WO2021213105A1 - 光学引擎 - Google Patents

光学引擎 Download PDF

Info

Publication number
WO2021213105A1
WO2021213105A1 PCT/CN2021/082122 CN2021082122W WO2021213105A1 WO 2021213105 A1 WO2021213105 A1 WO 2021213105A1 CN 2021082122 W CN2021082122 W CN 2021082122W WO 2021213105 A1 WO2021213105 A1 WO 2021213105A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
control
optical engine
deflection
galvanometer
Prior art date
Application number
PCT/CN2021/082122
Other languages
English (en)
French (fr)
Inventor
张重扬
曹秀燕
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2021213105A1 publication Critical patent/WO2021213105A1/zh
Priority to US17/731,596 priority Critical patent/US20220256129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • This application relates to the field of projection technology, in particular to an optical engine.
  • optical engines are used in people's work and life, mainly used to emit light beams to achieve transmission imaging on projection screens.
  • the optical engine mainly includes a light source, an optomechanical system, and a lens.
  • the optomechanical system includes DMD (Digital Micromirror Device), cantilever support 1, galvanometer 2 and optomechanical housing 3. .
  • the light source is fixed on the light entrance side of the optical engine housing 3 and is used to emit light beams; the fixed end of the DMD and the cantilever bracket 1 are fixedly connected to the optical engine housing 3, and the galvanometer 2 is fixedly connected to the cantilever of the cantilever bracket 1. end.
  • the DMD is used to reflect the light beam emitted by the light source to the galvanometer 2.
  • the galvanometer 2 can switch between deflection and reset at a certain frequency to realize the deflection of the part of the light beam reflected by the DMD.
  • the lens is fixed on the optical machine housing 3 is on the light exit side, and is used to transmit and image the deflected light beam and the undeflected light beam of the galvanometer 2.
  • the galvanometer 2 will inevitably vibrate during the deflection process, and since the fixing method between the galvanometer 2 and the opto-mechanical housing 3 is equivalent to the cantilever fixation, the galvanometer 2 will be relatively large during the vibration process. The vibration amplitude of, and then it is easy to drive the cantilever support 1 to resonate. In this way, collisions between the galvanometer 2 and the cantilever support 1 and between the cantilever support 1 and the optical engine housing 3 will cause noise, which will affect the use of the optical engine.
  • optical engine including:
  • a light source the light source is used to emit a light beam
  • An optomechanical system the optomechanical system includes a digital micromirror device DMD, a support plate, a galvanometer and an optomechanical housing;
  • the DMD is arranged inside the optical engine housing, the support plate is fixedly connected to the optical engine housing through at least three first fixing members, the support plate is provided with a first light transmission hole, the The galvanometer is fixedly connected to the support plate through at least three second fixing members, and the coverage area of the orthographic projection of the galvanometer on the support plate has an overlap with the area where the first light-transmitting hole is located;
  • the at least three first fixing parts and the at least three second fixing parts can all form a polygon, and the DMD is used to reflect the light beam emitted by the light source to the galvanometer, and the galvanometer Can switch between deflection and resetting at the first frequency, so as to deflect the light beam reflected by the DMD during deflection;
  • the lens is fixed on the light exit side of the optical engine housing, and the lens is used for transmitting and imaging the deflected light beam and the undeflected light beam of the galvanometer.
  • Figure 1 is a schematic diagram of an exploded structure of an optical-mechanical system provided by related technologies
  • FIG. 2 is a schematic structural diagram of an optical engine provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of an optical-mechanical system provided by an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of an optical-mechanical system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a 2k projection projection provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another 2k projection provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a 4k projection projection provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a galvanometer provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a top view structure of a galvanometer provided by an embodiment of the present application.
  • control component 32: light-transmitting component; 51: first damping rubber; 71: lens component; 72: reflector; 73: prism component;
  • 311 PCB; 321: deflection shrapnel; 322: translucent lens; 323: first fixing screw;
  • 3211 Shrapnel inner ring
  • 3212 Shrapnel outer ring
  • 3213 First connecting bridge
  • 3214 Second connecting bridge
  • 3215 Third connecting bridge
  • 3216 Fourth connecting bridge
  • 3217 First fixed arm
  • 3218 No. Two fixed arms.
  • FIG. 2 illustrates a schematic structural diagram of an optical engine according to an embodiment of the present application
  • FIG. 3 illustrates a schematic cross-sectional structure diagram of an optical engine system according to an embodiment of the present application.
  • the optical engine includes: a light source 00, an optomechanical system 01 and a lens 02.
  • the light source 00 is used to emit light beams;
  • the optomechanical system 01 includes DMD1, a support plate 2, a galvanometer 3, and an optomechanical housing 4.
  • DMD1 is arranged inside the optical engine housing 4, the support plate 2 is fixedly connected to the optical engine housing 4 through at least three first fixing parts 5, the support plate 2 is provided with a first light transmission hole, and the galvanometer 3 passes through at least three
  • the second fixing member is fixedly connected to the support plate 2, and the coverage area of the orthographic projection of the galvanometer 3 on the support plate 2 has an overlap with the area where the first light-transmitting hole is located; wherein, at least three first fixing members 5 And at least three second fixing members can all form a polygon, DMD1 is used to reflect the light beam emitted by the light source 00 to the galvanometer 3, and the galvanometer 3 can switch between deflection and reset at the first frequency to deflect during deflection The light beam reflected by the DMD1; the lens 02 is fixed on the light exit side of the optical machine housing 4, and the lens 02 is used to transmit and image the deflected light beam and the undeflected light beam of the galvanometer 3.
  • the support plate 2 can more stably fix the galvanometer 3 on the optical engine housing 4 Therefore, it is not easy to drive the support plate 2 to resonate during the deflection of the galvanometer 3, so that noise is not easily generated between the support plate 2 and the optical engine housing 4, and the effect of excessive noise on the performance of the optical engine is avoided.
  • the support plate 2 is provided with a first light transmission hole, and the coverage area of the orthographic projection of the galvanometer 3 on the support plate 2 overlaps with the area where the first light transmission hole is located, the light beam can pass through the galvanometer 3 and The first light-transmitting hole to achieve propagation.
  • the galvanometer 3 can deflect the light beams rotated and reflected by the DMD1 during deflection, and can emit the deflected light beams and the undeflected light beams to the lens 02, and the lens 02 can realize transmission imaging.
  • the optomechanical system 01 may also not include the support plate 2, so that the galvanometer 3 is directly and fixedly connected to the optomechanical housing 4.
  • the galvanometer 3 can be fixedly connected to the optical engine housing 4 by at least three third fixing members, and the at least three third fixing members are enclosed in a polygonal shape. Since the support plate 2 used to support the galvanometer 3 is eliminated, the collision between the galvanometer 3 and the support plate 2 and the generation of noise are avoided, thereby further reducing the loudness of the noise.
  • the number of internal components of the optomechanical housing 4 is also reduced, thereby reducing the occupancy rate of the internal space of the optomechanical housing 4, thereby facilitating the arrangement of other components in the optomechanical system 01.
  • a damping washer corresponding to each third fixing part can be arranged between the galvanometer 3 and the optical engine housing 4, and each damping washer can be sleeved on the corresponding third fixing part and clamped on the galvanometer 3 and the optical engine housing 4. In this way, the collision between the galvanometer 3 and the opto-mechanical housing 4 can be effectively prevented.
  • the first frequency refers to the reciprocal of the time period from the undeflected state to the deflected state of the galvanometer 3.
  • the time length can be set according to the reaction time length of the human eyes, as long as the screen projected by the lens 02 can reflect the effect of 4K resolution when the user watches it, which is not limited in the embodiment of the present application.
  • the light source 00 may be fixed on the light entrance side of the optical engine housing 4, and the housing wall where the light entrance side of the optical engine housing 4 is located and the housing wall where the light exit side is located may be adjacent or opposite.
  • the relative position of the galvanometer 3 and the support plate 2 can be set according to the size of the light exit side space of the optical engine housing 4. For example, when the space on the light exit side of the optical engine housing 4 is large, if the volume of the support plate 2 is If the volume of the galvanometer lens 3 is larger, the support plate 2 can be closer to the lens 02 relative to the galvanometer lens 3.
  • the relative position of the galvanometer 3 and the support plate 2 can also be set according to other conditions, which is not limited in the embodiment of the present application.
  • the support plate 2 may have a rectangular structure, and of course, it may also have a structure of other shapes such as a circle.
  • the support plate 2 has a rectangular structure and the number of the first fixing members 5 is three, the three first fixing members 5 can be respectively close to the three sides of the rectangular support plate 2, so that the three first fixing members 5 The distribution positions are more dispersed, so that the support plate 2 can be limited in a wide range.
  • the number of the first fixing members 5 is four, the four first fixing members 5 can be respectively close to the four sides of the rectangular support plate 2, of course, they can also be arranged in other forms, which are not limited in the embodiment of the present application.
  • the first fixing member 5 may be a fixing screw, of course, it may also be a first fixing member 5 of other types.
  • each second fixing member and the structure of the first fixing member 5 may be the same or similar, which will not be repeated in the embodiment of the present application.
  • the optical-mechanical system 01 may further include at least three first damping rubbers 51 corresponding to at least three first fixing members 5 one-to-one, and each first fixing member 5 passes through the corresponding first damping rubber 51.
  • the vibration rubber 51 and the support plate are fixedly connected with the optical engine housing. In this way, the first damping rubber 51 can prevent the corresponding first fixing member 5 from colliding with the supporting plate 2, thereby significantly reducing the volume of the noise.
  • the first fixing member 5 may be a shoulder screw.
  • the first damping rubber 51 may be sleeved on the shoulder of the shoulder screw, and the length of the first damping rubber 51 in the direction of the central axis of the shoulder screw It can be greater than the length of the shaft shoulder, and the first damping rubber 51 can avoid the direct contact between the support plate 2 and the shaft shoulder, thereby avoiding the collision between the first fixing member 5 and the support plate 2.
  • the first fixing member 5 may also be other types of screws, which are not described in the embodiment of the present application.
  • the optical engine may be an ultra-short-focus optical engine.
  • the optical engine may also be a short-focus optical engine or a long-focus optical engine.
  • the optical engine may also include a radiator 03.
  • the radiator 03 can be fixedly connected to the optomechanical system 01 to dissipate heat from the optomechanical system 01.
  • 03 can also be connected to light source 00 to dissipate heat from light source 00.
  • heat sink 03 can be connected to light source 00 and optomechanical system 01 at the same time to dissipate heat from light source 00 and optomechanical system 01 at the same time. This is not done in the embodiment of the application. limited.
  • the light source 00 may include a monochromatic light source 00 or a multi-color light source 00.
  • the monochromatic light source 00 may be a blue laser.
  • the light source 00 may also include a fluorescent wheel and a color filter wheel to ensure that the light beam emitted by the light source 00 can be a red, green, and blue light beam.
  • the light source 00 may not include a fluorescent wheel and/or color filter wheel, so in order to ensure the projection effect of the optical engine, the fluorescent wheel and/or color filter wheel can be set in the optical engine system 01, that is, the optical engine system 01 may also include a fluorescent wheel and/or color filter wheel.
  • the multi-color light source 00 may be a three-color laser system.
  • a three-color laser system may include a green laser, a red laser, and a blue laser, so that the three lasers can directly emit red, green, and blue light beams.
  • the optical-mechanical system 01 may also include a homogenizing component, so that the monochromatic light source 00 or the multi-color light source 00 included in the light source 00 can be treated by the homogenizing component.
  • the light beam emitted by the light source 00 is homogenized.
  • the homogenization component will be described in detail below.
  • the optical machine system 01 may further include an optical lens 7.
  • the optical lens 7 may include a lens assembly 71, a mirror 72, and a prism assembly 73.
  • the light incident side of the lens assembly 71 Towards the light entrance side of the optical engine housing 4, the light exit side of the lens assembly 71 faces the reflecting surface of the reflector 72, so that the lens assembly 71 can shape the light beam emitted by the light source 00 and emit the shaped light beam to The reflecting mirror 72; the reflecting surface of the reflecting mirror 72 also faces the first light entrance side of the prism assembly 73, so that the reflecting mirror 72 can reflect the beam shaped by the lens assembly 71 to the prism assembly 73; the first light exit side of the prism assembly 73 and The second light entrance side faces DMD1, and the second light exit side of the prism assembly 73 faces the galvanometer 3, so that the prism assembly 73 can refract the light beam reflected by the reflector 72 to the DMD1, and rotate and reflect the reflected
  • the lens component 71 may include a convex lens and/or a concave lens
  • the prism component 73 may be a TIR (Total Internal Reflection) prism or an RTIR (Refraction Total Internal Reflection) prism.
  • TIR Total Internal Reflection
  • RTIR Reflect Total Internal Reflection
  • the projected image formed by the light beam emitted by the DMD 1 can achieve a 4k resolution, thereby improving the projection effect of the optical engine.
  • the galvanometer 3 When the galvanometer 3 is not deflected, that is, after the galvanometer 3 is reset, the light beams after being rotated and reflected by the DMD1 can directly pass through the galvanometer 3, and the pixel arrangement of the realized picture can be as shown in Fig. 5. It is 2K resolution.
  • the galvanometer 3 When the galvanometer 3 is in the deflection state, after the light beams rotated and reflected by the DMD 1 are deflected by the galvanometer 3, the pixel points of the realized picture can be arranged as shown in FIG. 6, and the picture has a 2K resolution.
  • the galvanometer 3 since the polarization frequency of the galvanometer 3 is relatively high, it is difficult for the human eye to distinguish the change state of the projected picture after the galvanometer 3 is deflected and the picture projected after the reset. Therefore, the galvanometer 3 is reset and the galvanometer 3 is deflected.
  • the picture can show a superimposed effect. In this way, the arrangement of the pixels of the picture presented on the image can be as shown in FIG. 7, so as to realize the 4K resolution of the picture.
  • the galvanometer 3 may have a plate-like structure. As shown in FIG. 8, the galvanometer 3 includes a control component 31 and a light-transmitting component 32.
  • the control component 31 is fixedly connected to the support plate 2, and the light-transmitting component 32 is fixed at
  • the control component 31 is installed on the control component 31 with a gap; the light-transmitting component 32 can be switched between deflection and reset at the first frequency under the action of the control component 31.
  • the galvanometer 3 can be fixedly connected to the support plate 2 through the control assembly 31, and can be deflected and reset by the light-transmitting assembly 32, and the light-transmitting assembly 32 can deflect the light beam reflected by the DMD1 when deflecting.
  • the galvanometer 3 can be a plate-shaped structure, the galvanometer 3 is small in size, and thus it is not easy to produce obvious vibration and noise during deflection.
  • control component 31 and the light-transmitting component 32 are both plate-shaped structures.
  • the galvanometer 3 composed of the control component 31 and the light-transmitting component 32 arranged in the gap can also be a plate-shaped structure.
  • the gap between the light-transmitting component 32 and the control component 31 may be no less than 0.5 mm to ensure that the light-transmitting component 32 is not affected by the control component 31 when the light-transmitting component 32 is deflected.
  • the interval of the gap may be 0.6 mm or 0.8 mm.
  • the spacing of the gap between the light-transmitting component 32 and the control component 31 can also be other values, as long as it is ensured that the light-transmitting component 32 is not affected when deflected, and the galvanometer 3 can be maintained in a plate structure without causing the galvanometer
  • the overall size of 3 may be too large, which is not limited in the embodiment of the present application.
  • the light-transmitting component 32 may include a deflection elastic piece 321 and a light-transmitting mirror 322; the deflection elastic piece 321 is fixed on the control assembly 31, and the deflection elastic piece 321 is provided with a second light-transmitting hole,
  • the transparent mirror 322 is fixedly connected to the deflecting elastic piece 321, and the coverage area of the orthographic projection of the transparent mirror 322 on the deflecting elastic piece 321 has an overlap with the area where the second light transmission hole is located, and the control assembly 31 is used for controlling by the deflecting elastic piece 321
  • the transparent mirror 322 switches between deflection and resetting at the first frequency.
  • the deflection elastic piece 321 has elasticity, it is easy to produce elastic deformation under the control of the control assembly 31, thereby facilitating the deflection under the control of the control assembly 31, and at the same time driving the transparent mirror 322 to deflect.
  • the control assembly can be easily controlled.
  • the control of 31 generates a reset, and then drives the transparent mirror 322 to reset.
  • the light transmitting mirror 322 can be embedded in the deflecting spring 321 based on the second light transmitting hole. In this way, the hole wall of the second light transmitting hole and the outer edge of the light transmitting mirror 322 can be in close contact, so that the light transmitting mirror 322 can be realized.
  • the coverage area of the orthographic projection on the deflecting elastic piece 321 has an overlap with the area where the second light-transmitting hole is located.
  • the light-transmitting mirror 322 can also be bonded to the deflecting elastic piece 321 by glue, while the light-transmitting mirror 322 covers the second light-transmitting hole, and the coverage area of the orthographic projection of the light-transmitting mirror 322 on the deflection elastic piece 321 can also be achieved.
  • the area where the second light transmission hole is located has overlap.
  • the light-transmitting mirror 322 can also be fixedly connected to the deflection spring 321 in other ways, which is not limited in the embodiment of the present application.
  • the coverage area of the orthographic projection of the light transmitting mirror 322 on the deflecting spring 321 and the area where the second light transmission hole is located have an overlap, the light beam after the rotation and reflection of the DMD1 can smoothly pass through the light transmission component 32 based on the overlap.
  • the area of the second light-transmitting hole can be smaller than the area of the light-transmitting mirror 322.
  • the area of the second light-transmitting hole can also be larger than the area of the light-transmitting mirror 322, as long as it does not hinder the propagation of the light beam. There is no restriction on this.
  • the transparent mirror 322 may be round or square. Accordingly, the shape of the second transparent hole may be the same as the shape of the transparent mirror 322.
  • the light-transmitting mirror 322 and the second light-transmitting hole can also be arranged in other shapes, which are not limited in the embodiment of the present application.
  • the control assembly 31 can control the deflection and resetting of the deflection elastic piece 321 based on the principle of magnetic attraction or repulsion.
  • the material of the deflection elastic piece 321 may be a metal material that is easily magnetized.
  • the material of the deflection elastic piece 321 is all It can be iron, cobalt, nickel, etc.
  • the control assembly 31 can attract or repel the deflecting elastic piece 321 to realize the deflection and resetting of the deflecting elastic piece 321.
  • the control assembly 31 can also control the deflection and resetting of the deflection spring 321 based on other principles, and the deflection spring 321 can also be made of other materials, which is not limited in the embodiment of the present application.
  • the deflection spring 321 may include a spring inner ring 3211 and a spring outer ring 3212; the inner edge of the spring inner ring 3211 forms a second light transmission hole, and the light transmission mirror 322 and the spring inner ring 3211
  • the inner edge of the shrapnel is fixedly connected, the outer edge of the inner ring of shrapnel 3211 has a first connecting bridge 3213 and a second connecting bridge 3214 arranged opposite to each other, the inner ring of shrapnel 3211 is connected to the outer ring of shrapnel through the first connecting bridge 3213 and the second connecting bridge 3214
  • the inner edge of 3212 is fixedly connected, and the control assembly 31 can control the inner ring of shrapnel 3211 to deflect with the first straight line where the first connecting bridge 3213 and the second connecting bridge 3214 are located as the rotation axis; the outer edge of the outer ring of shrapnel 3212 has opposite settings
  • the control assembly 31 can control the outer ring of the shrapnel 3212 to deflect the second straight line where the third connecting bridge 3215 and the fourth connecting bridge 3216 are located as the rotation axis, of which the first straight The line and the second straight line are not parallel.
  • the transparent mirror 322 can be driven to deflect synchronously with the first straight line as the rotation axis; the outer ring of shrapnel
  • the transparent mirror 322 can be driven to deflect with the second straight line as the rotation axis.
  • the transparent lens 322 can be deflected around two non-parallel rotation axes, respectively, so that the image can be deflected in the two-dimensional coordinate system, that is, the image is not parallel.
  • the pixel points are deflected in the two-dimensional coordinate system.
  • the shrapnel inner ring 3211, the shrapnel outer ring 3212, the first connecting bridge 3213, the second connecting bridge 3214, the third connecting bridge 3215, the fourth connecting bridge 3216, the first fixed arm 3217, and the second fixed arm 3218 It can be integrally formed, so that the strength of the deflecting elastic piece 321 can be ensured, and the above-mentioned structures are not easily broken.
  • the material of the deflection shrapnel 321 can be iron, cobalt, nickel and other easily magnetized metal materials
  • the material of the shrapnel inner ring 3211 and shrapnel outer ring 3212 can also be iron, cobalt, nickel, etc. Magnetized metal material.
  • the control assembly 31 can directly control the deflection of the shrapnel inner ring 3211 and the shrapnel outer ring 3212 based on the principle of magnetic attraction or repulsion.
  • the inner ring of shrapnel 3211 can be rectangular or circular.
  • the shape of the inner ring of shrapnel 3211 can be the same as that of the transparent lens 322.
  • the outer ring of shrapnel 3212 can be the same shape as the inner ring of shrapnel 3211.
  • the elastic sheet outer ring 3212 can also be set in other different shapes, which is not limited in the embodiment of the present application.
  • the first connecting bridge 3213, the second connecting bridge 3214, the third connecting bridge 3215, and the fourth connecting bridge 3216 can all be small and extraordinarily elongated sheet-like structures, so as to be twisted under the action of external force, thereby facilitating the inner ring of the shrapnel
  • the 3211 and the outer ring of the shrapnel 3212 are flexibly deflected.
  • Both the first fixed arm 3217 and the second fixed arm 3218 may have a rectangular sheet-like structure, of course, may also be a sheet structure of other shapes, which is not limited in the embodiment of the present application.
  • the first straight line may coincide with the central axis of the inner ring 3211 of the shrapnel in the plane direction, and of course, it may also have a certain distance from the central axis.
  • the second straight line may coincide with the center axis of the outer ring 3212 of the elastic sheet along the plane direction, and of course, it may also be at a certain distance from the center axis, which is not limited in the embodiment of the present application.
  • the first straight line can be perpendicular to the second straight line.
  • the transparent lens 322 can be deflected around two vertical rotation axes respectively, thereby realizing the angle between the image along the first straight line and the second straight line.
  • the bisector of the bisector is offset, showing a clearer 4k effect.
  • the first straight line and the second straight line may also be at other angles, which is not limited in the embodiment of the present application.
  • the outer edge of the shrapnel inner ring 3211 has at least one first metal protrusion along the direction perpendicular to the first straight line
  • the outer edge of the shrapnel outer ring 3212 has at least one first metal protrusion along the direction perpendicular to the second straight line.
  • the control assembly 31 can control each first metal protrusion and each second metal protrusion to approach or move away from the control assembly 31.
  • control assembly 31 can control the inner shrapnel 3211 and the outer shrapnel ring 3212 based on the specific positions of the first metal protrusion and the second metal protrusion to ensure precise control of the deflection of the shrapnel inner ring 3211 and the shrapnel outer ring 3212.
  • both the first metal protrusion and the second metal protrusion may have a rectangular sheet-like structure, of course, may also be structures of other shapes, which is not limited in the embodiment of the present application.
  • the first metal protrusion may be integrally formed with the elastic sheet inner ring 3211, and the second metal protrusion may be integrally formed with the elastic sheet outer ring 3212.
  • the first metal protrusions can be provided on the elastic sheet inner ring 3211 with the first connecting bridge 3213 and the second connecting bridge 3213.
  • a side of the bridge 3214 that is not connected, and the control assembly 31 can make the side of the shrapnel inner ring 3211 close to or away from the control assembly 31, so that the shrapnel inner ring 3211 can be easily deflected with the first straight line as the rotation axis.
  • the two first metal protrusions may be respectively disposed on the two opposite sides of the inner ring 3211 of the elastic sheet that are not connected to the first connecting bridge 3213 and the second connecting bridge 3214. side.
  • the control assembly 31 can make one side of the inner ring 3211 of the elastic sheet close to the control assembly 31 based on one of the first metal protrusions, and at the same time make the first metal protrusion based on the other first metal protrusion.
  • One side of the inner ring of shrapnel 3211 where the metal protrusions are located is far away from the control assembly 31, so that the inner ring of shrapnel 3211 is deflected with the first straight line as the rotation axis.
  • the number of the first metal protrusions can also be set to two or more, as long as it facilitates the deflection of the elastic sheet inner ring 3211 with the first straight line as the rotation axis, which will not be repeated in the embodiment of the present application.
  • the number of the second metal protrusions can be one, or it can be two or more, and the arrangement of the second metal protrusions can be the same as the arrangement of the first metal protrusions. No longer.
  • the materials of the first metal protrusion and the second metal protrusion can also be iron, cobalt, nickel, etc. Magnetized metal material.
  • the first metal protrusion can increase the magnetization area of the shrapnel inner ring 3211
  • the second metal protrusion can increase the magnetization area of the shrapnel outer ring 3212, thereby facilitating the control of the shrapnel inner ring 3211 and the shrapnel outer ring 3212 by the control assembly. .
  • the shrapnel inner ring 3211 may not include the first metal protrusions, and the shrapnel outer ring 3212 may not include the second metal protrusions, as long as the control assembly can achieve control penetration based on the shrapnel inner ring 3211 and the shrapnel outer ring 3212.
  • the deflection and resetting of the light mirror is sufficient, which is not limited in the embodiment of the present application.
  • the galvanometer 3 may further include a plurality of first fixing screws 323, and the first fixing arm 3217 and the second fixing arm 3218 may be connected to the control assembly 31 through the plurality of first fixing screws 323.
  • the first fixed arm 3217 and the second fixed arm 3218 can also be welded on the control assembly 31, which is not limited in the embodiment of the present application.
  • first fixing arm 3217 and the second fixing arm 3218 are respectively fixedly connected to the control assembly 31 by the first fixing screw 323, they can be between the first fixing arm 3217 and the corresponding first fixing screw 323, and the second fixing arm A damping rubber ring is arranged between the 3218 and the corresponding first fixing screw 323 to reduce the deflection of the outer ring of the shrapnel 3212, between the first fixing arm 3217 and the corresponding first fixing screw 323, and the second fixing arm 3218 and The noise generated between the corresponding first fixing screws 323.
  • the control component 31 may include a PCB (Printed Circuit Board, printed circuit board) 311, and a control coil (not shown) is printed on the PCB 311; the PCB 311 passes through at least three second The fixing member is fixed on the support plate 2; a third light-transmitting hole is formed on the PCB311, the light-transmitting component 32 is fixed on the PCB311, and the coverage area of the orthographic projection of the light-transmitting component 32 on the PCB311 and the third light-transmitting hole are located The area has an overlapping part, and the light-transmitting component 32 is arranged with a gap between the PCB311; a control circuit is also printed on the PCB311, and the control circuit is electrically connected to the control coil.
  • the control circuit is used to adjust the current direction of the control coil at the first frequency to pass the control coil
  • the magnetic field generated after power-on controls the light-transmitting component 32 to switch between deflection and reset at the first frequency.
  • the PCB 311 is fixed on the support board 2 by at least three second fixing members, and the at least three second fixing members are surrounded by a polygon, the PCB 311 can be fixed on the support board 2 more stably based on the plane where the PCB 311 is located. Since the coverage area of the orthographic projection of the light-transmitting component 32 on the PCB311 and the area where the third light-transmitting hole is located have an overlap, the light beam can smoothly pass through the light-transmitting component 32 and the PCB311 board based on the overlap. In addition, since the control coil is printed on the PCB 311, the overall volume of the control assembly 31 can be reduced, and the miniaturization design of the control assembly 31 can be realized.
  • the light-transmitting component 32 includes the deflection elastic piece 321
  • the material of the deflection elastic piece 321 can be easily magnetized, the magnetic field generated after the control coil is energized can attract or repel the deflection elastic piece 321, which can be based on the deflection.
  • the elastic piece 321 controls the deflection and resetting of the light-transmitting component 23.
  • the deflection spring 321 arranged in the gap with the control coil can be magnetized.
  • the elastic piece 321 can be attracted by the control coil, and then the deflection elastic piece 321 is close to the control coil to realize deflection, thereby realizing the deflection of the light-transmitting component 32.
  • the deflection spring 321 when the current direction of the control coil changes, due to the hysteresis phenomenon of the magnetized deflection spring 321, the direction of the magnetic field of the deflection spring 321 is temporarily opposite to the direction of the magnetic field of the control coil, and the deflection spring 321 can be repelled by the control coil, thereby The deflection spring 321 gradually moves away from the control coil.
  • the deflection spring 321 moves away from the control coil, the deflection spring 321 passes through the position when the deflection spring 321 is not deflected, that is, the initial position of the deflection spring 321. In this way, the deflection spring 321 can be reset. Further, the deflection elastic piece 321 will repeat the above process to achieve multiple deflection and resetting, which will not be repeated in the embodiment of the present application.
  • control circuit can also switch the control coil between power-off and power-on at the first frequency, so that the light-transmitting component can be switched between deflection and reset at the first frequency.
  • the deflection shrapnel 321 arranged in the gap with the control coil can be magnetized.
  • the magnetized deflection shrapnel 321 has the same magnetic field direction as the control coil, so the deflection shrapnel 321 can be attracted by the control coil.
  • the deflection elastic piece 321 is close to the control coil to achieve deflection.
  • control circuit can energize and de-energize the control coil at the first frequency, so that the light-transmitting component 32 can be switched between deflection and reset at the first frequency.
  • the control coil may be a solenoid, and the central axis of the solenoid may be perpendicular to the plane direction of the light-transmitting component 32, so that the direction of the magnetic field generated by the solenoid after it is energized can be perpendicular to the plane direction of the light-transmitting component 32, Thus, the attraction and repulsion of the light-transmitting component 32 can be realized.
  • the control coil can also be other types of coils, as long as it can attract or repel the light-transmitting component 32 after being energized, which will not be repeated in this embodiment of the present application.
  • the shape of the third light transmission hole can be rectangular or circular, the shape and size of the third light transmission hole can be consistent with the first light transmission hole, and the center point of the third light transmission hole is the same as the first light transmission hole.
  • the connection line of the center point can be perpendicular to the plane direction of the light-transmitting component 32.
  • the third light-transmitting hole can also be arranged in other forms, as long as it does not interfere with the propagation of the light beam. This is not done in the embodiment of the application. limited.
  • control coil may be located close to the edge of the light-transmitting component 32, so that when the control coil attracts or repels the light-transmitting component 32, the light-transmitting component 32 is easily deflected.
  • the control coil may include at least one first sub-control coil and at least one second sub-control coil, and each first sub-control coil and each second sub-control coil are electrically connected to the control circuit, and the control circuit Used to adjust the current direction of each first sub-control coil and each second sub-control coil at the first frequency; in the case that the deflection spring 321 includes the spring inner ring 3211 and the spring outer ring 3212, at least one first sub control After the coil is energized, the inner ring 3211 of the magnetic control shrapnel is deflected with the first straight line as the rotation axis, and the magnetic field control shrapnel outer ring 3212 generated after the at least one second sub-control coil is energized is deflected with the second straight line as the rotation axis.
  • At least one first sub-control coil can realize the deflection of the inner ring of shrapnel 3211
  • at least one second sub-control coil can realize the deflection of the outer ring of shrapnel 3212, and the cooperation of the first sub-control coil and the second sub-control coil can be realized.
  • the translucent mirror 322 respectively rotates around the first straight line and the second straight line as the rotation axis.
  • the number of the first sub-control coils and the first metal protrusions may be the same, and one One-to-one correspondence, and each first sub-control coil can be arranged at a position directly below the corresponding first metal bump; the number of the second sub-control coil and the second metal bump can be the same, and one-to-one correspondence, and each The second sub-control coil may be arranged at a position directly below the corresponding second metal protrusion.
  • the materials of the first metal protrusion and the second metal protrusion can be easily magnetized materials, the first metal protrusion and the second metal protrusion can increase the magnetization area of the shrapnel inner ring 3211 and the shrapnel outer ring 3212, respectively Therefore, it is advantageous for the first sub-control coil to attract and repel the elastic sheet inner ring 3211 based on the first metal protrusion, and the second sub-control coil to attract and repel the elastic sheet outer ring 3212 based on the second metal protrusion.
  • the galvanometer 3 may further include at least three second damping rubbers corresponding to the at least three second fixing members one-to-one, and each second fixing member passes through the corresponding second damping rubber and the PCB311. Board, and fixedly connected with the support board 2. In this way, the second damping rubber can prevent the corresponding second fixing member from colliding with the PCB311 board, thereby significantly reducing the volume of noise.
  • the second fixing member may be a shoulder screw.
  • the second damping rubber may be sleeved on the shoulder of the shoulder screw, and the length of the second damping rubber in the direction of the central axis of the shoulder screw may be greater than that of the shaft.
  • the length of the shoulder and the second damping rubber can avoid direct contact between the PCB311 board and the shaft shoulder, thereby avoiding the collision between the second fixing member and the PCB311 board.
  • the second fixing member may also be other types of screws, which will not be repeated in the embodiment of the present application.
  • the optical-mechanical system 01 may also include a heat-conducting plate 6.
  • the heat-conducting plate 6 is fixedly connected to the optical-mechanical housing 4 and is located between the DMD 1 and the galvanometer 3, and the heat-conducting plate 6 is configured to absorb the heat in the optical engine housing 4 and receive part of the light beams rotated and reflected by the DMD 1 so as to transfer the heat in the optical engine housing 4 and the heat generated by the partial light beams to the optical engine housing 4.
  • part of the light beam can be prevented from directly irradiating the control assembly 31 and the light-transmitting assembly 32 included in the galvanometer 3, thereby preventing excessive heat from accumulating on the control assembly 31 and increasing the temperature of the control coil included in the control assembly 31, and also preventing the transmission
  • the temperature of the optical component 32 is increased to cause deformation and other consequences, which can avoid the failure of the galvanometer 3 and improve the reliability of the galvanometer 3.
  • the heat conducting plate 6 can also conduct the heat in the internal space of the optomechanical housing 4 to the optomechanical housing 4, and then the optomechanical housing 4 radiates the heat to the outside of the optomechanical housing 4, thereby realizing the optical engine housing 4 Efficient heat dissipation inside.
  • some of the light beams may be light beams that are not directly emitted to the lens 02 after being rotated and reflected by the DMD1. Since part of the light beam will not be directly used for projection, it can be directly received by the heat conducting plate 6 without affecting the projection of the optical engine.
  • the material of the heat conducting plate 6 can be copper, aluminum, and other materials with excellent heat conductivity, so as to achieve efficient heat absorption and heat conduction.
  • the surfaces of the heat-conducting plate 6 and the opto-mechanical housing 4 can be coated with light-absorbing materials, thereby enhancing the heat-absorbing effect of the heat-conducting plate 6 and the opto-mechanical housing 4.
  • the homogenization component may be a light pipe or the like.
  • the light pipe may be arranged on the bottom surface of the optical engine housing 4, and one end of the light pipe faces the optical engine housing 4
  • the other end of the light guide faces the light entrance side of the lens assembly 71, and the center line of the light guide coincides with the main optical axis of the lens assembly 71.
  • the light pipe is used to homogenize the light beam emitted by the light source 00 and emit the homogenized light beam to the lens assembly 71.
  • the light pipe when the light pipe is fixed on the bottom surface of the optical machine housing 4, in order to avoid assembly deviation of the components included in the optical machine system 01, resulting in the spot formed by the light beam not covering the working area of the DMD1, the light pipe can Adjustable and fixed on the bottom surface of the optical engine housing 4.
  • the fixing method of the light pipe can refer to the prior art, which is not limited in the embodiment of the present application.
  • the size of the rectangular light pipe can be in a preset ratio with the size of the DMD1 to ensure that the beam shaped by the lens assembly 71 can exactly cover the working area of the DMD1, thereby ensuring the imaging effect of the optical engine while avoiding Because the light beam hits the non-working area of DMD1, the temperature of the non-working area of DMD1 increases.
  • two limit springs and one limit boss may be provided on the optical machine housing 4, and the limit boss is used to face the TIR prism based on the bottom of the TIR prism.
  • the two limiting elastic pieces respectively abut the two side walls of the TIR prism that are not used to propagate light beams.
  • two limit springs and one limit boss can apply a bearing force to the three bearing surfaces of the TIR prism to ensure the position accuracy of the TIR prism, thereby improving the projection effect of the optical engine.
  • the support plate can more stably fix the galvanometer on the opto-mechanical housing, so that the vibration In the process of mirror deflection, it is not easy to drive the support plate to resonate, so that noise is not easily generated between the support plate and the optical engine housing, and the effect of excessive noise on the performance of the optical engine is avoided.
  • the support plate is provided with the first light transmission hole, and the coverage area of the orthographic projection of the galvanometer on the support plate and the area where the first light transmission hole is located have an overlap, the light beam can pass through the galvanometer and the first light transmission hole Hole to achieve spread.
  • the galvanometer can deflect the light beam after the rotation and reflection of the DMD during deflection, and can emit the deflected light beam and the undeflected light beam to the lens, and the lens can realize transmission imaging.
  • the inner ring of the shrapnel and the outer ring of the shrapnel can realize the deflection of the transparent mirror in different directions.
  • the first sub-control coil can realize the independent control of the inner ring of the shrapnel, and the second sub-control coil can realize the independent control of the outer ring of the shrapnel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种光学引擎,包括光源(00)、光机***(01)和镜头(02),光源(00)用于出射光束;光机***(01)包括数字微镜器件DMD(1)、支撑板(2)、振镜(3)和光机壳体(4);DMD(1)设置在光机壳体(4)内部,支撑板(2)通过至少三个第一固定件(5)与光机壳体(4)固定连接,振镜(3)通过至少三个第二固定件固定连接在支撑板(2)上;其中,振镜(3)能够以第一频率在偏转和复位之间切换,以在偏转时偏转DMD(1)反射后的光束;镜头(02)固定在光机壳体(4)的出光口侧。

Description

光学引擎
相关申请的交叉引用
本申请要求在2020年4月20日提交中国专利局、申请号为202020597629.X,发明名称为光学引擎的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影技术领域,特别涉及一种光学引擎。
背景技术
随着科技的不断发展,光学引擎越来越多的应用于人们的工作和生活中,主要用于出射光束以实现在投影屏幕透射成像。
相关技术中,如图1所示,光学引擎主要包括光源、光机***和镜头,光机***包括DMD(Digital Micromirror Device,数字微镜器件)、悬臂支架1、振镜2和光机壳体3。其中,光源固定在光机壳体3的入光口侧,且用于出射光束;DMD和悬臂支架1的固定端与光机壳体3固定连接,振镜2固定连接在悬臂支架1的悬臂端。DMD用于将光源出射的光束进行反射至振镜2,振镜2能够以一定频率在偏转和复位之间进行切换,以实现对DMD反射后的部分光束的偏转,镜头固定在光机壳体3的出光口侧,且用于对振镜2偏转后的光束和未偏转的光束进行透射成像。
然而,振镜2在偏转的过程中不可避免的会发生振动,且由于振镜2与光机壳体3之间的固定方式相当于悬臂固定,因而振镜2在振动过程中会有较大的振动幅度,进而很容易带动悬臂支架1发生共振。这样,振镜2与悬臂支架1之间,以及悬臂支架1与光机壳体3之间均会发生碰撞而产生噪声,进而会影响到光学引擎的使用。
发明内容
本申请提供了一种光学引擎,包括:
光源,所述光源用于出射光束;
光机***,所述光机***包括数字微镜器件DMD、支撑板、振镜和光机壳体;
所述DMD设置在所述光机壳体内部,所述支撑板通过至少三个第一固定件与所述光机壳体固定连接,所述支撑板上设置有第一透光孔,所述振镜通过至少三个第二固定件与所述支撑板固定连接,且所述振镜在所述支撑板上的正投影的覆盖区域与所述第一透光孔所在的区域具有重叠部分;
其中,所述至少三个第一固定件和所述至少三个第二固定件均能够围成多边形,所述DMD用于将所述光源出射的光束反射至所述振镜,所述振镜能够以第一频率在偏转和复位之间切换,以在偏转时偏转所述DMD反射后的光束;
镜头,所述镜头固定在所述光机壳体的出光口侧,所述镜头用于对所述振镜偏转后的光束和未偏转的光束进行透射成像。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种光机***的***结构示意图;
图2是本申请实施例提供的一种光学引擎的结构示意图;
图3是本申请实施例提供的一种光机***的***结构示意图;
图4是本申请实施例提供的一种光机***的剖视结构示意图;
图5是本申请实施例提供的一种2k投影的投影示意图;
图6是本申请实施例提供的另一种2k投影的投影示意图;
图7是本申请实施例提供的一种4k投影的投影示意图;
图8是本申请实施例提供的一种振镜的剖面结构示意图;
图9是本申请实施例提供的一种振镜的俯视结构示意图。
附图标记:
相关技术:
1:悬臂支架;2:振镜;3:光机壳体。
本申请实施例:
00:光源;01:光机***;02:镜头;03:散热器;
1:DMD;2:支撑板;3:振镜;4:光机壳体;5:第一固定件;6:导热板;7:光学镜片;
31:控制组件;32:透光组件;51:第一减振橡胶;71:透镜组件;72:反射镜;73:棱镜组件;
311:PCB;321:偏转弹片;322:透光镜;323:第一固定螺钉;
3211:弹片内圈;3212:弹片外圈;3213:第一连接桥;3214:第二连接桥;3215:第三 连接桥;3216:第四连接桥;3217:第一固定臂;3218:第二固定臂。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图2示例了本申请实施例的一种光学引擎的结构示意图,图3示例了本申请实施例的一种光机***的剖视结构示意图。如图2和图3所示,光学引擎包括:光源00、光机***01和镜头02,光源00用于出射光束;光机***01包括DMD1、支撑板2、振镜3和光机壳体4;DMD1设置在光机壳体4内部,支撑板2通过至少三个第一固定件5与光机壳体4固定连接,支撑板2上设置有第一透光孔,振镜3通过至少三个第二固定件与支撑板2固定连接,且振镜3在支撑板2上的正投影的覆盖区域与第一透光孔所在的区域具有重叠部分;其中,至少三个第一固定件5和至少三个第二固定件均能够围成多边形,DMD1用于将光源00出射的光束反射至振镜3,振镜3能够以第一频率在偏转和复位之间切换,以在偏转时偏转DMD1反射后的光束;镜头02固定在光机壳体4的出光口侧,镜头02用于对振镜3偏转后的光束和未偏转的光束进行透射成像。
本申请实施例中,由于至少三个第一固定件5和至少三个第二固定件均能够围成多边形,从而保证支撑板2可以更加平稳地将振镜3固定在光机壳体4上,从而在振镜3偏转的过程中不易带动支撑板2发生共振,从而支撑板2与光机壳体4之间不易产生噪声,避免了过大的噪声对光学引擎性能的影响。由于支撑板2上设置有第一透光孔,且振镜3在支撑板2上的正投影的覆盖区域与第一透光孔所在的区域具有重叠部分,因而光束可以穿过振镜3和第一透光孔以实现传播。振镜3能够在偏转时偏转DMD1旋转反射后的光束,且能够将偏转后的光束和未偏转的光束出射至镜头02,进而镜头02可以实现透射成像。
需要说明的是,本申请实施例中,光机***01也可以不包括支撑板2,这样振镜3直接和光机壳体4固定连接。其中,振镜3可以通过至少三个第三固定件与光机壳体4固定连接,且至少三个第三固定件围成多边形。由于取消了用于支撑振镜3的支撑板2,因而避免了振镜3与支撑板2之间发生碰撞而产生噪声,从而进一步减小了噪声的响度。同时,还减小了光机壳体4内构件的数量,进而减小了光机壳体4的内部空间的占用率,从而可以便于在光机***01内布置其他器件。其中,振镜3与光机壳体4之间可以设置与每个第三固定件对应的减振垫圈,每个减振垫圈可以套在对应的第三固定件上,且夹紧在振镜3与光机壳体4之间。这样,可以有效防止振镜3与光机壳体4之间的碰撞。
其中,第一频率是指振镜3从未偏转状态到偏转状态的时长的倒数。该时长可以根据 人眼的反应时长进行设置,只要在用户观看时,镜头02投影的画面可以体现出4K分辨率的效果即可,本申请实施例对此不做限定。
其中,光源00可以固定在光机壳体4的入光口侧,光机壳体4的入光口侧所在的壳壁与出光口侧所在的壳壁可以相邻,当然也可以相对。可以根据光机壳体4的出光口侧空间的大小设置振镜3和支撑板2的相对位置,示例地,当光机壳体4出光口侧的空间较大时,如果支撑板2的体积大于振镜3的体积,则支撑板2可以相对于振镜3更靠近镜头02。当然,振镜3和支撑板2的相对位置也可以根据其他条件进行设置,本申请实施例对此不作限定。
其中,支撑板2可以为矩形结构,当然,也可以为圆形等其他形状的结构。当支撑板2为矩形结构,且第一固定件5的数量为三个时,三个第一固定件5可以分别靠近矩形支撑板2的三条侧边,这样,三个第一固定件5的分布位置更加分散,因而可以对支撑板2进行大范围限位。当第一固定件5的数量为四个时,四个第一固定件5可以分别靠近矩形支撑板2的四条侧边,当然也可以设置成其他形式,本申请实施例对此不作限定。另外,第一固定件5可以为固定螺钉,当然也可以为其他类型的第一固定件5。
需要说明的是,每个第二固定件的结构和第一固定件5的结构和可以相同或相似,本申请实施例对此不在赘述。
在一些实施例中,光机***01还可以包括与至少三个第一固定件5一一对应的至少三个第一减振橡胶51,每个第一固定件5穿过对应的第一减振橡胶51和支撑板,并与光机壳体固定连接。这样,第一减振橡胶51可以避免对应的第一固定件5与支撑板2的相互碰撞,进而显著减小了噪声的音量。
其中,第一固定件5可以为轴肩螺钉,相应地,第一减振橡胶51可以套在轴肩螺钉的轴肩处,且第一减振橡胶51沿轴肩螺钉的中心轴线方向的长度可以大于轴肩的长度,进而第一减振橡胶51可以避免支撑板2与轴肩的直接接触,进而避免第一固定件5与支撑板2的相互碰撞。当然,第一固定件5也可以为其他类型的螺钉,本申请实施例对此不再赘述。
在一些实施例中,光学引擎可以为超短焦光学引擎,当然,光学引擎也可以为短焦光学引擎或长焦光学引擎。光学引擎除了包括光源00、光机***01和镜头02外,参见图2,光学引擎还可以包括散热器03,散热器03可以和光机***01固定连接,以对光机***01散热,散热器03还可以与光源00连接,以对光源00散热,当然,散热器03可以同时和光源00、光机***01连接,以对光源00和光机***01同时散热,本申请实施例对此不做限定。
在一些实施例中,光源00可以包括单色光源00,也可以包括多色光源00。当光源00包括单色光源00时,单色光源00可以为蓝色激光器,此时光源00还可以包括荧光轮和滤色轮,以保证光源00出射的光束可以为红绿蓝三色的光束。当然,光源00也可以不包括荧光轮和/或滤色轮,这样为了保证光学引擎的投影效果,可以将荧光轮和/或滤色轮设置在光机***01中,也即是光机***01中还可以包括荧光轮和/或滤色轮。
当光源00包括多色光源00时,多色光源00可以为三色激光***。作为一种示例,三色激光***可以包括绿色激光器、红色激光器和蓝色激光器,这样,可以直接通过这三个激光器出射红绿蓝三色的光束。
需要说明的是,在通过光源00出射光束时,为了保证出射的光束的均匀性,光机***01还可以包括匀光组件,以通过匀光组件对光源00包括的单色光源00或者多色光源00出射的光束进行匀光处理。其中,匀光组件具体在下文进行详细介绍。
在一些实施例中,如图2和图4所示,光机***01还可以包括光学镜片7,光学镜片7可以包括透镜组件71、反射镜72和棱镜组件73,透镜组件71的入光侧朝向光机壳体4的入光口侧,透镜组件71的出光侧朝向反射镜72的反射面,这样透镜组件71可以对光源00出射的光束进行整形处理,并将整形处理后的光束出射至反射镜72;反射镜72的反射面还朝向棱镜组件73的第一入光侧,这样反射镜72可以将透镜组件71整形后的光束反射至棱镜组件73;棱镜组件73的第一出光侧和第二入光侧均朝向DMD1,棱镜组件73的第二出光侧朝向振镜3,这样棱镜组件73可以将反射镜72反射后的光束折射至DMD1,并在DMD1旋转反射后将旋转反射后的光束全反射至振镜3。
其中,透镜组件71可以包括凸透镜和/或凹透镜,棱镜组件73可以是TIR(Total Internal Reflection,全反射)棱镜,也可以是RTIR(Refraction Total Internal Reflection,折射全反射)棱镜。为了保证画面的显示效果,振镜3的出光面距离镜头02包括的第一片镜片的距离大于1mm,振镜3的入光面距离棱镜组件73的第二出光侧所在的面大于1mm。
接下来对振镜的结构进行解释。
本申请实施例中,振镜3在以第一频率在偏转和复位之间切换时,可以使得DMD1出射的光束形成的投影的画面实现4k分辨率,从而提高该光学引擎的投影效果。
在振镜3未发生偏转时,也即是振镜3复位后,通过DMD1旋转反射后的光束可以直接穿过振镜3,且实现的画面的像素点排布可以如图5所示,画面为2K分辨率。在振镜3处于偏转状态时,DMD1旋转反射后的光束经振镜3进行偏转后,实现的画面的像素点的排布可以如图6所示,画面为2K分辨率。这样,由于振镜3的偏振频率较高,因而振镜3偏转后投射的画面和复位后投射的画面的变化状态不易被人眼分辨出来,因而振镜3复位 后和振镜3发生偏转后的画面可以呈现出叠加的效果。这样,在图像上呈现的画面的像素点的排布可以如图7所示,从而实现画面的4K分辨率。
在一些实施例中,振镜3可以为板状结构,如图8所示,振镜3包括控制组件31和透光组件32,控制组件31与支撑板2固定连接,透光组件32固定在控制组件31上,且与控制组件31间隙设置;透光组件32能够在控制组件31的作用下以第一频率在偏转和复位之间切换。这样,振镜3可以通过控制组件31与支撑板2固定连接,可以通过透光组件32实现偏转和复位,且透光组件32可以在偏转时偏转DMD1反射后的光束。另外,由于振镜3可以为板状结构,因而振镜3体积小巧,进而在偏转时不易产生明显振动,不易产生明显噪声。
需要说明的是,控制组件31和透光组件32均为板状结构,这样,间隙设置的控制组件31和透光组件32所组成的振镜3也可以为板状结构。
其中,透光组件32与控制组件31之间的间隙的间距可以不小于0.5mm,以保证透光组件32偏转时不受控制组件31的影响。示例地,该间隙的间距可以为0.6mm或者0.8mm。当然,透光组件32与控制组件31之间的间隙的间距也可以为其他数值,只要保证透光组件32偏转时不受影响,且可以使振镜3保持板状结构,不会造成振镜3的整体尺寸过大即可,本申请实施例对此不作限定。
透光组件
在一些实施例中,如图9所示,透光组件32可以包括偏转弹片321和透光镜322;偏转弹片321固定在控制组件31上,且偏转弹片321上设置有第二透光孔,透光镜322与偏转弹片321固定连接,且透光镜322在偏转弹片321上的正投影的覆盖区域与第二透光孔所在的区域具有重叠部分,控制组件31用于通过偏转弹片321控制透光镜322以第一频率在偏转和复位之间切换。这样,由于偏转弹片321具有弹性,因而容易在控制组件31的控制下产生弹性变形,进而便于受控制组件31的控制而产生偏转,同时带动透光镜322偏转,同样地,可以便于受控制组件31的控制而产生复位,进而带动透光镜322复位。
其中,透光镜322可以基于第二透光孔镶嵌在偏转弹片321上,这样,第二透光孔的孔壁与透光镜322的外缘可以实现紧密接触,因而可以实现透光镜322在偏转弹片321上的正投影的覆盖区域与第二透光孔所在的区域具有重叠部分。另外,透光镜322也可以通过黏胶与偏转弹片321粘接,同时使透光镜322覆盖第二透光孔,同样可以实现透光镜322在偏转弹片321上的正投影的覆盖区域与第二透光孔所在的区域具有重叠。当然,透光镜322也可以与偏转弹片321以其他方式固定连接,本申请实施例对此不作限定。由于透光镜322在偏转弹片321上的正投影的覆盖区域与第二透光孔所在的区域具有重叠部分,因 而DMD1旋转反射后的光束可以基于该重叠部分顺利透过透光组件32。
其中,第二透光孔的面积可以小于透光镜322的面积,当然,第二透光孔的面积也可以大于透光镜322的面积,只要不阻碍光束的传播即可,本申请实施例对此不做限定。
其中,透光镜322可以为圆形或方形,相应地,第二透光孔的形状可以与透光镜322的形状相同。当然,透光镜322和第二透光孔也可以设置成其他形状,本申请实施例对此不做限定。
需要说明的是,控制组件31可以基于磁场吸引或排斥原理控制控制偏转弹片321偏转和复位,相应地,偏转弹片321的材料可以为容易被磁化的金属材料,示例地,偏转弹片321的材料均可以为铁、钴、镍等。这样,控制组件31可以吸引或排斥偏转弹片321,以实现偏转弹片321的偏转和复位。当然,控制组件31还可以基于其他原理控制偏转弹片321偏转和复位,偏转弹片321还可以设置成其他材料,本申请实施例对此不做限定。
偏转弹片
在一些实施例中,如图9所示,偏转弹片321可以包括弹片内圈3211和弹片外圈3212;弹片内圈3211的内缘形成第二透光孔,透光镜322与弹片内圈3211的内缘固定连接,弹片内圈3211的外缘具有相背设置的第一连接桥3213和第二连接桥3214,弹片内圈3211通过第一连接桥3213和第二连接桥3214与弹片外圈3212的内缘固定连接,控制组件31能够控制弹片内圈3211以第一连接桥3213和第二连接桥3214所在的第一直线为旋转轴偏转;弹片外圈3212的外缘具有相背设置的第三连接桥3215和第四连接桥3216,以及沿第三连接桥3215延伸的第一固定臂3217和沿第四连接桥3216延伸的第二固定臂3218,弹片外圈3212通过第一固定臂3217和第二固定臂3218与控制组件31固定连接,控制组件31能够控制弹片外圈3212以第三连接桥3215和第四连接桥3216所在的第二直线为旋转轴偏转,其中第一直线和第二直线不平行。
这样,弹片内圈3211以第一连接桥3213和第二连接桥3214所在的第一直线为旋转轴偏转时,可以带动透光镜322同步以第一直线为旋转轴偏转;弹片外圈3212以第三连接桥3215和第四连接桥3216所在的第二直线为旋转轴偏转时,可以带动透光镜322以第二直线为旋转轴偏转。进一步地,由于第一直线和第二直线不平行,因而透光镜322可以分别绕两个不平行的旋转轴偏转,进而可以实现画面在二维坐标系内产生偏转,也即是画面的像素点在二维坐标系内产生偏转。
需要说明的是,弹片内圈3211、弹片外圈3212、第一连接桥3213、第二连接桥3214、第三连接桥3215、第四连接桥3216、第一固定臂3217以及第二固定臂3218可以一体成型,这样可以保证偏转弹片321的强度,且上述各结构之间不易断裂。
还需要说明的是,由于偏转弹片321的材料可以为铁、钴、镍等容易被磁化的金属材料,因而弹片内圈3211和弹片外圈3212的材料也可以为铁、钴、镍等容易被磁化的金属材料。这样,控制组件31可以直接基于磁场吸引或排斥原理控制弹片内圈3211和弹片外圈3212偏转。
其中,弹片内圈3211可以为矩形,也可以为圆形,弹片内圈3211的形状可以与透光镜322的形状相同,进一步地,弹片外圈3212可以与弹片内圈3211的形状相同,当然,弹片外圈3212还可以设置成其他不同的形状,本申请实施例对此不作限定。第一连接桥3213、第二连接桥3214、第三连接桥3215和第四连接桥3216均可以为体积小巧的长条形薄片状结构,以便于在外力作用下产生扭转,进而便于弹片内圈3211与弹片外圈3212进行灵活偏转。第一固定臂3217和第二固定臂3218均可以为矩形薄片状结构,当然也可以为其他形状的薄片结构,本申请实施例对此不做限定。
其中,第一直线可以与弹片内圈3211沿平面方向的中心轴线重合,当然也可以与该中心轴线有一定间距。第二直线可以与弹片外圈3212沿平面方向的中心轴线重合,当然也可以与该中心轴线有一定间距,本申请实施例对此不作限定。
在一些实施例中,第一直线可以和第二直线垂直,这样,透光镜322可以分别绕两条垂直的旋转轴偏转,进而可以实现画面沿第一直线和第二直线的夹角的平分线产生偏移,呈现出更加清晰的4k效果。当然,第一直线和第二直线也可以呈其他角度,本申请实施例对此不作限定。
在一些实施例中,弹片内圈3211的外缘上沿与第一直线垂直的方向具有至少一个第一金属凸起,弹片外圈3212的外缘上沿与第二直线垂直的方向上具有至少一个第二金属凸起,控制组件31能够控制每个第一金属凸起和每个第二金属凸起靠近或远离控制组件31。这样,控制组件31可以基于第一金属凸起和第二金属凸起所在的特定位置控制弹片内圈3211和弹片外圈3212,以保证对弹片内圈3211和弹片外圈3212偏转的精准控制。
其中,第一金属凸起和第二金属凸起均可以为矩形薄片状结构,当然也可以为其他形状的结构,本申请实施例对此不作限定。第一金属凸起可以与弹片内圈3211一体成型,第二金属凸起可以与弹片外圈3212一体成型。
其中,在弹片内圈3211的形状为矩形的情况下,当第一金属凸起的数量为一个时,第一金属凸起可以设置在弹片内圈3211的与第一连接桥3213和第二连接桥3214均不连接的一条侧边,进而控制组件31可以使弹片内圈3211的该条侧边靠近或远离控制组件31,使弹片内圈3211便于以第一直线为旋转轴偏转。当第一金属凸起的数量为两个时,两个第一金属凸起可以分别设置在弹片内圈3211上相对的两条与第一连接桥3213和第二连接桥 3214均不连接的侧边。这样,控制组件31可以基于其中一个第一金属凸起使该第一金属凸起所在的弹片内圈3211上的一条侧边靠近控制组件31,同时基于另一个第一金属凸起使该第一金属凸起所在的弹片内圈3211上的一条侧边远离控制组件31,从而实现弹片内圈3211以第一直线为旋转轴偏转。当然,第一金属凸起的数量也可以设置成两个以上,只要有利于弹片内圈3211以第一直线为旋转轴偏转即可,本申请实施例对此不再赘述。
其中,第二金属凸起的数量可以为一个,也可以为两个或两个以上,且第二金属凸起的设置方式可以与第一金属凸起的设置方式相同,本申请实施例对此不再赘述。
需要说明的是,由于偏转弹片321的材料可以为铁、钴、镍等容易被磁化的金属材料,因而第一金属凸起和第二金属凸起的材料也可以为铁、钴、镍等容易被磁化的金属材料。这样,第一金属凸起可以增大弹片内圈3211的磁化面积,第二金属凸起可以增大弹片外圈3212的磁化面积,进而便于控制组件对弹片内圈3211和弹片外圈3212的控制。当然,弹片内圈3211上也可以不包括第一金属凸起,弹片外圈3212上也可以不包括第二金属凸起,只要控制组件可以基于弹片内圈3211和弹片外圈3212本身实现控制透光镜的偏转和复位即可,本申请实施例对此不做限定。
在一些实施例中,如图9所示,振镜3还可以包括多个第一固定螺钉323,第一固定臂3217和第二固定臂3218可以通过多个第一固定螺钉323与控制组件31固定连接,当然,第一固定臂3217和第二固定臂3218也可以焊接在控制组件31上,本申请实施例对此不作限定。
当第一固定臂3217和第二固定臂3218分别通过第一固定螺钉323与控制组件31固定连接时,可以在第一固定臂3217与对应的第一固定螺钉323之间,以及第二固定臂3218与对应的第一固定螺钉323之间设置减振胶圈,以减小弹片外圈3212偏转时,第一固定臂3217与对应的第一固定螺钉323之间,以及第二固定臂3218与对应的第一固定螺钉323之间产生的噪声。
在一些实施例中,如图9所示,控制组件31可以包括PCB(Printed Circuit Board,印制电路板)311,PCB311上印制有控制线圈(未图示);PCB311通过至少三个第二固定件固定在支撑板2上;PCB311上形成有第三透光孔,透光组件32固定在PCB311上,且透光组件32在PCB311上的正投影的覆盖区域与第三透光孔所在的区域具有重叠部分,透光组件32与PCB311间隙设置;PCB311上还印制有控制电路,控制电路与控制线圈电连接,控制电路用于以第一频率调整控制线圈的电流方向,以通过控制线圈通电后产生的磁场控制透光组件32以第一频率在偏转和复位之间切换。
这样,由于PCB311通过至少三个第二固定件固定在支撑板2上,且至少三个第二固 定件围成多边形,则PCB311可以基于PCB311所在的平面更加平稳地固定在支撑板2上。由于透光组件32在PCB311上的正投影的覆盖区域与第三透光孔所在的区域具有重叠部分,因而光束可以基于该重叠部分顺利透过透光组件32和PCB311板。另外,由于控制线圈印制在PCB311上,因而可以减小控制组件31的整体体积,实现控制组件31的小型化设计。
需要说明的是,当透光组件32包括偏转弹片321时,由于偏转弹片321的材料可以为容易被磁化的材料,因而控制线圈通电后产生的磁场可以吸引或排斥偏转弹片321,进而可以基于偏转弹片321控制透光组件23偏转和复位。
当透光组件32包括偏转弹片321时,控制线圈通电产生磁场后,与控制线圈间隙设置的偏转弹片321可以被磁化,磁化后的偏转弹片321的磁场方向与控制线圈的磁场方向一致,因而偏转弹片321可以被控制线圈吸引,进而偏转弹片321靠近控制线圈,实现偏转,从而实现透光组件32的偏转。进一步地,当控制线圈的电流方向改变后,由于磁化后的偏转弹片321存在磁滞现象,因而偏转弹片321的磁场方向暂时与控制线圈的磁场方向相反,偏转弹片321可以被控制线圈排斥,从而偏转弹片321逐渐远离控制线圈。在偏转弹片321远离控制线圈的过程中,偏转弹片321会经过偏转弹片321未发生偏转时的位置,也即是偏转弹片321的初始位置,这样,可以实现偏转弹片321的复位。进一步地,偏转弹片321会重复上述过程以实现多次偏转和复位,本申请实施例对此不再赘述。
当然,控制电路还可以以第一频率使控制线圈在断电和通电之间切换,实现透光组件以第一频率在偏转和复位之间切换。实现时,控制线圈通电产生磁场后,与控制线圈间隙设置的偏转弹片321可以被磁化,磁化后的偏转弹片321的磁场方向与控制线圈的磁场方向一致,因而偏转弹片321可以被控制线圈吸引,进而偏转弹片321靠近控制线圈,实现偏转。当控制线圈断电后,控制线圈对透光组件32包括的偏转弹片321的吸引力消失,透光组件32复位。进一步地,控制电路能够以第一频率使控制线圈通电和断电,进而可以使透光组件32以第一频率在偏转和复位之间切换。
其中,控制线圈可以为螺线管,螺线管的中心轴线方向可以垂直于透光组件32的平面方向,这样,螺线管通电后产生的磁场方向可以垂直于透光组件32的平面方向,从而可以实现对透光组件32的吸引和排斥。当然,控制线圈也可以为其他类型的线圈,只要在通电后能够吸引或排斥透光组件32即可,本申请实施例对此不再赘述。
其中,第三透光孔的形状可以为矩形或圆形,第三透光孔的形状和尺寸可以与第一透光孔保持一致,第三透光孔的中心点与第一透光孔的中心点的连线可以垂直于透光组件32的平面方向,当热,第三透光孔也可以设置成其他形式,只要不会干扰到光束的传播即可,本申请实施例对此不做限定。
需要说明的是,控制线圈可以位于靠近透光组件32的边缘的位置,以便于控制线圈吸引或排斥透光组件32时,使透光组件32容易产生偏转。
在一些实施例中,控制线圈可以包括至少一个第一子控制线圈和至少一个第二子控制线圈,每个第一子控制线圈和每个第二子控制线圈均与控制电路电连接,控制电路用于以第一频率调整每个第一子控制线圈和每个第二子控制线圈的电流方向;在偏转弹片321包括弹片内圈3211和弹片外圈3212的情况下,至少一个第一子控制线圈通电后产生的磁场控制弹片内圈3211以第一直线为旋转轴偏转,至少一个第二子控制线圈通电后产生的磁场控制弹片外圈3212以第二直线为旋转轴偏转。
这样,至少一个第一子控制线圈可以实现弹片内圈3211的偏转,至少一个第二子控制线圈可以实现弹片外圈3212的偏转,进而第一子控制线圈与第二子控制线圈的配合可以实现透光镜322分别绕第一直线和第二直线为旋转轴的偏转。
在一些实施例中,当弹片内圈3211设置有第一金属凸起,弹片外圈3212设置有第二金属凸起时,第一子控制线圈和第一金属凸起的数量可以相同,且一一对应,且每个第一子控制线圈可以设置在对应的第一金属凸起的正下方位置;第二子控制线圈和第二金属凸起的数量可以相同,且一一对应,且每个第二子控制线圈可以设置在对应的第二金属凸起的正下方位置。
由于第一金属凸起和第二金属凸起的材料均可以为容易被磁化的材料,因而第一金属凸起和第二金属凸起可以分别增加弹片内圈3211和弹片外圈3212的磁化面积,因而有利于第一子控制线圈基于第一金属凸起对弹片内圈3211的吸引和排斥,以及第二子控制线圈基于第二金属凸起对弹片外圈3212的吸引和排斥。
在一些实施例中,振镜3还可以包括与至少三个第二固定件一一对应的至少三个第二减振橡胶,每个第二固定件穿过对应的第二减振橡胶和PCB311板,并与支撑板2固定连接。这样,第二减振橡胶可以避免对应的第二固定件与PCB311板的相互碰撞,进而显著减小了噪声的音量。
其中,第二固定件可以为轴肩螺钉,相应地,第二减振橡胶可以套在轴肩螺钉的轴肩处,且第二减振橡胶沿轴肩螺钉的中心轴线方向的长度可以大于轴肩的长度,进而第二减振橡胶可以避免PCB311板与轴肩的直接接触,进而避免第二固定件与PCB311板的相互碰撞。当然,第二固定件也可以为其他类型的螺钉,本申请实施例对此不再赘述。
在一些实施例中,如图3和图4所示,光机***01还可以包括导热板6,导热板6与光机壳体4固定连接,且位于DMD1和振镜3之间,导热板6被配置为吸收光机壳体4内的热量,以及接收DMD1旋转反射后的部分光束,以将光机壳体4内的热量和部分光束产 生的热量传导至光机壳体4。这样,可以避免部分光束直接照射至振镜3包括的控制组件31和透光组件32,进而防止过多热量积聚在控制组件31而使控制组件31包括的控制线圈温度升高,同样可以防止透光组件32温度升高而产生变形等后果,进而可以避免振镜3失效,提高振镜3的可靠性。同时,导热板6还可以将光机壳体4内部空间的热量传导至光机壳体4,进而光机壳体4将热量散发至光机壳体4外部,从而可以实现光机壳体4内的高效散热。
其中,部分光束可以为经过DMD1旋转反射后,不直接出射至镜头02的光束。由于部分光束不会直接用于投影,因而可以直接被导热板6接收,且不会影响到光学引擎的投影。
其中,导热板6的材料可以为铜、铝等导热性能优良的材料,以便于实现高效吸热和导热。另外,导热板6和光机壳体4的表面可以涂覆吸光材料,进而可以增强导热板6和光机壳体4的吸热效果。
在一些实施例中,当光机***01包括匀光组件时,匀光组件可以为光导管等,光导管可以设置在光机壳体4内部的底面,光导管的一端朝向光机壳体4的入光口侧,光导管的另一端朝向透镜组件71的入光侧,光导管的中心线与透镜组件71的主光轴重合。光导管用于对光源00出射的光束进行匀光,并将匀光后的光束出射至透镜组件71。
需要说明的是,在将光导管固定在光机壳体4的底面时,为了避免光机***01包括的构件出现装配偏差,从而导致光束形成的光斑不能覆盖DMD1的工作区域,此时光导管可以可调整的固定在光机壳体4的底面。其中,光导管的固定方式可以参考现有技术,本申请实施例对此不做限定。
需要说明的是,矩形光导管的尺寸可以与DMD1的尺寸呈预设比例,以保证经透镜组件71整形后的光束正好能够覆盖DMD1的工作区域,从而能够保证该光学引擎的成像效果,同时避免因光束打在DMD1的非工作区域,造成DMD1的非工作区域的温度的升高。
在一些实施例中,光学镜片7包括TIR棱镜时,光机壳体4上可以设置有两个限位弹片和一个限位凸台,限位凸台用于基于TIR棱镜的底面对TIR棱镜进行支撑和限位,两个限位弹片分别抵接TIR棱镜上不用于传播光束的两个侧壁。这样,两个限位弹片和一个限位凸台可以将TIR棱镜向3个承靠面方向施加承靠力,以保证TIR棱镜的位置精度,从而提高光学引擎的投影效果。
本申请实施例中,由于至少三个第一固定件和至少三个第二固定件均能够围成多边形,从而保证支撑板可以更加平稳地将振镜固定在光机壳体上,从而在振镜偏转的过程中不易带动支撑板发生共振,从而支撑板与光机壳体之间不易产生噪声,避免了过大的噪声对光 学引擎性能的影响。由于支撑板上设置有第一透光孔,且振镜在支撑板上的正投影的覆盖区域与第一透光孔所在的区域具有重叠部分,因而光束可以穿过振镜和第一透光孔以实现传播。振镜能够在偏转时偏转DMD旋转反射后的光束,且能够将偏转后的光束和未偏转的光束出射至镜头,进而镜头可以实现透射成像。弹片内圈和弹片外圈可以实现透光镜向不同方向的偏转,第一子控制线圈可以实现对弹片内圈的单独控制,第二子控制线圈可以实现对弹片外圈的单独控制。
以上所述仅为本申请的说明性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种光学引擎,其特征在于,所述光学引擎包括:
    光源,所述光源用于出射光束;
    光机***,所述光机***包括数字微镜器件DMD、支撑板、振镜和光机壳体;
    所述DMD设置在所述光机壳体内部,所述支撑板通过至少三个第一固定件与所述光机壳体固定连接,所述支撑板上设置有第一透光孔,所述振镜通过至少三个第二固定件与所述支撑板固定连接,且所述振镜在所述支撑板上的正投影的覆盖区域与所述第一透光孔所在的区域具有重叠部分;
    其中,所述至少三个第一固定件和所述至少三个第二固定件均能够围成多边形,所述DMD用于将所述光源出射的光束反射至所述振镜,所述振镜能够以第一频率在偏转和复位之间切换,以在偏转时偏转所述DMD反射后的光束;
    镜头,所述镜头固定在所述光机壳体的出光口侧,所述镜头用于对所述振镜偏转后的光束和未偏转的光束进行透射成像。
  2. 如权利要求1所述的光学引擎,其特征在于,所述振镜为板状结构,所述振镜包括控制组件和透光组件,所述控制组件与所述支撑板固定连接,所述透光组件固定在所述控制组件上,且与所述控制组件间隙设置;
    所述透光组件能够在所述控制组件的作用下以所述第一频率在偏转和复位之间切换。
  3. 如权利要求2所述的光学引擎,其特征在于,所述透光组件包括偏转弹片和透光镜;
    所述偏转弹片固定在所述控制组件上,且所述偏转弹片上设置有第二透光孔,所述透光镜与所述偏转弹片固定连接,且所述透光镜在所述偏转弹片上的正投影的覆盖区域与所述第二透光孔所在的区域具有重叠部分,所述控制组件用于通过所述偏转弹片控制所述透光镜以所述第一频率在偏转和复位之间切换。
  4. 如权利要求3所述的光学引擎,其特征在于,所述偏转弹片包括弹片内圈和弹片外圈;
    所述弹片内圈的内缘形成所述第二透光孔,所述透光镜与所述弹片内圈固定连接,所述弹片内圈的外缘具有相背设置的第一连接桥和第二连接桥,所述弹片内圈通过所述第一 连接桥和所述第二连接桥与弹片外圈的内缘固定连接,所述控制组件能够控制所述弹片内圈以所述第一连接桥和所述第二连接桥所在的第一直线为旋转轴偏转;
    所述弹片外圈的外缘具有相背设置的第三连接桥和第四连接桥,以及沿所述第三连接桥延伸的第一固定臂和沿所述第四连接桥延伸的第二固定臂,所述弹片外圈通过所述第一固定臂和所述第二固定臂与所述控制组件固定连接,所述控制组件能够控制所述弹片外圈以所述第三连接桥和所述第四连接桥所在的第二直线为旋转轴偏转,其中所述第一直线和所述第二直线不平行。
  5. 如权利要求4所述的光学引擎,其特征在于,所述弹片内圈的外缘上沿与所述第一直线垂直的方向具有至少一个第一金属凸起,所述弹片外圈的外缘上沿与所述第二直线垂直的方向上具有至少一个第二金属凸起,所述控制组件能够控制每个第一金属凸起和每个第二金属凸起靠近或远离所述控制组件。
  6. 如权利要求4所述的光学引擎,其特征在于,所述第一直线和所述第二直线垂直。
  7. 如权利要求4所述的光学引擎,其特征在于,所述振镜还包括多个第一固定螺钉,所述第一固定臂和所述第二固定臂通过所述多个第一固定螺钉与所述控制组件固定连接。
  8. 如权利要求2-7任一所述的光学引擎,其特征在于,所述控制组件包括印制电路板PCB,所述PCB上印制有控制线圈;
    所述PCB通过所述至少三个第二固定件固定在所述支撑板上;
    所述PCB上形成有第三透光孔,所述透光组件固定在所述PCB上,且所透光组件在所述PCB上的正投影的覆盖区域与所述第三透光孔所在的区域具有重叠部分,所述透光组件与所述PCB间隙设置;
    所述PCB上还印制有控制电路,所述控制电路与所述控制线圈电连接,所述控制电路用于以所述第一频率调整所述控制线圈的电流方向,以通过所述控制线圈通电后产生的磁场控制所述透光组件以第一频率在偏转和复位之间切换。
  9. 如权利要求8所述的光学引擎,其特征在于,所述控制线圈包括至少一个第一子控制线圈和至少一个第二子控制线圈,每个第一子控制线圈和每个第二子控制线圈均与所 述控制电路电连接,所述控制电路用于以所述第一频率调整每个第一子控制线圈和每个第二子控制线圈的电流方向;
    在偏转弹片包括弹片内圈和弹片外圈的情况下,所述至少一个第一子控制线圈通电后产生的磁场控制所述弹片内圈以所述第一直线为旋转轴偏转,所述至少一个第二子控制线圈通电后产生的磁场控制所述弹片外圈以所述第二直线为旋转轴偏转。
  10. 如权利要求1所述的光学引擎,其特征在于,所述光机壳体还包括与所述至少三个第一固定件一一对应的至少三个第一减振橡胶,每个第一固定件穿过对应的第一减振橡胶和所述支撑板,并与所述光机壳体固定连接。
  11. 如权利要求8所述的光学引擎,其特征在于,所述振镜还包括与所述至少三个第二固定件一一对应的至少三个第二减振橡胶,每个第二固定件穿过对应的第二减振橡胶和所述PCB板,并与所述支撑板固定连接。
  12. 如权利要求1所述的光学引擎,其特征在于,所述光机***还包括导热板,所述导热板与所述光机壳体固定连接,且位于所述DMD和所述振镜之间,所述导热板被配置为吸收所述光机壳体内的热量,以及接收所述DMD旋转反射后的部分光束,以将所述光机壳体内的热量和所述部分光束产生的热量传导至所述光机壳体。
PCT/CN2021/082122 2020-04-20 2021-03-22 光学引擎 WO2021213105A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/731,596 US20220256129A1 (en) 2020-04-20 2022-04-28 Projection apparatus and projection display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020597629.XU CN212364781U (zh) 2020-04-20 2020-04-20 光学引擎
CN202020597629.X 2020-04-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081912 Continuation-In-Part WO2021213101A1 (zh) 2020-04-20 2021-03-19 投影设备

Publications (1)

Publication Number Publication Date
WO2021213105A1 true WO2021213105A1 (zh) 2021-10-28

Family

ID=74133150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082122 WO2021213105A1 (zh) 2020-04-20 2021-03-22 光学引擎

Country Status (2)

Country Link
CN (1) CN212364781U (zh)
WO (1) WO2021213105A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212364781U (zh) * 2020-04-20 2021-01-15 青岛海信激光显示股份有限公司 光学引擎
WO2022078410A1 (zh) * 2020-10-14 2022-04-21 青岛海信激光显示股份有限公司 投影设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784567A1 (en) * 2013-03-29 2014-10-01 Funai Electric Co., Ltd. Vibrating mirror element
CN205721053U (zh) * 2016-06-07 2016-11-23 海信集团有限公司 成像位移组件和投影装置
CN106990526A (zh) * 2017-05-17 2017-07-28 青岛海信电器股份有限公司 一种振镜结构
CN108646504A (zh) * 2018-03-22 2018-10-12 青岛海信电器股份有限公司 一种应用于激光投影装置中的振镜支架
CN110109317A (zh) * 2017-04-26 2019-08-09 海信集团有限公司 照明装置和激光投影机
CN110412821A (zh) * 2019-07-31 2019-11-05 青岛海信激光显示股份有限公司 激光投影设备及照明光学***
CN211878401U (zh) * 2020-04-20 2020-11-06 青岛海信激光显示股份有限公司 激光投影设备
CN212364781U (zh) * 2020-04-20 2021-01-15 青岛海信激光显示股份有限公司 光学引擎

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784567A1 (en) * 2013-03-29 2014-10-01 Funai Electric Co., Ltd. Vibrating mirror element
CN205721053U (zh) * 2016-06-07 2016-11-23 海信集团有限公司 成像位移组件和投影装置
CN110109317A (zh) * 2017-04-26 2019-08-09 海信集团有限公司 照明装置和激光投影机
CN106990526A (zh) * 2017-05-17 2017-07-28 青岛海信电器股份有限公司 一种振镜结构
CN108646504A (zh) * 2018-03-22 2018-10-12 青岛海信电器股份有限公司 一种应用于激光投影装置中的振镜支架
CN110412821A (zh) * 2019-07-31 2019-11-05 青岛海信激光显示股份有限公司 激光投影设备及照明光学***
CN211878401U (zh) * 2020-04-20 2020-11-06 青岛海信激光显示股份有限公司 激光投影设备
CN212364781U (zh) * 2020-04-20 2021-01-15 青岛海信激光显示股份有限公司 光学引擎

Also Published As

Publication number Publication date
CN212364781U (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN211878401U (zh) 激光投影设备
WO2021213105A1 (zh) 光学引擎
US7880965B2 (en) Projection-type image display device
US20210141213A1 (en) Light path adjustment mechanism
TWI698696B (zh) 光路調整機構及其製造方法
US20160377962A1 (en) Optical device and image display apparatus
US11500195B2 (en) Light path adjustment mechanism
CN110543075B (zh) 一种消散斑装置及投影***
TWI737875B (zh) 光路調整機構及其製造方法
US20200301118A1 (en) Light path adjustment mechanism
JP4854782B2 (ja) 投写型画像表示装置
CN106094242A (zh) 一种用于消除画面激光散斑的光场扫描器
US20230350280A1 (en) Projection apparatus
CN113126310A (zh) 一种匀光装置和显示设备
CN112859496B (zh) 投影成像***
JP5387222B2 (ja) 光偏向器
TWI670518B (zh) 光路調整裝置
KR20070100579A (ko) 화소 증진 조립체 및 이를 포함하는 영상투사장치
JP2002328317A (ja) 光偏向器
TWI765235B (zh) 光路調整機構及其製造方法
CN219916155U (zh) 像素扩展装置及投影设备
TWI738482B (zh) 投影系統
CN101089722B (zh) 光学投影***及其影像平滑装置
JP2004240308A (ja) 光線方向変更装置、光スイッチ及び光ヘッド
US9599811B2 (en) Optical device and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792415

Country of ref document: EP

Kind code of ref document: A1