WO2021156980A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2021156980A1
WO2021156980A1 PCT/JP2020/004406 JP2020004406W WO2021156980A1 WO 2021156980 A1 WO2021156980 A1 WO 2021156980A1 JP 2020004406 W JP2020004406 W JP 2020004406W WO 2021156980 A1 WO2021156980 A1 WO 2021156980A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
steel sheet
particle size
oriented electrical
boundary condition
Prior art date
Application number
PCT/JP2020/004406
Other languages
English (en)
French (fr)
Inventor
修一 中村
悠祐 川村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP20917690.8A priority Critical patent/EP4101939A4/en
Priority to KR1020227026840A priority patent/KR20220123453A/ko
Priority to BR112022015126A priority patent/BR112022015126A2/pt
Priority to PCT/JP2020/004406 priority patent/WO2021156980A1/ja
Priority to US17/797,072 priority patent/US20230071853A1/en
Priority to JP2021575164A priority patent/JP7348552B2/ja
Priority to CN202080095509.2A priority patent/CN115053000B/zh
Publication of WO2021156980A1 publication Critical patent/WO2021156980A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to grain-oriented electrical steel sheets.
  • the grain-oriented electrical steel sheet contains 7% by mass or less of Si and has a secondary recrystallization texture accumulated in the ⁇ 110 ⁇ ⁇ 001> orientation (Gossi orientation).
  • the ⁇ 110 ⁇ ⁇ 001> orientation means that the ⁇ 110 ⁇ plane of the crystal is arranged parallel to the rolling surface, and the ⁇ 001> axis of the crystal is arranged parallel to the rolling direction.
  • the magnetic properties of grain-oriented electrical steel sheets are greatly affected by the degree of integration in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • the relationship between the rolling direction of the steel sheet, which is the main magnetization direction when the steel sheet is used, and the ⁇ 001> direction of the crystal, which is the easy magnetization direction, is important. Therefore, in recent practical grain-oriented electrical steel sheets, the angle formed by the ⁇ 001> direction of the crystal and the rolling direction is controlled so as to be within a range of about 5 °.
  • the deviation between the actual crystal orientation of the directional electromagnetic steel plate and the ideal ⁇ 110 ⁇ ⁇ 001> orientation is the deviation angle ⁇ around the rolling surface normal direction Z, the deviation angle ⁇ around the rolling perpendicular direction C, and the rolling direction. It can be represented by the three components of the deviation angle ⁇ around L.
  • FIG. 1 is a schematic diagram illustrating a deviation angle ⁇ , a deviation angle ⁇ , and a deviation angle ⁇ .
  • the deviation angle ⁇ is an angle formed by the ⁇ 001> direction of the crystal projected on the rolled surface and the rolling direction L when viewed from the rolling surface normal direction Z.
  • the deviation angle ⁇ is the angle formed by the ⁇ 001> direction of the crystal projected on the L cross section (cross section with the rolling perpendicular direction as the normal) and the rolling direction L when viewed from the rolling perpendicular direction C (plate width direction).
  • the deviation angle ⁇ is an angle formed by the ⁇ 110> direction of the crystal projected on the C cross section (cross section with the rolling direction as the normal) and the rolling surface normal direction Z when viewed from the rolling direction L.
  • the deviation angle ⁇ is known to affect magnetostriction.
  • Magnetostriction is a phenomenon in which a magnetic material changes its shape when a magnetic field is applied. In grain-oriented electrical steel sheets used for transformers of transformers, magnetostriction causes vibration and noise, so that magnetostriction is required to be small.
  • Patent Documents 1 to 3 disclose that the shift angle ⁇ is controlled. Further, it is disclosed in Patent Documents 4 and 5 that the deviation angle ⁇ is controlled in addition to the deviation angle ⁇ . Further, Patent Document 6 discloses a technique for improving the iron loss characteristics by classifying the degree of integration of crystal orientations in more detail by using the deviation angle ⁇ , the deviation angle ⁇ and the deviation angle ⁇ as indexes.
  • Patent Documents 7 to 9 disclose that not only the magnitude and the average value of the absolute values of the deviation angles ⁇ , ⁇ , and ⁇ are controlled, but also the fluctuation (deviation) is included in the control.
  • Patent Documents 10 to 12 disclose that Nb, V and the like are added to the grain-oriented electrical steel sheet.
  • Patent Document 13 proposes a method for predicting transformer noise caused by magnetostriction.
  • a value called the magnetostriction velocity level (Lva) is used, in which the magnetostrictive waveform at the time of AC excitation is time-differentiated and converted into a velocity, and the A-skyer sensation correction, which is the frequency characteristic of human hearing, is applied.
  • Patent Document 14 discloses that transformer noise is reduced by reducing the magnetostrictive velocity level (Lva).
  • Patent Document 14 discloses a technique of introducing strain linearly on the surface of a steel sheet to subdivide the magnetic domain to reduce the magnetostrictive velocity level and reduce transformer noise caused by the grain-oriented electrical steel sheet. There is.
  • Patent Documents 1 to 9 are particularly sufficient in reducing magnetostriction even though the crystal orientation is controlled.
  • the reduction of the magnetostrictive velocity level (Lva) may be insufficient.
  • Patent Documents 10 to 12 merely contain Nb and V, and it cannot be said that the reduction of the magnetostrictive velocity level (Lva) is sufficient.
  • Patent Documents 13 and 14 disclose the relationship between the magnetostrictive velocity level (Lva) and the transformer noise, but the magnetostrictive velocity level (Lva) is subjected to post-treatment (subdivision of magnetic domains) after the production of the grain-oriented electrical steel sheet. ) Is only being attempted, and the texture of the steel sheet is not controlled, and the reduction of the magnetostrictive velocity level (Lva) cannot be said to be sufficient.
  • An object of the present invention is to provide a grain-oriented electrical steel sheet having an improved magnetostrictive velocity level (Lva), in view of the current situation in which a grain-oriented electrical steel sheet that enables noise reduction of a transformer is required.
  • the gist of the present invention is as follows.
  • the directional electromagnetic steel plate according to one aspect of the present invention has Si: 2.0 to 7.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo in mass%. : 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%, C: 0 to 0.0050%, Mn: 0 to 1.0%, S: 0 to 0.
  • the deviation angle from the ideal Goss direction with the rolling surface normal direction Z as the rotation axis is defined as ⁇
  • the deviation angle from the ideal Goss direction with the rolling perpendicular direction C as the rotation axis is defined as ⁇
  • the rolling direction L is defined as ⁇
  • the deviation angle from the ideal Goss orientation as the rotation axis is defined as ⁇
  • the deviation angle of the crystal orientation measured at two measurement points adjacent to each other on the plate surface and having an interval of 1 mm is ( ⁇ 1 , ⁇ 1 , ⁇ ).
  • the boundary condition BA ⁇ is
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is
  • the particle size RA ⁇ L is defined
  • the boundary condition BA ⁇ is
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L.
  • the boundary condition BA ⁇ is defined as
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L
  • the boundary condition BB is defined as [( ⁇ 2).
  • boundary conditions BB boundary conditions BAbeta there is a grain boundary is not satisfied satisfied and boundary conditions BB boundary conditions BAganma, and a particle size RAarufa L and particle size RA ⁇ L, meet the RA ⁇ L ⁇ RA ⁇ L, and a particle size RA ⁇ L and particle size RA ⁇ L, meet the RA ⁇ L ⁇ RA ⁇ L.
  • the particle size RA ⁇ L and the particle size RB L May satisfy 1.10 ⁇ RB L ⁇ RA ⁇ L.
  • the particle size RA ⁇ L is used.
  • the particle size RB L may satisfy 1.10 ⁇ RB L ⁇ RA ⁇ L.
  • the grain size RB L may be 15 mm or more.
  • the particle size RA ⁇ L and the particle size RA ⁇ L may be 40 mm or less.
  • a grain-oriented electrical steel sheet having excellent iron loss characteristics and an improved magnetostrictive velocity level (Lva) in a medium-high magnetic field region (particularly a magnetic field of about 1.7T to 1.9T) can be obtained.
  • the crystal orientation is set so that the deviation angle ⁇ becomes small (specifically, the maximum value and the average value of the absolute value
  • the crystal orientation is controlled so that the difference between the minimum value and the maximum value of the magnetostriction (hereinafter referred to as “ ⁇ pp”) becomes small.
  • the present inventors presumed the cause of this as follows. For noise in an actual use environment, it is not enough to evaluate only the magnetostriction ⁇ pp, and it is considered that the time change of the magnetostrictive waveform in AC excitation is important. Therefore, the present inventors have focused on the magnetostrictive velocity level (Lva) at which the time change of the magnetostrictive waveform can be evaluated.
  • Lva magnetostrictive velocity level
  • the present inventors generally measure the magnetostrictive velocity level (Lva) at 1.7 T and about 1.9 T.
  • the relationship between the magnetostriction rate level (Lva), magnetostriction, iron loss, and the deviation angle of the crystal orientation when magnetized with is analyzed.
  • the magnetic field of 1.7T is the design magnetic flux density of a transformer that is usually used (or the magnetic flux density that is usually evaluated for electrical steel sheets). Therefore, it is considered that if the magnetostrictive velocity level (Lva) when magnetized at 1.7T is reduced, the vibration of the iron core is reduced and the transformer noise is reduced.
  • Lva magnetostrictive velocity level
  • the magnetic field of 1.9T is not the design magnetic flux density of a commonly used transformer.
  • the magnetic flux does not flow uniformly in the steel sheet, and there are places where the magnetic flux is locally concentrated. Therefore, there is a portion in the steel sheet where a magnetic flux of about 1.9 T flows locally.
  • a large magnetostriction occurs in a magnetic field of 1.9 T and greatly affects the vibration of the iron core. Therefore, it is considered that if the magnetostrictive velocity level (Lva) when magnetized at 1.9 T is reduced, the vibration of the iron core is reduced and the transformer noise is reduced.
  • Magnetostriction occurs when the transformer is excited.
  • the generated magnetostriction causes vibration of the iron core.
  • the vibration of the iron core in the transformer vibrates the air, which causes noise.
  • the sound pressure of noise can be evaluated by the amount of displacement (velocity) per unit time.
  • the characteristics of sound that humans can perceive are not always constant at all frequencies, and can be expressed by the auditory characteristics called A characteristics.
  • the actual magnetostrictive waveform is not a sine wave, but a waveform in which various frequency components are overlapped. Therefore, the magnetostrictive velocity level (Lva), which is an index close to the actual human auditory characteristic, can be obtained by Fourier transforming the magnetostrictive waveform, obtaining the amplitude for each frequency, and multiplying by the A characteristic.
  • Lva magnetostrictive velocity level
  • the magnetostrictive velocity level (Lva) in the magnetic field region near 1.7T and 1.9T (hereinafter, simply referred to as "medium-high magnetic field region") is reduced, the iron loss characteristic can be obtained. It was confirmed that the transformer noise can be effectively reduced while being excellent.
  • the crystal orientation preferentially generated in the secondary recrystallization of the practical grain-oriented electrical steel sheet is basically ⁇ 110 ⁇ ⁇ 001> orientation.
  • growth in an orientation having some in-plane rotation within the steel plate surface ( ⁇ 110 ⁇ surface) is allowed and proceeds. That is, in the secondary recrystallization process carried out industrially, it is not easy to completely eliminate the formation and growth of crystal grains having a displacement angle. Then, when the crystal grains in this orientation grow to a certain size, the crystal grains remain in the final steel sheet without being eroded by the crystal grains in the ideal ⁇ 110 ⁇ ⁇ 001> orientation. Strictly speaking, these crystal grains do not have a ⁇ 001> orientation in the rolling direction, and are generally called "swinging Goss" or the like.
  • the present inventors have investigated not to grow the secondary recrystallized grains while maintaining the crystal orientation at the stage of growth, but to grow the crystal with the orientation change.
  • a large number of local and small tilt angle orientation changes that were not conventionally recognized as grain boundaries are generated, and one secondary recrystallized grain. It was found that the state in which the above is divided into small regions having slightly different deviation angles is advantageous for reducing the magnetostrictive velocity level (Lva) in the medium and high magnetic field regions.
  • the secondary recrystallized grains are divided into a plurality of regions having slightly different displacement angles. That is, in the grain-oriented electrical steel sheet according to the present embodiment, in addition to the grain boundaries having a relatively large angle difference corresponding to the grain boundaries of the secondary recrystallized grains, the inside of the secondary recrystallized grains is locally divided. It has a small grain boundary.
  • the relationship between the deviation angle ⁇ and the deviation angle ⁇ and the relationship between the deviation angle ⁇ and the deviation angle ⁇ are preferably controlled with respect to the rolling direction L.
  • the directional electromagnetic steel plate according to the present embodiment has Si: 2.0 to 7.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo in mass%. : 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%, C: 0 to 0.0050%, Mn: 0 to 1.0%, S: 0 to 0.
  • the deviation angle from the ideal Goss direction with the rolling surface normal direction Z as the rotation axis is defined as ⁇
  • the deviation angle from the ideal Goss direction with the rolling perpendicular direction C as the rotation axis is defined as ⁇
  • the rolling direction L is defined as ⁇
  • the deviation angle from the ideal Goss direction as the rotation axis is defined as ⁇
  • the deviation angles of the crystal orientations measured at two measurement points adjacent to each other on the plate surface and having an interval of 1 mm are expressed as ( ⁇ 1 , ⁇ 1 , ⁇ 1 ) and ( ⁇ 2 , ⁇ 2 , ⁇ 2 ), and are boundaries.
  • the condition BA ⁇ is
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L
  • the boundary condition BA ⁇ is
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L
  • the boundary condition BA ⁇ is
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L
  • the boundary condition BB is [( ⁇ 2- ⁇ 1 ) 2 + ( ⁇ 2- ⁇ 1 ) 2 + ( ⁇ ).
  • a particle size RAarufa L and a particle size RAbeta L is met RA ⁇ L ⁇ RA ⁇ L, and is a particle diameter RAarufa L and particle size RAganma L, satisfy RA ⁇ L ⁇ RA ⁇ L.
  • the directional electromagnetic steel plate according to the present embodiment has a grain boundary that satisfies the boundary condition BA ⁇ and does not satisfy the boundary condition BB, and a grain boundary that satisfies the boundary condition BA ⁇ and does not satisfy the boundary condition BB. , It may have a grain boundary that satisfies the boundary condition BA ⁇ and does not satisfy the boundary condition BB.
  • boundary condition BA ⁇ the boundary condition BA ⁇ , the boundary condition BA ⁇ , and the boundary condition BA ⁇ may be collectively referred to as “boundary condition BA”.
  • boundary condition BA the boundary condition BA ⁇
  • boundary condition BA ⁇ L the average crystal grain size RA ⁇ L
  • average crystal grain size RA ⁇ L in the rolling direction may be collectively referred to as “average crystal grain size RA”.
  • the grain boundaries that satisfy the boundary condition BB substantially correspond to the secondary recrystallized grain boundaries observed when the conventional grain-oriented electrical steel sheet is macro-etched.
  • the grain boundaries satisfying the above boundary condition BB in addition to the grain boundaries satisfying the above boundary condition BB, the grain boundaries satisfying the boundary condition BA ⁇ and not satisfying the above boundary condition BB, and the grain boundaries satisfying BA ⁇ and the above boundary It has a grain boundary that does not satisfy the condition BB at a relatively high frequency.
  • These grain boundaries correspond to the local, small-tilt grain boundaries that divide within the secondary recrystallized grains. That is, in the present embodiment, the secondary recrystallized grains are in a state of being finely divided into small regions having slightly different displacement angles.
  • Conventional grain-oriented electrical steel sheets may have secondary recrystallized grain boundaries that satisfy the boundary condition BB.
  • the conventional grain-oriented electrical steel sheet may have a displacement of the deviation angle within the grains of the secondary recrystallized grains.
  • the displacement angle tends to be continuously displaced in the secondary recrystallized grain, so that the displacement of the grain size existing in the conventional grain-oriented electrical steel sheet is the above-mentioned boundary condition BA ⁇ .
  • BA ⁇ is difficult to satisfy.
  • the displacement of the displacement angle may be identified in the long range region in the secondary recrystallized grain, but the displacement of the displacement angle is small in the short range region in the secondary recrystallized grain. Therefore, it is difficult to identify (it is difficult to satisfy the boundary conditions BA ⁇ and BA ⁇ ).
  • the deviation angle is locally displaced in a short range region and can be identified as a grain boundary. Specifically, between two measurement points adjacent to each other in the secondary recrystallized grain and having an interval of 1 mm, a grain boundary satisfying the boundary condition BA ⁇ and not satisfying the above boundary condition BB and BA ⁇ are satisfied. Moreover, grain boundaries that do not satisfy the boundary condition BB are present at a relatively high frequency. These grain boundaries correspond to the grain boundaries that divide the secondary recrystallized grains.
  • grain boundaries for dividing secondary recrystallized grains are intentionally created by precisely controlling the manufacturing conditions as described later. Further, in the grain-oriented electrical steel sheet according to the present embodiment, the secondary recrystallized grains are divided into small regions having slightly different deviation angles, and then, with respect to the rolling direction L, the deviation angle ⁇ and the deviation angle ⁇ are And the relationship between the deviation angle ⁇ and the deviation angle ⁇ are controlled. As a result, the magnetostrictive velocity level (Lva) in the medium-high magnetic field region can be preferably improved.
  • the crystal orientation is defined without strictly distinguishing the angle difference of about ⁇ 2.5 °.
  • the angular range of about ⁇ 2.5 ° centered on the geometrically exact ⁇ 110 ⁇ ⁇ 001> orientation is defined as the " ⁇ 110 ⁇ ⁇ 001> orientation”. ..
  • the ⁇ 110 ⁇ ⁇ 001> orientation of the grain-oriented electrical steel sheet according to the present embodiment deviates by 2 ° from the ideal ⁇ 110 ⁇ ⁇ 001> orientation.
  • the following four angles ⁇ , ⁇ , ⁇ , and ⁇ related to the crystal orientation observed in the grain-oriented electrical steel sheet are used.
  • Deviation angle ⁇ The deviation angle of the crystal orientation observed on the grain-oriented electrical steel sheet from the ideal ⁇ 110 ⁇ ⁇ 001> orientation around the rolling surface normal direction Z.
  • Deviation angle ⁇ The deviation angle of the crystal orientation observed on the grain-oriented electrical steel sheet from the ideal ⁇ 110 ⁇ ⁇ 001> orientation around the rolling perpendicular direction C.
  • Deviation angle ⁇ The deviation angle of the crystal orientation observed on the grain-oriented electrical steel sheet from the ideal ⁇ 110 ⁇ ⁇ 001> orientation around the rolling direction L.
  • a schematic diagram of the deviation angle ⁇ , the deviation angle ⁇ , and the deviation angle ⁇ is shown in FIG.
  • This angle ⁇ may be described as “spatial three-dimensional directional difference”.
  • the directional electromagnetic steel plate according to the present embodiment has a relationship between a deviation angle ⁇ and a deviation angle ⁇ and a relationship between a deviation angle ⁇ and a deviation angle ⁇ with respect to the rolling direction L. To control, it utilizes local changes in crystal orientation that occur, especially during the growth of secondary recrystallized grains, to a degree that was not previously perceived as grain boundaries. In the following description, the orientation change that occurs so as to divide the inside of one secondary recrystallized grain into small regions having slightly different displacement angles may be described as "switching".
  • the crystal grain boundary that divides the secondary recrystallized grain may be described as "subgrain boundary”, and the crystal grain that is distinguished by the grain boundary including the subgrain boundary as a boundary may be described as “subcrystal grain”.
  • the crystal grain boundary (grain boundary satisfying the boundary condition BA ⁇ ) considering the angle difference of the deviation angle ⁇ is described as " ⁇ grain boundary”
  • the crystal grain distinguished by the ⁇ grain boundary as the boundary is described as " ⁇ crystal grain”.
  • the crystal grain boundary (grain boundary satisfying the boundary condition BA ⁇ ) considering the angle difference of the deviation angle ⁇ is described as " ⁇ grain boundary”
  • the crystal grain distinguished by the ⁇ grain boundary as the boundary is described as " ⁇ crystal grain”.
  • the crystal grain boundary (grain boundary satisfying the boundary condition BA ⁇ ) considering the angle difference of the deviation angle ⁇ can be described as “ ⁇ grain boundary”, and the crystal grain distinguished by the ⁇ grain boundary as the boundary can be described as “ ⁇ crystal grain”. be.
  • magnetostrictive velocity level (Lva) in the medium and high magnetic field region which is a characteristic related to the present embodiment, it may be simply described as “magnetostrictive velocity level” in the following description.
  • the above switching is considered to occur in the process in which the change in crystal orientation is about 1 ° (less than 2 °) and the growth of secondary recrystallized grains continues. Details will be described later in relation to the production method, but it is important to grow the secondary recrystallized grains in a situation where switching is likely to occur. For example, it is important to start the secondary recrystallization at a relatively low temperature by controlling the primary recrystallization particle size and to continue the secondary recrystallization to a high temperature by controlling the type and amount of the inhibitor.
  • the magnetization behavior is caused by the movement of the 180 ° magnetic domain and the rotation of the magnetization from the direction in which the magnetization is easy.
  • This magnetic domain movement and magnetization rotation are affected by the continuity of the magnetic domain or the continuity of the magnetization direction with the adjacent crystal grains, especially in the vicinity of the grain boundaries, and the orientation difference with the adjacent grains is linked to the magnitude of the disturbance of the magnetization behavior. It is thought that it may be.
  • switching local orientation change
  • switching local orientation change
  • boundary conditions are defined for changes in crystal orientation including switching.
  • definition of "grain boundary" based on these boundary conditions is important.
  • the crystal orientation of practically manufactured grain-oriented electrical steel sheets is controlled so that the deviation angle between the rolling direction and the ⁇ 001> direction is approximately 5 ° or less.
  • This control is the same for the grain-oriented electrical steel sheet according to the present embodiment.
  • the "boundary where the orientation difference between adjacent regions is 15 ° or more” which is generally the definition of grain boundaries (large tilt angle grain boundaries)
  • grain boundaries are revealed by macro-etching of the steel sheet surface, and the crystal orientation difference between the two side regions of the grain boundaries is usually about 2 to 3 °.
  • the crystal orientation may be measured by an X-ray diffraction method (Laue method).
  • the Laue method is a method of irradiating a steel sheet with an X-ray beam and analyzing the transmitted or reflected diffraction spots. By analyzing the diffraction spots, the crystal orientation of the place where the X-ray beam is irradiated can be identified. By analyzing the diffraction spots at a plurality of locations by changing the irradiation position, the crystal orientation distribution at each irradiation position can be measured.
  • the Laue method is a method suitable for measuring the crystal orientation of a metal structure having coarse crystal grains.
  • the number of measurement points for the crystal orientation may be at least 500, but it is preferable to appropriately increase the number of measurement points according to the size of the secondary recrystallized grains. For example, when the number of secondary recrystallized grains contained in the measurement line is less than 10 when the measurement point for measuring the crystal orientation is 500 points, 10 or more secondary recrystallized grains are included in the measurement line. It is preferable to extend the above measurement line by increasing the number of measurement points at 1 mm intervals.
  • the crystal orientation is measured on the rolled surface at 1 mm intervals, and then the above-mentioned deviation angle ⁇ , deviation angle ⁇ , and deviation angle ⁇ are specified for each measurement point. Based on the deviation angle at each specified measurement point, it is determined whether or not there is a grain boundary between two adjacent measurement points. Specifically, it is determined whether or not the two adjacent measurement points satisfy the above-mentioned boundary condition BA and / or boundary condition BB.
  • the boundary condition BA ⁇ when the deviation angles of the crystal orientations measured at two adjacent measurement points are expressed as ( ⁇ 1 , ⁇ 1 , ⁇ 1 ) and ( ⁇ 2 , ⁇ 2 , ⁇ 2 ), respectively, the boundary condition BA ⁇ . Is defined as
  • the grain boundary satisfying the boundary condition BB has a spatial three-dimensional orientation difference (angle ⁇ ) between two points sandwiching the grain boundary of 2.0 ° or more, and this grain boundary was recognized by macro etching. It can be said that it is almost the same as the grain boundary of the conventional secondary recrystallized grains.
  • the directional electromagnetic steel sheet according to the present embodiment has grain boundaries that are strongly related to "switching", specifically, the above boundary condition BA ⁇ that satisfies the above boundary conditions. Grain boundaries that do not satisfy the condition BB and grain boundaries that satisfy BA ⁇ and do not satisfy the boundary condition BB are present at a relatively high frequency.
  • the grain boundaries defined in this way correspond to the grain boundaries that divide one secondary recrystallized grain into small regions with slightly different shift angles.
  • each grain boundary described above can be obtained using different measurement data. However, considering the time and effort of measurement and the deviation from the actual situation due to the difference in data, the deviation angle of the crystal orientation obtained from the same measurement line (at least 500 measurement points at 1 mm intervals on the rolled surface) is used. Therefore, it is preferable to obtain each of the above grain boundaries.
  • the inside of the secondary recrystallized grains is divided into small regions having slightly different deviation angles.
  • the present embodiment is characterized in that the inside of the secondary recrystallized grains is divided into small regions having slightly different displacement angles, so that the subgrain boundaries that divide the inside of the secondary recrystallized grains are the conventional secondary grains. It preferably exists at a relatively higher frequency than the recrystallized grain boundaries.
  • the boundary condition is determined at two adjacent measurement points.
  • the "grain boundaries satisfying the boundary condition BA ⁇ " and the “grain boundaries satisfying the boundary condition BA ⁇ ” may be present at a ratio of 1.03 times or more, respectively, as compared with the "grain boundaries satisfying the boundary condition BB". That is, when the boundary condition is determined as described above, the value obtained by dividing the "grain boundary satisfying the boundary condition BA ⁇ " and the “grain boundary satisfying the boundary condition BA ⁇ " by the "number of boundaries satisfying the boundary condition BB" is obtained. , Each may be 1.03 or more.
  • the grain boundary satisfying the boundary condition BA ⁇ and not satisfying the boundary condition BB and the boundary satisfying BA ⁇ and the boundary condition BB are satisfied in the grain-oriented electrical steel sheet. It is determined that there is a grain boundary that does not satisfy the condition BB.
  • the upper limit of the value obtained by dividing the "grain boundary satisfying the boundary condition BA ⁇ " and the "grain boundary satisfying the boundary condition BA ⁇ " by the "number of boundaries satisfying the boundary condition BB” is not particularly limited. For example, this value may be 80 or less, 40 or less, or 30 or less.
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L.
  • a particle size RAarufa L and a particle size RAbeta L is, satisfies the following equation (1), and is a particle diameter RAarufa L and particle size RAganma L, satisfy the following (Equation 2).
  • the detailed mechanism is not fully understood, but it is presumed as follows.
  • the rolling direction is the direction in which the grain-oriented electrical steel sheet is most easily magnetized, and the magnetic moment in the demagnetized state also faces the rolling direction. It is considered that even a small angle change such as switching of the deviation angle ⁇ affects the continuity of the 180 ° magnetic domain, and a reflux magnetic domain is generated to compensate for it.
  • the 180 ° domain wall is continuous by generating more subgrain boundaries of the angle ⁇ and the deviation angle ⁇ , which do not affect the magnetization easier direction than the deviation angle ⁇ , and suppressing the generation of the subgrain boundaries of the deviation angle ⁇ . It is considered that the formation and disappearance of reflux domain walls can be reduced without impairing the properties. As a result, it is considered that it contributes to the reduction of the magnetostrictive velocity level (Lva).
  • the relationship between the particle size RA ⁇ L and the particle size RA ⁇ L is preferably 1.05 ⁇ RA ⁇ L ⁇ RA ⁇ L , and more preferably 1.10 ⁇ RA ⁇ L ⁇ RA ⁇ L.
  • the upper limit of RA ⁇ L ⁇ RA ⁇ L is not particularly limited, but may be 5.0, for example.
  • the relationship between the particle size RA ⁇ L and the particle size RA ⁇ L is preferably 1.05 ⁇ RA ⁇ L ⁇ RA ⁇ L , and more preferably 1.10 ⁇ RA ⁇ L ⁇ RA ⁇ L.
  • the upper limit of RA ⁇ L ⁇ RA ⁇ L is not particularly limited, but may be 5.0, for example.
  • the particle size of the subcrystal grains based on the deviation angle ⁇ in the rolling direction is preferably smaller than the particle size of the secondary recrystallized grains in the rolling direction, or the deviation angle. It is preferable that the grain size of the subcrystal grains based on ⁇ in the rolling direction is smaller than the grain size of the secondary recrystallized grains in the rolling direction.
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L
  • the average crystal grain size in the rolling direction L obtained based on the boundary condition BA ⁇ is defined as the particle size RA ⁇ L.
  • the particle size RA ⁇ L and the particle size RB L satisfy the following (Equation 3), or the particle size RA ⁇ L and the particle size RB L satisfy the following (Equation 4). 1.10 ⁇ RB L ⁇ RA ⁇ L ... (Equation 3) 1.10 ⁇ RB L ⁇ RA ⁇ L ... (Equation 4)
  • the shift angle ⁇ is switched frequently because the particle size RB L is small, or because the particle size RB L is large but the switching is small and the particle size RA ⁇ L is large. May not be sufficient and the magnetostrictive velocity level may not be sufficiently improved.
  • the frequency of switching the deviation angle ⁇ becomes insufficient, and the magnetostriction velocity level may not be sufficiently improved.
  • the RB L / RA ⁇ L value and the RB L / RA ⁇ L value are preferably 1.30 or more, more preferably 1.50 or more, still more preferably 2.0 or more, still more preferably 3.0 or more, still more preferably 5. It is 0.0 or more.
  • the upper limit of the RB L / RA ⁇ L value is not particularly limited.
  • the frequency of switching is high and the RB L / RA ⁇ L value is large, the continuity of the crystal orientation in the entire grain-oriented electrical steel sheet is high, which is preferable for improving the magnetostrictive velocity level.
  • the frequency of occurrence is too high, the effect of improving iron loss may be particularly reduced. Therefore, 80 is mentioned as a practical maximum value of the RB L / RA ⁇ L value. If special consideration is required for iron loss, the maximum value of the RB L / RA ⁇ L value is preferably 40, more preferably 30.
  • the upper limit of the RB L / RA ⁇ L value is not particularly limited, but may be preferably 40, more preferably 30.
  • the RB L / RA ⁇ L value and the RB L / RA ⁇ L value may be less than 1.0.
  • RB L is an average particle diameter in the rolling direction defined based on the grain boundaries at which the angle ⁇ is 2 ° or more.
  • RA ⁇ L is the average particle size in the rolling direction defined based on the grain boundary where
  • RA ⁇ L is
  • RB L is always larger than RA ⁇ L and RA ⁇ L , and RB L / RA ⁇ L value and RB L / RA ⁇ L value are always 1.0 or more.
  • RB L is the particle diameter determined by the grain boundary based on the angle ⁇
  • RA ⁇ L and RAganma L is a particle diameter determined by the grain boundary based on the deviation angle ⁇ , and deviation angle gamma
  • RB L , RA ⁇ L and RA ⁇ L have different definitions of grain boundaries for determining the particle size. Therefore, the RB L / RA ⁇ L value and the RB L / RA ⁇ L value may be less than 1.0.
  • the switching control is not sufficient and the deviation from the present embodiment is large, the shift angle ⁇ and the shift angle ⁇ do not change, and at least one of the RB L / RA ⁇ L value and the RB L / RA ⁇ L value becomes. It may be less than 1.0. In the present embodiment, it is preferable that the occurrence frequency of ⁇ grain boundaries and ⁇ grain boundaries is sufficiently increased, and at least one of the RB L / RA ⁇ L value and the RB L / RA ⁇ L value is 1.10 or more. , As already explained.
  • the boundaries between two measurement points adjacent to each other on the rolled surface and having an interval of 1 mm are classified into Cases 1 to 4 in Table 1.
  • the above particle size RB L is determined based on the grain boundaries satisfying Case 1 and / or Case 2 in Table 1, and the particle sizes RA ⁇ L and RA ⁇ L satisfy Case 1 and / or Case 3 in Table 1. Obtained based on grain boundaries. For example, the deviation angle of the crystal orientation is measured on a measurement line including at least 500 measurement points along the rolling direction, and the average value of the line segment lengths sandwiched between the grain boundaries of Case 1 and / or Case 2 on this measurement line is calculated.
  • the particle size is RB L.
  • the average value of the line segment lengths sandwiched between the grain boundaries (specifically, ⁇ grain boundaries) of Case 1 and / or Case 3 with respect to the deviation angle ⁇ is defined as the particle size RA ⁇ L. .. Further, regarding the deviation angle ⁇ , the average value of the lengths of the line segments sandwiched between the grain boundaries (specifically, the ⁇ grain boundaries) of Case 1 and / or Case 3 is defined as the particle size RA ⁇ L.
  • the grain-oriented electrical steel sheet according to the present embodiment it is preferred that the particle size RB L is 15mm or more.
  • the particle size RB L is preferably 22 mm or more, more preferably 30 mm or more, and further preferably 40 mm or more.
  • the upper limit of the particle size RB L is not particularly limited.
  • a steel sheet for which primary recrystallization has been completed is wound around a coil, and crystal grains having a ⁇ 110 ⁇ ⁇ 001> orientation are formed by secondary recrystallization in a state of having a curvature in the rolling direction. Generate and grow. Therefore, if the particle diameter RB L is increased, an increase in the deviation angle, could also result in the magnetostriction is increased. Therefore, increasing the particle size RB L indefinitely is preferably avoided. Also considering industrial feasibility, the particle size RB L, 400 mm as a preferable upper limit, 200 mm More preferable upper limit can be mentioned 100mm More preferable upper limit.
  • the particle size RA ⁇ L and the particle size RA ⁇ L are preferably 40 mm or less.
  • the particle size RA ⁇ L and the particle size RA ⁇ L are preferably 40 mm or less.
  • the particle size RA ⁇ L and the particle size RA ⁇ L are more preferably 30 mm or less.
  • the lower limit of the particle size RA ⁇ L and the particle size RA ⁇ L is not particularly limited.
  • the minimum values of the particle size RA ⁇ L and the particle size RA ⁇ L are 1 mm.
  • the steel sheet having a particle size RA ⁇ L and a particle size RA ⁇ L of less than 1 mm is not excluded.
  • the switching is accompanied by the presence of lattice defects in the crystal, although it is slight, if the switching frequency is too high, there is a concern that the magnetic characteristics may be adversely affected. Further, considering the industrial feasibility, 5 mm can be mentioned as a preferable lower limit for the particle size RA ⁇ L and the particle size RA ⁇ L.
  • the grain size of one crystal grain includes an ambiguity of up to 2 mm. Therefore, the particle size measurement (measurement of at least 500 points on the rolled surface at 1 mm intervals) is performed at positions sufficiently separated from the direction defining the particle size in the direction orthogonal to the steel plate surface, that is, the measurement of different crystal grains. It is preferable to carry out the measurement at a total of 5 or more locations. Then, the above ambiguity can be eliminated by averaging all the particle sizes obtained by a total of 5 or more measurements. For example, each of the above-mentioned particle diameters may be measured at five or more points sufficiently separated in the direction perpendicular to rolling, and orientation may be measured at a total of 2500 or more measurement points to obtain the average particle size.
  • Deviation angle from ideal ⁇ 110 ⁇ ⁇ 001> orientation In a steel sheet in which the above-mentioned switching is sufficiently performed, the "deviation angle" is easily controlled within a characteristic range. However, in order to obtain the effect of the present embodiment, it is not a particularly necessary condition to bring the crystal orientation closer to a specific direction as in the conventional orientation control, for example, to reduce the absolute value and standard deviation of the deviation angle. .. For example, when the crystal orientation changes little by little due to the switching regarding the deviation angle, the fact that the absolute value of the deviation angle approaches zero does not hinder the present embodiment. Further, for example, when the crystal orientation changes little by little due to switching regarding the deviation angle, the crystal orientation itself converges to a specific orientation, and as a result, the standard deviation of the deviation angle approaches zero. It does not hinder.
  • one secondary recrystallized grain is regarded as a single crystal, and the inside of the secondary recrystallized grain has exactly the same crystal orientation. That is, in the present embodiment, there is a minute orientation change that is not conventionally recognized as a grain boundary in one coarse secondary recrystallized grain, and it is necessary to detect this orientation change.
  • the measurement points of the crystal orientation are distributed at equal intervals of 5 mm in length and width within an area of L mm ⁇ M mm (where L, M> 100) so as to contain at least 20 crystal grains on the steel plate surface. It is preferable to measure the crystal orientation at each measurement point and obtain data of 500 points or more in total. If the measurement point is a grain boundary or some singular point, that data is not used. Further, it is necessary to expand the above measurement range according to the region required for determining the magnetic characteristics of the target steel sheet (for example, in the case of an actual coil, the range for measuring the magnetic characteristics described on the mill sheet). be.
  • the grain-oriented electrical steel sheet according to the present embodiment may have an intermediate layer, an insulating film, or the like on the steel sheet, but the above-mentioned crystal orientation, grain boundary, average crystal grain size, etc. have a film or the like. It may be specified based on no steel plate. That is, when the grain-oriented electrical steel sheet to be the measurement sample has an insulating coating or the like on the surface, the crystal orientation or the like may be measured after removing the coating or the like.
  • a grain-oriented electrical steel sheet having a coating may be immersed in a high-temperature alkaline solution.
  • NaOH 30 ⁇ 50 wt% + H 2 O: the 50 to 70% by weight aqueous solution of sodium hydroxide, 80 ⁇ 90 ° C. for 5 to 10 minutes, after immersion, and dried by washing with water
  • the insulating coating can be removed from the grain-oriented electrical steel sheet.
  • the time of immersion in the above sodium hydroxide aqueous solution may be changed according to the thickness of the insulating film.
  • an electromagnetic steel sheet from which the insulating film has been removed may be immersed in high-temperature hydrochloric acid.
  • concentration of hydrochloric acid preferable for removing the intermediate layer to be dissolved is investigated in advance, and the mixture is immersed in hydrochloric acid having this concentration, for example, 30 to 40% by mass of hydrochloric acid at 80 to 90 ° C. for 1 to 5 minutes.
  • the intermediate layer can be removed by washing with water and drying. Normally, an alkaline solution is used to remove the insulating film, and hydrochloric acid is used to remove the intermediate layer, so that each treatment liquid is used properly to remove each film.
  • the directional electromagnetic steel sheet according to the present embodiment contains a basic element as a chemical composition, and if necessary, a selective element, and the balance is Fe and impurities.
  • the grain-oriented electrical steel sheet according to this embodiment contains Si (silicon): 2.0% to 7.0% as a basic element (main alloy element) in terms of mass fraction.
  • the content of Si is preferably 2.0 to 7.0% in order to accumulate the crystal orientation in the ⁇ 110 ⁇ ⁇ 001> orientation.
  • impurities may be contained as the chemical composition.
  • impurity refers to an element mixed from ore or scrap as a raw material, or from the manufacturing environment, etc., when steel is industrially manufactured.
  • the upper limit of the total content of impurities may be, for example, 5%.
  • a selective element may be contained in addition to the above-mentioned basic elements and impurities.
  • Nb, V, Mo, Ta, W, C, Mn, S, Se, Al, N, Cu, Bi, B, P, Ti are selected elements.
  • Sn, Sb, Cr, Ni and the like may be contained.
  • These selective elements may be contained according to the purpose. Therefore, it is not necessary to limit the lower limit values of these selected elements, and the lower limit value may be 0%. Further, even if these selective elements are contained as impurities, the above effects are not impaired.
  • Nb niobium: 0 to 0.030%
  • V vanadium
  • Mo molybdenum
  • Ta tantalum
  • W tungsten
  • Nb group element one or more elements of Nb, V, Mo, Ta, and W may be collectively referred to as "Nb group element".
  • the Nb group elements preferably act on the formation of switching, which is a feature of the grain-oriented electrical steel sheets according to the present embodiment.
  • the Nb group element acts on the switching generation during the manufacturing process, it is not necessary that the Nb group element is finally contained in the grain-oriented electrical steel sheet according to the present embodiment.
  • the Nb group elements tend to be discharged to the outside of the system due to purification in the finish annealing described later. Therefore, even if the slab contains Nb group elements and the frequency of switching is increased by utilizing the Nb group elements in the manufacturing process, the Nb group elements may be discharged to the outside of the system by the subsequent purification annealing. Therefore, Nb group elements may not be detected as the chemical composition of the final product.
  • the upper limit of the content of Nb group elements is specified as the chemical composition of the final product, the grain-oriented electrical steel sheet.
  • the upper limit of the Nb group elements may be 0.030%, respectively.
  • the lower limit of the content of the Nb group element is not particularly limited, and the lower limit may be 0% for each.
  • At least one selected from the group consisting of Nb, V, Mo, Ta, and W as a chemical composition is 0.0030 to 0.030% by mass in total. It is preferable to contain it.
  • the total content of Nb group elements in the final product is preferably 0.003% or more, and more preferably 0.005% or more.
  • the total content of Nb group elements in the final product is preferably 0.030% or less. The action of the Nb group elements will be described later as a production method.
  • the lower limit of the content of these selective elements may be 0%.
  • the total content of S and Se is preferably 0 to 0.0150%.
  • the total of S and Se means that at least one of S and Se is included and is the total content thereof.
  • the chemical composition of the grain-oriented electrical steel sheet according to the present embodiment is the chemical composition of the final product.
  • the chemical composition of the final product is different from the chemical composition of the starting material, the slab.
  • the chemical composition of the grain-oriented electrical steel sheet according to this embodiment may be measured by a general method for analyzing steel.
  • the chemical composition of the directional electromagnetic steel plate may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • a 35 mm square test piece collected from a grain-oriented electrical steel sheet is measured with an ICPS-8100 or the like (measuring device) manufactured by Shimadzu Corporation under conditions based on a calibration curve prepared in advance to obtain a chemical composition.
  • Be identified The acid-soluble Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
  • the above chemical composition is a component of grain-oriented electrical steel sheets. If the grain-oriented electrical steel sheet to be the measurement sample has an insulating coating or the like on its surface, the coating or the like is removed by the above method, and then the chemical composition is measured.
  • the grain-oriented electrical steel sheet according to the present embodiment is not particularly limited in terms of coating composition on the steel sheet and the presence or absence of magnetic domain subdivision treatment.
  • an arbitrary film may be formed on the steel sheet according to the purpose, and magnetic domain subdivision treatment may be performed as necessary.
  • the grain-oriented electrical steel sheet according to the present embodiment may have an intermediate layer arranged in contact with the grain-oriented electrical steel sheet (silicon steel sheet) and an insulating film arranged in contact with the intermediate layer.
  • FIG. 2 is a schematic cross-sectional view of a grain-oriented electrical steel sheet according to a preferred embodiment of the present invention.
  • the grain-oriented electrical steel sheet 10 (silicon steel sheet) is arranged in contact with the grain-oriented electrical steel sheet 10 (silicon steel sheet) when viewed from a cut surface whose cutting direction is parallel to the plate thickness direction.
  • the intermediate layer 20 may have an insulating coating 30 arranged in contact with the intermediate layer 20.
  • the above-mentioned intermediate layer includes a layer mainly composed of oxides, a layer mainly composed of carbides, a layer mainly composed of nitrides, a layer mainly composed of boride, a layer mainly composed of silices, and a phosphate. It may be a layer mainly composed of a sulfide, a layer mainly composed of an intermetallic compound, or the like.
  • These intermediate layers can be formed by heat treatment, chemical vapor deposition (CVD), physical vapor deposition (PVD), or the like in an atmosphere in which redox properties are controlled.
  • the intermediate layer may be a forsterite coating having an average thickness of 1 to 3 ⁇ m.
  • the forsterite film is a film mainly composed of Mg 2 SiO 4.
  • the interface between the forsterite coating and the grain-oriented electrical steel sheet is the interface in which the forsterite coating is fitted into the steel sheet when viewed in the above cross section.
  • the intermediate layer may be an oxide film having an average thickness of 2 to 500 nm.
  • the oxide film is a film mainly composed of SiO 2.
  • the interface between the oxide film and the grain-oriented electrical steel sheet is a smooth interface when viewed in the above cross section.
  • the above-mentioned insulating coating is mainly composed of phosphate and colloidal silica and has an average thickness of 0.1 to 10 ⁇ m, or is mainly composed of alumina sol and boric acid and has an average thickness of 0.5 to 8 ⁇ m. Any insulating coating may be used.
  • the magnetic domains may be subdivided by at least one of local application of microstrain or formation of local grooves.
  • local minute strains and local grooves may be imparted or formed by laser, plasma, mechanical method, etching, or other methods.
  • local microstrains or local grooves are linear or dotted so as to extend in a direction intersecting the rolling direction on the rolling surface of the steel sheet, and the intervals in the rolling direction are 2 mm to 10 mm. It may be given or formed in.
  • the method for manufacturing the grain-oriented electrical steel sheet according to the present embodiment is not limited to the following method.
  • the following manufacturing method is an example for manufacturing the grain-oriented electrical steel sheet according to the present embodiment.
  • FIG. 3 is a flow chart illustrating a method for manufacturing a grain-oriented electrical steel sheet according to the present embodiment.
  • the method for manufacturing the directional electromagnetic steel plate (silicon steel plate) according to the present embodiment includes a casting process, a hot rolling process, a hot rolling plate annealing process, a cold rolling process, and decarburization. It includes an annealing step, an annealing separator coating step, and a finish annealing step.
  • the method for manufacturing a grain-oriented electrical steel sheet (silicon steel sheet) is as follows.
  • the chemical composition in terms of mass%, Si: 2.0 to 7.0%, Nb: 0 to 0.030%, V: 0 to 0.030%, Mo: 0 to 0.030%, Ta: 0 to 0.030%, W: 0 to 0.030%, C: 0 to 0.0850%, Mn: 0 to 1.0%, S: 0 to 0.0350%, Se: 0 to 0 .0350%, Al: 0 to 0.0650%, N: 0 to 0.0120%, Cu: 0 to 0.40%, Bi: 0 to 0.010%, B: 0 to 0.080%, P : 0 to 0.50%, Ti: 0 to 0.0150%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Cr: 0 to 0.30%, Ni: 0 to 1.
  • a slab containing 0% and the balance consisting of Fe and impurities was cast.
  • the primary recrystallization particle size is controlled to 23 ⁇ m or less.
  • the finish annealing process When the total content of Nb, V, Mo, Ta, and W in the chemical composition of the slab is 0.0030 to 0.030%, PH 2 O / PH 2 at 700 to 800 ° C. in the heating process. Is 0.050 to 1.0 and PH 2 O / PH 2 at 900 to 950 ° C is 0.010 to 0.10, or PH 2 O / PH 2 at 950 to 1000 ° C is 0.
  • Control at least one of .005 to 0.070 or PH 2 O / PH 2 at 1000 to 1050 ° C to 0.0010 to 0.030, and 850 to 950.
  • the holding time at ° C. is 120 to 600 minutes
  • the holding time at 900 to 950 ° C. is 400 minutes or less
  • the holding time at 1000 to 1050 ° C. is 100 minutes or more.
  • PH 2 O / PH 2 at 700 to 800 ° C. is applied in the heating process. and 0.050 to 1.0 900 to the PH 2 O / PH 2 at 950 ° C.
  • PH 2 O / PH 2 at 1000 to 1050 ° C is 0.0010 to 0.030
  • the holding time at 850 to 950 ° C is 120 to 600 minutes
  • the holding time at 900 to 950 ° C is 350. It shall be minutes or less
  • the holding time at 1000 to 1050 ° C. shall be 200 minutes or more.
  • the oxygen potential is the ratio of the steam partial pressure PH 2 O and hydrogen partial pressure PH 2 of the atmosphere gas.
  • the "switching" of the present embodiment is mainly a factor that facilitates the orientation change (switching) itself and a factor that causes the orientation change (switching) to continuously occur in one secondary recrystallized grain. It is controlled by two things.
  • the start of secondary recrystallization can be controlled to a lower temperature.
  • the above factors are important for controlling switching, which is a feature of this embodiment.
  • a conventionally known method for manufacturing grain-oriented electrical steel sheets can be applied.
  • the switching which is a feature of the present embodiment, can be applied to any manufacturing method, and is not limited to a specific manufacturing method. In the following, a method of controlling switching by a manufacturing method to which nitriding treatment is applied will be described as an example.
  • slabs are prepared.
  • An example of a slab manufacturing method is as follows. Manufacture (melt) molten steel. Manufacture slabs using molten steel. The slab may be manufactured by a continuous casting method. An ingot may be produced using molten steel, and the ingot may be lump-rolled to produce a slab.
  • the thickness of the slab is not particularly limited. The thickness of the slab is, for example, 150 mm to 350 mm. The thickness of the slab is preferably 220 mm to 280 mm. As the slab, a so-called thin slab having a thickness of 10 mm to 70 mm may be used. When a thin slab is used, rough rolling before finish rolling can be omitted in the hot process.
  • the chemical composition of the slab As the chemical composition of the slab, the chemical composition of the slab used for manufacturing general grain-oriented electrical steel sheets can be used.
  • the chemical composition of the slab contains, for example, the following elements:
  • Carbon (C) is an element effective in controlling the primary recrystallization structure in the manufacturing process, but if the C content of the final product is excessive, it adversely affects the magnetic properties. Therefore, the C content of the slab may be 0 to 0.0850%.
  • the preferred upper limit of the C content is 0.0750%.
  • C is purified in the decarburization annealing step and the finish annealing step described later, and becomes 0.0050% or less after the finish annealing step. When C is contained, the lower limit of the C content may be more than 0% or 0.0010% in consideration of productivity in industrial production.
  • Si 2.0% to 7.0%
  • Silicon (Si) increases the electrical resistance of grain-oriented electrical steel sheets and reduces iron loss. If the Si content is less than 2.0%, austenite transformation occurs during finish annealing, and the crystal orientation of the grain-oriented electrical steel sheet is impaired. On the other hand, if the Si content exceeds 7.0%, the cold workability is lowered and cracks are likely to occur during cold rolling.
  • the lower limit of the Si content is preferably 2.50%, more preferably 3.0%.
  • the preferred upper limit of the Si content is 4.50%, more preferably 4.0%.
  • Mn 0 to 1.0%
  • Manganese (Mn) binds to S or Se to produce MnS or MnSe and functions as an inhibitor.
  • the Mn content may be 0 to 1.0%.
  • Mn When Mn is contained, it is preferable that the secondary recrystallization is stable when the Mn content is in the range of 0.05% to 1.0%.
  • a part of the function of the inhibitor can be carried by the nitride of the Nb group element. In this case, the strength of MnS or MnSe as a general inhibitor is controlled to be weak. Therefore, the preferable upper limit of the Mn content is 0.50%, and more preferably 0.20%.
  • S 0 to 0.0350%
  • Se 0-0.0350%
  • Sulfur (S) and selenium (Se) combine with Mn to produce MnS or MnSe, which functions as an inhibitor.
  • the S content may be 0 to 0.0350%
  • the Se content may be 0 to 0.0350%.
  • the total content of S and Se is 0.0030% to 0.0350% because secondary recrystallization is stable.
  • a part of the function of the inhibitor can be carried by the nitride of the Nb group element. In this case, the strength of MnS or MnSe as a general inhibitor is controlled to be weak.
  • the preferable upper limit of the total S and Se contents is 0.0250%, and more preferably 0.010%.
  • S and Se remain after finish annealing, they form compounds and deteriorate iron loss. Therefore, it is preferable to reduce S and Se as much as possible by purifying during finish annealing.
  • the total content of S and Se is 0.0030% to 0.0350%
  • the chemical composition of the slab contains only either S or Se, and either S or Se.
  • the total content of one of them may be 0.0030% to 0.0350%, or the slab contains both S and Se, and the total content of S and Se is 0.0030% to 0. It may be .0350%.
  • Al 0 to 0.0650%
  • Aluminum (Al) binds to N and precipitates as (Al, Si) N, and functions as an inhibitor.
  • the Al content may be 0 to 0.0650%.
  • AlN as an inhibitor formed by nitriding described later expands the secondary recrystallization temperature range. This is particularly preferable because secondary recrystallization is stable in a high temperature range.
  • the lower limit of the Al content is preferably 0.020%, more preferably 0.0250%. From the viewpoint of stability of secondary recrystallization, the preferable upper limit of the Al content is 0.040%, more preferably 0.030%.
  • N 0 to 0.0120% Nitrogen (N) binds to Al and functions as an inhibitor.
  • the N content may be 0 to 0.0120%. Since N can be contained by nitriding in the middle of the manufacturing process, the lower limit may be 0%. On the other hand, when N is contained, if the N content exceeds 0.0120%, blister, which is a kind of defect, is likely to occur in the steel sheet.
  • the preferred upper limit of the N content is 0.010%, more preferably 0.0090%. N is purified in the finish annealing step and becomes 0.0050% or less after the finish annealing step.
  • Nb 0 to 0.030%
  • V 0 to 0.030%
  • Mo 0 to 0.030%
  • Ta 0 to 0.030%
  • W 0 to 0.030%
  • Nb, V, Mo, Ta, and W are Nb group elements.
  • the Nb content may be 0 to 0.030%
  • the V content may be 0 to 0.030%
  • the Mo content may be 0 to 0.030%
  • the Ta content may be 0. It may be about 0.030%
  • the W content may be 0 to 0.030%.
  • the Nb group element it is preferable to contain at least one selected from the group consisting of Nb, V, Mo, Ta, and W in a total amount of 0.0030 to 0.030% by mass.
  • the total content of the Nb group elements in the slab is 0.030% or less (preferably 0.0030% or more and 0.030% or less) at an appropriate timing. Initiate secondary recrystallization. In addition, the orientation of the generated secondary recrystallized grains becomes very preferable, and in the subsequent growth process, the switching characteristic of the present embodiment is likely to occur, and finally the structure can be controlled to be preferable for the magnetic characteristics.
  • the primary recrystallization particle size after decarburization annealing is preferably smaller than that in the case where the Nb group element is not contained. It is considered that the miniaturization of the primary recrystallized grains can be obtained by a pinning effect due to precipitates such as carbides, carbonitrides, and nitrides, and a drug effect as a solid solution element.
  • Nb and Ta are preferably effective.
  • the driving force of the secondary recrystallization increases, and the secondary recrystallization starts at a lower temperature than before.
  • the precipitate of the Nb group element decomposes at a relatively lower temperature than the conventional inhibitor such as AlN, secondary recrystallization starts at a lower temperature than the conventional one in the temperature raising process of finish annealing.
  • the carbide and carbonitride of Nb group element become unstable in a temperature range lower than the temperature range in which secondary recrystallization is possible. Therefore, it is considered that the effect of shifting the secondary recrystallization start temperature to a low temperature is small. Therefore, in order to shift the start temperature of secondary recrystallization to a preferable low temperature, nitrides of Nb group elements (or carbonitrides having a large nitrogen ratio) that are stable up to a temperature range in which secondary recrystallization is possible are utilized. It is preferable to do so.
  • Nb group elements preferably nitrides
  • conventional inhibitors such as AlN and (Al, Si) N that are stable up to high temperatures even after the start of secondary recrystallization.
  • the preferential growth temperature range of the ⁇ 110 ⁇ ⁇ 001> oriented grains, which are secondary recrystallized grains can be expanded as compared with the conventional case. Therefore, switching occurs in a wide temperature range from low temperature to high temperature, and the direction selection continues in a wide temperature range. As a result, the frequency of existence of the final subgrain boundaries is increased, and the degree of ⁇ 110 ⁇ ⁇ 001> orientation integration of the secondary recrystallized grains constituting the grain-oriented electrical steel sheet can be effectively increased.
  • the C content of the slab When aiming for miniaturization of primary recrystallized grains by the pinning effect of carbides and carbonitrides of Nb group elements, it is preferable to set the C content of the slab to 50 ppm or more at the time of casting. However, since nitride is preferable to carbide or carbonitride as an inhibitor in secondary recrystallization, the C content is reduced to 30 ppm or less, preferably 20 ppm or less by decarburization annealing after the completion of primary recrystallization. It is preferable that the amount is 10 ppm or less so that the carbides and carbonitrides of the Nb group elements in the steel are sufficiently decomposed.
  • the nitride (inhibitor) of the Nb group elements is a preferred form (secondary recrystallization) for the present embodiment. It can be adjusted to a form in which crystals can easily progress).
  • the total content of Nb group elements is preferably 0.0040% or more, more preferably 0.0050% or more.
  • the total content of the Nb group elements is preferably 0.020% or less, more preferably 0.010% or less.
  • the rest of the chemical composition of the slab consists of Fe and impurities.
  • impurity referred to here is unavoidably mixed from the components contained in the raw material or the components mixed in the manufacturing process when the slab is industrially manufactured, and substantially affects the effect of the present embodiment. It means an element that does not affect.
  • the slab may contain a known selective element instead of a part of Fe in consideration of the enhancement of the inhibitor function by compound formation and the influence on the magnetic properties in addition to solving the problems in production.
  • the selection element include the following elements.
  • the hot rolling step is a step of hot rolling a slab heated to a predetermined temperature (for example, 1100-1400 ° C.) to obtain a hot rolled steel sheet.
  • a predetermined temperature for example, 1100-1400 ° C.
  • finish rolling is performed to perform hot rolling having a predetermined thickness, for example, 1.8 to 3.5 mm. Use a steel plate.
  • the hot-rolled steel sheet is wound at a predetermined temperature.
  • the slab heating temperature is preferably 1100 to 1280 ° C. in consideration of productivity.
  • the hot-rolled sheet annealing step is a step of obtaining a hot-rolled sheet by annealing the hot-rolled steel sheet obtained in the hot-rolling step under predetermined temperature conditions (for example, at 750 to 1200 ° C. for 30 seconds to 10 minutes). be.
  • the morphology of precipitates such as AlN is finally controlled in the hot rolling sheet annealing process. Therefore, the precipitates are uniformly and finely precipitated by the hot-rolled sheet annealing step, so that the primary recrystallization particle size is reduced in the subsequent step. Further, in addition to controlling the inhibitor form in the hot-rolled sheet annealing process, control in the hot rolling process described above, property control of the steel sheet surface before finish annealing described later, atmosphere control during finish annealing, etc. are performed. It is effective to combine them.
  • the hot-rolled annealed sheet obtained in the hot-rolled sheet step is cold-rolled once or multiple times (two or more times) through annealing (intermediate annealing) (for example, total cold). It is a step of obtaining a cold-rolled steel sheet having a thickness of, for example, 0.10 to 0.50 mm by a rolling ratio of 80% to 95%).
  • the decarburization annealing step is a step of performing decarburization annealing (for example, 1 minute to 3 minutes at 700 to 900 ° C.) on the cold rolled steel sheet obtained in the cold rolling step to obtain a decarburized annealed steel sheet in which primary recrystallization has occurred. Is. By decarburizing and annealing the cold-rolled steel sheet, C contained in the cold-rolled steel sheet is removed. The decarburization annealing is preferably performed in a moist atmosphere in order to remove "C" contained in the cold-rolled steel sheet.
  • the primary recrystallization particle size of the decarburized annealed steel sheet it is preferable to control the primary recrystallization particle size of the decarburized annealed steel sheet to 23 ⁇ m or less.
  • the secondary recrystallization start temperature can be preferably shifted to a low temperature.
  • the primary recrystallization grain size can be reduced by controlling the above-mentioned conditions of hot rolling and hot-rolled sheet annealing, or by lowering the decarburization annealing temperature as necessary.
  • the slab may contain Nb group elements, and the primary recrystallized grains can be reduced by the pinning effect of the carbides and carbonitrides of the Nb group elements.
  • the conventional method is used to exert the effect of the present embodiment. May be adjusted as appropriate.
  • the Nb group elements that may be contained as elements that facilitate switching are present as carbides, carbonitrides, solid solution elements, etc., and have an effect on reducing the primary recrystallization particle size.
  • the primary recrystallization particle size is preferably 21 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 18 ⁇ m or less.
  • the primary recrystallization particle size may be 8 ⁇ m or more, and may be 12 ⁇ m or more.
  • Nitriding is performed to adjust the strength of the inhibitor in secondary recrystallization.
  • the nitrogen content of the steel sheet may be increased to about 40 to 300 ppm at an arbitrary timing from the start of the decarburization annealing described above to the start of secondary recrystallization in the finish annealing described later.
  • a treatment of annealing a steel sheet in an atmosphere containing a nitriding gas such as ammonia, or a decarburized annealed steel sheet coated with an annealing separator containing a powder having nitriding ability such as MnN is finished.
  • An example is a process of annealing.
  • the nitride of the Nb group element formed by the nitriding treatment functions as an inhibitor in which the grain growth suppressing function disappears at a relatively low temperature, so that secondary recrystallization occurs. Starts from a lower temperature than before. It is also possible that this nitride has an advantageous effect on the selectivity of nucleation of secondary recrystallized grains and realizes a high magnetic flux density.
  • AlN is also formed in the nitriding treatment, and this AlN functions as an inhibitor in which the grain growth suppressing function continues until a relatively high temperature.
  • the amount of nitriding after the nitriding treatment is preferably 130 to 250 ppm, more preferably 150 to 200 ppm.
  • the annealing separator application step is a step of applying an annealing separator to a decarburized annealed steel sheet.
  • an annealing separator containing MgO as a main component or an annealing separator containing alumina as a main component can be used.
  • a forsterite film (a film mainly composed of Mg 2 SiO 4 ) is likely to be formed as an intermediate layer by finish annealing, and annealing containing alumina as a main component is likely to occur.
  • an oxide film (a film mainly composed of SiO 2 ) is likely to be formed as an intermediate layer by finish annealing. These intermediate layers may be removed if necessary.
  • the decarburized annealed steel sheet after applying the annealing separator is coiled and annealed in the next finish annealing step.
  • the finish annealing step is a step of subjecting a decarburized annealed steel sheet coated with an annealing separator to finish annealing to cause secondary recrystallization.
  • the ⁇ 100 ⁇ ⁇ 001> oriented grains are preferentially grown and the magnetic flux density is dramatically improved by advancing the secondary recrystallization in a state where the growth of the primary recrystallized grains is suppressed by an inhibitor.
  • Finish annealing is an important process for controlling switching, which is a feature of this embodiment.
  • switching by a deviation angle ⁇ , a deviation angle ⁇ , or a deviation angle ⁇ is controlled based on the following seven conditions (A) to (G).
  • total content of Nb group elements in the description of the finish annealing process means the total content of Nb group elements in the steel sheet (decarburized annealed steel sheet) immediately before finish annealing. In other words, it is the chemical composition of the steel sheet immediately before finish annealing that affects the finish annealing conditions, and what is the chemical composition after finish annealing and purification (for example, the chemical composition of the directional electromagnetic steel sheet (finish annealing steel sheet))? It is irrelevant.
  • condition (A), at least one of the conditions (B) to (D), and the condition (E), (F) and (G) may be satisfied.
  • the PA is preferably 0.10 or more, more preferably 0.30 or more, preferably 1.0 or less, and more preferably 0.60 or less.
  • the PB is preferably 0.040 or more, and preferably 0.070 or less.
  • the PC is preferably 0.020 or more, and preferably 0.050 or less.
  • PD is preferably 0.005 or more, and preferably 0.020 or less.
  • the TE is preferably 180 minutes or more, more preferably 240 minutes or more, preferably 480 minutes or less, and more preferably 360 minutes or less.
  • the TF is preferably 350 minutes or less, and more preferably 300 minutes or less.
  • the TF is preferably 300 minutes or less, more preferably 240 minutes or less.
  • the TG is preferably 200 minutes or more, more preferably 300 minutes or more, and preferably 900 minutes or less. , 600 minutes or less is more preferable.
  • the TG is preferably 360 minutes or more, more preferably 600 minutes or more, preferably 1500 minutes or less, and 900 minutes or less. Is more preferable.
  • Condition (A) is a condition in a temperature range sufficiently lower than the temperature at which secondary recrystallization occurs, and this condition does not directly affect the phenomenon recognized as secondary recrystallization.
  • this temperature range is a temperature range in which the surface layer of the steel sheet is oxidized by moisture or the like brought in by the annealing separator applied to the surface of the steel sheet, that is, a temperature range that affects the formation of the primary coating (intermediate layer).
  • the condition (A) is important to enable the subsequent "continuation of secondary recrystallization up to a high temperature region" through controlling the formation of this primary coating.
  • the primary coating has a dense structure and prevents the constituent elements of the inhibitor (for example, Al, N, etc.) from being discharged to the outside of the system at the stage where secondary recrystallization occurs. Acts as a barrier. As a result, the secondary recrystallization continues to a high temperature, and switching can be sufficiently caused.
  • the constituent elements of the inhibitor for example, Al, N, etc.
  • Condition (B) is a condition in a temperature range corresponding to the nucleation stage of the recrystallized nuclei of the secondary recrystallization. By setting this temperature region as the above atmosphere, the growth of the secondary recrystallized grains proceeds at any stage of the grain growth, which is rate-determined by the inhibitor decomposition.
  • This condition (B) is considered to have an effect on promoting inhibitory decomposition especially on the surface layer of the steel sheet and increasing the number of nuclei of secondary recrystallization. For example, it is known that many primary recrystallized grains having a crystal orientation preferable for secondary recrystallization are present on the surface layer of a steel sheet.
  • Conditions (C) and (D) are conditions in a temperature range in which secondary recrystallization starts and grain growth occurs, and these conditions affect the adjustment of inhibitor strength in the process of secondary recrystallization grain growth. do.
  • the growth of the secondary recrystallized grains proceeds at a rate controlled by the inhibitor decomposition in each temperature range.
  • dislocations are efficiently accumulated at the grain boundaries in front of the growth direction of the secondary recrystallized grains, so that the frequency of switching occurs and the switching occurs continuously.
  • the reason why the temperature range is divided into two and the atmosphere is controlled as the conditions (C) and (D) is that the appropriate atmosphere differs depending on the temperature range.
  • a grain-oriented electrical steel sheet satisfying the switching condition of the present embodiment can be obtained.
  • the switching frequency is controlled to be increased in the early stage of secondary recrystallization, the secondary recrystallized grains grow while maintaining the orientation difference due to the switching, and the effect continues until the latter stage and the final switching frequency is also high. Become.
  • a sufficient amount of dislocations are accumulated in front of the growth direction of the crystal grains in the subsequent grain growth process to generate new switching. By doing so, the final switching frequency can be increased.
  • Condition (E) is a condition in a temperature range corresponding to the initial stage of grain growth from nucleation of secondary recrystallization. Retention in this temperature range is important for good secondary recrystallization, but the longer the retention time, the easier it is for primary recrystallized grains to grow. For example, when the particle size of the primary recrystallized grains becomes large, the accumulation of dislocations (dislocation accumulation at the grain boundaries in front of the growth direction of the secondary recrystallized grains), which is a driving force for the generation of switching, becomes difficult to occur. If the holding time in this temperature range is 600 minutes or less, the growth of the secondary recrystallized grains in the initial stage can proceed in a state where the coarsening of the primary recrystallized grains is suppressed. It will increase the selectivity. In the present embodiment, many switchings are generated and continued against the background of shifting the secondary recrystallization start temperature to a low temperature by miniaturizing the primary recrystallization grains and utilizing Nb group elements.
  • Condition (F) is a condition in a temperature range corresponding to the initial stage of grain growth from nucleation of secondary recrystallization, and is a condition that contributes to switching of the deviation angle ⁇ . Retention in this temperature range affects the occurrence and continuation of switching, and the longer the retention time, the more likely it is that primary recrystallized grains will grow. By setting the holding time within an appropriate range, it is possible to reduce the switching of the shift angle ⁇ .
  • Condition (G) is a factor that controls the stretching direction of the ⁇ grain boundary and the ⁇ grain boundary in the steel sheet surface where the switching occurs. Sufficient holding at 1000 to 1050 ° C. makes it possible to increase the frequency of switching in the rolling direction. It is considered that the morphology (for example, arrangement and shape) of the precipitate in the steel containing the inhibitor changes during the holding in the above temperature range. By setting the holding time within an appropriate range, it is considered that the switching between the shift angle ⁇ and the shift angle ⁇ is increased in the rolling direction.
  • the arrangement and shape of the precipitates (particularly MnS) in the steel have anisotropy in the surface of the steel sheet and are oriented in the rolling direction. It is considered to have a tendency to be biased. Although the details are unknown, holding in the above temperature range changes the degree of deflection of the morphology of such precipitates in the rolling direction, and ⁇ grain boundaries and ⁇ grain boundaries are formed during the growth of secondary recrystallized grains. It is considered that this affects the direction in which the steel sheet is easily stretched.
  • the frequency of existence of the subgrain boundaries itself is high, so that the effect of the present embodiment can be obtained even if the retention time TG is short. It is possible.
  • the insulating film forming step is a step of forming an insulating film on the grain-oriented electrical steel sheet after the finish annealing step.
  • An insulating film mainly composed of phosphate and colloidal silica or an insulating film mainly composed of alumina sol and boric acid may be formed on the steel sheet after finish annealing.
  • a coating solution for example, a coating solution containing phosphoric acid or phosphate, chromic anhydride or chromate, and colloidal silica
  • a steel sheet after finish annealing and baked (for example, 350 to 1150).
  • An insulating film may be formed at ° C. for 5 to 300 seconds).
  • a coating solution containing alumina sol and boric acid may be applied to the steel sheet after finish annealing and baked (for example, at 750 to 1350 ° C. for 10 to 100 seconds) to form an insulating film.
  • the manufacturing method according to the present embodiment may further include a magnetic domain control step, if necessary.
  • the magnetic domain control step is a step of subdividing the magnetic domain of the grain-oriented electrical steel sheet. For example, a local fine strain or a local groove may be formed on the grain-oriented electrical steel sheet by a known method such as laser, plasma, mechanical method, or etching. Such magnetic domain subdivision processing does not impair the effect of the present embodiment.
  • the above-mentioned local microstrain and local groove become abnormal points when measuring the crystal orientation and particle size specified in this embodiment. Therefore, in the measurement of the crystal orientation, the measurement points should not overlap with the local microstrain and the local groove. In addition, in the measurement of particle size, local minute strains and local grooves are not recognized as grain boundaries.
  • the switching defined in this embodiment occurs in the process of growing the secondary recrystallized grains.
  • This phenomenon is influenced by various control conditions such as the chemical composition of the material (slab), the incorporation of inhibitors leading up to the growth of secondary recrystallized grains, and the control of the grain size of primary recrystallized grains. For this reason, switching does not have to simply control one condition, but it is necessary to control a plurality of control conditions in a complex and indivisible manner.
  • Switching is considered to be caused by grain boundary energy and surface energy between adjacent crystal grains.
  • the surface energy is generated in the process of growing the secondary recrystallized grains. It is conceivable that switching occurs so as to reduce the amount of energy, that is, to approach the ⁇ 110 ⁇ plane direction and reduce the deviation angle.
  • these energy differences are not energy differences that cause a change in orientation until switching occurs in the process of secondary recrystallized grains growing. Therefore, in a general situation, the secondary recrystallized grains grow while having an angle difference or a deviation angle. For example, when the secondary recrystallized grains grow in a general situation, the switching does not occur, and the deviation angle corresponds to the angle caused by the orientation variation at the time of generation of the secondary recrystallized grains. That is, the shift angle hardly changes during the growth process of the secondary recrystallized grains.
  • the secondary recrystallization starts at a lower temperature than before, the disappearance of dislocations is delayed, and the dislocations are accumulated in such a way that the dislocations are swept up at the grain boundaries in front of the growing secondary recrystallized grains in the growth direction.
  • the dislocation density increases. For this reason, atomic rearrangement is likely to occur in front of the growing secondary recrystallized grains, and as a result, the angle difference from the adjacent secondary recrystallized grains is reduced, that is, the grain boundary energy is reduced. , Or it is thought that switching is caused to reduce the surface energy.
  • the present invention is not limited to this one-condition example.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • Example 1 Using the slab having the chemical composition shown in Table 1A as a material, a grain-oriented electrical steel sheet (silicon steel sheet) having the chemical composition shown in Table 2A was produced. These chemical compositions were measured based on the above method. In Tables 1A and 2A, “-" indicates that the content is not controlled and manufactured in consideration of the content, and the content is not measured. Further, in Tables 1A and 2A, the numerical values marked with " ⁇ " are the measured values having sufficient reliability as the content, although the content was measured by performing control and manufacturing in consideration of the content. Was not obtained (the measurement result is an element below the detection limit).
  • the grain-oriented electrical steel sheet was manufactured based on the manufacturing conditions shown in Tables 3A to 12A. Specifically, slabs are cast and hot-rolled, hot-rolled, cold-rolled, and decarburized and annealed. Nitriding treatment (nitriding annealing) was performed in a mixed atmosphere.
  • an annealing separator containing MgO as a main component was applied to the steel sheet, and finish annealing was performed.
  • finish annealing the steel sheet was held at 1200 ° C. for 20 hours (purification annealing) in a hydrogen atmosphere and cooled.
  • a coating solution for forming an insulating film containing mainly phosphate and colloidal silica and containing chromium is applied on the primary coating (intermediate layer) formed on the surface of the manufactured directional electromagnetic steel sheet (finish-annealed steel sheet). Then, hydrogen: nitrogen was heated and held in an atmosphere of 75% by volume: 25% by volume and cooled to form an insulating film.
  • the manufactured grain-oriented electrical steel sheet is in contact with an intermediate layer arranged in contact with the grain-oriented electrical steel sheet (silicon steel sheet) and on the intermediate layer when viewed from a cut surface whose cutting direction is parallel to the plate thickness direction. It had an arranged insulating coating.
  • the intermediate layer was a forsterite film having an average thickness of 2 ⁇ m
  • the insulating film was an insulating film mainly composed of phosphate and colloidal silica having an average thickness of 1 ⁇ m.
  • iron loss W 17/50 (unit: W / kg) defined as power loss per unit weight (1 kg) of steel plate is measured under the conditions of AC frequency: 50 Hz and exciting magnetic flux density: 1.7 T. did. Further, the magnetic flux density B 8 (unit: T) in the rolling direction of the steel sheet when excited at 800 A / m was measured.
  • the magnetostriction ⁇ pp @ 1.7T (difference between the minimum and maximum values of magnetostriction at 1.7T) that occurs in a steel sheet under the conditions of AC frequency: 50Hz and exciting magnetic flux density: 1.7T.
  • ⁇ pp It was calculated by @ 1.7T (L max ⁇ L min ) ⁇ L 0.
  • the magnetostriction ⁇ [email protected] difference between the minimum and maximum values of magnetostriction at 1.9T generated in the steel sheet under the conditions of AC frequency: 50Hz and exciting magnetic flux density: 1.9T was measured. ..
  • the magnetostriction rate level Lva (unit: dB) is the magnetostriction amount ⁇ (fi) (0 Hz) for each frequency obtained by Fourier transforming a magnetostrictive waveform having two or more cycles and a waveform acquired at a sampling frequency of 6.4 kHz. It was derived by the following equation 5 using ( ⁇ 3.2 kHz).
  • Air density (kg / m 3 )
  • c Speed of sound (m / s)
  • Pa Air density (kg / m 3 )
  • c Speed of sound (m / s)
  • fi Frequency (Hz)
  • ⁇ (fi) Amount of magnetostriction for each frequency subjected to Fourier transform
  • the characteristics of grain-oriented electrical steel sheets vary greatly depending on the chemical composition and manufacturing method. Therefore, it is necessary to compare and examine the evaluation results of each characteristic within the range of the steel sheet in which the chemical composition and the manufacturing method are limited to an appropriate degree. Therefore, in the following, the evaluation results of each characteristic will be described for each grain-oriented electrical steel sheet according to some characteristic chemical composition and manufacturing method.
  • Examples 1 to 64 are examples produced by a process of lowering the slab heating temperature and forming a major inhibitor of secondary recrystallization by nitriding after primary recrystallization.
  • No. 1 to 23 are examples in which the conditions of PA, PB, PC, PD, TE, TF, and TG were mainly changed at the time of finish annealing by using a steel grade containing no Nb group element.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • No. Reference numeral 3 denotes a comparative example in which the inhibitor strength was increased by setting the amount of N after nitriding to 300 ppm.
  • B 8 inhibitor strength is increased by increasing the amount of nitride increases.
  • B 8 is a high value.
  • the magnetostrictive velocity level was insufficient because the finish annealing conditions were not preferable.
  • No. Reference numeral 10 denotes an example of the present invention in which the amount of N after nitriding is 160 ppm. No. At 10, B 8 was not a particularly high value, but the magnetostrictive velocity level was preferably a low value because the finish annealing conditions were favorable.
  • No. 22 and No. Reference numeral 23 denotes an example in which the TF was increased and the secondary recrystallization was continued up to a high temperature in addition to the strengthening of nitriding.
  • B 8 is high.
  • the magnetostrictive velocity level was insufficient because the TF was increased too much.
  • the magnetostrictive velocity level was preferably a low value because the TF setting was appropriate.
  • Examples 24 to 34 are examples in which the PA and TE conditions were significantly changed during finish annealing by using steel grades containing 0.002% of Nb at the time of slab.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • No. 35 to 47 are examples using steel grades containing 0.007% of Nb at the time of slab.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • No. Nos. 35 to 47 are the above-mentioned Nos. at the time of slab. Since Nb is more preferably contained than 1 to 34, the preferable magnetostrictive velocity level is a low value. Also, B 8 is high. That is, if the finish annealing conditions are controlled by using the slab containing Nb, it has an advantageous effect on the magnetic characteristics and the magnetostrictive characteristics.
  • No. 48 to 55 are examples in which TE was set to a short time of less than 200 minutes, and the influence of the Nb content was particularly confirmed.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • No. 56 to 64 are examples in which TE was set to a short time of less than 200 minutes and the influence of the content of Nb group elements was confirmed.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • Reference numerals 65 to 100 are examples produced by a process in which the slab heating temperature is raised and MnS sufficiently dissolved during slab heating is reprecipitated in a subsequent step and utilized as a main inhibitor.
  • No. 83-100 is an embodiment in which enhanced B 8 contain a Bi slab time.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • Example 2 No. 1 shown in Example 1.
  • 97 and No. The influence of magnetic domain control was investigated using 98 grain-oriented electrical steel sheets. Specifically, No. 97 and No. 98 was subjected to magnetic domain subdivision treatment by forming local microdistortion regions or grooves by any of laser, plasma, mechanical, and etching techniques.
  • Example 3 Using the slabs having the chemical compositions shown in Tables 1C and 2C as materials, grain-oriented electrical steel sheets having the chemical compositions shown in Tables 3C and 4C were produced.
  • the method for measuring the chemical composition and the method for describing the chemical composition in the table are the same as those in Example 1 above.
  • the grain-oriented electrical steel sheet was manufactured based on the manufacturing conditions shown in Tables 5C and 6C.
  • the manufacturing conditions other than those shown in the table are the same as those in Example 1 above.
  • Example 2 The same insulating film as in Example 1 above was formed on the surface of the manufactured grain-oriented electrical steel sheet (finish-annealed steel sheet).
  • the manufactured grain-oriented electrical steel sheet is in contact with an intermediate layer arranged in contact with the grain-oriented electrical steel sheet (silicon steel sheet) and on the intermediate layer when viewed from a cut surface whose cutting direction is parallel to the plate thickness direction. It had an arranged insulating coating.
  • the intermediate layer was a forsterite film having an average thickness of 1.5 ⁇ m
  • the insulating film was an insulating film mainly composed of phosphate and colloidal silica having an average thickness of 2 ⁇ m. ..
  • the intermediate layer is an oxide film (film mainly composed of SiO 2 ) having an average thickness of 20 nm
  • the insulating film is mainly composed of phosphate and colloidal silica having an average thickness of 2 ⁇ m. It was an insulating film.
  • the secondary recrystallized grains are divided into small regions by subgrain boundaries, and then the relationship between the deviation angle ⁇ and the deviation angle ⁇ , and the deviation angle ⁇ and the deviation angle ⁇ . Since the relationship with the above was preferably controlled, both showed excellent iron loss characteristics and magnetostriction rate level.
  • the displacement angle was minutely and continuously displaced in the secondary recrystallized grains, but the secondary recrystallized grains were not divided by the subgrain boundaries, and the relationship of the displacement angle ⁇ was preferably controlled. Therefore, a preferable magnetostrictive velocity level could not be obtained.
  • a grain-oriented electrical steel sheet having excellent iron loss characteristics and an improved magnetostrictive velocity level (Lva) in a medium-high magnetic field region (particularly a magnetic field of about 1.7T to 1.9T). Since it can be provided, it has high industrial applicability.
  • Lva magnetostrictive velocity level

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

この方向性電磁鋼板は、Goss方位に配向する集合組織を有し、圧延方向Lに関して、粒径RAαと、粒径RAβと、RAγとを定義するとき、これらの粒径が、RAβ<RAαを満たし、RAγ<RAαを満たす。

Description

方向性電磁鋼板
 本発明は、方向性電磁鋼板に関する。
 方向性電磁鋼板は、Siを7質量%以下含有し、{110}<001>方位(Goss方位)に集積した二次再結晶集合組織を有する。なお、{110}<001>方位とは、結晶の{110}面が圧延面と平行に配し、且つ結晶の<001>軸が圧延方向と平行に配することを意味する。
 方向性電磁鋼板の磁気特性は、{110}<001>方位への集積度に大きく影響される。特に、鋼板の使用時に主たる磁化方向となる鋼板の圧延方向と、磁化容易方向である結晶の<001>方向との関係が重要と考えられている。そのため、近年の実用の方向性電磁鋼板では、結晶の<001>方向と圧延方向とがなす角が5゜程度の範囲内に入るように、制御されている。
 方向性電磁鋼板の実際の結晶方位と理想的な{110}<001>方位とのずれは、圧延面法線方向Z周りにおけるずれ角α、圧延直角方向C周りにおけるずれ角β、および圧延方向L周りにおけるずれ角γの3成分により表すことができる。
 図1は、ずれ角α、ずれ角β、及びずれ角γを例示する模式図である。図1に示すように、ずれ角αとは、圧延面法線方向Zから見たときに圧延面に射影した結晶の<001>方向と圧延方向Lとがなす角である。ずれ角βは、圧延直角方向C(板幅方向)から見たときにL断面(圧延直角方向を法線とする断面)に射影した結晶の<001>方向と圧延方向Lとがなす角である。ずれ角γは、圧延方向Lから見たときにC断面(圧延方向を法線とする断面)に射影した結晶の<110>方向と圧延面法線方向Zとがなす角である。
 ずれ角α、β、γのうち、ずれ角βは、磁歪に影響を与えることが知られている。なお、磁歪とは、磁性体が磁場印加によって形状変化する現象である。変圧器のトランスなどに用いられる方向性電磁鋼板では、磁歪が振動・騒音の原因となるため、磁歪が小さいことが求められている。
 例えば、特許文献1~3には、ずれ角βを制御することが開示されている。また、ずれ角βに加えて、ずれ角αを制御することが、特許文献4および5に開示されている。さらに、ずれ角α、ずれ角βおよびずれ角γを指標として用い、結晶方位の集積度をさらに詳細に分類して鉄損特性を向上する技術が特許文献6に開示されている。
 また、ずれ角α、β、γの絶対値の大きさ及び平均値を単に制御するだけでなく、変動(偏差)を含めて制御することが、例えば特許文献7~9に開示されている。さらに、特許文献10~12には、方向性電磁鋼板にNbやVなどを添加することが開示されている。
 また、特許文献13には、磁歪に起因する変圧器騒音の予測法が提案されている。この変圧器騒音の予測法では、交流励磁時の磁歪波形を時間微分し速度に変換して人の聴覚の周波数特性であるA特性聴感補正を適用した磁歪速度レベル(Lva)と呼ばれる値を用いる。特許文献14には、磁歪速度レベル(Lva)を低減することで、変圧器騒音を低減することが開示されている。例えば、特許文献14には、鋼板表面に線状に歪を導入して磁区細分化することで磁歪速度レベルを低減し、方向性電磁鋼板に起因する変圧器騒音を低減する技術が開示されている。
日本国特開2001-294996号公報 日本国特開2005-240102号公報 日本国特開2015-206114号公報 日本国特開2004-60026号公報 国際公開第2016/056501号 日本国特開2007-314826号公報 日本国特開2001-192785号公報 日本国特開2005-240079号公報 日本国特開2012-52229号公報 日本国特開昭52-24116号公報、 日本国特開平02-200732号公報 日本国特許第4962516号公報 日本国特許第3456742号公報 日本国特開2017-128765号公報
 本発明者らが検討した結果、特許文献1~9に開示された従来の技術は、結晶方位を制御しているにも関わらず、特に、磁歪の低減が十分とは言えない。特に、磁歪速度レベル(Lva)の低減が不十分である場合があることが判明した。
 また、特許文献10~12に開示された従来の技術は、単にNb及びVを含有させただけであり、磁歪速度レベル(Lva)の低減は十分とは言えない。
 また、特許文献13および14では、磁歪速度レベル(Lva)と変圧器騒音との関係を開示しているが、方向性電磁鋼板の製造後の後処理(磁区細分化)によって磁歪速度レベル(Lva)の低減を試みているだけであり、鋼板の集合組織を制御しているわけではなく、磁歪速度レベル(Lva)の低減が十分とは言えない。
 本発明は、変圧器の騒音低減を可能にする方向性電磁鋼板が求められている現状を踏まえ、磁歪速度レベル(Lva)を改善した方向性電磁鋼板を提供することを課題とする。特に、鉄損特性に優れた上で、中高磁場領域(特に1.7~1.9T程度の磁場)での磁歪速度レベル(Lva)を改善した方向性電磁鋼板を提供することを目的とする。
 本発明の要旨は、次のとおりである。
(1)本発明の一態様に係る方向性電磁鋼板は、質量%で、Si:2.0~7.0%、Nb:0~0.030%、V:0~0.030%、Mo:0~0.030%、Ta:0~0.030%、W:0~0.030%、C:0~0.0050%、Mn:0~1.0%、S:0~0.0150%、Se:0~0.0150%、Al:0~0.0650%、N:0~0.0050%、Cu:0~0.40%、Bi:0~0.010%、B:0~0.080%、P:0~0.50%、Ti:0~0.0150%、Sn:0~0.10%、Sb:0~0.10%、Cr:0~0.30%、Ni:0~1.0%、を含有し、残部がFeおよび不純物からなる化学組成を有し、Goss方位に配向する集合組織を有する方向性電磁鋼板であって、
 圧延面法線方向Zを回転軸とする理想Goss方位からのずれ角をαと定義し、圧延直角方向Cを回転軸とする理想Goss方位からのずれ角をβと定義し、圧延方向Lを回転軸とする理想Goss方位からのずれ角をγと定義し、板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角を(α、β、γ)および(α、β、γ)と表し、境界条件BAαを|α-α|≧0.5°とし、境界条件BAαに基づいて求める圧延方向Lの平均結晶粒径を粒径RAαと定義し、境界条件BAβを|β-β|≧0.5°とし、境界条件BAβに基づいて求める圧延方向Lの平均結晶粒径を粒径RAβと定義し、境界条件BAγを|γ-γ|≧0.5°とし、境界条件BAγに基づいて求める圧延方向Lの平均結晶粒径を粒径RAγと定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、
 境界条件BAβを満足し且つ境界条件BBを満足しない粒界が存在し、境界条件BAγを満足し且つ境界条件BBを満足しない粒界が存在し、粒径RAαと粒径RAβとが、RAβ<RAαを満たし、粒径RAαと粒径RAγとが、RAγ<RAαを満たす。
(2)上記(1)に記載の方向性電磁鋼板では、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、粒径RAβと粒径RBとが、1.10≦RB÷RAβを満たしてもよい。
(3)上記(1)又は(2)に記載の方向性電磁鋼板では、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、粒径RAγと粒径RBとが、1.10≦RB÷RAγを満たしてもよい。
(4)上記(1)~(3)のいずれか一項に記載の方向性電磁鋼板では、粒径RBが15mm以上であってもよい。
(5)上記(1)~(4)のいずれか一項に記載の方向性電磁鋼板では、粒径RAβと粒径RAγとが40mm以下であってもよい。
 本発明の上記態様によれば、鉄損特性に優れた上で、中高磁場領域(特に1.7T~1.9T程度の磁場)での磁歪速度レベル(Lva)を改善した方向性電磁鋼板が提供される。
ずれ角α、ずれ角β、およびずれ角γを例示する模式図である。 本発明の一実施形態に係る方向性電磁鋼板の断面模式図である。 本発明の一実施形態に係る方向性電磁鋼板の製造方法の流れ図である。
 本発明の好ましい一実施形態を詳細に説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。また、化学組成に関する「%」は特に断りがない限り「質量%」を意味する。
 一般的に、磁歪を小さくするには、ずれ角βが小さくなるように(具体的には、ずれ角βの絶対値|β|の最大値および平均値が小さくなるように)、結晶方位が制御される。加えて、磁歪を小さくするには、磁歪の最小値と最大値との差(以下、「λp-p」と表記する)が小さくなるように、結晶方位が制御される。
 ただ、本発明者らが実用鉄心に使用されている電磁鋼板の結晶方位と騒音との関係を調査した結果、従来技術のように磁歪を改善した方向性電磁鋼板を使用しても、実使用環境での騒音は十分に小さくならない状況が認められた。
 本発明者らは、この原因を次のように推定した。実使用環境での騒音は、磁歪λp-pのみの評価では足りず、交流励磁における磁歪波形の時間変化が重要であると考えられる。そこで、本発明者らは、磁歪波形の時間変化を評価することのできる磁歪速度レベル(Lva)に着目した。
 本発明者らは、特に中高磁場領域での磁気特性の特徴を把握するため、一般的に磁気特性が測定される1.7Tで磁化した際の磁歪速度レベル(Lva)や、1.9T程度で磁化した際の磁歪速度レベル(Lva)、磁歪、鉄損、および結晶方位のずれ角などの関係について解析した。
 1.7Tの磁場は、通常用いられる変圧器の設計磁束密度(もしくは、通常電磁鋼板が評価される磁束密度)である。したがって、1.7Tで磁化したときの磁歪速度レベル(Lva)を低減すれば、鉄心の振動が低減して変圧器騒音が低減すると考えられる。
 1.9Tの磁場は、通常用いられる変圧器の設計磁束密度ではない。ただ、実使用環境では磁束は鋼板内を均一には流れず、局所的に磁束が集中する箇所が発生する。そのため、鋼板内には局所的に1.9T程度の磁束が流れる部分が存在する。従来から、1.9Tの磁場では大きな磁歪が発生し、鉄心の振動に大きく影響を与えることが知られている。したがって、1.9Tで磁化したときの磁歪速度レベル(Lva)を低減すれば、鉄心の振動が低減して変圧器騒音が低減すると考えられる。すなわち、実際の変圧器の騒音を低減するためには、1.7Tで磁化したときの磁歪速度レベル(Lva)を低減するだけでなく、合わせて1.9Tで磁化したときの磁歪速度レベル(Lva)も低減することが重要であると考えられる。
 磁歪速度レベル(Lva)を低減すれば、変圧器騒音が低減される理由は、次のように考えられる。
 変圧器を励磁すると磁歪が発生する。発生した磁歪によって、鉄心の振動を生じさせる。変圧器内の鉄心の振動は空気を振動させるため、騒音となる。騒音の音圧は、単位時間当たりの変位量(速度)で評価できる。
 また、人間が知覚できる音の特性は必ずしも全ての周波数で一定ではなく、A特性と呼ばれる聴感特性で表現できる。実際の磁歪波形は、正弦波ではなく、様々な周波数成分が重なった波形となる。このため、磁歪波形をフーリエ変換し、それぞれの周波数ごとの振幅を求め、且つA特性を乗じることによって、実際の人間の聴感特性に近い指標となる磁歪速度レベル(Lva)を得ることができる。
 この磁歪速度レベル(Lva)を低減すれば、変圧器騒音のうちで人間が知覚する周波数に起因する鉄心振動を抑制でき、その結果、変圧器騒音を有効的に低減できると考えられる。
 本発明者らが検討した結果、1.7T近傍及び1.9T近傍の磁場領域(以降、単に「中高磁場領域」と記述する)の磁歪速度レベル(Lva)を低減すれば、鉄損特性に優れた上で、変圧器騒音を有効的に低減できることを確認した。
 さらに本発明者らが検討した結果、中高磁場領域の磁歪速度レベル(Lva)を低減するには、電磁鋼板の結晶方位について、ずれ角β及びずれ角γの制御が重要であり、具体的には、ずれ角αとずれ角βとの関係性、及び、ずれ角αとずれ角γとの関係性の制御が重要であることを見出した。すなわち、これらのずれ角の関係性を最適に制御すれば、中高磁場領域の磁歪速度レベル(Lva)を低減でき、その結果、変圧器の騒音のさらなる低減が可能であることを見出した。
 なお、実用の方向性電磁鋼板の二次再結晶で優先的に発生する結晶方位は、基本的には{110}<001>方位とされている。しかし、工業的に実施される二次再結晶工程では、鋼板面({110}面)内で多少の面内回転を有する方位の成長が許容されて進行する。すなわち、工業的に実施される二次再結晶過程では、ずれ角を有する結晶粒の生成および成長を完全に排除することが容易ではない。そして、この方位の結晶粒がある程度の大きさに成長すると、この結晶粒は理想的な{110}<001>方位の結晶粒に蚕食されることなく、最終的な鋼板中に残存する。この結晶粒は、厳密には圧延方向に<001>方位を有しておらず、一般的には「首振りGoss」などと呼ばれる。
 もちろん、二次再結晶粒の発生段階で、ずれ角が小さい結晶粒のみを多数生成させておくことができれば、それら個々の結晶粒がそれほど大きく成長しなくとも、ほぼ理想的な{110}<001>方位の二次再結晶粒で鋼板の全領域を埋め尽くすことも可能である。しかし、実際には、そのように方位が揃った結晶粒だけを多数生成させることはできない。
 そこで、本発明者らは、二次再結晶粒の成長の段階で結晶方位を保ったまま成長させるのではなく、方位変化を伴いながら結晶を成長させることを検討した。その結果、二次再結晶粒の成長の途中で、従来は粒界と認識されなかったほどの局所的で小傾角な方位変化(亜粒界)を多数発生させ、一つの二次再結晶粒をずれ角がわずかに異なる小さな領域に分割した状態が、中高磁場領域での磁歪速度レベル(Lva)の低減に有利となることを知見した。
 特に、二次再結晶粒を亜粒界によって小さな領域に分割した上で、ずれ角αとずれ角βとの関係性、及び、ずれ角αとずれ角γとの関係性を制御することが重要であることを見出した。具体的には、圧延方向Lに関して、ずれ角αの変化に関連する亜粒界よりも、ずれ角β及びずれ角γの変化に関連する亜粒界をより多く生成させれば、鉄損特性に優れた上で、中高磁場領域での磁歪速度レベル(Lva)を改善できることを見出した。
 また、上記の方位変化の制御には、方位変化自体を発生し易くする要因と、方位変化が一つの結晶粒の中で継続的に発生するようにする要因との考慮が重要であることを知見した。そして、方位変化自体を発生し易くさせるためには、二次再結晶をより低温から開始させることが有効で、例えば、一次再結晶粒径を制御し、Nb等の元素を活用できることを確認した。さらに、従来から用いられるインヒビターであるAlNなどを適切な温度および雰囲気中で利用することによって、方位変化を二次再結晶中の一つの結晶粒の中で高温領域まで継続的に発生させることができることを確認した。
 以下、本実施形態に係る方向性電磁鋼板を詳細に説明する。
 本実施形態に係る方向性電磁鋼板では、二次再結晶粒が、ずれ角がわずかに異なる複数の領域に分割されている。すなわち、本実施形態に係る方向性電磁鋼板は、二次再結晶粒の粒界に相当する比較的に角度差が大きい粒界に加えて、二次再結晶粒内を分割している局所的で小傾角な粒界を有する。
 その上で、本実施形態に係る方向性電磁鋼板では、圧延方向Lに関して、ずれ角αとずれ角βとの関係性、及び、ずれ角αとずれ角γとの関係性を好ましく制御する。
 具体的には、本実施形態に係る方向性電磁鋼板は、質量%で、Si:2.0~7.0%、Nb:0~0.030%、V:0~0.030%、Mo:0~0.030%、Ta:0~0.030%、W:0~0.030%、C:0~0.0050%、Mn:0~1.0%、S:0~0.0150%、Se:0~0.0150%、Al:0~0.0650%、N:0~0.0050%、Cu:0~0.40%、Bi:0~0.010%、B:0~0.080%、P:0~0.50%、Ti:0~0.0150%、Sn:0~0.10%、Sb:0~0.10%、Cr:0~0.30%、Ni:0~1.0%、を含有し、残部がFeおよび不純物からなる化学組成を有し、Goss方位に配向する集合組織を有する方向性電磁鋼板において、
 圧延面法線方向Zを回転軸とする理想Goss方位からのずれ角をαと定義し、圧延直角方向Cを回転軸とする理想Goss方位からのずれ角をβと定義し、圧延方向Lを回転軸とする理想Goss方位からのずれ角をγと定義し、並びに、
 板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角を(α、β、γ)および(α、β、γ)と表し、境界条件BAαを|α-α|≧0.5°とし、境界条件BAαに基づいて求める圧延方向Lの平均結晶粒径を粒径RAαと定義し、境界条件BAβを|β-β|≧0.5°とし、境界条件BAβに基づいて求める圧延方向Lの平均結晶粒径を粒径RAβと定義し、境界条件BAγを|γ-γ|≧0.5°とし、境界条件BAγに基づいて求める圧延方向Lの平均結晶粒径を粒径RAγと定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、
 境界条件BAβを満足し且つ境界条件BBを満足しない粒界が存在し、且つ境界条件BAγを満足し且つ境界条件BBを満足しない粒界が存在し、
 粒径RAαと粒径RAβとが、RAβ<RAαを満たし、且つ粒径RAαと粒径RAγとが、RAγ<RAαを満たす。
 なお、本実施形態に係る方向性電磁鋼板は、境界条件BAβを満足し且つ境界条件BBを満足しない粒界と、境界条件BAγを満足し且つ境界条件BBを満足しない粒界を有するが、さらに、境界条件BAαを満足し且つ境界条件BBを満足しない粒界を有してもよい。
 以降の説明では、境界条件BAα、境界条件BAβ、および境界条件BAγを総称して、単に「境界条件BA」と記述することがある。同様に、圧延方向の平均結晶粒径RAα、平均結晶粒径RAβ、及び平均結晶粒径RAγを総称して、単に「平均結晶粒径RA」と記述することがある。
 境界条件BBを満足する粒界は、従来の方向性電磁鋼板をマクロエッチングしたときに観察される二次再結晶粒界に実質的に対応する。本実施形態に係る方向性電磁鋼板は、上記の境界条件BBを満足する粒界に加えて、境界条件BAβを満足し且つ上記境界条件BBを満足しない粒界と、BAγを満足し且つ上記境界条件BBを満足しない粒界とを比較的高い頻度で有する。これらの粒界は、二次再結晶粒内を分割している局所的で小傾角な粒界に対応する。すなわち、本実施形態では、二次再結晶粒が、ずれ角がわずかに異なる小さな領域により細かく分割された状態となる。
 従来の方向性電磁鋼板は、境界条件BBを満足する二次再結晶粒界を有するかもしれない。また、従来の方向性電磁鋼板は、二次再結晶粒の粒内でずれ角の変位を有しているかもしれない。ただ、従来の方向性電磁鋼板では、二次再結晶粒内でずれ角が連続的に変位する傾向が強いため、従来の方向性電磁鋼板に存在するずれ角の変位は、上記の境界条件BAβおよびBAγを満足しにくい。
 例えば、従来の方向性電磁鋼板では、二次再結晶粒内の長範囲領域でずれ角の変位を識別できるかもしれないが、二次再結晶粒内の短範囲領域ではずれ角の変位が微小なために識別しにくい(境界条件BAβおよびBAγを満足しにくい)。一方、本実施形態に係る方向性電磁鋼板では、ずれ角が短範囲領域で局所的に変位して粒界として識別できる。具体的には、二次再結晶粒内で隣接し且つ間隔が1mmである2つの測定点の間に、境界条件BAβを満足し且つ上記境界条件BBを満足しない粒界と、BAγを満足し且つ上記境界条件BBを満足しない粒界とが比較的高い頻度で存在する。これらの粒界は、二次再結晶粒を分割する粒界に対応する。
 本実施形態に係る方向性電磁鋼板では、後述するように製造条件を緻密に制御することによって、二次再結晶粒を分割する粒界を意図的に作り込む。また、本実施形態に係る方向性電磁鋼板では、二次再結晶粒をずれ角がわずかに異なる小さな領域に分割した状態とし、その上で、圧延方向Lに関して、ずれ角αとずれ角βとの関係性、及び、ずれ角αとずれ角γとの関係性を制御する。その結果、中高磁場領域での磁歪速度レベル(Lva)を好ましく改善できる。
1.結晶方位
 まず、本実施形態における結晶方位の記載を説明する。
 本実施形態では、「実際の結晶の{110}<001>方位」と「理想的な{110}<001>方位」との2つの{110}<001>方位を区別する。この理由は、本実施形態では、実用鋼板の結晶方位を表示する際の{110}<001>方位と、学術的な結晶方位としての{110}<001>方位とを区別して扱う必要があるためである。
 一般的に再結晶した実用鋼板の結晶方位の測定では、±2.5°程度の角度差は厳密に区別せずに結晶方位を規定する。従来の方向性電磁鋼板であれば、幾何学的に厳密な{110}<001>方位を中心とする±2.5°程度の角度範囲域を、「{110}<001>方位」とする。しかし、本実施形態では、±2.5°以下の角度差も明確に区別する必要がある。
 このため、本実施形態では、実用的な意味で方向性電磁鋼板の方位を意味する場合には、従来通り、単に「{110}<001>方位(Goss方位)」と記載する。一方、幾何学的に厳密な結晶方位としての{110}<001>方位を意味する場合には、従来の公知文献などで用いられる{110}<001>方位との混同を回避するため、「理想{110}<001>方位(理想Goss方位)」と記載する。
 したがって、本実施形態では、例えば、「本実施形態に係る方向性電磁鋼板の{110}<001>方位は、理想{110}<001>方位から2°ずれている」との記載が存在することがある。
 また、本実施形態では、方向性電磁鋼板で観測される結晶方位に関連する以下の4つの角度α、β、γ、φを使用する。
 ずれ角α:方向性電磁鋼板で観測される結晶方位の、圧延面法線方向Z周りにおける理想{110}<001>方位からのずれ角。
 ずれ角β:方向性電磁鋼板で観測される結晶方位の、圧延直角方向C周りにおける理想{110}<001>方位からのずれ角。
 ずれ角γ:方向性電磁鋼板で観測される結晶方位の、圧延方向L周りにおける理想{110}<001>方位からのずれ角。
 上記のずれ角α、ずれ角β、及びずれ角γの模式図を、図1に示す。
 角度φ:方向性電磁鋼板の圧延面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位の上記ずれ角を、それぞれ(α、β、γ)および(α、β、γ)と表したとき、φ=[(α-α+(β-β+(γ-γ1/2により得られる角度。
 この角度φを、「空間3次元的な方位差」と記述することがある。
2.方向性電磁鋼板の結晶粒界
 本実施形態に係る方向性電磁鋼板は、圧延方向Lに関して、ずれ角αとずれ角βとの関係性、及び、ずれ角αとずれ角γとの関係性を制御するために、特に、二次再結晶粒の成長中に起こる、従来では、粒界とは認識されなかった程度の局所的な結晶方位の変化を利用する。以降の説明では、一つの二次再結晶粒内をずれ角がわずかに異なる小さな領域に分割するように生じる方位変化を「切り替え」と記述することがある。
 さらに、二次再結晶粒内を分割する結晶粒界を「亜粒界」、亜粒界を含めた粒界を境界として区別した結晶粒を「亜結晶粒」と記述することがある。
 また、ずれ角αの角度差を考慮した結晶粒界(境界条件BAαを満足する粒界)を「α粒界」、α粒界を境界として区別した結晶粒を「α結晶粒」と記述し、ずれ角βの角度差を考慮した結晶粒界(境界条件BAβを満足する粒界)を「β粒界」、β粒界を境界として区別した結晶粒を「β結晶粒」と記述し、ずれ角γの角度差を考慮した結晶粒界(境界条件BAγを満足する粒界)を「γ粒界」、γ粒界を境界として区別した結晶粒を「γ結晶粒」と記述することがある。
 また、本実施形態に関連する特性である中高磁場領域での磁歪速度レベル(Lva)に関して、以降の説明では、単に「磁歪速度レベル」と記述することがある。
 上記の切り替えは、結晶方位の変化が1°程度(2°未満)であり、二次再結晶粒の成長が継続する過程で発生すると考えられる。詳細は、製造法との関連で後述するが、切り替えが発生し易い状況で二次再結晶粒を成長させることが重要である。例えば、一次再結晶粒径を制御することで二次再結晶を比較的低温で開始させ、インヒビターの種類と量とを制御することで二次再結晶を高温まで継続させることが重要である。
 ずれ角の制御が磁気特性に影響を及ぼす理由は必ずしも明確ではないが、以下のように推定される。
 一般的に磁化挙動は、180°磁区の移動と磁化容易方向からの磁化回転により起きる。この磁区移動および磁化回転は、特に粒界近傍にて隣接する結晶粒との磁区の連続性または磁化方向の連続性に影響を受け、隣接粒との方位差が磁化挙動の障害の大小に結びつくのではないかと考えられる。本実施形態にて制御する切り替えは、一つの二次再結晶粒内で切り替え(局所的な方位変化)が高い頻度で生じることで、隣接粒との相対的な方位差を小さくし、方向性電磁鋼板全体での結晶方位の連続性を高めるように作用していると考えられる。
 本実施形態では、切り替えを含めた結晶方位の変化に関して、数種の境界条件を規定する。本実施形態では、これらの境界条件に基づく「粒界」の定義が重要である。
 現在、実用的に製造されている方向性電磁鋼板の結晶方位は、圧延方向と<001>方向とのずれ角が、概ね5°以下程度となるよう制御されている。この制御は、本実施形態に係る方向性電磁鋼板でも同様である。このため、方向性電磁鋼板の「粒界」を定義するとき、一般的に粒界(大傾角粒界)の定義である「隣接する領域の方位差が15°以上となる境界」を適用することができない。例えば、従来の方向性電磁鋼板では、鋼板面のマクロエッチングにより粒界を顕出するが、この粒界の両側領域の結晶方位差は通常、2~3°程度である。
 本実施形態では、後述するように、結晶と結晶との境界を厳密に規定する必要がある。このため、粒径の測定法として、マクロエッチングのような目視をベースとする方法は採用しない。
 本実施形態では、粒界を特定するために、圧延方向に1mm間隔で少なくとも500点の測定点を含む測定線を設定して結晶方位を測定する。例えば、結晶方位は、X線回折法(ラウエ法)により測定すればよい。ラウエ法とは、鋼板にX線ビームを照射して、透過または反射した回折斑点を解析する方法である。回折斑点を解析することによって、X線ビームを照射した場所の結晶方位を同定することができる。照射位置を変えて複数箇所で回折斑点の解析を行えば、各照射位置の結晶方位分布を測定することができる。ラウエ法は、粗大な結晶粒を有する金属組織の結晶方位を測定するのに適した手法である。
 なお、結晶方位の測定点は少なくとも500点であればよいが、二次再結晶粒の大きさに応じて、測定点を適切に増やすことが好ましい。例えば、結晶方位を測定する測定点を500点としたときに測定線内に含まれる二次再結晶粒が10個未満となる場合、測定線内に二次再結晶粒が10個以上含まれるように1mm間隔の測定点を増やして上記の測定線を延長することが好ましい。
 圧延面上にて1mm間隔で結晶方位を測定し、その上で、各測定点に関して、上記したずれ角α、ずれ角β、及びずれ角γを特定する。特定した各測定点でのずれ角に基づいて、隣接する2つの測定点間に粒界が存在するか否かを判断する。具体的には、隣接する2つの測定点が、上記の境界条件BAおよび/または境界条件BBを満足するか否かを判断する。
 具体的には、隣接する2つの測定点で測定した結晶方位のずれ角をそれぞれ(α、β、γ)および(α、β、γ)と表したとき、境界条件BAαを|α-α|≧0.5°と定義し、境界条件BAβを|β-β|≧0.5°と定義し、境界条件BAγを|γ-γ|≧0.5°と定義し、境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義する。隣接する2つの測定点間に、境界条件BAおよび/または境界条件BBを満足する粒界が存在するか否かを判断する。
 境界条件BBを満足する粒界は、粒界を挟む2点間の空間3次元的な方位差(角度φ)が2.0°以上であり、この粒界は、マクロエッチングで認識されていた従来の二次再結晶粒の粒界とほぼ同じであると言える。
 上記の境界条件BBを満足する粒界とは別に、本実施形態に係る方向性電磁鋼板には、「切り替え」に強く関連する粒界、具体的には、境界条件BAβを満足し且つ上記境界条件BBを満足しない粒界と、BAγを満足し且つ上記境界条件BBを満足しない粒界とが比較的高い頻度で存在する。このように定義される粒界は、一つの二次再結晶粒内をずれ角がわずかに異なる小さな領域に分割する粒界に対応する。
 上記した各粒界は、別の測定データを使用して求めることも可能である。ただ、測定の手間及びデータが異なることによる実態とのずれを考慮すれば、同じ測定線(圧延面上にて1mm間隔で少なくとも500点の測定点)から得られた結晶方位のずれ角を用いて、上記の各粒界を求めることが好ましい。
 本実施形態に係る方向性電磁鋼板は、境界条件BBを満足する粒界に加えて、境界条件BAβを満足し且つ上記境界条件BBを満足しない粒界と、BAγを満足し且つ上記境界条件BBを満足しない粒界とを比較的高い頻度で有するので、二次再結晶粒内がずれ角がわずかに異なる小さな領域に分割された状態となる。
 例えば、本実施形態では、二次再結晶粒内をずれ角がわずかに異なる小さな領域に分割することを特徴とするので、二次再結晶粒内を分割する亜粒界が、従来の二次再結晶粒界よりも比較的高い頻度で存在することが好ましい。
 具体的には、圧延面上にて1mm間隔で少なくとも500点の測定点で結晶方位を測定し、各測定点でずれ角を特定し、隣接する2つの測定点で境界条件を判定したとき、「境界条件BAβを満足する粒界」および「境界条件BAγを満足する粒界」が、「境界条件BBを満足する粒界」よりも、それぞれ1.03倍以上の割合で存在すればよい。すなわち、上記のように境界条件を判定したとき、「境界条件BAβを満足する粒界」および「境界条件BAγを満足する粒界」を「境界条件BBを満足する境界数」で割った値が、それぞれ1.03以上となればよい。本実施形態では、上記の値がそれぞれ1.03以上である場合、方向性電磁鋼板に「境界条件BAβを満足し且つ上記境界条件BBを満足しない粒界」および「BAγを満足し且つ上記境界条件BBを満足しない粒界」が存在すると判断する。
 なお、「境界条件BAβを満足する粒界」および「境界条件BAγを満足する粒界」を「境界条件BBを満足する境界数」で割った値の上限は、特に限定されない。例えば、この値は、80以下であればよく、40以下であってもよく、30以下であってもよい。
3.方向性電磁鋼板の結晶粒径
 本実施形態に係る方向性電磁鋼板は、二次再結晶粒を亜粒界によって小さな領域に分割した上で、ずれ角αとずれ角βとの関係性、及び、ずれ角αとずれ角γとの関係性を制御することが重要である。具体的には、圧延方向Lに関して、ずれ角αの変化に関連する亜粒界よりも、ずれ角β及びずれ角γの変化に関連する亜粒界をより多く生成させる。
 すなわち、境界条件BAαに基づいて求める圧延方向Lの平均結晶粒径を粒径RAαと定義し、境界条件BAβに基づいて求める圧延方向Lの平均結晶粒径を粒径RAβと定義し、境界条件BAγに基づいて求める圧延方向Lの平均結晶粒径を粒径RAγと定義するとき、
 粒径RAαと粒径RAβとが、下記の(式1)を満たし、且つ粒径RAαと粒径RAγとが、下記の(式2)を満たす。
     RAβ<RAα   ・・・(式1)
     RAγ<RAα   ・・・(式2)
 本実施形態に係る方向性電磁鋼板が、(式1)および(式2)を満たすことは、ずれ角αの切り替えよりも、ずれ角β及びずれ角γの切り替えの頻度が多いことを意味している。ずれ角β及びずれ角γの切り替えが、ずれ角αの切り替えよりも多く鋼板に導入されることによって、鋼板の磁区構造が変化すると考えられる。
 詳細なメカニズムは、十分に判明していないが、以下のように推測される。ずれ角αの切り替えが鋼板に生じると、圧延方向に対する磁化容易軸の変化が生じる。圧延方向は方向性電磁鋼板が最も磁化しやすい方向であり、消磁状態における磁気モーメントも圧延方向を向いている。ずれ角αの切り替えのような微小な角度変化でも、180°磁区の連続性に影響が出て、それを補うために還流磁区が生成されると考えられる。このため、ずれ角αよりも磁化容易方向に影響を与えないずれ角β及びずれ角γの亜粒界を多く生成させ、ずれ角αの亜粒界生成を抑えることによって、180°磁壁の連続性を損なうことなく、還流磁区の生成及び消滅を低減できると考えられる。その結果として、磁歪速度レベル(Lva)の低減に寄与すると考えられる。
 粒径RAαと粒径RAβとの関係は、1.05≦RAα÷RAβであることが好ましく、1.10≦RAα÷RAβであることがさらに好ましい。また、RAα÷RAβの上限は、特に制限されないが、例えば5.0であればよい。同様に、粒径RAαと粒径RAγとの関係は、1.05≦RAα÷RAγであることが好ましく、1.10≦RAα÷RAγであることがさらに好ましい。また、RAα÷RAγの上限は、特に制限されないが、例えば5.0であればよい。
 また、本実施形態に係る方向性電磁鋼板は、ずれ角βに基づく亜結晶粒の圧延方向の粒径が二次再結晶粒の圧延方向の粒径よりも小さいことが好ましく、または、ずれ角γに基づく亜結晶粒の圧延方向の粒径が二次再結晶粒の圧延方向の粒径よりも小さいことが好ましい。
 すなわち、境界条件BAβに基づいて求める圧延方向Lの平均結晶粒径を粒径RAβと定義し、境界条件BAγに基づいて求める圧延方向Lの平均結晶粒径を粒径RAγと定義し、境界条件BBに基づいて求める圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
 粒径RAβと粒径RBとが、下記の(式3)を満たすか、または粒径RAγと粒径RBとが、下記の(式4)を満たすことが好ましい。
     1.10≦RB÷RAβ   ・・・(式3)
     1.10≦RB÷RAγ   ・・・(式4)
 この規定は、圧延方向に対する、上述の「切り替え」の状況を表す。つまり、角度φが2°以上となる境界を結晶粒界とする二次再結晶粒の中に、|β-β|が0.5°以上で且つ角度φが2°未満となる境界を少なくとも一つ含む結晶粒、または|γ-γ|が0.5°以上で且つ角度φが2°未満となる境界を少なくとも一つ含む結晶粒が、圧延方向に対して相応の頻度で存在することを意味している。本実施形態では、この切り替えの状況を、上記の(式3)または(式4)により評価し規定する。
 粒径RBが小さいために、または粒径RBは大きくても切り替えが少なく粒径RAβが大きいために、RB/RAβ値が1.10未満になると、ずれ角βの切り替え頻度が十分でなくなり、磁歪速度レベルを十分に改善できないことがある。同様に、RB/RAγ値が1.10未満になると、ずれ角γの切り替え頻度が十分でなくなり、磁歪速度レベルを十分に改善できないことがある。RB/RAβ値およびRB/RAγ値は、好ましくは1.30以上、より好ましくは1.50以上、さらに好ましくは2.0以上、さらに好ましくは3.0以上、さらに好ましくは5.0以上である。
 RB/RAβ値の上限については特に限定されない。切り替えの発生頻度が高くRB/RAβ値が大きくなれば、方向性電磁鋼板全体での結晶方位の連続性が高くなるため、磁歪速度レベルの改善にとっては好ましい。一方で、切り替えは結晶粒内での格子欠陥の残存でもあるため、あまりに発生頻度が高いと、特に鉄損への改善効果が低下する可能性が懸念される。そのため、RB/RAβ値の実用的な最大値としては80が挙げられる。特に鉄損についての配慮が必要であれば、RB/RAβ値の最大値として好ましくは40、より好ましくは30が挙げられる。同様に、RB/RAγ値の上限は、特に限定されないが、好ましくは40、より好ましくは30であればよい。
 なお、RB/RAβ値およびRB/RAγ値は、1.0未満になる場合がある。RBは角度φが2°以上となる粒界に基づいて規定された圧延方向の平均粒径である。一方で、RAβは|β-β|が0.5°以上となる粒界に基づいて規定された圧延方向の平均粒径であり、同様に、RAγは|γ-γ|が0.5°以上となる粒界に基づいて規定された圧延方向の平均粒径である。単純に考えると、角度差の下限が小さい粒界の方が検出される頻度が高いように思われる。つまり、RBは常にRAβ及びRAγよりも大きくなり、RB/RAβ値およびRB/RAγ値は常に1.0以上になるように思われる。
 しかしながら、RBは、角度φに基づく粒界によって求められる粒径であり、RAβおよびRAγは、ずれ角β及びずれ角γに基づく粒界によって求められる粒径であって、RBと、RAβやRAγとでは、粒径を求めるための粒界の定義が異なる。そのため、RB/RAβ値およびRB/RAγ値は、1.0未満になる場合がある。
 例えば、|β-β|が0.5°未満(例えば、0°)であっても、ずれ角αが大きければ、角度φは十分に大きくなる。同様に、|γ-γ|が0.5°未満(例えば、0°)であっても、ずれ角αが大きければ、角度φは十分に大きくなる。すなわち、境界条件BAβや境界条件BAγを満たさないが、境界条件BBを満たす粒界が存在することになる。このような粒界が増えれば、粒径RBの値が小さくなり、結果として、RB/RAβ値やRB/RAγ値が1.0未満になりえる。本実施形態では、ずれ角β及びずれ角γの少なくとも一方の切り替えが起きる頻度が高くなるように各条件を制御することが好ましい。切り替えの制御が十分でなく、本実施形態からのかい離が大きい場合には、ずれ角βやずれ角γの変化が起きなくなり、RB/RAβ値およびRB/RAγ値の少なくとも一方が1.0未満になることがある。なお、本実施形態では、β粒界やγ粒界の発生頻度を十分に高め、RB/RAβ値およびRB/RAγ値の少なくとも一方が1.10以上であることが好ましいことは、既に説明した通りである。
 なお、本実施形態に係る方向性電磁鋼板に関して、圧延面上で隣接し且つ間隔が1mmである2つの測定点間の境界は、表1のケース1からケース4に分類される。上記の粒径RBは、表1のケース1および/またはケース2を満足する粒界に基づいて求め、粒径RAβおよびRAγは、表1のケース1および/またはケース3を満足する粒界に基づいて求める。例えば、圧延方向に沿って少なくとも500測定点を含む測定線上で結晶方位のずれ角を測定し、この測定線上でケース1および/またはケース2の粒界に挟まれる線分長さの平均値を粒径RBとする。同様に、上記の測定線上で、ずれ角βに関して、ケース1および/またはケース3の粒界(具体的にはβ粒界)に挟まれる線分長さの平均値を粒径RAβとする。また、ずれ角γに関して、ケース1および/またはケース3の粒界(具体的にはγ粒界)に挟まれる線分長さの平均値を粒径RAγとする。
Figure JPOXMLDOC01-appb-T000001
 RB/RAβ値およびRB/RAγ値の制御が磁歪速度レベル(Lva)に影響を及ぼす理由は必ずしも明確ではないが、ずれ角αよりも磁化容易方向に影響を与えないずれ角β及びずれ角γの亜粒界を多く生成させることで、180°磁壁の連続性を損なうことなく、還流磁区の生成及び消滅を低減できると考えられる。
 また、本実施形態に係る方向性電磁鋼板では、粒径RBが15mm以上であることが好ましい。
 切り替えは、二次再結晶粒の成長の過程で蓄積する転位により生じると考えられる。すなわち、一度切り替えが起きた後、次の切り替えが起きるためには、二次再結晶粒が相当程度にまで成長することが必要となる。このため、粒径RBが15mm未満であると、切り替えが発生しにくく、切り替えによる磁歪速度レベルの十分な改善が困難になるおそれがある。粒径RBは、好ましくは22mm以上であり、より好ましくは30mm以上であり、さらに好ましくは40mm以上である。
 粒径RBの上限は特に限定しない。例えば、一般的な方向性電磁鋼板の製造では、一次再結晶が完了した鋼板をコイルに巻き、圧延方向に曲率を有した状態で二次再結晶により{110}<001>方位の結晶粒を生成・成長させる。そのため、粒径RBが増大すれば、ずれ角が増加し、磁歪が増大することにもなりかねない。このため、粒径RBを無制限に大きくすることは避けることが好ましい。工業的な実現性も考慮すると、粒径RBについて、好ましい上限として400mm、さらに好ましい上限として200mm、さらに好ましい上限として100mmを挙げることができる。
 また、本実施形態に係る方向性電磁鋼板では、粒径RAβおよび粒径RAγが40mm以下であることが好ましい。
 粒径RAβおよび粒径RAγの値が小さいほど、圧延方向で切り替えの発生頻度が高いことを意味するため、粒径RAβおよび粒径RAγが40mm以下であることが好ましい。粒径RAβおよび粒径RAγは30mm以下であることがより好ましい。
 粒径RAβおよび粒径RAγの下限は特に限定しない。本実施形態では、結晶方位の測定間隔を1mmとしていることから、粒径RAβおよび粒径RAγの最低値は1mmとなる。しかし、本実施形態では、例えば測定間隔を1mm未満とすることにより、粒径RAβおよび粒径RAγが1mm未満となるような鋼板を除外しない。ただし、切り替えは、僅かとは言え結晶中の格子欠陥の存在を伴うので、切り替えの頻度があまりに高い場合には、磁気特性への悪影響も懸念される。また、工業的な実現性も考慮すると、粒径RAβおよび粒径RAγについて、好ましい下限として5mmを挙げることができる。
 なお、本実施形態に係る方向性電磁鋼板における結晶粒径の測定では、結晶粒一つについて、粒径が最大で2mmの不明確さを含む。そのため、粒径測定(圧延面上にて1mm間隔で少なくとも500点の方位測定)は、粒径を規定する方向と鋼板面内で直交する方向に十分離れた位置、つまり異なる結晶粒の測定となるような位置について、計5箇所以上で実施することが好ましい。その上で、計5箇所以上の測定によって得られる全ての粒径を平均することにより、上記の不明確さを解消できる。例えば、上記した各粒径は、圧延直角方向に十分離れた5箇所以上で測定を実施し、計2500点以上の測定点で方位測定を行って平均粒径を求めればよい。
4.理想{110}<001>方位からのずれ角
 上述のような切り替えが十分に起きている鋼板では、「ずれ角」についても特徴的な範囲に制御されやすい。
 ただ、本実施形態の効果を得るために、従来の方位制御のように結晶方位を特定の方向に近づける、例えば、ずれ角の絶対値及び標準偏差を小さくすることは、特に必要な条件ではない。例えば、ずれ角に関する切り替えにより少しずつ結晶方位が変化する場合、ずれ角の絶対値がゼロに近づくことは本実施形態の支障とはならない。また、例えば、ずれ角に関する切り替えにより少しずつ結晶方位が変化する場合、結晶方位自体が特定の方位に収斂することで、結果として、ずれ角の標準偏差がゼロに近づくことは、本実施形態の支障とはならない。
 本実施形態では、「一つの二次再結晶粒を単結晶と捉え、二次再結晶粒内は厳密に同じ結晶方位を有する」と考えるべきではない。つまり、本実施形態では、一つの粗大な二次再結晶粒内に従来は粒界として認識しない程度の微小な方位変化が存在し、この方位変化を検出することが必要になる。
 このため、例えば、結晶方位の測定点を、結晶粒の境界(結晶粒界)とは無関係に設定した一定面積内に等間隔で分布させることが好ましい。具体的には、鋼板面にて、少なくとも20個以上の結晶粒を含むように、Lmm×Mmm(ただしL、M>100)の面積内に、縦横5mm間隔で等間隔に測定点を分布させ、各測定点での結晶方位を測定し、計500点以上のデータを得ることが好ましい。測定点が結晶粒界及び何らかの特異点である場合には、そのデータは用いない。また、対象となる鋼板の磁気特性を決定するために必要な領域(例えば、実機のコイルであれば、ミルシートに記載する磁気特性を測定する範囲)に応じて、上記の測定範囲を広げる必要がある。
 なお、本実施形態に係る方向性電磁鋼板は、鋼板上に中間層や絶縁被膜などを有してもよいが、上記の結晶方位、粒界、平均結晶粒径などは、被膜等を有さない鋼板に基づいて特定してもよい。すなわち、測定試料となる方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、被膜等を除去してから結晶方位などを測定してもよい。
 例えば、絶縁被膜の除去方法として、被膜を有する方向性電磁鋼板を、高温のアルカリ溶液に浸漬すればよい。具体的には、NaOH:30~50質量%+HO:50~70質量%の水酸化ナトリウム水溶液に、80~90℃で5~10分間、浸漬した後に、水洗して乾燥することで、方向性電磁鋼板から絶縁被膜を除去できる。なお、絶縁被膜の厚さに応じて、上記の水酸化ナトリウム水溶液に浸漬する時間を変えればよい。
 また、例えば、中間層の除去方法として、絶縁被膜を除去した電磁鋼板を、高温の塩酸に浸漬すればよい。具体的には、溶解したい中間層を除去するために好ましい塩酸の濃度を予め調べ、この濃度の塩酸に、例えば30~40質量%塩酸に、80~90℃で1~5分間、浸漬した後に、水洗して乾燥させることで、中間層が除去できる。通常は、絶縁被膜の除去にはアルカリ溶液を用い、中間層の除去には塩酸を用いるように、処理液を使い分けて各被膜を除去する。
5.化学組成
 本実施形態に係る方向性電磁鋼板は、化学組成として、基本元素を含み、必要に応じて選択元素を含み、残部がFe及び不純物からなる。
 本実施形態に係る方向性電磁鋼板は、基本元素(主要な合金元素)として、質量分率で、Si(シリコン):2.0%~7.0%を含有する。
 Siは、結晶方位を{110}<001>方位に集積させるために、含有量が2.0~7.0%であることが好ましい。
 本実施形態では、化学組成として、不純物を含有してもよい。なお、「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石やスクラップから、または製造環境等から混入する元素を指す。不純物の合計含有量の上限は、例えば、5%であればよい。
 また、本実施形態では、上記した基本元素および不純物に加えて、選択元素を含有してもよい。例えば、上記した残部であるFeの一部に代えて、選択元素として、Nb、V、Mo、Ta、W、C、Mn、S、Se、Al、N、Cu、Bi、B、P、Ti、Sn、Sb、Cr、Niなどを含有してもよい。これらの選択元素は、その目的に応じて含有させればよい。よって、これらの選択元素の下限値を限定する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、上記効果は損なわれない。
  Nb(ニオブ):0~0.030%
  V(バナジウム):0~0.030%
  Mo(モリブデン):0~0.030%
  Ta(タンタル):0~0.030%
  W(タングステン):0~0.030%
 Nb、V、Mo、Ta、及びWは、本実施形態で特徴的な効果を有する元素として活用することができる。以降の説明では、Nb、V、Mo、Ta、及びWのうちの一種または二種以上の元素をまとめて、「Nb群元素」と記述することがある。
 Nb群元素は、本実施形態に係る方向性電磁鋼板の特徴である切り替えの形成に好ましく作用する。ただし、Nb群元素が切り替え発生に作用するのは製造過程であるので、Nb群元素が本実施形態に係る方向性電磁鋼板に最終的に含有される必要はない。例えば、Nb群元素は、後述する仕上げ焼鈍における純化により系外に排出される傾向が少なからず存在している。そのため、スラブにNb群元素を含有させ、製造過程でNb群元素を活用して切り替えの頻度を高めた場合でも、その後の純化焼鈍によりNb群元素が系外に排出されることがある。そのため、最終製品の化学組成として、Nb群元素が検出できない場合がある。
 そのため、本実施形態では、最終製品である方向性電磁鋼板の化学組成として、Nb群元素の含有量の上限についてのみ規定する。Nb群元素の上限は、それぞれ0.030%であればよい。一方、上述の通り、製造過程でNb群元素を活用したとしても、最終製品ではNb群元素の含有量がゼロになることがある。そのため、Nb群元素の含有量の下限は特に限定されず、下限がそれぞれ0%であってもよい。
 本発明の各実施形態に係る方向性電磁鋼板では、化学組成として、Nb、V、Mo、Ta、およびWからなる群から選択される少なくとも1種を合計で0.0030~0.030質量%含有することが好ましい。
 Nb群元素の含有量が製造途中で増加することは考えにくいので、最終製品の化学組成としてNb群元素が検出されれば、製造過程でNb群元素による切り替え制御が行われたことが示唆される。製造過程で切り替えを好ましく制御するには、最終製品のNb群元素の合計含有量が、0.003%以上であることが好ましく、0.005%以上であることがさらに好ましい。一方、最終製品のNb群元素の合計含有量が0.030%を超えると、切り替えの発生頻度を維持できるが磁気特性が低下することがある。そのため、最終製品のNb群元素の合計含有量が、0.030%以下であることが好ましい。なお、Nb群元素の作用は製造法として後述する。
 C(炭素):0~0.0050%
 Mn(マンガン):0~1.0%
 S(硫黄):0~0.0150%
 Se(セレン):0~0.0150%
 Al(酸可溶性アルミニウム):0~0.0650%
 N(窒素):0~0.0050%
 Cu(銅):0~0.40%
 Bi(ビスマス):0~0.010%
 B(ホウ素):0~0.080%
 P(りん):0~0.50%
 Ti(チタン):0~0.0150%
 Sn(スズ):0~0.10%
 Sb(アンチモン):0~0.10%
 Cr(クロム):0~0.30%
 Ni(ニッケル):0~1.0%
 これらの選択元素は、公知の目的に応じて含有させればよい。これらの選択元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。なお、S及びSeの含有量が合計で0~0.0150%であることが好ましい。S及びSeの合計とは、S及びSeの少なくとも一方を含み、その合計含有量であることを意味する。
 なお、方向性電磁鋼板では、脱炭焼鈍および二次再結晶時の純化焼鈍を経ることで、比較的大きな化学組成の変化(含有量の低下)が起きる。元素によっては純化焼鈍によって、一般的な分析手法では検出できない程度(1ppm以下)にまで含有量が低減することもある。本実施形態に係る方向性電磁鋼板の上記化学組成は、最終製品における化学組成である。一般に、最終製品の化学組成と、出発素材であるスラブの化学組成とは異なる。
 本実施形態に係る方向性電磁鋼板の化学組成は、鋼の一般的な分析方法によって測定すればよい。例えば、方向性電磁鋼板の化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、方向性電磁鋼板から採取した35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより、化学組成が特定される。なお、酸可溶性Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用いて測定し、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 なお、上記の化学組成は、方向性電磁鋼板の成分である。測定試料となる方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、被膜等を上記の方法で除去してから化学組成を測定する。
6.被膜構成など
 本実施形態に係る方向性電磁鋼板は、鋼板上の被膜構成や、磁区細分化処理の有無などは特に制限されない。本実施形態では、目的に応じて任意の被膜を鋼板上に形成し、必要に応じて磁区細分化処理を施せばよい。
 本実施形態に係る方向性電磁鋼板では、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、中間層上に接して配された絶縁被膜とを有してもよい。
 図2は、本発明の好適な実施形態に係る方向性電磁鋼板の断面模式図である。図2に示すように、方向性電磁鋼板10(珪素鋼板)は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板10(珪素鋼板)上に接して配された中間層20と、中間層20上に接して配された絶縁被膜30とを有してもよい。
 例えば、上記の中間層は、酸化物を主体とする層、炭化物を主体とする層、窒化物を主体とする層、硼化物を主体とする層、珪化物を主体とする層、りん化物を主体とする層、硫化物を主体とする層、金属間化合物を主体とする層などであればよい。これらの中間層は、酸化還元性を制御した雰囲気中での熱処理、化学蒸着(CVD)、物理蒸着(PVD)などによって形成できる。
 本実施形態に係る方向性電磁鋼板では、上記中間層が平均厚さ1~3μmのフォルステライト被膜であってもよい。なお、フォルステライト被膜とは、MgSiOを主体とする被膜である。このフォルステライト被膜と方向性電磁鋼板との界面は、上記断面で見たとき、フォルステライト被膜が鋼板に嵌入した界面となる。
 本実施形態に係る方向性電磁鋼板では、上記中間層が平均厚さ2~500nmの酸化膜であってもよい。なお、酸化膜とは、SiOを主体とする被膜である。この酸化膜と方向性電磁鋼板との界面は、上記断面で見たとき、平滑界面となる。
 また、上記の絶縁被膜は、りん酸塩とコロイド状シリカとを主体とし平均厚さが0.1~10μmの絶縁被膜や、アルミナゾルとホウ酸とを主体とし平均厚さが0.5~8μmの絶縁被膜であればよい。
 本実施形態に係る方向性電磁鋼板では、局所的な微小歪の付与または局所的な溝の形成の少なくとも1つによって磁区が細分化されていてもよい。なお、局所的な微小歪や局所的な溝は、レーザー、プラズマ、機械的方法、エッチング、その他の手法によって付与または形成すればよい。例えば、局所的な微小歪または局所的な溝は、鋼板の圧延面上で圧延方向と交差する方向に延伸するように線状または点状に、且つ圧延方向の間隔が2mm~10mmになるように付与または形成すればよい。
7.製造方法
 次に、本実施形態に係る方向性電磁鋼板の製造方法を説明する。
 なお、本実施形態に係る方向性電磁鋼板を製造する方法は、下記の方法に限定されない。下記の製造方法は、本実施形態に係る方向性電磁鋼板を製造するための一つの例である。
 図3は、本実施形態に係る方向性電磁鋼板の製造方法を例示する流れ図である。図3に示すように、本実施形態に係る方向性電磁鋼板(珪素鋼板)の製造方法は、鋳造工程と、熱間圧延工程と、熱延板焼鈍工程と、冷間圧延工程と、脱炭焼鈍工程と、焼鈍分離剤塗布工程と、仕上げ焼鈍工程とを備える。
 具体的には、本実施形態に係る方向性電磁鋼板(珪素鋼板)の製造方法は、
 鋳造工程で、化学組成として、質量%で、Si:2.0~7.0%、Nb:0~0.030%、V:0~0.030%、Mo:0~0.030%、Ta:0~0.030%、W:0~0.030%、C:0~0.0850%、Mn:0~1.0%、S:0~0.0350%、Se:0~0.0350%、Al:0~0.0650%、N:0~0.0120%、Cu:0~0.40%、Bi:0~0.010%、B:0~0.080%、P:0~0.50%、Ti:0~0.0150%、Sn:0~0.10%、Sb:0~0.10%、Cr:0~0.30%、Ni:0~1.0%を含有し、残部がFeおよび不純物からなるスラブを鋳造し、
 脱炭焼鈍工程で、一次再結晶粒径を23μm以下に制御し、
 仕上げ焼鈍工程で、
  上記スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%であるとき、加熱過程にて、700~800℃でのPHO/PHを0.050~1.0とし、且つ、900~950℃でのPHO/PHを0.010~0.10とするか、950~1000℃でのPHO/PHを0.005~0.070とするか、または1000~1050℃でのPHO/PHを0.0010~0.030とするか、のうちの少なくとも一つを制御し、且つ、850~950℃での保持時間を120~600分とし、900~950℃での保持時間を400分以下とし、1000~1050℃での保持時間を100分以上とし、
  上記スラブの化学組成のNb、V、Mo、Ta、およびWの合計含有量が0.0030~0.030%でないとき、加熱過程にて、700~800℃でのPHO/PHを0.050~1.0とし、900~950℃でのPHO/PHを0.010~0.10とし、950~1000℃でのPHO/PHを0.005~0.070とし、1000~1050℃でのPHO/PHを0.0010~0.030とし、850~950℃での保持時間を120~600分とし、900~950℃での保持時間を350分以下とし、1000~1050℃での保持時間を200分以上とする。
 上記のPHO/PHは、酸素ポテンシャルと呼ばれ、雰囲気ガスの水蒸気分圧PHOと水素分圧PHとの比である。
 本実施形態の「切り替え」は、主として、方位変化(切り替え)自体を発生し易くする要因と、方位変化(切り替え)が一つの二次再結晶粒の中で継続的に発生するようにする要因との二つによって制御される。
 切り替え自体を発生し易くさせるためには、二次再結晶をより低温から開始させることが有効である。例えば、一次再結晶粒径を制御し、Nb群元素を活用することによって、二次再結晶の開始をより低温に制御できる。
 切り替えを一つの二次再結晶粒の中で継続的に発生させるためには、二次再結晶粒を低温から高温まで継続的に成長させることが有効である。例えば、従来から用いられるインヒビターであるAlNなどを適切な温度および雰囲気中で利用することによって、低温で二次再結晶粒を発生させ、インヒビター効果を高温まで継続して作用させ、切り替えを一つの二次再結晶粒の中で高温まで継続的に発生させることができる。
 すなわち、切り替えを好ましく発生させるためには、高温での二次再結晶粒の発生を抑制したまま、低温で発生した二次再結晶粒を高温まで優先的に成長させることが有効となる。
 本実施形態の特徴である切り替えを制御するには、上記の要因が重要である。その他の製造条件は、従来の公知の方向性電磁鋼板の製造方法を適用することができる。例えば、高温スラブ加熱によって形成するMnSやAlNをインヒビターとして利用する製造方法や、低温スラブ加熱とその後の窒化処理によって形成するAlNをインヒビターとして利用する製造方法などがある。本実施形態の特徴である切り替えは、何れの製造方法でも適用が可能であり、特定の製造方法に限定されない。以下では、窒化処理を適用する製造方法にて切り替えを制御する方法を一例として説明する。
(鋳造工程)
 鋳造工程では、スラブを準備する。スラブの製造方法の一例は次のとおりである。溶鋼を製造(溶製)する。溶鋼を用いてスラブを製造する。連続鋳造法によりスラブを製造してもよい。溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。スラブの厚さは、特に限定されない。スラブの厚さは、例えば、150mm~350mmである。スラブの厚さは、好ましくは、220mm~280mmである。スラブとして、厚さが10mm~70mmの、いわゆる薄スラブを用いてもよい。薄スラブを用いる場合、熱間工程にて、仕上げ圧延前の粗圧延を省略できる。
 スラブの化学組成は、一般的な方向性電磁鋼板の製造に用いられるスラブの化学組成を用いることができる。スラブの化学組成は、例えば、次の元素を含有する。
 C:0~0.0850%
 炭素(C)は、製造過程では一次再結晶組織の制御に有効な元素であるものの、最終製品のC含有量が過剰であると磁気特性に悪影響を及ぼす。したがって、スラブのC含有量は0~0.0850%であればよい。C含有量の好ましい上限は0.0750%である。Cは後述の脱炭焼鈍工程及び仕上げ焼鈍工程で純化され、仕上げ焼鈍工程後には0.0050%以下となる。Cを含む場合、工業生産における生産性を考慮すると、C含有量の下限は0%超であってもよく、0.0010%であってもよい。
 Si:2.0%~7.0%
 シリコン(Si)は、方向性電磁鋼板の電気抵抗を高めて鉄損を低下させる。Si含有量が2.0%未満であると、仕上げ焼鈍時にオーステナイト変態が生じて、方向性電磁鋼板の結晶方位が損なわれてしまう。一方、Si含有量が7.0%を超えれば、冷間加工性が低下して、冷間圧延時に割れが発生しやすくなる。Si含有量の好ましい下限は2.50%であり、さらに好ましくは3.0%である。Si含有量の好ましい上限は4.50%であり、さらに好ましくは4.0%である。
 Mn:0~1.0%
 マンガン(Mn)は、S又はSeと結合して、MnS、又は、MnSeを生成し、インヒビターとして機能する。Mn含有量は0~1.0%であればよい。Mnを含有させる場合、Mn含有量が0.05%~1.0%の範囲内にある場合に、二次再結晶が安定するので好ましい。本実施形態では、インヒビターの機能の一部をNb群元素の窒化物によって担うことが可能である。この場合は、一般的なインヒビターとしてのMnS、又は、MnSeの強度は弱めに制御する。このため、Mn含有量の好ましい上限は0.50%であり、さらに好ましくは0.20%である。
 S:0~0.0350%
 Se:0~0.0350%
 硫黄(S)及びセレン(Se)は、Mnと結合して、MnS又はMnSeを生成し、インヒビターとして機能する。S含有量は0~0.0350%であればよく、Se含有量は0~0.0350%であればよい。S及びSeの少なくとも一方を含有させる場合、S及びSeの含有量が合計で0.0030%~0.0350%であれば、二次再結晶が安定するので好ましい。本実施形態では、インヒビターの機能の一部をNb群元素の窒化物によって担うことが可能である。この場合は、一般的なインヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、S及びSe含有量の合計の好ましい上限は0.0250%であり、さらに好ましくは0.010%である。S及びSeは仕上げ焼鈍後に残留すると化合物を形成し、鉄損を劣化させる。そのため、仕上げ焼鈍中の純化により、S及びSeをできるだけ少なくすることが好ましい。
 ここで、「S及びSeの含有量が合計で0.0030%~0.0350%」であるとは、スラブの化学組成がS又はSeのいずれか一方のみを含有し、S又はSeのいずれか一方の含有量が合計で0.0030%~0.0350%であってもよいし、スラブがS及びSeの両方を含有し、S及びSeの含有量が合計で0.0030%~0.0350%であってもよい。
 Al:0~0.0650%
 アルミニウム(Al)は、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。Al含有量は0~0.0650%であればよい。Alを含有させる場合、Alの含有量が0.010%~0.0650%の範囲内にある場合に、後述の窒化により形成されるインヒビターとしてのAlNは二次再結晶温度域を拡大し、特に高温域での二次再結晶が安定するので好ましい。Al含有量の好ましい下限は0.020%であり、さらに好ましくは0.0250%である。二次再結晶の安定性の観点から、Al含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。
 N:0~0.0120%
 窒素(N)は、Alと結合してインヒビターとして機能する。N含有量は0~0.0120%であればよい。Nは製造過程の途中で窒化により含有させることが可能であるため下限が0%でもよい。一方、Nを含有させる場合、N含有量が0.0120%を超えると、鋼板中に欠陥の一種であるブリスタが発生しやすくなる。N含有量の好ましい上限は0.010%であり、さらに好ましくは0.0090%である。Nは仕上げ焼鈍工程で純化され、仕上げ焼鈍工程後には0.0050%以下となる。
 Nb:0~0.030%
 V:0~0.030%
 Mo:0~0.030%
 Ta:0~0.030%
 W:0~0.030%
 Nb、V、Mo、Ta、及びWは、Nb群元素である。Nb含有量は0~0.030%であればよく、V含有量は0~0.030%であればよく、Mo含有量は0~0.030%であればよく、Ta含有量は0~0.030%であればよく、W含有量は0~0.030%であればよい。
 また、Nb群元素として、Nb、V、Mo、Ta、およびWからなる群から選択される少なくとも1種を合計で0.0030~0.030質量%含有することが好ましい。
 Nb群元素を切り替えの制御に活用する場合、スラブでのNb群元素の合計含有量が0.030%以下(好ましくは0.0030%以上0.030%以下)であると、適切なタイミングで二次再結晶を開始させる。また、発生する二次再結晶粒の方位が非常に好ましいものとなり、その後の成長過程で、本実施形態が特徴とする切り替えが起きやすくなり、最終的に磁気特性にとって好ましい組織に制御できる。
 Nb群元素を含有することにより、脱炭焼鈍後の一次再結晶粒径は、Nb群元素を含有しない場合に比べて好ましく小径化する。この一次再結晶粒の微細化は、炭化物、炭窒化物、窒化物等の析出物によるピン止め効果、および固溶元素としてのドラッグ効果などにより得られると考えられる。特に、Nb及びTaはその効果が好ましく得られる。
 Nb群元素による一次再結晶粒径の小径化によって、二次再結晶の駆動力が大きくなり、二次再結晶が従来よりも低温で開始する。また、Nb群元素の析出物は、AlNなどの従来インヒビターよりも比較的低温で分解するため、仕上げ焼鈍の昇温過程にて、二次再結晶が従来よりも低温で開始する。これらのメカニズムについては後述するが、低温で二次再結晶が開始することで、本実施形態の特徴である切り替えが起き易くなる。
 なお、二次再結晶のインヒビターとしてNb群元素の析出物を活用する場合、Nb群元素の炭化物及び炭窒化物は、二次再結晶が可能な温度域よりも低い温度域で不安定となるため、二次再結晶開始温度を低温にシフトさせる効果が小さいと考えられる。このため、二次再結晶開始温度を好ましく低温にシフトさせるためには、二次再結晶が可能な温度域まで安定であるNb群元素の窒化物(もしくは窒素割合が多い炭窒化物)を活用することが好ましい。
 二次再結晶開始温度を好ましく低温シフトさせるNb群元素の析出物(好ましくは窒化物)と、二次再結晶開始後も高温まで安定なAlN、(Al、Si)Nなどの従来インヒビターとを併用することにより、二次再結晶粒である{110}<001>方位粒の優先成長温度域を従来よりも拡大することができる。そのため、低温から高温までの幅広い温度域で切り替えが発生し、方位選択が広い温度域で継続する。その結果、最終的な亜粒界の存在頻度が高まるとともに、方向性電磁鋼板を構成する二次再結晶粒の{110}<001>方位集積度を効果的に高めることができる。
 なお、Nb群元素の炭化物や炭窒化物などのピン止め効果により、一次再結晶粒の微細化を指向する場合は、鋳造時点でスラブのC含有量を50ppm以上としておくことが好ましい。ただし、二次再結晶におけるインヒビターとしては、炭化物又は炭窒化物よりも、窒化物が好ましいことから、一次再結晶完了後は、脱炭焼鈍によりC含有量を30ppm以下、好ましくは20ppm以下、さらに好ましくは10ppm以下にして、鋼中のNb群元素の炭化物や炭窒化物を十分に分解しておくことが好ましい。脱炭焼鈍にて、Nb群元素の大部分を固溶状態にしておくことで、その後の窒化処理にて、Nb群元素の窒化物(インヒビター)を、本実施形態にとって好ましい形態(二次再結晶が進行しやすい形態)に調整することができる。
 Nb群元素の合計含有量は、0.0040%以上であることが好ましく、0.0050%以上であることがより好ましい。また、Nb群元素の合計含有量は、0.020%以下であることが好ましく、0.010%以下であることがより好ましい。
 スラブの化学組成の残部はFe及び不純物からなる。なお、ここでいう「不純物」は、スラブを工業的に製造する際に、原材料に含まれる成分、又は製造の過程で混入する成分から不可避的に混入し、本実施形態の効果に実質的に影響を与えない元素を意味する。
 また、スラブは、製造上の課題解決のほか、化合物形成によるインヒビター機能の強化や磁気特性への影響を考慮して、上記Feの一部に代えて、公知の選択元素を含有してもよい。選択元素として、例えば、次の元素が挙げられる。
 Cu:0~0.40%
 Bi:0~0.010%
 B:0~0.080%
 P:0~0.50%
 Ti:0~0.0150%
 Sn:0~0.10%
 Sb:0~0.10%
 Cr:0~0.30%
 Ni:0~1.0%
 これらの選択元素は、公知の目的に応じて含有させればよい。これらの選択元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。
(熱間圧延工程)
 熱間圧延工程は、所定の温度(例えば1100~1400℃)に加熱されたスラブの熱間圧延を行い、熱間圧延鋼板を得る工程である。熱間圧延工程では、例えば、鋳造工程後に加熱された珪素鋼素材(スラブ)の粗圧延を行った後、仕上げ圧延を行って所定厚さ、例えば、1.8~3.5mmの熱間圧延鋼板とする。仕上げ圧延終了後、熱間圧延鋼板を所定の温度で巻き取る。
 インヒビターとしてのMnS強度はそれほど必要でないため、生産性を考慮すれば、スラブ加熱温度は1100~1280℃とすることが好ましい。
(熱延板焼鈍工程)
 熱延板焼鈍工程は、熱間圧延工程で得た熱間圧延鋼板を所定の温度条件(例えば750~1200℃で、30秒~10分間)で焼鈍して、熱延焼鈍板を得る工程である。
 なお、高温スラブ加熱プロセスの場合には、熱延板焼鈍工程にて、AlNなどの析出物の形態を最終的に制御する。そのため、熱延板焼鈍工程によって析出物が均一かつ微細に析出するため、後工程で一次再結晶粒径が小径化する。また、熱延板焼鈍工程でインヒビター形態を制御することに加えて、前述の熱間圧延工程での制御や、後述する仕上げ焼鈍前の鋼板表面の性状制御や、仕上げ焼鈍中の雰囲気制御などを組み合わせることが有効である。
(冷間圧延工程)
 冷間圧延工程は、熱延板工程で得た熱延焼鈍板を、1回の冷間圧延、又は焼鈍(中間焼鈍)を介して複数回(2回以上)の冷間圧延(例えば総冷延率で80%~95%)により、例えば、0.10~0.50mmの厚さを有する冷間圧延鋼板を得る工程である。
(脱炭焼鈍工程)
 脱炭焼鈍工程は、冷間圧延工程で得た冷間圧延鋼板に脱炭焼鈍(例えば700~900℃で1分間~3分間)を行い、一次再結晶が生じた脱炭焼鈍鋼板を得る工程である。冷間圧延鋼板に脱炭焼鈍を行うことで、冷間圧延鋼板中に含まれるCが除去される。脱炭焼鈍は、冷間圧延鋼板中に含まれる「C」を除去するために、湿潤雰囲気中で行うことが好ましい。
 本実施形態に係る方向性電磁鋼板の製造方法では、脱炭焼鈍鋼板の一次再結晶粒径を23μm以下に制御することが好ましい。一次再結晶粒径を微細化することによって、二次再結晶開始温度を好ましく低温にシフトさせることができる。
 例えば、前述の熱間圧延および熱延板焼鈍の条件を制御したり、脱炭焼鈍温度を必要に応じて低温化したりすることによって、一次再結晶粒径を小さくすることができる。または、スラブにNb群元素を含有させ、Nb群元素の炭化物や炭窒化物などのピン止め効果によって、一次再結晶粒を小さくすることができる。
 なお、脱炭焼鈍に起因する脱炭酸化量及び表面酸化層の状態は、中間層(グラス被膜)の形成に影響を及ぼすため、本実施形態の効果を発現するためには従来の方法を使って適宜調整してもよい。
 切り替えを起きやすくする元素として含有させてもよいNb群元素は、この時点では、炭化物や炭窒化物や固溶元素などとして存在し、一次再結晶粒径を微細化するように影響を及ぼす。一次再結晶粒径は、21μm以下であることが好ましく、20μm以下であることがより好ましく、18μm以下であることがより好ましい。また、一次再結晶粒径は、8μm以上であればよく、12μm以上であってもよい。
(窒化処理)
 窒化処理は、二次再結晶におけるインヒビターの強度を調整するために実施する。窒化処理では、上述の脱炭焼鈍の開始から、後述する仕上げ焼鈍における二次再結晶の開始までの間の任意のタイミングで、鋼板の窒素量を40~300ppm程度に増加させればよい。窒化処理としては、例えば、アンモニア等の窒化能のあるガスを含有する雰囲気中で鋼板を焼鈍する処理や、MnN等の窒化能を有する粉末を含む焼鈍分離剤を塗布した脱炭焼鈍鋼板を仕上げ焼鈍する処理等が例示される。
 スラブがNb群元素を上記の数値範囲で含有する場合は、窒化処理によって形成されるNb群元素の窒化物が比較的低温で粒成長抑止機能が消失するインヒビターとして機能するので、二次再結晶が従来よりも低温から開始する。この窒化物は、二次再結晶粒の核発生の選択性に関しても有利に作用し、高磁束密度化を実現している可能性も考えられる。また、窒化処理ではAlNも形成され、このAlNが比較的高温まで粒成長抑止機能が継続するインヒビターとして機能する。これらの効果を得るためには、窒化処理後の窒化量を130~250ppmとすることが好ましく、さらには150~200ppmとすることが好ましい。
(焼鈍分離剤塗布工程)
 焼鈍分離剤塗布工程は、脱炭焼鈍鋼板に焼鈍分離剤を塗布する工程である。焼鈍分離剤としては、例えば、MgOを主成分とする焼鈍分離剤や、アルミナを主成分とする焼鈍分離剤を用いることができる。
 なお、MgOを主成分とする焼鈍分離剤を用いた場合には、仕上げ焼鈍によって中間層としてフォルステライト被膜(MgSiOを主体とする被膜)が形成されやすく、アルミナを主成分とする焼鈍分離剤を用いた場合には、仕上げ焼鈍によって中間層として酸化膜(SiOを主体とする被膜)が形成されやすい。これらの中間層は、必要に応じて除去してもよい。
 焼鈍分離剤を塗布後の脱炭焼鈍鋼板は、コイル状に巻取った状態で、次の仕上げ焼鈍工程で仕上げ焼鈍される。
(仕上げ焼鈍工程)
 仕上げ焼鈍工程は、焼鈍分離剤が塗布された脱炭焼鈍鋼板に仕上げ焼鈍を施し、二次再結晶を生じさせる工程である。この工程は、一次再結晶粒の成長をインヒビターにより抑制した状態で二次再結晶を進行させることによって、{100}<001>方位粒を優先成長させ、磁束密度を飛躍的に向上させる。
 仕上げ焼鈍は、本実施形態の特徴である切り替えを制御するために重要な工程である。本実施形態では、仕上げ焼鈍にて、以下の(A)~(G)の7つの条件を基本として、ずれ角α、ずれ角β、又はずれ角γによる切り替えを制御する。
 なお、仕上げ焼鈍工程の説明における「Nb群元素の合計含有量」は、仕上げ焼鈍直前の鋼板(脱炭焼鈍鋼板)のNb群元素の合計含有量を意味する。つまり、仕上げ焼鈍条件に影響するのは、仕上げ焼鈍直前の鋼板の化学組成であり、仕上げ焼鈍および純化が起きた後の化学組成(例えば方向性電磁鋼板(仕上げ焼鈍鋼板)の化学組成)とは無関係である。
(A)仕上げ焼鈍の加熱過程にて、700~800℃の温度域での雰囲気についてのPHO/PHをPAとしたとき、
  PA:0.050~1.000
(B)仕上げ焼鈍の加熱過程にて、900~950℃の温度域での雰囲気についてのPHO/PHをPBとしたとき、
  PB:0.010~0.100
(C)仕上げ焼鈍の加熱過程にて、950~1000℃の温度域での雰囲気についてのPHO/PHをPCとしたとき、
  PC:0.005~0.070
(D)仕上げ焼鈍の加熱過程にて、1000~1050℃の温度域での雰囲気についてのPHO/PHをPDとしたとき、
  PD:0.0010~0.030
(E)仕上げ焼鈍の加熱過程にて、850~950℃の温度域での保持時間をTEとし、
  TE:120~600分
(F)仕上げ焼鈍の加熱過程にて、900~950℃の温度域での保持時間をTFとしたとき、
  Nb群元素の合計含有量が0.003%~0.030%の場合、TF:400分以下
  Nb群元素の合計含有量が上記範囲外の場合、TF:350分以下
(G)仕上げ焼鈍の加熱過程にて、1000~1050℃の温度域での保持時間(総滞留時間)をTGとしたとき、
  Nb群元素の合計含有量が0.003%~0.030%の場合、TG:100分以上
  Nb群元素の合計含有量が上記範囲外の場合、TG:200分以上
 なお、Nb群元素の合計含有量が0.003%~0.030%の場合は、条件(A)、かつ条件(B)~(D)のうちの少なくとも一つ、かつ条件(E)、(F)、及び(G)を満足すればよい。
 Nb群元素の合計含有量が上記範囲外の場合は、条件(A)~(G)の7つの条件を全て満足すればよい。
 条件(B)~(D)に関して、Nb群元素を上記範囲で含有する場合、Nb群元素が持つ回復再結晶抑制効果のため、「低温域での二次再結晶の開始」と「高温域までの二次再結晶の継続」の二つ要因が強く作用する。その結果、本実施形態の効果を得るための制御条件が緩和する。
 PAは、0.10以上であることが好ましく、0.30以上であることがより好ましく、1.0以下であることが好ましく、0.60以下であることがより好ましい。
 PBは、0.040以上であることが好ましく、0.070以下であることが好ましい。
 PCは、0.020以上であることが好ましく、0.050以下であることが好ましい。
 PDは、0.005以上であることが好ましく、0.020以下であることが好ましい。
 TEは、180分以上であることが好ましく、240分以上であることがより好ましく、480分以下であることが好ましく、360分以下であることがより好ましい。
 Nb群元素の合計含有量が0.003%~0.030%の場合、TFは、350分以下であることが好ましく、300分以下であることがより好ましい。
 Nb群元素の合計含有量が上記範囲外の場合、TFは、300分以下であることが好ましく、240分以下であることがより好ましい。
 Nb群元素の合計含有量が0.003%~0.030%の場合、TGは、200分以上であることが好ましく、300分以上であることがより好ましく、900分以下であることが好ましく、600分以下であることがより好ましい。
 Nb群元素の合計含有量が上記範囲外の場合、TGは、360分以上であることが好ましく、600分以上であることがより好ましく、1500分以下であることが好ましく、900分以下であることがより好ましい。
 切り替えが発生するメカニズムの詳細は、現時点では明確ではない。ただし、二次再結晶過程の観察結果および切り替えを好ましく制御できる製造条件を考慮し、「低温域での二次再結晶の開始」と「高温域までの二次再結晶の継続」との二つの要因が重要であると推察している。
 この二つの要因を念頭に、上記(A)~(G)の限定理由について説明する。なお、以下の説明でメカニズムについての記述は推測を含む。
 条件(A)は、二次再結晶が起きる温度よりも十分に低い温度域での条件であり、この条件は二次再結晶と認識される現象に直接的には影響しない。ただし、この温度域は、鋼板表面に塗布された焼鈍分離剤が持ち込む水分等で鋼板表層が酸化する温度域であり、すなわち、一次被膜(中間層)の形成に影響を及ぼす温度域である。条件(A)は、この一次被膜の形成を制御することを介して、その後の「高温域までの二次再結晶の継続」を可能とするために重要となる。この温度域を上記雰囲気とすることで、一次被膜は緻密な構造となり、二次再結晶が生じる段階にてインヒビターの構成元素(例えば、Al、Nなど)が系外に排出されるのを阻害するバリアとして作用する。これにより二次再結晶が高温まで継続し、切り替えを十分に起こすことが可能になる。
 条件(B)は、二次再結晶の再結晶核の核生成段階に相当する温度域での条件である。この温度領域を上記雰囲気とすることで、粒成長の任意の段階にて、二次再結晶粒の成長がインヒビター分解に律速されて進行するようになる。この条件(B)は、特に鋼板表層でのインヒビター分解を促進し、二次再結晶の核を増やすことに影響していると考えられる。例えば、鋼板表層には、二次再結晶にとって好ましい結晶方位の一次再結晶粒が多く存在していることが知られている。本実施形態では、900~950℃の低温域で鋼板表層のみのインヒビター強度を弱めておくことで、その後の昇温過程にて二次再結晶が早期に(低温で)開始し、また多数の二次再結晶粒が発生するため、二次再結晶初期の粒成長にて切り替え頻度が高まると考えられる。
 条件(C)及び(D)は、二次再結晶が開始して粒成長する温度域での条件であり、これらの条件は二次再結晶粒が成長する過程でのインヒビター強度の調整に影響する。これらの温度領域を上記雰囲気とすることで、各温度域にて、二次再結晶粒の成長がインヒビター分解に律速されて進行するようになる。詳細は後述するが、これらの条件によって、二次再結晶粒の成長方向前面の粒界に転位が効率的に蓄積するので、切り替えの発生頻度が高まり且つ切り替えが継続的に発生する。温度域を二つに分けて条件(C)及び(D)として雰囲気を制御するのは、温度域により適切な雰囲気が異なるためである。
 本実施形態の製造方法では、Nb群元素を活用する場合、条件(B)~(D)のうちの少なくとも1つを満足すれば、本実施形態の切り替え条件を満たす方向性電磁鋼板を得ることが可能である。すなわち、二次再結晶初期に切り替え頻度を高めるように制御すれば、切り替えによる方位差を保ったままで二次再結晶粒が成長し、その影響は後期まで継続して最終的な切り替え頻度も高くなる。あるいは、二次再結晶の初期過程で十分な頻度の切り替えが起きなくても、その後の粒成長の過程で結晶粒の成長方向前面に十分な量の転位を蓄積させて新たな切り替えを発生させることで、最終的な切り替え頻度を高められる。もちろん、Nb群元素を活用したとしても、条件(B)~(D)のすべてを満たすことが好ましい。つまり、二次再結晶の初期段階で切り替え頻度を高め、且つ二次再結晶の中後期でも新たな切り替えを発生させることが最適である。
 条件(E)は、二次再結晶の核形成から粒成長の初期段階に相当する温度域での条件である。この温度域での保持は良好な二次再結晶を起こすために重要であるが、保持時間が長くなると、一次再結晶粒の成長も起きやすくなる。例えば、一次再結晶粒の粒径が大きくなると、切り替え発生の駆動力となる転位の蓄積(二次再結晶粒の成長方向前面の粒界への転位蓄積)が起きにくくなってしまう。この温度域での保持時間を600分以下とすれば、一次再結晶粒の粗大化を抑制した状態で二次再結晶粒の初期段階の成長を進行させることができるので、特定のずれ角の選択性を高めることとなる。本実施形態では、一次再結晶粒の微細化やNb群元素の活用などにより二次再結晶開始温度を低温にシフトさせることを背景として、切り替えを多く発生させ且つ継続させる。
 条件(F)は、二次再結晶の核形成から粒成長の初期段階に相当する温度域での条件であり、ずれ角αの切り替えに寄与する条件である。この温度域での保持は切り替えの発生および継続に影響を与え、保持時間が長くなると、一次再結晶粒の成長も起きやすくなる。保持時間を適切な範囲とすることによって、ずれ角αの切り替えを少なくすることができる。
 条件(G)は、切り替えが起きているβ粒界およびγ粒界の鋼板面内の延伸方向を制御する因子となる。1000~1050℃で、十分な保持を行うことで、圧延方向での切り替え頻度を高めることが可能となる。上記温度域での保持中に、インヒビターを含む鋼中析出物の形態(例えば、配列及び形状)が変化すると考えられる。保持時間を適切な範囲とすることによって、圧延方向について、ずれ角βおよびずれ角γの切り替えが高まると考えられる。
 仕上げ焼鈍に供される鋼板は、熱間圧延および冷間圧延を経ているので、鋼中の析出物(特にMnS)の配列及び形状は、鋼板面内で異方性を有し、圧延方向に偏向する傾向を有すると考えられる。詳細は不明であるが、上記の温度域での保持は、このような析出物の形態の圧延方向への偏向程度を変化させ、二次再結晶粒の成長時にβ粒界およびγ粒界が鋼板面内のどの方向に延伸しやすいかに影響を及ぼしていると考えられる。具体的には、1000~1050℃という比較的高温で鋼板を保持すると、鋼中で析出物の形態の圧延方向への偏向が消失し、このためβ粒界およびγ粒界が圧延方向に延伸する割合が低下して圧延直角方向に延伸する傾向が強くなる。その結果として、圧延方向で計測するβ粒界およびγ粒界の頻度が高くなると考えられる。
 なお、Nb群元素の合計含有量が0.003%~0.030%の場合は、亜粒界の存在頻度自体が高いため、保持時間TGが短くても本実施形態の効果を得ることが可能である。
(絶縁被膜形成工程)
 絶縁被膜形成工程は、仕上げ焼鈍工程後の方向性電磁鋼板に絶縁被膜を形成する工程である。仕上げ焼鈍後の鋼板に、りん酸塩とコロイド状シリカとを主体とする絶縁被膜や、アルミナゾルとホウ酸とを主体とする絶縁被膜を形成すればよい。
 例えば、仕上げ焼鈍後の鋼板に、コーティング溶液(例えば、りん酸又はりん酸塩、無水クロム酸又はクロム酸塩、及びコロイド状シリカを含むコーティング溶液)を塗布して焼き付けて(例えば、350~1150℃で、5~300秒間)、絶縁被膜を形成すればよい。
 または、仕上げ焼鈍後の鋼板に、アルミナゾルおよびホウ酸を含むコーティング溶液を塗布して焼き付けて(例えば、750~1350℃で10~100秒間)、絶縁被膜を形成すればよい。
 また、本実施形態に係る製造方法は、必要に応じて、磁区制御工程をさらに有してもよい。
(磁区制御工程)
 磁区制御工程は、方向性電磁鋼板の磁区を細分化する処理を行う工程である。例えば、レーザー、プラズマ、機械的方法、エッチングなどの公知の手法により、方向性電磁鋼板に局所的な微小歪または局所的な溝を形成すればよい。このような磁区細分化処理は、本実施形態の効果を損ねない。
 なお、上記の局所的な微小歪及び局所的な溝は、本実施形態で規定する結晶方位及び粒径の測定の際に異常点となる。このため、結晶方位の測定では、測定点が局所的な微小歪及び局所的な溝に重ならないようにする。また、粒径の測定では、局所的な微小歪及び局所的な溝を粒界とは認識しない。
(切り替え発生のメカニズムについて)
 本実施形態で規定する切り替えは、二次再結晶粒が成長する過程で起きる。この現象は、素材(スラブ)の化学組成、二次再結晶粒の成長に至るまでのインヒビターの造り込み、一次再結晶粒の粒径の制御など、多岐の制御条件に影響される。このため、切り替えは、単に一つの条件を制御すればよいわけではなく、複数の制御条件を複合的に且つ不可分に制御する必要がある。
 切り替えは、隣接する結晶粒の間の粒界エネルギーおよび表面エネルギーに起因して生じると考えられる。
 上記の粒界エネルギーについては、角度差を有する2つの結晶粒が隣接していると、その粒界エネルギーが大きくなるため、二次再結晶粒が成長する過程で粒界エネルギーを低減するように、つまり特定の同一方位に近づくように切り替えが起きることが考えられる。
 また、上記の表面エネルギーについては、対称性がそれなりに高い{110}面から方位がわずかにでもずれると、表面エネルギーを増大させることになるため、二次再結晶粒が成長する過程で表面エネルギーを低減するように、つまり{110}面方位に近づきずれ角が小さくなるように切り替えが起きることが考えられる。
 ただし、これらのエネルギー差は、一般的な状況では二次再結晶粒が成長する過程で切り替えを起こしてまで方位変化を生じさせるようなエネルギー差ではない。このため、一般的な状況では角度差またはずれ角を有したままで二次再結晶粒が成長する。例えば、一般的な状況で二次再結晶粒が成長する場合、切り替えは起きず、ずれ角は二次再結晶粒の発生時点での方位ばらつきに起因した角度に対応する。すなわち、ずれ角は、二次再結晶粒の成長過程で殆ど変化しない。
 一方、本実施形態に係る方向性電磁鋼板のように、二次再結晶をより低温から開始させ、かつ二次再結晶粒の成長を高温まで長時間に亘って継続させる場合、切り替えが顕著に起きるようになる。この理由は明確ではないが、二次再結晶粒が成長する過程で、その成長方向の前面部つまり一次再結晶粒に隣接する領域に、比較的高密度で幾何学的な方位のずれを解消するための転位が残存することが考えられる。この残存する転位が、本実施形態の切り替えおよび亜粒界に対応すると考えられる。
 本実施形態では、二次再結晶が従来よりも低温で開始するため、転位の消滅が遅れ、成長する二次再結晶粒の成長方向前面の粒界に転位が掃き溜められるような形で蓄積して転位密度が増す。このため成長する二次再結晶粒の前面で原子の再配列が起き易くなり、その結果、隣接する二次再結晶粒との角度差を小さくするように、すなわち粒界エネルギーを小さくするように、または表面エネルギーを小さくするように切り替えを起こすと考えられる。
 この切り替えは、亜粒界を粒内に残すことにより起こることとなる。なお、切り替えが起きる前に、別の二次再結晶粒が発生して、成長中の二次再結晶粒がこの生成した二次再結晶粒に到達すれば、粒成長が止まるため、切り替え自体が起きなくなる。このため、本実施形態では、二次再結晶粒の成長段階で、新たな二次再結晶粒の発生頻度を低くし、インヒビター律速で既存の二次再結晶のみが成長を継続する状態に制御することが有利となる。このため、本実施形態では、二次再結晶開始温度を好ましく低温シフトさせるインヒビターと、比較的高温まで安定なインヒビターとを併用することが好ましい。
 次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(実施例1)
 表1Aに示す化学組成を有するスラブを素材として、表2Aに示す化学組成を有する方向性電磁鋼板(珪素鋼板)を製造した。なお、これらの化学組成は、上記の方法に基づいて測定した。表1Aおよび表2Aで、「-」は含有量を意識した制御および製造をしておらず、含有量の測定を実施していないことを示す。また、表1Aおよび表2Aで、「<」を付記する数値は、含有量を意識した制御および製造を実施して含有量の測定を実施したが、含有量として十分な信頼性を有する測定値が得られなかったこと(測定結果が検出限界以下元素である)を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 方向性電磁鋼板は、表3A~表12Aに示す製造条件に基づいて製造した。具体的には、スラブを鋳造し、熱間圧延、熱延板焼鈍、冷間圧延、および脱炭焼鈍を実施し、一部については、脱炭焼鈍後の鋼板に、水素-窒素-アンモニアの混合雰囲気で窒化処理(窒化焼鈍)を施した。
 さらに、MgOを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。仕上げ焼鈍の最終過程では、鋼板を水素雰囲気にて1200℃で20時間保持(純化焼鈍)して、冷却した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に形成された一次被膜(中間層)の上に、りん酸塩とコロイド状シリカを主体としクロムを含有する絶縁被膜形成用のコーティング溶液を塗布し、水素:窒素が75体積%:25体積%の雰囲気で加熱して保持し、冷却して、絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。なお、中間層は平均厚さ2μmのフォルステライト被膜であり、絶縁被膜は平均厚さ1μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。評価結果を表13A~表22Aに示す。
(1)方向性電磁鋼板の結晶方位
 方向性電磁鋼板の結晶方位を上記の方法で測定した。この測定した各測定点の結晶方位からずれ角を特定し、このずれ角に基づいて隣接する2つの測定点間に存在する粒界を特定した。なお、間隔が1mmである2つの測定点で境界条件を判定したとき、「境界条件BAβを満足する粒界」および「境界条件BAγを満足する粒界」を「境界条件BBを満足する境界数」で割った値が、それぞれ1.03以上である場合に、「境界条件BAβを満足し且つ上記境界条件BBを満足しない粒界」および「BAγを満足し且つ上記境界条件BBを満足しない粒界」が存在すると判断し、且つ表中で「切り替え粒界」が存在すると表示した。なお、「境界条件BAβを満足する粒界」および「境界条件BAγを満足する粒界」とは、上記した表1のケース1および/またはケース3の粒界に対応し、「境界条件BBを満足する境界数」とは、ケース1および/またはケース2の粒界に対応する。また、特定した粒界に基づいて平均結晶粒径を算出した。
(2)方向性電磁鋼板の磁気特性
 方向性電磁鋼板の磁気特性は、JIS C 2556:2015に規定された単板磁気特性試験法(SST:Single Sheet Tester)に基づいて測定した。
 磁気特性として、交流周波数:50Hz、励磁磁束密度:1.7Tの条件で、鋼板の単位重量(1kg)あたりの電力損失として定義される鉄損W17/50(単位:W/kg)を測定した。また、800A/mで励磁したときの鋼板の圧延方向の磁束密度B(単位:T)を測定した。
 さらに、磁気特性として、交流周波数:50Hz、励磁磁束密度:1.7Tの条件下で鋼板に生じる磁歪λp-p@1.7T(1.7Tでの磁歪の最小値と最大値との差)を測定した。具体的には、上記の励磁条件下での試験片(鋼板)の最大長さLmaxおよび最小長さLmin、並び磁束密度0Tでの試験片の長さLを用いて、λp-p@1.7T=(Lmax-Lmin)÷Lにより算出した。
 同様に、交流周波数:50Hz、励磁磁束密度:1.9Tの条件下で鋼板に生じる磁歪λp-p@1.9T(1.9Tでの磁歪の最小値と最大値との差)を測定した。
 上記した磁気特性値に基づいて、1.7Tでの磁歪速度レベル(Lva@1.7T)および1.9Tでの磁歪速度レベル(Lva@1.9T)を求めた。磁歪速度レベルLva(単位:dB)は、2周期以上の磁歪波形、6.4kHzのサンプリング周波数で取得した波形をフーリエ変換して、得られたそれぞれの周波数ごとの磁歪量λ(fi)(0Hz~3.2kHz)を用いて、以下の式5で導出した。
     Lva=20×log10[{ρc×{Σ(21/2π×fi×λ(fi)×α(fi))1/2}/P]   ・・・(式5)
 ここで、
 ρ:空気の密度(kg/m
 c:音速(m/s)
 P:1kHzの音を人間が聞き取ることのできる最小の圧力(Pa)、
 fi:周波数(Hz)
 λ(fi):フーリエ変換した周波数ごとの磁歪量
 α(fi):周波数fiのA特性
 π:円周率
 なお、Lva@1.7TおよびLva@1.9Tをそれぞれ求めるにあたり、次の値を代入した。
 ρ=1.185(kg/m
 c=346.3(m/s)
 P=2×10-5(Pa)
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 方向性電磁鋼板の特性は、化学組成および製造法により大きく変化する。このため、各特性の評価結果は、化学組成および製造方法を妥当な程度に限定した鋼板の範囲内で比較検討する必要がある。そのため、以下では、いくつかの特徴のある化学組成および製造法による方向性電磁鋼板ごとに、各特性の評価結果を説明する。
(低温スラブ加熱プロセスによって製造した実施例)
 No.1~64は、スラブ加熱温度を低くして一次再結晶後の窒化によって二次再結晶の主要なインヒビターを形成するプロセスで製造した実施例である。
(No.1~23の実施例)
 No.1~23は、Nb群元素を含有しない鋼種を用いて、仕上げ焼鈍時に主にPA、PB、PC、PD、TE、TF、およびTGの条件を変化させた実施例である。
 No.1~23では、W17/50が0.90W/kg以下であり、Lva@1.7Tが51.0dB以下であり、Lva@1.9Tが58.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.1~23のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
 なお、No.3は、窒化後のN量を300ppmとしてインヒビター強度を高めた比較例である。一般的に、窒化量を増やせば生産性が低下する要因となるが、窒化量を増やすことでインヒビター強度が高くなりBが上昇する。No.3でも、Bが高い値となっている。ただ、No.3では、仕上げ焼鈍条件が好ましくなかったため、磁歪速度レベルが不十分となった。一方、No.10は、窒化後のN量を160ppmとした本発明例である。No.10では、Bが特別に高い値ではないが、仕上げ焼鈍条件が好ましかったため、磁歪速度レベルが好ましく低い値となった。
 また、No.22およびNo.23は、窒化の強化に加え、TFを高めて二次再結晶を高温まで継続させた実施例である。これらの実施例では、Bが高くなっている。ただ、これらのうち、No.22は、TFを高めすぎたため、磁歪速度レベルが不十分となった。一方、No.23は、TFの設定が適切であったため、磁歪速度レベルが好ましく低い値となった。
(No.24~34の実施例)
 No.24~34は、スラブ時点でNbを0.002%含有する鋼種を用いて、仕上げ焼鈍時に主にPAおよびTEの条件を大きく変化させた実施例である。
 No.24~34では、W17/50が0.855W/kg以下であり、Lva@1.7Tが51.0dB以下であり、Lva@1.9Tが59.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.24~34のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
(No.35~47の実施例)
 No.35~47は、スラブ時点でNbを0.007%含有する鋼種を用いた実施例である。
 No.35~47では、W17/50が0.825W/kg以下であり、Lva@1.7Tが48.0dB以下であり、Lva@1.9Tが57.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.35~47のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
 なお、No.35~47は、スラブ時点で上記したNo.1~34よりもNbを好ましく含有しているので、好ましい磁歪速度レベルが低い値となっている。また、Bが高くなっている。すなわち、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、磁気特性および磁歪特性に有利に作用する。
(No.48~55の実施例)
 No.48~55は、TEを200分未満の短時間とし、特にNb含有量の影響を確認した実施例である。
 No.48~55では、W17/50が0.86W/kg以下であり、Lva@1.7Tが50.0dB以下であり、Lva@1.9Tが57.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.48~55のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
 なお、No.48~55に示されるように、スラブ時点でNbを0.0030~0.030質量%含有すれば、たとえTEが短時間でも、二次再結晶時に切り替えが好ましく生じて磁歪速度レベルが改善する。
(No.56~64の実施例)
 No.56~64は、TEを200分未満の短時間とし、Nb群元素の含有量の影響を確認した実施例である。
 No.56~64では、W17/50が0.860W/kg以下であり、Lva@1.7Tが50.0dB以下であり、Lva@1.9Tが58.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.56~64のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
 なお、No.56~64に示されるように、Nb以外のNb群元素がスラブに所定量含有されれば、たとえTEが短時間でも、二次再結晶時に切り替えが好ましく生じて磁歪速度レベルが改善する。
(高温スラブ加熱プロセスによって製造した実施例)
 No.65~100は、スラブ加熱温度を高くしてスラブ加熱中に十分に溶解したMnSを後工程で再析出させて主要なインヒビターとして活用するプロセスで製造した実施例である。
 なお、No.65~100のうち、No.83~100は、スラブ時点でBiを含有させてBを高めた実施例である。
 No.65~82では、W17/50が0.860W/kg以下であり、Lva@1.7Tが50.0dB以下であり、Lva@1.9Tが58.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.83~100では、W17/50が0.850W/kg以下であり、Lva@1.7Tが49.0dB以下であり、Lva@1.9Tが56.5dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.65~100のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
 No.65~100に示されるように、高温スラブ加熱プロセスであっても、仕上げ焼鈍条件を適切に制御することで、二次再結晶時に切り替えが好ましく生じて磁歪速度レベルが改善する。また、低温スラブ加熱プロセスと同様に、高温スラブ加熱プロセスでも、Nbを含有するスラブを用いて仕上げ焼鈍条件を制御すれば、磁気特性および磁歪特性に有利に作用する。
(実施例2)
 実施例1で示したNo.97およびNo.98の方向性電磁鋼板を用いて、磁区制御の影響を調査した。具体的には、No.97およびNo.98に対して、レーザー、プラズマ、機械的方法、およびエッチングのいずれかの手法により、局所的な微小歪領域又は溝を形成して磁区細分化処理を施した。
 評価結果を表1Bおよび表2Bに示す。この表から、磁区細分化処理を施した方向性電磁鋼板は、いずれの手法によらず、鋼板の特徴に変化が見られず、磁気特性の悪化が見られないことが確認できる。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
(実施例3)
 表1Cおよび表2Cに示す化学組成を有するスラブを素材として、表3Cおよび表4Cに示す化学組成を有する方向性電磁鋼板を製造した。なお、化学組成の測定方法や、表中での記述方法は上記の実施例1と同じである。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 方向性電磁鋼板は、表5Cおよび表6Cに示す製造条件に基づいて製造した。表に示す以外の製造条件は上記の実施例1と同じである。
 なお、No.1011以外では、焼鈍分離剤として、MgOを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。一方、No.1011では、焼鈍分離剤として、アルミナを主成分とする焼鈍分離剤を鋼板に塗布し、仕上げ焼鈍を施した。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 製造した方向性電磁鋼板(仕上げ焼鈍鋼板)の表面に、上記の実施例1と同じ絶縁被膜を形成した。
 製造した方向性電磁鋼板は、切断方向が板厚方向と平行な切断面で見たとき、方向性電磁鋼板(珪素鋼板)上に接して配された中間層と、この中間層上に接して配された絶縁被膜とを有していた。
 なお、No.1011以外の方向性電磁鋼板では、中間層が平均厚さ1.5μmのフォルステライト被膜であり、絶縁被膜が平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。一方、No.1011の方向性電磁鋼板では、中間層が平均厚さ20nmの酸化膜(SiOを主体とする被膜)であり、絶縁被膜が平均厚さ2μmのりん酸塩とコロイド状シリカとを主体とする絶縁被膜であった。
 得られた方向性電磁鋼板について、各種特性を評価した。なお、評価方法は上記の実施例1と同じである。評価結果を表7Cおよび表8Cに示す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 No.1001~1018では、W17/50が0.925W/kg以下であり、Lva@1.7Tが51.0dB以下であり、Lva@1.9Tが58.0dB以下であるとき、鉄損特性および磁歪速度レベルの両方が良好であると判断した。
 No.1001~1018のうち、本発明例は、二次再結晶粒が亜粒界によって小さな領域に分割された上で、ずれ角αとずれ角βとの関係、及び、ずれ角αとずれ角γとの関係が好ましく制御されていたので、いずれも優れた鉄損特性と磁歪速度レベルとを示した。一方、比較例は、二次再結晶粒内でずれ角が微小に且つ連続的に変位したが、二次再結晶粒が亜粒界によって分割されておらず、ずれ角αβγの関係が好ましく制御されていないため、好ましい磁歪速度レベルが得られなかった。
 本発明の上記態様によれば、鉄損特性に優れた上で、中高磁場領域(特に1.7T~1.9T程度の磁場)での磁歪速度レベル(Lva)を改善した方向性電磁鋼板の提供が可能となるので、産業上の利用可能性が高い。
 10  方向性電磁鋼板(珪素鋼板)
 20  中間層
 30  絶縁被膜

Claims (5)

  1.  質量%で、
      Si:2.0~7.0%、
      Nb:0~0.030%、
      V:0~0.030%、
      Mo:0~0.030%、
      Ta:0~0.030%、
      W:0~0.030%、
      C:0~0.0050%、
      Mn:0~1.0%、
      S:0~0.0150%、
      Se:0~0.0150%、
      Al:0~0.0650%、
      N:0~0.0050%、
      Cu:0~0.40%、
      Bi:0~0.010%、
      B:0~0.080%、
      P:0~0.50%、
      Ti:0~0.0150%、
      Sn:0~0.10%、
      Sb:0~0.10%、
      Cr:0~0.30%、
      Ni:0~1.0%、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     Goss方位に配向する集合組織を有する方向性電磁鋼板において、
     圧延面法線方向Zを回転軸とする理想Goss方位からのずれ角をαと定義し、
     圧延直角方向Cを回転軸とする理想Goss方位からのずれ角をβと定義し、
     圧延方向Lを回転軸とする理想Goss方位からのずれ角をγと定義し、
     板面上で隣接し且つ間隔が1mmである2つの測定点で測定する結晶方位のずれ角を(α、β、γ)および(α、β、γ)と表し、
     境界条件BAαを|α-α|≧0.5°とし、前記境界条件BAαに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RAαと定義し、
     境界条件BAβを|β-β|≧0.5°とし、前記境界条件BAβに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RAβと定義し、
     境界条件BAγを|γ-γ|≧0.5°とし、前記境界条件BAγに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RAγと定義し、
     境界条件BBを[(α-α+(β-β+(γ-γ1/2≧2.0°と定義するとき、
     前記境界条件BAβを満足し且つ前記境界条件BBを満足しない粒界が存在し、
     前記境界条件BAγを満足し且つ前記境界条件BBを満足しない粒界が存在し、
     前記粒径RAαと前記粒径RAβとが、RAβ<RAαを満たし、
     前記粒径RAαと前記粒径RAγとが、RAγ<RAαを満たす、
    ことを特徴とする方向性電磁鋼板。
  2.  前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RAβと前記粒径RBとが、1.10≦RB÷RAβを満たす、
    ことを特徴とする請求項1に記載の方向性電磁鋼板。
  3.  前記境界条件BBに基づいて求める前記圧延方向Lの平均結晶粒径を粒径RBと定義するとき、
     前記粒径RAγと前記粒径RBとが、1.10≦RB÷RAγを満たす、
    ことを特徴とする請求項1または請求項2に記載の方向性電磁鋼板。
  4.  前記粒径RBが15mm以上である、
    ことを特徴とする請求項2または請求項3に記載の方向性電磁鋼板。
  5.  前記粒径RAβと前記粒径RAγとが40mm以下である、
    ことを特徴とする請求項1~4のいずれか一項に記載の方向性電磁鋼板。
PCT/JP2020/004406 2020-02-05 2020-02-05 方向性電磁鋼板 WO2021156980A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20917690.8A EP4101939A4 (en) 2020-02-05 2020-02-05 ORIENTED ELECTROMAGNETIC STEEL SHEET
KR1020227026840A KR20220123453A (ko) 2020-02-05 2020-02-05 방향성 전자 강판
BR112022015126A BR112022015126A2 (pt) 2020-02-05 2020-02-05 Chapa de aço elétrico de grão orientado
PCT/JP2020/004406 WO2021156980A1 (ja) 2020-02-05 2020-02-05 方向性電磁鋼板
US17/797,072 US20230071853A1 (en) 2020-02-05 2020-02-05 Grain oriented electrical steel sheet
JP2021575164A JP7348552B2 (ja) 2020-02-05 2020-02-05 方向性電磁鋼板
CN202080095509.2A CN115053000B (zh) 2020-02-05 2020-02-05 方向性电磁钢板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/004406 WO2021156980A1 (ja) 2020-02-05 2020-02-05 方向性電磁鋼板

Publications (1)

Publication Number Publication Date
WO2021156980A1 true WO2021156980A1 (ja) 2021-08-12

Family

ID=77199275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004406 WO2021156980A1 (ja) 2020-02-05 2020-02-05 方向性電磁鋼板

Country Status (7)

Country Link
US (1) US20230071853A1 (ja)
EP (1) EP4101939A4 (ja)
JP (1) JP7348552B2 (ja)
KR (1) KR20220123453A (ja)
CN (1) CN115053000B (ja)
BR (1) BR112022015126A2 (ja)
WO (1) WO2021156980A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
US11939641B2 (en) 2018-07-31 2024-03-26 Nippon Steel Corporation Grain oriented electrical steel sheet

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPH02200732A (ja) 1989-01-31 1990-08-09 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造法
JPH08297104A (ja) * 1995-04-25 1996-11-12 Nippon Steel Corp 方向性電磁鋼板の歪評価法
JP2001192785A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2001294996A (ja) 2000-04-06 2001-10-26 Nippon Steel Corp 高加工性方向性電磁鋼板およびその製造方法
JP3456742B2 (ja) 1993-08-18 2003-10-14 新日本製鐵株式会社 変圧器の騒音レベル予測方法
JP2004060026A (ja) 2002-07-31 2004-02-26 Jfe Steel Kk 高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板およびその製造方法
JP2005240079A (ja) 2004-02-25 2005-09-08 Jfe Steel Kk 鉄損劣化率が小さい方向性電磁鋼板
JP2005240102A (ja) 2004-02-26 2005-09-08 Jfe Steel Kk 鉄損特性に優れた方向性電磁鋼板
JP2007238984A (ja) * 2006-03-07 2007-09-20 Nippon Steel Corp 磁気特性が極めて優れた方向性電磁鋼板の製造方法
JP2007314826A (ja) 2006-05-24 2007-12-06 Nippon Steel Corp 鉄損特性に優れた一方向性電磁鋼板
JP2012052229A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP4962516B2 (ja) 2009-03-27 2012-06-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2015206114A (ja) 2014-04-11 2015-11-19 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN105220071A (zh) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 一种低噪音特性取向硅钢及其制造方法
WO2016056501A1 (ja) 2014-10-06 2016-04-14 Jfeスチール株式会社 低鉄損方向性電磁鋼板およびその製造方法
JP2017128765A (ja) 2016-01-20 2017-07-27 新日鐵住金株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、変圧器またはリアクトル用の鉄心、および、騒音評価方法
WO2019182154A1 (ja) * 2018-03-22 2019-09-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
JP2019163518A (ja) * 2018-03-20 2019-09-26 日本製鉄株式会社 一方向性電磁鋼板の製造方法
WO2020027218A1 (ja) * 2018-07-31 2020-02-06 日本製鉄株式会社 方向性電磁鋼板
WO2020027219A1 (ja) * 2018-07-31 2020-02-06 日本製鉄株式会社 方向性電磁鋼板
WO2020027215A1 (ja) * 2018-07-31 2020-02-06 日本製鉄株式会社 方向性電磁鋼板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534132A (en) 1967-05-09 1970-10-13 Gen Electric Method of making an insulated sodium cable
JP3656913B2 (ja) * 1992-09-09 2005-06-08 新日本製鐵株式会社 超高磁束密度一方向性電磁鋼板
JP4598320B2 (ja) * 2001-07-12 2010-12-15 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP4598702B2 (ja) * 2006-03-23 2010-12-15 新日本製鐵株式会社 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
JP5076510B2 (ja) * 2007-01-17 2012-11-21 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP5126788B2 (ja) * 2008-07-30 2013-01-23 新日鐵住金株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP2011084761A (ja) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6572855B2 (ja) * 2016-09-21 2019-09-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6851269B2 (ja) * 2017-06-16 2021-03-31 日鉄ステンレス株式会社 フェライト系ステンレス鋼板、鋼管および排気系部品用フェライト系ステンレス部材ならびにフェライト系ステンレス鋼板の製造方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPH02200732A (ja) 1989-01-31 1990-08-09 Nippon Steel Corp 磁気特性の優れた方向性電磁鋼板の製造法
JP3456742B2 (ja) 1993-08-18 2003-10-14 新日本製鐵株式会社 変圧器の騒音レベル予測方法
JPH08297104A (ja) * 1995-04-25 1996-11-12 Nippon Steel Corp 方向性電磁鋼板の歪評価法
JP2001192785A (ja) 2000-01-06 2001-07-17 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板およびその製造方法
JP2001294996A (ja) 2000-04-06 2001-10-26 Nippon Steel Corp 高加工性方向性電磁鋼板およびその製造方法
JP2004060026A (ja) 2002-07-31 2004-02-26 Jfe Steel Kk 高周波磁気特性、圧延性および加工性に優れる方向性電磁鋼板およびその製造方法
JP2005240079A (ja) 2004-02-25 2005-09-08 Jfe Steel Kk 鉄損劣化率が小さい方向性電磁鋼板
JP2005240102A (ja) 2004-02-26 2005-09-08 Jfe Steel Kk 鉄損特性に優れた方向性電磁鋼板
JP2007238984A (ja) * 2006-03-07 2007-09-20 Nippon Steel Corp 磁気特性が極めて優れた方向性電磁鋼板の製造方法
JP2007314826A (ja) 2006-05-24 2007-12-06 Nippon Steel Corp 鉄損特性に優れた一方向性電磁鋼板
JP4962516B2 (ja) 2009-03-27 2012-06-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2012052229A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2015206114A (ja) 2014-04-11 2015-11-19 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2016056501A1 (ja) 2014-10-06 2016-04-14 Jfeスチール株式会社 低鉄損方向性電磁鋼板およびその製造方法
CN105220071A (zh) * 2015-10-16 2016-01-06 宝山钢铁股份有限公司 一种低噪音特性取向硅钢及其制造方法
JP2017128765A (ja) 2016-01-20 2017-07-27 新日鐵住金株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、変圧器またはリアクトル用の鉄心、および、騒音評価方法
JP2019163518A (ja) * 2018-03-20 2019-09-26 日本製鉄株式会社 一方向性電磁鋼板の製造方法
WO2019182154A1 (ja) * 2018-03-22 2019-09-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
WO2020027218A1 (ja) * 2018-07-31 2020-02-06 日本製鉄株式会社 方向性電磁鋼板
WO2020027219A1 (ja) * 2018-07-31 2020-02-06 日本製鉄株式会社 方向性電磁鋼板
WO2020027215A1 (ja) * 2018-07-31 2020-02-06 日本製鉄株式会社 方向性電磁鋼板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753691B2 (en) 2018-07-31 2023-09-12 Nippon Steel Corporation Grain oriented electrical steel sheet
US11851726B2 (en) 2018-07-31 2023-12-26 Nippon Steel Corporation Grain oriented electrical steel sheet
US11939641B2 (en) 2018-07-31 2024-03-26 Nippon Steel Corporation Grain oriented electrical steel sheet

Also Published As

Publication number Publication date
EP4101939A1 (en) 2022-12-14
KR20220123453A (ko) 2022-09-06
CN115053000A (zh) 2022-09-13
CN115053000B (zh) 2024-04-02
BR112022015126A2 (pt) 2022-09-27
JPWO2021156980A1 (ja) 2021-08-12
JP7348552B2 (ja) 2023-09-21
US20230071853A1 (en) 2023-03-09
EP4101939A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
JP7028325B2 (ja) 方向性電磁鋼板
JP7028327B2 (ja) 方向性電磁鋼板
JP7028326B2 (ja) 方向性電磁鋼板
WO2021156980A1 (ja) 方向性電磁鋼板
WO2021156960A1 (ja) 方向性電磁鋼板
JP7319523B2 (ja) 方向性電磁鋼板
JP7492112B2 (ja) 方向性電磁鋼板
JP7492111B2 (ja) 方向性電磁鋼板
JP7492109B2 (ja) 方向性電磁鋼板
JP7492110B2 (ja) 方向性電磁鋼板
RU2805510C1 (ru) Лист анизотропной электротехнической стали
RU2802217C1 (ru) Лист анизотропной электротехнической стали

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575164

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026840

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015126

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020917690

Country of ref document: EP

Effective date: 20220905

ENP Entry into the national phase

Ref document number: 112022015126

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220729