WO2021015306A1 - 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 - Google Patents

마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 Download PDF

Info

Publication number
WO2021015306A1
WO2021015306A1 PCT/KR2019/008980 KR2019008980W WO2021015306A1 WO 2021015306 A1 WO2021015306 A1 WO 2021015306A1 KR 2019008980 W KR2019008980 W KR 2019008980W WO 2021015306 A1 WO2021015306 A1 WO 2021015306A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
layer
electrode
Prior art date
Application number
PCT/KR2019/008980
Other languages
English (en)
French (fr)
Inventor
최환준
위경태
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/623,855 priority Critical patent/US20220367771A1/en
Priority to EP19938629.3A priority patent/EP4002469A4/en
Publication of WO2021015306A1 publication Critical patent/WO2021015306A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1143Manufacturing methods by blanket deposition of the material of the bump connector in solid form
    • H01L2224/11436Lamination of a preform, e.g. foil, sheet or layer
    • H01L2224/1144Lamination of a preform, e.g. foil, sheet or layer by transfer printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • H01L2224/29006Layer connector larger than the underlying bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies
    • H01L2224/95121Active alignment, i.e. by apparatus steering
    • H01L2224/95133Active alignment, i.e. by apparatus steering by applying an electromagnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/05344th Group
    • H01L2924/05341TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/054414th Group
    • H01L2924/05442SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention is applicable to the technical field related to a display device, and relates to, for example, a display device using a micro LED (Light Emitting Diode) and a method of manufacturing the same.
  • a micro LED Light Emitting Diode
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diodes
  • LED Light Emitting Diode
  • GaAsP compound semiconductor in 1962 has been used as a light source for display images in electronic devices including information communication devices. Accordingly, a method for solving the above-described problems by implementing a display using the semiconductor light emitting device may be proposed.
  • the semiconductor light emitting device has various advantages, such as a long lifespan, low power consumption, excellent initial driving characteristics, and high vibration resistance, compared to a filament-based light emitting device.
  • a new type of display device in which a semiconductor light emitting device is stably transferred to a wiring board and a wiring process is performed at the same time, and a method of manufacturing the same are proposed.
  • An object of an embodiment of the present invention is to provide a display device and a manufacturing method using a semiconductor light emitting device.
  • Another object of an embodiment of the present invention is to provide a display device and a method of manufacturing the same in which a semiconductor light emitting device is transferred to a display substrate and a wiring process is stably performed.
  • Another object of an embodiment of the present invention is to solve various problems not mentioned herein. Those skilled in the art can understand through the entire purpose of the specification and drawings.
  • a method of manufacturing a display device using a semiconductor light emitting device for achieving the above object includes: forming a semiconductor light emitting device on a growth substrate; Transferring the semiconductor light emitting device to a first temporary substrate; Transferring the semiconductor light emitting device of the first temporary substrate to a second temporary substrate including a protective layer; Forming an anisotropically conductive adhesive paste layer on the upper side of the semiconductor light emitting device transferred to the second temporary substrate; And transferring the semiconductor light emitting device located on the second temporary substrate to a wiring substrate on which a wiring electrode is formed, wherein the semiconductor light emitting device transferred to the wiring substrate includes the anisotropic conductive adhesive on one surface in contact with the wiring electrode A paste layer is provided, and an opposite surface of the semiconductor light emitting device not in contact with the wiring electrode is provided with a protective layer, and the wiring electrode has an irregular uneven structure.
  • the forming of the semiconductor light emitting device may include a laminated structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; A first conductive type electrode electrically connected to the first conductive type semiconductor layer of the stacked structure; And forming a second conductive type electrode electrically connected to the second conductive type semiconductor layer of the stacked structure, and transferring to the first temporary substrate includes the first conductive type of the semiconductor light emitting device. And contacting the first temporary substrate with the type electrode and the second conductive type electrode.
  • the step of transferring to the second temporary substrate includes contacting the second conductive type semiconductor layer of the semiconductor light emitting device with the protective layer of the second temporary substrate.
  • the second temporary substrate includes the protective layer; A release layer positioned under the protective layer; And a release laser reflective layer positioned below the release layer and selectively formed in the first region of the second temporary substrate.
  • the second temporary substrate includes the first region to which the semiconductor light emitting element is not transferred and the second region to which the semiconductor light emitting element is transferred, based on a horizontal direction with the second temporary substrate. It characterized in that it includes.
  • the transferring to the wiring board may include: separating between the protective layer of the second temporary substrate and the release layer of the second temporary substrate; And separating the semiconductor light-emitting device and the protective layer in contact with the semiconductor light-emitting device from the second temporary substrate and transferring them to the wiring board.
  • the step of separating between the protective layer and the release layer includes irradiating a UV (Ultra Violet) or a laser in the visible light region to the rear surface of the second temporary substrate, not the surface to which the semiconductor light emitting device is transferred. step; And in the second region of the second temporary substrate in which the release laser reflective layer is not provided, the release layer is deformed in an interface shape by the irradiated laser.
  • a UV Ultra Violet
  • the wiring electrode is formed on an organic material pad having an irregular uneven structure
  • the organic material pad includes a plurality of nanoparticles, and at least one nanoparticle among the plurality of nanoparticles is the It is characterized by having a structure exposed to the surface of the organic material pad.
  • the first temporary substrate includes a protrusion
  • the step of transferring the semiconductor light emitting device to the first temporary substrate includes the growth substrate and the first temporary substrate so that the semiconductor light emitting device and the protrusion overlap. It includes the step of aligning the substrate.
  • a display device using a plurality of semiconductor light emitting devices includes: a substrate; An organic pad having an irregular uneven structure disposed on the substrate; A wiring electrode positioned on the organic material pad; An anisotropically conductive adhesive paste layer including conductive particles positioned on the wiring electrode; A semiconductor light emitting device positioned on the anisotropically conductive adhesive paste layer and electrically connected to the wiring electrode by the conductive particles of the paste layer; And a protective layer provided on an upper surface of the semiconductor light emitting device not connected to the wiring electrode, wherein the organic material pad includes a plurality of nanoparticles, and at least one nanoparticle of the plurality of nanoparticles is the It is characterized by having a structure exposed to the surface of the organic material pad.
  • the semiconductor light emitting device includes: a first conductive type semiconductor layer, an active layer, a second conductive type semiconductor layer, and a first conductive type electrode positioned on the first conductive type semiconductor layer; And a second conductive type electrode positioned in a region where the first conductive type semiconductor layer and a portion of the active layer are etched to expose the second conductive type semiconductor layer. It characterized in that it is a horizontal type semiconductor light emitting structure comprising a.
  • the second conductive type semiconductor layer of the semiconductor light emitting device is in contact with the protective layer, and the first conductive type electrode and the second conductive type electrode of the semiconductor light emitting device include the anisotropic conductive adhesive paste layer and It is characterized by contact.
  • the protective layer is formed to protrude from at least one side of the second conductive semiconductor layer.
  • the protective layer is characterized in that the UV (Ultra Violet) resin or a thermosetting resin.
  • the first refractive index of the protective layer is smaller than the second refractive index of the semiconductor light emitting device.
  • the first refractive index is characterized by having a refractive index between 1.5 and 2.3.
  • the semiconductor light emitting device is characterized in that it is an LED (Micro-LED) having a size of a micrometer unit.
  • a display device and a manufacturing method using a semiconductor light emitting device can be provided.
  • an anisotropic conductive adhesive paste layer is previously formed only on a conductive electrode of the semiconductor light emitting device and a peripheral portion thereof. Therefore, when the semiconductor light emitting device is transferred to the location of the wiring electrode in the wiring board, there is an effect that the wiring process is performed without risk of short circuit failure between the devices.
  • the wiring electrode has an irregular concave-convex structure and an organic material pad underneath, so that when the anisotropically conductive adhesive paste layer is pressed, the contact area with the conductive particles in the paste layer is increased, and the impact caused by compression is reduced. Therefore, there is an effect that the semiconductor light emitting device is stably transferred to the wiring electrode.
  • FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
  • FIG. 2 is a partially enlarged view of part A of FIG. 1.
  • 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 8 is a cross-sectional view taken along line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining a display device using a semiconductor light emitting device according to another exemplary embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a process of manufacturing the display device of FIG. 10.
  • FIG. 14 are cross-sectional views illustrating a process of forming the semiconductor light emitting device of FIG. 10 on a growth substrate.
  • FIG. 15 is a diagram illustrating a process of transferring the semiconductor light emitting device of FIG. 14 to a first temporary substrate.
  • 16 is a diagram illustrating a process of transferring the semiconductor light emitting device of FIG. 15 to a second temporary substrate.
  • FIG. 17 is a cross-sectional view after forming an anisotropically conductive adhesive paste layer on the semiconductor light emitting device on the second temporary substrate of FIG. 16;
  • FIG. 18 are diagrams illustrating a process of transferring the semiconductor light emitting device of FIG. 17 to a wiring board.
  • FIG. 19 is a flow chart specifically showing a process of transferring the semiconductor light emitting device of FIG. 18 to a wiring board.
  • 20 is a flowchart illustrating a process of forming a multi-layer structure on a second temporary substrate for selective transfer of a semiconductor light emitting device and an anisotropic conductive adhesive paste layer.
  • 21 is a cross-sectional view showing a multi-layer structure of a second temporary substrate formed by the method of FIG. 20.
  • 22 is a flowchart illustrating a process of manufacturing a wiring electrode having an irregular uneven structure.
  • FIG. 23 are cross-sectional views illustrating a process of manufacturing a wiring electrode having an irregular uneven structure.
  • an element such as a layer, region or substrate is referred to as being “on” another component, it will be understood that it may exist directly on the other element or there may be intermediate elements between them. There will be.
  • the display device described herein is a concept including all display devices that display information as a unit pixel or a set of unit pixels. Therefore, it can be applied to parts, not limited to finished products.
  • a panel corresponding to a part of a digital TV is also independently a display device in the present specification.
  • Finished products include mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, Slate PC, Tablet PC, and Ultra. This could include books, digital TVs, and desktop computers.
  • the semiconductor light emitting device mentioned in this specification is a concept including LEDs, micro LEDs, and the like, and may be used interchangeably.
  • FIG. 1 is a conceptual diagram showing an embodiment of a display device using a semiconductor light emitting device of the present invention.
  • information processed by a controller (not shown) of the display apparatus 100 may be displayed using a flexible display.
  • Flexible displays include displays that can be bent, or bendable, or twistable, or foldable, or rollable by external force, for example.
  • the flexible display may be a display manufactured on a thin and flexible substrate that can be bent, bent, or foldable or rolled like paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes a flat surface.
  • the display area may be a curved surface.
  • the information displayed in the second state may be visual information output on a curved surface. This visual information is implemented by independently controlling light emission of sub-pixels arranged in a matrix form.
  • the unit pixel means, for example, a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed in a small size, and through this, it can serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of part A of FIG. 1.
  • 3A and 3B are cross-sectional views taken along lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual diagrams illustrating various forms of implementing colors in relation to a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display device 100 shown in FIG. 1 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and at least one semiconductor light emitting device as shown in FIG. Includes 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) may be used as long as it has insulation and is flexible.
  • the substrate 110 may be a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is located, and the auxiliary electrode 170 may be disposed on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be a single wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI), PET, and PEN, and may be formed integrally with the substrate 110 to form a single substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150, and is positioned on the insulating layer 160 and is disposed corresponding to the position of the first electrode 120.
  • the auxiliary electrode 170 has a dot shape and may be electrically connected to the first electrode 120 through an electrode hole 171 penetrating through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via hole with a conductive material.
  • a conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not limited thereto.
  • a layer performing a specific function is formed between the insulating layer 160 and the conductive adhesive layer 130, or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160 It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity, and for this purpose, a material having conductivity and a material having adhesiveness may be mixed in the conductive adhesive layer 130.
  • the conductive adhesive layer 130 has ductility, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction passing through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the anisotropic conductive medium.
  • heat and pressure are applied to the anisotropic conductive film, but other methods may be applied in order for the anisotropic conductive film to partially have conductivity.
  • Other methods described above may be, for example, that only one of the above heat and pressure is applied or UV cured or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film is a film in which conductive balls are mixed with an insulating base member, and when heat and pressure are applied, only a specific portion becomes conductive by the conductive balls.
  • a core of a conductive material may contain a plurality of particles covered by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure is applied is destroyed by the insulating film and becomes conductive by the core. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and an electrical connection in the Z-axis direction is partially formed due to a height difference of a counterpart adhered by the anisotropic conductive film.
  • the anisotropic conductive film may contain a plurality of particles coated with a conductive material in an insulating core.
  • the part to which heat and pressure are applied is deformed (pressed together) to have conductivity in the thickness direction of the film.
  • a form in which the conductive material penetrates the insulating base member in the Z-axis direction and has conductivity in the thickness direction of the film is also possible.
  • the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (ACF) in which conductive balls are inserted into one surface of an insulating base member. More specifically, the insulating base member is formed of an adhesive material, and the conductive ball is intensively disposed on the bottom of the insulating base member, and when heat and pressure are applied from the base member, it is deformed together with the conductive ball. Accordingly, it has conductivity in the vertical direction.
  • ACF fixed array anisotropic conductive film
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member, or consists of a plurality of layers, and a form in which conductive balls are disposed on one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • the solution containing conductive particles may be a solution containing conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 to be spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 After forming the conductive adhesive layer 130 with the auxiliary electrode 170 and the second electrode 140 positioned on the insulating layer 160, the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. Then, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device includes a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( And an n-type semiconductor layer 153 formed on 154) and an n-type electrode 152 disposed horizontally apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected by the auxiliary electrode 170 and the conductive adhesive layer 130 shown in FIG. 3, and the n-type electrode 152 is electrically connected to the second electrode 140. Can be connected to.
  • the auxiliary electrode 170 is formed to be elongated in one direction, so that one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • p-type electrodes of the left and right semiconductor light emitting devices with the auxiliary electrode as the center may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is pressed into the conductive adhesive layer 130 by heat and pressure, through which the portion between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 And, only a portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 has conductivity, and the remaining portion does not have conductivity because there is no press-fitting of the semiconductor light emitting device.
  • the conductive adhesive layer 130 not only mutually couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140, but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute a light emitting device array, and a phosphor layer 180 is formed in the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel, and is electrically connected to the first electrode 120.
  • the first electrode 120 may be plural, the semiconductor light emitting elements are arranged in rows, for example, and the semiconductor light emitting elements of each row may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate can be used. Further, the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent luminance, individual unit pixels can be configured with a small size.
  • a partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 190 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
  • a reflective partition wall may be separately provided as the partition wall 190.
  • the partition wall 190 may include a black or white insulator depending on the purpose of the display device. When a partition wall of a white insulator is used, it is possible to increase reflectivity, and when a partition wall of a black insulator is used, it is possible to increase the contrast while having reflective characteristics.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device emitting blue (B) light
  • the phosphor layer 180 performs a function of converting the blue (B) light into a color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device, and at a position forming a green unit pixel, blue A green phosphor 182 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel.
  • unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • a phosphor of one color may be stacked along each line of the first electrode 120. Accordingly, one line of the first electrode 120 may be an electrode that controls one color. That is, along the second electrode 140, red (R), green (G), and blue (B) may be sequentially disposed, and a unit pixel may be implemented through this.
  • unit pixels of red (R), green (G), and blue (B) can be implemented by combining the semiconductor light emitting device 150 and the quantum dot (QD) instead of the phosphor. have.
  • a black matrix 191 may be disposed between each of the phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied.
  • each of the semiconductor light emitting devices 150 is made of gallium nitride (GaN) as a main material, and indium (In) and/or aluminum (Al) are added together to emit various light including blue. It can be implemented as a light emitting device.
  • GaN gallium nitride
  • Al aluminum
  • the semiconductor light emitting device 150 may be a red, green, and blue semiconductor light emitting device to form a sub-pixel, respectively.
  • red, green, and blue semiconductor light emitting devices R, G, B
  • R, G, B red, green, and blue semiconductor light emitting devices
  • unit pixels of red, green, and blue by red, green, and blue semiconductor light emitting devices They form one pixel, through which a full color display can be implemented.
  • the semiconductor light emitting device 150a may include a white light emitting device W in which a yellow phosphor layer is provided for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed on the white light emitting device W by using a color filter in which red, green, and blue are repeated.
  • a structure in which a red phosphor layer 184, a green phosphor layer 185, and a blue phosphor layer 186 are provided on the ultraviolet light emitting device 150b is also possible.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet (UV) light, and the ultraviolet (UV) can be extended in the form of a semiconductor light emitting device that can be used as an excitation source of the upper phosphor .
  • the semiconductor light emitting device is positioned on the conductive adhesive layer to constitute a unit pixel in the display device. Since the semiconductor light emitting device has excellent luminance, individual unit pixels can be configured even with a small size.
  • the individual semiconductor light emitting device 150 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 X 80 ⁇ m or less.
  • the distance between the semiconductor light emitting devices is relatively large enough.
  • the display device using the semiconductor light emitting device described above can be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view showing a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • a conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are positioned.
  • An insulating layer 160 is stacked on the wiring board 110, and a first electrode 120, an auxiliary electrode 170, and a second electrode 140 are disposed on the wiring board 110.
  • the first electrode 120 and the second electrode 140 may be disposed in a mutually orthogonal direction.
  • the wiring board 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film, and for this purpose, an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is positioned.
  • a temporary substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which a plurality of semiconductor light emitting elements 150 constituting individual pixels are positioned is provided, and the semiconductor light emitting element 150 ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the temporary substrate 112 is a growth substrate on which the semiconductor light emitting device 150 is grown, and may be a spire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in units of a wafer, it can be effectively used in a display device by having a gap and a size capable of forming a display device.
  • the wiring board and the temporary board 112 are thermally compressed.
  • the wiring board and the temporary board 112 may be thermally compressed by applying an ACF press head.
  • the wiring board and the temporary board 112 are bonded by the thermal compression. Due to the characteristics of the anisotropic conductive film having conductivity by thermal compression, only the portion between the semiconductor light emitting device 150 and the auxiliary electrode 170 and the second electrode 140 has conductivity, through which electrodes and semiconductor light emission The device 150 may be electrically connected. In this case, the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, and a partition wall may be formed between the semiconductor light emitting devices 150 through this.
  • the temporary substrate 112 is removed.
  • the temporary substrate 112 may be removed using a laser lift-off method (LLO) or a chemical lift-off method (CLO).
  • LLO laser lift-off method
  • CLO chemical lift-off method
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) or the like on the wiring board to which the semiconductor light emitting device 150 is bonded.
  • the semiconductor light-emitting device 150 is a blue semiconductor light-emitting device that emits blue (B) light, and a red or green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer can be formed on one side of the device.
  • the manufacturing method or structure of a display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along line DD of FIG. 7
  • FIG. 9 is a vertical semiconductor light emitting device of FIG. It is a conceptual diagram.
  • the display device may be a display device using a passive matrix (PM) type vertical semiconductor light emitting device.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and at least one semiconductor light emitting device 250.
  • the substrate 210 is a wiring board on which the first electrode 220 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material that has insulation and is flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a long bar shape in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located.
  • the conductive adhesive layer 230 is a solution containing anisotropy conductive film (ACF), anisotropic conductive paste, and conductive particles. ), etc.
  • ACF anisotropy conductive film
  • anisotropic conductive paste anisotropic conductive paste
  • conductive particles conductive particles.
  • the semiconductor light emitting element 250 is connected by applying heat and pressure to the semiconductor light emitting element 250. It is electrically connected to the electrode 220.
  • the semiconductor light emitting device 250 is preferably disposed to be positioned on the first electrode 220.
  • the electrical connection is created because the anisotropic conductive film partially has conductivity in the thickness direction when heat and pressure are applied. Accordingly, in the anisotropic conductive film, it is divided into a part having conductivity and a part not having conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements electrical connection as well as mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby configuring individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent luminance, individual unit pixels can be configured with a small size.
  • the individual semiconductor light emitting device 250 may have, for example, a side length of 80 ⁇ m or less, and may be a rectangular or square device. In the case of a rectangle, for example, it may have a size of 20 X 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 are disposed between the vertical semiconductor light emitting devices in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250.
  • the vertical semiconductor light emitting device 250 is formed on the p-type electrode 256, the p-type semiconductor layer 255 formed on the p-type electrode 256, and the p-type semiconductor layer 255. And an active layer 254, an n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the p-type electrode 256 located at the bottom may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the n-type electrode 252 located at the top is a second electrode 240 to be described later. ) And can be electrically connected.
  • the vertical semiconductor light emitting device 250 has a great advantage of reducing a chip size since electrodes can be arranged up and down.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light, and a phosphor layer 280 for converting the blue (B) light into a color of a unit pixel is provided.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting blue light into red (R) light may be stacked on a blue semiconductor light emitting device, and at a position forming a green unit pixel, blue A green phosphor 282 capable of converting blue light into green (G) light may be stacked on the semiconductor light emitting device.
  • a blue semiconductor light emitting device may be used alone in a portion of the blue unit pixel. In this case, unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green colors may be applied as described above in a display device to which a flip chip type light emitting device is applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be located between the rows of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as a long bar-shaped electrode in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed as an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or vapor deposition. Through this, the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) or the like may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • a transparent electrode such as ITO Indium Tin Oxide
  • the ITO material has poor adhesion to the n-type semiconductor layer. have. Accordingly, according to the present invention, by placing the second electrode 240 between the semiconductor light emitting devices 250, there is an advantage in that a transparent electrode such as ITO is not required. Accordingly, the light extraction efficiency can be improved by using the n-type semiconductor layer and a conductive material having good adhesion as a horizontal electrode without being restricted by the selection of a transparent material.
  • a partition wall 290 may be positioned between the semiconductor light emitting devices 250. That is, a partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 constituting individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, by inserting the semiconductor light emitting device 250 into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and a contrast ratio may be increased even without a separate black insulator.
  • a reflective partition wall may be separately provided.
  • the partition wall 290 may include a black or white insulator depending on the purpose of the display device.
  • the partition wall 290 is between the vertical semiconductor light emitting element 250 and the second electrode 240. It can be located between. Accordingly, individual unit pixels can be configured with a small size using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting device 250 is relatively large enough, so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), there is an effect of implementing a flexible display device having HD image quality.
  • a black matrix 291 may be disposed between each phosphor to improve contrast. That is, the black matrix 291 can improve contrast of light and dark.
  • the semiconductor light emitting device grown on a growth substrate must be assembled or transferred to a new substrate.
  • the growth substrate may be, for example, an 8-inch wafer, and thus a plurality of transfers may be repeated.
  • the assembly or transfer process is, for example, a process in which a very large number of semiconductor light emitting devices are collectively arranged on a new substrate, and may be arranged in a position different from the position set in the arrangement process, so that an alignment error exists. .
  • an anisotropy conductive adhesive paste (ACP) display device As a method for minimizing the risk of defects in the wiring process and stably transferring the device, an anisotropy conductive adhesive paste (ACP) display device and manufacturing method in which an anisotropic conductive adhesive paste layer is selectively formed only in the semiconductor light emitting device region It will be described later in detail with reference to FIGS. 10 to 23.
  • ACP anisotropy conductive adhesive paste
  • a display device 1000 using a semiconductor light emitting device As shown in FIG. 10, as a display device 1000 using a semiconductor light emitting device, a display device 1000 using a flip chip semiconductor light emitting device 1050 of a passive matrix (PM) type is illustrated.
  • PM passive matrix
  • AM active matrix
  • the technical characteristics of the semiconductor light emitting device 1050 are an anisotropic conductive adhesive paste layer selectively formed on the electrode portion of the device and the peripheral portion thereof, and a wiring electrode having an irregular uneven structure, and the flip chip structure is only an example. , The present invention is not limited thereto.
  • the display device 1000 includes a wiring board 1010, a first electrode 1020, an insulating layer 1030, a second electrode 1040, and a plurality of semiconductor light emitting devices 1050.
  • the first electrode 1020 and the second electrode 1040 may each include a plurality of electrode lines.
  • the wiring board 1010 may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material can be used as long as it has insulation and is flexible.
  • the first electrode 1020 and the second electrode 1040 may be disposed on the wiring board 1010 and may be disposed to be electrically connected to a conductive electrode of the semiconductor light emitting device 1050.
  • a plurality of second electrodes 1040 are disposed between the semiconductor light emitting devices 1050 in a direction crossing the length direction of the first electrode 1020 and electrically connected to the semiconductor light emitting device 1050. .
  • the plurality of semiconductor light emitting devices 1050 may form a plurality of columns in a direction parallel to a plurality of electrode lines provided in the first electrode 1020.
  • the present invention is not limited thereto.
  • the plurality of semiconductor light emitting devices 1050 may form a plurality of columns along the second electrode 1040.
  • FIG. 11 is a diagram specifically illustrating the semiconductor light emitting device of FIG. 10 and a wiring electrode connected to the semiconductor light emitting device.
  • the semiconductor light emitting device 1050 may include a first conductive type semiconductor layer 1055, an active layer 1054, and a second conductive type semiconductor layer 1053.
  • first conductive type electrode 1056 electrically connected to the first conductive type semiconductor layer 1055 and a second conductive type electrode 1052 electrically connected to the second conductive type semiconductor layer 1053. It may contain more.
  • a protective layer 1090 is positioned on an upper surface of the second conductive type semiconductor layer 1053 of the semiconductor light emitting device.
  • the protective layer 1090 is a high heat-resistant protective layer, which will be described later in FIGS. 16 and 20, but when transferring a semiconductor light emitting device from a temporary substrate to a wiring board, anisotropic conductivity formed in a region overlapping with the protective layer 1090 Only the adhesive paste layer 1080 serves to be selectively transferred together with the semiconductor light emitting device.
  • an anisotropically conductive adhesive paste layer 1080 is positioned on the side and bottom surfaces of the semiconductor light emitting device disposed under the protective layer 1090. Meanwhile, in the process of separating the semiconductor light emitting device from the temporary substrate, the anisotropic conductive adhesive paste layer 1080 may be separated into various shapes according to the separation condition and may be positioned at the periphery of the semiconductor light emitting device. Therefore, the present invention is not limited to the shape shown in FIG. 11.
  • the protective layer 1090 shown in FIG. 11 protrudes further in both side directions than the second conductive semiconductor layer 1053, but this is only an example, and is variously formed during the transfer process of the semiconductor light emitting device. Can be.
  • a protective layer having the same length as the second conductive semiconductor layer 1053 may be formed, and may be formed to protrude from one side of the second conductive semiconductor layer 1053.
  • the wiring board 1010 includes an organic material pad 1070 and a first electrode 1020 and a second electrode 1040 positioned above the organic material pad 1070.
  • the first electrode 1020 is electrically connected to the first conductive type electrode 1056 of the semiconductor light emitting device by conductive particles of the anisotropically conductive adhesive paste layer 1080.
  • the second electrode 1040 is also electrically connected to the second conductive electrode 1052 of the semiconductor light emitting device by conductive particles of the anisotropically conductive adhesive paste layer 1080.
  • the conductive particles 1081 exist in the anisotropically conductive adhesive paste layer 1080 in, for example, in a circular shape, but in the process of transferring the semiconductor light emitting device to the wiring board 1010, It can be transformed. As shown in FIG. 11, conductive particles existing between the first electrode 1020 and the first conductive electrode 1056 have an elliptical shape.
  • Part E of FIG. 11 corresponds to a connection portion between the second conductive type electrode 1052 and the second electrode 1040 formed on the second conductive type semiconductor layer 1053 of the semiconductor light emitting device.
  • the second electrode 1040 has an irregular uneven structure.
  • the second electrode 1040 is formed on the organic material pad 1070 formed on the wiring board 1010.
  • the organic material pad 1070 includes a plurality of nanoparticles 1071, and has a structure in which at least one nanoparticle is exposed on the surface of the organic material pad 1070, thereby forming an irregular surface shape.
  • the nanoparticles serve as a resistor that maintains the shape of the organic pad when the wiring board and the conductive particles are in contact, and when the display device is driven, they reflect the emitted light toward the wiring board to improve light extraction efficiency. can do.
  • FIG. 13 is a flowchart illustrating a process of manufacturing the display device of FIG. 10.
  • a semiconductor light emitting device is formed on a growth substrate (S1310).
  • the semiconductor light emitting structure may include a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, and may further include a buffer semiconductor layer in some cases. Further, in the case of a semiconductor light emitting device having a horizontal structure, electrodes for electrically connecting each semiconductor layer in the growth substrate are formed.
  • the semiconductor light emitting device is transferred to a first temporary substrate (S1320).
  • the first temporary substrate may be made of, for example, a flexible material such as PDMS, and may include a plurality of protrusions.
  • the transferring step S1320 may include aligning the growth substrate and the first temporary substrate so that the semiconductor light emitting device and the protrusion overlap.
  • the semiconductor light emitting device grown on the growth substrate may be directly transferred to the first temporary substrate, but in some cases, the semiconductor light emitting device assembled on a separate assembly substrate may be transferred to the first temporary substrate.
  • the semiconductor light emitting device of the assembly substrate may be a semiconductor light emitting device that is self-assembled in a fluid using an electromagnetic field. Therefore, the process sequence mentioned in FIG. 11 is an exemplary configuration for revealing the technical features of the present invention, and the present invention is not necessarily limited thereto.
  • the semiconductor light emitting device (LED) transferred to the first temporary substrate is transferred back to the second temporary substrate (S1330).
  • the second temporary substrate includes a protective layer and a release layer for selective transfer of the semiconductor light emitting device.
  • the reason why the transfer process is performed twice using the temporary substrate is to make the protective layer contact with a specific surface of the semiconductor light emitting device.
  • a conductive type electrode is formed in only one direction of the semiconductor light emitting device. That is, assuming that the surface of the semiconductor light emitting device in contact with the growth substrate is one surface, the conductive electrode is formed on the opposite two surfaces.
  • the protective layer is preferably in contact with the surface on which the conductive electrode is not formed. In order to contact the first surface with the protective layer, two transfer processes are required.
  • the number of times the temporary substrate is transferred may be added according to the direction in which the conductive electrode is formed in the semiconductor light emitting device and other purposes.
  • an anisotropically conductive adhesive paste layer is formed on the semiconductor light emitting device (LED) transferred to the second temporary substrate (S1340).
  • the semiconductor light emitting device on which the anisotropic conductive adhesive paste layer is formed is transferred to a wiring board (S1350).
  • a process of separating the semiconductor light emitting device together with the protective layer formed on the second temporary substrate by irradiating a laser on the rear surface of the second temporary substrate is included, and details thereof are provided in FIGS. 18 and 19 It will be described later.
  • FIG. 14 are cross-sectional views illustrating a process of forming the semiconductor light emitting device of FIG. 10 on a growth substrate.
  • a second conductive type semiconductor layer 1053, an active layer 1054, and a first conductive type semiconductor layer 1055 are sequentially grown on the growth substrate 1011.
  • a buffer semiconductor layer may be formed between the second conductive semiconductor layer 1053 and the growth substrate 1011.
  • the buffer semiconductor layer may prevent damage to the second conductive type semiconductor layer 1053 that may occur in the process of separating the semiconductor light emitting device grown on the growth substrate 1011.
  • the growth substrate 1011 may be formed of a material having a light-transmitting property, for example, any one of sapphire (Al2O3), GaN, ZnO, and AlO.
  • the growth substrate 1011 may be formed of a material suitable for growth of semiconductor materials, a carrier wafer.
  • the growth substrate 1011 may be formed of a material having excellent thermal conductivity, including a conductive substrate or an insulating substrate, for example, a SiC substrate having a higher thermal conductivity than a sapphire (Al2O3) substrate, or Si, GaAs, GaP, InP And Ga2O3 may be used, but is not limited thereto.
  • the second conductive type semiconductor layer 1053 may be an n-type semiconductor layer, and may be a nitride semiconductor layer such as n-GaN, and the first conductive type semiconductor layer 1055 may be a p-type semiconductor layer.
  • the present invention is not necessarily limited thereto, and an example in which the first conductivity type is n-type and the second conductivity type is p-type is also possible.
  • the first conductive type semiconductor layer 1055 and the second conductive type semiconductor layer 1053 may be formed by implanting impurities into an intrinsic or doped semiconductor substrate. Also, a region in which a p-n junction is formed by the impurity implantation may serve as the active layer 1053.
  • the enumerations of the first conductive semiconductor layer 1055, the second conductive semiconductor layer 1053, and the active layer 11054 are exemplary, and the present invention is not limited thereto.
  • the semiconductor layers grown on the growth substrate form a plurality of semiconductor light emitting structures isolated from each other through an etching process.
  • the first conductive semiconductor layer, the active layer, the second conductive semiconductor layer and the buffer semiconductor layer is etched to form a plurality of semiconductor light emitting structures isolated from each other on the substrate.
  • the etching may be performed until the growth substrate is exposed.
  • etching may be performed between semiconductor light emitting devices until a part of the second conductive type semiconductor layer is left.
  • a first conductive type electrode 1056 and a second conductive type electrode 1052 may be formed on the plurality of semiconductor light emitting devices 1050.
  • a photo process, an etching process, and a metal deposition process may be performed for each electrode.
  • the first conductive type electrode 1056, the second conductive type electrode 1052, the first conductive type semiconductor layer 1055, and finally on the growth substrate 1011 A plurality of semiconductor light emitting devices 1050 in which the active layer 1054 and the second conductive semiconductor layer 1053 are formed may be formed.
  • the semiconductor light emitting device 1050 may further include, for example, a passivation layer formed to surround the side surface of the semiconductor light emitting device 1050.
  • FIG. 15 is a diagram illustrating a process of transferring the semiconductor light emitting device of FIG. 14 to a first temporary substrate.
  • the semiconductor light emitting element 1050 of the growth substrate 1011 is transferred to the first temporary substrate 1012 through the adhesive film 1031 formed on the first temporary substrate 1012. Can be.
  • a laser lift off (LLO) process may be performed to selectively separate the semiconductor light emitting device 1050 of the growth substrate 1011. That is, when a laser is irradiated on the semiconductor light emitting device 1050 to be separated from the growth substrate 1011 side, the growth substrate 1011 and the corresponding semiconductor light emitting device 1050 may be separated.
  • the adhesive film 1031 of the first temporary substrate 1012 may be a flexible film suitable for selective transfer.
  • all of the semiconductor light emitting devices 1050 may be adhered to the adhesive film 1031 of the first temporary substrate 1012. Since the adhesive film 1031 is flexible, the semiconductor light emitting device 1050 is stably fixed on the adhesive film 1031.
  • 16 is a diagram illustrating a process of transferring the semiconductor light emitting device of FIG. 15 to a second temporary substrate.
  • the second temporary substrate 1013 includes a protective layer 1090, a release layer 1091 formed under the protective layer, and a release laser reflective layer 1092.
  • the first temporary substrate 1012 and the second temporary substrate 1013 are compressed and then separated.
  • the protective layer 1090 of the second temporary substrate 1013 contains an adhesive component, and the adhesive force by the adhesive component is stronger than that of the adhesive film 1031 of the first temporary substrate 1012. . Therefore, as shown in FIG. 16B, the semiconductor light emitting device 1050 can be stably separated from the first temporary substrate 1012 to the protective layer 1090 of the second temporary substrate 1013.
  • FIG. 17 is a cross-sectional view after forming an anisotropically conductive adhesive paste layer on the semiconductor light emitting device on the second temporary substrate of FIG. 16;
  • an anisotropic conductive adhesive paste layer 1080 containing conductive particles 1081 Is coated.
  • anisotropically conductive adhesive paste layer 1080 In order to coat the anisotropically conductive adhesive paste layer 1080, one of various methods such as spin coating, bar coating, and slit coating may be selected.
  • anisotropic conductive adhesive paste layer 1080 may include TiO2 nanoparticles for improving luminance of a semiconductor light emitting device or nanoparticles made of silica for improving coating properties.
  • FIG. 18 are diagrams illustrating a process of transferring the semiconductor light emitting device of FIG. 17 to a wiring board.
  • the semiconductor light emitting device 1050 positioned on the second temporary substrate 1013 is transferred by turning it over to face the wiring substrate 1010. That is, the anisotropic conductive adhesive paste layer 1080 including the conductive particles 1081 coated on the semiconductor light emitting device 1050 is formed on the wiring board 1010 and the first electrode 1020 and the second electrode 1040 are formed. ) To be in contact.
  • the second temporary substrate 1013 and the wiring board 1010 are compressed, and a laser is irradiated on the rear surface of the second temporary substrate 1013 to release the protective layer previously formed on the second temporary substrate. Separate between the release layers.
  • 18(b) is a view showing a shape after the semiconductor light emitting device 1050 is transferred from the second temporary substrate 1013 to the wiring board 1010.
  • the release laser reflective layer 1092 and the release layer 1091 are located on the second temporary substrate 1013 as they are, and only the anisotropic conductive adhesive paste layer 1083 including some protective layers 1093 and some conductive particles 1082 Remains.
  • the anisotropic conductive adhesive paste layer 1083 including the protective layer 1093 and the conductive particles 1082 is present in a region between the semiconductor light emitting devices previously located on the second temporary substrate 1013.
  • the protective layer 1090 positioned on the semiconductor light emitting device 1050 and the anisotropic conductive adhesive paste layer surrounding the semiconductor light emitting device 1050 are transferred together to the wiring board 1010.
  • a first electrode 1020 and a second electrode 1040 are positioned on the wiring board 1010, and a semiconductor light emitting device 1050 is positioned on the electrodes 1020 and 1040. Is placed.
  • a protective layer 1090 is present on the upper side of the semiconductor light emitting device 1050.
  • an anisotropically conductive adhesive paste layer is disposed between the side surface of the semiconductor light emitting device 1050 and between the semiconductor light emitting device 1050 and the electrodes 1020 and 1040.
  • the anisotropically conductive adhesive paste layer between the electrodes 1020 and 1040 and the semiconductor light emitting device 1050 is compressed during the transfer process, and the semiconductor light emitting device 1050 and the semiconductor light emitting device 1050 are formed by conductive particles of the anisotropically conductive adhesive paste layer.
  • the electrodes 1020 and 1040 are electrically connected.
  • the anisotropically conductive adhesive paste layer is used and the anisotropically conductive adhesive paste layer is selectively formed only on the conductive electrode portion of the individual semiconductor light emitting device and in the vicinity thereof, thereby reducing the problem of defects due to the conductive particles Can be minimized.
  • FIG. 19 is a flow chart specifically showing a process of transferring the semiconductor light emitting device of FIG. 18 to a wiring board.
  • the wiring board and the second temporary board are arranged to face each other and then pressed (S1910).
  • a laser is irradiated on the rear surface of the second temporary substrate (S1920).
  • the laser may be an Ultra Violet (UV) or a laser in a visible region.
  • the advance direction of the laser is a sequence of a second temporary substrate and a release laser reflective layer or a release layer formed on the second temporary substrate.
  • the laser cannot go straight any longer and is reflected, so that it is difficult to affect the release layer and the protective layer located above the release laser vanes layer.
  • the release layer and the protective layer formed on the top of the release layer are affected.
  • the release layer absorbs energy corresponding to the wavelength of the laser, and thus heat is generated. Accordingly, the shape of the interface of the release layer is changed by the heat (S1930).
  • the protective layer formed on the top of the release layer it is formed of a high heat-resistant material capable of withstanding the heat generated by the laser. Therefore, while the shape of the release layer is changed due to evaporation or the like by the laser, the shape of the protective layer can be maintained as it is. Accordingly, as time elapses in which the laser is irradiated, the release layer and the protective layer are separated (S1940).
  • the conductive electrode of the semiconductor light emitting device and the anisotropic conductive adhesive paste layer positioned at the periphery of the semiconductor light emitting device formed on the opposite surface to the protective layer are in strong contact with the wiring board in the pressing step (S1910), and thus the wiring Maintains a strong adhesive strength between the substrate and the semiconductor light emitting device.
  • the semiconductor light emitting device of the second temporary substrate is transferred to the wiring board together with the protective layer previously formed on the second temporary substrate (S1950). That is, only the semiconductor light emitting device and the protective layer overlapping with the semiconductor light emitting device are transferred together by interfacial peeling with the release layer. This is a result of being affected by the laser because the release laser reflective layer is not formed in the region where the semiconductor light emitting device is located on the second temporary substrate. On the other hand, a region in which the semiconductor light emitting device is not located on the second temporary substrate has a release laser reflective layer, and thus is not affected by the laser, so that separation of the release layer and the protective layer does not occur. A more detailed description of the formation process and structure of the release layer and the release laser reflection layer will be described later in FIG. 20.
  • 20 is a flowchart illustrating a process of forming a multi-layer structure on a second temporary substrate for selective transfer of a semiconductor light emitting device and an anisotropic conductive adhesive paste layer.
  • a second temporary substrate is prepared (S2010). Thereafter, a release laser reflective layer is selectively formed on the substrate (S2020). For the selective formation, a photo process and an etching process may be performed. In addition, PVD (Physical Vapor Deposition) or a sputtering process may be performed to form the reflective layer.
  • PVD Physical Vapor Deposition
  • a sputtering process may be performed to form the reflective layer.
  • the meaning of the selective formation is to form the release laser reflective metal layer on the second temporary substrate in a region where the semiconductor light emitting device is not transferred.
  • a region to which the semiconductor light emitting device is not transferred to the second temporary substrate is defined as a first region, and a region to which the semiconductor light emitting device is transferred is defined as a second region.
  • a release layer is formed (S2030).
  • the release layer is formed on the entire area of the second temporary substrate including the release laser reflective layer.
  • the release layer may include at least one of resins including ITO, amorphous silicon, black carbon, or TiO2 nanoparticles.
  • the protective layer may include UV (Ultra Violet) resin or thermosetting resin. Therefore, it can be cured by the laser used in the transfer process, thereby accelerating the separation of the interface with the release layer formed under the protective layer.
  • the protective layer is transferred together, and may be formed with a specific refractive index in consideration of the refractive index of the semiconductor light emitting device. That is, the first refractive index of the protective layer may be formed to be smaller than the second refractive index of the semiconductor light emitting device.
  • the semiconductor light emitting device is GaN
  • the refractive index of the semiconductor light emitting device is about 2.4
  • the refractive index of the protective layer is set to a value between 1.5 and 2.3 so that the light emitted from the semiconductor light emitting device is Total reflection into the device can be prevented.
  • 21 is a cross-sectional view showing a multi-layer structure of a second temporary substrate formed by the method of FIG. 20.
  • a release laser protective layer 1092 is selectively positioned on the second temporary substrate 1013.
  • a release layer 1091 and a protective layer 1090 are positioned in the entire area of the second temporary substrate 1013 including the release laser protective layer.
  • the region where the release laser protective layer 1092 is located corresponds to the F region, as shown in FIG. 21.
  • the S region of FIG. 21 is a region in which the release laser protection layer is not formed, and is a region in which the semiconductor light emitting device is to be positioned during the transfer process.
  • the laser when the laser is irradiated on the rear surface of the second temporary substrate 1013, the laser affects the release layer 1091 and the protective layer 1090 of the S region, but the F region is the release laser reflective layer 1092. As a result, it is difficult to affect the release layer 1091 and the protective layer 1090 of the F region.
  • 22 is a flowchart illustrating a process of manufacturing a wiring electrode having an irregular uneven structure.
  • a wiring board is prepared (S2210). Thereafter, an organic solution containing nanoparticles is coated on the wiring board (S2220).
  • the organic solution is present on the wiring electrode in the form of an organic layer by removing volatile components. Thereafter, a photo process and an etching process are performed on the organic layer to form an organic material pad at a position corresponding to the conductive electrode part of the semiconductor light emitting device (S2230).
  • the surface of the organic material pad has an irregular uneven structure. Accordingly, the wiring electrode formed on the organic pad also has an irregular uneven structure, which will be described later in more detail with reference to FIG. 23.
  • FIG. 23 are cross-sectional views illustrating a process of manufacturing a wiring electrode having an irregular uneven structure.
  • FIG. 23A is a cross-sectional view after forming the organic layer 1072 containing nanoparticles 1071 on the wiring board 1010.
  • the organic solution containing the nanoparticles 1071 is coated on the wiring substrate 1010.
  • Spin coating may be used as the coating method.
  • the thickness of the coating can be controlled relatively simply by controlling the rotation speed and time, and is advantageous for coating a large area of an organic solution.
  • the coating method is only exemplary, and is not limited thereto.
  • a volatile component of the organic solution is removed through a soft baking process, and a relatively solid organic layer 1072 is formed on the wiring board 1010.
  • the components of the organic layer 1072 include, for example, a photosensitive organic component.
  • the photosensitive organic component may be a photosensitive acrylate or PAC (Photo Active Compounds).
  • the nanoparticles 1071 may be, for example, 10 nm to 300 nm of inorganic material or metal component.
  • a photo process and an etching process are performed on the organic layer 1072 to form an organic material pad 1073 at a position corresponding to the conductive electrode part of the semiconductor light emitting device. .
  • an ashing process is performed on the organic material pad.
  • 23(c) is a cross-sectional view showing the shape of the organic pad after ashing.
  • the ashing process for example, by exposing the surface of the organic material pad to O2 plasma for several seconds, the shape of the surface of the organic material pad is changed.
  • O2 plasma is more effective in removing organic materials than nanoparticles, and as the plasma treatment continues, the nanoparticles 1071 in the organic material pad are exposed to the surface of the organic material pad 1070. Therefore, after the ashing process, the surface of the organic material pad 1070 forms an irregular uneven structure.
  • the wiring electrode 1020 is formed on the organic pad 1070 having the irregular uneven structure. Accordingly, the wiring electrode 1020 also has an uneven structure having an irregular surface shape by the nanoparticles 1071 protruding from the surface of the organic material pad 1070.
  • the reason why the irregular uneven structure and the organic material pad are effective is as follows.
  • the wiring electrode is a region electrically connected to the conductive electrode portion of the semiconductor light emitting device.
  • an anisotropically conductive adhesive paste layer is present between the electrode portion and the wiring electrode, and is electrically connected by conductive particles of the paste layer. Therefore, if the conductive particles do not accurately contact the conductive electrode part or the wiring electrode, a defect occurs. In addition, even if the conductive particles are accurately contacted, the wiring electrode or the conductive electrode part may be damaged by a strong impact during the bonding process.
  • the adhesion between the conductive particles and the wiring electrode and the probability of adhesion can be increased, thereby preventing the defect.
  • the organic material pad formed under the wiring electrode mitigates an impact generated during the bonding process between the conductive particles and the wiring electrode, thereby preventing damage to the wiring electrode.
  • a semiconductor light emitting device is transferred to a wiring board using an anisotropic conductive adhesive paste layer and a wiring process is performed.
  • the anisotropically conductive adhesive paste layer is formed only in a region where the semiconductor light emitting device is connected to a wiring electrode and a peripheral portion thereof to reduce the risk of a short circuit failure between devices.
  • the wiring electrode has an irregular uneven structure and an organic material pad underneath it to facilitate contact with the conductive particles of the paste layer and to reduce impact upon contact. Accordingly, according to the present invention, the semiconductor light emitting device is stably transferred to the wiring board and at the same time, a wiring process for minimizing short and open defects can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

본 명세서에서는 반도체 발광 소자의 도전형 전극부 및 그 주변부에만 이방 전도성 접착 페이스트층을 미리 형성하고, 이후 배선 기판에 전사하여, 전사와 동시에 안정적인 배선 공정을 수행하는 마이크로 LED 디스플레이 장치 및 이의 제조 방법을 개시한다.

Description

마이크로 LED를 이용한 디스플레이 장치 및 이의 제조 방법
본 발명은 디스플레이 장치 관련 기술 분야에 적용 가능하며, 예를 들어 마이크로 LED(Light Emitting Diode)를 이용한 디스플레이 장치 및 이의 제조 방법에 관한 것이다.
최근에는 디스플레이 기술 분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 있고, OLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 문제점이 있다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 것으로 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 전술한 문제점을 해결하는 방안이 제시될 수 있다. 상기 반도체 발광 소자는 필라멘트 기반의 발광 소자에 비해 긴 수명, 낮은 전력 소모, 우수한 초기 구동 특성, 및 높은 진동 저항 등의 다양한 장점을 갖는다.
하지만 반도체 발광 소자를 이용하여 대면적 고화소 디스플레이 장치를 구현하기 위해서는 매우 많은 수의 반도체 발광 소자들이 상기 디스플레이 장치의 배선 기판에 안정적으로 조립 또는 전사되어야 한다.
또한 상기 조립 또는 전사 이후, 상기 배선 기판과 상기 반도체 발광 소자를 전기적으로 연결하는 배선 공정에서 발생하게 되는 불량 이슈를 최소화 시켜야 한다.
이에, 본 발명에서는 반도체 발광 소자가 안정적으로 배선 기판에 전사되고, 이와 동시에 배선 공정이 수행되는 새로운 형태의 디스플레이 장치 및 그 제조 방법을 제시한다.
본 발명의 일 실시예의 목적은, 반도체 발광 소자를 이용한 디스플레이 장치 및 제조 방법을 제공하는 것이다.
본 발명의 일 실시예의 다른 목적은, 반도체 발광 소자를 디스플레이 기판에 전사함과 동시에 안정적으로 배선 공정이 수행되는 디스플레이 장치 및 이의 제조 방법을 제공하는 것이다.
나아가, 본 발명의 일 실시예의 또 다른 목적은, 여기에서 언급하지 않은 다양한 문제점들도 해결하고자 한다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
상기 목적을 달성하기 위한 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법은, 성장 기판에서 반도체 발광 소자를 형성하는 단계; 상기 반도체 발광 소자를 제 1 임시 기판으로 전사하는 단계; 상기 제 1임시 기판의 상기 반도체 발광 소자를 보호층을 포함하는 제 2임시 기판으로 전사하는 단계; 상기 제 2임시 기판에 전사된 상기 반도체 발광 소자의 상측면에 이방 전도성 접착 페이스트층을 형성하는 단계; 상기 제 2임시 기판에 위치한 상기 반도체 발광 소자를 배선 전극이 형성된 배선 기판으로 전사하는 단계를 포함하되, 상기 배선 기판으로 전사된 상기 반도체 발광 소자는, 상기 배선 전극과 접촉하는 일면에는 상기 이방 전도성 접착 페이스트층을 구비하고, 상기 배선 전극과 접촉하지 않는 상기 반도체 발광 소자의 반대면은 보호층을 구비하며, 상기 배선 전극은 불규칙한 요철 구조를 포함하는 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자를 형성하는 단계는, 제 1도전형 반도체층, 활성층 및 제 2도전형 반도체층을 포함하는 적층구조; 상기 적층구조의 상기 제 1도전형 반도체층과 전기적으로 연결되는 제 1도전형 전극; 및 상기 적층구조의 상기 제 2도전형 반도체층과 전기적으로 연결되는 제 2도전형 전극을 형성하는 단계를 포함하고, 상기 제 1 임시 기판으로 전사하는 단계는, 상기 반도체 발광 소자의 상기 제 1도전형 전극 및 상기 제 2도전형 전극이 상기 제 1임시 기판과 접촉하는 단계를 포함한다.
실시예로서, 상기 제 2임시 기판으로 전사하는 단계는, 상기 반도체 발광 소자의 상기 제 2도전형 반도체층이 상기 제 2임시 기판의 상기 보호층과 접촉하는 단계를 포함한다.
실시예로서, 상기 제 2임시 기판은 상기 보호층; 상기 보호층의 하부에 위치하는 릴리즈층(Release layer); 및 상기 릴리즈층의 하부에 위치하고, 상기 제 2임시 기판의 제 1영역에 선택적으로 형성되는 릴리즈(Release) 레이저 반사층을 포함하는 것을 특징으로 한다.
실시예로서, 상기 제 2임시 기판은, 상기 제 2임시 기판과 수평 방향을 기준으로, 상기 반도체 발광 소자가 전사되지 않는 상기 제 1영역 및 상기 반도체 발광 소자가 전사되어, 위치하는 제 2영역을 포함하는 것을 특징으로 한다.
실시예로서, 상기 배선 기판으로 전사하는 단계는, 상기 제 2임시 기판의 상기 보호층과 상기 제 2임시 기판의 상기 릴리즈층의 사이가 분리되는 단계; 및, 상기 반도체 발광 소자 및 상기 반도체 발광 소자와 접촉하는 상기 보호층이 상기 제 2임시 기판에서 분리되어, 상기 배선 기판으로 전사되는 단계를 포함한다.
실시예로서, 상기 보호층과 상기 릴리즈층의 사이가 분리되는 단계는, 상기 반도체 발광 소자가 전사되는 면이 아닌 상기 제 2임시 기판의 후면부로 UV(Ultra Violet) 또는 가시광 영역대의 레이저를 조사하는 단계; 및, 상기 릴리즈 레이저 반사층이 구비되지 않은 상기 제 2임시 기판의 상기 제 2영역에서, 상기 릴리즈층이 상기 조사된 레이저에 의해 계면 형상이 변형되는 단계를 포함한다.
실시예로서, 상기 배선 전극은, 불규칙한 요철 구조를 포함하는 유기물 패드의 상부에 형성되고, 상기 유기물 패드는, 복수의 나노 파티클들을 포함하고, 상기 복수의 나노 파티클들 중 적어도 하나 이상의 나노 파티클이 상기 유기물 패드의 표면에 노출되는 구조를 가지는 것을 특징으로 한다.
실시예로서, 상기 제 1 임시 기판은 돌기부를 포함하고, 상기 반도체 발광 소자를 상기 제 1 임시 기판으로 전사하는 단계는, 상기 반도체 발광 소자와 상기 돌기부가 오버랩되도록, 상기 성장 기판과 상기 제 1임시 기판을 얼라인(Align) 시키는 단계를 포함한다.
본 발명의 다른 실시예에 따른 복수의 반도체 발광 소자들을 이용한 디스플레이 장치는, 기판; 상기 기판 위에 위치하는 불규칙적인 요철 구조를 가지는 유기물 패드; 상기 유기물 패드 상에 위치하는 배선 전극; 상기 배선 전극 상에 위치하는 도전성 입자를 포함하는 이방 전도성 접착 페이스트층; 상기 이방 전도성 접착 페이스트층 상에 위치하고, 상기 페이스트층의 상기 도전성 입자에 의해 상기 배선 전극과 전기적으로 연결되는 반도체 발광 소자; 및 상기 배선 전극과 연결되지 않는 상기 반도체 발광 소자의 상측면에 구비되는 보호층을 포함하고, 상기 유기물 패드는 복수의 나노 파티클들을 포함하고, 상기 복수의 나노 파티클들 중 적어도 하나 이상의 나노 파티클이 상기 유기물 패드의 표면에 노출되는 구조를 가지는 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자는, 제 1도전형 반도체층, 활성층, 제 2도전형 반도체층, 상기 제 1도전형 반도체층 상에 위치하는 제 1도전형 전극; 및 상기 제 1도전형 반도체층 및 상기 활성층의 일부가 식각되어 상기 제 2도전형 반도체층이 노출된 영역에 위치하는 제 2도전형 전극; 을 포함하는 수평형 반도체 발광 구조인 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자의 상기 제 2도전형 반도체층은 상기 보호층과 접촉하고, 상기 반도체 발광 소자의 상기 제 1도전형 전극 및 상기 제 2도전형 전극은 상기 이방 전도성 접착 페이스트층과 접촉하는 것을 특징으로 한다.
실시예로서, 상기 보호층은 상기 제 2도전형 반도체층의 적어도 일 측면보다 돌출되어 형성되는 것을 특징으로 한다.
실시예로서, 상기 보호층은 UV(Ultra Violet) 레진 또는 열경화성 레진인 것을 특징으로 한다.
실시예로서, 상기 보호층의 제 1굴절율은 상기 반도체 발광 소자의 제 2굴절률보다 작은 것을 특징으로 한다.
실시예로서, 상기 제 1굴절율은 1.5 내지 2.3 사이의 굴절율을 가지는 것을 특징으로 한다.
실시예로서, 상기 반도체 발광 소자는 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 한다.
본 발명의 일 실시예에 따르면, 반도체 발광 소자를 이용한 디스플레이 장치 및 제조 방법을 제공할 수 있다.
구체적으로, 배선 기판으로 전사되는 반도체 발광 소자는 상기 반도체 발광 소자의 도전형 전극 및 그 주변부에만 이방 전도성 접착 페이스트층이 기 형성된다. 따라서 상기 배선 기판 내 배선 전극의 위치에 상기 반도체 발광 소자가 전사되는 되는 경우, 소자 간 쇼트 불량 위험 없이 배선 공정이 수행되는 효과가 있다.
또한, 상기 배선 전극은 불규칙한 요철 구조 및 하부에 유기물 패드를 구비하여, 상기 이방 전도성 접착 페이스트층과 압착 시, 상기 페이스트층 내 도전성 입자와 접촉 면적을 증가시키고, 압착에 의한 충격을 완화시킨다. 따라서 상기 반도체 발광 소자가 상기 배선 전극에 안정적으로 전사되는 효과가 있다.
나아가, 본 발명의 또 다른 실시예에 따르면, 여기에서 언급하지 않은 추가적인 기술적 효과들도 있다. 당업자는 명세서 및 도면의 전 취지를 통해 이해할 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 절단된 단면도이다.
도 9는 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
도 10은 본 발명의 다른 실시예에 따른 반도체 발광 소자를 이용한 디스플레이 장치를 설명하기 위한, 도 1의 A 부분의 확대도이다.
도 12는 도 11의 E부분을 확대한 도면이다.
도 13은 도10의 디스플레이 장치를 제작하는 과정을 나타내는 순서도이다.
도 14는 도 10의 반도체 발광 소자를 성장 기판에서 형성하는 과정을 나타내는 단면도들이다.
도 15는 도14의 반도체 발광 소자를 제 1임시 기판으로 전사하는 과정을 나타내는 도면들이다.
도 16은 도15의 반도체 발광 소자를 제 2임시 기판으로 전사하는 과정을 나타내는 도면들이다.
도 17은 도16의 제 2임시 기판 상의 반도체 발광 소자에 이방 전도성 접착 페이스트층을 형성한 이후의 단면도이다.
도 18은 도17의 반도체 발광 소자를 배선 기판으로 전사하는 과정을 나타내는 도면들이다.
도 19은 도18의 반도체 발광 소자가 배선 기판으로 전사되는 과정을 구체적으로 나타내는 순서도이다.
도 20은 반도체 발광 소자 및 이방 전도성 접착 페이스트층의 선택적 전사를 위해 제 2임시 기판에 다중 레이어 구조를 형성하는 과정을 나타내는 순서도이다.
도 21은 도 20의 방법에 의해 형성된 제 2임시 기판의 다중 레이어 구조를 나타내는 단면도이다.
도 22는 불규칙한 요철 구조를 구비한 배선 전극을 제작하는 과정을 나타내는 순서도이다.
도 23은 불규칙한 요철 구조를 구비한 배선 전극을 제작하는 과정을 나타내는 단면도들이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
나아가, 설명의 편의를 위해 각각의 도면에 대해 설명하고 있으나, 당업자가 적어도 2개 이상의 도면을 결합하여 다른 실시예를 구현하는 것도 본 발명의 권리범위에 속한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치는 단위 화소 또는 단위 화소의 집합으로 정보를 표시하는 모든 디스플레이 장치를 포함하는 개념이다. 따라서 완성품에 한정하지 않고 부품에도 적용될 수 있다. 예를 들어 디지털 TV의 일 부품에 해당하는 패널도 독자적으로 본 명세서 상의 디스플레이 장치에 해당한다. 완성품으로는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크 탑 컴퓨터 등이 포함될 수 있다.
그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품 형태라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술 분야의 당업자라면 쉽게 알 수 있을 것이다.
또한, 당해 명세서에서 언급된 반도체 발광 소자는 LED, 마이크로 LED 등을 포함하는 개념이며, 혼용되어 사용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일실시예를 나타내는 개념도이다.
도 1에 도시된 바와 같이, 디스플레이 장치(100)의 제어부(미도시)에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는, 예를 들어 외력에 의하여 휘어질 수 있는, 또는 구부러질 수 있는, 또는 비틀어질 수 있는, 또는 접힐 수 있는, 또는 말려질 수 있는 디스플레이를 포함한다.
나아가, 플렉서블 디스플레이는, 예를 들어 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 또는 구부리거나, 또는 접을 수 있거나 또는 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률 반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도 1에 도시된 바와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는, 예를 들어 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여, 이하 도면들을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도 이다.
도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 절단된 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러 가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
도 1에 도시된 디스플레이 장치(100)는, 도 2에 도시된 바와 같이 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 적어도 하나의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도 3a에 도시된 바와 같이 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
도 2 또는 도 3a에 도시된 바와 같이, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기 절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법이 적용될 수도 있다. 전술한 다른 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 예를 들어, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이 차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)이 될 수 있다. 보다 구체적으로, 절연성 베이스 부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스 부재의 바닥 부분에 집중적으로 배치되며, 상기 베이스 부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직 방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스 부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합 형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클 혹은 나노 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도3a를 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chiptype)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 도3에 도시된, 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p 형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도 값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
도3에 도시된 바와 같이, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스 부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주재료로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자(150a)는 황색 형광체층이 개별 소자 마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(150b) 상에 적색 형광체층(184), 녹색 형광체층(185), 및 청색 형광체층(186)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전 영역에 사용 가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용 가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자는 전도성 접착층 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다.
이와 같은 개별 반도체 발광 소자(150)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20 X 80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다.
따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한 변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다.
따라서, 이러한 경우, HD화질 이상의 고화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조 방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법을 나타낸 단면도들이다.
도 6에 도시된 바와 같이, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 배선기판(110)에 절연층(160)이 적층되며, 상기 배선기판(110)에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 배선기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 임시기판(112)을, 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 마주하도록 배치한다.
이 경우에, 임시기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 임시기판(112)을 열 압착한다. 예를 들어, 배선기판과 임시기판(112)은 ACF 프레스 헤드를 적용하여 열 압착할 수 있다. 상기 열 압착에 의하여 배선기판과 임시기판(112)은 본딩(bonding)된다. 열 압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광 소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 임시기판(112)을 제거한다. 예를 들어, 임시기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 임시기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일 면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법이나 구조는 여러 가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광 소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 적어도 하나의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1 전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(Anisotropy Conductive Film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시 예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께 방향으로 전도성을 가지는 부분과 전도성을 가지지 않는 부분으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 예를 들어, 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 예를 들어, 20 X 80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자(250)는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자 상에 청색광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G), 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
다시 도 8을 참조하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
다시 도 8을 참조하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이 사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도8에 도시된 바와 같이, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
전술하였듯이, 반도체 발광 소자를 이용한 대화면 고화소 디스플레이 장치의 경우, 성장 기판에서 성장한 상기 반도체 발광 소자는 새로운 기판으로 조립되거나 전사되어야 한다. 상기 성장 기판은 예를 들어, 8인치 웨이퍼일 수 있으며, 이에 따라서 복수 번의 전사가 반복될 수 있다.
상기 조립 또는 전사 과정은 예를 들어, 매우 많은 수의 반도체 발광 소자가 일괄적으로 새로운 기판에 배열되는 과정이며, 상기 배열 과정에서 설정된 위치와 다른 위치로 배열될 수 있어, 배열 오차가 존재하게 된다.
또한, 상기 조립 또는 전사 이후, 상기 반도체 발광 소자를 전기적으로 연결하기 위한 배선 공정이 수행되며, 상기 배열 오차의 범위가 일정한 스펙(Spec) 범위를 초과하는 경우, 상기 반도체 발광 소자는 쇼트(short) 또는 오픈(open) 불량을 유발하게 된다.
따라서 상기 배선 공정 상 불량의 위험을 최소화하고, 안정적으로 소자를 전사하기 위한 방법으로, 반도체 발광 소자 영역에만 선택적으로 이방 전도성 접착 페이스트층이 형성되는 (Anisotropy Conductive adhesive paste;ACP) 디스플레이 장치 및 제조 방법에 대해 이하 도 10 내지 도 23에서 상세히 후술하도록 하겠다.
도 10에 도시된 바와 같이, 반도체 발광 소자를 이용한 디스플레이 장치(1000)로서, 패시브 매트릭스(Passive Matrix, PM) 방식의 플립 칩 반도체 발광 소자(1050)를 이용한 디스플레이 장치(1000)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다. 또한 상기 반도체 발광 소자(1050)의 기술적 특징은 소자의 전극부 및 그 주변부에 선택적으로 형성되는 이방 전도성 접착 페이스트층 및, 불규칙한 요철 구조의 배선 전극인 바, 상기 플립 칩 구조는 예시적인 사항일 뿐, 본 발명이 이에 한정되는 것은 아니다.
디스플레이 장치(1000)는 배선 기판(1010), 제1전극(1020), 절연층(1030), 제2전극(1040) 및 복수의 반도체 발광 소자(1050)를 포함한다. 여기에서, 제1 전극(1020) 및 제2 전극(1040)은 각각 복수의 전극 라인을 포함할 수 있다.
또한, 배선 기판(1010)은, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 예를 들어, 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능하다.
상기 제1전극(1020) 및 상기 제 2전극(1040)은 배선 기판(1010) 상에 위치하며, 상기 반도체 발광 소자(1050)의 도전형 전극과 전기적으로 연결되도록 배치될 수 있다.
상기 반도체 발광 소자(1050)들의 사이에는, 제1전극(1020)의 길이 방향과 교차하는 방향으로 배치되고, 상기 반도체 발광 소자(1050)와 전기적으로 연결된 복수의 제2전극(1040)이 위치한다.
또한, 도 10에 도시된 바와 같이, 복수의 반도체 발광소자(1050)는 제1전극(1020)에 구비되는 복수의 전극 라인들과 나란한 방향으로 복수의 열들을 형성할 수 있다. 다만, 본 발명은 이에 한정되는 것은 아니다. 예를 들어, 복수의 반도체 발광 소자(1050)는 제2전극(1040)을 따라 복수의 열들을 형성할 수 있다.
도 11은 도 10의 반도체 발광 소자 및 상기 반도체 발광 소자와 연결되는 배선 전극을 구체적으로 나타내는 도면이다.
상기 반도체 발광 소자(1050)는 제 1도전형 반도체층(1055), 활성층(1054), 제 2도전형 반도체층(1053)을 포함할 수 있다.
또한, 상기 제 1도전형 반도체층(1055)과 전기적으로 연결되는 제 1도전형 전극(1056) 및 상기 제 2도전형 반도체층(1053)과 전기적으로 연결되는 제 2도전형 전극(1052)을 더 포함할 수 있다.
또한, 상기 반도체 발광 소자의 제 2도전형 반도체층(1053)의 상측면은 보호층(1090)이 위치한다. 상기 보호층(1090)은 고내열성 보호층으로 도 16 및 도 20에서 후술하겠지만, 임시 기판에서 배선 기판으로 반도체 발광 소자를 전사하는 경우, 상기 보호층(1090)과 오버랩되는 영역에 형성되는 이방 전도성 접착 페이스트층(1080)만 선택적으로 상기 반도체 발광 소자와 함께 전사할 수 있도록 그 역할을 한다.
따라서, 도 11에 도시된 바와 같이, 상기 보호층(1090)의 하부에 배치된 반도체 발광 소자의 측면 및 하면에는 이방 전도성 접착 페이스트층(1080)이 위치한다. 한편, 상기 이방 전도성 접착 페이스트층(1080)은 임시 기판에서 상기 반도체 발광 소자를 분리하는 과정에서, 그 분리 조건에 따라 다양한 형상으로 분리되어 상기 반도체 발광 소자의 주변부에 위치할 수 있다. 따라서 본 발명이 도 11에 도시된 형상으로 한정되는 것은 아니다.
또한, 도 11에 도시된 상기 보호층(1090)은 제 2도전형 반도체층(1053)보다 양측면 방향으로 더 돌출되어 있으나, 이는 일 예시에 불과하며, 상기 반도체 발광 소자의 전사 과정에서 다양하게 형성될 수 있다. 예를 들어, 상기 제 2도전형 반도체층(1053)과 동일한 길이를 가지는 보호층이 형성될 수 있으며, 제 2도전형 반도체층(1053)의 일 측면보다 돌출되도록 형성할 수도 있다.
또한, 도 11에 도시된 바와 같이, 상기 배선 기판(1010)은 유기물 패드(1070), 상기 유기물 패드(1070)의 상부에 위치한 제 1전극(1020) 및 제 2전극(1040)을 포함한다.
상기 제 1전극(1020)은 상기 반도체 발광 소자의 제 1도전형 전극(1056)과 상기 이방 전도성 접착 페이스트층(1080)의 도전형 입자에 의해 전기적으로 연결된다. 또한, 상기 제 2전극(1040) 역시 상기 반도체 발광 소자의 제 2도전형 전극(1052)과 상기 이방 전도성 접착 페이스트층(1080)의 도전형 입자에 의해 전기적으로 연결된다.
상기 도전형 입자(1081)은 예를 들어, 원형의 형태로 상기 이방 전도성 접착 페이스트층(1080) 내에 존재하나, 상기 반도체 발광 소자가 배선 기판(1010)에 전사하는 과정에서, 압착에 의해 타원형으로 변형될 수 있다. 도 11에 도시된 바와 같이, 상기 제 1전극(1020)과 상기 제 1도전형 전극(1056) 사이에 존재하는 도전형 입자의 경우, 타원형의 형상을 지닌다.
도 12는 도 11의 E부분을 확대한 도면이다.
상기 도 11의 E부분은 반도체 발광 소자의 제 2도전형 반도체층(1053)에 형성된 제 2도전형 전극(1052)과 제 2전극(1040)의 연결 부위에 해당한다.
도 12에 도시된 바와 같이, 상기 제 2전극(1040)은 불규칙한 요철 구조를 구비한다. 상기 제 2전극(1040)은 배선 기판(1010)에 형성된 유기물 패드(1070)의 상부에 형성된다. 상기 유기물 패드(1070)는 복수의 나노 파티클(1071)들을 포함하고, 적어도 하나 이상의 나노 파티클이 상기 유기물 패드(1070)의 표면 상 드러나는 구조를 가짐으로써 불규칙한 표면 형상을 형성한다.
추가적으로, 상기 나노 파티클들은 배선 기판과 도전성 입자의 접촉 시, 유기물 패드의 형상을 유지시키는 저항체 역할을 하며, 디스플레이 장치 구동 시, 배선 기판으로 향하는 방출 광을 반사시켜 광추출 효율을 향상시키는 역할을 수행할 수 있다.
도 13은 도10의 디스플레이 장치를 제작하는 과정을 나타내는 순서도이다.
먼저, 성장 기판에서 반도체 발광 소자(LED)를 형성한다(S1310). 상기 반도체 발광 구조는 제 1도전형 반도체층, 활성층 및 제 2도전형 반도체층을 포함하고, 경우에 따라 버퍼 반도체층을 더 포함할 수 있다. 또한, 수평형 구조의 반도체 발광 소자의 경우, 상기 성장 기판에서 각 반도체층을 전기적으로 연결하기 위한 전극 형성이 진행된다.
이후, 상기 반도체 발광 소자(LED)를 제 1임시 기판으로 전사한다(S1320). 상기 제 1임시 기판은 예를 들어, PDMS와 같은 유연소재로 이루어질 수 있고, 복수 개의 돌기부를 구비할 수 있다.
또한, 상기 전사 단계(S1320)는 상기 반도체 발광 소자와 상기 돌기부가 오버랩되도록, 상기 성장 기판과 상기 제 1임시 기판을 얼라인(Align) 시키는 단계를 포함할 수 있다.
또한, 성장 기판에서 성장한 반도체 발광 소자가 제 1임시 기판으로 직접 전사될 수 있으나, 경우에 따라서, 별도의 조립 기판에서 조립된 반도체 발광 소자가 상기 제 1임시 기판으로 전사될 수 있다. 이 경우 상기 조립 기판의 반도체 발광 소자는 전자기장을 이용하여 유체 내에서 자가조립을 진행한 반도체 발광 소자일 수 있다. 따라서 도 11에서 언급하는 공정 순서는 본 발명의 기술적 특징을 드러내기 위한 예시적인 구성이며, 본 발명이 반드시 이에 한정하는 것은 아니다.
제 1임시 기판으로 전사된 반도체 발광 소자(LED)는 다시 제 2임시 기판으로 전사된다(S1330). 상기 제 2임시 기판에는 반도체 발광 소자의 선택적 전사를 위한 보호층 및 릴리즈층을 포함한다.
임시 기판을 이용하여 두 번의 전사 과정을 수행하는 이유는, 상기 반도체 발광 소자의 특정 면과 상기 보호층을 접촉시키기 위함이다.
예를 들어, 수평형 반도체 발광 소자는 상기 반도체 발광 소자의 한 쪽 방향으로만 도전형 전극이 형성된다. 즉, 성장 기판과 맞닿는 반도체 발광 소자의 면을 1면이라고 가정할 때, 반대되는 2면 상에 도전형 전극이 형성된다. 상기 보호층은 도전형 전극이 형성되지 않은 면과 접촉하는 것이 바람직한 바, 상기 1면과 상기 보호층을 접촉시키기 위해서는 두 번의 전사 과정이 필요하다.
다만, 반도체 발광 소자에서 도전형 전극이 형성되는 방향 및 그 밖의 목적에 따라 임시 기판의 전사 횟수는 추가될 수 있다.
이후, 제 2임시 기판에 전사된 상기 반도체 발광 소자(LED)의 상부에 이방 전도성 접착 페이스트층을 형성한다(S1340).
마지막으로, 상기 이방 전도성 접착 페이스트층이 형성된 반도체 발광 소자를 배선 기판으로 전사한다(S1350).
상기 전사 단계에서는 상기 제 2임시 기판의 후면부에 레이저를 조사하여, 제 2임시 기판 상에 형성된 보호층과 더불어 반도체 발광 소자를 분리하는 과정이 포함되며, 이에 대한 상세한 내용은 도 18 및 도 19에서 후술한다.
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 13에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 14는 도 10의 반도체 발광 소자를 성장 기판에서 형성하는 과정을 나타내는 단면도들이다.
도 14(a)에 도시된 바와 같이, 성장 기판(1011)에 제2도전형 반도체층(1053), 활성층(1054), 제1 도전형 반도체층(1055)을 차례대로 성장시킨다.
추가적으로, 버퍼 반도체층이 제 2도전형 반도체층(1053)과 상기 성장 기판(1011) 사이에 형성될 수 있다. 상기 버퍼 반도체층은 상기 성장 기판(1011)에서 성장한 반도체 발광 소자를 분리하는 과정에서 발생할 수 있는 제 2도전형 반도체층(1053)의 파손을 미연에 방지할 수 있다.
한편, 성장 기판(1011)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있다. 또한, 성장 기판(1011)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 성장 기판(1011)은 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있으나, 이에 한정하지 않는다.
나아가, 제2도전형 반도체층(1053)은 n형 반도체층으로서, n-GaN 과 같은 질화물 반도체층이 될 수 있으며, 제1도전형 반도체층(1055)은 p형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
또한, 본 발명의 다른 실시예에 따르면, 진성 또는 도핑된 반도체 기판에 불순물을 주입하여, 상기 제1도전형 반도체층(1055) 및 제2도전형 반도체층(1053)을 형성할 수 있다. 또한, 상기 불순물 주입에 의하여 p-n 접합이 형성된 영역이 상기 활성층(1053)과 같은 역할을 할 수도 있다. 상기 제1도전형 반도체층(1055), 제2도전형 반도체층(1053) 및 활성층(11054)에 대한 열거 사항은 예시적일 뿐 본 발명이 이에 한정되는 것은 아니다.
도 14(b)에 도시된 바에 같이, 성장 기판 상에서 성장한 반도체층은 식각 공정을 통해 서로 고립(isolation)된 복수의 반도체 발광 구조를 형성한다.
예를 들어, 상기 제1도전형 반도체층, 활성층, 제2도전형 반도체층 및 버퍼 반도체층의 적어도 일부를 식각하여, 상기 기판상에서 서로 고립(isolation)된 복수의 반도체 발광 구조를 형성한다. 이 경우에, 상기 식각은 성장 기판이 드러날 때까지 진행될 수 있다.
다른 예로서, 반도체 발광 소자의 사이에서 상기 제2도전형 반도체층의 일부를 남겨놓은 상태까지 식각이 진행될 수도 있다.
도 14(c)에 도시된 바와 같이, 복수의 반도체 발광 소자(1050)의 상부에 제 1도전형 전극(1056) 및 제 2도전형 전극(1052)이 형성될 수 있다. 상기 전극들(1052, 1056)을 형성하기 위해서는 포토공정, 식각공정 및 메탈 증착 공정이 각 전극 별로 수행될 수 있다. 예를 들어, 수평형 반도체 발광 소자의 경우, 따라서 최종적으로 상기 성장 기판(1011) 위에는 제1도전형 전극(1056), 제 2도전형 전극(1052), 제 1도전형 반도체층(1055), 활성층(1054), 제 2도전형 반도체층(1053)이 형성된 복수의 반도체 발광 소자(1050)가 형성될 수 있다. 또한, 상기 반도체 발광 소자(1050)는 예를 들어, 반도체 발광 소자(1050)의 측면을 감싸도록 형성되는 패시베이션층을 더 포함할 수 있다.
도 15는 도14의 반도체 발광 소자를 제 1임시 기판으로 전사하는 과정을 나타내는 도면들이다.
도 15(a)에서 도시하는 바와 같이, 제 1임시 기판(1012)상에 형성된 접착 필름(1031)을 통해 성장 기판(1011)의 반도체 발광 소자(1050)가 제 1임시 기판(1012)으로 전사될 수 있다.
상기 전사 과정 중에는, 성장 기판(1011)의 반도체 발광 소자(1050)를 선택적으로 분리하기 위해 레이저 리프트 오프(laser lift off; LLO) 과정이 수행될 수 있다. 즉, 성장 기판(1011) 측에서 분리하고자 하는 반도체 발광 소자(1050)에 레이저를 조사하면 성장 기판(1011)과 해당 반도체 발광 소자(1050)는 분리될 수 있다. 제 1임시 기판(1012)의 접착 필름(1031)은 선택적 전사에 적합한 유연 필름일 수 있다.
따라서, 도 15(b)에 도시된 바와 같이, 성장 기판(1011)에서 분리된 반도체 발광 소자(1050)의 경우, 제 1임시 기판(1012)의 접착 필름(1031)에 모두 접착될 수 있다. 상기 접착 필름(1031)은 유연성이 있어, 상기 반도체 발광 소자(1050)는 안정적으로 상기 접착 필름(1031) 상에 고정되게 된다.
도 16은 도15의 반도체 발광 소자를 제 2임시 기판으로 전사하는 과정을 나타내는 도면들이다.
도 16(a)에 도시된 바와 같이, 상기 제 2임시 기판(1013)은 보호층(1090), 보호층 하부에 형성된 릴리즈층(1091) 및 릴리즈(Release) 레이저 반사층(1092)을 구비한다.
제 2임시 기판(1013)으로 상기 반도체 발광 소자(1050)을 전사하기 위해, 제 1임시 기판(1012)과 제 2임시 기판(1013)을 압착한 후 분리한다.
상기 제 2임시 기판(1013)의 상기 보호층(1090)은 접착성분을 포함하고, 상기 접착성분에 의한 접착력은 제 1임시 기판(1012)의 접착 필름(1031)의 접착력보다 강한 것을 특징으로 한다. 따라서 도 16(b)에 도시된 바와 같이, 반도체 발광 소자(1050)는 제 1임시 기판(1012)에서 제 2임시 기판(1013)의 보호층(1090)으로 안정적으로 분리될 수 있다.
도 17은 도16의 제 2임시 기판 상의 반도체 발광 소자에 이방 전도성 접착 페이스트층을 형성한 이후의 단면도이다.
도 17에 도시된 바와 같이, 상기 제 2임시 기판(1013)의 보호층(1090) 상부에 위치한 반도체 발광 소자(1050)에 대해, 도전성 입자(1081)를 함유한 이방 전도성 접착 페이스트층(1080)를 코팅된다.
상기 이방 전도성 접착 페이스트층(1080)를 코팅하기 위해, 스핀 코팅(spin coating), 바 코팅(bar coating) 및 슬릿 코팅(slit coating) 등 다양한 방법 중 하나를 선택할 수 있다.
또한 상기 이방 전도성 접착 페이스트층(1080)은 반도체 발광 소자의 휘도 개선을 위한 TiO2 나노 파티클 또는 코팅 특성 향상을 위한 실리카 재질의 나노 파티클을 포함할 수 있다.
도 18은 도17의 반도체 발광 소자를 배선 기판으로 전사하는 과정을 나타내는 도면들이다.
도 18(a)에 도시된 바와 같이, 제 2임시 기판(1013) 상에 위치하는 반도체 발광 소자(1050)는 배선 기판(1010)과 마주보도록 뒤집어서 전사한다. 즉, 상기 반도체 발광 소자(1050) 상에 코팅된 도전성 입자(1081)를 포함한 이방 전도성 접착 페이스트층(1080)이 상기 배선 기판(1010) 상에 형성된 제 1전극(1020) 및 제 2전극(1040)과 접촉할 수 있도록 위치시킨다.
이후, 상기 제 2임시 기판(1013)과 상기 배선 기판(1010)을 압착하고, 상기 제 2임시 기판(1013)의 후면부에 레이저를 조사하여, 상기 제 2임시 기판 상에 기 형성된 보호층과 릴리즈층(Release layer) 사이를 분리시킨다.
도 18(b)는 상기 제 2임시 기판(1013)에서 상기 배선 기판(1010)으로 상기 반도체 발광 소자(1050)가 전사된 이후의 형상을 도시한 도면이다.
상기 제 2임시 기판(1013)에는 릴리즈 레이저 반사층(1092) 및 릴리즈층(1091)은 그대로 위치하고 있으며, 일부 보호층(1093) 및 일부 도전성 입자(1082)를 포함한 이방 전도성 접착 페이스트층(1083)만이 잔존한다.
상기 보호층(1093) 및 도전성 입자(1082)를 포함한 이방 전도성 접착 페이스트층(1083)은 기존에 제 2임시 기판(1013)에 위치했던 반도체 발광 소자들의 사이 영역에 존재하는 것들이다.
즉, 전사 과정에서, 반도체 발광 소자(1050) 상에 위치한 보호층(1090) 및 상기 반도체 발광 소자(1050)을 감싸는 이방 전도성 접착 페이스트층은 함께 배선 기판(1010)으로 전사된다.
도 18(b)에 도시된 바와 같이, 상기 배선 기판(1010) 상에는 제 1전극(1020) 및 제 2전극(1040)이 위치하고, 상기 전극들(1020,1040) 상에 반도체 발광 소자(1050)가 배치된다. 또한 상기 반도체 발광 소자(1050) 상측면에는 보호층(1090)이 존재한다. 또한, 상기 반도체 발광 소자(1050)의 측면 및, 상기 반도체 발광 소자(1050)과 상기 전극들(1020,1040) 사이에 이방 전도성 접착 페이스트층이 위치한다. 나아가, 상기 전극들(1020,1040)과 반도체 발광 소자(1050) 사이의 이방 전도성 접착 페이스트층은 전사과정 중 압착되고, 상기 이방 전도성 접착 페이스트층의 도전성 입자에 의해 상기 반도체 발광 소자(1050)과 전극들(1020,1040)을 전기적으로 연결시킨다.
종래, 이방 전도성 접착 필름(Anisotropic conductive adhesive film)를 사용하여 배선 전극과 반도체 발광 소자를 연결하는 경우, 상기 전도성 필름에 포함된 도전성 입자에 의해 반도체 발광 소자들간의 쇼트(short) 또는 오픈(Open)불량이 발생할 가능성이 농후했다. 즉, 도전성 입자의 농도가 미약한 경우, 상기 도전성 입자에 의한 전극 간의 전기적 연결이 어렵다는 단점이 있었다. 또한, 상기 도전성 입자가 과도한 경우, 상기 도전성 입자들이, 원하지 않은 영역, 예를 들어 소자와 소자의 사이에서도 하나의 배선처럼 형성되어 쇼트 불량을 유발하였다. 따라서 상기 도전성 입자의 농도를 조절하는 것은 중요한 문제였으나, 접착 압력 및 도전성 입자의 크기 등의 변수가 다양하여, 적절한 농도 지점을 설정하기 어려운 단점이 있었다.
하지만 본 발명의 경우, 이방 전도성 접착 페이스트층을 사용함과 동시에, 상기 이방 전도성 접착 페이스트층이 개별 반도체 발광 소자의 도전형 전극부 및 그 인근에만 선택적으로 형성되게 함으로써, 상기 도전성 입자에 따른 불량 문제를 최소화시킬 수 있다.
도 19은 도18의 반도체 발광 소자가 배선 기판으로 전사되는 과정을 구체적으로 나타내는 순서도이다.
도18에서 간략하게 전술하였듯이, 먼저 배선 기판과 제 2임시 기판을 마주보도록 배치하고 압착한다(S1910).
이후 제 2임시 기판의 후면부에 레이저를 조사한다(S1920). 상기 레이저는 UV(Ultra Violet) 또는 가시광 영역대의 레이저일 수 있다. 상기 레이저의 진행 방향은 제 2임시 기판, 제 2임시 기판 상에 형성된 릴리즈 레이저 반사층 또는 릴리즈층의 순서이다. 상기 레이저가 릴리즈 레이저 반사층에 조사되면, 더 이상 상기 레이저는 직진하지 못하고 반사되어 상기 릴리즈 레이저 반스층 상부에 위치한 릴리즈층 및 보호층에는 영향을 주기 어렵다. 하지만 예를 들어, 릴리즈 레이저 반사층이 형성되지 않은 영역에서는 릴리즈층 및 릴리즈층의 상부에 형성된 보호층에 영향을 주게 된다.
상기 레이저에 의해, 상기 릴리즈층은 상기 레이저의 파장에 대응하는 에너지를 흡수하고 이에 따른 열이 발생한다. 따라서 상기 열에 의해 상기 릴리즈층의 계면 형상은 변화하게 된다(S1930).
한편, 상기 릴리즈층의 상부에 형성된 보호층의 경우 상기 레이저에 의해 발생된 열을 견딜 수 있는 고내열성 재료로 형성된다. 따라서 상기 레이저에 의해 상기 릴리즈층은 기화 등의 이유로 형상이 변하는 반면, 상기 보호층의 형상은 그대로 유지될 수 있다. 따라서 레이저가 조사되는 시간이 경과함에 따라, 상기 릴리즈층과 상기 보호층 사이는 박리된다(S1940).
한편, 상기 보호층과 반대면에 형성된, 상기 반도체 발광 소자의 도전형 전극 및 그 주변부에 위치하는 이방 전도성 접착 페이스트층은 상기 압착 단계(S1910)에서 배선 기판과 강하게 접촉하게 되고, 이에 따라 상기 배선 기판 및 상기 반도체 발광 소자 사이에서 강한 접착력을 유지한다.
따라서 배선 기판과 제 2임시 기판을 압착 후 분리하는 경우, 제 2임시 기판의 반도체 발광 소자는 상기 제 2임시 기판 상에 기 형성된 보호층과 함께 배선 기판으로 전사된다(S1950). 즉, 상기 반도체 발광 소자 및 상기 반도체 발광 소자와 오버랩되는 보호층만이 릴리즈층과의 계면 박리에 의해 함께 전사된다. 이는 제 2임시 기판에 상기 반도체 발광 소자가 위치하는 영역에는 릴리즈 레이저 반사층이 형성되지 않아 레이저에 의한 영향을 받은 결과이다. 다른 한편, 제 2임시 기판에 상기 반도체 발광 소자가 위치하지 않는 영역은 릴리즈 레이저 반사층을 구비하고, 이에 따라 레이저에 의한 영향을 받지 않아, 릴리즈층과 보호층의 박리가 발생하지 않는다. 상기 릴리즈층과 릴리즈 레이저 반사층의 형성과정 및 구조에 대한 보다 자세한 설명은 도 20에서 후술한다.
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 19에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 20은 반도체 발광 소자 및 이방 전도성 접착 페이스트층의 선택적 전사를 위해 제 2임시 기판에 다중 레이어 구조를 형성하는 과정을 나타내는 순서도이다.
먼저 제 2임시 기판을 준비한다(S2010). 이후 상기 기판 상에 릴리즈 레이저 반사층을 선택적으로 형성한다(S2020). 상기 선택적 형성을 위해 포토공정 및 식각 공정이 수행될 수 있다. 또한 상기 반사층 형성을 위해 PVD(Physical Vapor Deposition) 또는 스퍼터링 공정이 수행될 수 있다.
상기 선택적 형성의 의미는 상기 제 2임시 기판 상에 반도체 발광 소자가 전사되지 않는 영역에 상기 릴리즈 레이저 반사 금속층을 형성하는 것이다. 편의상, 예를 들어, 제 2임시 기판으로 반도체 발광 소자가 전사되지 않는 영역을 제 1영역, 반도체 발광 소자가 전사되는 영역을 제 2영역이라고 정의한다.
이후, 릴리즈층을 형성한다(S2030). 상기 릴리즈층은 릴리즈 레이저 반사층을 포함한 제 2임시 기판의 전 영역에 형성한다.
상기 릴리즈층은 ITO, Amorphous Silicon, black carbon 또는 TiO2 나노 파티클을 포함한 레진 중 적어도 어느 하나를 포함할 수 있다.
마지막으로 상기 릴리즈층 상부에 보호층을 형성한다(S2040). 상기 보호층은 UV(Ultra Violet) 레진 또는 열경화성 레진을 포함할 수 있다. 따라서, 전사 과정에서 사용되는 레이저에 의해 경화될 수 있으며, 이에 따라 상기 보호층의 하부에 형성되는 릴리즈층과 계면 박리를 가속화할 수 있다.
또한, 상기 보호층은 반도체 발광 소자가 배선 기판으로 전사되는 경우, 함께 전사되는 바, 상기 반도체 발광 소자의 굴절률을 고려하여 특정 굴절률로 형성할 수 있다. 즉, 상기 보호층의 제 1굴절률은 상기 반도체 발광 소자의 제 2굴절률보다 작게 형성할 수 있다. 예를 들어, 반도체 발광 소자가 GaN인 경우, 상기 반도체 발광 소자의 굴절률은 약 2.4인 바, 상기 보호층의 굴절률은 1.5 내지 2.3 사이의 값으로 설정하여 상기 반도체 발광 소자에서 방출된 빛이 다시 상기 소자 내부로 전반사되는 현상을 방지할 수 있다.
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 20에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 21은 도 20의 방법에 의해 형성된 제 2임시 기판의 다중 레이어 구조를 나타내는 단면도이다.
도 21에 도시된 바와 같이, 상기 제 2임시 기판(1013) 상부에 선택적으로 릴리즈 레이저 보호층(1092)이 위치한다. 또한, 상기 릴리즈 레이저 보호층을 포함한 제 2임시 기판(1013)의 전 영역에 릴리즈층(1091) 및 보호층(1090)이 위치한다.
상기 릴리즈 레이저 보호층(1092)이 위치한 영역은 도21에 도시된 바와 같이, F영역에 해당한다. 한편, 도 21의 S영역은 릴리즈 레이저 보호층이 형성되지 않는 영역으로, 전사 과정에서 반도체 발광 소자가 위치할 영역이다.
따라서, 제 2임시 기판(1013)의 후면부에 레이저를 조사하는 경우, 상기 레이저는 S영역의 릴리즈층(1091) 및 보호층(1090)에는 영향을 주게 되나, F영역은 릴리즈 레이저 반사층(1092)에 의해 상기 F영역의 릴리즈층(1091) 및 보호층(1090)에는 영향을 주기 어렵다.
도 22는 불규칙한 요철 구조를 구비한 배선 전극을 제작하는 과정을 나타내는 순서도이다.
먼저, 배선 기판을 준비한다(S2210). 이후 상기 배선 기판 상에 나노 파티클을 함유한 유기 용액을 코팅한다(S2220).
상기 유기 용액은 휘발 성분을 제거하여 유기층의 형태로 상기 배선 전극 상부에 존재한다. 이후, 상기 유기층에 대해 포토 공정 및 식각 공정을 수행하여, 반도체 발광 소자의 도전형 전극부와 대응하는 위치에 유기물 패드를 형성한다(S2230).
나아가 상기 유기물 패드의 표면 형상을 변화시키기 위해 애싱 공정을 수행한다(S2240). 마지막으로, 상기 유기물 패드의 상부에 배선 전극을 형성한다(S2250).
상기 애싱 공정을 통해 상기 유기물 패드의 표면은 불규칙한 요철 구조를 가지게 된다. 따라서 상기 유기물 패드 상부에 형성된 배선 전극 또한 불규칙한 요철 구조를 지니게 되는데, 보다 자세한 내용은 도 23에서 후술한다.
한편, 본 명세서의 전 취지에 비추어 보아, 당업자가 이해 가능한 수준에서, 도 22에 도시된 순서도의 일부 단계를 삭제, 변경하는 것도 본 발명의 다른 권리범위에 속한다.
도 23은 불규칙한 요철 구조를 구비한 배선 전극을 제작하는 과정을 나타내는 단면도들이다.
도 23(a)는 배선 기판(1010) 상에 나노 파티클(1071)을 함유한 유기층(1072)을 형성한 이후의 단면도이다.
전술하였듯이, 나노 파티클(1071)을 함유한 유기 용액을 상기 배선 기판(1010) 에 코팅한다. 상기 코팅 방법으로는 스핀 코팅이 이용될 수 있다. 상기 스핀 코팅의 경우, 회전 속도와 시간의 조절을 통해 비교적 간단하게 코팅 두께를 조절할 수 있으며, 대면적의 유기 용액 코팅에 유리하다. 다만, 상기 코팅 방법은 예시적인 사항일 뿐, 본 발명의 이에 한정되는 것은 아니다.
이후 소프트 베이킹(Baking) 공정을 통해 상기 유기 용액의 휘발성분(solvent)이 제거되고, 비교적 고체화된 유기층(1072)이 상기 배선 기판(1010)의 상부에 형성된다.
상기 유기층(1072)의 성분은 예를 들어, 감광성 유기 성분을 포함한다. 상기 감광성 유기 성분은 감광성 아크릴레이트, PAC(Photo Active Compounds)일 수 있다.
또한, 상기 나노 파티클(1071)은 예를 들어, 10nm 내지 300nm의 무기물 또는 금속 성분일 수 있다.
이후, 도 23(b)에 도시된 바와 같이, 상기 유기층(1072)에 대해 포토 공정 및 식각 공정을 수행하여, 반도체 발광 소자의 도전형 전극부와 대응하는 위치에 유기물 패드(1073)를 형성한다.
나아가, 상기 유기물 패드(1073)의 표면 형상을 변화시키기 위해, 상기 유기물 패드에 애싱 공정을 수행한다.
도 23(c)는 애싱 이후 상기 유기물 패드의 형상을 나타내는 단면도이다.
상기 애싱 공정을 통해, 예를 들어, O2 플라즈마에 상기 유기물 패드의 표면을 수 초간 노출시킴으로써 상기 유기물 패드의 표면의 형상을 변형시키게 된다. O2 플라즈마는 나노 파티클보다는 유기물을 제거하는데 효과적인 바, 플라즈마 처리가 지속될수록 유기물 패드 내의 나노 파티클(1071)은 유기물 패드(1070)의 표면으로 드러나게 된다. 따라서 애싱 공정 이후, 상기 유기물 패드(1070)의 표면은 불규칙한 요철 구조를 형성한다.
이후, 도 23(d)에 도시된 바와 같이, 상기 배선 전극(1020)은 상기 불규칙한 요철 구조를 구비한 유기물 패드(1070)의 상부에 형성된다. 따라서, 상기 배선 전극(1020) 또한 상기 유기물 패드(1070)의 표면에 돌출된 나노 파티클(1071)에 의해 표면 형상이 불규칙한 요철 구조를 구비하게 된다.
상기 배선 기판(1010) 상에 위치한 배선 전극(1020)에 있어서, 상기 불규칙한 요철 구조 및 상기 유기물 패드가 효과적인 이유는 다음과 같다.
전술하였지만, 배선 전극은 반도체 발광 소자의 도전형 전극부와 전기적으로 연결되는 영역이다. 또한 본 발명에서는, 상기 전극부와 상기 배선 전극 사이에는 이방 전도성 접착 페이스트층이 존재하고, 상기 페이스트층의 도전성 입자에 의해 전기적으로 연결된다. 따라서 상기 도전성 입자가 상기 도전형 전극부 또는 상기 배선 전극과 정확히 접촉하지 않으면 불량이 발생하게 된다. 또한 상기 도전성 입자가 정확히 접촉되더라도, 접착 과정에서 강한 충격에 의해 상기 배선 전극 또는 상기 도전형 전극부가 손상을 입을 수 있다.
따라서, 불규칙한 요철 구조의 경우, 상기 도전성 입자와 접촉 면적을 늘림으로써, 도전성 입자와 배선 전극간의 접착력 및 접착 확률을 증가시켜 상기 불량을 예방할 수 있다. 또한 배선 전극 하부에 형성된 상기 유기물 패드는 상기 도전성 입자와 상기 배선 전극의 접착 과정에서 발생하는 충격을 완화시켜주어 상기 배선 전극의 손상을 방지한다.
정리하면, 본 발명은 이방 전도성 접착 페이스트층을 이용하여 반도체 발광 소자를 배선 기판에 전사함과 동시에 배선 공정을 수행하게 한다. 상기 이방 전도성 접착 페이스트층은 상기 반도체 발광 소자가 배선 전극과 연결되는 영역 및 그 주변부만 형성되어 소자 간의 쇼트 불량의 위험성을 감소시킨다. 또한 상기 배선 전극은 불규칙한 요철 구조 및 하부에 유기물 패드를 구비하여, 상기 페이스트층의 도전성 입자와 접촉하기 용이하게 하고, 접촉 시 충격을 완화시킨다. 따라서 본 발명을 이용하면, 반도체 발광 소자가 안정적으로 배선 기판에 전사됨과 동시에 쇼트(short) 및 오픈(open) 불량을 최소화하는 배선 공정이 수행되는 효과를 가질 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법에 있어서,
    성장 기판에서 반도체 발광 소자를 형성하는 단계;
    상기 반도체 발광 소자를 제 1임시 기판으로 전사하는 단계;
    상기 제 1임시 기판의 상기 반도체 발광 소자를 보호층을 포함하는 제 2임시 기판으로 전사하는 단계;
    상기 제 2임시 기판에 전사된 상기 반도체 발광 소자의 상측면에 이방 전도성 접착 페이스트층을 형성하는 단계;
    상기 제 2임시 기판에 위치한 상기 반도체 발광 소자를 배선 전극이 형성된 배선 기판으로 전사하는 단계를 포함하되,
    상기 배선 기판으로 전사된 상기 반도체 발광 소자는, 상기 배선 전극과 접촉하는 일면에는 상기 이방 전도성 접착 페이스트층을 구비하고, 상기 배선 전극과 접촉하지 않는 상기 반도체 발광 소자의 반대면은 보호층을 구비하며,
    상기 배선 전극은 불규칙한 요철 구조를 포함하는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
  2. 제 1항에 있어서,
    상기 반도체 발광 소자를 형성하는 단계는,
    제 1도전형 반도체층, 활성층 및 제 2도전형 반도체층을 포함하는 적층구조; 상기 적층구조의 상기 제 1도전형 반도체층과 전기적으로 연결되는 제 1도전형 전극; 및 상기 적층구조의 상기 제 2도전형 반도체층과 전기적으로 연결되는 제 2도전형 전극을 형성하는 단계를 포함하고,
    상기 제 1 임시 기판으로 전사하는 단계는,
    상기 반도체 발광 소자의 상기 제 1도전형 전극 및 상기 제 2도전형 전극이 상기 제 1임시 기판과 접촉하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  3. 제 2항에 있어서,
    상기 제 2임시 기판으로 전사하는 단계는,
    상기 반도체 발광 소자의 상기 제 2도전형 반도체층이 상기 제 2임시 기판의 상기 보호층과 접촉하는 단계를 포함하는 디스플레이 장치의 제조 방법.
  4. 제 3항에 있어서,
    상기 제 2임시 기판은
    상기 보호층;
    상기 보호층의 하부에 위치하는 릴리즈층(Release layer); 및
    상기 릴리즈층의 하부에 위치하고, 상기 제 2임시 기판의 제 1영역에 선택적으로 형성되는 릴리즈(Release) 레이저 반사층을 포함하는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
  5. 제 4항에 있어서,
    상기 제 2임시 기판은,
    상기 제 2임시 기판과 수평 방향을 기준으로, 상기 반도체 발광 소자가 전사되지 않는 상기 제 1영역 및 상기 반도체 발광 소자가 전사되어, 위치하는 제 2영역을 포함하는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
  6. 제 5항에 있어서,
    상기 배선 기판으로 전사하는 단계는,
    상기 제 2임시 기판의 상기 보호층과 상기 제 2임시 기판의 상기 릴리즈층의 사이가 분리되는 단계; 및,
    상기 반도체 발광 소자 및 상기 반도체 발광 소자와 접촉하는 상기 보호층이 상기 제 2임시 기판에서 분리되어, 상기 배선 기판으로 전사되는 단계를 포함하는 디스플레이 장치의 제조 방법.
  7. 제 6항에 있어서,
    상기 보호층과 상기 릴리즈층의 사이가 분리되는 단계는,
    상기 반도체 발광 소자가 전사되는 면이 아닌 상기 제 2임시 기판의 후면부로 UV(Ultra Violet) 또는 가시광 영역대의 레이저를 조사하는 단계; 및,
    상기 릴리즈 레이저 반사층이 구비되지 않은 상기 제 2임시 기판의 상기 제 2영역에서, 상기 릴리즈층이 상기 조사된 레이저에 의해 계면 형상이 변형되는 단계; 를 포함하는 디스플레이 장치의 제조 방법.
  8. 제 1항에 있어서,
    상기 배선 전극은, 불규칙한 요철 구조를 포함하는 유기물 패드의 상부에 형성되고,
    상기 유기물 패드는, 복수의 나노 파티클들을 포함하고, 상기 복수의 나노 파티클들 중 적어도 하나 이상의 나노 파티클이 상기 유기물 패드의 표면에 노출되는 구조를 가지는 것을 특징으로 하는 디스플레이 장치의 제조 방법.
  9. 제 1항에 있어서,
    상기 제 1 임시 기판은 돌기부를 포함하고,
    상기 반도체 발광 소자를 상기 제 1 임시 기판으로 전사하는 단계는,
    상기 반도체 발광 소자와 상기 돌기부가 오버랩되도록, 상기 성장 기판과 상기 제 1임시 기판을 얼라인(Align) 시키는 단계를 포함하는 디스플레이 장치의 제조 방법.
  10. 기판;
    상기 기판 위에 위치하는 불규칙적인 요철 구조를 가지는 유기물 패드;
    상기 유기물 패드 상에 위치하는 배선 전극;
    상기 배선 전극 상에 위치하는 도전성 입자를 포함하는 이방 전도성 접착 페이스트층;
    상기 이방 전도성 접착 페이스트층 상에 위치하고, 상기 페이스트층의 상기 도전성 입자에 의해 상기 배선 전극과 전기적으로 연결되는 반도체 발광 소자; 및
    상기 배선 전극과 연결되지 않는 상기 반도체 발광 소자의 상측면에 구비되는 보호층을 포함하고,
    상기 유기물 패드는 복수의 나노 파티클들을 포함하고, 상기 복수의 나노 파티클들 중 적어도 하나 이상의 나노 파티클이 상기 유기물 패드의 표면에 노출되는 구조를 가지는 것을 특징으로 하는 디스플레이 장치.
  11. 제 10항에 있어서,
    상기 반도체 발광 소자는,
    제 1도전형 반도체층, 활성층, 제 2도전형 반도체층, 상기 제 1도전형 반도체층 상에 위치하는 제 1도전형 전극; 및
    상기 제 1도전형 반도체층 및 상기 활성층의 일부가 식각되어 상기 제 2도전형 반도체층이 노출된 영역에 위치하는 제 2도전형 전극; 을 포함하는 수평형 반도체 발광 구조인 것을 특징으로 하는 디스플레이 장치.
  12. 제 11항에 있어서,
    상기 반도체 발광 소자의 상기 제 2도전형 반도체층은 상기 보호층과 접촉하고,
    상기 반도체 발광 소자의 상기 제 1도전형 전극 및 상기 제 2도전형 전극은 상기 이방 전도성 접착 페이스트층과 접촉하는 것을 특징으로 하는 디스플레이 장치.
  13. 제 12항에 있어서,
    상기 보호층은,
    상기 제 2도전형 반도체층의 적어도 일 측면보다 돌출되어 형성되는 것을 특징으로 하는 디스플레이 장치.
  14. 제 10항에 있어서,
    상기 보호층은 UV(Ultra Violet) 레진 또는 열경화성 레진인 것을 특징으로 하는 디스플레이 장치.
  15. 제 10항에 있어서,
    상기 보호층의 제 1굴절율은 상기 반도체 발광 소자의 제 2굴절률보다 작은 것을 특징으로 하는 디스플레이 장치.
  16. 제 15항에 있어서,
    상기 제 1굴절율은 1.5 내지 2.3 사이의 굴절율을 가지는 것을 특징으로 하는 디스플레이 장치.
  17. 제 1항에 있어서,
    상기 반도체 발광 소자는 마이크로미터 단위의 크기를 가진 LED(Micro-LED)인 것을 특징으로 하는 디스플레이 장치.
PCT/KR2019/008980 2019-07-19 2019-07-19 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 WO2021015306A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/623,855 US20220367771A1 (en) 2019-07-19 2019-07-19 Display device using micro led, and manufacturing method therefor
EP19938629.3A EP4002469A4 (en) 2019-07-19 2019-07-19 MICRO-LED DISPLAY DEVICE AND METHOD OF MAKING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190087673A KR20190092331A (ko) 2019-07-19 2019-07-19 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR10-2019-0087673 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021015306A1 true WO2021015306A1 (ko) 2021-01-28

Family

ID=67621814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008980 WO2021015306A1 (ko) 2019-07-19 2019-07-19 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Country Status (4)

Country Link
US (1) US20220367771A1 (ko)
EP (1) EP4002469A4 (ko)
KR (1) KR20190092331A (ko)
WO (1) WO2021015306A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635017B (zh) * 2019-08-09 2021-07-09 惠州市志金电子科技有限公司 一种miniled背光基板封装方法
JP7474770B2 (ja) * 2019-09-18 2024-04-25 泉州三安半導体科技有限公司 発光ダイオードパッケージアセンブリ
US11424214B1 (en) * 2019-10-10 2022-08-23 Meta Platforms Technologies, Llc Hybrid interconnect for laser bonding using nanoporous metal tips
CN110838502B (zh) * 2019-10-28 2024-04-19 厦门乾照半导体科技有限公司 发光二极管芯片及制作和转移方法、显示装置及制作方法
KR20200026774A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR102465730B1 (ko) * 2020-03-06 2022-11-14 웨이브로드 주식회사 반도체 발광소자 및 이를 제조하는 방법
KR102403425B1 (ko) * 2019-12-27 2022-05-31 웨이브로드 주식회사 마이크로 엘이디 디스플레이를 제조하는 방법
TWI731712B (zh) * 2020-06-12 2021-06-21 友達光電股份有限公司 發光裝置及發光裝置的製造方法
WO2022050621A1 (en) * 2020-09-01 2022-03-10 Samsung Electronics Co., Ltd. Intermediate structure for manufacturing micro light emitting diode display, method of manufacturing the same, and method of manufacturing micro led display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526052A (ja) * 2010-04-30 2013-06-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 積層された蛍光体層を有するledのウエハー
KR20150039689A (ko) * 2013-10-03 2015-04-13 가부시끼가이샤 도시바 복합 수지 및 전자 디바이스
KR20180103093A (ko) * 2016-02-18 2018-09-18 애플 인크. 마이크로드라이버 및 마이크로 led에 대한 백플레인 구조 및 프로세스
KR20180114439A (ko) * 2017-04-10 2018-10-18 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR101946166B1 (ko) * 2017-11-20 2019-02-08 한국광기술원 3-5족 화합물 반도체 기반 광소자 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423832B2 (en) * 2014-03-05 2016-08-23 Lg Electronics Inc. Display device using semiconductor light emitting device
KR101620469B1 (ko) * 2014-11-13 2016-05-23 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법
KR102591412B1 (ko) * 2016-02-16 2023-10-19 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20180055549A (ko) * 2016-11-17 2018-05-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
TWI650854B (zh) * 2017-10-31 2019-02-11 英屬開曼群島商錼創科技股份有限公司 微型發光二極體顯示面板及其製造方法
US10797027B2 (en) * 2017-12-05 2020-10-06 Seoul Semiconductor Co., Ltd. Displaying apparatus having light emitting device, method of manufacturing the same and method of transferring light emitting device
US20220336712A1 (en) * 2019-06-21 2022-10-20 Lg Electronics Inc. Display device using micro led, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526052A (ja) * 2010-04-30 2013-06-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 積層された蛍光体層を有するledのウエハー
KR20150039689A (ko) * 2013-10-03 2015-04-13 가부시끼가이샤 도시바 복합 수지 및 전자 디바이스
KR20180103093A (ko) * 2016-02-18 2018-09-18 애플 인크. 마이크로드라이버 및 마이크로 led에 대한 백플레인 구조 및 프로세스
KR20180114439A (ko) * 2017-04-10 2018-10-18 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR101946166B1 (ko) * 2017-11-20 2019-02-08 한국광기술원 3-5족 화합물 반도체 기반 광소자 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4002469A4 *

Also Published As

Publication number Publication date
KR20190092331A (ko) 2019-08-07
US20220367771A1 (en) 2022-11-17
EP4002469A1 (en) 2022-05-25
EP4002469A4 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2021015306A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021002490A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040102A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040066A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021033802A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020251076A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021025202A1 (ko) 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 기판
WO2015133821A1 (en) Display device using semiconductor light emitting device
WO2021070977A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2021066221A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021080028A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2018092977A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021054491A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2016003019A1 (en) Display device using semiconductor light emitting device
WO2021125421A1 (ko) 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
EP3072035A1 (en) Display apparatus using semiconductor light emitting device
WO2021100955A1 (ko) 발광 소자를 이용한 디스플레이 장치
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021060577A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021033801A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021006385A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2019135441A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938629

Country of ref document: EP

Effective date: 20220221