WO2021085421A1 - 方向性電磁鋼板とその製造方法 - Google Patents

方向性電磁鋼板とその製造方法 Download PDF

Info

Publication number
WO2021085421A1
WO2021085421A1 PCT/JP2020/040278 JP2020040278W WO2021085421A1 WO 2021085421 A1 WO2021085421 A1 WO 2021085421A1 JP 2020040278 W JP2020040278 W JP 2020040278W WO 2021085421 A1 WO2021085421 A1 WO 2021085421A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
annealing
grain
film
Prior art date
Application number
PCT/JP2020/040278
Other languages
English (en)
French (fr)
Inventor
渡邉 誠
聖啓 末宗
今村 猛
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2021511685A priority Critical patent/JP7268724B2/ja
Priority to KR1020227011077A priority patent/KR102634154B1/ko
Priority to EP20880561.4A priority patent/EP4053296A4/en
Priority to MX2022005191A priority patent/MX2022005191A/es
Priority to CA3152615A priority patent/CA3152615A1/en
Priority to US17/768,570 priority patent/US20240105369A1/en
Priority to CN202080069263.1A priority patent/CN114466940B/zh
Publication of WO2021085421A1 publication Critical patent/WO2021085421A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and its manufacturing method, and specifically to a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties and suitable for magnetic domain subdivision processing and its manufacturing method.
  • the above-mentioned directional electromagnetic steel sheet is obtained by subjecting a cold-rolled Si-containing steel sheet to decarburization annealing that also serves as primary recrystallization annealing, applying an annealing separator containing MgO as the main component, and then performing secondary recrystallization in finish annealing. It is manufactured by raising crystals and highly aligning the crystal grains in the ⁇ 110 ⁇ ⁇ 001> orientation (so-called Goth orientation).
  • the finish annealing requires about 10 days in combination with annealing for secondary recrystallization and purification treatment for removing impurities by raising the temperature to about 1200 ° C. Therefore, batch annealing is usually performed in a coiled state. It is done by (box annealing).
  • a subscale mainly composed of SiO 2 formed on the surface layer of the steel sheet during decarburization annealing and an annealing separator mainly composed of MgO applied to the surface of the steel sheet after the decarburization annealing are used.
  • 2MgO + SiO 2 ⁇ Mg 2 SiO 4 To form a forsterite film on the surface of the steel sheet.
  • This forsterite film not only imparts insulation and corrosion resistance to the product plate, but also has the effect of applying tensile stress to the surface of the steel plate to improve magnetic properties, so it is uniform and has excellent adhesion. Is required.
  • the said forsterite film is hereinafter also referred to as "base film” or simply "coating".
  • the steel sheet that has been annealed to the finish or the steel sheet that has been further coated with an insulating film is further irradiated with a laser beam, an electron beam, a plasma flame, or the like to locally apply thermal strain to subdivide the magnetic domain.
  • Technology has been developed to reduce iron loss.
  • the coating film may partially peel off due to thermal strain.
  • Patent Document 1 proposes a technique of irradiating an electron beam after controlling the abundance ratio of a Se-enriched portion formed at an interface between a coating film and a base iron to a predetermined level by an area ratio.
  • Patent Document 2 when the surface of a directional electromagnetic steel sheet that has been annealed for finishing is irradiated with an electron beam to perform magnetic domain subdivision processing, the steel sheet is heated to 50 ° C. or higher, and then the magnetic domain is irradiated by electron beam.
  • Patent Document 3 proposes a technique of repeatedly increasing and decreasing the pressure inside the furnace in the temperature range of 600 ° C. to 1150 ° C.
  • Patent Document 4 when the flattening annealing is performed, each condition of the soaking temperature at the time of annealing, the cooling rate from the soaking temperature, and the amount of plastic elongation of the steel sheet is adjusted, and the forsterite quality before and after the flattening annealing.
  • a technique has been proposed in which the amount of decrease in film tension of the film is suppressed to 60% or less, and compounds of Sn, Sb, Mo and W are added to the annealing separator to contain these metals in the base steel. ing.
  • Patent Document 2 is also limited to the magnetic domain subdivision treatment by irradiation with an electron beam, and the effect of the magnetic domain subdivision treatment by irradiation with a plasma flame or a laser beam is unknown. Further, even in the case of electron beam irradiation, if the irradiation energy is increased in order to enhance the iron loss improving effect, there is a problem that the film peeling cannot be completely prevented. Further, in this technique, since it is necessary to heat and cool the vacuum portion before and after the electron beam irradiation, there is a problem that the equipment cost and the running cost increase.
  • the technology for preventing film peeling by the magnetic domain subdivision treatment is still in a situation where it cannot be said that it is sufficient in terms of practical use and its effect. Further, with the increasing demand for energy saving in recent years, there is a tendency to increase the irradiation energy of the magnetic domain subdivision treatment in order to further enhance the effect of improving iron loss, and the conventional film peeling prevention technology can obtain a sufficient effect. It's gone.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is directional electromagnetic steel capable of ensuring film adhesion even when magnetic domain subdivision treatment is performed at a high energy density.
  • the purpose is to provide steel sheets and to propose an advantageous manufacturing method thereof.
  • the inventors have made extensive studies focusing on what characteristics of the coating film and the base iron are involved in the coating film peeling due to the subdivision of magnetic domains.
  • the amount of pickling when the forsterite base film was pickled with HCl and the total concentration of Sn, Sb, Mo and W existing at the interface between the base film and the base iron (steel plate surface) were subdivided into magnetic domains.
  • a grain-oriented electrical steel sheet having a forsterite undercoat for magnetic section subdivision treatment, and the amount of pickling loss when the undercoat is pickled with a 5 mass% HCl aqueous solution at 60 ° C. for 60 seconds is 1. It is a grain-oriented electrical steel sheet having a concentration of 8 g / m 2 or less and a total concentration of Sn, Sb, Mo and W at the base film-ground iron interface of 0.01 to 0.15 mass%.
  • the grain-oriented electrical steel sheet of the present invention contains C: 0.0050 mass% or less, Si: 2.5 to 4.5 mass%, Mn: 0.03 to 0.30 mass%, and the balance is Fe and It is characterized by having a component composition composed of unavoidable impurities.
  • Ni 0.01 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01. ⁇ 0.50 mass%, P: 0.005 to 0.20 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.20 mass%, Bi: 0.005 to 0.10 mass%, Mo: 0.005 to 0.10 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb: 0.001 to 0.010 mass%, V: 0.001 to Contains one or more selected from 0.010 mass%, W: 0.002 to 0.050 mass%, Ti: 0.001 to 0.010 mass% and Ta: 0.001 to 0.010 mass%. It is characterized by doing.
  • the present invention contains C: 0.02 to 0.08 mass%, Si: 2.5 to 4.5 mass%, Mn: 0.03 to 0.30 mass%, and the balance is Fe and unavoidable.
  • a steel material composed of target impurities is hot-rolled to obtain a hot-rolled plate, and then cold-rolled once or cold-rolled two or more times with intermediate annealing sandwiched between them to obtain a cold-rolled plate with the final thickness, and primary recrystallization.
  • decarburization annealing which also serves as, an annealing separator containing 50 mass% or more of MgO is applied to the surface of the steel plate, finish annealing, an insulating film is applied, and after baking, magnetic partition subdivision treatment is performed.
  • any one or more compounds of Sn, Sb, Mo and W are used in the range of 0.3 to 5 mass% with respect to the entire annealing separator in terms of metal.
  • the temperature is 1150 ° C. or higher and 1250 ° C. or lower.
  • a dry gas containing 1 vol% or more of H 2 as an atmospheric gas and a dew point of 10 ° C. or lower is used with a furnace pressure of 3.5 mmH 2 O or higher.
  • the steel material used in the method for producing a grain-oriented electrical steel sheet of the present invention further contains an inhibitor-forming component of any one of the following groups A to C in addition to the component composition. It is characterized by that. Note: Group A; Al: 0.010 to 0.040 mass% and N: 0.003 to 0.012 mass% Group B; Se: 0.0030 to 0.030 mass% and / or S: 0.0040 to 0.030 mass% Group C; Al: 0.010 to 0.040 mass%, N: 0.003 to 0.012 mass%, Se: 0.0030 to 0.030 mass% and / or S: 0.0040 to 0.030 mass%
  • the steel material used in the method for producing a grain-oriented electrical steel sheet of the present invention has an Al, N, S and Se content in unavoidable impurities of less than 0.01 mass%, N: It is characterized by being less than 0.0050 mass%, S: less than 0.0040 mass%, and Se: less than 0.0030 mass%.
  • the steel material used in the method for producing a grain-oriented electrical steel sheet of the present invention has Ni: 0.01 to 1.50 mass% and Cr: 0.01 to 0. 50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.20 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.20 mass%, Bi: 0 .005 to 0.10 mass%, Mo: 0.005 to 0.10 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb: 0.001 to 0.010 mass%, V: 0.001 to 0.010 mass%, W: 0.002 to 0.050 mass%, Ti: 0.001 to 0.010 mass% and Ta: 0.001 to 0.010 mass%. It is characterized by containing one kind or two or more kinds.
  • the film can be prevented from peeling even if the magnetic domain subdivision treatment is performed at a higher energy density than that of the prior art, so that not only the corrosion resistance and the insulating property of the product plate can be improved, but also the excellent iron loss can be obtained. It is possible to obtain a reduction effect.
  • the atmospheric gas is 98 vol% N 2 + 2 vol% H 2
  • the dew point is ⁇ 5 ° C. thereby passed into a dry gas into the furnace was changed furnace pressure in various range of 1.5 ⁇ 6mmH 2 O.
  • the above-mentioned forsterite quality means that at least 50 mass% is forsterite.
  • a sample is taken from a steel sheet after finish annealing having a forsterite-quality base film obtained as described above, and the amount of pickling of the base film is reduced when the sample is immersed in a 5% HCl aqueous solution at 60 ° C. for 60 seconds and pickled. (G / m 2 ) was measured.
  • the pickling weight loss of a grain-oriented electrical steel sheet (product board) in which an insulating film is formed on a forsterite base film the measurement is performed after removing the insulating film with hot alkali. ..
  • the steel sheet after finish annealing was pickled by changing the time of immersion in a 5% HCl aqueous solution at 60 ° C., and the oxygen grain amount (g / m 2 ) became 5 to 10% of that before pickling.
  • the forsterite film can be removed up to the interface between the forsterite film and the base iron, and the Sn concentration on the surface of the steel sheet (base iron) at that time is quantified using GDS, and this is determined as the "coating-base iron interface".
  • the Sn concentration was defined as.
  • the oxygen grain amount is the amount of oxygen per unit area (both sides) when the oxygen content contained in the total thickness of the steel sheet having the forsterite film is analyzed and it is assumed that this oxygen is present on the surface of the steel sheet. It means that.
  • an insulating film was applied to the steel sheet after finish annealing, dried, and flattened and annealed at 800 ° C. for 60 seconds for both baking and flattening treatment, and then a laser beam was applied to the surface of the annealed steel sheet.
  • a laser beam was applied to the surface of the annealed steel sheet.
  • the upper photograph of FIG. 1 shows reflections when the surface of two finished steel sheets with different pickling weight loss of 1.5 g / m 2 and 1.9 g / m 2 are observed by SEM (scanning electron microscope). It is an electron image, and from this figure, in the steel sheet with a high pickling loss of 1.9 g / m 2 , the film is partially peeled off (white part in the photograph), whereas the pickling loss is 1. It can be seen that under the low condition of 5 g / m 2 , the film thickness of the entire film is uniformly thin.
  • the lower photograph of FIG. 1 is a secondary electron image when the coating cross sections of the above two steel plates are observed by SEM.
  • the pickling weight loss correlates with the adhesion of the base film, that is, the pickling weight loss is an index showing the adhesion of the base film, and by measuring the pickling weight loss of the steel sheet after finish annealing. It was found that the film adhesion of the steel sheet after the magnetic partition subdivision treatment can be predicted.
  • the Sn concentration at the coating-base iron interface that is, the Sn concentration on the steel sheet (ground iron) surface (coating-ground iron interface) when the forsterite film is completely removed by HCl pickling is 0.01 to 0.15 mass%. Must be within range.
  • the Sn existing on the coating-base iron interface that is, the surface of the steel sheet (base iron) is considered to have a function of increasing the high temperature strength of the steel sheet, and the amount of deformation of the steel sheet (base iron) due to the thermal energy received in the magnetic domain subdivision process To make it smaller.
  • the Sn concentration is less than 0.01 mass%, the above effect cannot be sufficiently obtained, while if it exceeds 0.15 mass%, the characteristics of the film itself deteriorate and good film adhesion cannot be obtained.
  • the Sn concentration was within the appropriate range of 0.01 to 0.15 mass%, the stress applied to the coating film from the ground iron in the magnetic domain subdivision treatment was reduced by the above effect, and the coating film peeling was prevented. It is considered to be.
  • SnO 2 added to the annealing separator remains in the forsterite film after finish annealing, decomposes to Sn, diffuses to the steel sheet side, and exists at the interface between the film and the base iron, or in the steel sheet.
  • Sn concentration present at the coating-base steel interface that has a great influence on the coating peeling due to the magnetic zone fragmentation treatment.
  • the Sn concentration at the coating-base iron interface was constant (3 mass%) even though the amount of SnO 2 in the annealing separator was constant (3 mass%). It means that it is changing. This means that in order to prevent the film peeling due to the magnetic domain subdivision treatment, it is necessary to establish a technique for controlling the concentration of Sn or the like existing at the film-base iron interface within an appropriate range.
  • the retention treatment temperature does not have a large effect on the Sn concentration at the film-base iron interface, but it has a large effect on the pickling weight loss. There is an appropriate range to minimize (Fig. 2 (a)).
  • the retention treatment time tends to be the same as the retention treatment temperature, and does not have a large effect on the Sn concentration at the coating-base iron interface, but it greatly affects the pickling weight loss, and it may be too high or too low.
  • Pickling weight loss increases and there is an appropriate range to minimize pickling weight loss (FIG. 2B).
  • the H 2 concentration in the atmospheric gas during the retention treatment affects both the pickling loss and the Sn concentration at the coating-ground iron interface, and the higher the H 2 concentration, the greater the pickling loss, and the coating-ground iron.
  • the Sn concentration at the interface tends to decrease (Fig. 2 (c)).
  • the furnace pressure containing H 2 atmosphere gas in a high temperature IkiNoboru Nukutoki to purification treatment temperature from 1050 ° C. also pickling weight loss and coatings - affects both the Sn concentration of the base steel surface, the furnace As the internal pressure increases, the pickling loss decreases and the Sn concentration at the coating-base iron interface increases (Fig. 2 (d)).
  • the reaction rate of film formation increases, so that the forsterite particle size becomes coarse, the grain boundary strength weakens, and the pickling weight loss increases. Further, if the retention treatment time is too short, the effect of the retention treatment cannot be sufficiently obtained, while if it is too long, the particle size of forsterite becomes coarse. Further, when the H 2 concentration during the retention treatment is increased, the film forming reaction is promoted and the particle size of forsterite is coarsened, so that the pickling weight loss is increased.
  • Sn is concentrated at the film-base iron interface. Although it is possible to increase the Sn concentration at the coating-base iron interface by adding Sn to the steel material, there are problems that the rollability is lowered and surface defects are caused. Further, even if 0.01 to 0.15 mass% of the target concentration of Sn is added to the steel material, it is absorbed in the forsterite film during finish annealing, so that the film-base iron interface after finish annealing. Sn concentration is reduced to less than 0.01 mass%. By adding Sn to the steel material at the above concentration or higher, the Sn concentration at the coating-base iron interface can be increased, but since Sn is an element that adversely affects the rollability and the like, the manufacturability is significantly impaired. Will be done. However, when Sn is added to the annealing separator, the productivity is not impaired, so that the productivity is not impaired.
  • the retention treatment conditions for finish annealing and the retention treatment conditions It has been clarified that it is effective to optimize the pressure inside the furnace of the atmospheric gas at the time of raising the temperature in the high temperature range up to the purification treatment temperature of 1050 ° C. or higher.
  • a Sn compound is used as an additive, but the inventors have confirmed that Sb, Mo and W have the same effect as Sn and can be used as an additive of the present invention. ..
  • C 0.02 to 0.08 mass% If C is less than 0.02 mass%, the grain boundary strengthening effect of C will be lost, and defects such as cracks in the slab will occur, which will hinder the production. On the other hand, if it exceeds 0.08 mass%, it becomes difficult to reduce it to 0.005 mass% or less, which does not cause magnetic aging due to decarburization annealing. Therefore, C is in the range of 0.02 to 0.08 mass%. It is preferably in the range of 0.025 to 0.075 mass%.
  • Si 2.5-4.5 mass%
  • Si is an element necessary to increase the specific resistance of steel and reduce iron loss. This effect is not sufficient if it is less than 2.5 mass%, while if it exceeds 4.5 mass%, the workability is lowered and it becomes difficult to produce by rolling. Therefore, Si is in the range of 2.5 to 4.5 mass%. It is preferably in the range of 2.8 to 4.0 mass%.
  • Mn 0.03 to 0.30 mass%
  • Mn is an element required to improve the hot workability of steel. This effect is not sufficient if it is less than 0.03 mass%, while if it exceeds 0.30 mass%, the magnetic flux density of the product plate will decrease. Therefore, Mn is set in the range of 0.03 to 0.30 mass%. It is preferably in the range of 0.04 to 0.20 mass%.
  • the components other than C, Si and Mn differ depending on whether an inhibitor is used or not in order to express secondary recrystallization in finish annealing.
  • an inhibitor when an inhibitor is used to express secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are mixed with Al: 0.010 to 0.040 mass% and N: 0.003, respectively. It is preferably contained in the range of ⁇ 0.012 mass%.
  • MnS / MnSe-based inhibitors one or two of the above-mentioned amounts of Mn and S: 0.0040 to 0.030 mass% and Se: 0.0030 to 0.030 mass%. Is preferably contained.
  • the AlN-based and MnS / MnSe-based inhibitors may be used in combination.
  • the balance other than the above components is Fe and unavoidable impurities, but for the purpose of improving the magnetic properties, Ni: 0.01 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.20 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.20 mass%, Bi: 0.005 to 0.10 mass%, Mo: 0.005 to 0.10 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb : 0.001 to 0.010 mass%, V: 0.001 to 0.010 mass%, W: 0.002 to 0.050 mass%, Ti: 0.001 to 0.010 mass% and Ta: 0.001 to 0
  • One or more selected from .010 mass% may be appropriately contained.
  • a steel material may be produced by a conventionally known ingot-lump rolling method or continuous casting method, or directly.
  • a thin slab having a thickness of 100 mm or less may be produced by a casting method.
  • Hot rolling under the conditions. When the inhibitor component is not contained, hot rolling may be performed immediately without heating after casting. Further, in the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the process may proceed as it is.
  • the hot-rolled plate obtained by hot rolling is annealed by hot-rolled plate as necessary.
  • This hot-rolled plate annealing is preferably performed in the annealing temperature range of 800 to 1150 ° C. in order to obtain good magnetic properties. Below 800 ° C., the band structure formed by hot rolling remains, making it difficult to obtain a sized primary recrystallization structure, and the development of secondary recrystallization is inhibited. On the other hand, if the temperature exceeds 1150 ° C., the particle size after annealing on the hot-rolled plate becomes too coarse, and it becomes difficult to obtain a primary recrystallized structure for sizing.
  • the hot-rolled plate after hot-rolling or after hot-rolling plate annealing is made into a cold-rolled plate with the final plate thickness by one cold rolling or two or more cold rolling with intermediate annealing in between.
  • the temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. Below 900 ° C., the recrystallized grains after intermediate annealing become finer, and the Goss nuclei in the primary recrystallized structure tend to decrease, resulting in a decrease in the magnetic identification of the product plate. On the other hand, if the temperature exceeds 1200 ° C., the crystal grains become too coarse and it becomes difficult to obtain a sized primary recrystallized structure.
  • cold rolling which is the final plate thickness
  • cold rolling is performed by raising the temperature of the steel sheet during cold rolling to a temperature of 100 ° C. to 300 ° C., or 100 to 300 ° C. during cold rolling. Applying the aging treatment once or multiple times at the temperature of the above is effective for improving the primary recrystallization texture and improving the magnetic properties.
  • the cold-rolled plate with the final plate thickness is then subjected to decarburization annealing that also serves as primary recrystallization annealing.
  • the temperature of this decarburization annealing is preferably 700 ° C. or higher and 900 ° C. or lower, and the time is preferably in the range of 30 seconds or longer and 300 seconds or lower. If the temperature is lower than 700 ° C or less than 30 seconds, decarburization is insufficient or the primary recrystallization grain size is too small and the magnetic properties deteriorate. On the other hand, if the temperature exceeds 900 ° C or 300 seconds, the primary recrystallization is performed. The grains become too large and the magnetic properties also deteriorate. By this decarburization annealing, C in the steel sheet is reduced to 0.0050 mass% or less, which does not cause magnetic aging.
  • the steel sheet after decarburization and annealing is finished by applying an annealing separator to the surface of the steel sheet, drying it, holding it at a high temperature for a long time to hold it to develop secondary recrystallization, and then purifying it at a higher temperature.
  • the annealing separator contains at least 50 mass% MgO as a main agent, and at least one of Sn, Sb, Mo and W compounds as an additive is added to the entire annealing separator in terms of metal. It is necessary to use one containing in the range of 0.3 to 5 mass%.
  • the content of the preferable additive is in the range of 0.8 to 4 mass%.
  • the above-mentioned Sn, Sb, Mo and W elements will uniformly penetrate into the steel during finish annealing, and in some cases, near the surface of the steel sheet. These elements are reoxidized and taken into the undercoat, and a deficient layer of these elements is formed near the surface of the steel sheet.
  • the base iron surface since the high temperature deformation behavior of the steel plate (base iron) surface in contact with the base film has a great influence on the film peeling after the magnetic domain subdivision, in order to prevent the film peeling due to the magnetic domain subdivision, the base iron surface It is necessary to concentrate the above elements.
  • the finish annealing in the present invention 1) The retention treatment for expressing secondary recrystallization is to keep the temperature at 800 ° C. or higher and 950 ° C. or lower for 10 hours or more and 100 hours or less in an inert atmosphere. 2) After the retention treatment is completed, when the temperature is raised to a temperature of 1150 ° C. or higher and 1250 ° C. or lower for purification treatment, and when the temperature is raised in a high temperature range from 1050 ° C.
  • H 2 is 1 vol% as an atmospheric gas. Pass in the dry gas containing the above with a dew point of 10 ° C or less so that the pressure inside the furnace becomes 3.5 mmH 2 O or more. It is necessary to satisfy the following two conditions.
  • the preferred retention treatment condition is a condition of holding at a temperature of 830 ° C. or higher and 930 ° C. or lower for 20 hours or longer and 60 hours or lower.
  • the reason why the atmospheric gas contains at least 1 vol% of H 2 when the temperature rises in the high temperature range from 1050 ° C. or higher to the purification treatment temperature is that the content of H 2 decomposes compounds (additives) such as Sn. It becomes a metal element and can penetrate into steel. However, if it is less than 1 vol%, the above effect cannot be obtained. Further, the atmospheric gas needs to have a dew point of 10 ° C. or lower. If the temperature exceeds 10 ° C., the formation reaction of the forsterite film is delayed, the film characteristics deteriorate, and the film peeling due to magnetic domain subdivision is likely to occur. Preferred atmospheric gas, H 2 concentration of 5 vol% or more, the dew point is 0 °C or less.
  • the furnace pressure of the atmospheric gas in the hot IkiNoboru Nukutoki (furnace pressure), it is also important to 3.5mmH 2 O or more.
  • the replacement of the gas between the steel sheets wound around the coil (between the coils) with the atmospheric gas in the furnace is delayed, and as a result, metal elements such as Sn contained in the separating agent are effectively contained in the steel sheet containing the coating film. Since it diffuses and penetrates, it is effective in thickening the film-ground iron interface.
  • the substitution of the gas between the coils is delayed and the forsterite film is slowly formed. As a result, the particle size of forsterite becomes finer, the film becomes denser, and the grain boundary strength of forsterite increases.
  • the preferred furnace pressure is 4.0 mmH 2 O or more, more preferably 4.5 mmH 2 O or more.
  • the furnace pressure can be adjusted by adjusting the amount of gas entering the furnace and the amount of exhaust gas.
  • the pickling weight loss of the forsterite film is 1.8 g / m 2 or less, so that film peeling due to magnetic domain subdivision is unlikely to occur.
  • the total concentration (metal conversion) of Sn, Sb, Mo and W at the coating-base iron interface is in the range of 0.01 to 0.15 mass%. Even if it receives high-density thermal energy due to magnetic domain subdivision, film peeling is less likely to occur.
  • the insulating coating is heated with hot alkali. Measurements need to be taken after removal.
  • the steel sheet surface (ground iron surface) after removing the forsterite coating by pickling as described above is fluorescent X-rays.
  • a method of quantifying by GDS a method of analyzing the area directly under the coating of the cross section by AES, EPMA, etc., and any method may be used.
  • the grain-oriented electrical steel sheet of the present invention produced as described above contains C: 0.0050 mass% or less, Si: Si: 2.5 to 4.5 mass%, and Mn: 0.03 to 0.30 mass%. However, the balance has a component composition consisting of Fe and unavoidable impurities.
  • Ni 0.01 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0. 005 to 0.20 mass%, Sn: 0.005 to 0.50 mass%, Sb: 0.005 to 0.20 mass%, Bi: 0.005 to 0.10 mass%, Mo: 0.005 to 0.10 mass% , B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.010 mass%, Nb: 0.001 to 0.010 mass%, V: 0.001 to 0.010 mass%, W: 0.002 When one or more selected from ⁇ 0.050 mass%, Ti: 0.001 to 0.010 mass% and Ta: 0.001 to 0.010 mass% are contained, the product plate contains. It remains as it is.
  • the steel sheet after finish annealing is subjected to water washing, brushing, pickling, etc. to remove the unreacted annealing separator adhering to the surface of the steel sheet, and then an insulating film is applied, dried, flattened and annealed, etc. After annealing with, the magnetic domain is subdivided.
  • the surface of the steel sheet is irradiated with a laser beam, an electron beam, a plasma flame, etc.
  • a method of introducing impact strain can be used.
  • the grain-oriented electrical steel sheet of the present invention produced in this manner has high film adhesion, it is not only excellent in corrosion resistance and insulating property, but also the film is unlikely to be peeled off after the magnetic domain subdivision treatment. Since the irradiation energy of the subdivision treatment can be increased to the ideal intensity at which the iron loss is most improved, a larger iron loss improving effect than before can be obtained.
  • a steel slab containing and having a composition of Fe and unavoidable impurities as a balance is produced by a continuous casting method, heated to a temperature of 1250 ° C., and then hot-rolled to obtain a hot-rolled plate having a thickness of 2.4 mm. After that, the primary cold rolling was performed to obtain an intermediate plate thickness of 1.8 mm, and after intermediate annealing at 1100 ° C. for 20 seconds, the secondary cold rolling was performed to obtain a cold rolled plate having a final plate thickness of 0.27 mm.
  • Decarburized annealing was performed, which also served as primary recrystallization annealing. This decarburization annealing was carried out under the conditions of 50vol% H 2 -50vol% N 2 , 840 °C ⁇ 100 seconds under a humid atmosphere with a dew point of 55 ° C..
  • an annealing separator containing MgO as a main agent and various Sn, Sb, Mo and W compounds as additives as an additive is provided in a slurry state.
  • the steel plate having the forsterite film after finish annealing was pickled by immersing it in a 5% HCl aqueous solution at 60 ° C. for 60 seconds to reduce the amount of pickling (g / m) of the base film. 2 ) is measured, and the total concentration of Sn, Sb, Mo and W at the coating-base iron interface is reduced by pickling with hydrochloric acid until the amount of oxygen is reduced to 5 to 10% of that before pickling, and then fluorescence is performed. It was measured in the air at 20 kV and 2 mA using an X-ray measuring device, and quantified by a calibration curve prepared in advance.
  • the unreacted annealing separator is removed from the steel sheet after finish annealing, an insulating film is applied, and the steel sheet is flattened and annealed for both baking and flattening treatment, and then an electron beam is applied at a current density of 80 mA / mm 2 .
  • an optical microscope 10 times.
  • a steel slab having a component composition in which the balance is composed of Fe and unavoidable impurities is produced by a continuous casting method, heated to a temperature of 1380 ° C., and then hot-rolled to obtain a hot-rolled plate having a thickness of 2.4 mm. After hot-rolled sheet annealing at 1000 ° C for 50 seconds, primary cold rolling is performed to obtain an intermediate plate thickness of 1.8 mm, intermediate annealing at 1060 ° C for 20 seconds is performed, and then secondary cold rolling is performed.
  • a cold-rolled plate having a final plate thickness of 0.23 mm was subjected to decarburization annealing that also served as primary recrystallization annealing.
  • the decarburization annealing 50vol% H 2 -50vol% N 2, under a humid atmosphere with a dew point of 56 ° C., was carried out under the conditions of 840 ° C. ⁇ 100 seconds.
  • an annealing separator containing MgO as the main agent and WO 3 in 1 mass% in terms of W was applied in a slurry form, dried, and then dried at a temperature of 920 ° C. in an Ar atmosphere.
  • the pickling weight loss was measured and the W concentration at the film-base iron interface was measured in the same manner as in Example 1 described above.
  • the unreacted annealing separator is removed from the steel sheet after finish annealing, an insulating film is applied, and the steel sheet is flattened and annealed for both baking and flattening treatment, and then an electron beam is applied at a current density of 80 mA / mm 2 .
  • the presence or absence of film peeling was investigated for the product plate in the same manner as in Example 1 described above.
  • Steel slabs having various component compositions shown in Table 4 and having a balance of Fe and unavoidable impurities are produced by a continuous casting method, and slabs containing inhibitor-forming components (Nos. 1 to 3 in Table 4) are The slab containing the inhibitor-forming component (Nos. 4 to 24 in Table 4) is heated to a temperature of 1200 ° C. and then hot-rolled to obtain a hot-rolled plate having a thickness of 2.0 mm, 1030. After hot-rolling at ° C. for 10 seconds, it was cold-rolled to obtain a cold-rolled plate with a final plate thickness of 0.23 mm, and then decarburized and annealed, which also served as primary recrystallization annealing.
  • This decarburization annealing was carried out under the conditions of 50vol% H 2 -50vol% N 2 , 840 °C ⁇ 100 seconds under a humid atmosphere with a dew point of 61 ° C..
  • an annealing separator containing MgO as the main agent and MoO 3 in an Mo equivalent of 2 mass% was applied in a slurry form, dried, and then dried at a temperature of 920 ° C. in an Ar atmosphere. after retaining treated to hold 50 hours, under an atmosphere of H 2 was subjected to finish annealing to purification treatment 1200 ° C. ⁇ 10 hours.
  • the pickling weight loss was measured and the total concentration of Sn, Sb and Mo at the film-base iron interface was measured in the same manner as in Example 1 described above.
  • the unreacted annealing separator is removed from the steel sheet after finish annealing, an insulating film is applied, and the steel sheet is flattened and annealed for both baking and flattening treatment, and then an electron beam is applied at a current density of 80 mA / mm 2 .
  • an electron beam is applied at a current density of 80 mA / mm 2 .
  • Table 4 also shows the above-mentioned pickling weight loss, the total concentration of Sn, Sb and Mo at the coating-base iron interface, and the measurement results of the presence or absence of coating peeling. From this table, it can be seen that the film peeling due to the magnetic domain subdivision treatment can be prevented by performing finish annealing under conditions suitable for the present invention.
  • a steel slab having a component composition in which the balance is composed of Fe and unavoidable impurities is produced by a continuous casting method, heated to a temperature of 1420 ° C., and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.5 mm. After hot-rolled sheet annealing at 1000 ° C for 50 seconds, primary cold rolling is performed to obtain an intermediate plate thickness of 1.5 mm, intermediate annealing at 1100 ° C for 20 seconds is performed, and then secondary cold rolling is performed.
  • decarburization annealing which also served as primary recrystallization annealing, was performed.
  • the decarburization annealing 50vol% H 2 -50vol% N 2, under a humid atmosphere with a dew point of 58 ° C., was carried out under the conditions of 840 ° C. ⁇ 100 seconds.
  • an annealing separator containing MgO as the main agent and MoO 3 in an Mo equivalent of 4 mass% was applied in a slurry form, dried, and then dried at 920 ° C. in a dry N 2 atmosphere.
  • furnace pressure is 1.92 g / m 2 when the 1.5mmH 2 O
  • furnace pressure is at 1.12 g / m 2 when the 6mmH 2 O
  • coating - the total concentration of Sb and Mo in the base steel interface the furnace 0.008 mass% when pressure is 1.5mmH 2 O
  • the furnace pressure is 6mmH 2 O was 0.071mass%.
  • the unreacted annealing separator is removed from the steel sheet after finish annealing, an insulating film is applied, and the steel sheet is flattened and annealed for both baking and flattening treatment, and then the current density of the electron beam is 10 to 120 mA /.
  • the surface of the steel sheet is irradiated in the range of mm 2 to be subjected to magnetic domain subdivision treatment to obtain a product plate, and then the product plate is investigated for the presence or absence of film peeling in the same manner as in Example 1 described above.
  • Iron loss W 17/50 was measured according to the method for measuring the AC magnetization characteristics of JIS C 2550.
  • Example 4 Using a steel material having the same composition as that of Example 4 described above, an insulating film was formed on a forsterite film manufactured under the same conditions as in Example 4, and the steel sheet was flattened and annealed. On the other hand, the laser beam was irradiated with various changes in the output range of 60 to 120 W, and was subjected to magnetic domain subdivision treatment to obtain a product plate. Next, the presence or absence of film peeling is investigated on the product plate in the same manner as in Example 1 described above, and the iron loss W 17/50 is measured according to the measurement method of the AC magnetization characteristics of JIS C 2550. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Siを2.5~4.5mass%含有する鋼素材を熱間圧延し、冷間圧延し、脱炭焼鈍し、MgO主体の焼鈍分離剤を塗布し、仕上焼鈍し、磁区細分化処理して方向性電磁鋼板を製造する際、上記焼鈍分離剤として、Sn,Sb,MoおよびWの化合物を金属換算で0.3~5mass%含有するものを用い、上記仕上焼鈍では、不活性雰囲気下で800~950℃の温度に10~100時間保持し、1050℃以上純化処理温度まで、H1vol%以上、露点10℃以下のドライガスを炉圧が3.5mmHO以上となるよう通入して、HCl酸洗による下地被膜の酸洗減量を1.8g/m以下、被膜-地鉄界面におけるSn,Sb,MoおよびWの合計濃度を0.01~0.15mass%とすることで、高エネルギー密度で磁区細分化処理を施したときでも被膜密着性に優れる方向性電磁鋼板を得る。

Description

方向性電磁鋼板とその製造方法
 本発明は、方向性電磁鋼板とその製造方法に関し、具体的には、優れた磁気特性と被膜特性を有する磁区細分化処理に適した方向性電磁鋼板とその製造方法に関するものである。
 方向性電磁鋼板は、主にトランスの鉄心材料として使用されることから、磁気特性に優れていること、特に鉄損が低いことが強く求められている。上記方向性電磁鋼板は、従来、冷間圧延したSi含有鋼板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、MgOを主剤とする焼鈍分離剤を塗布した後、仕上焼鈍において二次再結晶を起こさせ、結晶粒を{110}<001>方位(いわゆるゴス方位)に高度に揃えることで製造している。上記仕上焼鈍は、二次再結晶させる焼鈍と、1200℃程度の温度まで昇温して不純物を除去する純化処理と合わせて10日間程度を要するため、通常、コイルに巻いた状態で行うバッチ焼鈍(箱焼鈍)により行われる。
 上記仕上焼鈍においては、脱炭焼鈍時に鋼板表層部に形成されたSiOを主体としたサブスケールと、上記脱炭焼鈍後に鋼板表面に塗布したMgOを主剤とする焼鈍分離剤とが、
 2MgO+SiO→MgSiO
の反応を起こして鋼板表面にフォルステライト質の被膜を形成する。このフォルステライト被膜は、製品板に対して絶縁性や耐食性を付与することの他に、鋼板表面に引張応力を付与して磁気特性を改善する効果があるため、均一で密着性に優れていることが要求される。なお、上記フォルステライト質の被膜は、以降、「下地被膜」あるいは単に「被膜」とも称する。
 ところで、近年、省エネルギーに対する要求を背景として、方向性電磁鋼板にはさらなる鉄損特性の改善が求められるようになってきている。そのため、仕上焼鈍まで終了した鋼板、あるいは、さらに絶縁被膜を被成した鋼板に対して、さらに、レーザービームや電子ビーム、プラズマ炎等を照射して局所的に熱歪を付与して磁区細分化を図ることにより、鉄損を低減する技術が開発されている。しかし、上記のように、高エネルギー密度で局所的な加熱を行うと、熱歪によって被膜が部分的に剥離を起こすことがある。このような被膜剥離部が存在すると、耐食性や絶縁性が劣化するため、再度、絶縁被膜を塗布、焼き付けしなければならず、コストアップの要因となったり、せっかく付与した局所的な熱歪が解放されたりして、磁区細分化の効果が失われてしまうといった問題が起こる。
 このような問題を解決するため、各種技術が提案されている。例えば、特許文献1には、被膜と地鉄との界面に形成したSe濃化部の存在割合を面積率で所定のレベルに制御した上で電子ビームを照射する技術が提案されている。また、特許文献2には、仕上焼鈍済みの方向性電磁鋼板の表面に、電子ビームを照射して磁区細分化処理を行うに際し、上記鋼板を50℃以上に加熱した後に、電子ビーム照射による磁区細分化処理を施す技術が提案されている。また、特許文献3には、仕上焼鈍時に、昇温中の炉内雰囲気の温度が600℃から1150℃の温度域で炉内圧力の増減を繰り返す技術が提案されている。また、特許文献4には、平坦化焼鈍を施す際、焼鈍時の均熱温度、均熱温度からの冷却速度および鋼板の塑性伸び量の各条件を調整し、平坦化焼鈍前後におけるフォルステライト質被膜の被膜張力の減少量を60%以下に抑制し、さらに、焼鈍分離剤中にSn,Sb,MoおよびWの化合物を添加して、これらの金属を地鉄中に含有させる技術が提案されている。
特開2012-052232号公報 特開2017-166016号公報 特開2000-239736号公報 特開2012-177162号公報
 しかしながら、上記特許文献1に開示の技術は、鋼板表面にSeを濃化させて被膜特性を改善しても、プラズマ炎やレーザービームの照射では被膜破壊が起こり易いが、電子ビーム照射はフォルステライト被膜に熱付与が小さいため、磁区細分化処理に適しているとの知見によるものであり、電子ビーム照射以外の方法、例えばレーザービームやプラズマ炎による磁区細分化処理には適用することができない。さらに、Seの濃化以外にも、SやAl等の濃化も考慮する必要があり、それらをすべて所定の範囲内に収めることは困難である。また、特許文献2に開示の技術も、電子ビーム照射による磁区細分化処理に限定されており、プラズマ炎やレーザービームの照射による磁区細分化処理の効果は不明である。また、電子ビーム照射であっても、鉄損改善効果を高めるために照射エネルギーを高めると、被膜剥離を完全に防止し得ないという問題がある。さらに、この技術では、電子ビーム照射前後の真空部で加熱と冷却を行う必要があることから、設備コストやランニングコストが増大するという問題もある。また、特許文献3に開示の技術は、仕上焼鈍炉内の圧力を低下させた時に、炉内に部分的に負圧となる箇所が生じ、大気が炉内に侵入し、雰囲気ガスが異常燃焼を起こす虞がある。また、特許文献4に開示の技術は、SnやW等の金属が地鉄中に侵入するので、平坦化焼鈍後の被膜張力は高められるものの、磁区細分化処理による被膜剥離の防止には必ずしも十分な効果が得られないという問題がある。
 上記のように、磁区細分化処理による被膜剥離を防止する技術は、実用化の面でも、また、その効果の面でも、まだ十分とは言い難い状況にある。また、近年における省エネルギー化の要求の高まりに伴い、鉄損改善効果をより高めるために磁区細分化処理の照射エネルギーを増大させる傾向にあり、従来の被膜剥離防止技術では、十分な効果が得られなくなってきている。
 本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、高エネルギー密度で磁区細分化処理を施したときでも被膜密着性を確保することができる方向性電磁鋼板を提供するとともに、その有利な製造方法を提案することにある。
 発明者らは、上記課題の解決に向け、被膜と地鉄のどのような特性が磁区細分化による被膜剥離に関与するかに着目して鋭意検討を重ねた。その結果、フォルステライト質の下地被膜をHClで酸洗したときの酸洗減量および下地被膜と地鉄(鋼板表面)との界面に存在するSn,Sb,MoおよびWの合計濃度が、磁区細分化処理による被膜剥離性に大きな影響を及ぼしていることを新たに知見し、本発明を開発するに至った。
 すなわち、本発明は、
[1]フォルステライト質の下地被膜を有する磁区細分化処理用の方向性電磁鋼板であって、該下地被膜を60℃の5mass%HCl水溶液で60秒間酸洗したときの酸洗減量が1.8g/m以下であり、下地被膜-地鉄界面のSn,Sb,MoおよびWの合計濃度が0.01~0.15mass%であることを特徴とする方向性電磁鋼板である。
[2]本発明の上記方向性電磁鋼板は、C:0.0050mass%以下、Si:2.5~4.5mass%、Mn:0.03~0.30mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。
[3]また、本発明の上記方向性電磁鋼板は、上記成分組成に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.20mass%、Sn:0.005~0.50mass%、Sb:0.005~0.20mass%、Bi:0.005~0.10mass%、Mo:0.005~0.10mass%、B:0.0002~0.0025mass%、Te:0.0005~0.010mass%、Nb:0.001~0.010mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.010mass%およびTa:0.001~0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
[4]また、本発明は、C:0.02~0.08mass%、Si:2.5~4.5mass%、Mn:0.03~0.30mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とした後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶を兼ねた脱炭焼鈍を施した後、MgOを50mass%以上含有する焼鈍分離剤を鋼板表面に塗布し、仕上焼鈍し、絶縁被膜を塗布し、焼き付けした後、磁区細分化処理を施す方向性電磁鋼板の製造方法において、上記焼鈍分離剤として、Sn,Sb,MoおよびWのうちのいずれか1以上の化合物を、該金属換算で焼鈍分離剤全体に対して0.3~5mass%の範囲で含有するものを用いるとともに、上記仕上焼鈍時において、不活性雰囲気下で800℃以上950℃以下の温度で10時間以上100時間以下保持する保定処理を施した後、1150℃以上1250℃以下の温度で純化処理を施す際、1050℃以上から上記純化処理温度までの間、雰囲気ガスとしてHを1vol%以上含有する露点10℃以下のドライガスを炉内圧力が3.5mmHO以上となるよう通入することを特徴とする方向性電磁鋼板の製造方法を提案する。
[5]また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、下記A~C群のうちのいずれか1群のインヒビター形成成分を含有することを特徴とする。
          記
 ・A群;Al:0.010~0.040mass%およびN:0.003~0.012mass%
 ・B群;Se:0.0030~0.030mass%および/またはS:0.0040~0.030mass%
 ・C群;Al:0.010~0.040mass%、N:0.003~0.012mass%、Se:0.0030~0.030mass%および/またはS:0.0040~0.030mass%
[6]また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼素材は、不可避的不純物中のAl,N,SおよびSeの含有量が、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0040mass%未満およびSe:0.0030mass%未満であることを特徴とする。
[7]また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.20mass%、Sn:0.005~0.50mass%、Sb:0.005~0.20mass%、Bi:0.005~0.10mass%、Mo:0.005~0.10mass%、B:0.0002~0.0025mass%、Te:0.0005~0.010mass%、Nb:0.001~0.010mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.010mass%およびTa:0.001~0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
 本発明によれば、従来技術よりも高いエネルギー密度で磁区細分化処理を施しても被膜剥離を防止することができるので、製品板の耐食性、絶縁性を改善できるだけでなく、より優れた鉄損低減効果を得ることが可能となる。
下地被膜の酸洗減量が異なる酸洗後の鋼板表面の表面反射電子像と被膜断面の二次電子像を示す写真である。 仕上焼鈍板条件が、下地被膜を有する鋼板の酸洗減量と被膜-地鉄界面におけるSn濃度に及ぼす影響を示すグラフである。 仕上焼鈍の高温域昇温時における雰囲気ガスの炉内圧力が、電子ビーム照射の電流密度と、被膜剥離性および鉄損との関係に及ぼす影響を示すグラフである。 仕上焼鈍の高温域昇温時における雰囲気ガスの炉内圧力が、電子ビーム照射の電流密度と、被膜剥離性および鉄損との関係に及ぼす影響を示す他のグラフである。
 まず、本発明を開発する契機となった実験について説明する。
<実験1>
 C:0.068mass%、Si:3.38mass%、Mn:0.07mass%、Al:0.03mass%およびN:0.008mass%を含有する鋼を溶製し、連続鋳造法でスラブとした後、1410℃の温度に加熱し、熱間圧延して板厚2.2mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚1.7mmとし、1100℃×80秒の中間焼鈍を施した後、200℃の温度で圧延する温間圧延して最終板厚0.23mmの冷延板とした。次いで、50vol%H-50vol%N、露点57℃の湿潤雰囲気下で830℃×100秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。次いで、MgOを主剤とし、添加剤としてSnOをSn換算で全体に対して3mass%添加した焼鈍分離剤をスラリー状にして鋼板表面に塗布し、乾燥した後、二次再結晶を発現させる保定処理した後、H雰囲気下で、1150℃の温度に20時間保持する純化処理を行う仕上焼鈍を施し、フォルステライト質の下地被膜を有する方向性電磁鋼板を製造した。この際、上記保定処理においては、雰囲気ガス中のH濃度を0~10vol%の範囲で種々に変化させ、かつ、保定処理温度を750℃~1050℃の範囲、保定処理時間を5時間~120時間の範囲で種々に変化させた。また、保定処理を施した後の1050℃以上から純化処理温度まで(以降、この間を「高温域昇温時」とも称する)は、雰囲気ガスとして98vol%N+2vol%H、露点-5℃のドライガスを炉内に通入するとともに、炉内圧力を1.5~6mmHOの範囲で種々に変化させた。なお、本発明において、上記のフォルステライト質とは、少なくとも50mass%がフォルステライトであることをいう。
 上記のようにして得たフォルステライト質の下地被膜を有する仕上焼鈍後の鋼板からサンプルを採取し、60℃の5%HCl水溶液に60秒間浸漬して酸洗したときの下地被膜の酸洗減量(g/m)を測定した。なお、フォルステライト質の下地被膜の上に絶縁被膜を被成している方向性電磁鋼板(製品板)の酸洗減量を測定する場合には、絶縁被膜を熱アルカリにて除去した後に測定する。
 さらに、仕上焼鈍後の鋼板を、60℃の5%HCl水溶液に浸漬する時間を変更して酸洗を行い、酸素目付量(g/m)が酸洗前の5~10%になったときに、フォルステライト被膜と地鉄の界面までフォルステライト被膜が除去できたものとし、その時の鋼板(地鉄)表面のSn濃度を、GDSを用いて定量し、これを「被膜-地鉄界面」のSn濃度とした。ここで、上記酸素目付量は、フォルステライト被膜を有する鋼板全板厚中に含まれる酸素含有量を分析し、この酸素が鋼板表面に存在すると仮定したときの単位面積当たりの酸素量(両面)のことをいう。
 次いで、上記仕上焼鈍後の鋼板に、絶縁被膜を塗布、乾燥し、焼き付けと平坦化処理を兼ねた800℃×60秒の平坦化焼鈍を施した後、該焼鈍後の鋼板表面に、レーザービームを照射エネルギー:1.5mJ/mmの条件で照射して磁区細分化処理を施し、製品板とした。
 次いで、上記磁区細分化処理後の鋼板について、光学顕微鏡を用いて鋼板表面を10倍で観察して、被膜剥離の発生有無を調査し、その結果を、前述した仕上焼鈍後の鋼板の酸洗減量と対比したところ、表1に示したように、酸洗減量が1.8g/m以下であれば、被膜剥離が生じないことがわかった。
Figure JPOXMLDOC01-appb-T000001
 また、図1上段の写真は、酸洗減量が1.5g/mと1.9g/mと異なる2つの仕上焼鈍後の鋼板表面をSEM(走査型電子顕微鏡)で観察したときの反射電子像であり、この図から、酸洗減量が1.9g/mと高い鋼板では、部分的に被膜剥離が生じている(写真中の白い部分)のに対し、酸洗減量が1.5g/mと低い条件では、被膜全体の膜厚が均一に薄くなっていることがわかる。また、図1下段の写真は、上記2つの鋼板の被膜断面をSEMで観察したときの二次電子像である。この図から、酸洗減量の高いものでは、酸洗により被膜-地鉄の界面が腐食され、隙間が空いているのに対して、酸洗減量の低いものでは、酸洗しても被膜-地鉄界面の隙間が生じていないことがわかる。以上のことから、酸洗減量は下地被膜の密着性と相関がある、すなわち、酸洗減量は下地被膜の密着性を表す指標であり、仕上焼鈍後の鋼板の酸洗減量を測定することで、磁区細分化処理後の鋼板の被膜密着性を予測できることがわった。
 ただし、表1からわかるように、被膜剥離を防止するためには、仕上焼鈍後の鋼板の酸洗減量を1.8g/m以下とするだけでは不十分であり、仕上焼鈍後の鋼板の被膜-地鉄界面のSn濃度、すなわち、HCl酸洗でフォルステライト被膜を完全除去したときの鋼板(地鉄)表面(被膜-地鉄界面)のSn濃度が0.01~0.15mass%の範囲内にあることが必要である。
 この理由について、発明者らは以下のように考えている。被膜-地鉄界面、すなわち、鋼板(地鉄)表面に存在するSnは、鋼板の高温強度を高める働きがあると考えられ、磁区細分化処理で受ける熱エネルギーによる鋼板(地鉄)の変形量を小さくする。しかし、Sn濃度が0.01mass%未満では、上記効果が十分には得られず、一方、0.15mass%を超えると、被膜自体の特性が劣化し、良好な被膜密着性が得られなくなる。その結果、Sn濃度が0.01~0.15mass%の適正範囲内にあるときに上記効果により、磁区細分化処理で地鉄から被膜に付与される応力が低下し、被膜剥離が防止されたものと考えられる。
 焼鈍分離剤中に添加したSnOは、仕上焼鈍後、フォルステライト被膜中に残存したり、分解してSnとなり、鋼板側に拡散して、被膜と地鉄の界面に存在したり、鋼板中に侵入したりするが、磁区細分化処理による被膜剥離に大きな影響を及ぼしているのは、被膜-地鉄界面に存在するSn濃度である。しかし、ここで注目すべきは、表1からわかるように、上記実験では、焼鈍分離剤中のSnO量を一定(3mass%)としているにもかかわらず、被膜-地鉄界面のSn濃度が変化しているということである。このことは、磁区細分化処理による被膜剥離を防止するためには、被膜-地鉄界面に存在するSn等の濃度を適正範囲に制御する技術の確立が必要であることを意味している。
<実験2>
 そこで、発明者らは、上記の実験結果に基づき、酸洗減量と被膜-地鉄界面のSn濃度を適正範囲に制御する方法について検討した。
 仕上焼鈍の条件を、100vol%N雰囲気下で、900℃×40時間の保定処理した後、1150℃の純化処理温度まで昇温するに際して、1050℃以上純化処理温度までの高温域昇温時に、雰囲気ガスとして98vol%N+2vol%Hで露点-5℃のドライガスを、炉内圧力が4mmHOとなるよう通入する条件を標準条件とし、これに対して、保定処理温度、保定処理時間、保定処理中に通入する雰囲気ガスのH濃度、および、1050℃以上純化処理温度までの高温域昇温時の雰囲気ガスの炉内圧力(炉圧)を種々に変更し、その他は上記<実験1>と同じ条件として仕上焼鈍板を製造し、仕上焼鈍後の鋼板の酸洗減量と被膜-地鉄界面のSn濃度の変化を調査した。
 この結果を図2に示した。この図から、以下のことがわかる。
 まず、保定処理温度は、被膜-地鉄界面のSn濃度に大きな影響を及ぼさないが、酸洗減量に大きく影響し、高過ぎても低過ぎても酸洗減量は増大し、酸洗減量を最小化する適正範囲がある(図2(a))。
 また、保定処理時間は、保定処理温度と同様の傾向があり、被膜-地鉄界面のSn濃度には大きな影響を及ぼさないが、酸洗減量に大きく影響し、高過ぎても低過ぎても酸洗減量は増大し、酸洗減量を最小化する適正範囲がある(図2(b))。
 また、保定処理時の雰囲気ガス中のH濃度は、酸洗減量および被膜-地鉄界面のSn濃度の両方に影響し、H濃度が高くなるほど酸洗減量は増加し、被膜-地鉄界面のSn濃度は低下する傾向がある(図2(c))。
 また、1050℃から純化処理温度までの高温域昇温時におけるH含有雰囲気ガスの炉内圧力(炉圧)も、酸洗減量および被膜-地鉄界面のSn濃度の両方に影響し、炉内圧力が高くなるほど酸洗減量は減少し、被膜-地鉄界面のSn濃度は上昇する(図2(d))。
 この結果について、発明者らは以下のように考えている。
 まず、酸洗減量については、仕上焼鈍において適正温度で適正時間の保定処理を施した場合には、保定処理中にフォルステライト被膜がゆっくりと形成されて、フォルステライト粒径が微細化、緻密化し、粒界強度が改善される結果、酸洗による腐食の進行が遅れ、酸洗減量が低下する。しかし、保定処理温度が低すぎると、フォルステライト被膜が保定温度域でほとんど形成されず、その後の昇温過程で急激に反応するため、隙間の大きな粗雑な構造となり、一方、保定処理温度が高すぎると、被膜形成の反応速度が高まるため、フォルステライト粒径が粗大化して粒界強度が弱まり、酸洗減量が増大する。また、保定処理時間が短すぎると保定処理の効果が十分に得られず、一方、長すぎるとフォルステライトの粒径が粗大化する。また、保定処理中のH濃度を高めると、被膜形成反応が促進されて、フォルステライトの粒径が粗大化するため、酸洗減量は増大する。また、高温域昇温時の炉圧を高めると、コイルに巻いた鋼板間(コイル層間)のガスと雰囲気ガスとの置換が遅れるため、フォルステライト被膜の形成がゆっくりとなり、酸洗減量が低下する。
 一方、被膜-地鉄界面のSn濃度については、N雰囲気下での保定処理では、SnOは反応しないため、保定処理温度や保定処理時間の影響は小さいが、Hガスを含む雰囲気下では、SnOが分解して、鋼板側に拡散して、鋼中内部まで侵入する。さらに、仕上焼鈍の1050℃以上の高温度域では、追加酸化により鋼板(地鉄)表面のSnは、酸化されて逆に被膜中に取り込まれるため、被膜-地鉄界面のSn濃度は大きく低下してしまう。しかし、雰囲気ガスの圧力(炉内圧力)を高めると、コイル層間の雰囲気の置換が遅れるため、焼鈍分離剤中のSnOの分解が遅れて、仕上焼鈍の高温度域まで残留する。そして、この残留したSnOがゆっくりと分解されて、Snが鋼中に侵入し続ける結果、被膜-地鉄界面のSnは高い濃度に維持される。
 上記のようにSnは、被膜-地鉄界面において濃化していることが重要である。被膜-地鉄界面のSn濃度を高めることは、鋼素材中にSnを添加することでも可能であるが、圧延性を低下させたり、表面欠陥を引き起こしたりするという問題がある。また、Snを目標とする濃度の0.01~0.15mass%を鋼素材中に添加しても、仕上焼鈍中にフォルステライト被膜中に吸収されるため、仕上焼鈍後の被膜-地鉄界面のSn濃度は0.01mass%未満まで低減してしまう。なお、Snを鋼素材中に上記濃度以上添加することで、被膜-地鉄界面のSn濃度を高めることができるが、Snは圧延性等に悪影響を及ぼす元素であるため、製造性を著しく阻害することになる。しかし、焼鈍分離剤中にSnを添加した場合には、製造性を損ねないので、生産性を害することがない。
 上記の結果から、仕上焼鈍後の鋼板の下地被膜の酸洗減量を低減し、かつ、被膜-地鉄界面のSn濃度を所定の範囲内に制御するためには、仕上焼鈍の保定処理条件および1050℃以上純化処理温度までの高温域昇温時における雰囲気ガスの炉内圧力を適正化することが有効であることが明らかとなった。なお、上記実験では、添加剤としてSnの化合物を用いているが、発明者らは、Sb,MoおよびWもSnと同様の効果があり、本発明の添加剤として使用できることを確認している。
 次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)が有すべき成分組成について説明する。
C:0.02~0.08mass%
 Cは、0.02mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずるようになる。一方、0.08mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.02~0.08mass%の範囲とする。好ましくは0.025~0.075mass%の範囲である。
Si:2.5~4.5mass%
 Siは、鋼の比抵抗を高め、鉄損を低減すのに必要な元素である。この効果は、2.5mass%未満では十分ではなく、一方、4.5mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.5~4.5mass%の範囲とする。好ましくは2.8~4.0mass%の範囲である。
Mn:0.03~0.30mass%
 Mnは、鋼の熱間加工性を改善するために必要な元素である。この効果は、0.03mass%未満では十分ではなく、一方、0.30mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.03~0.30mass%の範囲とする。好ましくは0.04~0.20mass%の範囲である。
 上記C,SiおよびMn以外の成分については、仕上焼鈍において二次再結晶を発現させるために、インヒビターを利用する場合と、しない場合とで異なる。
 まず、二次再結晶を発現させるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010~0.040mass%、N:0.003~0.012mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用する場合には、前述した量のMnと、S:0.0040~0.030mass%およびSe:0.0030~0.030mass%のうちの1種または2種を含有させることが好ましい。それぞれの含有量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上限値を超えると、スラブ加熱時にインヒビター成分が未固溶で残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用して用いてもよい。
 一方、二次再結晶を発現させるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0040mass%未満およびSe:0.0030mass%未満に低減した鋼素材を用いるのが好ましい。
 本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物であるが、磁気特性の改善を目的として、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.20mass%、Sn:0.005~0.50mass%、Sb:0.005~0.20mass%、Bi:0.005~0.10mass%、Mo:0.005~0.10mass%、B:0.0002~0.0025mass%、Te:0.0005~0.010mass%、Nb:0.001~0.010mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.010mass%およびTa:0.001~0.010mass%のうちから選ばれる1種または2種以上を適宜含有してもよい。特に、上記成分の中で、Sn,Sb,MoおよびWを、製造性を損なわない程度に適量添加することは、被膜-地鉄界面におけるこれらの金属の濃度を高めることに寄与することになるので好ましい。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 上述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊-分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは常法に従い、例えば、インヒビター成分を含有する場合には、1350℃程度以上の温度まで加熱し、一方インヒビター成分を含まない場合は、1300℃以下の温度に加熱した後、従来公知の条件で熱間圧延する。なお、インヒビター成分を含有しない場合には、鋳造後加熱することなく直ちに熱間圧延の供してもよい。また、薄鋳片の場合には、熱間圧延してもよいし熱間圧延を省略してそのまま以後の工程に進めてもよい。
 次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍は、良好な磁気特性を得るためには、焼鈍温度を800~1150℃の範囲として行うことが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなるからである。
 熱延後あるいは熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の温度は、900~1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特定が低下する傾向がある。一方、1200℃を超えると、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなる。
 また、最終板厚とする冷間圧延(最終冷間圧延)は、冷間圧延時の鋼板を100℃~300℃の温度に上昇させて行うことや、冷間圧延の途中で100~300℃の温度で時効処理を1回または複数回施すことが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。
 最終板厚とした冷延板は、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。この脱炭焼鈍の温度は700℃以上900℃以下、時間は30秒以上300秒以下の範囲とするのが好ましい。700℃未満、もしくは30秒未満では、脱炭が不十分となったり一次再結晶粒径が小さ過ぎるため磁気特性が劣化し、一方、900℃を超えたり300秒を超えたりすると、一次再結晶粒が大きくなり過ぎて、やはり磁気特性が劣化する。この脱炭焼鈍により、鋼板中のCは、磁気時効を起こさない0.0050mass%以下まで低減される。
 次いで、上記脱炭焼鈍後の鋼板は、焼鈍分離剤を鋼板表面に塗布、乾燥した後、高温で長時間保持して二次再結晶を発現させる保定処理した後、さらに高温で純化処理する仕上焼鈍を施す。
 ここで、上記焼鈍分離剤は、主剤として少なくとも50mass%のMgOを含み、添加剤としてSn,Sb,MoおよびWの化合物のうちの少なくとも1種を、金属換算で、焼鈍分離剤全体に対して0.3~5mass%の範囲で含有するものを用いる必要がある。これらの元素は、Feとのサイズミスフィットパラメータが大きいため、転位の移動抵抗が高めて鋼板の高温強度を高めるので、磁区細分化処理時の熱変形が抑制されて、被膜が地鉄から受ける応力が緩和されるので、磁区細分化処理による被膜剥離が起こり難くなる。なお、好ましい添加剤の含有量は0.8~4mass%の範囲である。
 ただし、焼鈍分離剤にこれらの添加剤を添加しただけでは、仕上焼鈍中に上記したSn,Sb,MoおよびWの元素が鋼中に一様に侵入してしまい、場合によっては、鋼板表面近傍でこれらの元素が再酸化されて逆に下地被膜中に取り込まれ、鋼板表面近傍にこれら元素の欠乏層が生じてしまう。しかし、磁区細分化後の被膜剥離には、下地被膜と接する鋼板(地鉄)表面の高温変形挙動が大きく影響しているため、磁区細分化による被膜剥離を防止するためには、地鉄表面に上記元素を濃化させることが必要である。
 そこで、本発明では、上記元素を鋼板(地鉄)表面へ濃化させるため、仕上焼鈍パターンを適正化することが重要となる。また、下地被膜の酸洗減量を低減するためにも、仕上焼鈍条件を適正化することが重要となる。具体的には、本発明における仕上焼鈍は、
1)二次再結晶を発現させる保定処理は、不活性雰囲気下で800℃以上950℃以下の温度で10時間以上100時間以下保持すること、
2)上記保定処理終了後、純化処理する1150℃以上1250℃以下の温度まで昇温する際、1050℃以上から上記純化処理温度までの高温域昇温時は、雰囲気ガスとしてHを1vol%以上含有する露点10℃以下のドライガスを炉内圧力が3.5mmHO以上となるよう通入すること、
の2つの条件を満たすことが必要である。
 まず、保定処理における雰囲気が不活性ガスとする理由は、H等を含む還元性雰囲気では、Sn等の添加剤が保定処理中に分解して、Sn等の金属元素となって鋼中に拡散・侵入してしまい、被膜-地鉄界面に十分にSn等の元素を濃化させることができない。また、800℃以上950℃以下の温度で10時間以上100時間以下保持する理由は、保定温度が800℃未満、保定時間が10時間未満では、酸洗減量を低減する効果が得られない。一方、保定温度が950℃超え、保定処理時間が100時間を超えると、下地被膜の形成が進み過ぎて、酸洗減量は逆に上昇してしまうからである。なお、好ましい保定処理条件は、830℃以上930℃以下の温度で20時間以上60時間以下保持する条件である。
 また、1050℃以上から上記純化処理温度までの高温域昇温時において、雰囲気ガスは少なくとも1vol%のHを含有させる理由は、Hの含有により、Sn等の化合物(添加剤)が分解して金属元素となり、鋼中への侵入させることができる。しかし、1vol%未満では、上記効果が得られないからである。また、上記雰囲気ガスは、露点が10℃以下であることが必要である。10℃を超えると、フォルステライト被膜の形成反応が遅滞して被膜特性が劣化し、磁区細分化による被膜剥離が起こり易くなる。好ましい雰囲気ガスは、H濃度が5vol%以上、露点が0℃以下である。
 また、上記高温域昇温時の雰囲気ガスの炉内圧力(炉圧)は、3.5mmHO以上とすることも重要である。これにより、コイルに巻かれた鋼板間(コイル層間)のガスと炉内の雰囲気ガスとの置換が遅れる結果、分離剤中含まれるSn等の金属元素が効果的に、被膜を含む鋼板中に拡散・侵入するので、被膜-地鉄界面に濃化させるのに効果がある。さらに、炉圧を高めることによって、コイル層間ガスの置換が遅れてフォルステライト被膜がゆっくり形成される結果、フォルステライトの粒径が微細化し、被膜が緻密化して、フォルステライトの粒界強度が高まるので、酸洗減量が低下する効果もある。好ましい炉圧は4.0mmHO以上、より好ましくは4.5mmHO以上である。ここで、炉圧の調整は、炉内に通入するガス量と排気のガス量の調整により行うことができる。
 仕上焼鈍における保定処理に続く純化処理は、H雰囲気下において、1150℃以上1250℃以下の温度で5時間以上50時間保持することが好ましい。純化処理温度が1150℃未満、純化処理時間が5時間未満では、純化が不十分となる。一方、純化処理温度が1250℃を超えたり、純化処理時間が50時間を超えたりすると、界面に濃化していたSnが鋼板内部に拡散して、被膜-地鉄界面におけるSn等金属の表面濃化が不十分となる。なお、この純化処理により、素材鋼板中に含まれるインヒビター形成成分(Al,N,SおよびSe)は不可避的不純物レベルまで低減される。
 上記条件を満たして仕上焼鈍を施された鋼板は、フォルステライト被膜の酸洗減量が1.8g/m以下となるので、磁区細分化による被膜剥離が起こり難くなる。また、上記条件を満たして仕上焼鈍を施された鋼板は、被膜-地鉄界面のSn,Sb,MoおよびWの合計濃度(金属換算)が0.01~0.15mass%の範囲となるので、磁区細分化による高密度の熱エネルギーを受けても被膜剥離が起こり難くなる。なお、先述したように、フォルステライト質の下地被膜の上に絶縁被膜を被成している方向性電磁鋼板(製品板)の酸洗減量を測定する場合には、絶縁被膜を熱アルカリにて除去した後に測定を行う必要がある。
 なお、被膜-地鉄界面のSn,Sb,MoおよびWの濃度を測定する方法は、先述したようなフォルステライト被膜を酸洗で除去した後の鋼板表面(地鉄表面)を蛍光X線で分析する方法の他に、GDSで定量する方法、断面の被膜直下をAESやEPMA等で分析する方法等があり、いずれの方法を用いてもよい。
 上記のようにして製造された本発明の方向性電磁鋼板は、C:0.0050mass%以下、Si:Si:2.5~4.5mass%、Mn:0.03~0.30mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するものとなる。
 また、上記方向性電磁鋼板の鋼素材中に、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.20mass%、Sn:0.005~0.50mass%、Sb:0.005~0.20mass%、Bi:0.005~0.10mass%、Mo:0.005~0.10mass%、B:0.0002~0.0025mass%、Te:0.0005~0.010mass%、Nb:0.001~0.010mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.010mass%およびTa:0.001~0.010mass%のうちから選ばれる1種または2種以上を含有していた場合には、製品板中にもそのまま残存する。
 その後、上記仕上焼鈍後の鋼板は、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を施した後、絶縁被膜を塗布、乾燥し、平坦化焼鈍等で焼き付けた後、磁区細分化処理を施す。
 上記磁区細分化処理の方法としては、一般的に実施されているような、最終製品板に、レーザービームや電子ビーム、プラズマ炎等を鋼板表面に照射して線状または点状の熱歪や衝撃歪を導入する方法を用いることができる。
 このようにして製造された本発明の方向性電磁鋼板は、高い被膜密着性を有するので、耐食性や絶縁性に優れているばかりでなく、磁区細分化処理後の被膜剥離が生じ難いため、磁区細分化処理の照射エネルギーを、鉄損が最も改善される理想的な強度まで高めることができるので、従来よりも大きな鉄損改善効果を得ることができる。
 C:0.070mass%、Si:3.43mass%、Mn:0.08mass%、Al:0.005mass%、N:0.004mass%、S:0.002mass%、およびSb:0.02mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを連続鋳造法で製造し、1250℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とした後、一次冷間圧延して1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.27mmの冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この脱炭焼鈍は、50vol%H-50vol%N、露点55℃の湿潤雰囲気下で840℃×100秒の条件で行った。
 次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤とし、表2に示したように、種々のSn,Sb,MoおよびW化合物を添加材として種々の量含有する焼鈍分離剤をスラリー状にして塗布、乾燥した後、Ar雰囲気下で、920℃の温度に80時間保持する保定処理した後、H雰囲気下で、1200℃×10時間の純化処理する仕上焼鈍を施した。この際、1050℃から純化処理温度までの昇温時(高温域昇温時)は、雰囲気ガスとして、Hを20vol%含有する露点-20℃のドライガスを、炉内圧力(炉圧)が6mmHOとなるように通入した。
 上記仕上焼鈍後のフォルステライト被膜を有する鋼板について、前述した<実験1>と同様、60℃の5%HCl水溶液に60秒間浸漬して酸洗したときの下地被膜の酸洗減量(g/m)を測定するとともに、被膜-地鉄界面のSn,Sb,MoおよびWの合計濃度を、塩酸酸洗して酸素目付量が酸洗前の5~10%になるまで低減した後、蛍光X線測定装置を用い、大気中で20kV、2mAの条件で測定し、事前に作成しておいた検量線により定量した。
 次いで、上記仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、絶縁被膜を塗布し、焼き付けと平坦化処理を兼ねた平坦化焼鈍した後、電子ビームを電流密度80mA/mmで鋼板表面に照射して磁区細分化処理を施して製品板とした後、該製品板について、被膜剥離の有無を光学顕微鏡(10倍)で調査した。
 上記測定結果を表2に併記した。この表から、本発明を適用することで磁区細分化処理による被膜剥離を防止できることがわかる。
Figure JPOXMLDOC01-appb-T000002
 C:0.06mass%、Si:3.25mass%、Mn:0.07mass%、Al:0.015mass%、N:0.006mass%、S:0.002mass%およびCu:0.08mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを連続鋳造法で製造し、1380℃の温度に加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延して1.8mmの中間板厚とし、1060℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.23mmの冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この脱炭焼鈍は、50vol%H-50vol%N、露点56℃の湿潤雰囲気下で、840℃×100秒の条件で行った。
 次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤し、WOをW換算で1mass%含有する焼鈍分離剤をスラリー状にして塗布、乾燥した後、Ar雰囲気下で、920℃の温度に50時間保持する保定処理した後、H雰囲気下で、1200℃×10時間の純化処理する仕上焼鈍を施した。この際、1050℃から純化処理温度までの高温域昇温時は、炉内圧力(炉圧)が6mmHOとなるよう制御するとともに、炉内に通入する雰囲気ガスのH濃度を0~80vol%、露点を-50~20℃の範囲で、表3に示したように種々に変化させた。
 上記仕上焼鈍後のフォルステライト被膜を有する鋼板について、前述した実施例1と同様にして、酸洗減量を測定するとともに、被膜-地鉄界面のWの濃度を測定した。
 次いで、上記仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、絶縁被膜を塗布し、焼き付けと平坦化処理を兼ねた平坦化焼鈍した後、電子ビームを電流密度80mA/mmで鋼板表面に照射して磁区細分化処理を施して製品板とした後、該製品板について、前述した実施例1と同様にして、被膜剥離の有無を調査した。
 上記測定結果を表3に併記した。この表から、本発明に適合する条件で仕上焼鈍を行うことで、磁区細分化処理による被膜剥離を防止できることがわかる。
Figure JPOXMLDOC01-appb-T000003
 表4に記載した種々の成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、インヒビター形成成分を含有するスラブ(表4のNo.1~3)は1200℃の温度に、インヒビター形成成分を含有するスラブ(表4のNo.4~24)は1380℃の温度に加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板とした後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この脱炭焼鈍は、50vol%H-50vol%N、露点61℃の湿潤雰囲気下で840℃×100秒の条件で行った。
 次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤し、MoOをMo換算で2mass%含有する焼鈍分離剤をスラリー状にして塗布、乾燥した後、Ar雰囲気下で、920℃の温度に50時間保持する保定処理した後、H雰囲気下で、1200℃×10時間の純化処理する仕上焼鈍を施した。この際、1050℃から純化処理温度までの高温域昇温時は、炉内に通入する雰囲気ガスとして、H濃度が75vol%、露点が-20℃のドライガスを、炉内圧力(炉圧)が6mmHOとなるよう通入した。
 上記仕上焼鈍後のフォルステライト被膜を有する鋼板について、前述した実施例1と同様にして、酸洗減量を測定するとともに、被膜-地鉄界面のSn,SbおよびMoの合計濃度を測定した。
 次いで、上記仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、絶縁被膜を塗布し、焼き付けと平坦化処理を兼ねた平坦化焼鈍した後、電子ビームを電流密度80mA/mmで鋼板表面に照射して磁区細分化処理を施し、製品板とした後、該製品板について、前述した実施例1と同様にして、被膜剥離の有無を調査した。
 上記酸洗減量、被膜-地鉄界面のSn,SbおよびMoの合計濃度および被膜剥離の有無の測定結果を表4に併記した。この表から、本発明に適合する条件で仕上焼鈍を行うことで、磁区細分化処理による被膜剥離を防止できることがわかる。
Figure JPOXMLDOC01-appb-T000004
 C:0.06mass%、Si:3.4mass%、Mn:0.08mass%、Al:0.025mass%、N:0.008mass%、Se:0.02mass%およびSb:0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼スラブを連続鋳造法で製造し、1420℃の温度に加熱した後、熱間圧延して、板厚2.5mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延して1.5mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板とした後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この脱炭焼鈍は、50vol%H-50vol%N、露点58℃の湿潤雰囲気下で、840℃×100秒の条件で行った。
 次いで、上記脱炭焼鈍後の鋼板表面に、MgOを主剤し、MoOをMo換算で4mass%含有する焼鈍分離剤をスラリー状にして塗布、乾燥した後、乾燥N雰囲気下で、920℃の温度に40時間保持する保定処理した後、H雰囲気下で、1200℃×10時間の純化処理する仕上焼鈍を施した。この際、1050℃から純化処理温度までの昇温時(高温域昇温時)は、炉内に通入する雰囲気ガスとして、H濃度を1vol%以上含有する露点が-5℃のドライガスを、炉内圧力(炉圧)が1.5mmHOと6mmHOの2条件となるよう通入した。
 上記仕上焼鈍後のフォルステライト被膜を有する鋼板について、前述した実施例1と同様にして、酸洗減量と、被膜-地鉄界面のSbおよびMoの合計濃度を測定したところ、酸洗減量は、炉圧が1.5mmHOのときは1.92g/m、炉圧が6mmHOのときは1.12g/mで、被膜-地鉄界面のSbおよびMoの合計濃度は、炉圧が1.5mmHOのときは0.008mass%、炉圧が6mmHOのときは0.071mass%であった。
 次いで、上記仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、絶縁被膜を塗布し、焼き付けと平坦化処理を兼ねた平坦化焼鈍した後、電子ビームの電流密度を10~120mA/mmの範囲で変化させて鋼板表面に照射して磁区細分化処理を施し、製品板とした後、該製品板について、前述した実施例1と同様にして、被膜剥離の有無を調査するとともに、鉄損W17/50をJIS C 2550の交流磁化特性の測定法に準拠して測定した。
 上記の結果を図3に示した。この図から、本発明に適合する条件で仕上焼鈍を行うことで、高いエネルギー密度で電子ビームを照射しても、被膜剥離を起こすことなく、磁区細分化による鉄損低減効果を最大限に享受できることがわかる。
 上記した実施例4と同じ成分組成を有する鋼素材を用いて、同じく実施例4と同じ条件で製造したフォルステライト被膜の上に絶縁被膜を被成し、平坦化焼鈍を施した後の鋼板に対して、レーザービームを出力:60~120Wの範囲で種々に変化させて照射し、磁区細分化処理を施し、製品板とした。次いで、上記製品板に対して、前述した実施例1と同様にして、被膜剥離の有無を調査するとともに、鉄損W17/50をJIS C 2550の交流磁化特性の測定法に準拠して測定した。
 上記の測定結果を図4に示した。この図から、本発明に適合する条件で仕上焼鈍を行うことで、電子ビームと同様、高いエネルギー密度でレーザービームを照射しても、被膜剥離を起こすことなく、磁区細分化による鉄損低減効果を最大限に享受できることがわかる。

Claims (7)

  1. フォルステライト質の下地被膜を有する磁区細分化処理用の方向性電磁鋼板であって、
    該下地被膜を60℃の5mass%HCl水溶液で60秒間酸洗したときの酸洗減量が1.8g/m以下であり、
    下地被膜-地鉄界面のSn,Sb,MoおよびWの合計濃度が0.01~0.15mass%であることを特徴とする方向性電磁鋼板。
  2. 上記鋼板は、C:0.0050mass%以下、Si:2.5~4.5mass%、Mn:0.03~0.30mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1に記載の方向性電磁鋼板。
  3. 上記鋼板は、上記成分組成に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.20mass%、Sn:0.005~0.50mass%、Sb:0.005~0.20mass%、Bi:0.005~0.10mass%、Mo:0.005~0.10mass%、B:0.0002~0.0025mass%、Te:0.0005~0.010mass%、Nb:0.001~0.010mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.010mass%およびTa:0.001~0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項2に記載の方向性電磁鋼板。
  4. C:0.02~0.08mass%、Si:2.5~4.5mass%、Mn:0.03~0.30mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とした後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶を兼ねた脱炭焼鈍を施した後、MgOを50mass%以上含有する焼鈍分離剤を鋼板表面に塗布し、仕上焼鈍し絶縁被膜を塗布し、焼き付けした後、磁区細分化処理を施す方向性電磁鋼板の製造方法において、
    上記焼鈍分離剤として、Sn,Sb,MoおよびWのうちのいずれか1以上の化合物を、該金属換算で焼鈍分離剤全体に対して0.3~5mass%の範囲で含有するものを用いるとともに、
    上記仕上焼鈍時において、不活性雰囲気下で800℃以上950℃以下の温度で10時間以上100時間以下保持する保定処理を施した後、1150℃以上1250℃以下の温度で純化処理を施す際、1050℃以上から上記純化処理温度までの間、雰囲気ガスとしてHを1vol%以上含有する露点10℃以下のドライガスを炉内圧力が3.5mmHO以上となるよう通入することを特徴とする方向性電磁鋼板の製造方法。
  5. 上記鋼素材は、上記成分組成に加えてさらに、下記A~C群のうちのいずれか1群のインヒビター形成成分を含有することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
              記
     ・A群;Al:0.010~0.040mass%およびN:0.003~0.012mass%
     ・B群;Se:0.0030~0.030mass%および/またはS:0.0040~0.030mass%
     ・C群;Al:0.010~0.040mass%、N:0.003~0.012mass%、Se:0.0030~0.030mass%および/またはS:0.0040~0.030mass%
  6. 上記鋼素材は、不可避的不純物中のAl,N,SおよびSeの含有量が、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0040mass%未満およびSe:0.0030mass%未満であることを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
  7. 上記鋼素材は、上記成分組成に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.01~0.50mass%、P:0.005~0.20mass%、Sn:0.005~0.50mass%、Sb:0.005~0.20mass%、Bi:0.005~0.10mass%、Mo:0.005~0.10mass%、B:0.0002~0.0025mass%、Te:0.0005~0.010mass%、Nb:0.001~0.010mass%、V:0.001~0.010mass%、W:0.002~0.050mass%、Ti:0.001~0.010mass%およびTa:0.001~0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項4~6のいずれか1項に記載の方向性電磁鋼板の製造方法。
PCT/JP2020/040278 2019-10-31 2020-10-27 方向性電磁鋼板とその製造方法 WO2021085421A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021511685A JP7268724B2 (ja) 2019-10-31 2020-10-27 方向性電磁鋼板とその製造方法
KR1020227011077A KR102634154B1 (ko) 2019-10-31 2020-10-27 방향성 전자 강판과 그의 제조 방법
EP20880561.4A EP4053296A4 (en) 2019-10-31 2020-10-27 GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
MX2022005191A MX2022005191A (es) 2019-10-31 2020-10-27 Chapa de acero electrico de grano orientado y metodo para producir la misma.
CA3152615A CA3152615A1 (en) 2019-10-31 2020-10-27 Grain-oriented electrical steel sheet and method for producing same
US17/768,570 US20240105369A1 (en) 2019-10-31 2020-10-27 Grain-oriented electrical steel sheet and method for producing same
CN202080069263.1A CN114466940B (zh) 2019-10-31 2020-10-27 取向性电磁钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-198947 2019-10-31
JP2019198947 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085421A1 true WO2021085421A1 (ja) 2021-05-06

Family

ID=75716006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040278 WO2021085421A1 (ja) 2019-10-31 2020-10-27 方向性電磁鋼板とその製造方法

Country Status (8)

Country Link
US (1) US20240105369A1 (ja)
EP (1) EP4053296A4 (ja)
JP (1) JP7268724B2 (ja)
KR (1) KR102634154B1 (ja)
CN (1) CN114466940B (ja)
CA (1) CA3152615A1 (ja)
MX (1) MX2022005191A (ja)
WO (1) WO2021085421A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134917A (ja) * 1974-04-17 1975-10-25
JPS535800A (en) * 1976-07-05 1978-01-19 Kawasaki Steel Co Highhmagneticcflux density oneeway siliconnsteellfolstellite insulator film and method of formation thereof
JPH02125815A (ja) * 1988-07-20 1990-05-14 Kawasaki Steel Corp 磁気特性の優れた一方向性珪素鋼板の製造方法
JPH10121143A (ja) * 1996-10-18 1998-05-12 Kawasaki Steel Corp 磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
JP2000239736A (ja) 1998-11-17 2000-09-05 Nippon Steel Corp 含空隙材料の雰囲気制御方法および方向性電磁鋼板の仕上焼鈍方法
JP2001295062A (ja) * 2000-04-12 2001-10-26 Kawasaki Steel Corp 磁気特性と被膜特性に優れた方向性けい素鋼板
JP2012052232A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012177162A (ja) 2011-02-25 2012-09-13 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2017166016A (ja) 2016-03-15 2017-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法および製造設備列

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69015060T2 (de) * 1989-09-08 1995-04-27 Armco Inc Magnesiumoxyd-Beschichtung für Elektrobleche und Beschichtungsverfahren.
JP4258202B2 (ja) * 2002-10-24 2009-04-30 Jfeスチール株式会社 フォルステライト被膜を有しない方向性電磁鋼板とその製造方法
EP3173494B1 (en) * 2014-07-25 2019-03-13 JFE Steel Corporation Method for producing high-strength hot dipped galvanized steel sheet
WO2016139818A1 (ja) * 2015-03-05 2016-09-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6350398B2 (ja) * 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
RS63177B1 (sr) * 2016-08-05 2022-06-30 Nippon Steel Corp Neorijentisani električni čelični lim, način proizvodnje neorijentisanog električnog čeličnog lima i način proizvodnje jezgra motora

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134917A (ja) * 1974-04-17 1975-10-25
JPS535800A (en) * 1976-07-05 1978-01-19 Kawasaki Steel Co Highhmagneticcflux density oneeway siliconnsteellfolstellite insulator film and method of formation thereof
JPH02125815A (ja) * 1988-07-20 1990-05-14 Kawasaki Steel Corp 磁気特性の優れた一方向性珪素鋼板の製造方法
JPH10121143A (ja) * 1996-10-18 1998-05-12 Kawasaki Steel Corp 磁気特性および被膜特性に優れる方向性電磁鋼板の製造方法
JP2000239736A (ja) 1998-11-17 2000-09-05 Nippon Steel Corp 含空隙材料の雰囲気制御方法および方向性電磁鋼板の仕上焼鈍方法
JP2001295062A (ja) * 2000-04-12 2001-10-26 Kawasaki Steel Corp 磁気特性と被膜特性に優れた方向性けい素鋼板
JP2012052232A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012177162A (ja) 2011-02-25 2012-09-13 Jfe Steel Corp 方向性電磁鋼板の製造方法
JP2017166016A (ja) 2016-03-15 2017-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法および製造設備列

Also Published As

Publication number Publication date
JPWO2021085421A1 (ja) 2021-11-25
CN114466940B (zh) 2023-07-18
EP4053296A4 (en) 2022-11-02
CN114466940A (zh) 2022-05-10
KR20220057582A (ko) 2022-05-09
EP4053296A1 (en) 2022-09-07
KR102634154B1 (ko) 2024-02-05
JP7268724B2 (ja) 2023-05-08
US20240105369A1 (en) 2024-03-28
CA3152615A1 (en) 2021-05-06
MX2022005191A (es) 2022-05-16

Similar Documents

Publication Publication Date Title
CN107849656B (zh) 取向性电磁钢板的制造方法
JP6168173B2 (ja) 方向性電磁鋼板とその製造方法
EP3144400B1 (en) Method for producing grain-oriented electromagnetic steel sheet
US10294544B2 (en) Method for producing grain-oriented electrical steel sheet
KR20140064936A (ko) 방향성 전기 강판 및 그 제조 방법
WO2018021332A1 (ja) 方向性電磁鋼板用熱延鋼板およびその製造方法、並びに方向性電磁鋼板の製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JP6119959B2 (ja) 方向性電磁鋼板の製造方法
RU2771318C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
KR102542693B1 (ko) 방향성 전기 강판과 그 제조 방법
WO2020203928A1 (ja) 方向性電磁鋼板およびその製造方法
WO2021085421A1 (ja) 方向性電磁鋼板とその製造方法
JP6341382B2 (ja) 方向性電磁鋼板とその製造方法
RU2768094C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
RU2771130C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
JP4604827B2 (ja) 一方向性電磁鋼板の製造方法
JP2021123766A (ja) 方向性電磁鋼板、および方向性電磁鋼板の製造方法、ならびに焼鈍分離剤
JP5011712B2 (ja) 一方向性電磁鋼板の製造方法
JP3716608B2 (ja) 方向性電磁鋼板の製造方法
JP7428259B2 (ja) 方向性電磁鋼板およびその製造方法
RU2771315C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
WO2022250161A1 (ja) 方向性電磁鋼板の製造方法
JP2000034520A (ja) 磁気特性に優れる方向性けい素鋼板の製造方法
JP2002266029A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021511685

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3152615

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227011077

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17768570

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020880561

Country of ref document: EP

Effective date: 20220531