WO2020055210A1 - 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 - Google Patents

양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2020055210A1
WO2020055210A1 PCT/KR2019/011929 KR2019011929W WO2020055210A1 WO 2020055210 A1 WO2020055210 A1 WO 2020055210A1 KR 2019011929 W KR2019011929 W KR 2019011929W WO 2020055210 A1 WO2020055210 A1 WO 2020055210A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
particles
reaction
Prior art date
Application number
PCT/KR2019/011929
Other languages
English (en)
French (fr)
Inventor
최권영
이상혁
박종일
송정훈
남상철
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to JP2021514124A priority Critical patent/JP2021536662A/ja
Priority to CN201980074470.3A priority patent/CN112997338A/zh
Priority to EP19859256.0A priority patent/EP3852173A4/en
Priority to US17/275,883 priority patent/US20220045317A1/en
Publication of WO2020055210A1 publication Critical patent/WO2020055210A1/ko
Priority to JP2022173063A priority patent/JP2023021107A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to a positive electrode active material, a method for manufacturing the same, and a lithium secondary battery comprising the same.
  • a high-capacity positive electrode active material In order to manufacture such a high-capacity battery, a high-capacity positive electrode active material must be used.
  • LiNiO 2 or (275mAh / g) has the highest capacity, but structural collapse occurs easily during charging and discharging, and it is difficult to commercialize due to low thermal stability due to oxidation problems.
  • the present inventors propose a method of controlling the structure of the primary particles on the surface of the layered secondary particles to suppress the electrolytic solution decomposition reaction at the anode surface. From this, it is possible to improve the thermal safety of the positive electrode active material.
  • the lithium metal oxide particles in the form of secondary particles including primary particles, the surface of the secondary particles, c axis of the primary particles;
  • a positive electrode active material comprising plate-shaped primary particles having a narrow angle of 60 to 90 ° among angles between a virtual point at the center of the primary particle and a straight line connecting the center point of the secondary particle.
  • the surface of the secondary particles means a portion formed by the outermost primary particles of the secondary particles.
  • FIG. 1 is a schematic diagram of secondary particles according to an embodiment of the present invention.
  • a narrow angle is 60 to 90 among angles between a c-axis of the primary particle and an imaginary point at the center of the primary particle and a straight line connecting the center point of the secondary particle to define the direction of the primary particle arrangement.
  • the primary particles of the plate-shaped, ⁇ are defined as plate-shaped. More specifically, it may be 70 to 90 ⁇ .
  • the primary particles having an angle of 0 ° or more and less than 60 ° are defined as acicular. More specifically, it may be 0 ° or more and 20 ° or less.
  • the area occupied by the primary particles of the plate shape may be 20 area% or more with respect to 100 area% of the area formed by a circle based on 50% of the radius of the secondary particles at the center point of the secondary particles. More specifically, it may be 30% by area or more.
  • FIG. 2 is an SEM photograph of secondary particles according to an embodiment of the present invention.
  • the area of the primary particles of the plate-like shape inside the circle can be calculated.
  • the area occupied by the plate-shaped primary particles may be 20 area% or more.
  • it may be 50 area% or more, and more preferably 70 area% or more.
  • 100% by area of the total area may be plate-shaped particles, but in reality, some needle-shaped particles exist, and thus plate-shaped particles may be present at 95 area% or less.
  • the average length of the primary particles of the plate-shaped primary particles present in the area may be 750 nm to 1.25 ⁇ m with respect to 100 area% of the area formed by a circle based on 50% of the radius of the secondary particles at the center point of the secondary particles.
  • the length of the plate-shaped primary particles means the length in the longest direction of the particles.
  • the narrow angle may include acicular primary particles having a angle of 0 or more and less than 60 °. More specifically, it may be acicular primary particles of 0 to 20 degrees.
  • the inside of the secondary particles may be a radial structure in which acicular particles are arranged toward the center of the secondary particles.
  • the concentration of nickel in the secondary particles has a concentration gradient in the form of decreasing from the inside to the surface direction, such an internal oriented structure can be developed.
  • the core of the center of the inside of the secondary particles may include a center having a constant nickel concentration. This may be appropriately controlled by a method of blending raw materials during the precursor manufacturing step described below.
  • the content of nickel in the metal in the secondary particles may be 80 mol% or more. It is possible to increase the nickel concentration for high power characteristics that cannot be obtained in a positive electrode active material in which the existing nickel is 50 mol% or less.
  • the end time of the reaction may mean 1 to 30 hours% from the last end time of the total reaction time of 100 hours%.
  • the end time of the reaction may be 1 to 10 hours% or 1 to 5 hours% from the last end time out of 100 hours% of the total reaction time.
  • This may affect the formation of plate-shaped primary particles on the surface of the positive electrode active material, which is one embodiment of the present invention described above, and may be appropriately controlled to meet a desired specification.
  • obtaining a metal precursor by introducing an aqueous metal salt solution in the coprecipitation reactor;
  • the difference between the reaction start pH and the reaction end pH may be 0.1 to 0.8. We will be writing about two more stages in a narrower range.
  • pH conditions may be increased by 0.1 to 0.8.
  • plate-like particles present on the surface of the secondary particles may be evenly formed.
  • the upward rate of the pH condition may be 0.0016 to 0.0133 pH / min. More specifically, it may be 0.0066 to 0.0133 pH / min.
  • the positive electrode bow according to an embodiment of the present invention described above
  • An anode comprising a material; A negative electrode comprising a negative electrode active material; And an electrolyte located between the positive electrode and the negative electrode.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector.
  • the conductive material is used to impart conductivity to the electrode, and in the battery configured, any electronically conductive material can be used without causing chemical changes.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the negative active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • a carbon-based negative electrode active material generally used in lithium-ion secondary batteries can be used, and typical examples thereof include crystalline carbon , Amorphous carbon or a combination of these.
  • alloy of lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn.
  • the alloy of the metal of choice can be used.
  • Materials capable of doping and dedoping the lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloy (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, Rare earth elements and elements selected from the group consisting of a combination thereof, not Si), Sn, SnO 2 , Sn-Y (the above Y is alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) Element and a combination thereof, and not Sn).
  • the negative active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres the negative electrode active material particles to each other well, and also serves to adhere the negative electrode active material to the current collector.
  • the conductive material is used to impart conductivity to the electrode, and in the battery to be constructed, any material can be used as long as it is an electron conductive material without causing a chemical change.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is widely known in the art, detailed descriptions thereof will be omitted. N-methylpyrrolidone or the like may be used as the solvent, but is not limited thereto.
  • the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the lithium salt is a material that is dissolved in an organic solvent, acts as a source of lithium ions in the battery, enables basic lithium secondary battery operation, and promotes movement of lithium ions between the positive electrode and the negative electrode.
  • a separator may be present between the positive electrode and the negative electrode.
  • Polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof may be used as the separator, and a polyethylene / polypropylene two-layer separator, a polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator can be used.
  • the lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used, and may be classified into a cylindrical shape, a square shape, a coin shape, and a pouch shape according to the shape, It can be divided into bulk type and thin film type depending on the size.
  • the structure and manufacturing method of these batteries are well known in the art, so detailed descriptions thereof will be omitted.
  • a plate surface having low reactivity may come into contact with the electrolyte, and thereby, the decomposition reaction of the electrolyte on the surface of the positive electrode may be suppressed.
  • the thermal stability of the positive electrode active material is improved due to the reduced side reaction of the electrolyte.
  • the peak temperature is increased and the total amount of heat is reduced, thereby providing a positive electrode active material with improved thermal safety.
  • FIG. 1 is a schematic diagram of secondary particles according to an embodiment of the present invention.
  • Example 2 is a shape of primary particles present on the surface of the positive electrode active material of Example 1.
  • Figure 3 is a shape of the primary particles present in the surface portion of Example 3 positive electrode active material.
  • Figure 4 is the shape of the primary particles present in the surface portion of Comparative Example 1 positive electrode active material.
  • FIG. 5 is a cross-sectional shape of Example 1 positive electrode active material
  • FIG. 6 is a cross-sectional shape of Example 3 positive electrode active material
  • FIG. 7 is a cross-sectional shape of Comparative Example 1 positive electrode active material.
  • NiSO 4 ⁇ 6H 2 O as the raw material for nickel
  • CoSO 4 ⁇ 7H 2 O as the raw material for cobalt
  • MnSO 4 ⁇ H 2 O as the raw material for manganese.
  • Two other aqueous metal salt solutions were prepared.
  • the first metal salt aqueous solution for forming the core portion was mixed with each of the raw materials to satisfy a stoichiometric molar ratio of (Ni 0.98 Co 0.01 Mn 0.01 ) (OH) 2 in distilled water.
  • the second metal salt aqueous solution for forming the shell portion was mixed with each of the above raw materials to satisfy the stoichiometric molar ratio of (Ni 0.64 Co 0.23 Mn 0.13 ) (OH) 2 in distilled water.
  • a coprecipitation reactor in which two metal salt aqueous solution supply tanks were connected in series was prepared, and the first metal salt aqueous solution and the second metal salt aqueous solution were charged to each metal salt aqueous solution supply tank.
  • NH 4 (OH) was used as a chelating agent
  • a NaOH solution was used as a pH adjusting agent.
  • the initial pH in the reactor was set to 11.2 during the reaction.
  • the pH was kept constant and the input time and the input amount of each metal salt solution were adjusted from the two metal salt aqueous solution supply tanks connected in series to the reactor supplied with the chelating agent.
  • the coprecipitation reaction was performed until the diameter of the precipitate was about 11.1 ⁇ m while the first aqueous metal salt solution was introduced at 0.4 liters / hour. At this time, by adjusting the flow rate, the average residence time in the reactor of the solution was about 10 hours, and after the reaction reached a steady state, a steady state duration was given to the reactant to obtain a more dense coprecipitation compound.
  • the entire feed solution was added at 0.4 liters / hour, but the feed rate of the first metal salt aqueous solution was gradually decreased to 0.05 liters / hour.
  • the supply rate of the second aqueous metal salt solution was gradually increased to 0.35 liters / hour.
  • the flow rate was adjusted so that the average residence time in the reactor of the solution was within 20 hours, and finally the coprecipitation reaction was performed until the diameter of the precipitate was 16.0 ⁇ m.
  • the pH adjustment rate was 0.0133 pH / min.
  • the precipitate obtained according to the series of coprecipitation processes was filtered, washed with water, and then dried in an oven at 100 ° C. for 24 hours, so that the composition of the whole particle was (Ni 0.88 Co 0.095 Mn 0.025 ) (OH) 2 , to prepare an active material precursor of large particle size particles having an average particle diameter of 16.0 ⁇ m.
  • Example 2 In the co-precipitation process, Example 2 and Example 2, except that the pH of the reaction start was adjusted to 11.2 during the course of the reaction, and the pH was adjusted to the range of 11.6 hours before the end of the reaction and the pH adjustment rate was adjusted to 0.0066 pH / min. Similarly, a positive electrode active material was prepared.
  • Example 2 In the co-precipitation process, Example 2 and Example 2, except that the pH of the reaction start was adjusted to 11.2 during the course of the reaction, and the pH was adjusted to a range of 11.4 hours before the end of the reaction and the pH adjustment rate was adjusted to 0.0033 pH / min. Similarly, a positive electrode active material was prepared.
  • a positive electrode active material was prepared in the same manner as in Example 2, except that the pH was maintained at 11.0 during the reaction in the co-precipitation process.
  • Example 1 Example 3, Comparative Example 1
  • the shape of the primary particles was observed on the surface of the positive electrode active material through SEM analysis.
  • Figure 2 is the shape of the primary particles present on the surface portion of the positive electrode active material of Example 1, it was confirmed that the plate-shaped primary particles uniformly surround the entire surface of the positive electrode active material.
  • the plate-like surface (c-axis surface) of the primary particles is a surface where the de-insertion / reaction reaction of Li does not occur, so it is expected that the electrolytic solution decomposition reaction is suppressed at the anode surface.
  • FIG. 3 shows the shape of the primary particles present in the surface portion of the positive electrode active material, and plate-shaped primary particles and acicular particles are mixed in the surface portion of the positive electrode active material.
  • FIG. 4 shows the shape of the primary particles present on the surface portion of the comparative example 1 positive electrode active material, and the needle-shaped primary particles are uniformly distributed. This is similar to the shape normally observed when a positive electrode active material is prepared.
  • Example 1 Example 1, Example 3, Comparative Example 1
  • the positive electrode active material was cut with FIB to cut the section of the positive electrode material, and the primary particle shape distribution of the section of the positive electrode material was observed with a TEM analysis equipment.
  • FIG. 5 is a cross-sectional shape of Example 1 positive electrode active material
  • FIG. 6 is a cross-sectional shape of Example 3 positive electrode active material
  • FIG. 7 is a cross-sectional shape of Comparative Example 1 positive electrode active material.
  • Example 1 In the primary particle arrangement inside the positive electrode active material, in Example 1, Example 3, and Comparative Example 1, a large number of acicular particles are seen, and the acicular particles have a radial shape arranged toward the center of the secondary particles.
  • Comparative Example 1 shows a needle-like shape similar to the inside, but in Example 3, the primary particles showing a plate-like shape and the primary particles showing a needle-like shape are mixed. Can be confirmed.
  • the positive electrode active material of Example 1 has more plate-like particles.
  • the area occupied by the plate-shaped particles was calculated for 100 area% of the area formed by a circle based on 50% of the radius of the secondary particles at the center point of the secondary particles. .
  • Examples 1 to 4 and Comparative Example 1 The positive electrode active material was prepared and charged, and then the coin cell was disassembled to perform thermal safety analysis on the positive electrode active material through DSC.
  • the prepared slurry was coated on a 15 ⁇ m thick Al foil by a doctor blade method, dried and rolled.
  • the electrode loading was 14.6 mg / cm 2 and the rolling density was 3.1 g / cm 3 .
  • Charging conditions were CC / CV 2.5 ⁇ 4.25V, 1 / 20C cut-off charging conditions.
  • the coin cell was disassembled from the dry product, and 10 mg of the positive electrode active material was collected to perform DSC analysis.
  • Examples 1 to 4 and Comparative Example 1 The positive electrode active material was prepared in the same manner as in Experimental Example 3, and a 2032 coin-type half cell was aged at room temperature (25 ° C) for 10 hours, and then charged and discharged.
  • the positive electrode active material according to the embodiment of the present application shows the same level of charge and discharge capacity and efficiency as Comparative Example 1, although thermal stability is greatly improved as in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 대한 것으로, 1차 입자를 포함하는 2차 입자 형태인 리튬 금속 산화물 입자이고, 상기 2차 입자 표면은, 1차 입자의 c 축과; 1차 입자 중심의 가상의 점과 2차 입자의 중심점을 이은 직선과의 각도 중 좁은 각도가 70 내지 90˚인 판상형의 1차 입자를 포함하는 것인 양극 활물질을 제공할 수 있다.

Description

양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 대한 것이다.
최근 IT모바일 기기 및 소형 전력구동장치(e-bike, 소형 EV등)의 폭발적인 수요증대, 주행거리 400km이상의 전기차 요구에 힘입어 이를 구동하기 위한 고용량, 고에너지 밀도를 갖는 이차 전지 개발이 전세계적으로 활발히 진행되고 있다.
이러한 고용량 전지를 제조하기 위해서는 고용량 양극 활물질을 사용해야 한다.
현존하는 층상계(layered) 양극활물질중 가장 용량이 높은 소재는 LiNiO2이나(275mAh/g), 충방전시 구조붕괴가 쉽게 일어나고 산화수 문제에 의한 열적 안정성이 낮아 상용화가 어려운 실정이다.
이러한 문제를 해결하기 위해서는 불안정한 Ni site에 다른 안정한 전이금속(Co, Mn 등)을 치환해야 하는데, 이를 위해 Co와 Mn이 치환된 3원계 NCM계가 개발되었다.
그러나, 3원계 NCM의 경우에는 Ni의 함량이 증가할수록 열적 안전성이 감소한다.
이에 본 발명자들은 층상계 2차 입자 표면의 1차 입자의 구조를 제어하여 양극 표면에서 전해액 분해 반응을 억제하는 방법을 제안한다. 이로부터 양극 활물질의 열적 안전성을 개선할 수 있다.
본 발명의 일 구현예에서는, 1차 입자를 포함하는 2차 입자 형태인 리튬 금속 산화물 입자이고, 상기 2차 입자 표면은, 1차 입자의 c 축과; 1차 입자 중심의 가상의 점과 2차 입자의 중심점을 이은 직선과의 각도 중 좁은 각도가 60 내지 90˚인 판상형의 1차 입자를 포함하는 것인 양극 활물질을 제공한다.
상기 이차 입자의 표면은, 2차 입자의 최외곽 1차 입자가 이루고 있는 부분을 의미한다.
도 1은 본 발명의 일 구현예에 따른 2차 입자의 개략도이다.
도 1에서와 같이, 1차 입자 배열의 방향을 정의하기 위하여 1차 입자의 c 축과 1차 입자 중심의 가상의 점과 2차 입자의 중심점을 이은 직선과의 각도 중 좁은 각도가 60 내지 90˚인 판상형의 1차 입자를 판상형으로 정의한다. 보다 구체적으로, 70 내지 90˚일 수 있다.
또한, 상기 각도가 0˚ 이상 및 60˚미만의 1차 입자는 침상형으로 정의한다. 보다 구체적으로 0˚ 이상 및 20˚이하일 수 있다.
상기 2차 입자 표면의 판상형 입자로 인해, 전해액과의 부반응을 억제하여 양극 활물질의 열 안정성을 개선할 수 있다.
보다 구체적으로, 상기 2차 입자의 중심점에서 2차 입자의 반지름의 50% 기준의 원이 이루는 면적 100면적%에 대해, 상기 판상형의 1차 입자가 차지하는 면적은 20면적% 이상일 수 있다. 보다 구체적으로 30면적% 이상일 수 있다.
구체적으로 도 2는 본 발명의 일 실시예에 따른 2차 입자의 SEM 사진이다.
도 2에 도시된 바와 같이, 2차 입자의 중심부를 기준으로 원을 설정한 후 이의 원 내부의 판상형의 1차 입자의 면적을 계산할 수 있다.
이때, 도 2에서와 같이 판상형의 1차 입자가 차지하는 면적은 20면적% 이상일 수 있다. 이러한 경우, 전술한 바와 같이 전해액과의 부반응을 효과적으로 제어할 수 있게 된다. 보다 바람직하게는 50면적% 이상일 수 있으며, 보다 바람직하게는 70면적% 이상일 수 있다. 상한으로는 전체 면적 100면적%가 판상형 입자일 수도 있으나, 실제로는 일부 침상형 입자가 존재하여 95 면적% 이하로 판상형 입자가 존재할 수 있다.
상기 2차 입자의 중심점에서 2차 입자의 반지름의 50% 기준의 원이 이루는 면적 100면적%에 대해, 상기 면적 내 존재하는 판상형의 1차 입자의 평균 길이는 750nm 내지 1.25㎛일 수 있다.
판상형 1차 입자의 길이는, 입자의 가장 긴 방향의 길이를 의미한다. 1차 입자의 평균 길이가 상기 범위를 만족하는 경우, 목적하는 전지 특성을 확보할 수 있다.
또한, 상기 2차 입자의 내부는, 1차 입자의 c 축과; 1차 입자 중심의 가상의 점과 2차 입자의 중심점을 이은 직선과의 각도 중 좁은 각도가 0 이상 및 60˚ 미만인 침상형의 1차 입자를 포함할 수 있다. 보다 구체적으로, 0 내지 20˚인 침상형의 1차 입자일 수 있다.
보다 구체적으로, 2차 입자의 내부는 침상형 입자가 2차 입자의 중심을 향하여 배열된 방사형 구조일 수 있다.
2차 입자 내 니켈의 농도가 내부에서부터 표면 방향으로 감소하는 형태의 농도 구배를 가지는 경우에, 이러한 내부 방향형 구조가 발달될 수 있다.
이 경우에도 2차 입자의 내부 중 가장 중심부의 코어는 니켈 농도가 일정한 중심부를 포함할 수 있다. 이는 후술하는 전구체 제조 단계 시 원료 물질의 배합 방법으로 적절히 제어될 수 있다.
보다 구체적으로, 상기 2차 입자 내 금속 중 니켈의 함량은 80몰% 이상일 수 있다. 기존의 니켈이 50몰% 이하인 양극 활물질에서는 얻을 수 없는 고출력 특성을 위해 니켈 농도를 높일 수 있다.
본 발명의 다른 일 구현예에서는, 공침 반응기 내 금속염 수용액을 투입하여 금속 전구체를 수득하는 단계; 및 상기 금속 전구체 및 리튬 원료 물질을 혼합 후 소성하여 양극 활물질을 수득하는 단계;를 포함하고, 상기 공침 반응기 내 금속염 수용액을 투입하여 금속 전구체를 수득하는 단계;에서, 전체 반응 시간 100 시간%에 대해, 반응 종료 시점 1 내지 30시간% 범위에서, pH 조건을 변화시키는 것인 양극 활물질의 제조 방법을 제공한다.
보다 구체적으로, 공침 반응으로 전구체를 수득하는 단계에서 반응 종료 시점의 pH를 변화시키는 방법을 제공할 수 있다. 이때 반응 종료 시점은 전체 반응 시간 100시간% 중 마지막 종료 시간으로부터 1 내지 30시간%를 의미할 수 있다.
보다 구체적으로, 상기 반응 종료 시점은 전체 반응 시간 100시간% 중 마지막 종료 시간으로부터 1 내지 10시간% 또는 1 내지 5시간%일 수 있다.
이는 전술한 본 발명의 일 구현예인 양극 활물질의 표면의 판상형 1차 입자의 형성에 영향을 줄 수 있으며, 목적하는 스펙에 맞도록 적절히 제어될 수 있다.
구체적으로, 상기 공침 반응기 내 금속염 수용액을 투입하여 금속 전구체를 수득하는 단계; 반응 시작 pH와 반응 종료 pH의 차이는 0.1 내지 0.8일 수 있다. 보다 좁은 범위 2단계 정도 더 기재 예정입니다.
보다 구체적으로, 상기 전체 반응 시간 100 시간%에 대해, 반응 종료 시점 1 내지 30시간% 범위에서, pH 조건이 0.1 내지 0.8상향될 수 있다. 이러한 범위를 만족하는 경우, 2차 입자 표면에 존재하는 판상형 입자가 고르게 형성될 수 있다.
보다 구체적으로, 상기 pH 조건의 상향 속도는 0.0016 내지 0.0133 pH/min 일 수 있다. 보다 구체적으로, 0.0066 내지 0.0133 pH/min일 수 있다.
이러한 공정 조건에 대해서는 후술하는 실시예에서 보다 구체적으로 설명 하도록 한다.
본 발명의 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 양극 활
물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 상기 양극 및 음극 사이에 위치하는 전해질;을 포함하는 리튬 이차 전지를 제공한다.
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 생략하도록 한다.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. 상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
본 발명의 일 구현예에 따른 양극 활물질은, 반응성이 낮은 판상면이 전해액과 접촉하게 되고 이로 인하여 양극 표면에서 전해액의 분해 반응이 억제될 수 있다.
이러한 전해액 부반응 감소로 인하여 양극 활물질의 열적 안전성이 향상된다.
보다 구체적으로, DSC 분석 시 피크 온도는 상승하고 총발열량은 감소되어 열적 안전성이 향상된 양극 활물질을 제공할 수 있다.
도 1은 본 발명의 일 구현예에 따른 2차 입자의 개략도이다.
도 2은 실시예1의 양극 활물질의 표면부에 존재하는 1차 입자의 형상이다.
도 3는 실시예3 양극 활물질의 표면부에 존재하는 1차 입자의 형상이다.
도 4은 비교예1 양극활물질의 표면부에 존재하는 1차 입자의 형상이다.
도 5는 실시예1 양극 활물질의 단면 형상이고, 도 6는 실시예3 양극 활물질의 단면 형상이고, 도 7은 비교예1 양극 활물질의 단면 형상이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
(실시예 1) Ni 88mol% 양극 활물질 제조
1) 금속염 용액의 제조
우선, 니켈 원료 물질로는 NiSO4·6H2O, 코발트 원료 물질로는 CoSO4·7H2O, 망간 원료 물질로는 MnSO4·H2O을 이용하여, Ni, Co, 및 Mn 농도가 서로 다른 두 개의 금속염 수용액을 제조하였다.
코어부 형성을 위한 제1 금속염 수용액은, 증류수 내에서 (Ni0.98Co0.01Mn0.01)(OH)2의 화학양론적 몰비를 만족하도록 상기 각 원료 물질을 혼합하였다.
이와 독립적으로, 쉘부 형성을 위한 제2 금속염 수용액은, 증류수 내에서 (Ni0.64Co0.23Mn0.13)(OH)2의 화학양론적 몰비를 만족하도록 상기 각 원료 물질을 혼합하였다.
2) 공침 공정
두 개의 금속염 수용액 공급 탱크가 직렬로 연결된 공침 반응기를 준비하고, 각각의 금속염 수용액 공급 탱크에 상기 제1 금속염 수용액 및 상기 제2 금속염 수용액을 장입하였다.
상기 공침 반응기에 증류수를 넣은 뒤, 반응기의 온도를 일정하게 유지하며 교반하였다.
또한, 킬레이팅제로 NH4(OH)을 사용하였으며, pH 조절제로 NaOH 용액을 사용하였다.
이때 반응 진행 중 반응기 내 초기 pH 11.2로 설정하였다.
이처럼 pH가 일정하게 유지되며 킬레이팅제가 공급되는 반응기에, 상기 직렬 연결된 두 개의 금속염 수용액 공급 탱크로부터 각 금속염 용액의 투입 시간 및 투입량을 조절하였다.
구체적으로, 상기 제1 금속염 수용액을 0.4 리터/시간으로 투입하면서, 침전물의 지름이 약 11.1 ㎛ 가 될 때까지 공침 반응을 수행하였다. 이때 유량을 조절하여 용액의 반응기 내의 평균 체류 시간은 10 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물에 대해 정상 상태 지속시간을 주어 좀 더 밀도가 높은 공침 화합물을 얻도록 하였다.
이어서, 상기 제1 금속염 수용액과 상기 제2 금속염 수용액의 혼합 비율을 변경시키면서, 전체 공급 용액을 0.4 리터/시간으로 투입하되, 상기 제1 금속염 수용액의 공급 속도는 0.05리터/시간으로 점진적으로 감소시키고, 상기 제2 금속염 수용액의 공급 속도는 0.35리터/시간으로 점진적으로 증가시켰다. 이때 유량을 조절하여 용액의 반응기 내의 평균 체류 시간은 20 시간 이내가 되도록 하였으며, 최종적으로 침전물의 지름이 16.0㎛ 가 될 때까지 공침 반응을 수행하였다.
이때 반응 종료 시점 1 시간 전 pH를 12.0 범위로 상향 조정하였다. pH 조절 속도는 0.0133 pH/min 이었다.
3) 후처리 공정
상기 일련의 공침 공정에 따라 수득되는 침전물을 여과하고, 물로 세척한 다음, 100 ℃의 오븐(oven) 에서 24 시간 동안 건조시켜, 입자 전체에서의 조성이 (Ni0.88Co0.095Mn0.025)(OH)2 이고, 평균 입경이 16.0㎛인 대입경 입자의 활물질 전구체를 제조하였다.
4) 소성 공정
코어-쉘 농도구배가 있으며, Ni0.88Co0.095Mn0.025(OH)2 조성을 갖는 전구체와 ZrO2(Aldrich, 4N, Zr 농도 3,400ppm 기준), Al(OH)3 (Aldrich, 4N, Al 농도 기준 140ppm)을 이를 균일하게 혼합하고 그 후 LiOH·H2O(삼전화학, battery grade)를 1:1.05 몰 비로 다시 혼합한 후 로(furnace)에 장입하여 산소를 유입시키면서 소성하였다.
이후 자연 냉각을 하고, 분쇄 분급을 통하여 양극 활물질을 제조하였다.
(실시예 2) Ni 88mol% 양극 활물질 제조
원료물질을 준비할 때 (Ni0.88Co0.095Mn0.025)(OH)2의 몰비를 만족시킬 수 있도록 준비한 점, 공침 공정에서 반응 진행 중 반응 시작 pH를 11.2 로 조절하고, 반응 종료 시점 1 시간 전 pH를 11.8 범위로 상향 조정한 점 및 pH 조절 속도를 0.01 pH/min으로 조절한 점을 제외하고는 실시예 1과 동일하게 양극 활물질을 제조하였다.
(실시예 3) Ni 88mol% 양극 활물질 제조
공침 공정에서 반응 진행 중 반응 시작 pH를 11.2으로 조절하고, 반응 종료 시점 1 시간 전 pH를 11.6 범위로 조정한 점 및 pH 조절 속도를 0.0066 pH/min 으로 조절한 점을 제외하고는 실시예 2과 동일하게 양극 활물질을 제조하였다.
(실시예 4) Ni 88mol% 양극 활물질 제조
공침 공정에서 반응 진행 중 반응 시작 pH를 11.2으로 조절하고, 반응 종료 시점 1 시간 전 pH를 11.4 범위로 조정한 점 및 pH 조절 속도를 0.0033 pH/min으로 조절한 점을 제외하고는 실시예 2과 동일하게 양극 활물질을 제조하였다.
(비교예 1) Ni 88mol% 양극 활물질 제조
공침 공정에서 반응 진행 중 pH가 11.0로 유지되도록 한 점을 제외하고는 실시예 2과 동일하게 양극 활물질을 제조하였다.
Figure PCTKR2019011929-appb-T000001
(실험예 1) 양극활물질 표면부 형상 분석(SEM)
실시예1, 실시예3, 비교예1 양극 활물질에 대하여 SEM 분석을 통하여 양극 활물질 표면부에 1차 입자의 형상을 관찰하였다.
도 2는 실시예1의 양극 활물질의 표면부에 존재하는 1차 입자의 형상이며 판상형의 1차 입자가 양극 활물질 표면부 전체를 균일하게 감싸고 있는 것이 확인되었다. 1차 입자의 판상면(c축면)은 Li의 탈/삽입 반응이 일어나지 않는 면이므로 양극 표면에서 전해액 분해 반응이 억제될 것으로 예상된다.
도 3은 실시예3 양극 활물질의 표면부에 존재하는 1차 입자의 형상이며 판상형의 1차 입자와 침상형의 입자가 양극 활물질 표면부에 혼재되어 있다.
도 4은 비교예1 양극활물질의 표면부에 존재하는 1차 입자의 형상이며 침상형의 1차 입자가 균일하게 분포되어 있다. 이는 통상적으로 양극 활물질을 제조하였을 때 관찰되는 형상과 유사하다.
(실험예 2) 양극 활물질 단면부 형상 분석(TEM)
실시예1, 실시예3, 비교예1 양극활물질을 FIB로 양극재 단면을 절단하고 TEM 분석 장비로 양극재 단면의 1차 입자 형상 분포를 관찰하였다.
도 5는 실시예1 양극 활물질의 단면 형상이고, 도 6는 실시예3 양극 활물질의 단면 형상이고, 도 7은 비교예1 양극 활물질의 단면 형상이다.
양극 활물질 내부의 1차 입자 배열은 실시예1, 실시예3, 비교예1 모두 침상형 입자가 다수 보이며, 침상형 입자는 2차 입자의 중심을 향해 배열된 방사형 형태를 보인다.
그러나 양극 활물질 표면부의 1차 입자 배열 경우 비교예1은 내부와 유사하게 침상형 형태를 보이고 있으나, 실시예3의 경우 판상형 형태를 보이는 1차 입자와 침상형 형태를 보이는 1차 입자가 혼재된 것을 확인할 수 있다.
실시예1의 양극 활물질은 판상형 입자가 더 많은 것을 확인할 수 있다.
실시예1 내지 4 및 비교예1 양극 활물질 표면부에서 판상형 형태를 갖는 1차 입자가 얼마나 표면부 내 많은 면적을 차지하고 있는지를 검토하였다.
이는 다음과 같은 방법을 통해 확인하였다.
도 2과 같이 2차 입자의 SEM 사진을 기준으로 하여, 상기 2차 입자의 중심점에서 2차 입자의 반지름의 50% 기준의 원이 이루는 면적 100면적%에 대해, 판상형 입자가 차지하는 면적을 계산하였다.
Figure PCTKR2019011929-appb-T000002
(실험예 3) 충전 상태에서의 시차주사 열량 측정(Differential Scanning Calorimetry, DSC)
실시예1 내지 4 및 비교예1 양극 활물질을 코인셀 제조 및 충전 후 코인셀을 해체하여 양극 활물질에 대해 DSC를 통해 열적 안전성 분석을 진행하였다.
극판용 슬러리는 양극:도전재(denka black):바인더(PVDF, KF1100) = 92.5 : 3.5 : 4 wt%였으며, 고형분이 약 30%가 되도록 NMP(N-Methyl-2-pyrrolidone)을 첨가하여 슬러리 점도를 조정하였다.
제조된 슬러리는 15㎛두께의 Al 포일상에 닥터 블레이드 방법으로 코팅한 후, 건조 후 압연하였다.
전극 로딩량은 14.6mg/cm2이었으며, 압연밀도는 3.1g/cm3이었다. 전해액은 1M LiPF6 in 에틸렌카보네이트:디메틸카보네이트:에틸메틸카보네이트=3:4:3(vol%)를 사용하였고, 폴리프로필렌 분리막과 리튬음극(200um, Honzo metal)을 사용하여 코인셀 제조하였다. 충전조건은 CC/CV 2.5~4.25V, 1/20C cut-off 충전 조건이었다.
그 후 드라이품에서 코인셀을 해체하여 양극 활물질 10mg을 채취하여 DSC분석을 수행하였다.
DSC분석은 25oC에서 5oC/분로 400oC까지 승온 하면서 발열 반응이 시작되는 on-set 온도, 발열량이 Max가되는 peak 온도와 총발열량을 분석한 후 결과를 하기 표 3에 정리하였다.
(실험예 4) 전기화학 특성 평가
실시예1 내지 4 및 비교예1 양극 활물질을 실험예3과 동일 방법으로 2032 코인형 반쪽 전지를 제조한 후 상온(25℃)에서 10시간 동안 에이징(aging) 하고, 충방전 테스트를 진행하였다.
용량 평가는 215mAh/g을 기준용량으로 하였고, 충방전 조건은 CC/CV 2.5~4.25V, 1/20C cut-off를 적용하였다. 초기 용량은 0.2C충전/0.2C방전 조건으로 수행하였다.
Figure PCTKR2019011929-appb-T000003
상기 표 3로부터 실시예의 활물질이 Peak 온도는 상승하고 총발열량은 감소되어 열적 안전성이 향상된 것을 알 수 있다.
Figure PCTKR2019011929-appb-T000004
상기 표 4에서 알 수 있듯이, 본원의 실시예에 따른 양극 활물질은 표 3에서와 같이 열 안정성이 크게 개선됨에도 비교예 1과 동등 수준의 충방전 용량 및 효율을 보이는 것을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (10)

1차 입자를 포함하는 2차 입자 형태인 리튬 금속 산화물 입자이고,
상기 2차 입자 표면은, 1차 입자의 c 축과; 1차 입자 중심의 가상의 점과 2차 입자의 중심점을 이은 직선과의 각도 중 좁은 각도가 60 내지 90˚인 판상형의 1차 입자를 포함하는 것인 양극 활물질.
제1항에 있어서,
상기 2차 입자의 중심점에서 2차 입자의 반지름의 50% 기준의 원이 이루는 면적 100면적%에 대해,
상기 판상형의 1차 입자가 차지하는 면적은 20면적% 이상인 것인 양극 활물질.
제2항에 있어서,
상기 2차 입자의 중심점에서 2차 입자의 반지름의 50% 기준의 원이 이루는 면적 100면적%에 대해,
상기 면적 내 존재하는 판상형의 1차 입자의 평균 길이는 750nm 내지 1.25㎛인 것인 양극 활물질.
제1항에 있어서,
상기 2차 입자의 내부는,
1차 입자의 c 축과; 1차 입자 중심의 가상의 점과 2차 입자의 중심점을 이은 직선과의 각도 중 좁은 각도가 0˚ 이상 및 70˚ 미만인 침상형의 1차 입자를 포함하는 것인 양극 활물질.
제1항에 있어서,
상기 2차 입자 내 금속 중 니켈의 함량은 80몰% 이상인 것인 양극 활물질.
공침 반응기 내 금속염 수용액을 투입하여 금속 전구체를 수득하는 단계; 및
상기 금속 전구체 및 리튬 원료 물질을 혼합 후 소성하여 양극 활물질을 수득하는 단계;
를 포함하고,
상기 공침 반응기 내 금속염 수용액을 투입하여 금속 전구체를 수득하는 단계;에서,
전체 반응 시간 100 시간%에 대해, 반응 종료 시점 1 내지 30시간% 범위에서, pH 조건을 변화시키는 것인 양극 활물질의 제조 방법.
제6항에 있어서,
상기 공침 반응기 내 금속염 수용액을 투입하여 금속 전구체를 수득하는 단계;의 반응 시작 pH와 반응 종료 pH의 차이는 0.1 내지 0.8인 것인 양극 활물질의 제조 방법.
제6항에 있어서,
상기 전체 반응 시간 100 시간%에 대해, 반응 종료 시점 1 내지 30시간% 범위에서, pH 조건이 0.1 내지 0.8 상향되는 것인 양극 활물질의 제조 방법.
제8항에 있어서,
상기 pH 조건의 상향 속도는 0.0016 내지 0.0133 pH/min 인 것인 양극 활물질의 제조 방법.
제1항 내지 제5항 중 어느 한 항에 따른 양극 활물질을 포함하는 양극;
음극 활물질을 포함하는 음극; 및
상기 양극 및 음극 사이에 위치하는 전해질;을 포함하는 리튬 이차 전지.
PCT/KR2019/011929 2018-09-12 2019-09-16 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 WO2020055210A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021514124A JP2021536662A (ja) 2018-09-12 2019-09-16 正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN201980074470.3A CN112997338A (zh) 2018-09-12 2019-09-16 正极活性材料、其制备方法和包含它的锂二次电池
EP19859256.0A EP3852173A4 (en) 2018-09-12 2019-09-16 ACTIVE CATHODE MATERIAL, METHOD FOR PREPARING IT, AND RECHARGEABLE LITHIUM BATTERY COMPRISING IT
US17/275,883 US20220045317A1 (en) 2018-09-12 2019-09-16 Cathode active material, method for preparing same, and lithium secondary battery comprising same
JP2022173063A JP2023021107A (ja) 2018-09-12 2022-10-28 正極活物質、その製造方法、およびこれを含むリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0108883 2018-09-12
KR20180108883 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020055210A1 true WO2020055210A1 (ko) 2020-03-19

Family

ID=69778003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011929 WO2020055210A1 (ko) 2018-09-12 2019-09-16 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20220045317A1 (ko)
EP (1) EP3852173A4 (ko)
JP (2) JP2021536662A (ko)
KR (1) KR102299253B1 (ko)
CN (1) CN112997338A (ko)
WO (1) WO2020055210A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959720B (zh) * 2023-03-17 2023-06-23 四川新能源汽车创新中心有限公司 高镍前驱体材料、高镍正极材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279985A (ja) 2001-03-15 2002-09-27 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質およびそれを用いた非水系リチウム二次電池
WO2010074304A1 (ja) 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
KR20100099337A (ko) * 2005-04-28 2010-09-10 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한 전지
WO2012137535A1 (ja) 2011-04-07 2012-10-11 日本碍子株式会社 正極活物質前駆体粒子、リチウム二次電池の正極活物質粒子、及びリチウム二次電池
JP2012238495A (ja) 2011-05-12 2012-12-06 Ngk Insulators Ltd リチウム二次電池及びその正極活物質粒子
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
KR20160129764A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
JP2017016753A (ja) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2018020845A1 (ja) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2018021557A1 (ja) 2016-07-29 2018-02-01 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR20180063862A (ko) 2016-12-02 2018-06-12 주식회사 엘지화학 이차전지용 양극활물질 전구체 및 이를 이용하여 제조한 이차전지용 양극활물질

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069091A (zh) * 2005-10-20 2017-08-18 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
KR101313575B1 (ko) * 2010-07-21 2013-10-02 주식회사 에코프로 리튬 이차 전지 양극활물질 전구체의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질 전구체, 및 상기 리튬 이차전지 양극활물질 전구체를 이용한 리튬 이차전지 양극활물질의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질
KR101920484B1 (ko) * 2011-09-26 2019-02-11 전자부품연구원 리튬 이차전지용 양극 활물질의 전구체 및 그의 제조방법, 양극 활물질 및 이를 포함하는 리튬 이차전지
US10297821B2 (en) * 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
KR102006207B1 (ko) * 2015-11-30 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017169184A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
KR101815779B1 (ko) * 2016-07-28 2018-01-30 (주)이엠티 입도 및 입도 분포를 제어할 수 있는 활물질 전구체의 제조방법
KR102086536B1 (ko) * 2017-02-06 2020-03-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279985A (ja) 2001-03-15 2002-09-27 Hitachi Metals Ltd 非水系リチウム二次電池用正極活物質およびそれを用いた非水系リチウム二次電池
US8728666B2 (en) 2005-04-28 2014-05-20 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
KR20100099337A (ko) * 2005-04-28 2010-09-10 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한 전지
WO2010074304A1 (ja) 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
WO2012137535A1 (ja) 2011-04-07 2012-10-11 日本碍子株式会社 正極活物質前駆体粒子、リチウム二次電池の正極活物質粒子、及びリチウム二次電池
US20120258365A1 (en) 2011-04-07 2012-10-11 Ngk Insulators, Ltd. Cathode active material precursor particle, cathode active material particle for lithium secondary battery and lithium secondary battery
JP2012238495A (ja) 2011-05-12 2012-12-06 Ngk Insulators Ltd リチウム二次電池及びその正極活物質粒子
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
KR20160129764A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
JP2017016753A (ja) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2018020845A1 (ja) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2018021557A1 (ja) 2016-07-29 2018-02-01 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US11387453B2 (en) 2016-07-29 2022-07-12 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR20180063862A (ko) 2016-12-02 2018-06-12 주식회사 엘지화학 이차전지용 양극활물질 전구체 및 이를 이용하여 제조한 이차전지용 양극활물질

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYUNG-JOO NOH, ZONGHAI CHEN, CHONG S. YOON, JUN LU, KHALIL AMINE, YANG-KOOK SUN: "Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries", CHEMISTRY OF MATERIALS, vol. 25, no. 10, 28 May 2013 (2013-05-28), pages 2109 - 2115, XP055181288, ISSN: 08974756, DOI: 10.1021/cm4006772

Also Published As

Publication number Publication date
KR20200030484A (ko) 2020-03-20
US20220045317A1 (en) 2022-02-10
EP3852173A1 (en) 2021-07-21
JP2023021107A (ja) 2023-02-09
CN112997338A (zh) 2021-06-18
EP3852173A4 (en) 2022-04-06
KR102299253B1 (ko) 2021-09-07
JP2021536662A (ja) 2021-12-27

Similar Documents

Publication Publication Date Title
US20220302429A1 (en) Positive Electrode Active Material for Secondary Battery, Method of Preparing the Same, and Lithium Secondary Battery Including the Positive Electrode Active Material
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
US11299401B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery including same
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
CN110858649A (zh) 锂复合氧化物、锂二次电池用正极活性物质及含有其的锂二次电池
WO2013109038A1 (ko) 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
WO2012111951A2 (ko) 이차전지용 양극 합제 및 이를 포함하는 이차전지
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020204625A1 (ko) 리튬 이차전지용 전극
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
CN111201647A (zh) 锂二次电池用正极活性材料、其制备方法以及包含所述正极活性材料的锂二次电池用正极和锂二次电池
WO2018194345A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2016108386A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2018135929A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2020055210A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20200107856A (ko) 리튬 이차전지
WO2022035229A1 (en) Sulfide-based all-solid-state battery including positive electrode active material coated with lithium niobate precursor and method of manufacturing the same
WO2022014858A1 (ko) 리튬 이차전지용 양극 활물질
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
WO2021125870A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2018004250A1 (ko) 도핑 원소를 가진 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514124

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859256

Country of ref document: EP

Effective date: 20210412