WO2021082402A1 - 一种消除摄像模组点子缺陷的ald制备方法及其产物 - Google Patents

一种消除摄像模组点子缺陷的ald制备方法及其产物 Download PDF

Info

Publication number
WO2021082402A1
WO2021082402A1 PCT/CN2020/090839 CN2020090839W WO2021082402A1 WO 2021082402 A1 WO2021082402 A1 WO 2021082402A1 CN 2020090839 W CN2020090839 W CN 2020090839W WO 2021082402 A1 WO2021082402 A1 WO 2021082402A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
layer
reaction
reaction precursor
Prior art date
Application number
PCT/CN2020/090839
Other languages
English (en)
French (fr)
Inventor
葛文志
王懿伟
王刚
翁钦盛
矢岛大和
江骏楠
Original Assignee
杭州美迪凯光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911060808.8A external-priority patent/CN110885972A/zh
Application filed by 杭州美迪凯光电科技股份有限公司 filed Critical 杭州美迪凯光电科技股份有限公司
Priority to KR1020207020909A priority Critical patent/KR102456684B1/ko
Priority to JP2020538658A priority patent/JP7390296B2/ja
Priority to US16/969,573 priority patent/US11804501B2/en
Publication of WO2021082402A1 publication Critical patent/WO2021082402A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Definitions

  • the present invention relates to the technical field of camera modules, and in particular to an ALD preparation method and its products for eliminating dot defects of camera modules.
  • a dot is a kind of undesirable defect that appears in optical lenses and camera modules. It refers to the dot-like protrusions formed on the surface of the substrate, sometimes called particles.
  • the idea is mainly in the current optical coating process (ie, vacuum thermal evaporation and magnetron sputtering), inevitably large dots of film material will be deposited on the surface of the substrate along with the film material vapor or sputtering particles. Forming. Sometimes it is an individual spot, and in severe cases, it is a thin spot in the film. Large spots can even damage the surface of the substrate and seriously affect the imaging effect. Therefore, in order to ensure the imaging effect, most manufacturers currently require that the dots in the optical components should not exceed 5 ⁇ m dots.
  • optical coating process mainly uses vacuum thermal evaporation (evaporation) and magnetron sputtering, and there is no effective means to control or reduce ideas.
  • Vacuum thermal evaporation is to heat the evaporated substance under vacuum conditions to vaporize and deposit on the surface of the substrate to form a solid film.
  • the process is as follows: (1) Various forms of thermal energy conversion methods (such as resistance heating, electronic heating, high Frequency induction heating, arc heating, laser heating, etc.) to evaporate or sublimate the particles of the coating material into gaseous particles with a certain energy; (2) The gaseous particles are transmitted to the substrate through basically collision-free linear motion; (3) Particles It is deposited on the surface of the substrate and condenses into a thin film; (4) The atoms that make up the thin film are rearranged or chemical bonding changes.
  • thermal energy conversion methods such as resistance heating, electronic heating, high Frequency induction heating, arc heating, laser heating, etc.
  • Magnetron sputtering is a technique that uses charged particles to bombard the surface of the target in a vacuum, so that the bombarded particles are deposited on the substrate.
  • the process is as follows: (1) The electrons fly to the substrate under the action of the electric field E When the medium collides with argon atoms, it ionizes to produce Ar positive ions and new electrons; (2) The new electrons fly to the substrate, and the Ar ions accelerate to the cathode target under the action of the electric field, and bombard the target surface with high energy. Sputtering the target material; (3) In the sputtered particles, neutral target atoms or molecules are deposited on the substrate to form a thin film. Similarly, in the process of bombarding the target material, it is extremely likely to produce large dots, which are then deposited on the substrate to form dots, which cannot be effectively controlled.
  • One of the objectives of the present invention is to provide an ALD preparation method that eliminates the dot defects of the camera module in view of the shortcomings of the prior art, which can fundamentally solve the method of generating dots without generating dot defects with a particle size in the micron level.
  • the second object of the present invention is to provide a multilayer film structure, package cover, CLCC package and camera module obtained by the above-mentioned preparation method, which greatly reduces defects caused by dot defects.
  • the first reaction precursor is introduced into the atomic layer reaction chamber, and chemically adsorbed on the base substrate to form the first film layer;
  • the third reaction precursor is introduced into the reaction chamber and chemically adsorbed on the surface of the first refractive index layer to form a second film layer;
  • the fourth reaction precursor is introduced into the atomic layer reaction chamber and reacts with the third reaction precursor chemically adsorbed on the surface of the first refractive index layer to form a second refractive index layer; the second refractive index layer The refractive index of> the refractive index of the first refractive index layer;
  • the above preparation method further includes forming an Nth refractive index layer on the N-1th refractive index layer, where N is a positive integer greater than or equal to 3.
  • the refractive index of the even-numbered refractive index layer is greater than the refractive index of the odd-numbered refractive index layer.
  • the first reaction precursor is silane (including monosilane, disilane or other substituted silanes), and the second reaction precursor is oxygen or ozone;
  • the third reaction The precursor is a gas containing titanium, tantalum, or zirconium, and the fourth reaction precursor is water vapor.
  • the base substrate is a glass, crystal or sapphire substrate.
  • the refractive index layer includes any one of the following combinations: SiO 2 low refractive index layer L and TiO 2 high refractive index layer H; SiO 2 low refractive index layer L and Nb 2 O 5 high refractive index layer Rate layer H; SiO 2 low refractive index layer L and Ta 3 O 5 high refractive index layer H; MgF 2 low refractive index layer L and TiO 2 high refractive index layer H; MgF 2 low refractive index layer L and Nb 2 O 5 High refractive index layer H; Nb 2 O 5 low refractive index layer L and Ta 3 O 5 high refractive index layer H; MgF 2 low refractive index layer L, Al 2 O 3 high refractive index layer H and SiO 2 low refractive index layer L; Al 2 O 3 low refractive index layer L, H4 high refractive index layer H and MgF 2 low refractive index layer L; Al 2 O 3 low refractive index layer L, ZrO 2 high refractive
  • the odd-numbered refractive index layer is silicon oxide
  • the even-numbered refractive index layer is titanium oxide, tantalum oxide, or zirconium oxide.
  • the silicon dioxide layer, the titanium dioxide layer, the silicon dioxide layer, the tantalum pentoxide layer, and the silicon dioxide layer are basically sequentially outward from the substrate.
  • the temperature is preferably 150 to 250°C.
  • a multilayer film structure is characterized in that the multilayer film structure is prepared by the above-mentioned ALD preparation method.
  • the number of dots with a size ⁇ 1 ⁇ m in the above-mentioned multilayer film structure is zero.
  • the current deposition layer is bombarded and modified with plasma.
  • the surface roughness Ra of the above-mentioned multilayer film structure ranges from 0.01 nm to 20 nm.
  • a CLCC package cover plate wherein the package cover plate includes a cover substrate and a functional film covering the cover substrate, the functional film includes a multilayer film structure; the multilayer
  • the film structure is deposited by the above-mentioned ALD preparation method. After the deposition of each film structure is completed and before the deposition of the next film structure, the current deposition layer is bombarded and modified with plasma.
  • the conventional ALD deposition process is only suitable for single-layer film deposition. In the process of depositing a multi-layer film structure, after the current layer of film is deposited, due to changes in the deposition surface, the following film may not be successfully deposited.
  • the present invention Through the plasma bombardment surface modification after each layer of film structure, the successful deposition of the multilayer film is realized.
  • a CLCC package wherein the CLCC package includes a substrate on which a CMOS located in the middle, a capacitor resistor and a drive motor located at the edge are attached, and the substrate is provided with There is an isolation wall base.
  • the isolation wall base is provided with CMOS sensor vacancies, capacitor resistor vacancies and drive motor vacancies on the corresponding positions of the CMOS, capacitor resistors and drive motors on the substrate.
  • the upper surface of the CMOS sensor vacancies is installed as above.
  • the cover plate is provided.
  • a camera module characterized in that the camera module includes a CLCC package as described above.
  • ALD atomic Layer Deposition, Atomic Layer Deposition
  • the materials should be deposited on the base substrate by adsorption in the reaction chamber in the form of gas, and there is no evaporation or splashing.
  • the shooting process eliminates the source of dot defects, so no large dot defects are formed, which greatly improves the imaging quality of the camera module, so that ALD has practical operational significance in the processing of the camera module.
  • the product provided by the present invention realizes the coating of optical elements by atomic layer deposition.
  • the reaction material does not have evaporation or sputtering process, and is deposited on the base substrate by adsorption, so it will not form large dot defects, thus greatly
  • the imaging quality of the camera module is improved, the product qualification rate is improved, and the optical coating is smoother, stronger, and more practical.
  • the cover plate of the present invention ensures that no large-sized dots appear on the surface, which is far lower than the 5 ⁇ m requirement of the prior art, overcomes the disadvantages that limit the improvement of CMOS pixels, and greatly improves the CLCC package
  • the pixel level of the body and camera module The pixel level of the body and camera module.
  • Figure 1 is a schematic diagram of the multilayer film structure of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the CLCC package according to the present invention.
  • FIG. 3 is a schematic diagram of the cover plate of Embodiment 1 under the eyepiece 10X and the objective lens 100X of the metallurgical microscope;
  • Figure 4 is an AFM diagram of the surface of the cover plate of Example 1;
  • Fig. 5 is a three-dimensional AFM diagram of the surface of the cover plate of embodiment 1;
  • FIG. 6 is a schematic diagram of the cover plate of the comparative example under the eyepiece 10X and the objective lens 100X of the metallurgical microscope.
  • Marking instructions 1, substrate; 2, CMOS; 3, capacitor resistance; 4, drive motor; 5, isolation wall base; 6, cover.
  • the first reaction precursor is introduced into the atomic layer reaction chamber, and chemically adsorbed on the base substrate to form the first film layer;
  • the third reaction precursor is introduced into the reaction chamber and chemically adsorbed on the surface of the first refractive index layer to form a second film layer;
  • the fourth reaction precursor is introduced into the atomic layer reaction chamber and reacts with the third reaction precursor chemically adsorbed on the surface of the first refractive index layer to form a second refractive index layer; the second refractive index layer The refractive index of> the refractive index of the first refractive index layer;
  • Steps S2 to S9 can be repeated periodically to prepare multilayer films with different refractive indexes, that is, an Nth refractive index layer is formed on the N-1th refractive index layer, where N is a positive integer greater than or equal to 3.
  • N is a positive integer greater than or equal to 3.
  • the film layer arrangement can increase the light transmittance of the film, so that the module has good optical properties.
  • the ALD atomic layer deposition method can eliminate micron-level dot defects and improve the imaging quality.
  • the reaction precursor is determined by the required center wavelength and transmission bandwidth ⁇ according to the choice of the film material, thickness and connection mode.
  • the preferred first reaction precursor is silane
  • the second reaction precursor is oxygen or ozone
  • the third reaction precursor is a gas containing titanium, tantalum, or zirconium (such as titanium tetraiodide gas, pentachloro Tantalum gas, zirconium iodide gas or other organic gas containing titanium, tantalum, or zirconium)
  • the fourth reaction precursor is water vapor.
  • the temperature is related to the decomposition temperature of the reaction precursor and the deposition rate. The temperature is required to be below the decomposition temperature of the reaction precursor, but has a certain deposition rate.
  • the base substrate is a glass, crystal or sapphire substrate.
  • the refractive index layer includes any one of the following combinations: SiO 2 low refractive index layer L and TiO 2 high refractive index layer H; SiO 2 low refractive index layer L and Nb 2 O 5 high refractive index layer H; SiO 2 low refractive index layer L and Ta 3 O 5 high refractive index layer H; MgF 2 low refractive index layer L and TiO 2 high refractive index layer H; MgF 2 low refractive index layer L and Nb 2 O 5 high refractive index layer H; Nb 2 O 5 Low refractive index layer L and Ta 3 O 5 high refractive index layer H; MgF 2 low refractive index layer L, Al 2 O 3 high refractive index layer H and SiO 2 low refractive index layer L; Al 2 O 3 low refractive index layer L, H4 high refractive index layer H and MgF 2 low refractive index layer L; Al 2 O 3 low refractive index layer L, ZrO 2 high refractive index layer H and MgF 2 low
  • the odd-numbered refractive index layer is silicon oxide
  • the even-numbered refractive index layer is titanium oxide, tantalum oxide, or zirconium oxide.
  • a silicon dioxide layer, a titanium dioxide layer, a silicon dioxide layer, a tantalum pentoxide layer, and a silicon dioxide layer can be sequentially formed from the substrate substantially outward.
  • step S2 and/or S4 is preferably 320-370°C; the temperature of step S6 and/or S8 is preferably 220-270°C.
  • the feed of the raw material gas can be fed in by pulse mode.
  • the opening and closing of the solenoid valve is controlled to control the gas feed and stop, and the opening time of the solenoid valve is controlled to affect the deposition thickness of the film.
  • a multilayer film structure is prepared by the above ALD preparation method, the number of dots with a size ⁇ 1 ⁇ m is 0, and the surface roughness Ra ranges from 0.01 nm to 20 nm.
  • the current deposition layer is bombarded and modified with plasma.
  • the plasma voltage used in the modification is 100-1000V
  • the current is 100-1000mA
  • the time is preferably 1-2 minutes, otherwise the performance and thickness of the deposited film may be affected.
  • a CLCC package body cover plate includes a cover plate substrate and a functional film covering the cover plate substrate, the functional film includes a multilayer film structure; the multilayer film structure is deposited by the above-mentioned ALD preparation method, After the deposition of each layer of film structure is completed, and before the deposition of the next layer of film structure, the current deposition layer is bombarded and modified with plasma.
  • the conventional ALD deposition process is only suitable for single-layer film deposition. In the process of depositing a multi-layer film structure, after the current layer of film is deposited, due to changes in the deposition surface, the following film may not be successfully deposited.
  • the present invention Through the plasma bombardment surface modification after each layer of film structure, the successful deposition of the multilayer film is realized.
  • the CLCC package includes a substrate 1 on which a CMOS 2 located in the middle and a capacitor resistor 3 and a drive motor 4 located at the edge are attached.
  • An isolation wall base 5 is provided on the substrate 1.
  • the isolation wall base 5 is provided with CMOS sensor vacancies, capacitor resistor vacancies, and drive motor vacancies at positions corresponding to CMOS 2, capacitor resistor 3 and drive motor 4 on the substrate.
  • a cover plate 6 is installed on the upper surface of the CMOS sensor vacancy.
  • a camera module includes a CLCC package as described above.
  • a camera module includes a CLCC package body; the CLCC package body includes a substrate 1 on which a CMOS 2 located in the middle and a capacitor resistor 3 and a drive motor 4 located at the edge are attached.
  • An isolation wall base 5 is provided on the substrate 1.
  • the isolation wall base 5 is provided with CMOS sensor vacancies, capacitor resistor vacancies, and drive motor vacancies at positions corresponding to CMOS 2, capacitor resistor 3 and drive motor 4 on the substrate.
  • a cover plate 6 is installed on the upper surface of the vacant position of the CMOS sensor; the surface point size of the cover plate 6 is ⁇ 1 ⁇ m, and the roughness Ra is 1.342 nm, as shown in Figs. 2-5.
  • the above-mentioned cover plate is a camera module optical element with a low refractive index layer L of silicon dioxide and a high refractive index layer H of tantalum pentoxide covered on a glass substrate.
  • the thickness of the low refractive index layer L is 100-200 nm, and the refractive index is 1.46-1.50; the thickness of the high refractive index layer H is 80-120 nm, and the refractive index is 2.05-2.2.
  • cover plate adopts ALD preparation method, and the process is as follows:
  • the target product of this embodiment is the same as that of the first embodiment, and the process of the vacuum thermal evaporation preparation method adopted is as follows:
  • Step S1 Firstly, the substrate glass is placed in the fixture, the fixture is placed on the umbrella stand, and the umbrella stand is placed in the chamber of the coating machine.
  • Step S2 Put SiO 2 (silicon dioxide) and TiO 2 (titanium dioxide) into the crucibles on the left and right of the machine cavity respectively, close the door, vacuum to 0.0001-0.001Pa, and set the temperature at 50-400°C Within the range, the machine cavity is always in the pumping range.
  • Step S3 Turn on the electron gun where the SiO 2 (silicon dioxide) is located.
  • the electron gun will end the operation according to the set film thickness. When this thickness is reached, the operation will end, and the remaining molecules will be pumped away by the gas; TiO 2 (titanium dioxide)
  • the electron gun in the) position will automatically open for coating.
  • Step S4 The machine will carry out cyclic coating according to the set number of coating layers.
  • the product of the comparative example was monitored by a metallurgical microscope. The result is shown in Fig. 6, and the dot defect with a particle size ⁇ 5 ⁇ m can be observed.
  • the same batch test was performed as in Example 1, and the defective rate of the product obtained by the preparation method due to dot defects (particle size ⁇ 5 ⁇ m) was 70%.
  • a camera module includes a CLCC package body; the CLCC package body includes a substrate 1 on which a CMOS 2 located in the middle and a capacitor resistor 3 and a drive motor 4 located at the edge are attached.
  • An isolation wall base 5 is provided on the substrate 1.
  • the isolation wall base 5 is provided with CMOS sensor vacancies, capacitor resistor vacancies, and drive motor vacancies at positions corresponding to CMOS 2, capacitor resistor 3 and drive motor 4 on the substrate.
  • a cover plate 6 is installed on the upper surface of the vacant position of the CMOS sensor; the surface point size of the cover plate 6 is less than or equal to 10 nm, and the roughness Ra is 1.340 nm.
  • the above-mentioned cover plate is an optical element of a camera module with a low refractive index layer L of silicon dioxide and a high refractive index layer H of titanium dioxide covered on a glass substrate.
  • the thickness of the low refractive index layer L is 100-200 nm, and the refractive index is 1.46-1.50; the thickness of the high refractive index layer H is 10-50 nm, and the refractive index is 2.28-2.35.
  • cover plate adopts ALD preparation method, and the process is as follows:
  • SiH 4 silane
  • the gas passing time is preferably 30-50ms
  • S6 Use titanium tetraiodide gas as the third reaction precursor and pass it into the atomic layer reaction chamber.
  • the gas pass time is preferably 30-50ms, and it is adsorbed on the surface of the low refractive index layer L to form a second film layer;
  • the batch production size of this example is 80*76*0.21mm, one card is 156 pieces, and the dots are monitored by a metallographic microscope. No dots with a particle size> 1 ⁇ m are observed on all cover plates, and the pass rate is 100%; Observed, no dots with a particle size> 10nm were observed.
  • a camera module includes a CLCC package body; the CLCC package body includes a substrate 1 on which a CMOS 2 located in the middle and a capacitor resistor 3 and a drive motor 4 located at the edge are attached.
  • An isolation wall base 5 is provided on the substrate 1.
  • the isolation wall base 5 is provided with CMOS sensor vacancies, capacitor resistor vacancies, and drive motor vacancies at positions corresponding to CMOS 2, capacitor resistor 3 and drive motor 4 on the substrate.
  • a cover plate 6 is installed on the upper surface of the vacant position of the CMOS sensor; the surface point size of the cover plate 6 is less than or equal to 50 nm, and the roughness Ra is 9.440 nm.
  • the above-mentioned cover plate is a camera module optical element with a low refractive index layer L of silicon dioxide and a high refractive index layer H of zirconia covered on a crystal substrate.
  • the thickness of the low refractive index layer L is 100-200 nm, and the refractive index is 1.46-1.50; the thickness of the high refractive index layer H is 35-75 nm, and the refractive index is 1.98-2.07.
  • cover plate adopts ALD preparation method, and the process is as follows:
  • SiH 4 silane
  • a camera module includes a CLCC package body; the CLCC package body includes a substrate 1 on which a CMOS 2 located in the middle and a capacitor resistor 3 and a drive motor 4 located at the edge are attached.
  • An isolation wall base 5 is provided on the substrate 1.
  • the isolation wall base 5 is provided with CMOS sensor vacancies, capacitor resistor vacancies, and drive motor vacancies at positions corresponding to CMOS 2, capacitor resistor 3 and drive motor 4 on the substrate.
  • a cover plate 6 is installed on the upper surface of the vacant position of the CMOS sensor; the surface point size of the cover plate 6 is less than or equal to 100 nm, and the roughness Ra is 7.581 nm.
  • the above-mentioned cover plate is a camera module optical element with a silicon dioxide low refractive index layer L and a titanium dioxide high refractive index layer H covered on a sapphire substrate.
  • the thickness of the low refractive index layer L is 100-200 nm, and the refractive index is 1.47-1.51; the thickness of the high refractive index layer H is 10-50 nm, and the refractive index is 2.28-2.35.
  • cover plate adopts ALD preparation method, and the process is as follows:
  • SiH 4 silane
  • the size of the batch produced in this example is 77*77*0.21mm, and one card is 169 pieces.
  • the idea is monitored by a metallurgical microscope. No dots with a particle size> 1 ⁇ m are observed on all cover plates, and the pass rate is 100%; further on the size of the dots It was observed that no dots with a particle size> 100 nm were observed.
  • a camera module includes a CLCC package body; the CLCC package body includes a substrate 1 on which a CMOS 2 located in the middle and a capacitor resistor 3 and a drive motor 4 located at the edge are attached.
  • An isolation wall base 5 is provided on the substrate 1.
  • the isolation wall base 5 is provided with CMOS sensor vacancies, capacitor resistor vacancies, and drive motor vacancies at positions corresponding to CMOS 2, capacitor resistor 3 and drive motor 4 on the substrate.
  • a cover plate 6 is installed on the upper surface of the vacant position of the CMOS sensor; the surface point size of the cover plate 6 is less than or equal to 10 nm, and the roughness Ra is 0.622 nm.
  • the above-mentioned cover plate is an optical element covered with 5 layers of optical coatings on a sapphire substrate.
  • Five layers of optical coatings are periodically deposited on the sapphire substrate in the form of low refractive index and high refractive index, and the last layer ends with a low refractive index.
  • the five layers of optical coatings from the base substrate are: silicon dioxide low refractive index layer L1, layer thickness 100-200nm, refractive index 1.46-1.50; titanium dioxide high refractive index layer H1, layer thickness 10-50nm, refractive index 2.28-2.35; silicon dioxide low refractive index layer L2, layer thickness 100-200nm, refractive index 1.46-1.50; tantalum pentoxide high refractive index layer H2, layer thickness 80-120nm, refractive index 2.05-2.2;
  • the low refractive index layer L3 of silicon dioxide has a thickness of 5-300 nm and a refractive index of 1.46-1.50.
  • cover plate adopts ALD preparation method, and the process is as follows:
  • SiH 4 silane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)

Abstract

提供了一种消除摄像模组点子缺陷的ALD制备方法,能够从根本上解决点子的生成途径,不产生粒径在微米级别的点子缺陷。还提供了利用上述制备方法得到的多层膜结构、封装体盖板、CLCC封装体以及摄像模组,极大地减少由于点子缺陷引起的不良。

Description

一种消除摄像模组点子缺陷的ALD制备方法及其产物 技术领域
本发明涉及摄像模组技术领域,尤其涉及一种消除摄像模组点子缺陷的ALD制备方法及其产物。
背景技术
随着智能终端、车载、扫描仪、智能手机、投影仪、安防监控等产业对高清摄像要求的不断提高,以及增强现实、3D技术和手势识别技术在人工智能领域的广泛应用,光学镜头及摄像模组产业在高速发展的同时也不断进行技术的创新迭代,以满足新的应用要求。
点子是出现在光学镜头及摄像模组中的一种不良缺陷,指的是在基片表面形成的点状突起,有时也称之为点子(particle)。点子主要是在当前的光学镀膜工艺(即真空热蒸发和磁控溅射)中,不可避免地会出现大点子膜料点随着膜料蒸蒸气或者溅射粒子一起沉积到基片的表面而形成的。有时是个别点,严重时是成片的细点,大点子点甚至可以打伤基片表面,且会严重地影响成像效果。因此,为了保证成像效果,当前大部分厂家都要求光学元件中的点子不得超过5μm的点子。
然而,目前几乎所有的光学元件表面都要镀制各种各样的薄膜以实现特定的光学性能,即在光学零件表面上镀上一层或多层金属或介质薄膜的工艺过程,以达到减少或增加光的反射、分束、分色、滤光、 偏振等要求;而光学镀膜工艺主要采用的是真空热蒸发(蒸镀)和磁控溅射,尚没有能够控制或者减少点子的有效手段。
真空热蒸发是在真空条件下,加热蒸发物质使之气化并沉积在基片表面形成固体薄膜,其过程如下:(1)采用各种形式的热能转换方式(如电阻加热、电子加热、高频感应加热、电弧加热、激光加热等),使镀膜材料粒子蒸发或升华,成为具有一定能量的气态粒子;(2)气态粒子通过基本上无碰撞的直线运动方式传输到基体;(3)粒子沉积在基体表面上并凝聚成薄膜;(4)组成薄膜的原子重新排列或化学键合发生变化。由于加热和凝聚过程无法做到绝对均匀,因此无可避免地会出现大液滴或者大点子,因此光学镀膜中的点子缺陷无法有效控制,极有可能出现粒径超过5μm的点子,这是当前影响合格率的重要因素。
磁控溅射是在真空中利用荷能粒子轰击靶表面,使被轰击出的粒子沉积在基片上的技术,其过程如下:(1)电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;(2)新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射;(3)在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜。同样的,在轰击靶材的过程中,极有可能产生大点子,进而沉积在基片上形成点子,也无法有效控制。
因此,在光学镜头及摄像模组的工业化生产中,缺乏控制点子缺陷的产生和数量的有效控制途径,降低了产品的合格率,增加了生产 成本,需要开发更优化的生产工艺。
发明内容
本发明的目的之一在于针对现有技术的不足,提供一种消除摄像模组点子缺陷的ALD制备方法,能够从根本上解决点子的生成途径,不产生粒径在微米级别的点子缺陷。
本发明的目的之二在于提供利用上述制备方法得到的多层膜结构、封装体盖板、CLCC封装体以及摄像模组,极大地减少由于点子缺陷引起的不良。
为实现上述目的,本发明的技术方案如下:
一种消除摄像模组点子缺陷的ALD制备方法,其特征在于,包括如下步骤:
S1:在反应腔中放置衬底基板,加热到100~400℃;
S2:将第一反应前体导入到原子层反应腔内,化学吸附在衬底基板上,形成第一膜层;
S3:将过量的第一反应前体泵出,用惰性气体吹扫;
S4:将第二反应前体导入到反应腔内,并与化学吸附在衬底基板表面的第一反应前体发生反应,形成第一折射率层;
S5:将过量的第二反应前体以及反应副产物泵出,用惰性气体吹扫;
S6:将第三反应前体导入到反应腔内,化学吸附在第一折射率层表面,形成第二膜层;
S7:将过量的第三反应前体泵出,用惰性气体吹扫;
S8:将第四反应前体导入到原子层反应腔内,并与化学吸附在第一折射率层表面的第三反应前体发生反应,形成第二折射率层;所述第二折射率层的折射率>第一折射率层的折射率;
S9:将过量的第四反应前体以及反应副产物泵出。
进一步的,上述制备方法还包括在第N-1折射率层上形成第N折射率层,N为大于等于3的正整数。
进一步的,上述制备方法中,所述偶数折射率层的折射率>奇数折射率层的折射率。
进一步的,上述制备方法中,所述的第一反应前体为硅烷(包括甲硅烷、乙硅烷或者其他具有取代基的硅烷),所述的第二反应前体为氧气或者臭氧;第三反应前体为含钛、钽、或者锆的气体,所述的第四反应前体为水蒸气。
进一步的,上述制备方法中,所述衬底基板为玻璃、水晶或者蓝宝石基板。
进一步的,上述制备方法中,所述折射率层包括如下任意一种组合:SiO 2低折射率层L与TiO 2高折射率层H;SiO 2低折射率层L与Nb 2O 5高折射率层H;SiO 2低折射率层L与Ta 3O 5高折射率层H;MgF 2低折射率层L与TiO 2高折射率层H;MgF 2低折射率层L与Nb 2O 5高折射率层H;Nb 2O 5低折射率层L与Ta 3O 5高折射率层H;MgF 2低折射率层L、Al 2O 3高折射率层H与SiO 2低折射率层L;Al 2O 3低折射率层L、H4高折射率层H与MgF 2低折射率层L;Al 2O 3低折射率层L、ZrO 2高折射率层H与MgF 2低折射率层L。
进一步的,上述制备方法中,从衬底基本向外,奇数折射率层为氧化硅,偶数折射率层为氧化钛、氧化钽或者氧化锆。
进一步的,上述制备方法中,从衬底基本向外依次是二氧化硅层、二氧化钛层、二氧化硅层、五氧化二钽层、二氧化硅层。
进一步的,上述制备方法中,温度优选为150~250℃。
一种多层膜结构,其特征在于,所述多层膜结构由上述ALD制备方法制备。
进一步的,上述多层膜结构中尺寸≥1μm的点子数量为0。
进一步的,上述ALD制备方法中,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。
进一步的,上述多层膜结构的表面粗糙度Ra范围为0.01nm~20nm。
一种CLCC封装体盖板,其特征在于,所述封装体盖板包括盖板衬底与覆盖于盖板衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过上述ALD制备方法实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。常规ALD沉积工艺仅适用于单层膜沉积,在沉积多层膜结构过程中,当前一层膜实现沉积之后,由于沉积表面发生了变化,会出现后一层膜无法成功沉积的情况,本发明通过在每层膜结构后的等离子体轰击表面改性,实现了多层膜的成功沉积。
一种CLCC封装体,其特征在于,所述所述CLCC封装体包括一基板,所述的基板上贴装有位于中部的CMOS及位于边缘位置的电容电阻和驱动马达,所述的基板上设有一隔离墙底座,所述的隔离墙底座上对应基板上CMOS、电容电阻和驱动马达的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一如上所述的盖板。
一种摄像模组,其特征在于,所述摄像模组包括一如上述CLCC封装体。
本发明的有益效果如下:
(1)通过ALD(Atomic layer deposition,原子层沉积)实现光学元件高、低折射率膜层的交替沉积,应物料以气体形式在反应腔通过吸附沉积到衬底基板上,不存在蒸发或者溅射过程,消除了点子缺陷的来源,因此不会形成大点子的点子缺陷,从而大大提高了摄像模组的成像品质,使得ALD在摄像模组的加工过程得到了具有实际性操作意义的应用。
(2)本发明提供的产品,通过原子层沉积实现光学元件镀膜,反应物料不存在蒸发或者溅射过程,是通过吸附沉积到衬底基板上,因此不会形成大点子的点子缺陷,从而大大提高了摄像模组的成像品质,提升了产品合格率,且光学镀膜更加平滑,牢固度更高,实用性更强。
(3)本发明的盖板通过表面的精细控制,保证表面不出现大尺寸的点子,远远低于现有技术的5μm要求,克服了限制CMOS像素 提高的不利因素,极大地提高了CLCC封装体和摄像模组的像素水平。
附图说明
图1是本发明涉及的多层膜结构的示意图;
图2是本发明涉及的CLCC封装体结构示意图;
图3是实施例1的盖板在金相显微镜目镜10X、物镜100X下的示意图;
图4是实施例1的盖板表面的AFM图;
图5是实施例1的盖板表面的三维AFM图;
图6是对比例的盖板在金相显微镜目镜10X、物镜100X下的示意图。
标注说明:1,基板;2,CMOS;3,电容电阻;4,驱动马达;5,隔离墙底座;6,盖板。
具体实施方式
下面结合附图及实施方式对本发明做进一步说明。
一种消除摄像模组点子缺陷的ALD制备方法,其特征在于,包括如下步骤:
S1:在反应腔中放置衬底基板,加热到100~400℃;
S2:将第一反应前体导入到原子层反应腔内,化学吸附在衬底基板上,形成第一膜层;
S3:将过量的第一反应前体泵出,用惰性气体吹扫;
S4:将第二反应前体导入到反应腔内,并与化学吸附在衬底基板表面的第一反应前体发生反应,形成第一折射率层;
S5:将过量的第二反应前体以及反应副产物泵出,用惰性气体吹扫;
S6:将第三反应前体导入到反应腔内,化学吸附在第一折射率层表面,形成第二膜层;
S7:将过量的第三反应前体泵出,用惰性气体吹扫;
S8:将第四反应前体导入到原子层反应腔内,并与化学吸附在第一折射率层表面的第三反应前体发生反应,形成第二折射率层;所述第二折射率层的折射率>第一折射率层的折射率;
S9:将过量的第四反应前体以及反应副产物泵出。
步骤S2~S9可以周期性重复进行,制备得到折射率不同的多层膜,即在第N-1折射率层上形成第N折射率层,N为大于等于3的正整数。一般来说,偶数折射率层的折射率>奇数折射率层的折射率。这样膜层排列可以增加片的透光率,使得模组具有良好的光学性质,同时利用ALD原子层沉积的方法可以消除微米级的点子缺陷,提高成像品质。
反应前体根据膜层的材料﹑厚度和串联方式的选择,由所需要的中心波长和透射带宽λ确定。在本发明中,优选的第一反应前体为硅烷,第二反应前体为氧气或者臭氧;第三反应前体为含钛、钽、或者锆的气体(如四碘化钛气体、五氯化钽气体、四碘化锆气体或者其他含钛、钽、或者锆的有机气体),第四反应前体为水蒸气。温度与反 应前体的分解温度与沉积速率有关,温度要求在反应前体的分解温度之下,但具有一定的沉积速率。
衬底基板为玻璃、水晶或者蓝宝石基板。
折射率层包括如下任意一种组合:SiO 2低折射率层L与TiO 2高折射率层H;SiO 2低折射率层L与Nb 2O 5高折射率层H;SiO 2低折射率层L与Ta 3O 5高折射率层H;MgF 2低折射率层L与TiO 2高折射率层H;MgF 2低折射率层L与Nb 2O 5高折射率层H;Nb 2O 5低折射率层L与Ta 3O 5高折射率层H;MgF 2低折射率层L、Al 2O 3高折射率层H与SiO 2低折射率层L;Al 2O 3低折射率层L、H4高折射率层H与MgF 2低折射率层L;Al 2O 3低折射率层L、ZrO 2高折射率层H与MgF 2低折射率层L。
在一个实施例中,从衬底基本向外,奇数折射率层为氧化硅,偶数折射率层为氧化钛、氧化钽或者氧化锆。
在另一实施例中,从衬底基本向外可以依次是二氧化硅层、二氧化钛层、二氧化硅层、五氧化二钽层、二氧化硅层。
步骤S2和/或S4的温度优选为320~370℃;步骤S6和/或S8的温度优选为220~270℃。原料气体的通入可以采用脉冲方式通入,通过控制电磁阀门的开合控制气体的通入与停止,通过控制电磁阀门的开启时间来影响薄膜的沉积厚度。
一种多层膜结构,如图1所示,由上述ALD制备方法制备,其尺寸≥1μm的点子数量为0,表面粗糙度Ra范围为0.01nm~20nm。在ALD制备方法中,每层膜结构沉积完成后、下一层膜结构沉积进 行前,包括用等离子体对当前沉积层进行轰击改性。改性采用的等离子体电压为100-1000V、电流100-1000mA,时间以1-2分钟为宜,否则有可能影响已沉积膜层的性能与厚度。
一种CLCC封装体盖板,包括盖板衬底与覆盖于盖板衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过上述ALD制备方法实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。常规ALD沉积工艺仅适用于单层膜沉积,在沉积多层膜结构过程中,当前一层膜实现沉积之后,由于沉积表面发生了变化,会出现后一层膜无法成功沉积的情况,本发明通过在每层膜结构后的等离子体轰击表面改性,实现了多层膜的成功沉积。
一种CLCC封装体,如图2所示,CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6。
一种摄像模组,包括一如上述CLCC封装体。
实施例1
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述 的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面点子尺寸≤1μm,粗糙度Ra为1.342nm,如图2~5所示。
上述盖板为玻璃基板上覆有二氧化硅低折射率层L以及五氧化二钽高折射率层H的摄像模组光学元件。低折射率层层L厚为100-200nm,折射率为1.46-1.50;高折射率层层H厚为80-120nm,折射率为2.05-2.2。
上述盖板采用ALD制备方法,过程如下:
S1:首先把玻璃基板放置到原子层反应腔中,抽真空至0.6Pa,加热到150℃;
S2:以惰性气体为载体,将SiH 4(硅烷)作为第一反应前体通入到反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间30-50ms;
S3:泵出多余的第一反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫20-30s;
S4:以惰性气体为载体,将臭氧(O 3)作为第二反应前体通入到原子层反应腔中,气体通入时间为20ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
S5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH 4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
S6:以惰性气体为载体,将五氯化钽气体作为第三反应前体并通入到反应腔中,并吸附在低折射率层L的改性后的表面,气体通入时间为20~30ms,形成第二膜层;
S7:泵出多余的第三反应前体(五氯化钽气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
S8:以惰性气体为载体,将水蒸气作为第四反应前体通入到原子层反应腔中,气体通入时间为20ms,并与第二膜层发生反应,形成五氧化二钽折射率层H;
S9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(五氯化钽气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产直径200mm的原片,一卡共21片,通过金相显微镜监测表面点子情况,所有盖板未观察到粒径>1μm的点子,合格率100%。
对比实施例
本实施例的目标产品与实施例一相同,采用的真空热蒸发制备方法过程如下:
步骤S1:首先把衬底基板玻璃放置在夹具中,夹具置于伞架上,伞架放置镀膜机腔中。
步骤S2:将SiO 2(二氧化硅)和TiO 2(二氧化钛)分别放入机腔中左边和右边的坩埚中,关上仓门,抽真空至0.0001-0.001Pa,温 度设定在50-400℃范围内,机腔内一直处在抽气的范围。
步骤S3:打开SiO 2(二氧化硅)所在的位置的电子枪,电子枪会根据设定的膜厚厚度,达到这个厚度就会结束运作,结束后剩余的分子会被气体抽走;TiO 2(二氧化钛)位置的电子枪就会自动打开进行镀膜。
步骤S4:机器会根据设定镀膜层数,进行循环镀膜。
对比实施例的产品通过金相显微镜监测点子情况,结果如图6所示,能够观察到粒径≥5μm的点子缺陷。与实施例一进行相同的批次试验,利用该制备方法所得产物由于点子缺陷(粒径≥5μm)引起的不良率为70%。
实施例2
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面点子尺寸≤10nm,粗糙度Ra为1.340nm。
上述盖板为玻璃基板上覆有二氧化硅低折射率层L以及二氧化钛高折射率层H的摄像模组光学元件。低折射率层层L厚为 100-200nm,折射率为1.46-1.50;高折射率层层H厚为10-50nm,折射率为2.28-2.35。
上述盖板采用ALD制备方法,过程如下:
S1:首先把玻璃基板放置到反应腔中,抽真空至0.6Pa,加热至250℃;
S2:将SiH 4(硅烷)作为第一反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间优选30-50ms;
S3:泵出多余的第一反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫20-30s;
S4:将臭氧(O 3)作为第二反应前体通入到反应腔中,气体通入时间20ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
S5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH 4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
S6:将四碘化钛气体作为第三反应前体并通入到原子层反应腔中,气体通入时间优选30-50ms,并吸附在低折射率层L的表面,形成第二膜层;
S7:泵出多余的第三反应前体(四碘化钛气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
S8:将水蒸气作为第四反应前体并通入到原子层反应腔中,气体通入时间为35ms,并与第二膜层发生反应,形成二氧化钛折射率层H;
S9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(四碘化钛气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产尺寸80*76*0.21mm,一卡156片,通过金相显微镜监测点子情况,所有盖板未观察到粒径>1μm的点子,合格率100%;进一步对点子尺寸进行观察,未观察到粒径>10nm的点子。
实施例3
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面点子尺寸≤50nm,粗糙度Ra为9.440nm。
上述盖板为水晶基板上覆有二氧化硅低折射率层L以及二氧化锆高折射率层H的摄像模组光学元件。低折射率层层L厚为100-200nm,折射率为1.46-1.50;高折射率层层H厚为35-75nm,折射率为1.98-2.07。
上述盖板采用ALD制备方法,过程如下:
S1:首先把水晶基板放置到反应腔中,抽真空至0.6Pa,加热至400℃;
S2:将SiH 4(硅烷)作为第一反应前体并脉冲通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间优选15-20ms;
S3:泵出多余的第一反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫20-30s;
S4:将臭氧(O 3)作为第二反应前体通入到原子层反应腔中,气体通入时间15-20ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
S5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH 4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
S6:将四碘化锆气体作为第三反应前体并通入到原子层反应腔中,并吸附在低折射率层L的表面,气体通入时间15-20ms,形成第二膜层;
S7:泵出多余的第三反应前体(四碘化锆气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
S8:将水蒸气作为第四反应前体并通入到原子层反应腔中,并与第二膜层发生反应,气体通入时间15-20ms,形成二氧化钛折射率层H;
S9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(四碘化锆气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产直径300mm,一卡12片,通过金相显微镜监测点子情况,所有盖板未观察到粒径>1μm的点子,合格率100%;进一步对点子尺寸进行观察,未观察到粒径>50nm的点子。
实施例4
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面点子尺寸≤100nm,粗糙度Ra为7.581nm。
上述盖板为蓝宝石基板上覆有二氧化硅低折射率层L以及二氧化钛高折射率层H的摄像模组光学元件。低折射率层层L厚为100-200nm,折射率为1.47-1.51;高折射率层层H厚为10-50nm,折射率为2.28-2.35。
上述盖板采用ALD制备方法,过程如下:
S1:首先把蓝宝石基板放置到原子层反应腔中,抽真空至0.6Pa,加热至100℃;
S2:将SiH 4(硅烷)作为第一反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间30-50ms;
S3:泵出多余的第一反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫20-30s;
S4:将氧气(O 2)作为第二反应前体通入到原子层反应腔中,气体通入时间20-40ms,并与第一膜层发生反应形成二氧化硅低折射率层L;
S5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH 4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s,通过等离子轰击进行表面改性;
S6:将四碘化钛气体作为第三反应前体并通入到原子层反应腔中,并吸附在低折射率层L的表面,气体通入时间15-30ms,形成第二膜层;
S7:泵出多余的第三反应前体(四碘化钛气体),用惰性气体(如氦气、氩气等)吹扫20-30s;
S8:将水蒸气作为第四反应前体并通入到原子层反应腔中,并与第二膜层发生反应,气体通入时间15-30ms,形成二氧化钛折射率层H;
S9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(四碘化钛气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫20-30s。
本实施例批次生产产品尺寸77*77*0.21mm,一卡169片,通过金相显微镜监测点子情况,所有盖板未观察到粒径>1μm的点子,合格率100%;进一步对点子尺寸进行观察,未观察到粒径>100nm的点子。
实施例5
一种摄像模组,包含一CLCC封装体;CLCC封装体包括一基板1,所述的基板1上贴装有位于中部的CMOS 2及位于边缘位置的电容电阻3和驱动马达4,所述的基板1上设有一隔离墙底座5,所述的隔离墙底座5上对应基板上CMOS 2、电容电阻3和驱动马达4的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一盖板6;盖板6的表面点子尺寸≤10nm,粗糙度Ra为0.622nm。
上述盖板为蓝宝石基板上覆有5层光学镀膜的光学元件。5层光学镀膜以低折射率、高折射率形式搭配周期性沉积于蓝宝石基板,最后一层以低折射率结束。5层光学镀膜从衬底基板向外依次是:二氧化硅低折射率层L1,层厚100-200nm,折射率为1.46-1.50;二氧化钛高折射率层H1,层厚10-50nm,折射率为2.28-2.35;二氧化硅低折射率层L2,层厚100-200nm,折射率为1.46-1.50;五氧化二钽高折射率层H2,层厚80-120nm,折射率为2.05-2.2;二氧化硅低折射率层L3,层厚5-300nm,折射率为1.46-1.50。
上述盖板采用ALD制备方法,过程如下:
S1:首先把蓝宝石基板放置到原子层反应腔中,抽真空至0.6Pa,加热至200℃;
S2:将SiH 4(硅烷)作为第一反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第一膜层,气体通入时间30-50ms;
S3:泵出多余的第一反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫15s;
S4:将氧气(O 2)作为第二反应前体通入到原子层反应腔中,并与第一膜层发生反应形成二氧化硅低折射率层L1;
S5:待反应完全后,泵出第二反应前体臭氧以及第一反应前体(SiH 4)与第二反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
S6:将五氯化钽气体作为第三反应前体并通入到原子层反应腔中,并吸附在低折射率层L1的表面,形成第二膜层,气体通入时间10-30ms;
S7:泵出多余的第三反应前体(五氯化钽气体),用惰性气体(如氦气、氩气等)吹扫15s;
S8:将水蒸气作为第四反应前体并通入到原子层反应腔中,并与第二膜层发生反应,形成二氧化钛折射率层H1;
S9:泵出多余的第四反应前体(水蒸气)以及第三反应前体(五氯化钽气体)与第四反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
S10:将SiH 4(硅烷)作为第五反应前体并通入到原子层反应腔中并化学吸附在衬底基板表面形成第三膜层,气体通入时间30-50ms;
S11:泵出多余的第五反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫15s;
S12:将臭氧(O 3)作为第六反应前体通入到原子层反应腔中,并与第三膜层发生反应形成二氧化硅低折射率层L2;
S13:泵出多余的第六反应前体臭氧以及第五反应前体(SiH 4)与第六反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
S14:将五氯化钽气体作为第七反应前体并通入到原子层反应腔中,并吸附在低折射率层L2的表面,形成第四膜层,气体通入时间10-30ms;
S15:泵出多余的第七反应前体(五氯化钽气体),用惰性气体(如氦气、氩气等)吹扫15s;
S16:将水蒸气作为第八反应前体并通入到原子层反应腔中,并与第四膜层发生反应,形成五氧化二钽折射率层H2;
S17:泵出多余的第八反应前体(水蒸气)以及第七反应前体(五氯化钽气体)与第八反应前体(水蒸气)反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s,通过等离子轰击进行表面改性;
S18:将SiH 4(硅烷)作为第九反应前体并通入到原子层反应腔中并吸附在衬底基板表面形成第五膜层,气体通入时间10-50ms;
S19:泵出多余的第九反应前体(SiH 4),用惰性气体(如氦气、氩气等)吹扫15s;
S20:将臭氧(O 3)作为第十反应前体通入到原子层反应腔中,并与第五膜层发生反应形成二氧化硅低折射率层L3;
S21:待反应完全后,泵出多余的第十反应前体臭氧以及第九反应前体(SiH 4)与第十反应前体臭氧反应的副产物,用惰性气体(如氦气、氩气等)吹扫15s。
本实施例批次生产直径200mm的原片,一卡共21片,通过金相显微镜监测点子情况,所有盖板未观察到粒径≥1μm的点子,合格率100%;;进一步对点子尺寸进行观察,未观察到粒径>10nm的点子。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域普通技术人员,在不脱离本发明精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属本发明的范畴,本发明专利保护范围应由权利要求限定。

Claims (16)

  1. 一种消除摄像模组点子缺陷的ALD制备方法,其特征在于,包括如下步骤:
    S1:在反应腔中放置衬底基板,加热到100~400℃;
    S2:将第一反应前体导入到原子层反应腔内,化学吸附在衬底基板上,形成第一膜层;
    S3:将过量的第一反应前体泵出,用惰性气体吹扫;
    S4:将第二反应前体导入到反应腔内,并与化学吸附在衬底基板表面的第一反应前体发生反应,形成第一折射率层;
    S5:将过量的第二反应前体以及反应副产物泵出,用惰性气体吹扫;
    S6:将第三反应前体导入到反应腔内,化学吸附在第一折射率层表面,形成第二膜层;
    S7:将过量的第三反应前体泵出,用惰性气体吹扫;
    S8:将第四反应前体导入到原子层反应腔内,并与化学吸附在第一折射率层表面的第三反应前体发生反应,形成第二折射率层;所述第二折射率层的折射率>第一折射率层的折射率;
    S9:将过量的第四反应前体以及反应副产物泵出。
  2. 根据权利要求1所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,还包括在第N-1折射率层上形成第N折射率层,N为大于等于3的正整数。
  3. 根据权利要求2所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,所述偶数折射率层的折射率>奇数折射率层的折射率。
  4. 根据权利要求1所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,所述的第一反应前体为硅烷,所述的第二反应前体为氧气或者臭氧;第三反应前体为含钛、钽、或者锆的气体,所述的第四反应前体为水蒸气。
  5. 根据权利要求1所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,所述衬底基板为玻璃、水晶或者蓝宝石基板。
  6. 根据权利要求3所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,所述折射率层包括如下任意一种组合:SiO 2低折射率层L与TiO 2高折射率层H;SiO 2低折射率层L与Nb 2O 5高折射率层H;SiO 2低折射率层L与Ta 3O 5高折射率层H;MgF 2低折射率层L与TiO 2高折射率层H;MgF 2低折射率层L与Nb 2O 5高折射率层H;Nb 2O 5低折射率层L与Ta 3O 5高折射率层H;MgF 2低折射率层L、Al 2O 3高折射率层H与SiO 2低折射率层L;Al 2O 3低折射率层L、H4高折射率层H与MgF 2低折射率层L;Al 2O 3低折射率层L、ZrO 2高折射率层H与MgF 2低折射率层L。
  7. 根据权利要求3所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,从衬底基本向外,奇数折射率层为氧化硅,偶数折射率层为氧化钛、氧化钽或者氧化锆。
  8. 根据权利要求3所述的消除摄像模组点子缺陷的ALD制备方法,其特征在于,从衬底基本向外依次是二氧化硅层、二氧化钛层、二氧化硅层、五氧化二钽层、二氧化硅层。
  9. 根据权利要求4所述的消除摄像模组点子缺陷的ALD制备方法, 其特征在于,所述制备方法的温度优选为150~250℃。
  10. 一种多层膜结构,其特征在于,所述多层膜结构由权利要求1-9所述的消除摄像模组点子缺陷的ALD制备方法制备。
  11. 根据权利要求10所述的多层膜结构,其特征在于,所述多层膜结构中尺寸≥1μm的点子数量为0。
  12. 根据权利要求10所述的多层膜结构,其特征在于,所述ALD制备方法中,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。
  13. 根据权利要求10所述的多层膜结构,其特征在于,所述多层膜结构的表面粗糙度Ra范围为0.01nm~20nm。
  14. 一种CLCC封装体盖板,其特征在于,所述封装体盖板包括盖板衬底与覆盖于盖板衬底之上的功能膜,所述功能膜包括多层膜结构;所述多层膜结构通过权利要求1-9任一项所述的ALD制备方法实现沉积,每层膜结构沉积完成后、下一层膜结构沉积进行前,包括用等离子体对当前沉积层进行轰击改性。
  15. 一种CLCC封装体,其特征在于,所述所述CLCC封装体包括一基板(1),所述的基板(1)上贴装有位于中部的CMOS(2)及位于边缘位置的电容电阻(3)和驱动马达(4),所述的基板(1)上设有一隔离墙底座(5),所述的隔离墙底座(5)上对应基板上CMOS(2)、电容电阻(3)和驱动马达(4)的位置分别设有CMOS传感器空位、电容电阻空位及驱动马达空位,所述的CMOS传感器空位上表面安装一如权利要求14所述的盖板(6)。
  16. 一种摄像模组,其特征在于,所述摄像模组包括如权利要求15所述的CLCC封装体。
PCT/CN2020/090839 2019-11-01 2020-05-18 一种消除摄像模组点子缺陷的ald制备方法及其产物 WO2021082402A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207020909A KR102456684B1 (ko) 2019-11-01 2020-05-18 카메라 모듈의 도트 결함을 감소시키는 ald 제조 방법 및 그 생성물
JP2020538658A JP7390296B2 (ja) 2019-11-01 2020-05-18 撮像モジュールのパーティクル欠陥を解消するald製造方法及びその生成物
US16/969,573 US11804501B2 (en) 2019-11-01 2020-05-18 ALD preparation method for eliminating camera module dot defects and product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911060808.8A CN110885972A (zh) 2019-10-30 2019-11-01 一种消除摄像模组点子缺陷的ald制备方法及其产物
CN201911060808.8 2019-11-01
CN201911387147.XA CN110767668B (zh) 2019-12-30 2019-12-30 含纳米级表面的clcc封装体盖板、封装体和摄像模组
CN201911387147.X 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021082402A1 true WO2021082402A1 (zh) 2021-05-06

Family

ID=69341676

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/090570 WO2021082400A1 (zh) 2019-11-01 2020-05-15 一种减少摄像模组点子缺陷的cvd制备方法及其产物
PCT/CN2020/090839 WO2021082402A1 (zh) 2019-11-01 2020-05-18 一种消除摄像模组点子缺陷的ald制备方法及其产物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090570 WO2021082400A1 (zh) 2019-11-01 2020-05-15 一种减少摄像模组点子缺陷的cvd制备方法及其产物

Country Status (5)

Country Link
US (2) US20220302193A1 (zh)
JP (2) JP7086198B2 (zh)
KR (2) KR102627747B1 (zh)
CN (1) CN110767668B (zh)
WO (2) WO2021082400A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767668B (zh) * 2019-12-30 2020-03-27 杭州美迪凯光电科技股份有限公司 含纳米级表面的clcc封装体盖板、封装体和摄像模组
US20220293647A1 (en) * 2021-03-10 2022-09-15 Taiwan Semiconductor Manufacturing Co., Ltd. Dielectric structure overlying image sensor element to increase quantum efficiency
CN116288277A (zh) * 2023-03-23 2023-06-23 哈尔滨工业大学 一种高透过光学镜头的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075289A1 (ja) * 2003-02-19 2004-09-02 Nippon Electric Glass Co., Ltd. 半導体パッケージ用カバーガラス及びその製造方法
CN101560653A (zh) * 2009-05-14 2009-10-21 浙江大学 梯度折射率薄膜的制备方法
CN103773083A (zh) * 2012-10-18 2014-05-07 上海纳米技术及应用国家工程研究中心有限公司 一种光学干涉变色颜料及其制备方法和应用
CN110058342A (zh) * 2019-06-05 2019-07-26 信阳舜宇光学有限公司 近红外带通滤光片及其制备方法以及光学传感***
CN110767668A (zh) * 2019-12-30 2020-02-07 杭州美迪凯光电科技股份有限公司 含纳米级表面的clcc封装体盖板、封装体和摄像模组
CN110885972A (zh) * 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 一种消除摄像模组点子缺陷的ald制备方法及其产物

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE159302T1 (de) * 1990-11-07 1997-11-15 Canon Kk Iii-v verbindungs-halbleiter-vorrichtung, drucker- und anzeigevorrichtung unter verwendung derselben, und verfahren zur herstellung dieser vorrichtung
WO2001029282A2 (en) * 1999-10-20 2001-04-26 Cvd Systems, Inc. Fluid processing system
JP4151229B2 (ja) * 2000-10-26 2008-09-17 ソニー株式会社 不揮発性半導体記憶装置およびその製造方法
CN100546041C (zh) * 2003-02-19 2009-09-30 日本电气硝子株式会社 半导体封装体用外罩玻璃及其制造方法
US20050181128A1 (en) 2004-02-12 2005-08-18 Nikolov Anguel N. Films for optical use and methods of making such films
JP2006056036A (ja) * 2004-08-17 2006-03-02 Dainippon Printing Co Ltd ガスバリア性積層フィルムおよびそれを使用した積層材
FI117728B (fi) 2004-12-21 2007-01-31 Planar Systems Oy Monikerrosmateriaali ja menetelmä sen valmistamiseksi
KR100780246B1 (ko) * 2006-09-26 2007-11-27 동부일렉트로닉스 주식회사 이미지 센서 제조방법
KR100971207B1 (ko) * 2007-08-30 2010-07-20 주식회사 동부하이텍 마이크로렌즈 및 그 제조 방법
US8034179B2 (en) * 2008-02-08 2011-10-11 Tokyo Electron Limited Method for insulating film formation, storage medium from which information is readable with computer, and processing system
KR20090097338A (ko) * 2008-03-11 2009-09-16 삼성전기주식회사 웹 카메라 및 그 제조방법
US8735797B2 (en) * 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
JP5499461B2 (ja) * 2008-11-25 2014-05-21 ソニー株式会社 表示装置、画素回路
US8193555B2 (en) 2009-02-11 2012-06-05 Megica Corporation Image and light sensor chip packages
JP2011258613A (ja) * 2010-06-04 2011-12-22 Panasonic Corp 固体撮像装置及びその製造方法
CN103842856B (zh) * 2011-08-01 2015-12-02 福美化学工业株式会社 防反射膜和防反射板
JP2014065259A (ja) * 2012-09-27 2014-04-17 Tokai Rubber Ind Ltd フィルム部材およびその製造方法
CN102903726B (zh) * 2012-09-29 2016-02-10 格科微电子(上海)有限公司 图像传感器的晶圆级封装方法
US9382615B2 (en) * 2012-10-12 2016-07-05 Asm Ip Holding B.V. Vapor deposition of LiF thin films
CN102983144B (zh) * 2012-11-30 2015-02-11 格科微电子(上海)有限公司 图像传感器的晶圆级封装方法
US8921236B1 (en) * 2013-06-21 2014-12-30 Eastman Kodak Company Patterning for selective area deposition
CN105431893B (zh) * 2013-09-30 2018-01-26 株式会社Lg化学 用于有机电子器件的基板及其制造方法
EP2886205A1 (en) 2013-12-19 2015-06-24 Institute of Solid State Physics, University of Latvia Method for antireflective coating protection with organosilanes
CN106537190B (zh) * 2014-05-23 2019-08-16 康宁股份有限公司 具有减少的划痕与指纹可见性的低反差减反射制品
MX2017009426A (es) * 2015-03-09 2017-10-12 Vision Ease Lp Revestimiento antiestatico, antirreflejante.
CN105420683B (zh) 2015-12-31 2018-08-31 佛山市思博睿科技有限公司 基于低压等离子化学气相沉积制备纳米多层膜的装置
CN106547160A (zh) * 2016-10-08 2017-03-29 深圳市金立通信设备有限公司 一种摄像头、终端及滤光板的制备方法
US20190172861A1 (en) * 2017-12-05 2019-06-06 Semiconductor Components Industries, Llc Semiconductor package and related methods
US20190186008A1 (en) * 2017-12-19 2019-06-20 Eastman Kodak Company Process for forming compositionally-graded thin films
CN112262337A (zh) * 2018-04-25 2021-01-22 协和(香港)国际教育有限公司 用于具有介电层的反射图像显示器的装置和方法
CN109860250A (zh) * 2019-01-29 2019-06-07 武汉华星光电半导体显示技术有限公司 Oled显示屏及其制备方法
CN110885969A (zh) * 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 一种减少摄像模组点子缺陷的cvd制备方法及其产物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075289A1 (ja) * 2003-02-19 2004-09-02 Nippon Electric Glass Co., Ltd. 半導体パッケージ用カバーガラス及びその製造方法
CN101560653A (zh) * 2009-05-14 2009-10-21 浙江大学 梯度折射率薄膜的制备方法
CN103773083A (zh) * 2012-10-18 2014-05-07 上海纳米技术及应用国家工程研究中心有限公司 一种光学干涉变色颜料及其制备方法和应用
CN110058342A (zh) * 2019-06-05 2019-07-26 信阳舜宇光学有限公司 近红外带通滤光片及其制备方法以及光学传感***
CN110885972A (zh) * 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 一种消除摄像模组点子缺陷的ald制备方法及其产物
CN110767668A (zh) * 2019-12-30 2020-02-07 杭州美迪凯光电科技股份有限公司 含纳米级表面的clcc封装体盖板、封装体和摄像模组

Also Published As

Publication number Publication date
US11804501B2 (en) 2023-10-31
KR102456684B1 (ko) 2022-10-18
US20220302200A1 (en) 2022-09-22
KR102627747B1 (ko) 2024-01-22
CN110767668B (zh) 2020-03-27
JP2022534139A (ja) 2022-07-28
JP7390296B2 (ja) 2023-12-01
WO2021082400A1 (zh) 2021-05-06
JP2022513541A (ja) 2022-02-09
JP7086198B2 (ja) 2022-06-17
KR20210054487A (ko) 2021-05-13
KR20210053809A (ko) 2021-05-12
CN110767668A (zh) 2020-02-07
US20220302193A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2021082402A1 (zh) 一种消除摄像模组点子缺陷的ald制备方法及其产物
US6103320A (en) Method for forming a thin film of a metal compound by vacuum deposition
KR102050860B1 (ko) 유기 발광 다이오드 제조용 섀도 마스크
JP4537434B2 (ja) 酸化亜鉛薄膜、及びそれを用いた透明導電膜、及び表示素子
US20060023311A1 (en) Method for obtaining a thin, stabilized fluorine-doped silica layer, resulting thin layer, and use thereof in ophthalmic optics
CN103547700A (zh) 制备由锆钛酸铅制成的薄膜的方法
US20190036027A1 (en) A shadow mask with tapered openings formed by double electroforming
JP3723366B2 (ja) Ito透明導電膜付き基板およびito透明導電膜の成膜方法
JP2004176081A (ja) 原子層堆積法による光学多層膜の製造方法
CN110885972A (zh) 一种消除摄像模组点子缺陷的ald制备方法及其产物
CN110885969A (zh) 一种减少摄像模组点子缺陷的cvd制备方法及其产物
JP2005340225A (ja) 有機el素子
JP2002047559A (ja) Ito膜及びその成膜方法
KR102579089B1 (ko) 이온빔 스퍼터링 장치를 이용한 편광필터 제조방법
CN111218659A (zh) 成膜方法及成膜装置
US20050181177A1 (en) Isotropic glass-like conformal coatings and methods for applying same to non-planar substrate surfaces at microscopic levels
JPH0651103A (ja) 反射防止性合成樹脂光学部品とその製造方法
KR200354762Y1 (ko) 스퍼터 방법을 이용한 광학박막의 제작장치
JP2024036829A (ja) 成膜方法、光学素子の製造方法、及びスパッタリング装置
JP2725442B2 (ja) 複合酸化物薄膜の製造方法及び空間光変調素子の製造方法
KR20120003926A (ko) 마그네트론 코팅 모듈 및 마그네트론 코팅 방법
KR100584927B1 (ko) 스퍼터 방법을 이용한 광학박막의 제작장치와 방법 및 그광학박막
JP2002339057A (ja) 金属酸化膜および金属酸化膜被覆部材
JPH01244402A (ja) 光学膜の作製方法
JP2004204320A (ja) 蒸着方法及び蒸着装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538658

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883201

Country of ref document: EP

Kind code of ref document: A1