WO2021014904A1 - 発光装置のリッド材、リッド材の製造方法および発光装置 - Google Patents

発光装置のリッド材、リッド材の製造方法および発光装置 Download PDF

Info

Publication number
WO2021014904A1
WO2021014904A1 PCT/JP2020/025716 JP2020025716W WO2021014904A1 WO 2021014904 A1 WO2021014904 A1 WO 2021014904A1 JP 2020025716 W JP2020025716 W JP 2020025716W WO 2021014904 A1 WO2021014904 A1 WO 2021014904A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
lid
lid material
emitting device
Prior art date
Application number
PCT/JP2020/025716
Other languages
English (en)
French (fr)
Inventor
村上 達也
利治 辻原
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to JP2021533894A priority Critical patent/JP7173347B2/ja
Priority to CN202080023443.6A priority patent/CN113646908A/zh
Publication of WO2021014904A1 publication Critical patent/WO2021014904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a lid material used in a light emitting device equipped with an LED (Light Emitting Diode), a method for manufacturing the lid material, and a light emitting device.
  • LED Light Emitting Diode
  • a structure in which the LED is sealed inside a package to improve reliability is generally known.
  • the LED is housed in the cavity of the package base (for example, a ceramic package) and the cavity opening of the package base is sealed by a lid.
  • the lid needs to be transparent to the LED irradiation light.
  • the LED is a deep ultraviolet LED that irradiates deep ultraviolet rays
  • quartz glass is preferably used for the lid (for example, Patent Document 1).
  • the number of man-hours may increase in the element manufacturing process in the light emitting device.
  • using a crystal for the lid has the advantage of reducing man-hours.
  • Au-Sn alloy is used as a brazing material to seal the ceramic package with a quartz lid.
  • Quartz has low adhesion to Au—Sn alloy, so a base film is required to improve the adhesion. It should be noted that such a base film is also necessary when quartz glass is used for the lid. For this reason, when sealing a ceramic package with a lid, a lid material (lid and base film) in which a base film is formed in advance on the joint surface of the lid with the package is generally used. Further, in such a lid material, a brazing material is preliminarily fused to the base film.
  • a lid material using a quartz lid causes problems such as lid peeling and poor airtightness depending on the formation conditions of the underlying film. That is, when the base film was formed under the same conditions as when quartz glass was used for the lid, the adhesion was extremely low, and it was necessary to change the conditions significantly.
  • quartz glass even when quartz glass is used for the lid, it goes without saying that the reliability of the light emitting device will be improved if the adhesion with the Au—Sn alloy can be further improved.
  • a Cr (chromium) film as a base film for obtaining adhesion with an Au—Sn alloy, but in this case, Au—to the base film Diffusion of the Sn alloy is likely to occur, and there is ample room for improvement from the viewpoint of film peeling and adhesion.
  • the present invention has been made in view of the above problems, and is a lid material having a suitable base film that does not cause lid peeling or airtightness in a light emitting device in which an LED is arranged inside a package and sealed with a lid material. , A method of manufacturing a lid material and a light emitting device.
  • the lid material according to the first aspect of the present invention is a lid material used for a light emitting device in which an LED is sealed in a package, and the lid material is used for the irradiation light of the LED.
  • the first metallized film includes a transparent lid body and a first metallized film formed on the sealing surface of the lid body, and the first metallized film includes a first layer directly formed on the lid body.
  • the first layer includes a second layer formed on the first layer, the first layer is a layer containing a Ti film having a thickness of 20 to 700 nm, and the second layer is Ni, Ti, Au. It is characterized by having an alloy film containing Sn and Sn.
  • a lid material having a suitable base film that does not cause lid peeling or poor airtightness can be obtained.
  • the Ti film contained in the first layer can be configured to be a Ti film having a film thickness of 200 to 300 nm.
  • the first layer can be configured to have an oxide film made of titanium oxide on the surface.
  • the first layer has a structure in which an Au film and another Ti film are laminated in order from the side closer to the Ti film on the Ti film. be able to.
  • the second layer has a Ni alloy film on the inner peripheral edge side and the outer peripheral edge side thereof, and the alloy film containing Ni, Ti, Au and Sn is formed between these Ni alloy films. It can be a formed configuration.
  • the lid material can be configured such that the lid body is quartz.
  • the lid material manufacturing method is a lid material manufacturing method used for a light emitting device in which an LED is sealed in a package.
  • a step of forming a base film on the sealing surface of the lid body having transparency to the irradiation light of the LED a first layer containing a Ti film having a thickness of 20 to 700 nm is formed on the sealing surface of the lid body.
  • the Ti film formed in the first step can be configured to have a film thickness of 200 to 300 nm.
  • a buffer film composed of an Au film and another Ti film which are laminated in order from the side closer to the Ti film is formed on the Ti film. can do.
  • the undercoat has a pull-down structure in an upper layer portion including the arbitrary film in any film other than the lowermost film, and in the pull-down structure, the pull-down structure is obtained.
  • a structure in which the inner peripheral edge of the film included in the structure is pulled outward from the inner peripheral edge of the other film, and the outer peripheral edge of the film included in the lowered structure is pulled inward from the outer peripheral edge of the other film. Can be.
  • the method for manufacturing the lid material can be configured such that the lid body is made of quartz.
  • the light emitting device is a light emitting device in which an LED is sealed in a package, and the LED and the LED are placed in a cavity. It has a package base for storing and a lid material for sealing the cavity opening of the package base, and the lid material is characterized by being the lid material described above.
  • the package base can be configured to be made of aluminum nitride.
  • the LED can be configured to be a deep ultraviolet LED.
  • the present invention has an effect that in a light emitting device in which an LED is arranged inside a package and sealed with a lid material, a lid material having a suitable base film that does not cause lid peeling or poor airtightness can be obtained.
  • FIG. 1 It is sectional drawing which shows an example of the basic structure of the light emitting device to which this invention is applied. It is sectional drawing which shows typically the manufacturing method of the light emitting device of FIG. It is a bottom view of the lid material. It is a partial cross-sectional view which shows the structure of the base film formed in the film formation process of the lid material of Embodiment 1. FIG. It is sectional drawing which shows the fusion process of the lid material of Embodiment 1. FIG. It is an SEM photograph which photographed the cross section of a part of the bonding layer in the light emitting device after sealing. It is sectional drawing which shows the fusion process of the lid material of Embodiment 2.
  • the light emitting device 10 is roughly composed of a ceramic package 11, a crystal lid (lid body) 12, and an LED chip 13. That is, the light emitting device 10 has a structure in which the LED chip 13 is housed in the cavity 111 of the ceramic package 11 and the opening of the cavity 111 is sealed by the crystal lid 12.
  • the ceramic package 11 is a package base having a substantially rectangular parallelepiped shape, has an opening of a cavity 111 on the upper surface, and a sealing surface 11A with the crystal lid 12 is formed around the opening. Further, a mounting pad 112 for mounting the LED chip 13 is formed on the bottom surface of the cavity 111, and an external connection terminal 113 is formed on the lower surface of the ceramic package 11. The mounting pad 112 and the external connection terminal 113 are electrically connected to each other through a through hole (not shown).
  • the ceramic package 11 is preferably formed of a material having high thermal conductivity so that the heat generated from the LED chip 13 can be dissipated, and aluminum nitride can be preferably used. Although the case where the package base of the light emitting device 10 is a ceramic base is illustrated here, the package base may be a crystal base.
  • the crystal lid 12 is a rectangular crystal plate having a size substantially the same as that of the ceramic package 11 in a plan view.
  • the crystal lid 12 is bonded to the sealing surface 11A of the ceramic package 11 via a bonding layer 14.
  • the LED chip 13 is mounted on the ceramic package 11 by FCB (Flip Chip Bonding).
  • FCB Flip Chip Bonding
  • the present invention is not limited to this, and the LED chip 13 may be mounted on the ceramic package 11 by wire bonding.
  • the LED chip 13 is preferably a deep ultraviolet LED that irradiates deep ultraviolet rays.
  • Deep ultraviolet rays refer to ultraviolet rays with a relatively short wavelength, and are mainly used for sterilization and disinfection. Since the crystal lid 12 has transparency to deep ultraviolet rays, it can be used when the LED chip 13 is a deep ultraviolet LED.
  • the LED chip 13 is not limited to the deep ultraviolet LED as long as it irradiates light in the transmission wavelength range of the crystal.
  • quartz glass which has been conventionally used, but when quartz glass is used as a lid of the light emitting device 10, the number of test steps in the airtightness test may increase. ..
  • the use of the crystal lid 12 in the light emitting device 10 has an advantage that the number of test steps is reduced when the airtightness test is performed, and the airtightness test can be performed more easily.
  • FIG. 2 is a cross-sectional view schematically showing a manufacturing method of the light emitting device 10.
  • the light emitting device 10 is manufactured by joining the lid material 20 and the packaging material 30 via the joining material 40.
  • the lid material 20 has a first metallized film 41 formed on the lower surface (joining surface) of the crystal lid 12.
  • the first metallized film 41 is formed in an annular shape on the lower surface of the crystal lid 12 along the outer shape of the crystal lid 12.
  • the first metallized film 41 is formed by fusing a brazing material 41B (see FIG. 5) to a base film 41A (see FIGS. 4 and 5) for enhancing the adhesion between the crystal lid 12 and the bonding layer 14. Is.
  • the specific configuration of the first metallized film 41 will be described later.
  • the package material 30 is formed by forming a second metallized film 42 on the sealing surface 11A of the ceramic package 11 on which the LED chip 13 is mounted.
  • the second metallized film 42 is formed in an annular shape along the shape of the sealing surface 11A so as to overlap the first metallized film 41 when the lid material 20 and the packaging material 30 face each other.
  • the second metallized film 42 is a base film for enhancing the adhesion between the ceramic package 11 and the bonding layer 14.
  • the package base is a ceramic base
  • the second metallized film 42 preferably has a Ni alloy / Au film (or Ni / Au film) or the like formed on top of a metallized material such as tungsten or molybdenum.
  • the thickness of the second metallized film 42 is preferably in the range of 150 to 700 nm.
  • the second metallized film 42 may be a Ti alloy / Au film (or Ti / Au film).
  • the light emitting device 10 is manufactured by arranging the lid material 20 and the package material 30 in an overlapping manner and heating the lid material 20 and the package material 30 while applying a load to join them. I do. That is, the first metallized film 4 and the second metallized film 42 are melted by heating, and then cooled while applying a load. The melted first metallized film 41 and the second metallized film 42 are solidified by cooling to form the bonding layer 14 shown in FIG.
  • the lid material 20 has a first metallized film 41 formed on the lower surface of the crystal lid 12, and the first metallized film 41 is formed by fusing the brazing material 41B to the base film 41A. There is.
  • the first metallized film 41 is formed through a film forming step of the base film 41A and a fusion step of the brazing material 41B.
  • the base film 41A of the first metallized film 41 is configured to include the first metal layer 411 and the second metal layer 412.
  • the first metal layer 411 formed directly on the crystal lid 12 has a single layer structure made of a Ti (titanium) film.
  • the second metal layer 412 is formed on the first metal layer 411, and is laminated including the Ni—Ti (nickel-titanium) film 4121 and the Au (gold) film 4122 in order from the side closer to the first metal layer 411. It has a structure.
  • the Ni—Ti film 4121 in the second metal layer 412 preferably has a film thickness in the range of 50 to 1000 nm. Further, the Ni—Ti film 4121 can be replaced with another Ni alloy film.
  • a Ti film to be the first metal layer 411 is formed on one side of the crystal lid 12 (the surface facing the package material 30) by physical vapor deposition. Once the Ti film is formed, it is once taken out of the film forming apparatus and the surface of the Ti film is exposed to air. As a result, an oxide film made of titanium oxide is formed on the surface of the Ti film. Then, a Ni—Ti film 4121 is formed on the Ti film, which is the first metal layer 411, by physical vapor deposition, and an Au film 4122 is formed on the Ni—Ti film 4121 by physical vapor deposition. .. That is, the second metal layer 412 has a laminated structure of Ni—Ti film 4121 and Au film 4122.
  • the method of oxidizing the Ti film to form an oxide film on the surface thereof is not limited to the above-mentioned method of exposing the surface of the Ti film to air.
  • a method of introducing oxygen when forming a Ti film by sputtering to form a film as a Ti oxide film, or a method of promoting oxidation of the surface of the formed Ti film by oxygen plasma is also possible.
  • the brazing material 41B is subsequently fused onto the base film 41A by a fusion process.
  • the brazing material 41B is placed on the base film 41A and heat-treated (baking in a heating furnace). By this heat treatment, the base film 41A and the brazing material 41B are integrated to form the first metallized film 41.
  • the brazing material 41B before fusion is formed by preforming gold tin (Au-Sn) used as a brazing material into an annular shape having substantially the same shape as the base film 41A.
  • the thickness of the preformed brazing material 41B is preferably in the range of 10 to 20 ⁇ m.
  • the laminated structure of the second metal layer 412 (laminated structure of Ni—Ti film 4121 and Au film 4122) in the base film 41A before heating is lost. Specifically, by heating in the fusion step, the second metal layer 412 and the brazing material 41B are melted and alloyed (a eutectic bond is formed) to form an alloy layer 43 (see FIG. 6).
  • the first metal layer 411 is maintained in a layered state even after the fusion step and does not form a eutectic bond.
  • FIG. 6 is an SEM photograph of a part of the cross section of the bonding layer 14 taken in the light emitting device 10 after sealing.
  • the bonding layer 14 has a first metal layer 411, an alloy layer 43, a Ni—Sn alloy layer 422, and a Ni plating layer 421 in this order from the side closer to the crystal lid 12. Since the oxide film on the surface of the first metal layer 411, which is a Ti film, is extremely thin, it cannot be visually recognized as a clear layer in the SEM photograph of FIG. However, the reason why the first metal layer 411, which is a Ti film, is maintained as a layer without forming a eutectic bond is because the oxide film on the surface of the Ti film exists as a barrier film.
  • the alloy layer 43 is a layer in which the second metal layer 412 and the brazing material 41B in the base film 41A before heating form a eutectic bond by melting.
  • the alloy layer 43 in addition to the "Au-Sn ⁇ 'phase” and the “Au-Sn ⁇ phase” in gold tin (Au-Sn) which is the brazing material 41B, the second metal layer 412 and the brazing material 41B are formed.
  • “Ni-Sn alloy” and “Ti-Sn alloy” formed by mixing are included. That is, the alloy layer 43 is an alloy layer containing Ni, Ti, Au and Sn.
  • the Ni plating layer 421 is a layer contained in the second metallized film 42 of the packaging material 30.
  • the Ni—Sn alloy layer 422 is a layer formed by alloying the joint portion between the first metallized film 41 and the second metallized film 42. That is, the Ni—Sn alloy layer 422 is an alloy layer containing Ni, Ti, Au, and Sn, similarly to the alloy layer 43. More specifically, in the Ni—Sn alloy layer 422 formed by welding the lid material 20 to the package material 30, the Ni plating layer on the package material 30 side and the Sn of the Au—Sn alloy on the lid material 20 side are bonded to each other to form Ni. -Sn layer is formed. Therefore, the Au—Sn alloy is in a non-eutectic state. After welding the lid material 20 and the packaging material 30, such a non-eutectic state of the Au—Sn alloy is preferable.
  • the package material 30 of the light emitting device 10 is a crystal base and the first metallized film 41 is a Ti / Au film
  • a Ti—Sn layer is formed instead of the Ni—Sn alloy layer 422. That is, the Ti plating layer on the package material 30 side and the Sn of the Au—Sn alloy on the lid material 20 side are bonded to form a Ti—Sn layer.
  • the SEM photograph of FIG. 6 is a photograph of a cross section of the bonding layer 14 in the light emitting device 10 after sealing, but the first metallized film 41 in the lid material 20 before bonding is a first metal layer (first metal layer). It already contains the 1st layer) 411 and the alloy layer (2nd layer) 43.
  • the film thickness of the first metallized film 41 needs to be controlled in order to obtain suitable adhesion of the crystal lid 12 in the light emitting device 10.
  • the film thickness of the first metal layer 411 was changed as a parameter
  • the light emitting device 10 was manufactured by the above-mentioned manufacturing method, and the appearance evaluation and the airtightness evaluation by the airtightness test (helium leak test) were performed.
  • the appearance evaluation the discoloration of the metallized film seen from the crystal lid 12 side and the presence or absence of cracks in the crystal lid 12 were visually confirmed.
  • the Ni—Ti film 4121 and Au film 4122 of the second metal layer 412 were fixed at 300 nm and 50 nm, respectively.
  • the thickness of the Au-Sn preform which is the brazing material 41B, was fixed at 15 ⁇ m, and the second metallized film 42 was a Ni alloy / Au film, and the total film thickness was fixed at 5 ⁇ m.
  • the experimental results are shown in Table 1 below.
  • discoloration a relatively wide range of discoloration occurred under conditions 1 and 2 (film thickness 7 nm, 10 nm), and the evaluation was "x". Further, under conditions 3 to 6, 10 to 15 (film thickness 20 nm, 50 nm, 100 nm, 150 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm), slight discoloration occurred, and the evaluation was “ ⁇ ”. ing. Then, under conditions 7 to 9 (film thickness 200 nm, 250 nm, 300 nm), almost no discoloration occurred, and the evaluation was “ ⁇ ”.
  • This discoloration indicates that peeling has occurred between the crystal lid 12 and the metallized film which is the bonding layer 14. That is, when the thickness of the first metal layer 411 is not sufficient, Au and Sn are diffused from the bonding material 40 to the contact surface with the crystal lid 12 in the Ti film which is the first metal layer 411, and the first metal layer 411. It is probable that peeling (that is, discoloration) occurred by reducing the adhesion between the metal and the crystal lid 12. This is clear from the fact that a wide range of discoloration occurs under conditions 1 and 2 in which the film thickness of the first metal layer 411 is thin.
  • condition 1 where the film thickness of the first metal layer 411 is the thinnest, it is "x" in the airtightness evaluation (airtightness is poor).
  • condition 2 poor airtightness is not detected at the stage of airtightness evaluation, and the evaluation is “ ⁇ ”, but it is unlikely that airtightness can be maintained for a long period of time because the discoloration range is wide. Therefore, in conditions 1 and 2, the overall evaluation is set to "x".
  • Conditions 3 to 6 give an evaluation of " ⁇ " for discoloration
  • conditions 7 to 9 give an evaluation of " ⁇ " for discoloration.
  • the airtightness evaluation is also evaluated as “ ⁇ ", so that the conditions 3 to 6 are “ ⁇ ” and the conditions 7 to 9 are " ⁇ ".
  • the coefficient of thermal expansion is also different.
  • the first metal layer 411 has a thick film thickness and high adhesion
  • warpage occurs due to the difference in thermal expansion between the ceramic package 11 and the crystal lid 12, and the warp causes peeling.
  • the conditions 7 to 9 have lower adhesion than the conditions 10 to 15, even if a thermal expansion difference occurs between the ceramic package 11 and the crystal lid 12, the first metal layer 411 and the crystal lid 12 It is considered that the gap between the two was able to absorb the difference in thermal expansion, and the action of suppressing the peeling due to the warp worked.
  • cracks in the crystal lid 12 also occur, and it is considered that the cracks in the crystal were caused by warpage due to the difference in thermal expansion.
  • the difference in the coefficient of thermal expansion between the crystal and aluminum nitride is larger than the difference in the coefficient of thermal expansion between quartz glass and aluminum nitride. Therefore, when the crystal lid 12 is used, warpage due to a difference in thermal expansion is likely to occur as compared with the conventional configuration using a quartz glass lid, and it is necessary to consider such warpage.
  • the conditions 10 to 13 are “ ⁇ ” and the conditions 14 and 15 are “x”. This is because the airtightness was broken by the crack of the crystal lid 12 under the conditions 14 and 15. Therefore, the conditions 10 to 13 have a comprehensive evaluation of " ⁇ ", and the conditions 14 and 15 have a comprehensive evaluation of "x".
  • the film thickness of the first metal layer 411 is preferably in the range of 20 to 700 nm, and more preferably in the range of 200 to 300 nm.
  • the lid material 20 has a first metallized film 41 as a base film, and the first metallized film 41 has a high degree of adhesion to the crystal, and when the crystal lid 12 is used, the lid can be peeled off. It was explained that it is a suitable base film that does not cause poor airtightness. However, since the first metallized film 41 in the first embodiment has a high degree of adhesion, the light emitting device 10 may have a problem of lid cracking. In particular, when the sealing load is large (for example, 100 gf or more), lid cracking tends to occur easily in a thermal shock test or the like. In the second embodiment, a lid material that can prevent the lid from cracking even when the sealing load is large or in the thermal shock test will be described.
  • the first metallized film 41 in the lid material 20 is formed by fusing the brazing material 41B to the base film 41A.
  • the lid material 21 according to the second embodiment has a configuration in which the first metallized film 51 is provided instead of the first metallized film 41 of the lid material 20.
  • the metallized film 51 is formed by fusing the brazing material 41B to the base film 51A.
  • FIG. 8 is a partial cross-sectional view showing the configuration of the base film 51A in the lid material 21 according to the second embodiment.
  • the base film 51A includes a first metal layer (first layer) 511 and a second metal layer (second layer) 412. That is, the base film 51A in the lid material 21 has a configuration in which the first metal layer 411 is changed to the first metal layer 511 in the base film 41A of the lid material 20 according to the first embodiment.
  • the first metal layer 411 of the first embodiment has a single layer structure composed of only a Ti film, but the first metal layer 511 has a laminated structure composed of a Ti film 5111, an Au film 5112, and a Ti film 5113. doing.
  • the Ti film 5111 corresponds to the Ti film constituting the first metal layer 411 of the first embodiment. That is, the Ti film 5111 preferably has a film thickness of 20 to 700 nm, and more preferably 200 to 300 nm, like the Ti film of the first metal layer 411.
  • the Au film 5112 and Ti film 5113 in the first metal layer 511 are formed as a buffer film for preventing lid cracking when the sealing load is large or in a thermal shock test.
  • the ceramic package 11 and the crystal lid 12 in the light emitting device 10 are made of different materials, so that the coefficient of thermal expansion is also different. Therefore, warpage occurs due to the difference in thermal expansion between the ceramic package 11 and the crystal lid 12, and this warpage may cause crystal cracking.
  • the difference in thermal expansion between the ceramic package 11 and the crystal lid 12 can be absorbed by the deformation of the buffer film (that is, Au film 5112 and Ti film 5113). As a result, it is considered that the warp can be reduced and the crystal cracking can be suppressed.
  • a Ti film 5111, an Au film 5112, and a Ti film 5113 which become the first metal layer 511 by physical vapor deposition are sequentially formed on one side (the surface facing the package material 30) of the crystal lid 12.
  • the first metal layer 511 is formed, it is once taken out from the film forming apparatus, and the surface of the Ti film 5113 on the uppermost layer is exposed to air. As a result, an oxide film made of titanium oxide is formed on the surface of the Ti film 5113.
  • an oxide film made of titanium oxide is formed on the surface of the first metal layer 411, and in the second embodiment, the Ti film 5111 is the Ti film of the first metal layer 411 of the first embodiment. It is supposed to be equivalent to. However, since the oxide film made of titanium oxide serves as a boundary between the first metal layer and the second metal layer, in the lid material 21 according to the second embodiment, the oxide film made of titanium oxide is Ti. It is formed not on the film 5111 but on the surface of the Ti film 5113 on the uppermost layer of the first metal layer 511.
  • the method of forming an oxide film on the surface of the Ti film 5113 is the same as that of the first embodiment, that is, a method of introducing oxygen when forming a Ti film by sputtering, or a method of forming a film as a Ti oxide film. A method of promoting oxidation of the surface of the formed Ti film by oxygen plasma is also possible.
  • the method of forming the second metal layer 412 is the same as the method described in the first embodiment. By forming the first metal layer 511 and the second metal layer 412, the base film 51A is formed on the crystal lid 12.
  • the brazing material 41B is subsequently fused onto the base film 51A by a fusion process.
  • the brazing material 41B is placed on the base film 51A and heat-treated (baking in a heating furnace). By this heat treatment, the base film 51A and the brazing material 41B are integrated to form the first metallized film 51.
  • the film thickness control of the base film is effective in order to obtain the suitable adhesion of the crystal lid 12 in the light emitting device 10 and the effect of preventing crystal cracking.
  • it is effective to control the film thickness of the Au film 5112 in the first metal layer 511 within an appropriate range. The following is a discussion based on experiments.
  • each film thickness of the Ti film 5111, Au film 5112, and Ti film 5113 in the first metal layer 511 is changed as a parameter, and the light emitting device 10 is manufactured by the above-mentioned manufacturing method, and its appearance evaluation and airtightness test ( The airtightness was evaluated by the helium leak test). In the appearance evaluation, the discoloration of the metallized film seen from the crystal lid 12 side and the presence or absence of cracks in the crystal lid 12 were visually confirmed. In each of the manufactured light emitting devices 10, the Ni—Ti film 4121 and Au film 4122 of the second metal layer 412 were fixed at 300 nm and 50 nm, respectively.
  • the thickness of the Au—Sn preform which is the bonding material 40, was fixed at 15 ⁇ m, and the second metallized film 42 used a Ni alloy / Au film, and the total film thickness was fixed at 5 ⁇ m.
  • the experimental results are shown in Table 2 below.
  • the film thickness of the first metal layer in Table 2 the Ti film thickness in the left column indicates the film thickness of the Ti film 5111, and the Ti film thickness in the right column indicates the film thickness of the Ti film 5113.
  • Conditions 16 to 18 in Table 2 do not have Au film 5112 and Ti film 5113 as buffer films, but the larger the film thickness of Ti film 5111, the better the result. Then, the film thickness of the Ti film 5111, which is the preferable range in the first embodiment, is 250 nm (condition 3), and the overall evaluation is also “ ⁇ ”.
  • the overall evaluation is " ⁇ " or higher, and particularly under conditions 21 to 24, the overall evaluation is “ ⁇ ". It has become. Since the discoloration evaluation is “ ⁇ ” under the conditions 21 to 24, it can be seen that the adhesion of the crystal lid 12 in the light emitting device 10 is further improved. This is because in the light emitting device 10, the buffer film (that is, Au film 5112 and Ti film 5113) absorbs the difference in thermal expansion between the ceramic package 11 and the crystal lid 12, so that the warp is reduced, and as a result, the lid is peeled off. Is also considered to have been reduced. Further, this effect is improved by appropriately controlling the film thickness of the Au film 5112, and the film thickness of the Au film 5112 is preferably in the range of 100 to 700 nm, more preferably in the range of 300 to 600 nm. preferable.
  • the Ni—Ti film 4121 and Au film 4122 contained in the second metal layer 412 have the same forming width (metallizing width) of these films (Ni—Ti film 4121).
  • the Au film 4122 is formed on top of it (so that it is completely superimposed).
  • problems such as lid peeling and poor airtightness may occur at the evaluation stage.
  • a lid material capable of more reliably preventing lid peeling and poor airtightness will be described.
  • the lid material 22 according to the third embodiment has a configuration in which the first metallized film 61 is provided in place of the first metallized film 51 of the lid material 21, and the first metallized film 61 is configured. It is formed by fusing the brazing material 41B to the base film 61A.
  • FIG. 10 is a partial cross-sectional view showing the configuration of the base film 61A in the lid material 22 according to the third embodiment.
  • the base film 61A includes a first metal layer (first layer) 511 and a second metal layer (second layer) 612.
  • the lid material 22 according to the third embodiment is characterized by the structure of the second metal layer. Therefore, in the lid material 22 of FIG. 6, the first metal layer has the same structure as the first metal layer 511 of the lid material 21, but the first metal layer has the same structure as the first metal layer 411 of the lid material 20. May be good.
  • the second metal layer 612 has a laminated structure including a Ni—Ti film 6121 formed on the first metal layer 511 and an Au film 6122 formed on the Ni—Ti film 6121.
  • the Ni—Ti film 6121 can be a film similar to the Ni—Ti film 4121 in lid materials 20 and 20A. Further, the Au film 6122 is different from the Au film 4122 in the lid materials 20 and 21 only in the film forming width.
  • the Au film 6122 is formed with a narrower width than the Ni—Ti film 6121. More specifically, in the Au film 6122, the inner peripheral edge of the Au film 6122 is pulled outward from the inner peripheral edge of the Ni—Ti film 6121, and the outer peripheral edge of the Au film 6122 is lower than the outer peripheral edge of the Ni—Ti film 6121. It has a pull-down structure (a structure having a gap between the peripheral edge of the Au film 6122 and the peripheral edge of the Ni—Ti film 6121) that is pulled down inward.
  • the “inside” and “outside” here mean the “inside” and "outside” seen from the center of the lid material 22.
  • the pull-down width of the Au film 6122 inside and outside the base film 61A does not have to be the same, and as shown in FIG. 10, the pull-down width [ ⁇ m] on the inside is d1 and the pull-down width on the outside is d2. ..
  • the base film 61A is originally used. Only the second metal layer 412 melts to form a eutectic bond with the brazing filler metal 41B. However, depending on the manufacturing conditions (for example, if the sealing load at the time of bonding is large), the alloy formed by eutectic bonding (alloy containing Ni, Ti, Au and Sn) wraps around from the side surface of the bonding layer 14. It may reach the first metal layer 411.
  • the Au and Sn components of the alloy that have reached the first metal layer 411 infiltrate the first metal layer 411 to reduce the adhesion between the first metal layer 411 and the crystal lid 12, resulting in lid peeling and poor airtightness. It is considered to be a factor.
  • a similar problem occurs when the lid material 21 and the packaging material 30 are joined to manufacture the light emitting device 10.
  • the eutectic joint is formed only in a region substantially overlapping with the formation region of the Au film 6122.
  • Au is indispensable for the formation of eutectic junctions.
  • the alloy formed by the eutectic bonding wraps around from the side surface of the bonding layer 14 and the first metal layer 511 ( Alternatively, it can be prevented from reaching 411), and as a result, lid peeling and poor airtightness can be prevented.
  • the eutectic bond when the brazing material 41B is fused to the base film 61A is formed substantially corresponding to the formation region of the Au film 6122, and is formed in the peripheral region where the Au film 6122 is pulled down.
  • the alloy layer 43 formed by melting the second metal layer 412 and the brazing material 41B has a Ni alloy film (without eutectic bonding) on the inner peripheral side and the outer peripheral side peripheral portions thereof. It has a Ni—Ti film 6121) remaining on the surface, and an alloy film containing Ni, Ti, Au and Sn (an alloy film formed by eutectic bonding) is formed between these Ni alloy films.
  • the presence of the Ni alloy film that remains without eutectic bonding at the peripheral edge of the alloy layer 43 causes the alloy formed by eutectic bonding to wrap around from the side surface of the bonding layer 14 to form the first metal. It can be prevented from reaching layer 511 (or 411).
  • the film thicknesses of the Ti film 5111, Au film 5112, and Ti film 5113 in the first metal layer 511 were fixed to 250 nm, 500 nm, and 50 nm, respectively.
  • the film thicknesses of the Ni—Ti film 6121 and the Au film 6122 in the second metal layer 612 were fixed at 300 n and 50 nm, respectively.
  • the pull-down width of the Au film 6122 was changed as a parameter, the light emitting device 10 was manufactured by the above-mentioned manufacturing method, and the appearance evaluation and the airtightness evaluation by the airtightness test (helium leak test) were performed.
  • the present invention is not limited to this, and a pull-down structure may be applied to an upper layer portion including the film in any film other than the lowermost film (that is, Ti film 5111) of the base film 61A. ..
  • a pull-down structure may be applied at a portion that is an upper layer from the Au film 5112.
  • the present invention is not limited to this, and quartz glass may be used for the lid body. That is, in the conventional lid material using quartz glass, a Cr film is used as the base film, but when quartz glass is used as the lid body, if the above-mentioned base film 41A, 51A or 61A is used as the base film, It was confirmed that better performance can be obtained in terms of film peeling and adhesion. It is considered that this is because the diffusion of the brazing materials Au and Sn was suppressed by changing the base film from the Cr film to the base film 41A, 51A or 61A.
  • the bonding layer 14 for joining the ceramic package 11 and the crystal lid 12 is substantially entirely on the frame-shaped bonding surface of the ceramic package 11 and the crystal lid 12 (in the width direction of the frame). It is formed (without bias).
  • the present invention is not limited to this, and as shown in FIG. 13, the bonding layer 14 is formed closer to the inner peripheral side with respect to the frame-shaped bonding surface of the ceramic package 11 and the crystal lid 12. You may. When the bonding layer 14 is formed closer to the inner peripheral side with respect to the bonding surface in this way, the influence of stress due to the difference in thermal expansion between the ceramic package 11 and the crystal lid 12 can be reduced, and lid cracking or the like occurs. It becomes difficult.
  • the ceramic package 11 has a stepped U-shape and the crystal lid 12 has a flat plate shape in order to seal the LED 13 in the package.
  • the present invention is not limited to this, and as in the light emitting device 10'shown in FIG. 14, the flat plate-shaped ceramic base 11'and the stepped U-shaped crystal lid 12' are combined to form the LED13. You may form a package to seal. Even in this case, the bonding layer 14 for joining the ceramic base 11'and the stepped U-shaped crystal lid 12'can have the same configuration as the light emitting device 10 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

発光装置(10)は、セラミックパッケージ(11)のキャビティ(111)内にLEDチップ(13)を格納し、キャビティ(111)の開口を水晶リッド(12)によって封止している。封止前のリッド材(20)は、水晶リッド(12)をリッド本体とし、水晶リッド(12)の封止面に第1メタライズ膜(41)を形成したものである。第1メタライズ膜(41)は、水晶リッド(12)の上に直接形成される第1金属層(411)と、第1金属層(411)の上にろう材(Au-Sn)を含んだ合金層(43)とを含んでいる。第1金属層(411)は、膜厚20~700nmのTi膜からなる単層構造を有している。

Description

発光装置のリッド材、リッド材の製造方法および発光装置
 本発明は、LED(Light Emitting Diode)を備えた発光装置に使用されるリッド材、リッド材の製造方法および発光装置に関する。
 LEDを用いる発光装置においては、LEDをパッケージの内部に封止して信頼性を高めた構造が一般的に知られている。具体的な構造例としては、LEDをパッケージ基台(例えばセラミックパッケージ)のキャビティ内に格納し、パッケージ基台のキャビティ開口をリッドによって封止する構造が挙げられる。
 このような構造では、リッドはLEDの照射光に対して透過性を有する必要がある。LEDが深紫外線を照射する深紫外用LEDである場合、従来、リッドには石英ガラスの使用が好適とされていた(例えば、特許文献1)。
特許第6294417号公報
 しかしながら、リッドに石英ガラスを用いた場合、発光装置における素子製造工程で工数が多くなる場合がある。このような場合、リッドに水晶を使用することで工数削減できるメリットがある。
 セラミックパッケージを水晶リッドで封止するには、Au-Sn合金がろう材として用いられる。水晶はAu-Sn合金との密着性が低いため、密着性を高めるための下地膜が必要となる。尚、このような下地膜は、リッドに石英ガラスを用いる場合にも必要である。このため、セラミックパッケージをリッドで封止するときには、リッドにおけるパッケージとの接合面に予め下地膜を形成したリッド材(リッドおよび下地膜)が用いられることが一般的である。また、このようなリッド材では、下地膜にろう材を予め融着させておくことも行われている。
 しかしながら、水晶リッドを用いたリッド材では、下地膜の形成条件によってはリッド剥離や気密不良などの問題が生じることが本願発明者により発見された。すなわち、リッドに石英ガラスを用いる場合と同様の条件で下地膜を形成すると、著しく密着性が低く、大幅な条件変更が必要であった。
 また、リッドに石英ガラスを用いる場合においても、Au-Sn合金との密着性をより高めることができれば、発光装置の信頼性が向上することは言うまでもない。リッドに石英ガラスを用いる従来技術では、Au-Sn合金との密着性を得るための下地膜としてCr(クロム)膜を用いることが一般的であったが、この場合は下地膜へのAu-Sn合金の拡散が生じ易く、膜剥がれや密着性の観点からも改善の余地は十分にあった。
 本発明は、上記課題に鑑みてなされたものであり、LEDをパッケージの内部に配置し、リッド材で封止する発光装置において、リッド剥離や気密不良を生じさせない好適な下地膜を有するリッド材、リッド材の製造方法および発光装置を提供することを目的とする。
 上記の課題を解決するために、本発明の第1の態様であるリッド材は、LEDをパッケージ内に封止してなる発光装置に用いられるリッド材であって、前記LEDの照射光に対して透過性を有するリッド本体と、前記リッド本体の封止面に形成される第1メタライズ膜とを含み、前記第1メタライズ膜は、前記リッド本体の上に直接形成される第1層と、前記第1層の上に形成される第2層とを含んでおり、前記第1層は、膜厚20~700nmのTi膜を含む層であり、前記第2層は、Ni、Ti、AuおよびSnを含む合金膜を有していることを特徴としている。
 上記の構成によれば、LEDをパッケージの内部に配置し、リッド材で封止する発光装置において、リッド剥離や気密不良を生じさせない好適な下地膜を有するリッド材を得ることができる。
 また、上記リッド材では、前記第1層に含まれる前記Ti膜は、膜厚200~300nmのTi膜である構成とすることができる。
 また、上記リッド材では、前記第1層は、表面に酸化チタンからなる酸化皮膜を有している構成とすることができる。
 また、上記リッド材では、前記第1層は、前記Ti膜の上に、前記Ti膜に近い側から順に積層されたAu膜および他のTi膜からなる緩衝膜を有している構成とすることができる。
 また、上記リッド材では、前記第2層は、その内周縁側および外周縁側においてNi合金膜を有し、これらのNi合金膜の間に、Ni、Ti、AuおよびSnを含む前記合金膜が形成されている構成とすることができる。
 また、上記リッド材は、前記リッド本体が水晶である構成とすることができる。
 また、上記の課題を解決するために、本発明の第2の態様であるリッド材の製造方法は、LEDをパッケージ内に封止してなる発光装置に用いられるリッド材の製造方法であって、前記LEDの照射光に対して透過性を有するリッド本体の封止面に下地膜を形成する工程として、前記リッド本体の封止面に膜厚20~700nmのTi膜を含む第1層を形成する第1工程と、前記第1工程で形成された前記第1層の最上層にあるTi膜を酸化させて、表面に酸化チタンからなる酸化皮膜を形成する第2工程と、前記第2工程後の前記第1層の上に、前記第1層に近い側から順に積層されるNi合金膜およびAu膜を含む第2層を形成する第3工程と、前記第3工程で形成された前記Au膜の上に、Au-Snプリフォームとして形成されたろう材を融着させる第4工程とを有することを特徴としている。
 また、上記リッド材の製造方法では、前記第1工程で形成される前記Ti膜は、200~300nmの膜厚を有する構成とすることができる。
 また、上記リッド材の製造方法は、前記第1工程では、前記Ti膜の上に、前記Ti膜に近い側から順に積層されるAu膜および他のTi膜からなる緩衝膜を形成する構成とすることができる。
 また、上記リッド材の製造方法では、前記下地膜は、最下層の膜を除く任意の膜において、前記任意の膜を含む上層部分で引き下がり構造を有しており、前記引き下がり構造では、前記引き下がり構造に含まれる膜の内周縁がその他の膜の内周縁よりも外側に引き下げられ、前記引き下がり構造に含まれる膜の外周縁がその他の膜の外周縁よりも内側に引き下げられて形成される構成とすることができる。
 また、上記リッド材の製造方法は、前記リッド本体が水晶である構成とすることができる。
 また、上記の課題を解決するために、本発明の第3の態様である発光装置は、LEDをパッケージ内に封止してなる発光装置であって、前記LEDと、前記LEDをキャビティ内に格納するパッケージ基台と、前記パッケージ基台のキャビティ開口を封止するリッド材とを有しており、前記リッド材は、前記記載のリッド材であることを特徴としている。
 また、上記発光装置では、前記パッケージ基台は、窒化アルミニウムにより形成されている構成とすることができる。
 また、上記発光装置では、前記LEDは、深紫外用LEDである構成とすることができる。
 本発明は、LEDをパッケージの内部に配置し、リッド材で封止する発光装置において、リッド剥離や気密不良を生じさせない好適な下地膜を有するリッド材が得られるといった効果を奏する。
本発明が適用される発光装置の基本構造の一例を示す断面図である。 図1の発光装置の製造方法を概略的に示す断面図である。 リッド材の下面図である。 実施の形態1のリッド材の成膜工程において形成される下地膜の構成を示す部分断面図である。 実施の形態1のリッド材の融着工程を示す断面図である。 封止後の発光装置において、接合層の一部の断面を撮影したSEM写真である。 実施の形態2のリッド材の融着工程を示す断面図である。 実施の形態2のリッド材の成膜工程において形成される下地膜の構成を示す部分断面図である。 実施の形態3のリッド材の融着工程を示す断面図である。 実施の形態3のリッド材の成膜工程において形成される下地膜の構成を示す部分断面図である。 実施の形態3のリッド材の第1メタライズ膜の構成を示す部分断面図である。 実施の形態3のリッド材における下地膜の他の構成を示す部分断面図である。 本発明が適用される発光装置の基本構造の他の例を示す断面図である。 本発明が適用される発光装置の基本構造のさらに他の例を示す断面図である。
 [実施の形態1]
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 〔発光装置の基本構造〕
 先ずは、本発明が適用される発光装置10の基本構造を、図1を参照して説明する。図1に示すように、発光装置10は、大略的には、セラミックパッケージ11、水晶リッド(リッド本体)12およびLEDチップ13により構成されている。すなわち、発光装置10は、セラミックパッケージ11のキャビティ111内にLEDチップ13を格納し、キャビティ111の開口を水晶リッド12によって封止した構造とされている。
 セラミックパッケージ11は、略直方体形状のパッケージ基台であり、上面にキャビティ111の開口を有し、この開口の周りが水晶リッド12との封止面11Aとなっている。また、キャビティ111の底面にはLEDチップ13を実装するための実装パッド112が形成されており、セラミックパッケージ11の下面には外部接続端子113が形成されている。実装パッド112と外部接続端子113とは、図示しないスルーホールを介して電気的に接続されている。尚、セラミックパッケージ11は、LEDチップ13から発生する熱を逃がすことができるように、熱伝導性の高い材料で形成されることが好ましく、好適には窒化アルミニウムが使用できる。尚、ここでは、発光装置10のパッケージ基台をセラミックベースとした場合を例示しているが、パッケージ基台は水晶ベースであってもよい。
 水晶リッド12は、平面視でセラミックパッケージ11とほぼ同サイズの矩形形状の水晶板である。水晶リッド12は、セラミックパッケージ11の封止面11Aとの間に接合層14を介して接合される。
 図1に示す発光装置10では、LEDチップ13は、セラミックパッケージ11に対してFCB(Flip Chip Bonding)によって実装されている。しかしながら、本発明はこれに限定されるものではなく、LEDチップ13は、セラミックパッケージ11に対してワイヤボンディングによって実装されていてもよい。
 LEDチップ13は、好適には、深紫外線を照射する深紫外用LEDである。深紫外線は、紫外線の中でも比較的波長が短いものを指し、主に殺菌・消毒などの用途に使用される。水晶リッド12は、深紫外線に対して透過性を有するため、LEDチップ13が深紫外用LEDである場合に使用可能である。但し、LEDチップ13は、水晶の透過波長域の光を照射するものであれば、深紫外用LEDに限定されるものではない。
 また、深紫外線に対して透過性を有する材料としては、従来使用されていた石英ガラスもあるが、石英ガラスを発光装置10のリッドとして使用すると、気密試験における試験工程数が増加する場合がある。発光装置10における水晶リッド12の使用は、気密試験を行う場合に試験工程数が少なくなり、気密試験をより簡単に行えるといった利点がある。
 〔発光装置の製造方法〕
 続いて、図1に示す発光装置10の製造方法を示す。図2は、発光装置10の製造方法を概略的に示す断面図である。
 図2に示すように、発光装置10は、リッド材20とパッケージ材30とを接合材40を介して接合することで製造される。ここで、リッド材20は、水晶リッド12の下面(接合面)に、第1メタライズ膜41を形成したものである。第1メタライズ膜41は、図3に示すように、水晶リッド12の下面において、水晶リッド12の外形形状に沿った環状に形成されている。第1メタライズ膜41は、水晶リッド12と接合層14との密着性を高めるための下地膜41A(図4、5参照)にろう材41B(図5参照)を融着させて形成されるものである。尚、第1メタライズ膜41の具体的構成については後述する。
 また、パッケージ材30は、LEDチップ13が実装されたセラミックパッケージ11の封止面11A上に、第2メタライズ膜42を形成したものである。第2メタライズ膜42は、リッド材20とパッケージ材30とを対向させたときに第1メタライズ膜41と重なり合うように、封止面11Aの形状に沿って環状に形成されている。第2メタライズ膜42は、セラミックパッケージ11と接合層14との密着性を高めるための下地膜である。第2メタライズ膜42としては、パッケージ基台がセラミックベースの場合は、タングステンあるいはモリブデン等のメタライズ材料の上部にNi合金/Au膜(またはNi/Au膜)等が形成されたものが好適に使用でき、また、第2メタライズ膜42の膜厚は150~700nmの範囲とすることが好ましい。さらに、パッケージ基台が水晶ベースの場合は、第2メタライズ膜42がTi合金/Au膜(またはTi/Au膜)とされていてもよい。
 発光装置10の製造は、図2に示すように、リッド材20およびパッケージ材30を重ねて配置し、リッド材20とパッケージ材30との間に荷重をかけながら加熱することで、これらの接合を行う。すなわち、第1メタライズ膜4および第2メタライズ膜42を加熱によって溶融させ、その後、荷重をかけながら冷却する。溶融した第1メタライズ膜41および第2メタライズ膜42は、冷却によって固化し、図1に示す接合層14を形成する。
 〔リッド材の構成および製造方法〕
 続いて、リッド材20の構成および製造方法について説明する。
 上述したように、リッド材20は、水晶リッド12の下面に第1メタライズ膜41を形成したものであり、第1メタライズ膜41は、下地膜41Aにろう材41Bを融着させて形成されている。第1メタライズ膜41は、下地膜41Aの成膜工程と、ろう材41Bの融着工程を経て形成される。まずは、成膜工程によって形成される下地膜41Aの構成について図4を参照して説明する。
 図4に示すように、第1メタライズ膜41の下地膜41Aは、第1金属層411および第2金属層412を含んで構成されている。
 水晶リッド12の上に直接形成される第1金属層411は、Ti(チタン)膜からなる単層構造を有している。第2金属層412は、第1金属層411の上に形成されており、第1金属層411に近い側から順にNi-Ti(ニッケル-チタン)膜4121およびAu(金)膜4122を含む積層構造を有している。尚、第2金属層412におけるNi-Ti膜4121は、その膜厚を50~1000nmの範囲とすることが好ましい。また、Ni-Ti膜4121は、他のNi合金膜に置き換えることも可能である。
 リッド材20における下地膜41Aの製造方法としては、最初に、水晶リッド12の片面(パッケージ材30との対向面)に物理的気相成長によって第1金属層411となるTi膜を形成する。Ti膜が形成されると、これを成膜装置から一旦取り出し、Ti膜の表面を空気に曝す。これにより、Ti膜の表面には酸化チタンからなる酸化皮膜が形成される。その後、第1金属層411であるTi膜の上に物理的気相成長によってNi-Ti膜4121を形成し、このNi-Ti膜4121の上に物理的気相成長によってAu膜4122を形成する。すなわち、第2金属層412は、Ni-Ti膜4121とAu膜4122との積層構造を有している。
 尚、Ti膜を酸化させてその表面に酸化皮膜を形成する方法は、上述したTi膜の表面を空気に曝す方法に限定されるものではない。例えば、スパッタリングによってTi膜を形成するときに酸素を導入して酸化Ti膜として成膜する方法や、成膜されたTi膜の表面を酸素プラズマによって酸化促進させる方法も可能である。
 下地膜41Aが形成されると、続いて融着工程によって下地膜41Aの上にろう材41Bが融着される。この融着工程では、図5に示すように、下地膜41Aの上にろう材41Bを載せて熱処理(加熱炉によるベーキング)を行う。この熱処理により、下地膜41Aおよびろう材41Bが一体化し、第1メタライズ膜41となる。尚、融着前のろう材41Bは、ろう材として使用される金錫(Au-Sn)を、下地膜41Aとほぼ同形状の環状にプリフォームして形成されたものである。プリフォームされたろう材41Bの厚みは、10~20μmの範囲とすることが好ましい。
 融着工程後の第1メタライズ膜41においては、加熱前の下地膜41Aにおける第2金属層412の積層構造(Ni-Ti膜4121とAu膜4122との積層構造)は失われる。具体的には、融着工程の加熱によって、第2金属層412およびろう材41Bが溶融して合金化し(共晶接合を形成し)、合金層43(図6参照)を形成する。一方、第1金属層411は、融着工程後も層状に維持されており、共晶接合を形成していない。
 図6は、封止後の発光装置10において、接合層14の一部の断面を撮影したSEM写真である。図6に示すように、接合層14は、水晶リッド12に近い側から順に、第1金属層411、合金層43、Ni-Sn合金層422およびNiメッキ層421を有している。尚、Ti膜である第1金属層411表面の酸化皮膜は、その膜厚が極めて薄いため、図6のSEM写真では明確な層としては視認できない。しかしながら、Ti膜である第1金属層411が共晶接合を形成せずに層状に維持されているのは、Ti膜表面の酸化皮膜がバリア膜として存在しているためである。
 合金層43は、加熱前の下地膜41Aにおける第2金属層412とろう材41Bとが、溶融により共晶接合を形成した層である。合金層43には、ろう材41Bである金錫(Au-Sn)の中の“Au-Snζ'相”および“Au-Snδ相”の他に、第2金属層412とろう材41Bとが混じり合ってできる“Ni‐Sn合金”や“Ti-Sn合金”が含まれている。すなわち、合金層43は、Ni、Ti、AuおよびSnを含む合金層となる。
 Niメッキ層421は、パッケージ材30の第2メタライズ膜42に含まれる層である。また、Ni-Sn合金層422は、第1メタライズ膜41と第2メタライズ膜42との接合部分が合金化して形成された層である。すなわち、Ni-Sn合金層422は、合金層43と同様にNi、Ti、AuおよびSnを含む合金層となる。より詳細には、リッド材20をパッケージ材30に溶着させてできるNi-Sn合金層422では、パッケージ材30側のNiめっき層とリッド材20側のAu-Sn合金のSnが結合し、Ni-Sn層を形成する。そのため、Au-Sn合金は非共晶状態になる。リッド材20とパッケージ材30と溶着後には、このようなAu-Sn合金の非共晶状態が好ましい。
 尚、発光装置10のパッケージ材30が水晶ベースであり、第1メタライズ膜41がTi/Au膜とされている場合は、Ni-Sn合金層422の代わりにTi-Sn層が形成される。すなわち、パッケージ材30側のTiめっき層とリッド材20側のAu-Sn合金のSnが結合し、Ti-Sn層を形成する。
 尚、図6のSEM写真は、封止後の発光装置10における接合層14の断面を撮影したものであるが、接合前のリッド材20における第1メタライズ膜41は、第1金属層(第1層)411および合金層(第2層)43を既に含んでいる。
 〔第1メタライズ膜の形成条件〕
 上述したリッド材20では、発光装置10における水晶リッド12の好適な密着性を得るために、第1メタライズ膜41において膜厚の制御が必要であることが確認された。特に、第1金属層411であるTi膜の膜厚を適切な範囲に制御することが必要である。以下、実験に基づいた考察を行う。
 ここでは、第1金属層411の膜厚をパラメータとして変化させ、上述した製造方法にて発光装置10を製造し、その外観評価と気密試験(ヘリウムリークテスト)による気密評価とを行った。外観評価では、水晶リッド12側から見たメタライズ膜の変色と、水晶リッド12における割れの有無とを目視確認した。尚、製造した各発光装置10において、第2金属層412のNi-Ti膜4121およびAu膜4122は、その膜厚を300nmおよび50nmにそれぞれ固定した。また、ろう材41BであるAu-Snプリフォームの厚みは15μmに固定し、第2メタライズ膜42はNi合金/Au膜を使用し、その膜厚は合計5μmに固定した。実験結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 変色に関しては、条件1,2(膜厚7nm,10nm)において比較的広範囲な変色が生じており、評価“×”となっている。また、条件3~6,10~15(膜厚20nm,50nm,100nm,150nm,400nm,500nm,600nm,700nm,800nm,900nm)においては、僅かに変色が生じており、評価“○”となっている。そして、条件7~9(膜厚200nm,250nm,300nm)においては変色が殆ど生じておらず、評価“◎”となっている。
 この変色は、水晶リッド12と接合層14であるメタライズ膜との間で剥離が生じていることを示している。すなわち、第1金属層411の膜厚が十分でない場合、接合材40からAuおよびSnが第1金属層411であるTi膜において水晶リッド12との接触面にまで拡散し、第1金属層411と水晶リッド12との密着性を低下させることによって剥離(すなわち変色)が生じたものと考えられる。このことは、第1金属層411の膜厚が薄い条件1,2において広範囲な変色が生じていることから明らかである。実際、第1金属層411の膜厚が最も薄い条件1では、気密評価において“×”となっている(気密不良が生じている)。また、条件2では、気密評価の段階で気密不良は検出されず、評価は“○”となっているが、変色範囲が広いことから長期にわたって気密性が維持できるとは考えにくい。このため、条件1,2は、総合評価を“×”としている。
 第1金属層411の膜厚が厚くなれば、第1金属層411であるTi膜においてAuおよびSnの拡散が抑制され、水晶リッド12と接合層14であるメタライズ膜との密着性が向上する。条件3~6では変色に関して“○”の評価となっており、条件7~9では変色に関して“◎”の評価となっている。条件3~9では気密評価に関しても“○”の評価となっているため、総合評価は、条件3~6を“○”、条件7~9を“◎”としている。
 条件10~15では、第1金属層411の膜厚がさらに厚くなっているが、変色に関しての評価は“○”となっており、条件7~9に比べて評価は下がっている。但し、このことは、条件10~15における水晶リッド12の密着性が、条件7~9における水晶リッド12の密着性よりも低いことを意味しているのではない。条件10~15において、変色に関しての評価が“○”となっているのは、以下の理由によるものと考えられる。
 発光装置10において、セラミックパッケージ11と水晶リッド12とでは、材質が異なるため、熱膨張率も異なる。そして、条件10~15では、第1金属層411の膜厚が厚く密着性が高いことから、セラミックパッケージ11と水晶リッド12との熱膨張差から反りが発生し、この反りによって剥離が生じたと考えられる。すなわち、条件7~9は、条件10~15に比べると密着性が低いため、セラミックパッケージ11と水晶リッド12との間に熱膨張差が生じても、第1金属層411と水晶リッド12との間にずれが生じて熱膨張差を吸収することができ、反りによる剥離を抑制する作用が働いたと考えられる。実際、条件14,15では、水晶リッド12の割れも発生しており、この水晶割れは熱膨張差による反りによって生じたものと考えられる。
 尚、セラミックパッケージ11の材質を窒化アルミニウムとする場合、水晶と窒化アルミニウムとの熱膨張率の差は、石英ガラスと窒化アルミニウムとの熱膨張率の差よりも大きい。したがって、水晶リッド12を用いる場合は、石英ガラスのリッドを用いる従来構成に比べて熱膨張差による反りが生じ易く、このような反りに対する考慮も必要となる。
 条件10~15の気密評価に関しては、条件10~13は○”、条件14,15は“×”となっている。これは、条件14,15では、水晶リッド12の割れによって気密が破れたためである。このため、条件10~13は総合評価を“○”、条件14,15は総合評価を“×”としている。
 以上のように、本実施の形態に係るリッド材20では、第1金属層411の膜厚は、薄すぎても厚すぎても、発光装置10において確実な気密が得られなくなる。上記表1の結果から明らかなように、第1金属層411の膜厚は、20~700nmの範囲とすることが好ましく、200~300nmの範囲とすることがさらに好ましい。
 [実施の形態2]
 〔リッド材の構成および製造方法〕
 上記実施の形態1では、リッド材20は下地膜となる第1メタライズ膜41を有しており、この第1メタライズ膜41は水晶に対する密着度が高く、水晶リッド12を用いる場合にリッド剥離や気密不良を生じさせない好適な下地膜であることを説明した。しかしながら、実施の形態1における第1メタライズ膜41は、密着度が高いゆえに発光装置10にリッド割れの問題が生じる場合があった。特に、封止荷重が大きい場合(例えば100gf以上)や冷熱衝撃試験などにおいてリッド割れが発生しやすい傾向があった。本実施の形態2では、封止荷重が大きい場合や冷熱衝撃試験においてもリッド割れを防止できるリッド材について説明する。
 リッド材20における第1メタライズ膜41は、図5に示すように、下地膜41Aにろう材41Bを融着させて形成されるものである。これに対し、本実施の形態2に係るリッド材21は、図7に示すように、リッド材20の第1メタライズ膜41に代えて第1メタライズ膜51を有する構成とされており、第1メタライズ膜51は下地膜51Aにろう材41Bを融着させて形成される。
 図8は、本実施の形態2に係るリッド材21における下地膜51Aの構成を示す部分断面図である。ここで、下地膜51Aは、図8に示すように、第1金属層(第1層)511および第2金属層(第2層)412を含んで構成されている。すなわち、リッド材21における下地膜51Aは、実施の形態1に係るリッド材20の下地膜41Aにおいて、第1金属層411を第1金属層511に変更した構成である。
 実施の形態1の第1金属層411はTi膜のみからなる単層構造を有していたが、第1金属層511は、Ti膜5111、Au膜5112およびTi膜5113からなる積層構造を有している。ここでは、Ti膜5111が、実施の形態1の第1金属層411を構成するTi膜に相当する。すなわち、Ti膜5111は、第1金属層411のTi膜と同様に、膜厚20~700nmであることが好ましく、膜厚200~300nmであることがより好ましい。
 第1金属層511におけるAu膜5112およびTi膜5113は、封止荷重が大きい場合や冷熱衝撃試験においてのリッド割れを防止するための緩衝膜として形成されている。上記実施の形態1でも説明したように、発光装置10におけるセラミックパッケージ11と水晶リッド12とでは、材質が異なるため、熱膨張率も異なる。このため、セラミックパッケージ11と水晶リッド12との熱膨張差から反りが発生し、この反りが水晶割れの要因となる場合がある。これに対し、リッド材21を用いた発光装置10では、セラミックパッケージ11と水晶リッド12との間の熱膨張差を緩衝膜(すなわちAu膜5112およびTi膜5113)の変形によって吸収することができ、その結果、反りを低減して水晶割れを抑制できると考えられる。
 リッド材21の製造方法としては、水晶リッド12の片面(パッケージ材30との対向面)に物理的気相成長によって第1金属層511となるTi膜5111、Au膜5112およびTi膜5113を順次形成する。第1金属層511が形成されると、これを成膜装置から一旦取り出し、最上層にあるTi膜5113の表面を空気に曝す。これにより、Ti膜5113の表面には酸化チタンからなる酸化皮膜が形成される。
 尚、実施の形態1では、第1金属層411の表面に酸化チタンからなる酸化皮膜が形成され、本実施の形態2では、Ti膜5111が実施の形態1の第1金属層411のTi膜に相当するものとされている。しかしながら、酸化チタンからなる酸化皮膜は、第1金属層と第2金属層との境界となるものであるため、本実施の形態2に係るリッド材21では、酸化チタンからなる酸化皮膜は、Ti膜5111ではなく、第1金属層511の最上層にあるTi膜5113の表面において形成される。また、Ti膜5113の表面に酸化皮膜を形成する方法は、実施の形態1と同様に、スパッタリングによってTi膜を形成するときに酸素を導入して酸化Ti膜として成膜する方法や、成膜されたTi膜の表面を酸素プラズマによって酸化促進させる方法も可能である。第1金属層511の形成後、第2金属層412の形成方法は、実施の形態1で説明した方法と同様である。第1金属層511および第2金属層412の形成により、水晶リッド12上に下地膜51Aが形成される。
 下地膜51Aが形成されると、続いて融着工程によって下地膜51Aの上にろう材41Bが融着される。この融着工程では、図7に示すように、下地膜51Aの上にろう材41Bを載せて熱処理(加熱炉によるベーキング)を行う。この熱処理により、下地膜51Aおよびろう材41Bが一体化し、第1メタライズ膜51となる。
 〔第1メタライズ膜の形成条件〕
 上述したリッド材21では、発光装置10における水晶リッド12の好適な密着性と水晶割れの防止効果とを得るために、下地膜において膜厚の制御が有効であることが確認された。特に、第1金属層511におけるAu膜5112の膜厚を適切な範囲に制御することが有効である。以下、実験に基づいた考察を行う。
 ここでは、第1金属層511におけるTi膜5111、Au膜5112およびTi膜5113の各膜厚をパラメータとして変化させ、上述した製造方法にて発光装置10を製造し、その外観評価と気密試験(ヘリウムリークテスト)による気密評価とを行った。外観評価では、水晶リッド12側から見たメタライズ膜の変色と、水晶リッド12における割れの有無とを目視確認した。尚、製造した各発光装置10において、第2金属層412のNi-Ti膜4121およびAu膜4122は、その膜厚を300nmおよび50nmにそれぞれ固定した。また、接合材40であるAu-Snプリフォームの厚みは15μmに固定し、第2メタライズ膜42はNi合金/Au膜を使用し、その膜厚は合計5μmに固定した。実験結果を以下の表2に示す。表2の第1金属層の膜厚においては、左側欄のTi膜厚がTi膜5111の膜厚を示しており、右側欄のTi膜厚がTi膜5113の膜厚を示している。
Figure JPOXMLDOC01-appb-T000002
 表2の条件16~18は、緩衝膜としてのAu膜5112およびTi膜5113を有していないが、Ti膜5111の膜厚が大きくなるほど結果が良好となっている。そして、実施の形態1で好適範囲とされているTi膜5111の膜厚250nm(条件3)で、総合評価も“○”となっている。
 一方、緩衝膜としてのAu膜5112およびTi膜5113を有している条件18~25では何れも総合評価も“○”以上となっており、特に条件21~24では総合評価が“◎”となっている。条件21~24では、変色評価が“◎”であることから、発光装置10における水晶リッド12の密着性がより向上していることが分かる。これは、発光装置10において、セラミックパッケージ11と水晶リッド12との間の熱膨張差を緩衝膜(すなわちAu膜5112およびTi膜5113)が吸収することで反りが低減され、その結果、リッド剥離も低減されたものと考えられる。また、この効果は、Au膜5112の膜厚を適切に制御することで向上し、Au膜5112の膜厚は100~700nmの範囲とすることが好ましく、300~600nmの範囲とすることがより好ましい。
 尚、表2の条件26~27は、緩衝膜を有してはいるが、気密評価が“×”(総合評価も“×”)となっている。また、条件27では水晶割れでも評価が“×”となっている。これらの結果は、緩衝膜を厚くし過ぎた結果、下地膜のトータル膜厚が大きくなり、応力による影響で不具合が生じたためと考えられる。すなわち、下地膜のトータル膜厚が大きくなると、下地膜全体での膜厚に不均一が生じ、膜厚が不均一であることで水晶リッド12にかかる応力が増加して水晶割れを引き起こしたと考えられる。これより、緩衝膜の膜厚には上限が存在することも示唆される。
 [実施の形態3]
 〔リッド材の構成〕
 上記実施の形態1,2では、第2金属層412に含まれるNi-Ti膜4121およびAu膜4122が、これらの膜の形成幅(メタライズ幅)が同じになるように(Ni-Ti膜4121の上にAu膜4122が完全に重畳するように)形成されている。しかしながら、この場合、発光装置10の製造条件などによっては、評価段階でリッド剥離や気密不良の課題が生じることがあった。本実施の形態3では、リッド剥離や気密不良をより確実に防止することのできるリッド材について説明する。
 本実施の形態3に係るリッド材22は、図9に示すように、リッド材21の第1メタライズ膜51に代えて第1メタライズ膜61を有する構成とされており、第1メタライズ膜61は下地膜61Aにろう材41Bを融着させて形成される。
 図10は、本実施の形態3に係るリッド材22における下地膜61Aの構成を示す部分断面図である。下地膜61Aは、図10に示すように、第1金属層(第1層)511および第2金属層(第2層)612を含んで構成されている。但し、本実施の形態3に係るリッド材22は、第2金属層の構成に特徴を有するものである。このため、図6のリッド材22では、第1金属層をリッド材21の第1金属層511と同じ構成としているが、第1金属層はリッド材20の第1金属層411と同じ構成としてもよい。
 第2金属層612は、第1金属層511の上に形成されるNi-Ti膜6121と、Ni-Ti膜6121の上に形成されるAu膜6122とを含む積層構造を有している。Ni-Ti膜6121は、リッド材20および20AにおけるNi-Ti膜4121と同様の膜とすることができる。また、Au膜6122は、リッド材20および21におけるAu膜4122とは膜の形成幅が異なるのみである。
 すなわち、下地膜61Aにおいては、Au膜6122はNi-Ti膜6121に比べて狭い幅で形成されている。より具体的には、Au膜6122は、Au膜6122の内周縁がNi-Ti膜6121の内周縁よりも外側に引き下げられ、Au膜6122の外周縁がNi-Ti膜6121の外周縁よりも内側に引き下げられた引き下がり構造(Au膜6122の周縁部とNi-Ti膜6121の周縁部との間にギャップを有する構造)を有している。尚、ここでの“内側”,“外側”とは、リッド材22の中心から見た“内側”,“外側”を意味している。また、下地膜61Aの内側および外側でのAu膜6122の引き下がり幅は同じである必要はなく、図10に示すように、内側の引き下がり幅[μm]をd1、外側の引き下がり幅をd2とする。
 実施の形態1において説明したように、下地膜61Aにろう材41Bを融着させるとき、およびリッド材22とパッケージ材30とを接合して発光装置10を製造するとき、本来は下地膜61Aの第2金属層412のみが溶融してろう材41Bとの共晶接合を形成する。しかしながら、製造条件によっては(例えば、接合時の封止荷重が大きければ)、共晶接合によって形成される合金(Ni、Ti、AuおよびSnを含む合金)が接合層14の側面から回り込んで第1金属層411に達する恐れがある。この場合、第1金属層411に達した合金のAuやSn成分が第1金属層411に浸潤して第1金属層411と水晶リッド12との密着性を低下させ、リッド剥離や気密不良の要因になると考えられる。同様の問題は、リッド材21とパッケージ材30とを接合して発光装置10を製造するときにも生じる。
 これに対し、リッド材22とパッケージ材30とを接合して発光装置10を製造する場合には、共晶接合はAu膜6122の形成領域とほぼ重畳する領域においてのみ形成される。これは、共晶接合の形成には、Auが不可欠となるためである。リッド材22では、Au膜6122はNi-Ti膜6121に対して引き下がり構造を有しているため、共晶接合によって形成される合金が接合層14の側面から回り込んで第1金属層511(または411)に達することを防止でき、その結果、リッド剥離や気密不良を防止することができる。
 より具体的には、下地膜61Aにろう材41Bを融着させるときの共晶接合は、Au膜6122の形成領域にほぼ対応して形成され、Au膜6122が引き下げられた周辺領域には形成されない。すなわち、図11に示すように、第2金属層412とろう材41Bとの溶融により形成される合金層43は、その内周側および外周側の周縁部においてNi合金膜(共晶接合せずに残ったNi-Ti膜6121)を有し、これらのNi合金膜の間に、Ni、Ti、AuおよびSnを含む合金膜(共晶接合による合金膜)が形成される構成となる。このように、合金層43の周縁部において、共晶接合せずに残ったNi合金膜が存在することで、共晶接合によって形成される合金が接合層14の側面から回り込んで第1金属層511(または411)に達することを防止できる。
 〔第1メタライズ膜の形成条件〕
 上述したリッド材22では、発光装置10における水晶リッド12の好適な密着性を得るために、第2金属層612におけるAu膜6122の形成幅の制御が有効であることが確認された。以下、実験に基づいた考察を行う。
 ここでは、第1金属層511におけるTi膜5111、Au膜5112およびTi膜5113の各膜厚を250nm、500nmおよび50nmにそれぞれ固定した。また、第2金属層612におけるNi-Ti膜6121およびAu膜6122の各膜厚は300nおよび50nmにそれぞれ固定した。そして、Au膜6122における引き下がり幅をパラメータとして変化させ、上述した製造方法にて発光装置10を製造し、その外観評価と気密試験(ヘリウムリークテスト)による気密評価とを行った。外観評価では、水晶リッド12側から見たメタライズ膜の変色と、水晶リッド12における割れの有無とを目視確認した。また、接合材40であるAu-Snプリフォームの厚みは15μmに固定し、第2メタライズ膜42はNi合金/Au膜を使用し、その膜厚は合計5μmに固定した。実験結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の条件28~30の比較より、引き下がり構造を有していない条件28では変色が生じて気密評価が“×”(総合評価も“×”)となっているのに対し、引き下がり構造を有している条件29,30では気密評価が“○”(総合評価も“○”)となっている。これより、リッド材22におけるAu膜6122の引き下がり構造は、共晶接合によって形成される合金の回り込みによるリッド剥離や気密不良を低減するのに有効であることが分かる。また、この引き下がり構造における引き下がり幅は、少なくとも25μm以上あれば、その効果を発揮できることが分かる。
 また、表3の条件30~35の比較より、Au膜6122のメタライズ幅によって変色の評価に違いが生じることが分かる。すなわち、条件31,32では、変色の外観評価が“◎”(総合評価も“◎”)となっているが、Au膜6122のメタライズ幅がこれよりも広い条件30では、変色の外観評価が“○”(総合評価も“○”)となっている。これは、Au膜6122のメタライズ幅が広くなることで、下地膜における密着力の大きい領域面積も広くなり、発光装置10のより外側の領域まで高い密着力で水晶リッド12とセラミックパッケージ11とが接合されたためと考えられる。すなわち、発光装置10において、高い密着力で接合される領域が広くなることで、水晶リッド12とセラミックパッケージ11との熱膨張差による影響を受けやすくなり、その結果、条件30は条件31,32に比べて変色が生じ易くなったと考えられる。
 また、Au膜6122のメタライズ幅が条件31,32よりも狭い条件33~35では、メタライズ幅が狭くなるほど変色の外観評価が低下し、総合評価も低下している。これは、Au膜6122のメタライズ幅が狭くなりすぎると、下地膜における密着力の大きい領域面積が小さくなり、水晶リッド12とセラミックパッケージ11との熱膨張差に十分に耐えることができなくなってリッド剥離が生じ易くなるためと考えられる。
 さらに、表3の条件31~34と条件36~39との比較より、Au膜6122の引き下がり幅を内側と外側とで異ならせる場合には、内側の引き下がり幅を外側よりも大きくする外寄せパターン(条件36~39)よりも、外側の引き下がり幅を内側よりも大きくする内寄せパターン(条件31~34)とする方が好ましいことが分かる。すなわち、外寄せパターンは、内寄せパターンに比べて、冷熱衝撃試験による水晶割れが発生しやすいことが明らかとなっている。これは、発光装置10のより外側の領域において高い密着力で水晶リッド12とセラミックパッケージ11とが接合されると、水晶リッド12とセラミックパッケージ11との熱膨張差による影響を受けやすくなり、その結果、冷熱衝撃試験による水晶割れが生じ易くなると考えられる。
 尚、本実施の形態3における上記説明では、下地膜61Aの最上層であるAu膜6122のみが引き下がり構造を有する構成を例示している。しかしながら、本発明はこれに限定されるものではなく、下地膜61Aの最下層の膜(すなわちTi膜5111)を除く任意の膜において、その膜を含む上層部分で引き下がり構造を適用してもよい。例えば、図12に示すように、Au膜5112から上層となる部分で引き下がり構造を適用してもよい。
 今回開示した実施形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。
 例えば、上記説明では、発光装置10のリッド材20~22において、リッド本体を水晶リッド12とする場合を例示した。しかしながら、本発明はこれに限定されるものではなく、リッド本体には、石英ガラスを用いるものであってもよい。すなわち、従来の石英ガラスを用いたリッド材では下地膜にCr膜が用いられていたが、石英ガラスをリッド本体とした場合に、下地膜として上述の下地膜41A,51Aまたは61Aを用いれば、膜剥がれや密着性の点でより優れた性能が得られることが確認された。これは、下地膜をCr膜から下地膜41A,51Aまたは61Aに変更したことで、ろう材であるAuおよびSnの拡散が抑制されたことに起因すると考えられる。
 また、上記説明の発光装置10では、セラミックパッケージ11と水晶リッド12とを接合する接合層14は、セラミックパッケージ11および水晶リッド12における枠形状の接合面に対してほぼ全面に(枠の幅方向に対して偏りなく)形成されている。しかしながら、本発明はこれに限定されるものではなく、図13に示すように、接合層14は、セラミックパッケージ11および水晶リッド12における枠形状の接合面に対して内周側寄りに形成されていてもよい。このように、接合層14を接合面に対して内周側寄りに形成した場合、セラミックパッケージ11と水晶リッド12との熱膨張差による応力の影響を少なくすることができ、リッド割れなどが生じにくくなる。
 さらに、上記説明の発光装置10では、LED13をパッケージ内に封止するために、セラミックパッケージ11を段面コ字形状とし、水晶リッド12を平板形状としている。しかしながら、本発明はこれに限定されるものではなく、図14に示す発光装置10’のように、平板形状のセラミックベース11’と段面コ字形状の水晶リッド12’とを組み合わせて、LED13を封止するパッケージを形成してもよい。この場合でも、セラミックベース11’と段面コ字形状の水晶リッド12’とを接合する接合層14は、上記説明の発光装置10と同様の構成とすることができる。
10,10’  発光装置
11  セラミックパッケージ(パッケージ基台)
11’  セラミックベース(パッケージ基台)
111  キャビティ
12,12’  水晶リッド(リッド本体)
13  LEDチップ
14  接合層
20,21,22  リッド材
30  パッケージ材
41,51,61  第1メタライズ膜
41A,51A,61A  下地膜(リッド材の下地膜)
41B  ろう材
42  第2メタライズ膜
411,511  第1金属層(第1層)
5111  Ti膜
5112  Au膜(緩衝膜)
5113  Ti膜(緩衝膜)
412,612  第2金属層
4121,6121  Ni-Ti膜
4122,6122  Au膜
43  合金層(第2層)

Claims (16)

  1.  LEDをパッケージ内に封止してなる発光装置に用いられるリッド材であって、
     前記LEDの照射光に対して透過性を有するリッド本体と、
     前記リッド本体の封止面に形成される第1メタライズ膜とを含み、
     前記第1メタライズ膜は、前記リッド本体の上に直接形成される第1層と、前記第1層の上に形成される第2層とを含んでおり、
     前記第1層は、膜厚20~700nmのTi膜を含む層であり、
     前記第2層は、Ni、Ti、AuおよびSnを含む合金膜を有していることを特徴とするリッド材。
  2.  請求項1に記載のリッド材であって、
     前記第1層に含まれる前記Ti膜は、膜厚200~300nmのTi膜であることを特徴とするリッド材。
  3.  請求項1または2に記載のリッド材であって、
     前記第1層は、表面に酸化チタンからなる酸化皮膜を有していることを特徴とするリッド材。
  4.  請求項1から3の何れか1項に記載のリッド材であって、
     前記第1層は、前記Ti膜の上に、前記Ti膜に近い側から順に積層されたAu膜および他のTi膜からなる緩衝膜を有していることを特徴とするリッド材。
  5.  請求項1から4の何れか1項に記載のリッド材であって、
     前記第2層は、その内周縁側および外周縁側においてNi合金膜を有し、これらのNi合金膜の間に、Ni、Ti、AuおよびSnを含む前記合金膜が形成されていることを特徴とするリッド材。
  6.  請求項1から5の何れか1項に記載のリッド材であって、
     前記リッド本体が水晶であることを特徴とするリッド材。
  7.  LEDをパッケージ内に封止してなる発光装置に用いられるリッド材の製造方法であって、
     前記LEDの照射光に対して透過性を有するリッド本体の封止面に下地膜を形成する工程として、
     前記リッド本体の封止面に膜厚20~700nmのTi膜を含む第1層を形成する第1工程と、
     前記第1工程で形成された前記第1層の最上層にあるTi膜を酸化させて、表面に酸化チタンからなる酸化皮膜を形成する第2工程と、
     前記第2工程後の前記第1層の上に、前記第1層に近い側から順に積層されるNi合金膜およびAu膜を含む第2層を形成する第3工程と、
     前記第3工程で形成された前記Au膜の上に、Au-Snプリフォームとして形成されたろう材を融着させる第4工程とを有することを特徴とするリッド材の製造方法。
  8.  請求項7に記載のリッド材の製造方法であって、
     前記第1工程で形成される前記Ti膜は、200~300nmの膜厚を有することを特徴とするリッド材の製造方法。
  9.  請求項7または8に記載のリッド材の製造方法であって、
     前記第1工程では、前記Ti膜の上に、前記Ti膜に近い側から順に積層されるAu膜および他のTi膜からなる緩衝膜を形成することを特徴とするリッド材の製造方法。
  10.  請求項7から9の何れか1項に記載のリッド材の製造方法であって、
     前記下地膜は、最下層の膜を除く任意の膜において、前記任意の膜を含む上層部分で引き下がり構造を有しており、
     前記引き下がり構造では、前記引き下がり構造に含まれる膜の内周縁がその他の膜の内周縁よりも外側に引き下げられ、前記引き下がり構造に含まれる膜の外周縁がその他の膜の外周縁よりも内側に引き下げられて形成されることを特徴とするリッド材の製造方法。
  11.  請求項7から10の何れか1項に記載のリッド材の製造方法であって、
     前記リッド本体が水晶であることを特徴とするリッド材の製造方法。
  12.  LEDをパッケージ内に封止してなる発光装置であって、
     前記LEDと、
     前記LEDをキャビティ内に格納するパッケージ基台と、
     前記パッケージ基台のキャビティ開口を封止するリッド材とを有しており、
     前記リッド材は、前記請求項1から6の何れか1項に記載のリッド材であることを特徴とする発光装置。
  13.  請求項12に記載の発光装置であって、
     前記パッケージ基台は、窒化アルミニウムにより形成されていることを特徴とする発光装置。
  14.  請求項12または13に記載の発光装置であって、
     前記LEDは、深紫外用LEDであることを特徴とする発光装置。
  15.  請求項12から14の何れか1項に記載の発光装置であって、
     前記パッケージ基台および前記リッド材は、接合層を介して接合されており、
     前記接合層は、前記リッド本体に近い順から形成される第1層、第2層、第3層および第4層を有しており、
     前記第1層は、前記リッド本体の上に直接形成され、膜厚20~700nmのTi膜を含む層であり、
     前記第2層は、Ni、Ti、AuおよびSnを含む合金層であり、
     前記第3層は、Ni、Ti、AuおよびSnを含み、前記第2層に比べてAuの含有量が少ない合金層であり、
     前記第4層は、Niメッキ層であることを特徴とする発光装置。
  16.  前記第2層は共晶状態の合金層であり、前記第3層は非共晶状態の合金層であることを特徴とする発光装置。
PCT/JP2020/025716 2019-07-25 2020-06-30 発光装置のリッド材、リッド材の製造方法および発光装置 WO2021014904A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021533894A JP7173347B2 (ja) 2019-07-25 2020-06-30 発光装置のリッド材、リッド材の製造方法および発光装置
CN202080023443.6A CN113646908A (zh) 2019-07-25 2020-06-30 发光装置的盖构件、盖构件的制造方法及发光装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019136741 2019-07-25
JP2019-136741 2019-07-25
JP2019214001 2019-11-27
JP2019-214001 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021014904A1 true WO2021014904A1 (ja) 2021-01-28

Family

ID=74193041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025716 WO2021014904A1 (ja) 2019-07-25 2020-06-30 発光装置のリッド材、リッド材の製造方法および発光装置

Country Status (4)

Country Link
JP (1) JP7173347B2 (ja)
CN (1) CN113646908A (ja)
TW (1) TWI784291B (ja)
WO (1) WO2021014904A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353352A (ja) * 2001-05-30 2002-12-06 Kyocera Corp 撮像素子収納用パッケージ
JP2011040577A (ja) * 2009-08-11 2011-02-24 Citizen Electronics Co Ltd 発光装置の製造方法
JP2015018873A (ja) * 2013-07-09 2015-01-29 日機装株式会社 半導体モジュール
JP2018093137A (ja) * 2016-12-07 2018-06-14 日機装株式会社 光半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332047B2 (ja) * 2004-02-26 2009-09-16 京セラ株式会社 電子装置
US7910945B2 (en) * 2006-06-30 2011-03-22 Cree, Inc. Nickel tin bonding system with barrier layer for semiconductor wafers and devices
JP6294417B2 (ja) * 2016-09-01 2018-03-14 日機装株式会社 光半導体装置および光半導体装置の製造方法
JP7205470B2 (ja) * 2017-06-22 2023-01-17 Agc株式会社 窓材、光学パッケージ
KR102641336B1 (ko) * 2017-09-05 2024-02-28 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 패키지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353352A (ja) * 2001-05-30 2002-12-06 Kyocera Corp 撮像素子収納用パッケージ
JP2011040577A (ja) * 2009-08-11 2011-02-24 Citizen Electronics Co Ltd 発光装置の製造方法
JP2015018873A (ja) * 2013-07-09 2015-01-29 日機装株式会社 半導体モジュール
JP2018093137A (ja) * 2016-12-07 2018-06-14 日機装株式会社 光半導体装置の製造方法

Also Published As

Publication number Publication date
JP7173347B2 (ja) 2022-11-16
JPWO2021014904A1 (ja) 2021-01-28
CN113646908A (zh) 2021-11-12
TW202115930A (zh) 2021-04-16
TWI784291B (zh) 2022-11-21

Similar Documents

Publication Publication Date Title
JP6294417B2 (ja) 光半導体装置および光半導体装置の製造方法
JP6294419B2 (ja) 光半導体装置および光半導体装置の製造方法
US20060131600A1 (en) Light transmitting window member, semiconductor package provided with light transmitting window member and method for manufacturing light transmitting window member
WO2021014904A1 (ja) 発光装置のリッド材、リッド材の製造方法および発光装置
WO2021014925A1 (ja) 発光装置のリッド材およびリッド材の製造方法
KR102656315B1 (ko) 창재, 광학 패키지
KR102587868B1 (ko) 패키지, 패키지 제조 방법, 접합재가 부착된 덮개체, 및 접합재가 부착된 덮개체의 제조 방법
WO2020022278A1 (ja) 光学パッケージ
JP7473877B2 (ja) 蓋部材の製造方法
WO2022004390A1 (ja) 蓋部材、蓋部材の製造方法、パッケージ、及びパッケージの製造方法
JP3783605B2 (ja) 気密封止パッケージおよびこれを用いたデバイス
TWI837067B (zh) 蓋構件的製造方法
JP2022112336A (ja) 発光装置のリッド
JP2023084853A (ja) 気密パッケージ、電子装置及び気密パッケージ用の蓋材
JP2004179373A (ja) 電子部品パッケ−ジとその封止方法
JP2022102321A (ja) 半導体装置及びその製造方法
TW202030504A (zh) 稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法
TW202023991A (zh) 封裝用蓋材及封裝
JP2021048374A (ja) 光センサ装置およびその製造方法
CN117897643A (zh) 附膜构件和光学器件
JP2003347443A (ja) 電子部品用パッケ−ジ
JPS60109253A (ja) 電子装置
JP2006121118A (ja) 気密封止パッケージおよびこれを用いたデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844571

Country of ref document: EP

Kind code of ref document: A1