WO2019088345A1 - 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019088345A1
WO2019088345A1 PCT/KR2017/013688 KR2017013688W WO2019088345A1 WO 2019088345 A1 WO2019088345 A1 WO 2019088345A1 KR 2017013688 W KR2017013688 W KR 2017013688W WO 2019088345 A1 WO2019088345 A1 WO 2019088345A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
lithium metal
lithium
secondary battery
less
Prior art date
Application number
PCT/KR2017/013688
Other languages
English (en)
French (fr)
Inventor
오지우
정희원
신준호
최수안
전상훈
안지선
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to US16/760,103 priority Critical patent/US20200335782A1/en
Publication of WO2019088345A1 publication Critical patent/WO2019088345A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • FIG. 2 is a graph comparing resistance values at low temperatures in Examples and Comparative Examples according to the present invention.
  • the lithium metal oxide may include Ni to enable reversible intercalation and deintercalation of lithium. Further, it may further include Co and Mn, and may be made of lithium oxide of the NCM (Ni composite oxide) system as one of the compounds formed thereby.
  • NCM Ni composite oxide
  • M3 is at least one selected from Al, Mg, Zr, B, Ca, Nb, Mn, Co, Ge, Ba,
  • A is one or more elements selected from P, F, S, and B.
  • any one or more of Ni, Co, and Mn among the elements forming the lithium metal oxide is doped while being substituted by the dopant (M), and the c-axis lattice constant of the lithium metal oxide is increased.
  • the dopant (M) is selected from the group consisting of Ti, Zr, Mg, V, Zn, Mo, Ni, Co and Mn. For example, it is preferable to select Ti as the dopant (M).
  • the lithium metal oxide increases as the c-axis lattice constant decreases as the molar ratio of Li / Me decreases, and increases as the doping amount of the dopant (M) increases under the same molar ratio of Li / Me.
  • Me means all metals in a compound capable of reversible intercalation and deintercalation of lithium.
  • the dopant (M) increases as the dopant (M) content increases, as well as the c-axis increase due to the reduction of the bonding distance with oxygen belonging to the transition metal layer. As the probability of existence increases, the c-axis lattice constant value increases.
  • the lithium metal oxide has a c-axis lattice constant of 14.20 ANGSTROM or more and 14.3 ANGSTROM or less for improving low-temperature characteristics.
  • the lithium metal oxide has a Li / Me molar ratio of 1.00 or more and 1.15 or less, wherein the doping amount of the dopant is 5,000 ppm or more and 10,000ppm or less based on the weight of the lithium metal oxide .
  • the lithium metal oxide has a c-axis lattice constant value of not less than 14.20 ANGSTROM but not more than 14.30 ANGSTROM.
  • the value of the c-axis in the case of using the dopant proposed in this embodiment for the composition of the NCM- ⁇ or more, and a range of 14.30 ⁇ or less is acceptable range.
  • the dopant Ti is doped into the lithium metal oxide, the strength of the bonding force between Ti and the adjacent oxygen in the structure increases, thereby increasing the band gap, thereby decreasing the conductivity and increasing the powder resistance.
  • the HB type refers to a particle type including a structure capable of increasing the specific surface area as compared with particles having a general dense structure, and examples of the particles include an outer surface of particles such as an inner pore, a pore, a tunnel, And a structure in which a contact area with the electrolytic solution is added.
  • the specific surface area is preferably 0.5 m2 / g or more and 5.0 m2 / g or less.
  • the binder serves to adhere the positive electrode active material particles to each other and to adhere the positive electrode active material to the current collector.
  • Typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl Polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene butadiene, polyvinylidene chloride, polyvinyl fluoride, Rubber, acrylated styrene butadiene rubber, epoxy resin, nylon, and the like may be used, but the present invention is not limited thereto.
  • the conductive material is used for imparting conductivity to the electrode. Any conductive material can be used without causing any chemical change in the battery. Examples of the conductive material include natural graphite, artificial graphite, carbon black, acetylene black, Metal powders such as black, carbon fiber, copper, nickel, aluminum, and silver, metal fibers, and the like, and conductive materials such as polyphenylene derivatives may be used alone or in combination.
  • Al As the current collector, Al may be used, but the present invention is not limited thereto.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material and a binder in a solvent to prepare an active material composition and applying the composition to an electric current collector.
  • the method of manufacturing the electrode is well known in the art, and therefore, a detailed description thereof will be omitted herein.
  • the solvent may be N-methylpyrrolidone or the like, but is not limited thereto.
  • the c-axis lattice constants were measured while varying the Li / Me molar ratio and doping amount as shown in Table 1 below in order to examine the change of the c-axis lattice constant according to the Li / Me molar ratio and the doping amount of the lithium metal oxide.
  • the Li source is Li 2 CO 3
  • the Me precursor is Ni 0 . 35 Co 0 . 37 Mn 0 .28 (OH) 2 compound
  • the dopant (M) used TiO 2 for doping Ti are not limited to those of the present invention, and they may be in the form of other compounds commonly used by those skilled in the art.
  • the firing conditions are preferably a firing holding temperature of 900 to 1000 ⁇ ⁇ and a firing holding time of 10 to 20 hours, which do not contain impurities but can achieve a layered crystal structure, although they depend on the kind of firing furnace and the environment.
  • the c-axis lattice constant of the lithium metal oxide increases as the molar ratio of Li / Me decreases and the doping amount of the dopant (M) increases under the same molar ratio of Li / Me And a tendency to increase.
  • it is desirable to maintain the molar ratio of Li / Me to 1.06 in order to satisfy the limited c-axis lattice constant, and the doping amount of the dopant (M) It was confirmed that it was desirable to maintain the content of the water-soluble polymer at 200 ppm or more and 10,000 ppm or less. More preferably 5,000 ppm or more, and preferably 10,000 ppm or less.
  • the powder resistance value was measured while changing the Li / Me molar ratio and the doping amount as shown in Table 2 below. 1. At this time, Ti was used as the dopant (M). 1 shows the powder resistance values of Comparative Example 9 in which the dopant was not doped and Example 5 in accordance with the present invention.
  • the powder resistance of the lithium metal oxide tends to increase as the doping amount of the dopant (M) increases under a constant molar ratio of Li / Me.
  • the molar ratio of Li / Me is preferably maintained at 1.06 to satisfy the limited powder resistance value, and the doping amount of the dopant (M) is preferably 5,000 ppm , And it was confirmed that it is preferable to keep the content of the catalyst at 10,000 ppm or less.
  • the molar ratio of Li / Me to 1.06, ) Is preferably not less than 5,000 ppm, and preferably not more than 10,000 ppm.
  • HPPC pulse power characterization
  • the lithium metal oxide can increase the c-axis lattice constant value by doping the dopant (M) while keeping the molar ratio of Li / Me constant, thereby improving the low temperature output characteristic of the lithium secondary battery I can confirm that I can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 저온에서 출력특성이 향상된 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능하도록 Ni, Co 및 Mn을 포함하는 리튬 산화물로 형성되는 리튬 금속 산화물을 포함하고, 상기 리튬 금속 산화물은 Ni, Co 및 Mn 중 어느 하나 또는 그 이상의 원소를 치환하는 도펀트(M)가 도핑되고, 상기 리튬 금속 산화물은 c축 격자상수 값이 14.20Å 이상이고, 14.30Å 이하인 것을 특징으로 합니다.

Description

리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
본 발명은 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는 저온에서 출력특성이 향상된 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.
전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션(intercalation)/디인터칼레이션(deintercalation)될 때의 화학전위(chemical potential)의 변화에 의하여 전기 에너지를 생성하는 리튬 이차전지가 있다.
상기 리튬 이차전지는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션이 가능한 물질을 양극 활물질과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.
리튬 이차전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있다. 예를 들어 LiCoO2, LiMn2O4, LiNiO2, LiNixCoyMnzO2, LiMn2O4 등의 복합금속 산화물들이 연구되고 있다.
양극 활물질 중 LiNixCoyMnzO2인 NCM계 양극 활물질은 상업적으로 가장 많이 사용되는 LiCoO2인 LCO계 양극 활물질과 마찬가지로 층상 구조를 갖는데, LCO계 양극 활물질과 비교하여 부피당 용량 및 작동전압이 유사하면서 Co의 함량이 낮아 가격을 낮출 수 있기 때문에 최근 많이 사용되고 있다.
한편, 리튬 이차전지의 성능 중 중요 인자로 상온 및 저온에서의 출력특성이 사용되는데, 본 출원인은 저온 출력특성에 대한 연구를 지속하였고, 그 결과 NCM계 양극 활물질에서 c축 격자상수와 구조에서 발현되는 내부저항이 저온 출력특성과 관계가 있음을 확인하였다.
본 발명은 c축 격자상수의 조절에 의해 저온에서의 출력특성이 향상된 NCM계의 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시형태에 따른 리튬 이차전지용 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능하도록 Ni, Co 및 Mn을 포함하는 리튬 금속 산화물을 포함하고, 상기 리튬 금속 산화물은 Ni, Co 및 Mn 중 어느 하나 또는 그 이상의 원소를 치환하는 도펀트(M)가 도핑되고, 상기 리튬 금속 산화물의 c축 격자상수 값은 14.20Å 이상이고, 14.30Å 이하 인 것을 특징으로 한다.
여기서, M은 Ti, Zr, Mg, V, Zn, Mo, Ni, Co 및 Mn으로 이루어진 군에서 선택된 금속 중 어느 하나이다.
상기 리튬 금속 산화물은 분체저항 값이 21,000Ω·cm 이상이고, 23,900Ω·cm 이하인 것이 바람직하다.
상기 도펀트(M)는 Ti인 것이 바람직하다.
상기 리튬 금속 산화물은 Li/Me 몰비가 1.00 이상이고, 1.15 이하이며, 상기 Ti의 도핑량은 리튬 금속 산화물의 중량을 기준으로 5,000ppm 이상이고, 10,000ppm 이하인 것이 바람직하다.
상기 리튬 금속 산화물은 Li/Me 몰비가 1.04 이상이고, 1.08 이하인 것이 더욱 바람직하다.
특히, 상기 리튬 금속 산화물은 Li/Me 몰비가 1.06이고, 상기 리튬 금속 산화물은 c축 격자 상수값이 14.2101Å 이상이며, 14.2176Å 이하인 것이 바람직하다.
상기 리튬 금속 산화물은 평균 입자 직경(D50)이 2㎛ 이상이고, 5㎛ 이하인 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능하도록 Ni, Co 및 Mn을 포함하는 리튬 금속 산화물을 포함하고, 상기 리튬 금속 산화물은 Ni, Co 및 Mn 중 어느 하나 또는 그 이상의 원소를 치환하는 도펀트(M)가 도핑되고, 상기 리튬 금속 산화물의 c축 격자상수 값은 14.20Å 이상이고, 14.30Å 이하인 리튬 이차전지용 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질을 포함한다.
본 발명의 실시예에 따르면, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내 금속을 다른 금속으로 치환함으로써 리튬 금속 산화물은 c축 격자 상수를 증대시킬 수 있고, 또한 분체저항을 증대시켜서 저온에서의 출력특성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명에 따른 실시예와 비교예의 분체 저항값을 비교한 그래프이고,
도 2는 본 발명에 따른 실시예와 비교예의 저온에서의 저항값을 비교한 그래프이다.
도 3은 도 2의 저항 값을 출력으로 환산한 값에 대한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 발명의 일 실시예에 따른 리튬 이차전지용 양극활물질은 리튬 이차전지에 적용되는 양극을 형성하는 활물질로서, 리튬 금속 산화물을 포함할 수 있다. 여기서 리튬 이차전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질을 포함한다.
리튬 금속 산화물은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능하도록 Ni을 포함할 수 있다. 그리고, Co 및 Mn을 더 포함할 수 있고, 이에 따라 형성되는 화합물 중 한 형태로 NCM(Ni 복합 산화물)계의 리튬 산화물로 이루어질 수 있다.
상기 리튬 금속 산화물을 형성하는 NCM계 리튬 산화물은 하기의 [화학식 1]에 따른 리튬 금속 복합 산화물일 수 있다.
Liα[(NixM1y)M2aM3b]O2 - βAβ ------- [화학식1]
여기서, M1 은 Co, Mn 에서 선택되는 하나 이상이고,
M2 는 Ti이며,
M3 는 Al, Mg, Zr, B, Ca, Nb, Mn, Co, Ge, Ba, V, Cr 에서 선택되는 하나 이상이고,
A는 P, F, S, B 에서 선택되는 하나 이상의 원소이다.
그리고, 1.0 ≤α≤ 1.2, 0 ≤β≤ 1, 0 < x ≤ 1.0, 0 ≤ y ≤ 1, 0.0005 ≤ a ≤ 0.05, 0 ≤ b ≤ 0.05를 만족한다.
한편, 상기 리튬 금속 산화물을 형성하는 원소 중 Ni, Co 및 Mn 중 어느 하나 또는 그 이상의 원소는 도펀트(M)로 치환되면서 도핑되어 리튬 금속 산화물의 c축 격자 상수가 증대된다.
이때 도펀트(M)은 Ti, Zr, Mg, V, Zn, Mo, Ni, Co 및 Mn으로 이루어진 군에서 선택된다. 예를 들어 도펀트(M)은 Ti를 선택하는 것이 바람직하다.
상기 리튬 금속 산화물은 c축 격자상수 값이 Li/Me의 몰 비율이 작을수록 증대되고, Li/Me의 몰 비율이 같은 조건에서는 도펀트(M)의 도핑량이 증가할수록 증대된다. 여기서, Me는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내 모든 금속을 의미한다.
부연하자면, Li/Me의 몰 비율이 작을수록 이미 포함되어 있는 Ni, Co, Mn 전이금속의 위치가 c축에 영향을 주는 구조내 3a site에 존재할 수 있는 확률이 높아짐으로써 c축 격자상수 값이 증대된다.
또한, Li/Me의 몰 비율이 동일 몰비인 경우에, 도펀트(M) 함량이 증대 될수록 전이금속층에 속한 산소와의 결합거리 감소에 따른 c축 증대와 마찬가지로 도펀트(M)가 구조내 3a site에 존재할 수 있는 확률이 높아짐으로써 c축 격자상수 값이 증대된다.
상기 리튬 금속 산화물은 c축 격자상수 값이 저온 특성의 향상을 위하여 14.20Å 이상이고, 14.30Å 이하로 형성되도록 한다. 바람직하게는 상기 리튬 금속 산화물은 Li/Me 몰비를 1.00 이상이면서, 1.15 이하의 범위로 유지하고, 이때 도펀트의 도핑량을 리튬 금속 산화물의 중량을 기준으로 5,000ppm 이상이면서, 10,000ppm 이하만큼 도핑시킨다. 그래서, 리튬 금속 산화물은 c축 격자상수 값이 14.20Å 이상이면서, 14.30Å 이하가 되도록 한다.
도펀트는 같은 원소를 사용하더라도 NCM계 리튬 산화물에서 Ni의 함량에 따라 c축이 변화하는 기준점이 다르기 때문에 NCM계 리튬 산화물의 조성에 본 실시예에서 제안하는 도펀트를 사용하는 경우에 c축의 값이 14.20Å 이상, 14.30Å 이하의 범위가 포용가능 한 범위가 된다.
예를 들어 상기 리튬 금속 산화물의 Li/Me 몰비를 1.06로 유지시키고, 도펀트인 Ti를 5,000ppm 이상이면서 10,000ppm 이하만큼 도핑시킴으로써, 상기 리튬 금속 산화물의 c축 격자상수 값을 14.2101Å 이상이면서, 14.2176Å 이하로 형성할 수 있다. 물론 상기 리튬 금속 산화물은 c축 격자상수 값을 최적의 범위로 유지하기 위하여 제시된 리튬 금속 산화물의 Li/Me 몰비에 한정되는 것은 아니고, 설정된 범위 내에서 다양하게 변경하여 설정하면서 그에 따라 도펀트의 도핑량을 조절하여 최적의 c축 격자상수 값을 유지할 수 있을 것이다.
한편, 상기 리튬 금속 산화물은 Ni, Co 및 Mn 중 어느 하나 또는 그 이상의 원소가 도펀트(M)인 Ti로 치환되면서 도핑됨에 따라 분체저항이 증대된다.
부연하자면, 도펀트 Ti이 리튬 금속 산화물에 도핑되면 Ti가 구조내에서 인접한 산소와의 결합력 세기가 증대하여 밴드갭이 증대되고, 이에 따라 전도도가 감소하여 분체저항이 상승하게 되는 것이다.
따라서, 본 발명에 따른 실시예에서는 c축 격자상수의 크기 증대와 더불어 분체저항 값을 증대시켜 저온 출력 향상을 기대할 수 있도록 도펀트의 도핑량은 리튬 금속 산화물의 중량을 기준으로 5,000ppm 이상이고, 10,000ppm 이하의 범위로 제안하여 c축 격자상수 값의 범위는 14.21Å 이상이면서, 14.30Å 이하, 바람직하게는 14.2101Å 이상이면서, 14.217Å 이하를 달성하고, 분체저항 값의 범위는 21,024 Ω·㎝ 이상이면서, 23,900 Ω·㎝ 이하를 달성한다.
한편, 상기 리튬 금속 산화물에 포함된 금속 원소 중 Ni의 함량이 50% 이하인 것이 바람직하다. 그 이유는 일반적으로 NCM계 리튬 산화물에서 Ni의 함량이 높을수록 구조적인 출력저하를 동반하기 때문에 고출력을 위하여 리튬 금속 산화물에 포함된 금속 원소 중 Ni의 함량을 50% 이하로 제한하는 것이 바람직하다.
또한, 상기 리튬 금속 산화물의 평균 입자 직경(D50)은 2㎛ 이상이고, 5㎛ 이하인 것이 바람직하다.
그리고, 상기 리튬 금속 산화물은 HB 타입(High BET type)인 것이 바람직하다.
여기서 HB 타입이란 일반적인 치밀구조의 입자에 비해 비표면적을 증가 시킬 수 있는 구조를 포함하는 입자 타입을 말하며, 상기 입자의 예로는 내부 포어, 세공, 터널, 중공(Center hole) 등 입자의 외부 표면 외 전해액과의 접촉 면적이 추가되는 구조를 포함하고 있는 것이 바람직하다. 이때 비표면적은 0.5㎡/g 이상이고, 5.0㎡/g 이하인 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 양극 활물질은 리튬 이차전지의 양극으로 사용될 수 있다. 리튬 이차전지는 양극과 함께 음극 활물질을 포함하는 음극; 및 전해질을 포함한다.
상기 양극은 본 발명의 일 실시예에 따른 양극 활물질, 도전재, 바인더 및 용매를 혼합하여 양극 활물질 조성물을 제조한 다음, 전류 집전체 상에 직접 코팅 및 건조하여 제조한다. 또는 상기 양극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 전류 집전체 상에 라미네이션하여 제조가 가능하다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌부타디엔 러버, 아크릴레이티드 스티렌부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 금속 섬유 등을 사용할 수 있고, 또한 폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종 이상을 혼합하여 사용할 수 있다.
상기 전류 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극과 양극은 활물질, 도전재 및 바인더를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
이하, 본 발명의 실시예 및 비교예를 통하여 본 발명을 설명한다.
< 실험1 > Li /Me 몰비 도핑량과 c축 격자상수 값의 관계 실험
리튬 금속 산화물의 Li/Me 몰비 및 도핑량에 따른 c축 격자상수의 변화를 알아보기 위하여 하기의 표 1과 같이 Li/Me 몰비 및 도핑량을 변경하면서 c축 격자상수 값을 측정하였다. 이때 Li소스는 Li2CO3이며, Me 전구체는 Ni0 . 35Co0 . 37Mn0 .28(OH)2 화합물이며, 도펀트(M)는 Ti을 도핑하기 위해 TiO2를 사용하였다. 그러나, 이러한 원소들의 원료는 본 실험과 같이 한정되는 것이 아니며 통상 당업자가 사용하는 다른 화합물의 형태라도 무방하다. 그리고, 소성조건은 소성을 하는 소성로의 종류 및 환경에 따라 다르나 불순물이 포함되지 않고 레이어드 결정 구조를 이룰 수 있는 소성유지 온도 900 ~ 1000℃, 소성유지 시간 10 ~ 20시간의 조건이 바람직하다.
구분 Li/Me 몰비 도핑량 (ppm) C축 격자상수 값 (Å)
비교예 1 1.01 - 14.2247 
비교예 2 1.04 - 14.2058
비교예 3 1.06 - 14.1985
비교예 4 1.08 - 14.1961
비교예 5 1.12 - 14.1921
비교예 6 1.06 200 14.2086 
비교예 7 1.06 3,000 14.2098
실시예 1 1.06 5,000 14.2101
실시예 2 1.06 10,000 14.2176 
상기 표 1에서 확인할 수 있듯이, 상기 리튬 금속 산화물의 c축 격자상수 값은 Li/Me의 몰 비율이 작을수록 증대되고, Li/Me의 몰 비율이 같은 조건에서는 도펀트(M)의 도핑량이 증가할수록 증대되는 경향이 있는 것을 확인할 수 있었다. 또한, 저온 특성의 향상을 위하여 한정한 c축 격자상수 값을 만족하기 위해서는 Li/Me의 몰 비율은 1.06을 유지하는 것이 바람직하고, Li/Me의 몰 비율에 따라 도펀트(M)의 도핑량은 200ppm 이상이면서, 10,000ppm 이하를 유지하는 것이 바람직하다는 것을 확인할 수 있었다. 더욱 바람직하게는 5,000ppm 이상이면서, 10,000ppm 이하를 유지하는 것이 좋다는 것을 확인할 수 있었다.
< 실험2 > Li /Me 몰비 도핑량과 분체저항 값의 관계 실험
리튬 금속 산화물의 Li/Me 몰비 및 도핑량에 따른 분체 저항의 변화를 알아보기 위하여 하기의 표 2와 같이 Li/Me 몰비 및 도핑량을 변경하면서 분체 저항값을 측정하였고, 그 결과를 표 2와 도 1에 나타내었다. 이때 도펀트(M)은 Ti를 사용하였다. 이때 도 1은 도펀트를 도핑하지 않은 비교예 9와 본 발명에 따른 실시예 5의 압력별 분체저항값을 나타내었다.
구분 Li/Me 몰비 도핑량(ppm) 분체저항 값(Ohm-cm)
비교예 3 1.06 - 9,225
비교예 7 1.06 3,000 17,450
실시예 1 1.06 5,000 21,024
실시예 2 1.06 10,000 23,900
상기 표 2과 도 1에서 확인할 수 있듯이, 상기 리튬 금속 산화물의 분체저항 값은 Li/Me의 몰 비율이 일정한 조건에서 도펀트(M)의 도핑량이 증가할수록 증대되는 경향이 있는 것을 확인할 수 있었다. 또한, 저온 특성의 향상을 위하여 한정한 분체저항 값을 만족하기 위해서는 Li/Me의 몰 비율은 1.06을 유지하는 것이 바람직하고, Li/Me의 몰 비율에 따라 도펀트(M)의 도핑량은 5,000ppm 이상이면서, 10,000ppm 이하를 유지하는 것이 바람직하다는 것을 확인할 수 있었다.
따라서, 저온 특성의 향상을 위하여 한정한 c축 격자상수 값과 분체저항 값을 모두 만족하기 위해서는 Li/Me의 몰 비율은 1.06을 유지하는 것이 바람직하고, Li/Me의 몰 비율에 따라 도펀트(M)의 도핑량은 5,000ppm 이상이면서, 10,000ppm 이하를 유지하는 것이 바람직하다는 것을 확인할 수 있었다.
<실험3> C 축 격자상수 및 분체저항 상승의 복합 효과에 따른 저온(-25) 출력특성 관계 실험
리튬 금속 산화물의 c축 격자상수에 따른 저온(-25℃)에서의 출력특성 변화를 알아보기 위하여 HPPC를 이용한 리튬 이차전지의 저항 측정을 실시하였다.
HPPC(hybrid pulse power characterization) 시험을 수행하여 각 SOC에 따라 제조된 리튬 이차전지의 저항을 측정하였다.
1 C(30 mA)로 4.15 V까지 SOC 10부터 완전 충전(SOC=100)까지 충전시키되, 전지를 각각의 1 시간 동안 안정화시킨 다음, HPPC 실험 방법에 따라 리튬 이차전지의 저항을 측정하는 한편, 전지를 SOC 100부터 10까지 방전시키고, 전지를 각각 1시간 동안 안정화시킨 후, 각 SOC 단계마다 HPPC 실험 방법에 의해 리튬 이차전지의 저항을 측정하였고, 그 결과를 하기의 표 3 및 도 5에 나타내었다.
Low temp.(-25℃) Resistance[mΩ] SOC (%) 비교예 3 [mΩ] 실시예 2 [mΩ] Δ [%]
Charge R 80 4.75 4.88 △2.7
50 4.88 4.75 ▼2.7
20 4.73 4.62 ▼2.3
Discharge R 80 5.22 5.02 ▼3.8
50 5.67 5.31 ▼6.3
20 6.69 5.96 ▼10.9
상기 표 3과 도 2 및 도 3에서 확인할 수 있듯이, 저온(-25℃)에서의 충전시 SOC 80의 경우 비교예 3에 비하여 실시예 2에서 저항이 다소 증가하는 것이 확인되었지만, 저온(-25℃)에서의 SOC 나머지 구간에서 충전 및 방전 시 모두 비교예 3에 비하여 실시예 2에서 저항이 감소하는 것을 확인할 수 있었다.
따라서 리튬 금속 산화물은 Li/Me의 몰 비율을 일정 조건으로 유지한 상태에서 도펀트(M)의 도핑을 통하여 c축 격자상수 값을 증대시킬 수 있고, 이에 따라 리튬 이차전지의 저온 출력특성을 향상시킬 수 있는 것을 확인할 수 있었다.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.

Claims (9)

  1. 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능하도록 Ni, Co 및 Mn을 포함하는 리튬 금속 산화물을 포함하고,
    상기 리튬 금속 산화물은 Ni, Co 및 Mn 중 어느 하나 또는 그 이상의 원소를 치환하는 도펀트(M)가 도핑되고,
    상기 리튬 금속 산화물은 c축 격자상수 값이 14.20Å 이상이고, 14.30Å 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
    여기서, M은 Ti, Zr, Mg, V, Zn, Mo, Ni, Co 및 Mn으로 이루어진 군에서 선택된 금속 중 어느 하나임.
  2. 청구항 1에 있어서,
    상기 리튬 금속 산화물은 분체저항 값이 21,000Ω·㎝ 이상이고, 23,900Ω·㎝ 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  3. 청구항 1에 있어서,
    상기 도펀트(M)는 Ti인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  4. 청구항 3에 있어서,
    상기 리튬 금속 산화물은 Li/Me 몰비가 1.00 이상이고, 1.15 이하이며,
    상기 Ti의 도핑량은 리튬 금속 산화물의 중량을 기준으로 5,000ppm 이상이고, 10,000ppm 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
    여기서, Me는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내 모든 금속을 의미함.
  5. 청구항 4에 있어서,
    상기 리튬 금속 산화물은 Li/Me 몰비가 1.04 이상이고, 1.08 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  6. 청구항 4에 있어서,
    상기 리튬 금속 산화물은 Li/Me 몰비가 1.06이고,
    상기 리튬 금속 산화물은 c축 격자 상수값이 14.2101Å 이상이고, 14.2176Å 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  7. 청구항 1에 있어서,
    상기 리튬 금속 산화물은 평균 입자 직경(D50)이 2㎛ 이상이고, 5㎛ 이하인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  8. 청구항 1에 있어서,
    상기 리튬 금속 산화물은 HB(High BET) 타입인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  9. 청구항 1 내지 청구항 8 중 어느 한 항에 따른 리튬 이차전지용 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    전해질;
    을 포함하는 리튬 이차전지.
PCT/KR2017/013688 2017-10-30 2017-11-28 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 WO2019088345A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/760,103 US20200335782A1 (en) 2017-10-30 2017-11-28 A cathode active material for lithium secondary battery and a lithium secondary battery comprising thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0142603 2017-10-30
KR1020170142603A KR101930530B1 (ko) 2017-10-30 2017-10-30 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2019088345A1 true WO2019088345A1 (ko) 2019-05-09

Family

ID=65008922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013688 WO2019088345A1 (ko) 2017-10-30 2017-11-28 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지

Country Status (3)

Country Link
US (1) US20200335782A1 (ko)
KR (1) KR101930530B1 (ko)
WO (1) WO2019088345A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321251B1 (ko) * 2019-09-09 2021-11-03 한국과학기술연구원 나트륨 이온 이차전지용 양극 활물질 및 이의 제조방법
CN114204010B (zh) * 2021-12-10 2023-05-12 清华大学深圳国际研究生院 正极活性材料及其制备方法、正极、锂离子电池
CN114744187B (zh) * 2022-06-09 2022-10-28 欣旺达电动汽车电池有限公司 三元材料及其制备方法、锂离子电池和用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2006253119A (ja) * 2005-02-08 2006-09-21 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR20100063041A (ko) * 2007-09-04 2010-06-10 미쓰비시 가가꾸 가부시키가이샤 리튬 천이 금속계 화합물 분체
KR101609544B1 (ko) * 2013-03-26 2016-04-06 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20170075596A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689213B1 (ko) * 2012-06-21 2016-12-23 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함한 리튬 이차 전지용 양극 및 이를 구비한 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086993A1 (fr) * 2001-04-20 2002-10-31 Yuasa Corporation Matiere active anodique et son procede de production, anode pour pile secondaire a electrolyte non aqueux et pile secondaire a electrolyte non aqueux
JP2006253119A (ja) * 2005-02-08 2006-09-21 Mitsubishi Chemicals Corp リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR20100063041A (ko) * 2007-09-04 2010-06-10 미쓰비시 가가꾸 가부시키가이샤 리튬 천이 금속계 화합물 분체
KR101609544B1 (ko) * 2013-03-26 2016-04-06 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20170075596A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
US20200335782A1 (en) 2020-10-22
KR101930530B1 (ko) 2018-12-19

Similar Documents

Publication Publication Date Title
EP3719882B1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017171409A1 (ko) 이차전지용 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2012165758A1 (ko) 리튬 이차전지
WO2013180411A1 (ko) 규소계 물질과 탄소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2019078702A2 (ko) 음극 활물질 및 이를 포함하는 전고체 전지용 음극
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
KR20180077026A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021025370A1 (ko) 리튬 이차전지용 양극 활물질
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2016060300A1 (ko) 저온 특성 개선용 첨가제를 포함하는 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2014010973A1 (ko) 바이모달 타입의 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014129720A1 (ko) 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019088345A1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018194345A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법
WO2012141503A2 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극 및 리튬 전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930698

Country of ref document: EP

Kind code of ref document: A1