WO2021060576A1 - 리튬 이차전지용 양극 활물질 - Google Patents

리튬 이차전지용 양극 활물질 Download PDF

Info

Publication number
WO2021060576A1
WO2021060576A1 PCT/KR2019/012429 KR2019012429W WO2021060576A1 WO 2021060576 A1 WO2021060576 A1 WO 2021060576A1 KR 2019012429 W KR2019012429 W KR 2019012429W WO 2021060576 A1 WO2021060576 A1 WO 2021060576A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
particle size
lithium secondary
secondary battery
size distribution
Prior art date
Application number
PCT/KR2019/012429
Other languages
English (en)
French (fr)
Inventor
서동우
장성균
구정아
한현규
김한아
서현범
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to US17/640,461 priority Critical patent/US20220344653A1/en
Priority to PCT/KR2019/012429 priority patent/WO2021060576A1/ko
Publication of WO2021060576A1 publication Critical patent/WO2021060576A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, and more particularly, to a positive electrode active material capable of providing a lithium secondary battery having excellent resistance reduction and life characteristics by having a particle size distribution under specific conditions.
  • lithium secondary batteries The demand for lithium secondary batteries is mainly digital devices such as laptops and mobile phones, and through cost reduction and performance stabilization through mass production and technology development, the future applications of lithium secondary batteries are from portable information and communication devices to electric vehicles and hybrids.
  • ESS energy storage systems
  • the core materials of lithium secondary batteries are cathode materials, anode materials, electrolytes, and separators. Of these, cathode materials are the most important materials for producing secondary batteries. Depending on the material, LCO (lithium cobalt oxide), NCM (Lithium Nickel Cobalt Manganese Oxide), NCA (Lithium Nickel Cobalt Aluminum Oxide), LMO (Lithium Manganese Oxide), LFP (Lithium Iron Phosphate).
  • LCO lithium cobalt oxide
  • NCM Lithium Nickel Cobalt Manganese Oxide
  • NCA Lithium Nickel Cobalt Aluminum Oxide
  • LMO Lithium Manganese Oxide
  • LFP Lithium Iron Phosphate
  • Conventional positive electrode active materials are mainly used in the form of secondary particles in which primary particles are agglomerated, but the positive active material in the form of secondary particles increases the direct contact area with the electrolyte due to its high specific surface area, resulting in side reactions with the electrolyte. I can.
  • the presence of secondary particles in the positive electrode active material increases the internal impedance of the battery to deteriorate the initial discharge capacity, and stress is generated at the grain boundary due to the expansion and contraction of the crystal lattice due to charging and discharging, thereby destroying the particles. It may cause capacity deterioration.
  • a coating layer on the surface of the active material.
  • the presence of such a coating layer may provide an effect of suppressing side reactions by preventing direct contact between the surface of the electrolyte and the active material, and ultimately improving the life characteristics of the battery.
  • aggregation between a plurality of active materials may occur during the firing process, and coating treatment may be omitted for surfaces that are in contact with each other due to aggregation during coating.
  • coating treatment may be omitted for surfaces that are in contact with each other due to aggregation during coating.
  • An object of the present invention is to solve the problems of the prior art and technical problems that have been requested from the past.
  • the inventors of the present application developed a positive electrode active material for a lithium secondary battery having a specific particle size distribution condition after repeating various experiments and studies, and this positive electrode active material contains primary particles of a monolithic structure, and the degree of aggregation between the primary particles As a result, it was confirmed that battery characteristics such as a decrease in resistance were improved, and additional surface treatment was also easy, and the present invention was completed.
  • the positive electrode active material for a lithium secondary battery according to the present invention contains primary particles of a monolithic structure, which is a lithium transition metal composite oxide, and a particle size distribution graph (X axis: particle size ( ⁇ m), on PSD (Particle Size Distribution), Y axis: The ratio (R/L) of the right area (R) and the left area (L) in the graph is less than 1.1 based on the maximum point of the main peak of the relative particle amount (%)).
  • the particle size X value of the right portion with respect to the main peak maximum point is larger with respect to the particle size X value of the left portion. Therefore, in the cathode active material for a lithium secondary battery according to the present invention, particles with small particles have a larger relative particle amount compared to particles with a larger particle size (R/L ⁇ 1), based on the particle size having the highest relative particle amount, or within a certain range. It has a similar (1 ⁇ R/L ⁇ 1.1) relative particle weight within.
  • the PSD measurement of the active material is performed to determine the particle size distribution.As the area in the particle size distribution graph derived from the PSD becomes more skewed to the right, the aggregated ratio between the primary particles is higher, so that the active material has a relatively large particle size. It can be determined that there are a lot of these, and as the area in the graph is skewed to the left, the agglomerated ratio between the primary particles is lower, so it can be determined that there are many active materials having a relatively small particle size.
  • the positive active material for a lithium secondary battery according to the present invention has a limited bias to the right of the area in the particle size distribution graph derived from the PSD, which is the degree of aggregation between the primary particles, that is, the degree of aggregation between the primary particles is relatively low. This means that the relative particle amount of particles having a small particle size is secured and the relative particle amount of particles having a relatively large particle size is limited.
  • a positive electrode active material having such a particle size distribution has a low degree of cohesion between primary particles, and its resistance is reduced compared to an active material having a high degree of cohesion between primary particles, thereby improving battery characteristics such as capacity increase. It can reduce the possibility of the occurrence of the coating area.
  • the primary particles that may be included in such an active material are less likely to cause particle destruction, that is, cracks during repeated charging and discharging processes, thereby contributing to the improvement of the performance of the lithium secondary battery.
  • the particle size distribution graph can be obtained, for example, by the following PSD measurement conditions.
  • the positive active material for a lithium secondary battery according to the present invention may have reduced aggregation between primary particles by controlling process conditions such as firing temperature during the manufacturing process, or reduced aggregation through a separate post-treatment process after firing during the manufacturing process. It may have been.
  • a separate post-treatment process after firing may be a process of applying an appropriate pressure and shear force to the fired active material, but is not limited thereto.
  • the degree of aggregation between the primary particles can also be confirmed through a scanning electron microscope or the like, and this can be confirmed through the results of scanning electron microscopy for the examples described later.
  • the positive active material of the present invention may have a ratio between a full width at half-maximum (FWHM) and a maximum height (FWHM/maximum height) of 1.0 or less in the particle size distribution graph on the PSD.
  • FWHM full width at half-maximum
  • FWHM/maximum height maximum height
  • the positive electrode active material of the present invention exhibits a more uniform particle size distribution by satisfying the above range when the half width value of the main peak is divided by the maximum height in the PSD graph.
  • the lower limit of the FWHM/maximum height is not particularly limited, and may be, for example, 0.3 or more.
  • the uniformity of the particle size distribution can be determined by checking the particle size distribution represented by (D90-D10)/D50. The smaller this may indicate that the particle size distribution is uniform.
  • the positive electrode active material of the present invention may have a particle size distribution represented by (D90-D10)/D50 of 1.2 or less.
  • the lower limit of (D90-D10)/D50 is not particularly limited, and may be, for example, 0.8 or more.
  • the present invention can provide a positive electrode active material for a lithium secondary battery having low cohesion between primary particles and excellent uniformity of particle size distribution, according to various embodiments that can be provided.
  • the ratio of the particles having a relatively small particle size and a particle having a large particle size can be adjusted, based on the maximum point of the main peak of the PSD phase particle size distribution graph. , If the difference between the right area R and the left area L in the graph is too large, the particle size distribution graph may be formed broad, which cannot be regarded as having a uniform particle size distribution of the positive electrode active material.
  • the positive active material for a lithium secondary battery is the ratio (R/L) of the right area (R) and the left area (L) in the graph based on the maximum point of the main peak of the PSD phase particle size distribution graph. Is preferably 0.8 or more to less than 1.1, more preferably 0.8 or more to 1.0 or less, and the positive electrode active material has a relatively sharp shape of the PSD measurement graph, so it can be determined that the particle size distribution is uniform.
  • the positive electrode active material for a lithium secondary battery according to the present invention may include primary particles of a monolithic structure of a lithium transition metal composite oxide containing at least one of Ni, Co, and Mn, and the average particle diameter of the primary particles is 3 to 10 ⁇ m.
  • the lithium transition metal composite oxide may have a composition represented by Formula 1 below.
  • M is Ni x Co y Mn z ,
  • X is selected from alkali metals excluding lithium, alkaline earth metals, transition metals from groups 3 to 12 excluding nickel, cobalt and manganese, post-transition metals and metalloids from groups 13 to 15, and nonmetal elements from groups 14 to 16 Is more than one,
  • Q is at least one of F, P and S,
  • X is an alkali metal other than lithium and may be, for example, Na, K, Rb, Cs, Fr, and the like, and as an alkaline earth metal, for example, Be, Mg, Ca, Sr, Ba, Ra, etc.
  • nickel And as a Group 3 to Group 12 transition metal excluding cobalt and manganese for example, Sc, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd , Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, etc., as post-transition metals and metalloids of groups 13 to 15, for example Al, Ga, In, Sn, Tl, Pb, It may be Bi, Po, B, Si, Ge, As, Sb, Te, At, and the like, and as a non-metal element in groups 14 to 16, for example, C, P, S, Se, and the like.
  • transition metal for example, Sc, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd , Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, etc.
  • the transition metal element may include a lanthanum group element or an actinium group element.
  • X may be at least one selected from the group consisting of Zr, Ti, W, B, P, Al, Si, Mg, Zn, and V.
  • the present invention also provides a lithium secondary battery including the positive electrode active material. Since other configurations and manufacturing methods of the lithium secondary battery are known in the art, detailed descriptions thereof will be omitted in the present invention.
  • the positive active material for a lithium secondary battery according to the present invention has a low degree of aggregation between primary particles, and thus has an effect of reducing resistance and improving life characteristics of a lithium secondary battery to which it is applied.
  • 1 is a graph showing particle size distribution of positive electrode active materials according to Comparative Examples 1, 2 and 3 and Examples 1, 2 and 3;
  • FIG. 2 (a) is an SEM photograph of the positive active material according to Example 1, (b) is an SEM photograph of the positive active material according to Example 2, and (c) is an SEM photograph of the positive active material according to Example 3. , (d) is an SEM photograph of the positive electrode active material according to Comparative Example 1, (e) is an SEM photograph of the positive electrode active material according to Comparative Example 2, and (f) is an SEM photograph of the positive electrode active material according to Comparative Example 3;
  • the aqueous solution of sodium hydroxide was slowly added dropwise while stirring the aqueous solution, and the reaction mixture was stirred for 5 hours to neutralize the aqueous precursor solution, thereby forming a nickel-cobalt-manganese hydroxide Ni 0 . 83 Co 0 . 11 to precipitate the Mn 0 .06 (OH) 2.
  • LiOH was mixed with the thus obtained precursor (nickel cobalt manganese hydroxide) and heat-treated at 870° C. for 11 hours to obtain LiNi 0 . 83 Co 0 . 11 Mn 0 . 06 O 2 was prepared.
  • a positive electrode active material for a lithium secondary battery was prepared under the same conditions as in Example 1, except that a shear force was applied using Retsch's ZM200 (12,000 RPM and 0.4 mm mesh) as a post-treatment process.
  • a positive electrode active material for a lithium secondary battery was prepared under the same conditions as in Example 1, except that a pressure of about 2 MPa was applied as a post-treatment process.
  • a cathode active material for a lithium secondary battery was prepared under the same conditions as in Example 1, except that the post-treatment process was not performed.
  • a cathode active material for a lithium secondary battery was prepared under the same conditions as in Comparative Example 1, except that heat treatment was applied at 850°C.
  • a positive electrode active material for a lithium secondary battery was prepared under the same conditions as in Example 1, except that a pressure of about 1 MPa was applied as a post-treatment process.
  • the PSD of the positive electrode active material for lithium secondary batteries prepared in Examples 1, 2, 3 and Comparative Examples 1, 2, and 3 was measured, and the particle size distribution graph and particle size distribution results derived from the PSD measurement are shown in FIGS. 1 and 1 I got it.
  • Comparative Example 3 exhibits a lower R/L value of 0.7 compared to the Examples, but the ratio of the half width value (FWHM) and the maximum height (h) of the main peak of the PSD phase particle size distribution graph (FWHM/ h) represents 1.7 higher than the examples, and the (D90-D10)/D50 value representing the particle size distribution represents 1.57, which was also confirmed to be higher than the examples.
  • the active materials of Examples 1, 2 and 3 showed uniform particle size distribution and reduced aggregation between primary particles as appropriate post-treatment processes (3 MPa pressure application, shear force application, 2 MPa pressure application) were performed during the manufacturing process. It can be judged to have been achieved.
  • Examples 1, 2 and 3 and Comparative Examples 1, 2, and 3, respectively, a conductive agent and a binder in the positive electrode active material prepared in a ratio of 92: 5: 3 (active material: conductive agent: binder) was mixed and applied to a copper current collector And then dried to prepare a positive electrode. After manufacturing a secondary battery by using lithium metal as a negative electrode and adding electrolyte EC:EMC 1:2, LiPF 6 1M, electrochemical properties were measured, and the results are shown in Tables 2 and 3 and FIGS. Indicated.
  • Tables 3 and 4 show the results of the amount of change in DCIR (resistance) during cycling of the secondary battery to which the active materials of Examples 1, 2 and 3 and Comparative Examples 1, 2, and 3 are applied. It can be seen that the battery to which the active material of the embodiments is applied exhibits a relatively low resistance value, and it can be understood that battery characteristics such as life characteristics are improved through this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 전이금속 복합 산화물의 단일체 구조 1차 입자를 포함하고, PSD(Particle Size Distribution) 상 입도 분포 그래프(X축: 입자 크기(㎛), Y축: 상대 입자량(%))의 메인 피크 최대점을 기준으로, 그래프 내 우측 면적(R)과 좌측 면적(L)의 비 (R/L)가 1.1 미만인 것을 특징으로 하는 리튬 이차전지용 양극 활물질을 제공한다.

Description

리튬 이차전지용 양극 활물질
본 발명은 리튬 이차전지용 양극 활물질에 관한 것으로, 더욱 상세하게는 특정한 조건의 입도 분포를 가짐으로써 저항 감소, 수명 특성 등이 우수한 리튬 이차전지를 제공할 수 있는 양극 활물질에 관한 것이다.
리튬 이차전지의 수요처는 노트북과 휴대폰과 같은 디지털 디바이스가 주를 이루고 있으며, 대량생산과 기술개발을 통한 원가절감 및 성능 안정화를 통해 향후 리튬 이차전지의 응용분야는 휴대용 정보통신 기기에서 전기 자동차, 하이브리드 자동차, 우주 및 항공 분야, 에너지 저장 시스템(ESS) 등으로 확대되어 지속적인 시장 성장이 예측된다 [리튬 이차전지 소재 기술동향, S&T Market Report, 과학기술일자리진흥원, 2018.9].
리튬 이차전지의 핵심 소재는 양극재, 음극재, 전해질 및 분리막이라 할 수 있으며, 이 중 양극재는 이차전지를 생산하는 가장 핵심 재료로서, 구성하는 재료에 따라 LCO (lithium cobalt Oxide), NCM (Lithium Nickel Cobalt Manganese Oxide), NCA (Lithium Nickel Cobalt Aluminum Oxide), LMO (Lithium Manganese Oxide), LFP (Lithium Iron Phosphate) 등으로 분류될 수 있다.
종래의 양극 활물질은 1차 입자가 응집한 2차 입자의 형태가 주로 사용되고 있는데, 2차 입자 형태의 양극 활물질은 높은 비표면적으로 인해 전해액과의 직접적인 접촉면적이 넓어짐으로써 전해액과의 부반응이 초래될 수 있다.
또한, 양극 활물질 중 2차 입자의 존재는 전지 내부의 임피던스를 상승시켜 초기 방전 용량을 열화시키고, 충방전에 따른 결정 격자의 신축에 의해 입계면으로 응력이 발생하여 입자가 파괴됨으로써, 리튬 이차전지 용량 열화의 원인이 될 수 있다.
한편, 활물질 표면 및 전해액과의 부반응을 억제하기 위한 방안 중 하나로서 활물질 표면에 코팅층을 형성하는 방법이 있다. 이러한 코팅층의 존재는 전해액 및 활물질 표면간의 직접적인 접촉을 방지함으로써 부반응을 억제하고, 궁극적으로 전지의 수명 특성을 향상시키는 효과를 제공할 수 있다.
그러나, 소성 과정에서 복수의 활물질들 간 응집 현상이 발생될 수 있으며, 코팅시 응집에 의해 활물질간 상호 접촉된 면들에 대해서는 코팅 처리가 누락될 수 있는데, 이러한 활물질이 집전체에 도포되어 사용될 때, 코팅처리가 누락된 미코팅 부위가 충방전 중 노출됨으로써 전지의 성능이 열화되는 문제점이 발생할 수 있다.
따라서, 이러한 문제점들을 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 다양한 실험과 연구를 거듭한 끝에, 특정한 입도 분포 조건을 가진 리튬 이차전지용 양극 활물질을 개발하게 되었고, 이러한 양극 활물질은 단일체 구조의 1차 입자를 포함하며, 1차 입자간 응집도가 감소되어, 저항 감소 등 전지 특성을 향상시킴과 동시에, 추가적인 표면처리도 용이함을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 리튬 이차전지용 양극 활물질은, 리튬 전이금속 복합 산화물인 단일체 구조의 1차 입자를 포함하고 있으며, PSD(Particle Size Distribution) 상 입도 분포 그래프(X축: 입자 크기(㎛), Y축: 상대 입자량(%))의 메인 피크 최대점을 기준으로, 그래프 내 우측 면적(R)과 좌측 면적(L)의 비(R/L)가 1.1 미만인 것을 특징으로 한다.
여기서, 메인 피크 최대점에 대해 우측 부위의 입도 X값은 좌측 부위의 입도 X값에 대해 크다. 따라서, 본 발명에 따른 리튬 이차전지용 양극 활물질은 가장 높은 상대 입자량을 갖는 입도를 기준으로 하여 입도가 작은 입자들이 입도가 큰 입자들 대비 상대 입자량이 크거나(R/L<1), 일정 범위 내에서 유사한(1≤R/L<1.1) 상대 입자량을 가진다. 구체적으로, 활물질에 대한 PSD 측정은 입도의 분포를 알기 위해 시행되는 바, PSD로부터 도출된 입도 분포 그래프 내 면적이 우측으로 편중될수록 1차 입자들 간의 응집된 비율이 높아 입자 크기가 상대적으로 큰 활물질이 많이 존재하는 것으로 판단될 수 있으며, 그래프 내 면적이 좌측으로 편중될수록 1차 입자들 간의 응집된 비율이 낮아 입자 크기가 상대적으로 작은 활물질이 많이 존재하는 것으로 판단할 수 있다.
따라서, 본 발명에 따른 리튬 이차전지용 양극 활물질은 PSD로부터 도출된 입도 분포 그래프 내 면적의 우측으로의 편중이 제한된 것이며, 이는 1차 입자들 간의 응집된 정도, 즉, 1차 입자간 응집도가 낮아 상대적으로 작은 입도를 갖는 입자들의 상대 입자량은 확보됨과 동시에 상대적으로 큰 입도를 갖는 입자들의 상대 입자량은 제한된 것을 의미한다.
이러한 입도 분포를 가진 양극 활물질은 1차 입자간 응집도가 낮아, 1차 입자간 응집도가 높은 활물질 대비 저항이 감소되어 용량 증가 등 전지의 특성을 향상시킬 수 있으며, 코팅층의 형성시 응집체에서 발생하는 미코팅 부위의 발생 가능성을 낮출 수 있다. 또한, 이러한 활물질에 포함될 수 있는 1차 입자는 반복되는 충방전 과정에서 입자 파괴, 즉 크랙(crack)이 발생될 가능성이 적어 리튬 이차전지의 성능 향상에 기여할 수 있다.
상기 입도 분포 그래프는, 예를 들어, 하기 PSD 측정 조건에 의해 얻어질 수 있다.
<측정 조건>
- 측정 장비: Microtrac S3500 Extended
- 순환 속도: 45%/sec
- 굴절 index 비율: 1.55
- 장비 투입 용매: 증류수
- Sample of cell: 0665
- 계산 Logic: X100
- 샘플양: 0.0025 g
- 샘플 투입 분산제: 10% Sodium Hexamethaphosphate 1 ml
- 샘플 투입 용매: 증류수 40 ml
- 샘플 초음파분산: 40 KHz, 1 min
본 발명에 따른 리튬 이차전지용 양극 활물질은 제조과정 중에서 소성온도 등의 공정조건 제어에 의해 1차 입자간 응집이 감소된 것일 수 있으며, 또는 제조과정 중 소성 후 별도의 후처리 공정을 통해 응집이 감소된 것일 수 있다. 여기서, 소성 후 별도의 후처리 공정은 소성된 활물질에 대해 적절한 압력, 전단력 등을 인가하는 공정일 수 있으나, 이에 한정되지 않는다.
1차 입자간 응집도는 주사 전자 현미경 등을 통해서도 확인할 수 있는 바, 이는 후술하는 실시예들에 대한 주사 전자 현미경 촬영 결과를 통해 확인할 수 있다.
하나의 구체적인 예에서, 본 발명의 양극 활물질은 PSD상 입도 분포 그래프의 메인 피크의 반폭값(Full Width at Half-maximum, FWHM)과 최대 높이의 비(FWHM/최대 높이)가 1.0 이하일 수 있다.
리튬 이차전지의 수명 및 효율 향상 등 성능에 영향을 줄 수 있는 특성 중 하나로 활물질의 균일한 입도 분포를 들 수 있는데, PSD를 통해 얻어질 수 있는 그래프의 메인 피크의 폭이 좁을수록 활물질의 입도 분포가 균일한 것으로 판단할 수 있으며, 이는 메인 피크의 반폭값을 측정함으로써 판단할 수 있다.
따라서, 본 발명의 양극 활물질은 PSD 그래프에서 메인 피크의 반폭값을 최대 높이로 나눴을 때의 값이 상기한 범위를 만족함으로써 보다 균일한 입도 분포를 나타내는 것으로 판단될 수 있다.
상기 FWHM/최대 높이의 하한값은 특별히 제한되는 것은 아니며, 예를 들어, 0.3 이상일 수 있다.
입도 분포 그래프 상 최대 피크의 반폭값을 측정하는 것 이외에, (D90-D10)/D50으로 나타낸 입자 크기 분포를 확인함으로써 입도 분포의 균일성을 판단할 수 있는 바, (D90-D10)/D50 값이 작을수록 입도 분포가 균일한 것을 나타내는 것일 수 있다.
따라서, 또 다른 구체적인 예에서, 본 발명의 양극 활물질은 (D90-D10)/D50으로 나타낸 입자 크기 분포가 1.2 이하의 범위일 수 있다.
상기 (D90-D10)/D50의 하한값은 특별히 제한되는 것은 아니며, 예를 들어, 0.8 이상일 수 있다.
이와 같이, 본 발명은 제공 가능한 다양한 실시예들에 따라, 1차 입자간 응집도가 낮음과 동시에, 입도 분포의 균일성 또한 뛰어난 리튬 이차전지용 양극 활물질을 제공할 수 있다.
이 경우, 입도 분포 균일성이 뛰어난 양극 활물질을 제공하기 위하여, 상대적으로 작은 입도를 갖는 입자와 큰 입도를 갖는 입자의 비율이 조절될 수 있는데, PSD 상 입도 분포 그래프의 메인 피크 최대점을 기준으로, 그래프 내 우측 면적(R)과 좌측 면적(L)의 차이가 지나치게 클 경우, 입도 분포 그래프가 넓게(broad) 형성될 수 있으며, 이는 양극 활물질이 균일한 입도 분포를 갖는 것으로 볼 수 없다.
따라서, 본 발명의 일 실시예에 따른 리튬 이차전지용 양극 활물질은 PSD 상 입도 분포 그래프의 메인 피크 최대점을 기준으로, 그래프 내 우측 면적(R)과 좌측 면적(L)의 비(R/L)가 바람직하게는 0.8 이상 내지 1.1 미만, 더욱 바람직하게는 0.8 이상 내지 1.0 이하일 수 있으며, 이러한 양극 활물질은 PSD 측정 그래프의 형상이 비교적 좁게(sharp) 형성되어 입도 분포가 균일한 것으로 판단될 수 있다.
본 발명에 따른 리튬 이차전지용 양극 활물질은 Ni, Co, Mn 중 하나 이상을 포함하는 리튬 전이금속 복합 산화물의 단일체 구조 1차 입자를 포함할 수 있으며, 상기 1차 입자의 평균 입경은 3 내지 10 ㎛일 수 있다.
하나의 구체적인 예에서, 상기 리튬 전이금속 복합 산화물은 하기 화학식 1의 조성을 가질 수 있다.
Lia[M1-bXb]Oc-dQd (1)
상기 식에서,
M은 NixCoyMnz이고,
X는 리튬을 제외한 알칼리 금속, 알칼리 토금속, 니켈과 코발트 및 망간을 제외한 3족 내지 12족 전이금속, 13족 내지 15족 중의 전이후금속 및 준금속, 및 14족 내지 16족 중의 비금속 원소 중에서 선택되는 하나 이상이며,
Q는 F, P 및 S 중 하나 이상이고,
0.8≤a≤1.2, 0≤b≤0.3, 1.8<c<2.2, 0≤d<0.2
0<x<1, 0<y<1, 0<z<1, 0<x+y+z≤1이다.
구체적으로, X는, 리튬을 제외한 알칼리 금속으로서 예를 들어 Na, K, Rb, Cs, Fr 등일 수 있고, 알칼리 토금속으로서 예를 들어 Be, Mg, Ca, Sr, Ba, Ra 등일 수 있으며, 니켈과 코발트 및 망간을 제외한 3족 내지 12족 전이금속으로서 예를 들어 Sc, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg 등일 수 있고, 13족 내지 15족 중의 전이후금속 및 준금속으로서 예를 들어 Al, Ga, In, Sn, Tl, Pb, Bi, Po, B, Si, Ge, As, Sb, Te, At 등일 수 있으며, 14족 내지 16족 중의 비금속 원소로서 예를 들어 C, P, S, Se 등일 수 있다. 상기 전이금속 원소에는 란타넘족 원소나 악티늄족 원소가 포함될 수도 있다. 하나의 바람직한 예에서, X는 Zr, Ti, W, B, P, Al, Si, Mg, Zn 및 V으로 이루어진 군에서 선택되는 하나 이상일 수 있다
본 발명은 또한 상기 양극 활물질을 포함하는 리튬 이차전지를 제공하는 바, 리튬 이차전지의 기타 구성 및 제조방법은 당업계에서 공지되어 있으므로, 본 발명에서는 그에 대한 자세한 설명을 생략한다.
이상 설명한 바와 같이, 본 발명에 따른 리튬 이차전지용 양극 활물질은 1차 입자간 응집도가 낮아, 이를 적용한 리튬 이차전지의 저항 감소, 수명 특성 등을 향상시킬 수 있는 효과가 있다.
도 1은 비교예 1, 2 및 3과 실시예 1, 2 및 3에 따른 양극 활물질들의 입도 분포를 나타내는 그래프이다;
도 2에서 (a)는 실시예 1에 따른 양극 활물질의 SEM 사진이고, (b)는 실시예 2에 따른 양극 활물질의 SEM 사진이며, (c)는 실시예 3에 따른 양극 활물질의 SEM 사진이고, (d)는 비교예 1에 따른 양극 활물질의 SEM 사진이며, (e)는 비교예 2에 따른 양극 활물질의 SEM 사진이고, (f)는 비교예 3에 따른 양극 활물질의 SEM 사진이다;
도 3은 비교예 1, 2 및 3과 실시예 1, 2 및 3에 따른 양극 활물질들의 충방전 사이클링 그래프이다;
도 4는 비교예 1, 2 및 3과 실시예 1, 2 및 3에 따른 양극 활물질들의 충방전 사이클링 중 DCIR(저항) 변화량을 나타낸 그래프이다.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[실시예 1]
니켈 전구체인 NiSO4, 코발트 전구체인 CoSO4 및 망간 전구체인 MnSO4를 0.83:0.11:0.6의 몰비로 물에 첨가하여, 니켈-코발트-망간 수산화물 전구체 수용액을 제조하였다. 상기 수용액을 교반하면서 수산화나트륨 수용액을 천천히 적하하여 반응 혼합물을 5시간 동안 교반함으로써 상기 전구체 수용액을 중화시켜 니켈-코발트-망간 수산화물인 Ni0 . 83Co0 . 11Mn0 .06(OH)2를 침전시켰다.
이렇게 얻어진 전구체(니켈코발트망간 수산화물)에 LiOH를 혼합하고 870℃에서 11시간 동안 열처리 하여 LiNi0 . 83Co0 . 11Mn0 . 06O2를 제조하였다.
이어서, 제조된 LiNi0 . 83Co0 . 11Mn0 . 06O2의 후처리 공정으로 CARVER社의 AutoPellet 3887.NE.L을 이용하여 약 3MPa의 압력을 인가하였으며, 이를 통해 리튬 이차전지용 양극 활물질을 제조하였다.
[실시예 2]
후처리 공정으로 Retsch社의 ZM200을 이용(12,000 RPM과 0.4 밀리미터의 메쉬를 사용)하여 전단력을 인가한 것을 제외하고는 실시예 1에서와 동일한 조건으로, 리튬 이차전지용 양극 활물질을 제조하였다.
[실시예 3]
후처리 공정으로 약 2MPa의 압력을 인가한 것을 제외하고는 실시예 1에서와 동일한 조건으로, 리튬 이차전지용 양극 활물질을 제조하였다.
[비교예 1]
후처리 공정을 진행하지 않은 것을 제외하고는 실시예 1에서와 동일한 조건으로, 리튬 이차전지용 양극 활물질을 제조하였다.
[비교예 2]
850℃로 열처리를 가한 것을 제외하고는 비교예 1에서와 동일한 조건으로, 리튬 이차전지용 양극 활물질을 제조하였다.
[비교예 3]
후처리 공정으로 약 1MPa의 압력을 인가한 것을 제외하고는 실시예 1에서와 동일한 조건으로, 리튬 이차전지용 양극 활물질을 제조하였다.
[실험예 1]
실시예 1, 2, 3 및 비교예 1, 2, 3에서 각각 제조된 리튬 이차전지용 양극 활물질의 PSD를 측정하였으며, PSD 측정으로부터 도출된 입도 분포 그래프 및 입도 분포 결과를 도 1 및 표 1에 나타내었다.
Figure PCTKR2019012429-appb-T000001
도 1을 참조하면, 비교예 1, 2 및 3의 PSD 분포값과 비교할 때 실시예 1, 2 및 3의 분포도가 좁고 균일도가 높다는 것을 확인할 수 있는 바, 이는 표 1에 나타낸 PSD상 입도 분포 그래프의 메인피크의 반폭값(FWHM) 및 최대 높이(h)의 비(FWHM/h)와 입자 크기 분포를 나타내는 (D90-D10)/D50 값 모두에서 실시예들이 비교예들 대비 낮은 수치를 나타내는 점을 통해서도 이해할 수 있다.
또한, 입도 분포 그래프의 메인피크 최대점을 기준으로 그래프 내 우측 면적(R)과 좌측 면적(L)의 비(R/L)를 확인했을 때, 비교예 1 및 2 대비 실시예 1, 2 및 3의 값이 작은 것을 확인하였다.
여기서, 비교예 3의 경우 실시예들 대비 더 낮은 R/L 값인 0.7을 나타내는 것을 확인할 수 있으나, PSD 상 입도 분포 그래프의 메인피크의 반폭값(FWHM) 및 최대 높이(h)의 비(FWHM/h)는 실시예들 보다 더 높은 1.7을 나타내며, 입자 크기 분포를 나타내는 (D90-D10)/D50 값은 1.57을 나타내어 이 또한 실시예들 보다 더 높은 것으로 확인되었다.
이는, 비교예 3의 활물질은 제조 과정 중 후처리 공정으로 1MPa의 압력이 인가되어 제조되었으나, 비교적 약한 압력의 인가로 인해 적절한 후처리가 진행되지 않아서 입자 크기가 균일하게 분포되지 못한 것으로 판단된다.
즉, 비교예 1, 2의 활물질의 경우에 별도의 후처리 공정 없이 제조됨으로 균일한 입자 크기 분포 및 1차 입자간 응집 감소가 해결되지 않았으며, 비교예 3의 활물질의 경우에 비교적 약한 압력(1MPa)으로 후처리 공정이 진행됨에 따라 1차 입자간 응집은 어느 정도 감소되었으나 균일한 입자 크기 분포는 달성되지 못한 것으로 판단된다.
반면에, 실시예 1, 2 및 3의 활물질은 제조과정 중 적절한 후처리 공정(3MPa 압력 인가, 전단력 인가, 2MPa 압력 인가)이 진행됨에 따라 균일한 입자 크기 분포 및 1차 입자간 응집 감소가 모두 달성된 것으로 판단될 수 있다.
[실험예 2]
실시예 1, 2 및 3과 비교예 1, 2 및 3에서 각각 제조된 리튬 이차전지용 양극 활물질을 주사 전자 현미경을 통해 관찰하였고, 그 결과를 도 2에 나타내었다.
도 2를 참조하면, (d), (e), (f)의 비교예들에서 다수의 응집체들이 관찰된다. 그에 반해, (a), (b), (c)의 실시예들에서는 소량의 응집체가 확인되지만 비교예들 대비 응집체들의 비율이 대폭 감소된 것을 확인할 수 있다.
[실험예 3]
실시예 1, 2 및 3과 비교예 1, 2 및 3에서 각각 제조된 양극 활물질에 도전제 및 바인더를 92: 5: 3(활물질: 도전제: 바인더)의 비율로 혼합하여 구리 집전체에 도포한 후 건조하여 양극을 제작하였다. 음극으로 리튬 금속을 사용하고, 전해액 EC:EMC = 1:2, LiPF6 1M을 첨가하여 이차전지를 제작한 후, 전기화학적 특성을 측정하였고, 그 결과를 표 2, 3 및 도 3, 4에 나타내었다.
Figure PCTKR2019012429-appb-T000002
Figure PCTKR2019012429-appb-T000003
우선, 표 2, 도 3을 참조하면, 비교예들에 비해, 1차 입자간 응집도 감소 및 균일한 입자 크기 분포가 모두 달성된 실시예 1, 2 및 3의 활물질이 비교적 높은 충전 용량과 우수한 수명 특성을 나타내는 것을 확인할 수 있다.
또한, 표 3 및 도 4는 실시예 1, 2 및 3과 비교예 1, 2 및 3의 활물질이 적용된 이차전지의 사이클링 중 DCIR(저항) 변화량 결과를 나타내는 바, 이를 참조하면, 비교예들 대비 실시예들의 활물질이 적용된 전지가 비교적 낮은 저항값을 나타내는 것을 확인할 수 있으며, 이를 통해 수명 특성 등 전지 특성이 향상됨을 이해할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 다양한 변형 및 개량이 가능할 것이며, 이는 모두 본 발명의 범주에 속하는 것으로 해석되어야 한다.

Claims (8)

  1. 리튬 전이금속 복합 산화물의 단일체 구조 1차 입자를 포함하고, PSD(Particle Size Distribution) 상 입도 분포 그래프(X축: 입자 크기(㎛), Y축: 상대 입자량(%))의 메인 피크 최대점을 기준으로, 그래프 내 우측 면적(R)과 좌측 면적(L)의 비 (R/L)가 1.1 미만인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  2. 제 1 항에 있어서, 상기 입도 분포 그래프는 하기 PSD 측정 조건에 의해 얻어지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질:
    <측정 조건>
    - 측정 장비: Microtrac S3500 Extended
    - 순환 속도: 45%/sec
    - 굴절 index 비율: 1.55
    - 장비 투입 용매: 증류수
    - Sample of cell: 0665
    - 계산 Logic: X100
    - 샘플양: 0.0025 g
    - 샘플 투입 분산제: 10% Sodium Hexamethaphosphate 1 ml
    - 샘플 투입 용매: 증류수 40 ml
    - 샘플 초음파분산: 40 KHz, 1 min.
  3. 제 1 항에 있어서, PSD상 입도 분포 그래프의 메인 피크 최대점을 기준으로, 그래프 내 우측 면적(R)과 좌측 면적(L)의 비(R/L)가 0.8 이상 내지 1.1 미만인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  4. 제 1 항에 있어서, PSD상 입도 분포 그래프의 메인 피크의 반폭값(Full Width at Half-maximum, FWHM)과 최대 높이의 비(FWHM/최대 높이)가 1.0 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  5. 제 1 항에 있어서, (D90-D10)/D50으로 나타낸 입자 크기 분포가 1.2 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  6. 제 1 항에 있어서, 상기 1차 입자의 평균 입경은 3 내지 10 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  7. 제 1 항에 있어서, 상기 전이금속 복합 산화물은 Ni, Co, Mn 중 하나 이상의 원소를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  8. 제 1 항 내지 제 7 항 중 어느 하나에 따른 양극 활물질을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2019/012429 2019-09-25 2019-09-25 리튬 이차전지용 양극 활물질 WO2021060576A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/640,461 US20220344653A1 (en) 2019-09-25 2019-09-25 Positive active material for lithium secondary battery
PCT/KR2019/012429 WO2021060576A1 (ko) 2019-09-25 2019-09-25 리튬 이차전지용 양극 활물질

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/012429 WO2021060576A1 (ko) 2019-09-25 2019-09-25 리튬 이차전지용 양극 활물질

Publications (1)

Publication Number Publication Date
WO2021060576A1 true WO2021060576A1 (ko) 2021-04-01

Family

ID=75165023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012429 WO2021060576A1 (ko) 2019-09-25 2019-09-25 리튬 이차전지용 양극 활물질

Country Status (2)

Country Link
US (1) US20220344653A1 (ko)
WO (1) WO2021060576A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137554A (ja) * 2001-10-31 2003-05-14 Mitsubishi Chemicals Corp リチウム・遷移金属系複合酸化物粉体の製造方法、及びリチウム・遷移金属系複合酸化物粉体
KR20140067509A (ko) * 2012-11-26 2014-06-05 삼성정밀화학 주식회사 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지
KR101882878B1 (ko) * 2017-09-25 2018-07-30 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20190059241A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
KR20190093547A (ko) * 2019-08-02 2019-08-09 울산과학기술원 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137554A (ja) * 2001-10-31 2003-05-14 Mitsubishi Chemicals Corp リチウム・遷移金属系複合酸化物粉体の製造方法、及びリチウム・遷移金属系複合酸化物粉体
KR20140067509A (ko) * 2012-11-26 2014-06-05 삼성정밀화학 주식회사 리튬이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬이차전지
KR101882878B1 (ko) * 2017-09-25 2018-07-30 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20190059241A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
KR20190093547A (ko) * 2019-08-02 2019-08-09 울산과학기술원 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
US20220344653A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US11133494B2 (en) Negative electrode plate and secondary battery comprising the same
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2011025080A1 (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR20200044448A (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021025479A1 (ko) 이차전지용 활물질
CN111095629B (zh) 正极活性材料、其制备方法以及包含其的锂二次电池用正极和锂二次电池
WO2021025370A1 (ko) 리튬 이차전지용 양극 활물질
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
US20210234164A1 (en) Method of Washing Positive Electrode Active Material, and Positive Electrode Active Material Prepared Thereby
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019235890A1 (ko) 리튬 이차전지용 음극 슬러리, 및 이의 제조방법
KR20210117212A (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2016108386A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2014178624A1 (ko) 리튬 이차 전지용 양극활물질
WO2021060576A1 (ko) 리튬 이차전지용 양극 활물질
KR102249562B1 (ko) 리튬 이차전지용 양극 활물질
WO2022005242A1 (ko) 이차전지 전극용 슬러리 조성물 및 이를 이용한 이차전지 전극
WO2022265258A1 (ko) 리튬 이차전지용 양극 활물질
WO2020055210A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019235886A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2014126373A1 (ko) 낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947264

Country of ref document: EP

Kind code of ref document: A1