WO2018092977A1 - 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 - Google Patents

반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 Download PDF

Info

Publication number
WO2018092977A1
WO2018092977A1 PCT/KR2016/015338 KR2016015338W WO2018092977A1 WO 2018092977 A1 WO2018092977 A1 WO 2018092977A1 KR 2016015338 W KR2016015338 W KR 2016015338W WO 2018092977 A1 WO2018092977 A1 WO 2018092977A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
electrode
conductive adhesive
emitting device
Prior art date
Application number
PCT/KR2016/015338
Other languages
English (en)
French (fr)
Inventor
최환준
위경태
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/461,282 priority Critical patent/US11189767B2/en
Priority to EP16921607.4A priority patent/EP3544386B1/en
Publication of WO2018092977A1 publication Critical patent/WO2018092977A1/ko
Priority to US17/511,268 priority patent/US11799063B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a display device and a method for manufacturing the same, and more particularly, to a display device using a semiconductor light emitting device.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • LED Light Emitting Diode
  • LED is a well-known semiconductor light emitting device that converts current into light.
  • red LEDs using GaAsP compound semiconductors were commercialized. It has been used as a light source for display images of electronic devices including communication devices. Accordingly, a method of solving the above problems by implementing a display using the semiconductor light emitting device may be proposed.
  • the present invention proposes a mechanism that can implement a variety of transcription while reducing manufacturing costs.
  • An object of the present invention is to provide a method of manufacturing a display device that can reduce the manufacturing cost.
  • Another object of the present invention is to provide a method of manufacturing a display device capable of transferring red, green, and blue semiconductor light emitting devices onto a single wiring board.
  • Another object of the present invention is to provide a mechanism capable of large area wafer transfer in a display device.
  • the display device by applying a pattern of a liquid conductive adhesive layer on the wafer, to implement a variety of transfer.
  • the display apparatus may include a wiring board including a wiring electrode, a conductive adhesive layer covering the wiring electrode, and a plurality of semiconductor light emitting devices coupled to the conductive adhesive layer and electrically connected to the wiring electrode.
  • the conductive adhesive layer is applied in a patterned form on each electrode of the semiconductor light emitting devices, and includes a plurality of adhesive regions spaced apart from each other on the wiring board.
  • the plurality of adhesive regions may include at least one of an anisotropic conductive adhesive (ACA), an anisotropic conductive paste, a silver paste, a tin paste, and a solder paste.
  • ACA anisotropic conductive adhesive
  • a white pigment may be added to the anisotropic conductive adhesive.
  • An inorganic powder may be added to the anisotropic conductive adhesive.
  • an insulating material is disposed between the plurality of adhesive regions to fill the plurality of semiconductor light emitting devices.
  • the insulating material may be formed of a material different from the conductive adhesive layer.
  • the first semiconductor light emitting element and the second semiconductor light emitting device is grown on a growth substrate, applying a conductive adhesive on the electrodes of the first semiconductor light emitting device, and the first semiconductor light emitting Removing the growth substrate after alignment of the devices to the first wiring board including the wiring electrodes, applying the conductive adhesive on the electrodes of the second semiconductor light emitting devices, and the second semiconductor.
  • a method of manufacturing a display device comprising: aligning light emitting devices to a second wiring substrate, and then removing the growth substrate.
  • the conductive adhesive may be selectively pattern printed on the growth substrate by at least one of screen printing, dispensing, and liquid pattern transfer.
  • the method of manufacturing the display apparatus may include printing or coating an insulating material on the growth substrate after the conductive adhesive is pattern printed on the growth substrate.
  • the present invention is to grow the green semiconductor light emitting device and the blue semiconductor light emitting device separately on the growth substrate to grow the light emitting structure of the green semiconductor light emitting device and the blue semiconductor light emitting device, the electrodes of the green semiconductor light emitting device or Applying a conductive adhesive to a first portion of the wiring electrode of the wiring substrate corresponding to the green semiconductor light emitting elements, coupling the green semiconductor light emitting elements to the first portion, and the blue semiconductor light emitting elements And applying the conductive adhesive to an electrode or a second portion of the wiring electrode corresponding to the blue semiconductor light emitting elements, and coupling the blue semiconductor light emitting elements to the second portion. Initiate.
  • the method of manufacturing the display apparatus may include aligning growth substrates of the green semiconductor light emitting devices to another wiring board, and transferring the green semiconductor light emitting devices to the other wiring board.
  • the green semiconductor light emitting devices may be coupled to the first part so that the semiconductor light emitting devices pre-coupled to the other wiring substrate may be aligned at a portion where the green semiconductor light emitting devices are not present.
  • the red semiconductor light emitting devices may be grown on separate growth substrates, and the conductive adhesive may be applied to the electrodes of the red semiconductor light emitting devices or to a third portion of the wiring electrodes corresponding to the red semiconductor light emitting devices. And coupling the red semiconductor light emitting devices to the third portion.
  • the semiconductor light emitting device in order to partially print a liquid conductive adhesive on a wafer or a wiring board, the semiconductor light emitting device can be transferred in a pattern of a desired shape, thereby implementing a manufacturing method having a very wide application field. .
  • a display device including a semiconductor light emitting device is manufactured without a photo-litho graph process, whereby the manufacturing process is simple and inexpensive.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along the lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3.
  • 5A through 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the invention.
  • FIG. 8 is a cross-sectional view taken along the line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which a semiconductor light emitting device having a new structure is applied.
  • FIG. 11A is a cross-sectional view taken along the line E-E of FIG. 10.
  • FIG. 11B is a cross-sectional view taken along the line F-F of FIG. 11.
  • FIG. 12 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 11A.
  • FIGS. 13A and 13B are conceptual views illustrating a case in which an anisotropic conductive film is attached on a wafer of a semiconductor light emitting device and a case in which a plurality of adhesive regions are patterned.
  • 14A and 14B are conceptual views illustrating a case where an anisotropic conductive film is attached on a wiring board and a case where a plurality of adhesive regions are patterned.
  • 15 is a cross-sectional view illustrating an embodiment of a display apparatus when a plurality of adhesive regions are patterned.
  • 16, 17 and 18 are conceptual views illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • 20A, 20B and 21 are conceptual views illustrating another example of a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • 22 and 23 are conceptual diagrams illustrating another manufacturing method of the present invention.
  • 24 and 25 are conceptual views illustrating a manufacturing method of bonding and transferring only blue and green semiconductor light emitting devices onto a wiring board.
  • FIG. 26 is a conceptual diagram illustrating a process of selectively transferring a semiconductor light emitting device using a donor substrate.
  • the display device described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and a slate PC. , Tablet PC, Ultra Book, digital TV, desktop computer.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Ultra Book
  • digital TV desktop computer
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • the information processed by the controller of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes a display that can be bent, bent, twisted, foldable, or rollable by external force.
  • a flexible display can be a display fabricated on a thin, flexible substrate that can be bent, bent, folded, or rolled like a paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area may be a curved surface in a state in which the first state is bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state).
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of portion A of FIG. 1
  • FIGS. 3A and 3B are cross-sectional views taken along lines BB and CC of FIG. 2
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3A.
  • 5A through 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 100 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is disposed, and the auxiliary electrode 170 may be positioned on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be one wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, and PEN, and can be formed integrally with the substrate 110 to form one substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150.
  • the auxiliary electrode 170 is disposed on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 passing through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via material with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer is formed between the insulating layer 160 and the conductive adhesive layer 130 or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the conductive adhesive layer 130 may be mixed with a conductive material and an adhesive material.
  • the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles coated by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure are applied becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • solutions containing conductive particles can be solutions in the form of conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device may include a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( The n-type semiconductor layer 153 formed on the 154 and the n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 by the conductive adhesive layer 130, and the n-type electrode 152 may be electrically connected to the second electrode 140.
  • the auxiliary electrode 170 is formed to be long in one direction, and one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • the p-type electrodes of the left and right semiconductor light emitting devices around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, and thus, between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150. Only the portion and the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 have conductivity, and the rest of the semiconductor light emitting device does not have a press-fitted conductivity. As such, the conductive adhesive layer 130 not only couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute an array of light emitting devices, and a phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120.
  • a plurality of first electrodes 120 may be provided, the semiconductor light emitting devices may be arranged in several rows, and the semiconductor light emitting devices may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate may be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate the individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided as the partition 190.
  • the partition 190 may include a black or white insulator according to the purpose of the display device.
  • the partition wall of the white insulator is used, the reflectivity may be improved, and when the partition wall of the black insulator is used, the contrast may be increased at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and the phosphor layer 180 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting element 151 at a position forming a red unit pixel, and a position forming a green unit pixel.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 151.
  • only the blue semiconductor light emitting device 151 may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Therefore, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140, and thus, a unit pixel may be implemented.
  • the present invention is not limited thereto, and instead of the phosphor, the semiconductor light emitting device 150 and the quantum dot QD may be combined to implement unit pixels of red (R), green (G), and blue (B). have.
  • a black matrix 191 may be disposed between the respective phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green may be applied.
  • each semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) is added together to emit light of various colors including blue. It can be implemented as an element.
  • the semiconductor light emitting devices 150 may be red, green, and blue semiconductor light emitting devices, respectively, to form a sub-pixel.
  • the red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and the red, green, and blue unit pixels are arranged by the red, green, and blue semiconductor light emitting devices. These pixels constitute one pixel, and thus, a full color display may be implemented.
  • the semiconductor light emitting device may include a white light emitting device W having a yellow phosphor layer for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
  • the red phosphor layer 181, the green phosphor layer 182, and the blue phosphor layer 183 may be provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet light (UV) in all areas, and can be extended in the form of a semiconductor light emitting device in which ultraviolet light (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device 150 is positioned on the conductive adhesive layer 130 to constitute a unit pixel in the display device. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the display device using the semiconductor light emitting device described above may be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the insulating layer 160 is stacked on the first substrate 110 to form a single substrate (or a wiring substrate), and the first electrode 120, the auxiliary electrode 170, and the second electrode 140 are formed on the wiring substrate. Is placed.
  • the first electrode 120 and the second electrode 140 may be disposed in a direction perpendicular to each other.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is located.
  • the semiconductor light emitting device 150 may include a second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located. ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the second substrate 112 may be a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device may be effectively used in the display device by having a gap and a size capable of forming the display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second substrate 112 may be thermocompressed by applying an ACF press head.
  • the thermocompression bonding the wiring substrate and the second substrate 112 are bonded. Only a portion between the semiconductor light emitting device 150, the auxiliary electrode 170, and the second electrode 140 has conductivity due to the property of the conductive anisotropic conductive film by thermocompression bonding.
  • the device 150 may be electrically connected.
  • the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a partition wall may be formed between the semiconductor light emitting device 150.
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) or chemical lift-off (CLO).
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or a green phosphor for converting the blue (B) light into a color of a unit pixel emits the blue semiconductor light.
  • a layer may be formed on one surface of the device.
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • a vertical structure will be described with reference to FIGS. 5 and 6.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG. 7, and
  • FIG. 9 is a conceptual view showing the vertical semiconductor light emitting device of FIG. 8. to be.
  • the display device may be a display device using a passive semiconductor light emitting device of a passive matrix (PM) type.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and a plurality of semiconductor light emitting devices 250.
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) in order to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located. Like a display device to which a flip chip type light emitting device is applied, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. ), Etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by the anisotropic conductive film.
  • ACF anisotropic conductive film
  • Etc Etc
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film in a state where the first electrode 220 is positioned on the substrate 210, the semiconductor light emitting device 250 is connected to the semiconductor light emitting device 250 by applying heat and pressure. It is electrically connected to the electrode 220. In this case, the semiconductor light emitting device 250 may be disposed on the first electrode 220.
  • the electrical connection is created because, as described above, in the anisotropic conductive film is partially conductive in the thickness direction when heat and pressure are applied. Therefore, in the anisotropic conductive film is divided into a portion 231 having conductivity and a portion 232 having no conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 250 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned.
  • the vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the lower p-type electrode 256 may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the upper n-type electrode 252 may be the second electrode 240 described later.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light
  • the phosphor layer 280 is provided to convert the blue (B) light into the color of a unit pixel.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting element 251, and the position forming the green unit pixel.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 251.
  • only the blue semiconductor light emitting device 251 may be used alone in a portion of the blue unit pixel. In this case, the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and as described above in the display device to which the flip chip type light emitting device is applied, other structures for implementing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of columns, and the second electrode 240 may be positioned between the columns of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as an electrode having a bar shape that is long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed of an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition.
  • the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected to each other.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, the light extraction efficiency can be improved by using a conductive material having good adhesion with the n-type semiconductor layer as a horizontal electrode without being limited to the selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • the partition wall 290 may be located between the semiconductor light emitting devices 250. That is, the partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, when the semiconductor light emitting device 250 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided.
  • the partition 290 may include a black or white insulator according to the purpose of the display device.
  • the partition wall 290 is disposed between the vertical semiconductor light emitting device 250 and the second electrode 240. It can be located in between. Accordingly, the individual unit pixels may be configured even with a small size by using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting devices 250 is relatively large enough so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), And a flexible display device having HD image quality can be implemented.
  • a black matrix 291 may be disposed between the respective phosphors in order to improve contrast. That is, this black matrix 291 can improve contrast of the contrast.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size. Therefore, a full color display in which the unit pixels of red (R), green (G), and blue (B) form one pixel may be implemented by the semiconductor light emitting device.
  • FIG. 10 is an enlarged view of a portion A of FIG. 1 for explaining another embodiment of the present invention to which a semiconductor light emitting device having a new structure is applied
  • FIG. 11A is a cross-sectional view taken along the line EE of FIG. 10
  • FIG. 11 is a cross-sectional view taken along the line FF of FIG. 11
  • FIG. 12 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 11A.
  • a display device 1000 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 1000 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 1000 includes a substrate 1010, a first electrode 1020, a conductive adhesive layer, a second electrode 1040, and a plurality of semiconductor light emitting devices 1050.
  • the first electrode 1020 and the second electrode 1040 may each include a plurality of electrode lines.
  • the substrate 1010 is a wiring board on which the first electrode 1020 is disposed, and may include polyimide (PI) to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 1020 is positioned on the substrate 1010 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 1020 may be configured to serve as a data electrode.
  • the conductive adhesive layer is formed on the substrate 1010 on which the first electrode 1020 is located.
  • the conductive adhesive layer may be an anisotropic conductive film 1030 (ACF).
  • a plurality of second electrodes 1040 are disposed between the semiconductor light emitting devices in a direction crossing the length direction of the first electrode 1020 and electrically connected to the semiconductor light emitting devices 1050.
  • the second electrode 1040 may be positioned on the anisotropic conductive film 1030. That is, the anisotropic conductive film 1030 is disposed between the wiring board and the second electrode 1040.
  • the second electrode 1040 may be electrically connected to the semiconductor light emitting device 1050 by contact.
  • the plurality of semiconductor light emitting devices 1050 are coupled to the anisotropic conductive film 1030 and electrically connected to the first electrode 1020 and the second electrode 1040.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 1010 on which the semiconductor light emitting device 1050 is formed.
  • SiOx silicon oxide
  • the second electrode 1040 is positioned after the transparent insulating layer is formed, the second electrode 1040 is positioned on the transparent insulating layer.
  • the second electrode 1040 may be formed to be spaced apart from the anisotropic conductive film 1030 or the transparent insulating layer.
  • the plurality of semiconductor light emitting devices 1050 may form a plurality of columns in a direction parallel to the plurality of electrode lines provided in the first electrode 1020.
  • the present invention is not necessarily limited thereto.
  • the plurality of semiconductor light emitting devices 1050 may form a plurality of columns along the second electrode 1040.
  • the display apparatus 1000 may further include a phosphor layer 1080 formed on one surface of the plurality of semiconductor light emitting devices 1050.
  • the semiconductor light emitting device 1050 is a blue semiconductor light emitting device that emits blue (B) light
  • the phosphor layer 1080 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 1080 may be a red phosphor 1081 or a green phosphor 1082 constituting individual pixels. That is, at the position forming the red unit pixel, a red phosphor 1081 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting device 1051a, and the position forming the green unit pixel.
  • a green phosphor 1082 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 1051b.
  • the blue semiconductor light emitting device 1051c may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • phosphors of one color may be stacked along each line of the first electrode 1020. Accordingly, one line in the first electrode 1020 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 1040, and thus a unit pixel may be implemented.
  • the present invention is not necessarily limited thereto, and instead of the phosphor, a unit pixel that emits red (R), green (G), and blue (B) by combining a quantum dot (QD) with a semiconductor light emitting element 1050 may be used. Can be implemented.
  • the display apparatus may further include a black matrix 1091 disposed between the respective phosphors.
  • the black matrix 1091 may form a gap between phosphor dots, and a black material may be formed to fill the gap.
  • the black matrix 1091 may absorb the external light reflection and improve contrast of the contrast.
  • the black matrix 1091 is positioned between the phosphor layers along the first electrode 1020 in the direction in which the phosphor layers 1080 are stacked. In this case, the phosphor layer is not formed at a position corresponding to the blue semiconductor light emitting element 1051, but the black matrix 1091 has a space without the phosphor layer therebetween (or between the blue semiconductor light emitting element 1051c). On each side) can be formed.
  • the semiconductor light emitting device 1050 of the present example since the semiconductor light emitting device 1050 may be disposed up and down in this example, the semiconductor light emitting device 1050 has a great advantage of reducing the chip size.
  • the electrodes are disposed up and down, the semiconductor light emitting device of the present invention may be a flip chip type light emitting device.
  • the semiconductor light emitting device 1050 may include a first conductive semiconductor layer 1155 on which a first conductive electrode 1156, a first conductive electrode 1156 are formed, and An active layer 1154 formed on the first conductive semiconductor layer 1155, and a second formed on the second conductive semiconductor layer 1153 and the second conductive semiconductor layer 1153 formed on the active layer 1154.
  • a conductive electrode 1152 may be included in the semiconductor light emitting device 1050.
  • first conductive electrode 1156 and the first conductive semiconductor layer 1155 may be a p-type electrode and a p-type semiconductor layer, respectively, and the second conductive electrode 1152 and the second conductive layer may be formed.
  • the conductive semiconductor layer 1153 may be an n-type electrode and an n-type semiconductor layer, respectively.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type is n-type and the second conductive type is p-type is also possible.
  • the first conductive electrode 1156 is formed on one surface of the first conductive semiconductor layer 1155, and the active layer 1154 is formed on the other surface of the first conductive semiconductor layer 1155.
  • the second conductive semiconductor layer 1153 is formed between one surface of the second conductive semiconductor layer 1153, and the second conductive electrode 1152 is formed on one surface of the second conductive semiconductor layer 1153.
  • the second conductive electrode is disposed on one surface of the second conductive semiconductor layer 1153, and an undoped semiconductor layer 1153a is disposed on the other surface of the second conductive semiconductor layer 1153. ) May be formed.
  • one surface of the second conductive semiconductor layer may be the surface closest to the wiring board, and the other surface of the second conductive semiconductor layer may be closest to the wiring substrate. It can be far away.
  • first conductive electrode 1156 and the second conductive electrode 1152 have a height difference from each other in the width direction and the vertical direction (or thickness direction) at positions spaced apart along the width direction of the semiconductor light emitting device. It is made to have.
  • the second conductive electrode 1152 is formed on the second conductive semiconductor layer 1153 using the height difference, but is disposed adjacent to the second electrode 1040 positioned above the semiconductor light emitting device.
  • the second conductive electrode 1152 may have at least a portion of the second conductive electrode 1152 in the width direction from the side surface of the second conductive semiconductor layer 1153 (or the side surface of the undoped semiconductor layer 1153a). It protrudes along.
  • the second conductive electrode 1152 since the second conductive electrode 1152 protrudes from the side surface, the second conductive electrode 1152 may be exposed to the upper side of the semiconductor light emitting device. Accordingly, the second conductive electrode 1152 is disposed at a position overlapping with the second electrode 1040 disposed above the anisotropic conductive film 1030.
  • the semiconductor light emitting device includes a protrusion 1152a extending from the second conductive electrode 1152 and protruding from the side surfaces of the plurality of semiconductor light emitting devices.
  • the first conductive electrode 1156 and the second conductive electrode 1152 are disposed at positions spaced apart along the protrusion direction of the protrusion 1152a. It may be represented to have a height difference from each other in the direction perpendicular to the protruding direction.
  • the protrusion 1152a extends from one surface of the second conductive semiconductor layer 1153 to the side surface, and more specifically to an upper surface of the second conductive semiconductor layer 1153, an undoped semiconductor layer. Extends to 1153a.
  • the protrusion 1152a protrudes along the width direction from the side of the undoped semiconductor layer 1153a. Accordingly, the protrusion 1152a may be electrically connected to the second electrode 1040 on the opposite side of the first conductive electrode based on the second conductive semiconductor layer.
  • the structure having the protrusion 1152a may be a structure that can utilize the advantages of the above-described horizontal semiconductor light emitting device and vertical semiconductor light emitting device. Meanwhile, fine grooves may be formed on the upper surface furthest from the first conductive electrode 1156 in the undoped semiconductor layer 1153a by roughing.
  • the anisotropic conductive film 1030 is provided as a single film or is applied to the wiring substrate as a whole, the transfer of the semiconductor light emitting device is performed once from the wafer.
  • the present invention provides a manufacturing method and structure capable of transferring a semiconductor light emitting device over several times, thereby realizing a large area transfer and a reduction in manufacturing cost.
  • the manufacturing method and structure of the present invention will be described in more detail with reference to the accompanying drawings.
  • the semiconductor light emitting device will be described with reference to the semiconductor light emitting device described above with reference to FIGS. 10 to 12.
  • FIGS. 13A and 13B are conceptual views illustrating a case in which an anisotropic conductive film is attached on a wafer of a semiconductor light emitting device and a case in which a plurality of adhesive regions are patterned.
  • FIGS. 14A and 14B are cases in which an anisotropic conductive film is attached on a wiring board. And conceptual diagrams showing a case where a plurality of adhesive regions are patterned.
  • a plurality of semiconductor light emitting devices 1050 are spaced apart at predetermined intervals on a single wafer substrate, and the anisotropic conductive film 1030 is bonded to cover a specific region on the wafer substrate.
  • one sheet of the anisotropic conductive film 1030 may be bonded to a single region on the wafer substrate, or several sheets may be bonded by dividing the single region.
  • the single region may be a region formed between the semiconductor light emitting devices without disconnection.
  • thermocompression bonding with the wiring board When thermocompression bonding with the wiring board is performed in this state, the semiconductor light emitting elements in the single region are transferred to the wiring board.
  • an anisotropic conductive film 1030 is covered between the wiring electrode and the wiring electrode in the wiring board, and the bonding between the wiring substrate and the semiconductor light emitting device of the wafer is performed.
  • the structure in which the anisotropic conductive film 1030 is bonded to the wafer or the wiring board transfers the semiconductor light emitting device on the single-circuit wafer, and thus there is a problem in that it is difficult to use the semiconductor light emitting device that is not limited in size.
  • a plurality of adhesive regions 1030b are patterned on the wafer.
  • a liquid anisotropic conductive adhesive ACA
  • the anisotropic conductive adhesive is an adhesive in the form of a paste, and may be an anisotropic conductive paste (ACP).
  • ACP anisotropic conductive paste
  • at least one of silver paste, tin paste, and solder paste may be pattern printed on the wafer. In this case, the silver paste, tin paste and solder paste will replace the anisotropic conductive adhesive.
  • the anisotropic conductive adhesive is applied in a predetermined pattern on the electrodes of the semiconductor light emitting device through a printing process (screen printing), a dispensing process, a liquid pattern transfer, or the like in a liquid phase.
  • a printing process screen printing
  • the printing of the anisotropic conductive adhesive may be sequentially performed and uncoated along one direction.
  • a plurality of adhesive regions 1030b covering a portion of the wiring electrode are provided, which are sequentially arranged at a predetermined separation distance.
  • the resin of the anisotropic conductive adhesive may flow out and move into the space S formed between the plurality of adhesive regions 1030b.
  • the semiconductor light emitting device, to which the anisotropic conductive adhesive is not applied may be transferred to the wiring board by applying the anisotropic conductive adhesive when the other display device is manufactured. Therefore, a plurality of transfers can be performed for semiconductor light emitting devices grown on a large wafer.
  • FIG. 15 is a cross-sectional view illustrating an embodiment of a display apparatus when a plurality of adhesive regions are patterned.
  • a display device 2000 using the flip chip type semiconductor light emitting device described with reference to FIGS. 10 to 12 is illustrated as a display device using a semiconductor light emitting device. More specifically, a case in which the structure of the new phosphor layer is applied to the flip chip type semiconductor light emitting device described with reference to FIGS. 10 to 12 will be described. However, the example described below is also applicable to the display device using the above-described other type of semiconductor light emitting device.
  • the display apparatus 2000 includes a substrate 2010, a first electrode 2020, a second electrode 2040, and a plurality of semiconductor light emitting devices 2050, which are described above with reference to FIGS. 10 to 10. Subsequent to the description with reference to FIG.
  • the substrate 2010 is a wiring substrate having wiring electrodes
  • the first electrode 2020 is a wiring electrode positioned on the substrate 2010 and may be formed as an electrode having a bar shape in one direction. have.
  • the first electrode 2020 may be configured to serve as a data electrode.
  • a plurality of second electrodes 2040 are disposed between the semiconductor light emitting devices in a direction crossing the length direction of the first electrode 2020 and electrically connected to the semiconductor light emitting device 2050.
  • the plurality of semiconductor light emitting devices 2050 may form a plurality of columns in a direction parallel to the plurality of electrode lines provided in the first electrode 2020.
  • the present invention is not necessarily limited thereto.
  • the plurality of semiconductor light emitting devices 2050 may form a plurality of columns along the second electrode 2040.
  • the substrate 2010 is covered by the conductive adhesive layer 2030.
  • the plurality of semiconductor light emitting devices 2050 may be coupled to the conductive adhesive layer 2030 and electrically connected to the wiring electrodes.
  • the conductive adhesive layer is formed at a position corresponding to the first electrode 2020 on the substrate 2010.
  • the conductive adhesive layer 2030 may be provided in a patterned form on each electrode of the semiconductor light emitting devices, and may include a plurality of adhesive regions 2031 and 2032 spaced apart from each other on the wiring board. .
  • the plurality of semiconductor light emitting devices 2050 are coupled to the conductive adhesive layer 2030 and electrically connected to the first electrode 2020 and the second electrode 2040.
  • the individual adhesive regions of the plurality of adhesive regions 2031 and 2032 are disposed between the first electrode 2020 and the first conductive electrode 2156 of the semiconductor light emitting device.
  • the first conductive electrode 2156 may be a p-type electrode.
  • the adhesive regions 2031 and 2032 may each have a size surrounding the side surface of the wiring substrate and surrounding the side surface of the semiconductor light emitting device.
  • the width of the adhesive region may have a size that is 1 to 1.5 times greater than the width of the first electrode 2020.
  • an insulating material 2070 may be disposed between the plurality of adhesive regions 2031 and 2032 to fill the plurality of semiconductor light emitting devices.
  • the insulating material 2070 may be formed of a material different from that of the conductive adhesive layer.
  • the insulating material 2070 may be formed of a light transmissive material such as silicon oxide (SiOx) or a polymer, and in this case, the insulating material 2070 may have a transmittance of 80% or more in a wavelength range in visible light.
  • the insulating material 2070 may be formed of a material having a property of reflecting light or may be formed of a material having an adhesive property. In the semiconductor light emitting device having a micro unit, since the devices are separated from each other, if the insulating material 2070 reflects light exiting from the side of the device, an increase in light extraction efficiency can be expected.
  • the insulating material 2070 may be formed in a direction parallel to the plurality of electrode lines provided in the first electrode 1020.
  • the insulating material 2070 forms a plurality of lines spaced apart from each other.
  • the insulating material 2070 may be formed to extend in the same direction as the first conductive electrode 2156.
  • the first conductive electrode 2156 may be formed in a bar shape (line shape) like the first electrode. More specifically, the first conductive electrode 2156 may extend toward an adjacent semiconductor light emitting device to be a common electrode of neighboring semiconductor light emitting devices, and the insulating material 2070 may be formed in parallel thereto.
  • the plurality of adhesive regions may include at least one of an anisotropic conductive adhesive (ACA), a silver paste, a tin paste, and a solder paste.
  • ACA anisotropic conductive adhesive
  • the paste-type adhesive having anisotropic conductivity is cured to form the adhesive region.
  • the anisotropic conductive adhesive may include a binder, an epoxy resin, a curing agent, and a conductive ball.
  • fillers, coupling agents, and solvents may be further included in the anisotropic conductive adhesive.
  • a white pigment is added to the anisotropic conductive adhesive, and may reflect light exiting to the outside between the semiconductor light emitting device and the wiring board.
  • an inorganic powder can be added to the anisotropic conductive adhesive, so that thixotropy can be increased and printing properties can be improved.
  • a reactive solvent may be added to the anisotropic conductive adhesive for the B-stage process for ensuring fairness after printing.
  • 16, 17 and 18 are conceptual views illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the n-type semiconductor layer 2153, the active layer 2154, and the p-type semiconductor layer 2155 are grown on the growth substrate 2059 (FIG. 16A).
  • the active layer 2154 is grown on the n-type semiconductor layer 2153, and then the p-type semiconductor layer 2155 is grown on the active layer 2154. Let's do it. As described above, when the n-type semiconductor layer 2153, the active layer 2154, and the p-type semiconductor layer 2155 are sequentially grown, as shown in FIG. 16A, a lamination structure of the micro semiconductor light emitting device is formed. do.
  • the growth substrate 2059 may be formed of a material having light transmissive properties, for example, sapphire (Al 2 O 3), GaN, ZnO, or AlO, but is not limited thereto.
  • the growth substrate 2059 may be formed of a material suitable for growth of a semiconductor material, a carrier wafer.
  • At least one of Si, GaAs, GaP, InP, and Ga2O3 may be formed of a material having excellent thermal conductivity, including a conductive substrate or an insulating substrate, for example, a SiC substrate having a higher thermal conductivity than a sapphire (Al2O3) substrate. Can be used.
  • the active layer 2154 and the p-type semiconductor layer 2155 are partially removed in the vertical direction, and the n-type semiconductor layer 2153 is exposed to the outside. Through this, the mesa process is performed. Thereafter, isolation is performed by etching the n-type semiconductor layer 2153 so that a plurality of light emitting devices form a light emitting device array. As such, the p-type semiconductor layer 2155, the active layer 2154, and the n-type semiconductor layer 2153 are etched to form a plurality of micro semiconductor light emitting devices.
  • the n-type electrode 2152 having a height difference in the thickness direction between the n-type semiconductor layer 2153 and the p-type semiconductor layer 2155 so as to realize a flip chip type light emitting device, and
  • the p-type electrodes 2156 are formed respectively (FIG. 16C).
  • the n-type electrode 2152 and the p-type electrode 2156 may be formed by a deposition method such as sputtering, but the present invention is not limited thereto.
  • the n-type electrode 2152 may be the second conductive electrode described above
  • the p-type electrode 2156 may be the first conductive electrode.
  • the conductive adhesive layer 2030 is formed on the electrodes of the first semiconductor light emitting devices to form the conductive adhesive layer 2030 (FIG. 16 (d). )).
  • the conductive adhesive layer 2030 may be formed on one surface of the semiconductor light emitting device, or may have a size surrounding the side surface of the semiconductor light emitting device.
  • the width of the conductive adhesive layer 2030 may be smaller than or equal to the width of the p-type electrode 2156, and may be applied on the p-type electrode 2156.
  • the width of the conductive adhesive layer 2030 may have a size of 1 to 1.5 times the width of the p-type electrode 2156.
  • the conductive adhesive layer 2030 may be formed to a size larger than the maximum cross-sectional area of the semiconductor light emitting device. At this time, the conductive adhesive layer 2030 may be formed by a bonding process to completely surround the side surface of the semiconductor light emitting device.
  • the conductive adhesive is formed at a position corresponding to the first electrode 2020 on the substrate 2010.
  • the conductive adhesive is applied to the p-type electrode 2156. More specifically, the conductive adhesive is applied to each p-type electrode 2156 of the plurality of semiconductor light emitting devices, thereby forming a plurality of adhesive regions spaced apart from each other on the wiring board.
  • the conductive adhesive is applied to only part of the plurality of semiconductor light emitting devices on the growth substrate.
  • the conductive adhesive may be selectively pattern printed on the growth substrate by at least one of screen printing, dispensing, and liquid pattern transfer.
  • the conductive adhesive may be applied to two semiconductor light emitting devices with at least one semiconductor light emitting device therebetween. This can be done both in the row direction and in the column direction. As such, according to the intention of the designer, the conductive adhesive may be applied only to the desired semiconductor light emitting device.
  • the present invention is not necessarily limited thereto.
  • the conductive adhesive may be applied to the wiring electrode on the wiring substrate using pattern printing instead of the growth substrate.
  • the conductive adhesive may include at least one of an anisotropic conductive adhesive (ACA), a silver paste, a tin paste, and a solder paste.
  • ACA anisotropic conductive adhesive
  • anisotropic conductive adhesive it may be in the form of a paste having anisotropic conductivity.
  • the anisotropic conductive adhesive may include a binder, an epoxy resin, a curing agent, and a conductive ball.
  • fillers, coupling agents, and solvents may be further included in the anisotropic conductive adhesive.
  • a white pigment is added to the anisotropic conductive adhesive, and may reflect light exiting to the outside between the semiconductor light emitting device and the wiring board.
  • an inorganic powder can be added to the anisotropic conductive adhesive, so that thixotropy can be increased and printing properties can be improved.
  • the spaces between the semiconductor light emitting devices may be filled with an insulating material. That is, after the conductive adhesive is pattern printed on the growth substrate, a step of printing or coating an insulating material on the growth substrate is performed (not shown).
  • the process may be a B-stage process for ensuring fairness after printing, and a reactive solvent may be added to the anisotropic conductive adhesive for the B-stage process.
  • the growth substrate 2059 is removed (FIG. 17A).
  • a first electrode 2020 is provided on the first wiring substrate 2010a, and the first electrode 2020 is disposed along a row direction to serve as a data electrode in the display device 2000 of the present invention. have.
  • the growth substrate is removed by laser lift-off (LLO) or chemical lift-off (CLO), and the semiconductor light emitting device is bonded to the conductive adhesive before removal.
  • LLO laser lift-off
  • CLO chemical lift-off
  • the laser lift off method or the chemical lift off method is selectively performed only for the semiconductor light emitting element to which the conductive adhesive is applied. Accordingly, semiconductor light emitting devices to which the conductive adhesive is not applied remain on the removed growth substrate.
  • the wiring electrode 2020 of the wiring board 2021 and the p-type electrode 2020 of the first semiconductor light emitting device 2050a are electrically connected to each other so that the wiring electrode of the wiring board 2010a is connected.
  • p may be a common electrode.
  • the step of filling the semiconductor light emitting device with an insulating material may be performed.
  • the insulating material 2070 may be formed of a material different from that of the conductive adhesive layer.
  • a second electrode 2040 that extends in one direction from the n-type semiconductor layer to electrically connect the plurality of semiconductor light emitting devices is connected to the n-type electrode 2152 (FIG. 17C). Can be).
  • another display device is manufactured by using another semiconductor light emitting devices on the growth substrate.
  • applying the conductive adhesive on the electrodes of the second semiconductor light emitting devices 2050b may be performed (FIG. 18A).
  • the semiconductor light emitting devices are arranged and remain at a predetermined interval in the growth substrate described above.
  • the conductive adhesive is pattern-printed again on another semiconductor light emitting device on the growth substrate to realize multiple transfers of the growth substrate.
  • the growth substrate may be removed (FIG. 18B).
  • the conductive liquid phase is selectively patterned on the region of the semiconductor light emitting device to be transferred, so that the transfer pattern of the same semiconductor light emitting device can be performed on one growth substrate.
  • the manufacturing method described above can be applied to the separate transfer method of the red semiconductor light emitting device, the green semiconductor light emitting device and the blue semiconductor light emitting device to implement the red, green and blue color in addition to the same pattern multiple times transfer.
  • 20A, 20B and 21 are conceptual views illustrating another example of a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the green semiconductor light emitting devices and the blue semiconductor light emitting devices are grown separately on a growth substrate (LED wafer) so that the light emitting structures of the green semiconductor light emitting device and the blue semiconductor light emitting device are grown (FIG. 19A).
  • the growth substrate may be a Sapphire substrate.
  • each of the growth substrates (Green LED wafer, Blue LED wafer), the steps described with reference to Figure 16 (a), Figure 16 (b) and Figure 16 (c) proceeds, through which the green semiconductor
  • the light emitting device may be provided on the first growth substrate (Green LED wafer), and the blue semiconductor light emitting device may be provided on the second growth substrate (Blue LED wafer).
  • the green semiconductor light emitting device and the blue semiconductor light emitting device may be provided on the growth substrate, and the red semiconductor light emitting device may be provided on the donor substrate or the film.
  • the present invention is not necessarily limited thereto.
  • a red pixel may be implemented by a combination of a blue semiconductor light emitting element, a red phosphor, and a color filter, which will be described later.
  • a step of applying a conductive adhesive to the first portion corresponding to the green semiconductor light emitting elements on the electrodes of the green semiconductor light emitting elements or the wiring electrode of the wiring board proceeds (FIG. 19B).
  • the above-described manufacturing method of FIG. 16D may be applied, and illustrates the case where the conductive adhesive is applied to the electrodes of the green semiconductor light emitting devices.
  • the conductive adhesive may be selectively pattern printed on the growth substrate by at least one of screen printing, dispensing, and liquid pattern transfer.
  • the conductive adhesive may be at least one of an anisotropic conductive adhesive (ACA), a silver paste, a tin paste, and a solder paste.
  • ACA anisotropic conductive adhesive
  • the green semiconductor light emitting devices are aligned with the first wiring board 3010a including the wiring electrodes (FIG. 19C), and then the growth substrate is removed (FIG. 19D). ))do.
  • the blue semiconductor light emitting device is bonded and transferred from the second growth substrate (Blue LED wafer) to a desired position on the second wiring substrate 3010b instead of the first wiring substrate 3010a (FIG. 20a).
  • the red semiconductor light emitting device is bonded and transferred to a desired position on a donor substrate to a wiring substrate other than the first wiring substrate (FIG. 20B).
  • the bonding and transferring processes are performed on the third wiring board 3010c and the fourth wiring board 3010d, respectively.
  • a plurality of red semiconductor light emitting devices are transferred to the donor plate. Vacities may be formed (FIG. 19B).
  • the conductive adhesive is applied to a second portion of the blue semiconductor light emitting elements or the second electrode corresponding to the blue semiconductor light emitting elements on the wiring electrode, and the blue semiconductor light emitting elements are coupled to the second portion. Steps ((a) and (b) of FIG. 21) may proceed.
  • the blue semiconductor light emitting devices may be transferred to a desired position of the first wiring board 3010a by using a growth substrate (Blue LED wafer) that transfers a semiconductor light emitting device onto the second wiring board.
  • the growth substrate used in this case may be a second growth substrate (Blue LED wafer) in which at least one transfer is performed to generate one empty space.
  • the manufacturing method of FIG. 16D and the manufacturing method of FIG. 17A may be applied.
  • the method may further include applying the conductive adhesive to a third portion of the red semiconductor light emitting devices or a third portion of the wiring electrode corresponding to the red semiconductor light emitting devices, and coupling the red semiconductor light emitting devices to the third portion. ((C) and (d) of FIG. 21) may proceed.
  • the red portion is positioned at a desired position of the first wiring board 3010a by using a donor plate which transfers a semiconductor light emitting device onto the third wiring board 3010c and the fourth wiring board 3010d.
  • the semiconductor light emitting elements are transferred.
  • the growth substrate used in this case may be a substrate on which at least two transfers have been performed to generate two empty spaces. In this case, the above-described manufacturing method of FIG. 16D and the manufacturing method of FIG. 17A may be applied.
  • the second wiring board 3010b or the third wiring board 3010c is bonded to the second wiring board 3010b or the third wiring board 3010c by using the empty space of the individually transferred position, and performing transfer bonding. .
  • the growth substrates of the green semiconductor light emitting devices may be aligned with another wiring board, and the green semiconductor light emitting devices may be transferred to the other wiring board.
  • the growth substrates of the blue semiconductor light emitting devices may be aligned with another wiring board to transfer the blue semiconductor light emitting devices to the other wiring board.
  • a method of transferring the blue semiconductor light emitting devices to a desired position of the second wiring board 3010b by using a growth substrate that transfers a semiconductor light emitting device onto the first wiring board 3010a is also possible.
  • the green semiconductor light emitting devices are coupled to the first part so that the semiconductor light emitting devices pre-coupled to the other wiring substrate may be aligned at the portion where the green semiconductor light emitting devices are not present.
  • the green, blue, and red colors can be transferred using the empty space of the substrate to be initially transferred in any order.
  • the green semiconductor light emitting device and the blue semiconductor light emitting device can be grown on separate substrates, and then transferred to one wiring board individually.
  • FIGS. 22 and 23 illustrate another manufacturing method of the present invention.
  • FIGS. 22A and 23A a growth substrate of a green semiconductor light emitting element in which one semiconductor light emitting element is omitted, and a blue semiconductor light emitting element are grown on a substrate on which a conventional red semiconductor light emitting element is transferred. Shows bonding the substrate.
  • green and red substrates and blue and red substrates may be manufactured as shown in FIGS. 22B and 23B.
  • the blue semiconductor light emitting device is bonded and transferred to the green and red substrates using the growth substrate of the blue semiconductor light emitting device in which the two semiconductor light emitting devices are omitted.
  • the green semiconductor light emitting device is bonded and transferred to the blue and red substrates using the growth substrate of the green semiconductor light emitting device in which two semiconductor light emitting devices are omitted as shown in FIGS. 23C and 23D.
  • green, blue, and red semiconductor light emitting elements can be individually bonded to the wiring board, while using multiple transfers of the large-area growth substrate.
  • the red semiconductor light emitting device may be replaced by a combination of a blue semiconductor light emitting device and a phosphor layer.
  • 24 and 25 are conceptual views illustrating a manufacturing method of bonding and transferring only blue and green semiconductor light emitting devices onto a wiring board.
  • the growth substrate of the green semiconductor light emitting device Green LED wafer
  • two semiconductor light emitting devices which are transferred to one growth substrate multiple times, and at once
  • a growth substrate (Blue LED wafer) of a blue semiconductor light emitting device obtained by transferring two blue semiconductor light emitting devices is prepared.
  • the green LED wafer of the green semiconductor light emitting device in which two semiconductor light emitting devices are omitted is formed such that two empty spaces are formed with one green semiconductor light emitting device interposed therebetween.
  • FIGS. 24D and 25A two bins formed in FIG. 24B are formed on a wiring board 4010b to which two blue semiconductor light emitting elements formed in FIG. 24C are transferred.
  • the growth substrate (Green LED wafer) of the green semiconductor light emitting device having a space is aligned, and one green semiconductor light emitting device is bonded and transferred to the wiring board 4010b.
  • red Pixels may be implemented.
  • the manufacturing method described above may use a donor substrate rather than a wiring substrate.
  • the method is the same, but an anisotropic conductive adhesive or a non-conductive liquid adhesive other than solder may be pattern printed on the semiconductor light emitting device.
  • FIG. 26 is a conceptual diagram illustrating a process of selectively transferring a semiconductor light emitting device using a donor substrate.
  • the green semiconductor light emitting device and the blue semiconductor light emitting device are grown separately on each growth substrate, and then once on each donor substrate (donor plate 1, donor plate 2) using selective application of a nonconductive adhesive. It transfers (FIG. 26 (a) and (b)).
  • a donor substrate on which a blue semiconductor light emitting element is transferred and a blue semiconductor light emitting element are transferred to a donor substrate 1 on which a green semiconductor light emitting element is transferred to cross each growth substrate and a donor substrate.
  • Plate 2 transfers the green semiconductor light emitting device (FIGS. 26C and 26D).
  • the red semiconductor light emitting device is transferred to respective donor substrates (donor plate 1 and donor plate 2) on which the blue and green semiconductor light emitting devices are seated (FIG. 24E).
  • donor substrates donor plate 1 and donor plate 2
  • the blue and green semiconductor light emitting devices are seated (FIG. 24E).
  • the display device using the semiconductor light emitting device described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or part of the embodiments so that various modifications may be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Wire Bonding (AREA)

Abstract

본 발명은 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법에 관한 것으로 특히, 반도체 발광 소자를 이용한 디스플레이 장치에 관한 것이다. 본 발명에 따른 디스플레이 장치는, 배선전극을 구비하는 배선기판과, 상기 배선전극을 덮는 전도성 접착층과, 상기 전도성 접착층에 결합되며, 상기 배선전극과 전기적으로 연결되는 복수의 반도체 발광 소자들을 포함하며, 상기 전도성 접착층은 상기 반도체 발광 소자들의 각각의 전극상에 패턴된 형태로 도포되어, 상기 배선기판 상에서 서로 이격 배치되는 복수의 접착영역을 구비하는 것을 특징으로 한다.

Description

반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
본 발명은 디스플레이 장치 및 이의 제조방법에 관한 것으로 특히, 반도체 발광 소자를 이용한 디스플레이 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 박막형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다. 그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
상기 반도체 발광 소자를 이용한 디스플레이에서는 이방성 전도성 필름(ACF, anisotropic conductive film)을 이용하여 배선기판과 반도체 발광 소자의 전기적 및 물리적 결합을 구현하는 것이 일반적이다. 하지만, 이러한 방법은 이방성 전도성 필름의 영역에 해당하는 반도체 발광 소자를 전부 전사함에 따라, 다양한 형태의 반도체 발광 소자의 전사를 구현하기에 제약이 따르며, 제조비가 높은 단점이 있다. 이에 본 발명에서는 제조원가를 절감하면서, 다양한 전사를 구현할 수 있는 메커니즘에 대하여 제시한다.
본 발명의 일 목적은 제조원가를 절감할 수 있는 디스플레이 장치의 제조방법을 제공하기 위한 것이다.
본 발명의 다른 일 목적은, 적색, 녹색 및 청색 반도체 발광소자를 하나의 배선기판에 전사할 수 있는 디스플레이 장치의 제조방법을 제공하기 위한 것이다.
본 발명의 다른 일 목적은 디스플레이 장치에서 대면적의 웨이퍼 전사가 가능한 메커니즘을 제공하기 위한 것이다.
본 발명에 따른 디스플레이 장치는, 웨이퍼 상에서 액상의 전도성 접착층을 패턴 도포하여, 다양한 전사를 구현한다.
구체적인 예로서, 상기 디스플레이 장치는, 배선전극을 구비하는 배선기판과, 상기 배선전극을 덮는 전도성 접착층과, 상기 전도성 접착층에 결합되며, 상기 배선전극과 전기적으로 연결되는 복수의 반도체 발광 소자들을 포함한다. 상기 전도성 접착층은 상기 반도체 발광 소자들의 각각의 전극상에 패턴된 형태로 도포되어, 상기 배선기판 상에서 서로 이격 배치되는 복수의 접착영역을 구비한다.
실시 예에 있어서, 상기 복수의 접착영역은 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 이방성 도전성 페이스트, 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나를 구비한다. 상기 이방성 도전성 접착제에는 백색 안료가 첨가될 수 있다. 상기 이방성 도전성 접착제에는 무기 파우더가 첨가될 수 있다.
실시 예에 있어서, 상기 복수의 접착영역의 사이에는 절연물질이 배치되어 상기 복수의 반도체 발광소자들의 사이를 충전한다. 상기 절연물질은 상기 전도성 접착층과 다른 재질로 형성될 수 있다.
또한, 본 발명은, 제1반도체 발광소자들과 제2반도체 발광소자들을 성장기판에서 성장시키는 단계와, 제1반도체 발광소자들의 전극 상에 도전형 접착제를 도포하는 단계와, 상기 제1반도체 발광소자들을 배선전극을 구비한 제1배선기판에 얼라인먼트(Alignment)한 후 상기 성장기판을 제거하는 단계와, 제2반도체 발광소자들의 전극 상에 상기 도전형 접착제를 도포하는 단계, 및 상기 제2반도체 발광소자들을 제2배선기판에 얼라인먼트(Alignment)한 후, 상기 성장기판을 제거하는 단계를 포함하는 디스플레이 장치의 제조방법을 개시한다.
실시 예에 있어서, 상기 도전형 접착제는 스크린 프린팅, 디스펜싱(dispensing), 액상 패턴 전사 중 적어도 하나에 의하여 상기 성장기판에 선택적 패턴 인쇄될 수 있다.
실시 예에 있어서, 상기 디스플레이 장치의 제조방법은, 상기 도전형 접착제가 상기 성장기판에 패턴 인쇄된 후에, 상기 성장기판에 절연물질을 프린팅 또는 코팅하는 단계를 포함할 수 있다.
또한, 본 발명은, 녹색 반도체 발광소자 및 청색 반도체 발광소자의 발광 구조물이 성장되도록 녹색 반도체 발광소자들 및 청색 반도체 발광소자들을 별도로 성장기판에서 성장시키는 단계와, 상기 녹색 반도체 발광소자들의 전극이나 또는 배선기판의 배선전극에서 상기 녹색 반도체 발광소자들에 대응하는 제1부분에 도전형 접착제를 도포하는 단계와, 상기 녹색 반도체 발광소자들을 상기 제1부분에 결합하는 단계, 및 상기 청색 반도체 발광소자들의 전극이나 또는 상기 배선전극에서 상기 청색 반도체 발광소자들에 대응하는 제2부분에 상기 도전형 접착제를 도포하고, 상기 청색 반도체 발광소자들을 상기 제2부분에 결합하는 단계를 포함하는 디스플레이 장치의 제조방법을 개시한다.
실시 예에 있어서, 디스플레이 장치의 제조방법은 상기 녹색 반도체 발광소자들의 성장기판을 다른 배선기판에 얼라인먼트(Alignment)하여, 상기 녹색 반도체 발광소자들을 상기 다른 배선기판으로 전사하는 단계를 포함한다.
상기 전사하는 단계에서, 상기 녹색 반도체 발광소자들이 상기 제1부분에 결합됨에 의하여 상기 녹색 반도체 발광소자가 없는 부분에는 상기 다른 배선기판에 기결합된 반도체 발광소자가 얼라인(Align)될 수 있다.
실시 예에 있어서, 적색 반도체 발광소자들이 별도의 성장기판에서 성장되며, 상기 적색 반도체 발광소자들의 전극이나 또는 상기 배선전극에서 상기 적색 반도체 발광소자들에 대응하는 제3부분에 상기 도전형 접착제를 도포하고, 상기 적색 반도체 발광소자들을 상기 제3부분에 결합하는 단계를 포함할 수 있다.
본 발명에 따른 디스플레이 장치에서는, 액상의 도전형 접착제를 웨이퍼 상이나 배선기판에 부분 인쇄하기에, 원하는 형태의 패턴으로 반도체 발광 소자를 전사할 수 있으며, 이에 따라 응용 분야가 매우 넓은 제조방법을 구현한다.
또한, 본 발명에 의하면, photo-litho graph 공정이 없이 반도체 발광 소자를 구비하는 디스플레이 장치를 제조하며, 이에 따라 제조공정이 간결하고 가격이 싸다.
또한, 본 발명에 의하면, 대면적의 웨이퍼에서 부분적 전사가 가능해지며, 이에 따라 적색, 녹색 및 청색 반도체 발광 소자를 하나의 배선 위에 전사할 수 있게 된다.
또한, 본 발명에 의하면, 한 개의 웨이퍼에서 다회 전사 할 수 있어 제조원가 절감되며, 대면적으로 반도체 발광소자의 웨이퍼 전사가 가능하게 된다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 새로운 구조의 반도체 발광소자가 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이다.
도 11a는 도 10의 라인 E-E를 따라 취한 단면도이다.
도 11b는 도 11의 라인 F-F를 따라 취한 단면도이다.
도 12는 도 11a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 13a 및 도 13b은 반도체 발광소자의 웨이퍼 상에서 이방성 도전성 필름이 부착된 경우와 복수의 접착영역이 패턴화된 경우를 나타내는 개념도들이다.
도 14a 및 도 14b은 배선기판상에서 이방성 도전성 필름이 부착된 경우와 복수의 접착영역이 패턴화된 경우를 나타내는 개념도들이다.
도 15는 복수의 접착영역이 패턴화된 경우에 디스플레이 장치의 일 실시예를 나타내는 단면도이다.
도 16, 도 17 및 도 18은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
도 19, 도 20a, 도 20b 및 도 21은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법의 다른 예를 나타내는 개념도들이다.
도 22 및 도 23은 본 발명의 다른 제조 방법을 예시하는 개념도들이다.
도 24 및 도 25는 청색 및 녹색 반도체 발광소자만을 배선기판에 합착 전사하는 제조방법을 나타내는 개념도이다.
도 26은 도너 기판을 이용하여 반도체 발광소자를 선택전사하는 공정을 나타내는 개념도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이며, 도 4는 도 3a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며, 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 제2기판(112)을 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광 소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치에는 플립 칩 타입이 적용된 경우에는 동일평면상에 제1 및 제2전극이 배치되므로 고정세(파인 피치)의 구현이 어려운 문제가 있다. 이하, 이러한 문제를 해결할 수 있는 본 발명의 다른 실시예에 따른 플립 칩 타입의 발광소자가 적용된 디스플레이 장치에 대하여 설명한다.
도 10은 새로운 구조의 반도체 발광소자가 적용된 본 발명의 다른 실시 예를 설명하기 위한, 도 1의 A부분의 확대도이고, 도 11a는 도 10의 라인 E-E를 따라 취한 단면도이며, 도 11b는 도 11의 라인 F-F를 따라 취한 단면도이고, 도 12는 도 11a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 10, 도 11a 및 도 11b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(1000)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(1000)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
디스플레이 장치(1000)는 기판(1010), 제1전극(1020), 전도성 접착층, 제2전극(1040) 및 복수의 반도체 발광 소자(1050)를 포함한다. 여기에서, 제1 전극(1020) 및 제2 전극(1040)은 각각 복수의 전극 라인들을 포함할 수 있다.
기판(1010)은 제1전극(1020)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(1020)은 기판(1010) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(1020)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층은 제1전극(1020)이 위치하는 기판(1010)상에 형성된다. 전술한 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층은 이방성 전도성 필름(1030, anistropy conductive film, ACF)이 될 수 있다.
상기 반도체 발광 소자들의 사이에는, 제1전극(1020)의 길이 방향과 교차하는 방향으로 배치되고, 상기 반도체 발광 소자(1050)와 전기적으로 연결된 복수의 제2전극(1040)이 위치한다.
도시에 의하면, 상기 제2전극(1040)은 이방성 전도성 필름(1030) 상에 위치될 수 있다. 즉, 이방성 전도성 필름(1030)은 배선기판과 제2전극(1040)의 사이에 배치된다. 상기 제2전극(1040)은 상기 반도체 발광 소자(1050)와 접촉에 의하여 전기적으로 연결될 수 있다.
상기에서 설명된 구조에 의하여, 복수의 반도체 발광 소자(1050)는 상기 이방성 전도성 필름(1030)에 결합 되며, 제1전극(1020) 및 제2전극(1040)과 전기적으로 연결된다.
경우에 따라, 반도체 발광 소자(1050)가 형성된 기판(1010) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(1040)을 위치시킬 경우, 상기 제2전극(1040)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(1040)은 이방성 전도성 필름(1030) 또는 투명 절연층에 이격 되어 형성될 수도 있다.
도시와 같이, 복수의 반도체 발광소자(1050)는 제1전극(1020)에 구비되는 복수의 전극 라인들과 나란한 방향으로 복수의 열들을 형성할 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 복수의 반도체 발광소자(1050)는 제2전극(1040)을 따라 복수의 열들을 형성할 수 있다.
나아가, 디스플레이 장치(1000)는, 복수의 반도체 발광소자(1050)의 일면에 형성되는 형광체층(1080)을 더 구비할 수 있다. 예를 들어, 반도체 발광 소자(1050)는 청색(B) 광을 발광하는 청색 반도체 발광 소자이고, 형광체층(1080)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(1080)은 개별 화소를 구성하는 적색 형광체(1081) 또는 녹색 형광체(1082)가 될 수 있다. 즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(1051a) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(1081)가 적층 될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(1051b) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(1082)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(1051c)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(1020)의 각 라인을 따라 하나의 색상의 형광체가 적층 될 수 있다. 따라서, 제1전극(1020)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(1040)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(1050)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)을 발광하는 단위 화소를 구현할 수 있다.
한편, 이러한 형광체층(1080)의 대비비(Contrast) 향상을 위하여 디스플레이 장치는 각각의 형광체들의 사이에 배치되는 블랙 매트릭스(1091)를 더 포함할 수 있다. 상기 블랙 매트릭스(1091)는 형광체 도트 사이에 갭을 만들고, 흑색 물질이 상기 갭을 채우는 형태로 형성될 수 있다. 이를 통하여 블랙 매트릭스(1091)는 외광반사를 흡수함과 동시에 명암의 대조를 향상시킬 수 있다. 이러한 블랙 매트릭스(1091)는, 형광체층(1080)이 적층된 방향인 제1전극(1020)을 따라 각각의 형광체층들의 사이에 위치한다. 이 경우에, 청색 반도체 발광 소자(1051)에 해당하는 위치에는 형광체층이 형성되지 않으나, 블랙 매트릭스(1091)는 상기 형광체층이 없는 공간을 사이에 두고(또는 청색 반도체 발광 소자(1051c)를 사이에 두고) 양측에 각각 형성될 수 있다.
다시, 본 예시의 반도체 발광소자(1050)를 살펴보면, 본 예시에서 반도체 발광 소자(1050)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다. 다만, 전극이 상/하로 배치되나, 본 발명의 반도체 발광소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
도 12를 참조하면, 예를 들어, 상기 반도체 발광 소자(1050)는 제1도전형 전극(1156)과, 제1도전형 전극(1156)이 형성되는 제1도전형 반도체층(1155)과, 제1도전형 반도체층(1155) 상에 형성된 활성층(1154)과, 상기 활성층(1154) 상에 형성된 제2도전형 반도체층(1153) 및 제2도전형 반도체층(1153)에 형성되는 제2도전형 전극(1152)을 포함한다.
보다 구체적으로, 상기 제1도전형 전극(1156) 및 제1도전형 반도체층(1155)은 각각 p형 전극 및 p형 반도체층이 될 수 있으며, 상기 제2도전형 전극(1152) 및 제2도전형 반도체층(1153)은 각각 n형 전극 및 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
보다 구체적으로, 상기 제1도전형 전극(1156)은 상기 제1도전형 반도체층(1155)의 일면에 형성되며, 상기 활성층(1154)은 상기 제1도전형 반도체층(1155)의 타면과 상기 제2도전형 반도체층(1153)의 일면의 사이에 형성되고, 상기 제2도전형 전극(1152)은 상기 제2도전형 반도체층(1153)의 일면에 형성된다.
이 경우에, 상기 제2도전형 전극은 상기 제2도전형 반도체층(1153)의 일면에 배치되며, 상기 제2도전형 반도체층(1153)의 타면에는 언도프된(Undoped) 반도체층(1153a)이 형성될 수 있다.
도 12를 도 10 내지 도 11b와 함께 참조하면, 상기 제2도전형 반도체층의 일면은 상기 배선기판에 가장 가까운 면이 될 수 있고, 상기 제2도전형 반도체층의 타면은 상기 배선기판에 가장 먼 면이 될 수 있다.
또한, 상기 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 반도체 발광소자의 폭방향을 따라 이격된 위치에서 각각 상기 폭방향과 수직방향(또는 두께방향)으로 서로 높이차를 가지도록 이루어진다.
상기 높이차를 이용하여 상기 제2도전형 전극(1152)은 상기 제2도전형 반도체층(1153)에 형성되나, 반도체 발광소자의 상측에 위치하는 상기 제2전극(1040)과 인접하게 배치된다. 예를 들어, 상기 제2도전형 전극(1152)은 적어도 일부가 상기 제2도전형 반도체층(1153)의 측면(또는, 언도프된(Undoped) 반도체층(1153a)의 측면)으로부터 상기 폭방향을 따라 돌출된다. 이와 같이, 제2도전형 전극(1152)이 상기 측면에서 돌출되기에, 상기 제2도전형 전극(1152)은 반도체 발광소자의 상측으로 노출될 수 있다. 이를 통하여, 상기 제2도전형 전극(1152)은 이방성 전도성 필름(1030)의 상측에 배치되는 상기 제2전극(1040)과 오버랩되는 위치에 배치된다.
보다 구체적으로, 반도체 발광 소자는 상기 제2도전형 전극(1152)에서 연장되며, 상기 복수의 반도체 발광 소자의 측면에서 돌출되는 돌출부(1152a)를 구비한다. 이 경우에, 상기 돌출부(1152a)를 기준으로 보면, 상기 제1도전형 전극(1156) 및 제2도전형 전극(1152)은 상기 돌출부(1152a)의 돌출방향을 따라 이격된 위치에서 배치되며, 상기 돌출방향과 수직한 방향으로 서로 높이차를 가지도록 형성되는 것으로 표현될 수 있다.
상기 돌출부(1152a)는 상기 제2도전형 반도체층(1153)의 일면에서 측면으로 연장되며, 상기 제2도전형 반도체층(1153)의 상면으로, 보다 구체적으로는 언도프된(Undoped) 반도체층(1153a)으로 연장된다. 상기 돌출부(1152a)는 상기 언도프된(Undoped) 반도체층(1153a)의 측면에서 상기 폭방향을 따라 돌출된다. 따라서, 상기 돌출부(1152a)는 상기 제2도전형 반도체층을 기준으로 상기 제1도전형 전극의 반대측에서 상기 제2전극(1040)과 전기적으로 연결될 수 있다.
상기 돌출부(1152a)를 구비하는 구조는, 전술한 수평형 반도체 발광소자와 수직형 반도체 발광소자의 장점을 이용할 수 있는 구조가 될 수 있다. 한편, 상기 언도프된(Undoped) 반도체층(1153a)에서 상기 제1도전형 전극(1156)으로부터 가장 먼 상면에는 roughing 에 의하여 미세홈들이 형성될 수 있다.
상기에서 설명된 디스플레이 장치에 의하면, 이방성 전도성 필름(1030)이 단일의 필름으로 구비되거나, 배선기판상에 전체적으로 도포되는 형태이므로, 웨이퍼에서 1회에 걸쳐 반도체 발광소자의 전사가 수행된다.
이에 본 발명에서는, 수회에 걸쳐서 반도체 발광소자의 전사를 할 수 있는 제조방법 및 구조를 제시하며, 이를 통하여 대면적의 전사와 제조비의 저감을 구현한다. 이하, 본 발명의 제조방법 및 구조에 대하여 도면을 참조하여 보다 상세히 설명한다. 설명되는 예시에서, 반도체 발광소자는 도 10 내지 도 12를 참조하여 전술한 반도체 발광소자를 기준으로 설명한다.
도 13a 및 도 13b은 반도체 발광소자의 웨이퍼 상에서 이방성 도전성 필름이 부착된 경우와 복수의 접착영역이 패턴화된 경우를 나타내는 개념도들이며, 도 14a 및 도 14b은 배선기판상에서 이방성 도전성 필름이 부착된 경우와 복수의 접착영역이 패턴화된 경우를 나타내는 개념도들이다.
도 13a에 의하면, 복수의 반도체 발광 소자(1050)들이 단일의 웨이퍼 기판 상에 기설정된 간격으로 이격 배치되며, 이방성 도전성 필름(1030)이 웨이퍼 기판상에서 특정 영역을 덮도록 합착된다. 이때에, 이방성 도전성 필름(1030)은 한장이 웨이퍼 기판상의 단일 영역에 합착되거나, 몇장이 상기 단일 영역을 분할하여 합착될 수 있다. 이 경우에, 상기 단일 영역은 반도체 발광소자들의 사이를 포함하는 영역으로서 끊어짐이 없이 형성되는 영역이 될 수 있다.
이 상태에서 배선기판과의 열압착이 수행되면, 상기 단일 영역내의 반도체 발광소자들이 배선기판으로 전사된다. 도 14a를 참조하면, 배선기판에서 배선전극과 상기 배선전극의 사이를 이방성 도전성 필름(1030)이 덮게 되며, 이를 통하여 배선기판과 웨이퍼의 반도체 발광소자의 합착이 수행된다.
이와 같이, 이방성 도전성 필름(1030)이 웨이퍼나 배선기판에 합착되는 구조는 1회로 웨이퍼 상의 반도체 발광소자를 전사하므로, 크기의 제약과 전사되지 않은 반도체 발광소자의 활용이 어렵다는 문제가 있다.
이러한 문제를 해결하기 위하여, 도 13b에서는 웨이퍼 상에서 복수의 접착영역(1030b)이 패턴화된다. 예를 들어, 웨이퍼 상에 액상의 이방성 전도성 접착제(ACA, anisotropic conductive adhesvie)가 패턴 인쇄될 수 있다. 이방성 전도성 접착제는 페이스트 형태의 접착제로서, 이방성 전도성 페이스트(ACP, anisotropic conductive paste)가 될 수 있다. 다른 예로서, 상기 웨이퍼 상에 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나가 패턴 인쇄될 수 있다. 이 경우에, 상기 실버 페이스트, 주석 페이스트 및 솔더 페이스트가 상기 이방성 전도성 접착제를 대체하게 된다.
도 13b와 같이, 이방성 전도성 접착제가 액상으로 인쇄 공정(스크린 프린팅), dispensing 공정, 액상 패턴 전사 등의 방법을 통하여 반도체 발광소자의 전극 상에 일정한 패턴으로 도포된다. 이러한 예로서, 도 13a에서 이방성 도전성 필름이 덮는 영역내에서, 도 13b에서는 상기 이방성 전도성 접착제의 인쇄는 일방향을 따라 도포 및 미도포가 순차적으로 수행될 수 있다.
도 14b를 참조하면, 배선전극의 일부를 덮는 접착영역(1030b)이 복수로 구비되며, 이는 기설정된 이격 거리로 순차적으로 배열된다. 이 경우에, 상기 복수의 접착영역(1030b) 사이에 형성되는 공간(S)으로 이방성 전도성 접착제의 수지가 흘러나와 이동할 수 있다. 도 13b에서 이방성 전도성 접착제가 도포되지 않은 반도체 발광소자는 다른 디스플레이 장치의 제조시에, 이방성 전도성 접착제가 도포되어 배선기판으로 전사될 수 있다. 따라서, 대면적의 웨이퍼에서 성장한 반도체 발광소자들에 대한 복수회의 전사가 가능하게 된다.
이하, 본 발명의 디스플레이 장치의 구조에 대하여 첨부된 도면과 함께 상세하게 살펴본다. 도 15는 복수의 접착영역이 패턴화된 경우에 디스플레이 장치의 일 실시예를 나타내는 단면도이다.
도 15의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치로서 도 10 내지 도 12를 참조하여 설명한 플립 칩 타입 반도체 발광 소자를 이용한 디스플레이 장치(2000)를 예시한다. 보다 구체적으로, 도 10 내지 도 12를 참조하여 설명한 플립 칩 타입 반도체 발광소자에서 새로운 형광체층의 구조가 적용된 경우를 예시한다. 다만, 이하 설명되는 예시는 전술한 다른 형태의 반도체 발광 소자를 이용한 디스플레이 장치에도 적용 가능하다.
이하 설명되는 본 예시에서는, 앞서 도 10 내지 도 12를 참조하여 설명한 예시의 각 구성과 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다. 예를 들어, 디스플레이 장치(2000)는 기판(2010), 제1전극(2020), 제2전극(2040) 및 복수의 반도체 발광 소자(2050)를 포함하며, 이들에 대한 설명은 앞서 도 10 내지 도 12를 참조한 설명으로 갈음한다.
기판(2010)은 배선전극을 구비하는 배선기판으로서, 상기 제1전극(2020)은 기판(2010) 상에 위치하는 배선전극이 되며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(2020)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
상기 반도체 발광 소자들의 사이에는, 제1전극(2020)의 길이 방향과 교차하는 방향으로 배치되고, 상기 반도체 발광 소자(2050)와 전기적으로 연결된 복수의 제2전극(2040)이 위치한다.
도시와 같이, 복수의 반도체 발광소자(2050)는 제1전극(2020)에 구비되는 복수의 전극 라인들과 나란한 방향으로 복수의 열들을 형성할 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 복수의 반도체 발광소자(2050)는 제2전극(2040)을 따라 복수의 열들을 형성할 수 있다.
도시에 의하면, 기판(2010)은 전도성 접착층(2030)에 의하여 덮이게 된다. 또한, 복수의 반도체 발광 소자(2050)는 상기 전도성 접착층(2030)에 결합되며, 상기 배선전극과 전기적으로 연결된다.
전도성 접착층은 기판(2010)상에서 제1전극(2020)에 대응하는 위치에 형성된다. 예를 들어, 상기 전도성 접착층(2030)은 상기 반도체 발광 소자들의 각각의 전극상에 패턴된 형태로 도포되어, 상기 배선기판 상에서 서로 이격 배치되는 복수의 접착영역(2031, 2032)을 구비할 수 있다.
상기에서 설명된 구조에 의하여, 복수의 반도체 발광 소자(2050)는 상기 전도성 접착층(2030)에 결합 되며, 제1전극(2020) 및 제2전극(2040)과 전기적으로 연결된다.
보다 구체적으로, 상기 복수의 접착영역(2031, 2032)의 개별 접착영역은 상기 제1전극(2020)과 상기 반도체 발광소자의 제1도전형 전극(2156)의 사이에 배치된다. 이 때에, 상기 제1도전형 전극(2156)은 p형 전극이 될 수 있다.
상기 접착영역(2031, 2032)은 각각, 상기 배선기판의 측면을 감싸고, 상기 반도체 발광소자의 측면을 감싸는 크기를 가질 수 있다. 이러한 예로서, 상기 접착영역의 폭은 상기 제1전극(2020)의 폭보다 1배 내지 1.5배의 크기를 가질 수 있다.
이 경우에, 상기 복수의 접착영역(2031, 2032)의 사이에는 절연물질(2070)이 배치되어 상기 복수의 반도체 발광소자들의 사이를 충전할 수 있다.
상기 절연물질(2070)은 상기 전도성 접착층과 다른 재질로 형성될 수 있다. 이러한 예로서, 상기 절연물질(2070)은 실리콘 옥사이드(SiOx), 폴리머 등의 광투과성 재질로 형성될 수 있으며, 이 경우에 가시광선 내의 파장영역에서 80% 이상의 투과도를 가지도록 이루어질 수 있다.
다른 예로서, 상기 절연물질(2070)은 빛을 반사하는 성질을 가지는 재질로 형성되거나, 접착성을 가지는 재질로 형성될 수 있다. 마이크로 단위의 반도체 발광소자에서는 소자 각각이 분리되어 있기 때문에 상기 절연물질(2070)이 소자 측면에서 외부로 빠져나가는 빛을 반사한다면 광추출 효율의 증가를 기대할 수 있다.
이 때에, 절연물질(2070)은 상기 제1전극(1020)에 구비되는 복수의 전극 라인들과 평행한 방향으로 형성될 수 있다. 따라서, 상기 절연물질(2070)은 서로 이격 배치되는 복수의 라인을 형성한다.
한편, 상기 절연물질(2070)은 상기 제1도전형 전극(2156)과 동일한 방향으로 연장되도록 형성될 수 있다. 예를 들어, 상기 제1도전형 전극(2156)은 상기 제1전극처럼 바 형태(라인 형태)로 형성될 수 있다. 보다 구체적으로 상기 제1도전형 전극(2156)은 이웃하는 반도체 발광소자들의 공통 전극이 되도록 인접한 반도체 발광소자를 향하여 연장될 수 있으며, 상기 절연물질(2070)이 이와 평행하게 형성될 수 있다.
한편, 상기 복수의 접착영역은 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나를 구비할 수 있다.
상기 이방성 도전성 접착제의 경우, 이방성 도전성을 가지는 페이스트 형태의 접착제가 경화되어 상기 접착영역을 형성하게 된다. 상기 이방성 도전성 접착제는 바인더, 에폭시 수지, 경화제 및 도전볼을 포함할 수 있다. 이에 더하여, 필러, 커플링제 및 용매가 상기 이방성 도전성 접착제에 더 포함될 수 있다.
또한, 상기 이방성 도전성 접착제에는 백색 안료가 첨가되어, 반도체 발광소자와 배선기판 사이에서 외부로 빠져나가는 빛을 반사할 수 있다. 나아가, 상기 이방성 도전성 접착제에는 무기 파우더가 첨가되어, 칙소성의 증대 및 인쇄 특성의 향상을 도모할 수 있다. 또한, 상기 이방성 도전성 접착제에는 인쇄 후 공정성 확보를 위한 B-stage 공정을 위하여, 반응성 용매가 첨가될 수도 있다.
상기에서 설명된 구조에 의하면, 액상의 도전형 접착제를 웨이퍼 상이나 배선기판에 부분 인쇄하는 것이 가능해지며, 이를 통하여 원하는 형태의 패턴으로 반도체 발광 소자를 전사할 수 있으며, 이에 따라 응용 분야가 매우 넓은 제조방법이 구현될 수 있다.
이하, 본 발명에 적용되는 제조방법에 대하여, 도면을 참조하여 예시한다.
도 16, 도 17 및 도 18은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
먼저, 제조방법에 의하면, 성장기판(2059)에 n형 반도체층(2153), 활성층(2154), p형 반도체층(2155)을 각각 성장시킨다(도 16의 (a)).
n형 반도체층(2153)이 성장하면, 다음은, 상기 n형 반도체층(2153) 상에 활성층(2154)을 성장시키고, 다음으로 상기 활성층(2154) 상에 p형 반도체층(2155)을 성장시킨다. 이와 같이, n형 반도체층(2153), 활성층(2154) 및 p형 반도체층(2155)을 순차적으로 성장시키면, 도 16의 (a)에 도시된 것과 같이, 마이크로 반도체 발광소자의 적층 구조가 형성된다.
성장기판(2059)(웨이퍼)은 광 투과적 성질을 가지는 재질, 예를 들어 사파이어(Al2O3), GaN, ZnO, AlO 중 어느 하나를 포함하여 형성될 수 있으나, 이에 한정하지는 않는다. 또한, 성장기판(2059)은 반도체 물질 성장에 적합한 물질, 캐리어 웨이퍼로 형성될 수 있다. 열 전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판을 포함하여 예를 들어, 사파이어(Al2O3) 기판에 비해 열전도성이 큰 SiC 기판 또는 Si, GaAs, GaP, InP, Ga2O3 중 적어도 하나를 사용할 수 있다.
다음으로, 상기 n형 반도체층(2153)의 적어도 일부가 노출되도록 활성층(2154) 및 p형 반도체층(2155)의 적어도 일부를 제거한다(도 16의 (b)).
이 경우에, 상기 활성층(2154) 및 p형 반도체층(2155)은 수직방향으로 일부가 제거되어, 상기 n형 반도체층(2153)이 외부로 노출된다. 이를 통하여, 메사 공정이 수행된다. 이후에, 복수의 발광소자들이 발광 소자 어레이를 형성하도록 상기 n형 반도체층(2153)을 식각하여 아이솔레이션(isolation)이 수행된다. 이와 같이, p형 반도체층(2155), 활성층(2154) 및 n형 반도체층(2153)을 식각하여 복수의 마이크로 반도체 발광소자를 형성한다.
다음으로, 플립 칩 타입(flip chip type)의 발광 소자가 구현되도록, 상기 n형 반도체층(2153)과 상기 p형 반도체층(2155)에 두께방향으로 높이차를 가지는 n형 전극(2152) 및 p형 전극(2156)를 각각 형성한다(도 16의 (c)).
상기 n형 전극(2152) 및 p형 전극(2156)은 스퍼터링 등의 증착 방법으로 형성될 수 있으나, 본 발명은 반드시 이에 한정되는 것은 아니다. 이 때에, 상기 n형 전극(2152)은 전술한 제2도전형 전극이 되고, 상기 p형 전극(2156)은 제1도전형 전극이 될 수 있다.
다음으로, n형 전극(2152) 및 p형 전극(2156)가 형성된 상태에서, 제1반도체 발광소자들의 전극 상에 도전형 접착제를 도포하여 도전성 접착층(2030)을 형성한다(도 16의 (d)).
이 경우에, 상기 도전성 접착층(2030)은 상기 반도체 발광소자의 일면에 형성되거나, 상기 반도체 발광소자의 측면을 감싸는 크기를 가질 수 있다. 이러한 예로서, 상기 도전성 접착층(2030)의 폭은 상기 p형 전극(2156)의 폭보다 작거나 동일한 크기가 되어, 상기 p형 전극(2156) 상에 도포될 수 있다.
다른 예로서, 상기 도전성 접착층(2030)의 폭은 상기 p형 전극(2156)의 폭보다 1배 내지 1.5배의 크기를 가질 수 있다. 나아가, 상기 도전성 접착층(2030)은 상기 반도체 발광소자의 최대 단면적보다 더 큰 크기로 형성될 수 있다. 이 때에, 합착 공정에 의하여 상기 도전성 접착층(2030)은 상기 반도체 발광소자의 측면을 완전히 감싸는 구조로 형성될 수 있다.
상기 도전형 접착제는 기판(2010)상에서 제1전극(2020)에 대응하는 위치에 형성된다. 이러한 예로서, 상기 도전형 접착제는 상기 p형 전극(2156)에 도포된다. 보다 구체적으로, 상기 도전형 접착제는 복수의 반도체 발광소자들의 각각의 p형 전극(2156)에 도포되며, 이를 통하여 상기 배선기판 상에서 서로 이격 배치되는 복수의 접착영역을 형성한다.
이 경우에, 상기 도전형 접착제는 성장기판 상의 복수의 반도체 발광소자 중에서 일부에만 도포된다. 상기 도전형 접착제는 스크린 프린팅, 디스펜싱(dispensing), 액상 패턴 전사 중 적어도 하나에 의하여 상기 성장기판에 선택적 패턴 인쇄될 수 있다. 패턴의 예로서, 적어도 하나의 반도체 발광소자를 사이에 두고 두 개의 반도체 발광소자들에 상기 도전형 접착제가 도포될 수 있다. 이는 행방향과 열방향으로 모두 수행될 수 있다. 이와 같이, 설계자의 의도에 따라서, 상기 도전형 접착제는 원하는 반도체 발광소자에만 도포될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 예를 들어, 상기 도전형 접착제는 성장기판이 아니라, 배선기판 상에 배선전극에 패턴 인쇄를 이용하여 도포될 수 있다.
한편, 상기 도전형 접착제는 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나를 구비할 수 있다.
상기 이방성 도전성 접착제의 경우, 이방성 도전성을 가지는 페이스트 형태가 될 수 있다. 상기 이방성 도전성 접착제는 바인더, 에폭시 수지, 경화제 및 도전볼을 포함할 수 있다. 이에 더하여, 필러, 커플링제 및 용매가 상기 이방성 도전성 접착제에 더 포함될 수 있다.
또한, 상기 이방성 도전성 접착제에는 백색 안료가 첨가되어, 반도체 발광소자와 배선기판 사이에서 외부로 빠져나가는 빛을 반사할 수 있다. 나아가, 상기 이방성 도전성 접착제에는 무기 파우더가 첨가되어, 칙소성의 증대 및 인쇄 특성의 향상을 도모할 수 있다.
다음으로, 이격 배치되는 반도체 발광 소자들의 사이는 절연물질로 채워질 수 있다. 즉, 상기 도전형 접착제가 상기 성장기판에 패턴 인쇄된 후에, 상기 성장기판에 절연물질을 프린팅 또는 코팅하는 단계가 진행된다(미도시).
본 공정은 인쇄 후 공정성 확보를 위한 B-stage 공정이 될 수 있으며, 상기 이방성 도전성 접착제에는 상기 B-stage 공정을 위하여, 반응성 용매가 첨가될 수도 있다.
다음으로, 제1반도체 발광소자들(2050a)을 배선전극을 구비한 제1배선기판(2010a)에 얼라인먼트(Alignment)한 후 상기 성장기판(2059)을 제거한다(도 17의 (a)).
상기 제1배선기판(2010a)에는 제1전극(2020)이 구비되며, 상기 제1전극(2020)은 행 방향을 따라 배치되어 본 발명의 디스플레이 장치(2000)에서 데이터 전극의 역할을 수행할 수 있다.
상기 성장기판은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거되며, 제거 전에 반도체 발광소자가 상기 도전형 접착제에 합착된다. 이 경우에, 상기 레이저 리프트 오프법 또는 화학적 리프트 오프법은 상기 전도성 접착제가 도포된 반도체 발광소자에만 선택적으로 수행된다. 따라서, 상기 제거된 성장기판에는 상기 도전형 접착제가 도포되지 않은 반도체 발광소자들은 남아있게 된다.
상기 합착시에 상기 배선기판(2021)의 배선전극(2020)과 상기 제1반도체 발광소자들(2050a)의 p형 전극(2020)이 전기적으로 연결되어, 상기 배선기판(2010a)의 배선전극이 p 공통전극이 될 수 있다.
상기 합착 및 성장기판 제거 공정 후에, 상기 반도체 발광소자들의 사이를 절연물질로 채우는 단계(도 17의 (b))가 진행될 수 있다. 전술한 바와 같이, 상기 절연물질(2070)은 상기 전도성 접착층과 다른 재질로 형성될 수 있다.
이 후에, 상기 n형 전극(2152)에는 상기 n형 반도체층에서 일방향으로 연장되어 상기 복수의 반도체 발광소자를 전기적으로 연결하는 제2전극(2040, 도 10 참조)이 연결(도 17의 (c))될 수 있다.
다음으로, 적색, 녹색 및 청색의 구현을 위하여, 전술한 형광체층이나 컬러기판을 형성하는 단계 등이 진행되며, 이를 통하여 하나의 디스플레이 장치가 완성될 수 있다.
이와 같이, 성장기판 상의 일부의 반도체 발광소자를 이용하여 하나의 디스플레이 장치가 완성되고 나면, 다음으로 성장기판 상의 다른 반도체 발광소자를 이용하여 다른 디스플레이 장치를 제조한다.
예를 들어, 제2반도체 발광소자들(2050b)의 전극 상에 상기 도전형 접착제를 도포하는 단계가 진행(도 18의 (a))될 수 있다.
도 16 및 도 17의 제조공정에 의하여, 전술한 성장기판에는 반도체 발광소자들이 특정 간격으로 배열되어 남아있게 된다. 본 공정에서는 상기 성장기판상의 다른 반도체 발광소자에 다시 도전형 접착제를 패턴 인쇄하여 상기 성장기판의 다수회 전사를 구현한다.
이후에, 상기 제2반도체 발광소자들(2050b)을 제2배선기판(2010b)에 얼라인먼트(Alignment)한 후, 상기 성장기판을 제거하는 단계(도 18의 (b))를 진행될 수 있다.
상기 합착 및 성장기판 제거 공정 후에, 상기 반도체 발광소자들의 사이를 절연물질로 채우는 단계(도 18의 (c))와, 제2전극(2040)을 형성하는 단계(도 18의 (d))와 형광체층이나 컬러필터를 형성하는 단계가 진행될 수 있으며, 이를 통하여 다른 디스플레이 장치가 완성될 수 있다.
이와 같은 방법에 의하면, 전사될 반도체 발광소자의 영역을 전도성 액상을 선택적으로 패턴하여, 하나의 성장기판에서 동일한 반도체 발광소자의 전사 패턴을 수행할 수 있게 된다.
한편, 상기의 제조방법은 동일한 패턴을 다회 전사하는 것에서 나아가, 적색, 녹색 및 청색의 색 구현을 위하여 적색 반도체 발광소자, 녹색 반도체 발광소자 및 청색 반도체 발광소자의 개별 전사 방법으로도 응용이 가능하다. 이하, 이러한 응용예에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 19, 도 20a, 도 20b 및 도 21은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법의 다른 예를 나타내는 개념도들이다.
먼저, 제조방법에 의하면, 녹색 반도체 발광소자 및 청색 반도체 발광소자의 발광 구조물이 성장되도록 녹색 반도체 발광소자들 및 청색 반도체 발광소자들을 별도로 성장기판(LED wafer)에서 성장시킨다(도 19의 (a)). 도시된 바와 같이, 상기 성장기판은 Sapphire 기판이 될 수 있다.
이 때에, 각각의 성장기판(Green LED wafer, Blue LED wafer)에서는 도 16의 (a), 도 16의 (b) 및 도 16의 (c)를 참조하여 설명한 단계가 진행되며, 이를 통하여 녹색 반도체 발광소자가 제1성장기판(Green LED wafer)에 구비되고, 청색 반도체 발광소자가 제2성장기판(Blue LED wafer)에 구비될 수 있다.
이 경우에, 녹색 반도체 발광소자와 청색 반도체 발광소자는 성장기판에 구비되고, 적색 반도체 발광소자는 도너 기판(Donor plate)이나 필름 상에 구비될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 청색의 반도체 발광소자와 적색 형광체나 컬러필터의 조합으로 적색의 화소가 구현될 수 있으며, 이 경우에 대하여는 후술한다.
다음으로, 상기 녹색 반도체 발광소자들의 전극이나 또는 배선기판의 배선전극에서 상기 녹색 반도체 발광소자들에 대응하는 제1부분에 도전형 접착제를 도포하는 단계가 진행된다(도 19의 (b)). 본 공정에서는 전술한 도 16의 (d)의 제조방법이 적용될 수 있으며, 녹색 반도체 발광소자들의 전극에 도전형 접착제를 도포하는 경우를 도시한다.
전술한 바와 같이, 상기 도전형 접착제는 스크린 프린팅, 디스펜싱(dispensing), 액상 패턴 전사 중 적어도 하나에 의하여 상기 성장기판에 선택적 패턴 인쇄될 수 있다. 또한, 상기 도전형 접착제는 액상의 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나가 될 수 있다.
이 후에, 상기 녹색 반도체 발광소자들을 상기 제1부분에 결합하는 단계가 진행된다. 전술한 도 17의 (a)와 같이, 녹색 반도체 발광소자들을 배선전극을 구비한 제1배선기판(3010a)에 얼라인먼트(도 19의 (c))한 후 성장기판을 제거(도 19의 (d))한다.
다음으로, 도 19과 동일한 방법으로 청색 반도체 발광소자를 제2성장기판(Blue LED wafer)에서 상기 제1배선기판(3010a)이 아닌 제2배선기판(3010b)에 원하는 위치에 합착 전사한다(도 20a). 또한, 적색 반도체 발광소자를 도너 기판(donor plate)에서 상기 제1배선기판이 아닌 다른 배선기판에 원하는 위치에 합착 전사한다(도 20b). 이 경우에, 상기 합착 및 전사 공정은 제3배선기판(3010c) 및 제4배선기판(3010d)에 각각 수행되며, 따라서, 상기 도너 기판(donor plate)에는 복수의 적색 반도체 발광소자가 전사되고 난 빈자리가 형성될 수 있다(도 19b).
다음으로, 상기 청색 반도체 발광소자들의 전극이나 또는 상기 배선전극에서 상기 청색 반도체 발광소자들에 대응하는 제2부분에 상기 도전형 접착제를 도포하고, 상기 청색 반도체 발광소자들을 상기 제2부분에 결합하는 단계(도 21의 (a) 및 (b))가 진행될 수 있다.
예를 들어, 상기 제2배선기판으로 반도체 발광소자를 기전사한 성장기판(Blue LED wafer)을 이용하여 상기 제1배선기판(3010a)의 원하는 위치에 상기 청색 반도체 발광소자들을 전사한다. 이 경우에 이용되는 성장기판은, 최소한 1회의 전사가 기수행되어 1개의 빈 공간이 생성된 제2성장기판(Blue LED wafer)이 될 수 있다. 이 때에, 전술한 도 16의 (d)의 제조방법과 도 17의 (a)의 제조방법이 적용될 수 있다.
또한, 상기 적색 반도체 발광소자들의 전극이나 또는 상기 배선전극에서 상기 적색 반도체 발광소자들에 대응하는 제3부분에 상기 도전형 접착제를 도포하고, 상기 적색 반도체 발광소자들을 상기 제3부분에 결합하는 단계(도 21의 (c) 및 (d))가 진행될 수 있다.
마지막으로, 상기 제3배선기판(3010c) 및 제4배선기판(3010d)으로 반도체 발광소자를 기전사한 도너 기판(donor plate)을 이용하여 상기 제1배선기판(3010a)의 원하는 위치에 상기 적색 반도체 발광소자들을 전사한다. 이 경우에 이용되는 성장기판은, 최소한 2회의 전사가 기수행되어 2개의 빈 공간이 생성된 기판이 될 수 있다. 이 때에도, 전술한 도 16의 (d)의 제조방법과 도 17의 (a)의 제조방법이 적용될 수 있다.
이후에, 개별로 전사된 위치의 빈 공간을 이용하여 상기 제2배선기판(3010b) 또는 제3배선기판(3010c)에, 이미 기판에 전사된 픽셀이 아닌 다른 색의 픽셀을 합착 전사를 수행한다.
이러한 예로서, 상기 녹색 반도체 발광소자들의 성장기판을 다른 배선기판에 얼라인먼트(Alignment)하여, 상기 녹색 반도체 발광소자들을 상기 다른 배선기판으로 전사하는 단계가 수행될 수 있다. 마찬가지로, 상기 청색 반도체 발광소자들의 성장기판을 다른 배선기판에 얼라인먼트(Alignment)하여, 상기 청색 반도체 발광소자들을 상기 다른 배선기판으로 전사하는 단계가 수행될 수 있다.
또한, 상기 제1배선기판(3010a)으로 반도체 발광소자를 기전사한 성장기판을 이용하여 상기 제2배선기판(3010b)의 원하는 위치에 상기 청색 반도체 발광소자들을 전사하는 방법도 가능하다. 이 경우에, 상기 녹색 반도체 발광소자들이 상기 제1부분에 결합됨에 의하여 상기 녹색 반도체 발광소자가 없는 부분에는 상기 다른 배선기판에 기결합된 반도체 발광소자가 얼라인될 수 있다.
본 예시에서는, 녹색, 청색 및 적색은 순서와 상관없이 최초 전사된 기판의 빈 공간을 이용하여 전사가 가능하게 된다. 상기에서 설명된 제조방법에 의하면, 녹색 반도체 발광소자 및 청색 반도체 발광소자를 각각 별도의 기판에서 성장시킨 후 하나의 배선기판으로 개별적으로 전사하는 것이 가능하게 된다.
한편, 도 22 및 도 23은 본 발명의 다른 제조 방법을 예시한다.
도 22의 (a) 및 도 23의 (a)에서는 기존에 적색 반도체 발광소자가 전사되어 있는 기판 위에 각각 한개의 반도체 발광소자가 빠져있는 녹색 반도체 발광소자의 성장기판과, 청색 반도체 발광소자의 성장기판을 합착하는 것을 보여준다. 이를 통하여, 도 22의 (b) 및 도 23의 (b)와 같이 녹색과 적색의 기판과 청색과 적색의 기판이 제조될 수 있다.
다음으로, 도 22의 (c) 및 (d)와 같이 2개의 반도체 발광소자가 빠져있는 청색 반도체 발광소자의 성장기판을 이용하여, 녹색과 적색의 기판에 청색 반도체 발광소자를 합착 및 전사한다. 마찬가지로, 도 23의 (c) 및 (d)와 같이 2개의 반도체 발광소자가 빠져있는 녹색 반도체 발광소자의 성장기판을 이용하여, 청색과 적색의 기판에 녹색 반도체 발광소자를 합착 및 전사한다.
이와 같이 도 22및 도 23에 도시된 제조방법에 의하여, 대면적의 성장기판의 다수회의 전사를 이용하면서도, 녹색, 청색 및 적색의 반도체 발광소자를 개별적으로 배선기판에 합착하는 것이 가능하게 된다.
한편, 전술한 바와 같이, 본 예시에서 상기 적색 반도체 발광소자는 청색 반도체 발광소자와, 형광체층의 조합으로 대체될 수 있다. 도 24 및 도 25는 청색 및 녹색 반도체 발광소자만을 배선기판에 합착 전사하는 제조방법을 나타내는 개념도이다.
도 24의 (a), (b) 및 (c)에서 하나의 성장기판으로 다회 전사를 하여, 2개의 반도체 발광소자가 빠져있는 녹색 반도체 발광소자의 성장기판(Green LED wafer)과, 한 번에 2개의 청색 반도체 발광소자를 전사한 청색 반도체 발광소자의 성장기판(Blue LED wafer)이 준비된다.
이 경우에, 2개의 반도체 발광소자가 빠져있는 녹색 반도체 발광소자의 성장 기판(Green LED wafer)은 하나의 녹색 반도체 발광소자를 사이에 두고 2개의 빈공간이 생기도록 이루어진다.
도 24의 (d) 및 도 25의 (a)에 의하면, 도 24의 (c)에서 형성된 2개의 청색 반도체 발광소자가 전사된 배선기판(4010b)에 도 24의 (b)에서 형성된 2개의 빈공간을 가진 녹색 반도체 발광소자의 성장기판(Green LED wafer)이 얼라인되어, 하나의 녹색 반도체 발광소자가 상기 배선기판(4010b)으로 합착 전사된다.
한편, 도 25의 (b) 및 (c)에 의하면, 2개의 청색 반도체 발광소자를 전사한 청색 반도체 발광소자의 성장기판을 이용하여, 하나의 녹색 반도체 발광소자가 전사된 배선기판(4010a)에 다시 2개의 청색 반도체 발광소자가 전사된다.
마지막으로, 도 25의 (d)와 같이, 제조된 2개의 배선기판(4010a, 4010b)에서 각각, 2개의 청색 반도체 발광소자 중 어느 하나에는 적색의 형광체층(4082)이 적층되며, 이를 통하여 적색의 픽셀이 구현될 수 있다.
또한, 상기에서 설명된 제조방법은 배선기판이 아닌 도너 기판을 이용할 수 있다. 이 경우에 방법은 동일하나, 이방성 전도성 접착제나 솔더가 아닌 비전도성 액상의 접착제가 반도체 발광소자에 패턴 인쇄될 수 있다.
도 26은 도너 기판을 이용하여 반도체 발광소자를 선택전사하는 공정을 나타내는 개념도이다.
도시와 같이, 녹색 반도체 발광소자와 청색 반도체 발광소자를 각각의 성장기판에서 별개로 성장시킨 후에, 비전도성 접착제의 선택적 도포를 이용하여 각각의 도너 기판(donor plate 1, donor plate 2)에 1회 전사한다(도 26의 (a) 및 (b)).
이 후에, 각각의 성장기판과 도너 기판을 서로 교차하여 녹색 반도체 발광소자가 전사된 도너 기판(donor plate 1)에는 청색의 반도체 발광소자를 전사하고, 청색의 반도체 발광소자가 전사된 도너 기판(donor plate 2)에는 녹색의 반도체 발광소자를 전사한다(도 26의 (c) 및 (d)).
다음으로, 적색의 반도체 발광소자를 상기 청색 및 녹색의 반도체 발광소자가 안착된 각각의 도너 기판들(donor plate 1, donor plate 2)로 전사한다(도 24의 (e)). 상기 도너 기판들(donor plate 1, donor plate 2)을 배선기판과 합착하여 디스플레이 장치를 제조하면, 대면적의 웨이퍼의 다수회의 전사가 구현될 수 있다.
이상에서 설명한 반도체 발광 소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (18)

  1. 배선전극을 구비하는 배선기판;
    상기 배선전극을 덮는 전도성 접착층;
    상기 전도성 접착층에 결합되며, 상기 배선전극과 전기적으로 연결되는 복수의 반도체 발광 소자들을 포함하며,
    상기 전도성 접착층은 상기 반도체 발광 소자들의 각각의 전극상에 패턴된 형태로 도포되어, 상기 배선기판 상에서 서로 이격 배치되는 복수의 접착영역을 구비하는 것을 특징으로 하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 복수의 접착영역은 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나를 구비하는 것을 특징으로 하는 디스플레이 장치.
  3. 제2항에 있어서,
    상기 이방성 도전성 접착제에는 백색 안료가 첨가되는 것을 특징으로 하는 디스플레이 장치.
  4. 제2항에 있어서,
    상기 이방성 도전성 접착제에는 무기 파우더가 첨가되는 것을 특징으로 하는 디스플레이 장치.
  5. 제1항에 있어서,
    상기 복수의 접착영역의 사이에는 절연물질이 배치되어 상기 복수의 반도체 발광소자들의 사이를 충전하는 것을 특징으로 하는 디스플레이 장치.
  6. 제5항에 있어서,
    상기 절연물질은 상기 전도성 접착층과 다른 재질로 형성되는 것을 특징으로 하는 디스플레이 장치.
  7. 제1반도체 발광소자들과 제2반도체 발광소자들을 성장기판에서 성장시키는 단계;
    제1반도체 발광소자들의 전극 상에 도전형 접착제를 도포하는 단계;
    상기 제1반도체 발광소자들을 배선전극을 구비한 제1배선기판에 얼라인먼트(Alignment)한 후 상기 성장기판을 제거하는 단계;
    제2반도체 발광소자들의 전극 상에 상기 도전형 접착제를 도포하는 단계; 및
    상기 제2반도체 발광소자들을 제2배선기판에 얼라인먼트(Alignment)한 후, 상기 성장기판을 제거하는 단계를 포함하는 디스플레이 장치의 제조방법.
  8. 제7항에 있어서,
    상기 도전형 접착제는 스크린 프린팅, 디스펜싱(dispensing), 액상 패턴 전사 중 적어도 하나에 의하여 상기 성장기판에 선택적 패턴 인쇄되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  9. 제7항에 있어서,
    상기 도전형 접착제는 액상의 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나인 것을 특징으로 하는 디스플레이 장치의 제조방법.
  10. 제9항에 있어서,
    상기 이방성 도전성 접착제에는 백색 안료가 첨가되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  11. 제9항에 있어서,
    상기 이방성 도전성 접착제에는 무기 파우더가 첨가되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  12. 제7항에 있어서,
    상기 도전형 접착제가 상기 성장기판에 패턴 인쇄된 후에, 상기 성장기판에 절연물질을 프린팅 또는 코팅하는 단계를 더 포함하는 디스플레이 장치의 제조방법.
  13. 녹색 반도체 발광소자 및 청색 반도체 발광소자의 발광 구조물이 성장되도록 녹색 반도체 발광소자들 및 청색 반도체 발광소자들을 별도로 성장기판에서 성장시키는 단계;
    상기 녹색 반도체 발광소자들의 전극이나 또는 배선기판의 배선전극에서 상기 녹색 반도체 발광소자들에 대응하는 제1부분에 도전형 접착제를 도포하는 단계;
    상기 녹색 반도체 발광소자들을 상기 제1부분에 결합하는 단계; 및
    상기 청색 반도체 발광소자들의 전극이나 또는 상기 배선전극에서 상기 청색 반도체 발광소자들에 대응하는 제2부분에 상기 도전형 접착제를 도포하고, 상기 청색 반도체 발광소자들을 상기 제2부분에 결합하는 단계를 포함하는 디스플레이 장치의 제조방법.
  14. 제13항에 있어서,
    상기 녹색 반도체 발광소자들의 성장기판을 다른 배선기판에 얼라인먼트(Alignment)하여, 상기 녹색 반도체 발광소자들을 상기 다른 배선기판으로 전사하는 단계를 더 포함하는 디스플레이 장치의 제조방법.
  15. 제14항에 있어서,
    상기 전사하는 단계에서,
    상기 녹색 반도체 발광소자들이 상기 제1부분에 결합됨에 의하여 상기 녹색 반도체 발광소자가 없는 부분에는 상기 다른 배선기판에 기결합된 반도체 발광소자가 얼라인되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  16. 제13항에 있어서,
    적색 반도체 발광소자들이 별도의 기판에서 구비되며,
    상기 적색 반도체 발광소자들의 전극이나 또는 상기 배선전극에서 상기 적색 반도체 발광소자들에 대응하는 제3부분에 상기 도전형 접착제를 도포하고, 상기 적색 반도체 발광소자들을 상기 제3부분에 결합하는 단계를 더 포함하는 디스플레이 장치의 제조방법.
  17. 제16항에 있어서,
    상기 도전형 접착제는 스크린 프린팅, 디스펜싱(dispensing), 액상 패턴 전사 중 적어도 하나에 의하여 상기 성장기판에 선택적 패턴 인쇄되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  18. 제16항에 있어서,
    상기 도전형 접착제는 액상의 이방성 도전성 접착제(ACA, Anisotropic Conductive adhesive), 실버 페이스트, 주석 페이스트 및 솔더 페이스트 중 적어도 하나인 것을 특징으로 하는 디스플레이 장치의 제조방법.
PCT/KR2016/015338 2016-11-17 2016-12-27 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법 WO2018092977A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/461,282 US11189767B2 (en) 2016-11-17 2016-12-27 Display apparatus comprising light emitting devices coupled to a wiring board with conductive adhesive
EP16921607.4A EP3544386B1 (en) 2016-11-17 2016-12-27 Display apparatus using semiconductor light emitting device, and manufacturing method therefor
US17/511,268 US11799063B2 (en) 2016-11-17 2021-10-26 Display apparatus comprising light emitting devices coupled to a wiring board with conductive adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160153501A KR20180055549A (ko) 2016-11-17 2016-11-17 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR10-2016-0153501 2016-11-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/461,282 A-371-Of-International US11189767B2 (en) 2016-11-17 2016-12-27 Display apparatus comprising light emitting devices coupled to a wiring board with conductive adhesive
US17/511,268 Continuation US11799063B2 (en) 2016-11-17 2021-10-26 Display apparatus comprising light emitting devices coupled to a wiring board with conductive adhesive

Publications (1)

Publication Number Publication Date
WO2018092977A1 true WO2018092977A1 (ko) 2018-05-24

Family

ID=62146482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015338 WO2018092977A1 (ko) 2016-11-17 2016-12-27 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Country Status (4)

Country Link
US (2) US11189767B2 (ko)
EP (1) EP3544386B1 (ko)
KR (1) KR20180055549A (ko)
WO (1) WO2018092977A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071077A1 (en) * 2019-10-11 2021-04-15 Samsung Electronics Co., Ltd. Display module and manufacturing method thereof
EP4002469A4 (en) * 2019-07-19 2023-04-05 Lg Electronics Inc. MICRO-LED DISPLAY DEVICE AND METHOD OF MAKING IT

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018006965T5 (de) * 2018-01-29 2020-10-08 Lg Electronics Inc. Verfahren zur Herstellung einer Anzeigevorrichtung unter Verwendung lichtemittierender Halbleiterelemente und Anzeigevorrichtung
KR20200005096A (ko) * 2018-07-05 2020-01-15 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US11271033B2 (en) * 2018-09-27 2022-03-08 Lumileds Llc Micro light emitting devices
KR20200137247A (ko) * 2019-05-29 2020-12-09 삼성전자주식회사 마이크로 엘이디 디스플레이 및 이의 제작 방법
KR102243768B1 (ko) * 2019-08-08 2021-04-26 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20210063056A (ko) * 2019-11-22 2021-06-01 엘지전자 주식회사 발광 소자를 이용한 디스플레이 장치
KR20200026773A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20200026774A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20200026776A (ko) * 2019-11-29 2020-03-11 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
EP4071821A4 (en) * 2019-12-05 2023-08-30 LG Electronics Inc. DISPLAY DEVICE USING LIGHT-emitting semiconductor devices and method of manufacturing the same
WO2023234435A1 (ko) * 2022-05-31 2023-12-07 엘지전자 주식회사 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140025055A (ko) * 2012-08-21 2014-03-04 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
JP2015088744A (ja) * 2013-09-26 2015-05-07 デクセリアルズ株式会社 発光装置、異方性導電接着剤、発光装置製造方法
KR20150073526A (ko) * 2013-12-23 2015-07-01 광주과학기술원 레이저 차단층을 이용한 발광 다이오드의 전사방법
WO2016100662A1 (en) * 2014-12-19 2016-06-23 Glo Ab Light emitting diode array on a backplane and method of making thereof
KR20160087264A (ko) * 2015-01-13 2016-07-21 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638520B2 (ja) * 1986-02-03 1994-05-18 ポリプラスチックス株式会社 発光素子装置
WO2007034764A1 (ja) * 2005-09-26 2007-03-29 Matsushita Electric Industrial Co., Ltd. 非接触型情報記憶媒体とその製造方法
KR101630319B1 (ko) * 2009-06-30 2016-06-14 엘지디스플레이 주식회사 표시장치의 이방성 도전필름의 검사 방법
US8455895B2 (en) 2010-11-08 2013-06-04 Bridgelux, Inc. LED-based light source utilizing asymmetric conductors
JP5965199B2 (ja) * 2012-04-17 2016-08-03 デクセリアルズ株式会社 異方性導電接着剤及びその製造方法、発光装置及びその製造方法
KR101476686B1 (ko) 2013-04-01 2014-12-26 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
EP3200250B1 (en) * 2014-09-26 2020-09-02 Toshiba Hokuto Electronics Corp. Production method for light-emission module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140025055A (ko) * 2012-08-21 2014-03-04 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
JP2015088744A (ja) * 2013-09-26 2015-05-07 デクセリアルズ株式会社 発光装置、異方性導電接着剤、発光装置製造方法
KR20150073526A (ko) * 2013-12-23 2015-07-01 광주과학기술원 레이저 차단층을 이용한 발광 다이오드의 전사방법
WO2016100662A1 (en) * 2014-12-19 2016-06-23 Glo Ab Light emitting diode array on a backplane and method of making thereof
KR20160087264A (ko) * 2015-01-13 2016-07-21 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002469A4 (en) * 2019-07-19 2023-04-05 Lg Electronics Inc. MICRO-LED DISPLAY DEVICE AND METHOD OF MAKING IT
WO2021071077A1 (en) * 2019-10-11 2021-04-15 Samsung Electronics Co., Ltd. Display module and manufacturing method thereof
US11362249B2 (en) 2019-10-11 2022-06-14 Samsung Electronics Co., Ltd. Display module and manufacturing method thereof

Also Published As

Publication number Publication date
EP3544386A4 (en) 2020-05-13
KR20180055549A (ko) 2018-05-25
EP3544386B1 (en) 2022-12-14
US11189767B2 (en) 2021-11-30
EP3544386A1 (en) 2019-09-25
US20220052243A1 (en) 2022-02-17
US20200058838A1 (en) 2020-02-20
US11799063B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2018092977A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2021002490A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040066A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017209437A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2021033802A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021040102A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2018101539A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2015133821A1 (en) Display device using semiconductor light emitting device
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2018056477A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2016003019A1 (en) Display device using semiconductor light emitting device
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2021080028A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017007215A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2015093721A1 (en) Display device using semiconductor light emitting device and method of fabricating the same
WO2018048019A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021070977A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2016068418A1 (en) Display device using semiconductor light emitting device and method of fabricating the same
WO2021125421A1 (ko) 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2020251076A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021015306A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921607

Country of ref document: EP

Effective date: 20190617