-08-02 2018-11-23 西安知微传感技术有限公司 一种抑制激光散斑的方法及mems微振镜
CN210294585U (zh) * 2019-03-22 2020-04-10 佛山华永科技有限公司 一种偏振镜及包含其的投影仪
CN113534577B (zh) * 2020-04-20 2022-09-02 青岛海信激光显示股份有限公司 激光投影设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060140511A1 (en) * 2004-11-12 2006-06-29 Wei-Sheng Chang Image shifting module and optical projection device
CN101770071A (zh) * 2008-12-30 2010-07-07 财团法人工业技术研究院 光学扫描组件
CN102162919A (zh) * 2010-02-23 2011-08-24 精工爱普生株式会社 光扫描仪以及图像形成装置
CN103399402A (zh) * 2013-08-13 2013-11-20 国家纳米科学中心 一种电磁驱动微型二维扫描镜装置
CN107003498A (zh) * 2014-10-08 2017-08-01 奥普托图尼股份公司 用于倾斜光学元件特别是镜的装置
CN110764253A (zh) * 2018-07-26 2020-02-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种二维矢量扫描微镜
CN110602470A (zh) * 2019-09-20 2019-12-20 青岛海信激光显示股份有限公司 投影显示***及其控制方法
CN211826864U (zh) * 2020-04-20 2020-10-30 青岛海信激光显示股份有限公司 激光投影设备

Also Published As

Publication number Publication date
CN113534577A (zh) 2021-10-22
CN113534577B (zh) 2022-09-02
CN115427885A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2021213100A1 (zh) 投影显示方法及投影设备
US9195053B2 (en) Spatio-temporal directional light modulator
CN211826864U (zh) 激光投影设备
US9664980B2 (en) Optical device and image display device
US7330298B2 (en) Optical system and method for increasing image resolution and/or dithering in projection applications
WO2021213101A1 (zh) 投影设备
KR101487904B1 (ko) 전자석을 이용한 플립닷 디스플레이 소자 및 그 조립모듈
WO2013086046A1 (en) Spatio-optical and temporal spatio-optical directional light modulators
JP2020091343A (ja) 光路シフトデバイスおよび画像表示装置
CN111190281B (zh) 光路移位设备以及图像显示装置
JP2011221214A (ja) 画像形成装置
JP5494225B2 (ja) 画像形成装置
JP2011237707A (ja) 画像形成装置
US20050052376A1 (en) Method and apparatus for light emitting devices based display
JP6507550B2 (ja) 光学デバイス、画像表示装置およびプロジェクター
US20060023167A1 (en) Illumination system for projection display applications
US20060176362A1 (en) Optical system and method for increasing image resolution and/or dithering in printing applications
CN113542702A (zh) 投影设备
US7810933B2 (en) Image projection apparatus
US8217329B2 (en) Microminiaturized projection module having an image processing unit for transforming each of image signals into a modulating signal and a direction signal for projecting image onto object
JP2000194282A (ja) 映像ディスプレーシステム
CN114488539A (zh) 一种扫描显示模组及近眼显示设备
KR101371069B1 (ko) 마이크로디스플레이 장치
US20220256129A1 (en) Projection apparatus and projection display method
KR101336164B1 (ko) 마이크로디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793589

Country of ref document: EP

Kind code of ref document: A1