TW202030504A - 稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法 - Google Patents

稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法 Download PDF

Info

Publication number
TW202030504A
TW202030504A TW108144674A TW108144674A TW202030504A TW 202030504 A TW202030504 A TW 202030504A TW 108144674 A TW108144674 A TW 108144674A TW 108144674 A TW108144674 A TW 108144674A TW 202030504 A TW202030504 A TW 202030504A
Authority
TW
Taiwan
Prior art keywords
layer
adhesive film
layers
thickness
layer portion
Prior art date
Application number
TW108144674A
Other languages
English (en)
Inventor
山口義正
Original Assignee
日商日本電氣硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣硝子股份有限公司 filed Critical 日商日本電氣硝子股份有限公司
Publication of TW202030504A publication Critical patent/TW202030504A/zh

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本發明提供一種可有效地提高位置精度之稜鏡。 本發明之稜鏡之特徵在於具備:稜鏡本體2,其具有底面2a及連接於底面2a之斜面2b;及密接膜3,其設置於底面2a;且密接膜3具有位於最靠近稜鏡本體2側之第1層部分、與直接或間接地積層於第1層部分5上之第2層部分6,且第2層部分6包含Au層及Sn層中之至少一層。

Description

稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法
本發明係關於一種稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法。
近年來,顯示器、汽車之頭燈或投影機等用途中,廣泛使用用於使來自光源之光反射或折射之稜鏡。下述之專利文獻1中揭示有包含此種稜鏡之光裝置之一例。專利文獻1中,於包含半導體碟片之安裝基板上配置有雷射晶片及稜鏡。雷射晶片及稜鏡藉由焊料接合於安裝基板。 先前技術文獻 專利文獻
[專利文獻1]日本專利特開2000-091688號公報
[發明所欲解決之問題]
光裝置中,由於需要以較高之精度調整光路之方向,故對於稜鏡之接合配置要求較高之位置精度。然而,於將光出射至稜鏡之光源使用高輸出之LD(Laser Diode,雷射二極體)等之情形時,若使用包含樹脂之接著劑將稜鏡接合配置於安裝基板等,則有接著劑發生軟化,產生稜鏡之位置偏移之虞。另一方面,如專利文獻1中所記載般之使用焊料之安裝,由於伴隨有焊料全體之熔融流動,故有於安裝之前後產生稜鏡之高度方向之位置偏移之虞。因此,對於如專利文獻1中所記載般之稜鏡,於將其接合配置於安裝基板等之情形時,較難充分地提高位置精度。又,即便於組裝之作業性或成本等方面亦存在問題。
本發明之目的在於提供一種可有效地提高光裝置中之位置精度之稜鏡及使用該稜鏡之光裝置以及稜鏡之製造方法及封裝裝置之製造方法。 [解決問題之技術手段]
本發明之稜鏡之特徵在於具備:稜鏡本體,其具有底面及連接於底面之斜面;及密接膜,其設置於底面;且密接膜具有位於稜鏡本體側之第1層部分、與直接或間接地積層於第1層部分上之第2層部分,且第2層部分包含Au層及Sn層中之至少一層。
較佳為,於第2層部分中, Au層及Sn層交替地積層。
較佳為,第2層部分具有Au層及Sn層之兩者,且於Au層與Sn層之間設置有包含Au及Sn之合金之Au-Sn層。
於密接膜之積層方向上,於將遠離稜鏡本體之側設為外側時,第2層部分之最外層較佳為Au層。
較佳為,第2層部分具有複數個Au層及複數個Sn層之兩者,Au層及Sn層交替地積層,且第2層部分具有應力緩和層,於應力緩和層為複數個Au層中之一層之情形時,應力緩和層之厚度與其他Au層之平均厚度不同,於應力緩和層為複數個Sn層中之一層之情形時,應力緩和層之厚度與其他Sn層之平均厚度不同。於該情形時,應力緩和層之厚度更較佳為其他Au層或其他Sn層之平均厚度之1/2以上、5倍以下。又,應力緩和層之厚度更佳為其他Au層或其他Sn層之平均厚度之1/5以上、1/2以下。
較佳為,於密接膜之積層方向上,於將遠離稜鏡本體之側設為外側時,第2層部分之最外層為第2層部分中最薄之層。於該情形時,第2層部分中,更佳為越位於外側之層則越薄
較佳為,第2層部分具有複數個Au層及複數個Sn層之兩者,複數個Au層之厚度互為相同,且複數個Sn層之厚度越位於外側則越厚。
較佳為,第2層部分具有複數個Au層及複數個Sn層之兩者,複數個Au層之厚度越位於外側則越薄,且複數個Sn層之厚度互為相同。
第2層部分中之Au層及Sn層之合計層數較佳為3層以上、99層以下。於該情形時,第2層部分中之Au層及Sn層之合計層數更佳為15層以上、35層以下。
密接膜之全體厚度較佳為1 μm以上、10 μm以下。
第2層部分具有Au層及Sn層之兩者,於將第2層部分中之Au之重量之合計設為MA 、將Sn之重量之合計設為MS 、將Au之重量相對於Au及Sn之重量之合計之比率設為MA /(MA +MS )時,比率MA /(MA +MS )較佳為0.65以上、0.78以下,更佳為0.60以上、0.75以下。
本發明之另一態樣中之稜鏡係安裝於封裝體者,其具備:稜鏡本體,其具有底面及連接於底面之斜面;及密接膜,其設置於底面;且密接膜具有位於稜鏡本體側之第1層部分、與直接或間接地積層於第1層部分上之第2層部分,且第2層部分係包含Au及Sn之合金之Au-Sn層,密接膜之第2層部分之厚度為2.5 μm以上、5.9 μm以下。
較佳為,於密接膜之積層方向上,於將遠離稜鏡本體之側設為外側時,密接膜具有作為密接膜之最外層且積層於第2層部分上之最外層部分,且最外層部分係Au層。
於密接膜之積層方向上,於將遠離稜鏡本體之側設為外側時,密接膜之最外層之算術平均粗糙度Ra較佳為0.20 μm以下。
第1層部分較佳為Cr層或Ti層或Ta膜。
密接膜較佳為進而具有積層於第1層部分與第2層部分之間之中間層部分。於該情形時,中間層部分更佳為Ni層、Pt層、Pd層、Ni-Cr混合層或將該等組合而成之合金層。
稜鏡本體具有上表面,上表面較佳為與底面對向,且連接於斜面。
較佳為於稜鏡本體之斜面設置有反射膜。又,較佳為於稜鏡本體之斜面及上表面設置有反射膜。
本發明之光裝置之特徵在於具備:上述稜鏡;光學元件,其將光出射至稜鏡或接收來自稜鏡之光;及封裝體,其收容稜鏡及光學元件;且稜鏡藉由密接膜接合於封裝體。
本發明之稜鏡之製造方法之特徵在於,其係具備於具有底面及連接於底面之斜面之稜鏡本體之底面設置密接膜的步驟者,且設置密接膜之步驟包含:於底面形成包含金屬材料之第1層部分之步驟;及直接或間接地將包含金屬材料之第2層部分積層於第1層部分上之步驟;且第1層部分與第2層部分包含互不相同之成分之金屬材料,第2層部分包含Au層及Sn層中之至少一層。
本發明之封裝裝置之製造方法之特徵在於具備:準備上述稜鏡之步驟;準備具有與稜鏡之接著面之封裝體之步驟;以密接膜抵接於封裝體之接著面之方式,使稜鏡與封裝體抵接之步驟;及對密接膜進行加熱,使稜鏡與封裝體接合之步驟。
較佳為,於封裝體之接著面形成有Au膜,且以密接膜全體不會熔融之溫度進行加熱,使稜鏡與封裝體接合。 [發明之效果]
根據本發明之稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法,可有效地提高稜鏡之位置精度。
以下,對較佳之實施形態進行說明。但,以下之實施形態係單純之例示,本發明不受以下實施形態限定。又,各圖式中,存在實質上具有相同功能之構件以相同符號來參照之情形。
(稜鏡) (第1實施形態) 圖1係本發明之第1實施形態之稜鏡之剖視圖。如圖1所示,稜鏡1具備稜鏡本體2、密接膜3、及反射膜4。稜鏡本體2具有大致梯形之剖面形狀。稜鏡本體2具有底面2a、連接於底面2a之斜面2b、及與底面2a對向且連接於斜面2b之上表面2c。再者,稜鏡本體2之剖面形狀不限定於大致梯形,亦可為大致三角形等。本實施形態中,稜鏡本體2包含適當之玻璃材料。
於稜鏡本體2之底面2a設置有密接膜3。於稜鏡本體2之斜面2b設置有反射膜4。稜鏡1藉由密接膜3接合於光裝置或封裝裝置中之安裝基板或封裝體等。
圖2係表示第1實施形態之稜鏡之密接膜附近之放大剖視圖。如圖2所示,密接膜3係複數個金屬層之積層體。具體而言,密接膜3具有位於最靠近稜鏡本體2側之第1層部分5、與積層於第1層部分5上之第2層部分6。本實施形態中,第2層部分6直接地積層於第1層部分5上。再者,第2層部分6亦可介隔其他層而間接地積層於第1層部分5上。
第1層部分5係Cr層。當然,第1層部分5只要於密接膜3之各層中與稜鏡本體2之密接性相對性較高即可,不限定於Cr層。例如,第1層部分5亦可為Ti層或者Ta層。
再者,本發明中,於各金屬層容許少量雜質或添加物。具體而言,Cr層係包含95重量%以上Cr之金屬層。又,Ti層係包含95重量%以上Ti之金屬層。又,Ta層係包含95重量%以上Ta之金屬層。Cr、Ti、Ta作為與玻璃之密接層發揮功能,若Cr、Ti、Ta之含量係上述範圍,則不會損害本發明之效果。
本實施形態中,第2層部分6係依序積層有第1層6a、第2層6b、第3層6c、第4層6d及第5層6e而成之積層體。此處,於密接膜3之積層方向上,將稜鏡本體2側設為內側,將遠離稜鏡本體2之側設為外側。第2層部分6中,第5層6e係最外層。
第1層6a係Au層,第2層6b係Sn層,第3層6c係Au層,第4層6d係Sn層,作為最外層之第5層6e係Au層。第2層部分6中,Au層及Sn層交替地積層。再者,第2層部分6包含Au層及Sn層中之至少一層即可,層數不限定於上述。
再者,本發明中,Au層係包含95重量%以上Au之金屬層。又,Sn層係包含95重量%以上Sn之金屬層。根據Au或Sn之精製程度,會引起雜質混入至金屬層。作為雜質,例如以Fe、Cr、Ni等為代表,但若Au及Sn各者之含量係上述範圍,則不會損害本發明之效果。
反射膜4例如包含高折射率膜及低折射率膜交替地積層而成之介電體多層膜。作為高折射率膜之材料,例如可列舉TiO2 、Ta2 O5 、ZrO2 或HfO2 。作為低折射率膜之材料,例如可列舉SiO2 或MgF2 。又,亦可使用金屬膜作為反射膜4。反射膜4可設置於稜鏡本體2之斜面2b之至少一部分,例如,亦可設置於斜面2b之整個面。藉由於斜面2b設置有反射膜4,從而可使自光源出射之光較佳地反射。再者,稜鏡1亦並非必須具有反射膜4。
密接膜3及反射膜4例如可藉由利用濺鍍法或真空蒸鍍法等積層各層而形成。
本實施形態之特徵在於,設置於稜鏡本體2之底面2a之密接膜3具有第1層部分5、與包含Au層及Sn層中之至少一層之第2層部分6。藉此,可有效地提高光裝置中之稜鏡1之位置精度。以下,對於其詳情進行說明。
本實施形態之稜鏡1可於不伴隨密接膜3全體之熔融流動之情況下接合於封裝體等。具體而言,如圖9所示,首先,將稜鏡1載置於封裝體等。具體而言,將稜鏡1載置於封裝體等中之使稜鏡1接著之接著面。此時,於載置稜鏡1之部分(本實施形態中係封裝體之內表面)較佳為設置有Au膜等金屬膜作為用以輔助與密接膜3之接合之輔助層。其次,於密接膜3全體不會發生熔融之溫度對稜鏡1之密接膜3進行加熱。加熱之溫度無特別限定,例如,只要於300℃以上、350℃以下進行加熱即可。藉由密接膜3之加熱,於Au層及Sn層中使金屬相互擴散而使密接膜3合金化。此時,作為封裝體內表面之金屬膜之Au膜與密接膜3之最外層之Au層相互擴散而接著,構成密接膜3之Au層及Sn層亦相互擴散而合金化。藉此,使密接膜3與封裝體等之金屬膜一體化,將稜鏡1接合於封裝體等。如此一來,例如可較佳地製造封裝裝置等。或者,可將光裝置中所使用之稜鏡1搭載於封裝體等。
如此,由於不會伴隨密接膜3全體之熔融,故於稜鏡1之接合之前後,密接膜3之厚度不易變化,從而不易產生稜鏡本體2之高度方向之位置偏移。同樣地,由於不會伴隨密接膜3全體之熔融,故於稜鏡1之接合之前後,亦不易產生稜鏡本體2之水平方向之位置偏移。因此,可有效地提高稜鏡1之位置精度。又,於封裝體之組裝步驟中,由於可省略先前之焊料之塗佈步驟,即僅將具有密接膜3之稜鏡1載置於封裝體等即可,故可提高作業性或成本效率。
進而,與包含樹脂之接著劑不同,密接膜3包含金屬。因此,不易產生因水分或氧氣而造成之劣化或因光而造成之劣化,可提高可靠性。除此以外,由於於稜鏡1與封裝體等之接合後不會產生氣體,故於反射膜4或後述之光學元件74不易附著雜質,從而不易產生反射率或透過率之劣化。
再者,上述中,例示有以將稜鏡1載置於封裝體之狀態進行加熱而接合之情形,若為稜鏡1之密接膜3與封裝體之接著面抵接之狀態,則進行接合時之封裝體及稜鏡1之形狀或狀態不限於上述。例如,可為於稜鏡1上載置封裝體之態樣,亦可為將抵接狀態之稜鏡1與封裝體以夾具裝置等夾持之狀態。
密接膜3中,Au層及Sn層較佳為交替地積層。藉此,於進行安裝時,可於Au層及Sn層中更確實地使金屬相互擴散,從而可更確實地使Au層及Sn層合金化。因此,於將稜鏡1安裝於封裝體等時,可更確實地提高密接膜3之接合力。
密接膜3全體厚度較佳為1 μm以上,更佳為3 μm以上。藉此,可更充分地提高接合力。密接膜3全體厚度較佳為10 μm以下,更佳為5 μm以下。於該情形時,可使安裝時金屬相互擴散之各層變薄。藉此,可縮短於密接膜3之各層中用以使金屬以不會引起剝離之程度相互擴散所需之時間,從而可縮短密接膜3之合金化之時間。因此,可更提高生產性。又,由於藉由所使用之密接膜3較薄,稜鏡本體2之高度方向之位置偏移變小,因此可更進一步有效地提高稜鏡1之位置精度。
密接膜3之第2層部分6中之Au層及Sn層之合計層數較佳為3層以上,更佳為15層以上。藉此,可更進一步使第2層部分6中之各層之厚度變薄。因此,於進行安裝時,可更進一步縮短密接膜3之合金化之時間,可更進一步提高生產性。
第2層部分6中之Au層及Sn層之合計層數較佳為99層以下。若考慮到生產性,則更佳為39層以下,進而佳為35層以下。於第2層部分6之層數過多之情形時,各層變得過薄,故有難以形成各層之虞。
第2層部分6亦可具有積層於Au層與Sn層之間,且包含Au及Sn之合金之Au-Sn層。於該情形時,於進行安裝時,可更進一步有效地縮短密接膜3之合金化之時間,可更進一步有效地提高生產性。再者,Au-Sn層可使用真空蒸鍍法或濺鍍法,藉由2源蒸鍍或2源濺鍍而於短時間形成。
再者,Au-Sn層可藉由於形成密接膜3時使相鄰之Au層及Sn層之一部分合金化而形成。例如,可於濺鍍法或真空蒸鍍法等適當條件下,藉由將Au層與Sn層積層時之能量使Au層及Sn層之一部分合金化而形成Au-Sn層。
第2層部分6中之最外層較佳為Au層。藉此,於安裝時,與封裝體等相接之最外層不易發生氧化,可更確實地提高接合力。
此處,將密接膜3中之Au之重量之合計設為MA ,將Sn之重量之合計設為MS ,將Au之重量相對於Au及Sn之重量之合計之比率設為MA /(MA +MS )。此時,比率MA /(MA +MS )較佳為大於0.78、小於0.82,特佳為0.8。於該情形時,可將Au及Sn之熔點(共晶溫度)設為280℃左右,可於低溫下使密接膜3合金化。因此,可於低溫下將稜鏡1接合於封裝體等。
此處,如上所述,較佳為於安裝稜鏡1之封裝體等形成有Au膜等金屬膜。於將稜鏡1接合於封裝體等之形成有Au膜之部分時,產生自該Au膜向密接膜3之Au之夾裹。因此,於合金化後之密接膜3之Au之重量之比率MA /(MA +MS )較合金化前變大。因此,於此種情形時,密接膜3中之Au之重量之比率MA /(MA +MS )較佳為0.60以上、0.78以下,更佳為0.68以上、0.75以下。藉由將合金化前之密接膜3之比率MA /(MA +MS )設為上述範圍內,可使Au膜及密接膜3之合金化後之密接膜3之比率MA /(MA +MS )為大於0.78、小於0.82之範圍內。藉此,可將Au及Sn之熔點(共晶溫度)設為280℃左右,可於低溫下使密接膜3合金化。因此,可更確實地於低溫下將稜鏡1接合於封裝體等。
如本實施形態般,稜鏡本體2較佳為具有與底面2a對向且連接於斜面2b之上表面2c。於該情形時,由於使稜鏡1移動時易夾持稜鏡,故可容易地安裝稜鏡1。再者,稜鏡本體2並非必須具有上表面2c,亦可為剖面形狀係大致三角形等。
(第2實施形態) 圖3係表示本發明之第2實施形態之稜鏡之密接膜附近之放大剖視圖。如圖3所示,本實施形態之稜鏡11於在密接膜13之第2層部分16中越位於外側之層則越薄之點,與第1實施形態不同。具體而言,於將第1層16a之厚度設為Ta 、將第2層16b之厚度設為Tb 、將第3層16c之厚度設為Tc 、將第4層16d之厚度設為Td 、將第5層16e之厚度設為Te 時,滿足Ta >Tb >Tc >Td >Te 。除上述以外之點,本實施形態之稜鏡11具有與第1實施形態之稜鏡1同樣之構成。
即便於本實施形態中,亦可與第1實施形態同樣地,於不會伴隨密接膜13之熔融之情況下將稜鏡11接合於封裝體等。因此,可有效地提高稜鏡11之位置精度。
此外,由於第5層16e係最外層,故與第5層16e相鄰之層僅為位於內側之第4層16d。因此,於使密接膜13合金化時,於第3層16c或第4層16d中產生經由外側及內側之兩面之相互擴散,但於第5層16e中產生僅經由內側之面之相互擴散。此處,本實施形態中,第5層16e係於第2層部分16中最薄之層。因此,由於可有效地縮短於第5層16e中進行合金化所需之相互擴散之時間,故可更確實地使第5層16e合金化,且可縮短合金化之時間。因此,可更確實地使密接膜13合金化,可更確實地提高接合力,且可提高生產性。
除此以外,於密接膜13之第2層部分16中越位於外側之層則越薄。藉此,即便使第5層16e變薄,亦可更確實地使除第5層16e以外之層合金化。因此,可更進一步確實地使密接膜13合金化,可更進一步確實地提高接合力。
再者,於第2層部分16中,亦可為第5層16e為最薄之層,且至少2層為相同厚度。第2層部分16之各層之厚度之關係亦可為Ta ≧Tb ≧Tc ≧Td >Te
(第3實施形態) 圖4係表示本發明之第3實施形態之稜鏡之密接膜附近之放大剖視圖。密接膜之各層之厚度可自第1實施形態中之厚度如下述般變更。例如,本實施形態之稜鏡21亦可設為下述構成:於密接膜23之第2層部分26中,複數個Au層之厚度互為相同,且複數個Sn層之厚度為越位於外側則越厚。具體而言,於將第1層26a之厚度設為Ta 、將第2層26b之厚度設為Tb 、將第3層26c之厚度設為Tc 、將第4層26d之厚度設為Td 、將第5層26e之厚度設為Te 時,Au層之厚度為Ta =Tc =Te ,Sn層之厚度為Tb <Td 。上述以外之點中,本實施形態之稜鏡21具有與第1實施形態之稜鏡1同樣之構成。
即便於本實施形態中,亦可與第1實施形態同樣地,於不會伴隨密接膜23全體之熔融流動之情況下將稜鏡21接合於封裝體等。又,於密接膜23已合金化時,相較於內側,可提高外側之Sn之重量比,可更進一步有效地提高稜鏡21之位置精度。
(第4實施形態) 圖5係表示本發明之第4實施形態之稜鏡之密接膜附近之放大剖視圖。密接膜之各層之厚度可自第1實施形態中之厚度如下述般變更。例如,本實施形態之稜鏡31亦可設為下述構成:於密接膜33之第2層部分36中,複數個Au層之厚度係越位於外側則越薄,且複數個Sn層之厚度互為相同。具體而言,於將第1層36a之厚度設為Ta 、將第2層36b之厚度設為Tb 、將第3層36c之厚度設為Tc 、將第4層36d之厚度設為Td 、將第5層36e之厚度設為Te 時,Au層之厚度為Ta >Tc >Te ,Sn層之厚度為Tb =Td 。除上述以外之點,本實施形態之稜鏡31具有與第1實施形態之稜鏡1同樣之構成。
即便於本實施形態中,亦可與第1實施形態同樣地,於不會伴隨密接膜33全體之熔融流動之情況下將稜鏡31接合於封裝體等。又,於密接膜33已合金化時,相較於內側,可提高外側之Sn之重量比,可更進一步有效地提高稜鏡31之位置精度。
(第5實施形態) 圖6係表示本發明之第5實施形態之稜鏡之密接膜附近之放大剖視圖。如圖6所示,本實施形態之稜鏡41於密接膜43具有積層於第1層部分5與第2層部分6之間之中間層部分47之點,與第1實施形態不同。除上述以外之點,本實施形態之稜鏡41具有與第1實施形態之稜鏡1同樣之構成。
本實施形態中,第2層部分6介隔中間層部分47間接地積層於第1層部分5上。藉由密接膜43具有中間層部分47,第2層部分6之金屬不易擴散於第1層部分5。因此,密接膜43不易自稜鏡本體2剝離。
中間層部分47較佳為Ni層、Pt層、Pd層、Ni-Cr混合層或使該等組合而成之合金層。藉此,第2層部分6之金屬更進一步不易擴散於第1層部分5,密接膜43更進一步不易自稜鏡本體2剝離。
再者,本發明中,Ni層係包含90重量%以上Ni之金屬層。又,Pt層係包含90重量%以上Pt之金屬層。又,Pd層係包含90重量%以上Pd之金屬層。該等作為障壁層發揮功能,認為藉由包含90重量%以上Ni、Pt、Pd或者其合金層,可發揮作為障壁層之功能。
除此以外,與第1實施形態同樣地,可於不會伴隨密接膜43全體之熔融流動之情況下將稜鏡41接合於封裝體等。因此,可有效地提高稜鏡41之位置精度。
(第6實施形態) 圖7係本發明之第6實施形態之稜鏡之剖視圖。如圖7所示,本實施形態之稜鏡51於反射膜4設置於稜鏡本體2之斜面2b及上表面2c之點,與第1實施形態不同。具體而言,反射膜4自斜面2b至上表面2c連續地設置。除上述以外之點,本實施形態之稜鏡51具有與第1實施形態之稜鏡1同樣之構成。
即便於本實施形態中,由於具有與第1實施形態同樣之密接膜3,故亦可有效地提高稜鏡51之位置精度。
較理想為一面藉由攝影機對稜鏡51之位置進行視認,一面實施稜鏡51之安裝。藉此,可提高稜鏡51之位置精度。進而,本實施形態中,反射膜4設置於稜鏡本體2之上表面2c。藉此,藉由反射膜4將光向攝影機側反射。因此,可提高稜鏡51之亮度,可容易地藉由攝影機對稜鏡51進行視認。因此,可更確實地進行稜鏡51之位置確認,可更確實地提高稜鏡51之位置精度。
本實施形態中,反射膜4設置於稜鏡本體2之上表面2c之整個面。當然,反射膜4亦可設置於上表面2c之一部分。圖8所示之第6實施形態之變化例之稜鏡61中,反射膜4自稜鏡本體2之斜面到達至上表面2c之一部分。即便於該情形時,亦可於安裝時,更確實地進行位置確認,可更確實地提高稜鏡61之位置精度。
圖7所示之稜鏡51中,斜面2b及上表面2c之反射膜4一體地設置。再者,設置於斜面2b之反射膜4與設置於上表面2c之反射膜4亦可為不同體。
(光裝置) (第7實施形態) 圖9係本發明之第7實施形態之光裝置之剖視圖。如圖9所示,光裝置70具備第1實施形態之稜鏡1、光學元件74、及收容稜鏡1及光學元件74之封裝體75。
本實施形態中,光學元件74係將光出射至稜鏡1之光源。光源無特別限定,可使用例如LD或LED(Light Emitting Diode,發光二極體)等。再者,光學元件74亦可為接收來自稜鏡1之光之受光元件。
封裝體75係具有底部76及配置於底部76上之側壁部77之容器狀之構件。封裝體75例如包含陶瓷材料,具體而言包含氧化鋁或氮化鋁等。底部76具有安裝面76a。於底部76之安裝面76a上配置有光學元件74及稜鏡1。側壁部77具有內表面77a及外表面。於底部76之安裝面76a及側壁部77之內表面77a設置有金屬膜78。具體的而言,本實施形態中,金屬膜78係Au膜。再者,金屬膜78不限定於Au膜。
稜鏡1藉由密接膜3接合於封裝體75之安裝面76a。光學元件74無特別限定,例如亦可藉由焊料等接合於安裝面76a。
封裝體75亦並非必須具有金屬膜78。當然,封裝體75較佳為如本實施形態般具有金屬膜78。藉由使稜鏡1之密接膜3與金屬膜78合金化,可更確實且有效地提高稜鏡1與封裝體75間之接合力。此種構成尤其對於稜鏡1與封裝體75之熱膨脹率差相對較大之情形有效。
金屬膜78較佳為Au膜。藉此,金屬膜78不易發生氧化。因此,於製造光裝置70時,可更確實地提高稜鏡1與封裝體75間之接合力。
本實施形態中,於底部76之安裝面76a之整個面及側壁部77之內表面77a設置有金屬膜78。當然,金屬膜78只要至少設置於配置稜鏡1之部分即可。
於封裝體75之側壁部77上,以將光學元件74及稜鏡1密封之方式設置有蓋體79。蓋體79無特別限定,本實施形態中係玻璃蓋。
蓋體79與封裝體75之接合方法無特別限定,本實施形態中,例如藉由SnNi接合進行接合。於該情形時,由於於接合後不易產生氣體,故於稜鏡1之反射膜4不易附著雜質,不易產生反射率之劣化。上述接合方法係一例,亦可藉由SnAg接合、SnAgCu接合進行接合。
如圖9所示,自光學元件74出射之光A於稜鏡1反射,並通過蓋體79向光裝置70外出射。
由於光裝置70具有第1實施形態之稜鏡1,故可有效地提高光裝置70中之稜鏡1之位置精度。
光裝置70可使用於多晶片。多晶片例如具備安裝基板、與配置於安裝基板上之複數個光裝置70。由於多晶片之光裝置具有第1實施形態之稜鏡1,故即便於多晶片中,亦可有效地提高稜鏡1之位置精度。
(稜鏡) (第8實施形態) 圖10係第8實施形態之稜鏡之剖視圖。如圖10所示,本實施形態之稜鏡於密接膜83A之第2層部分86A具有應力緩和層87A之點,與第1實施形態不同。具體而言,應力緩和層87A相當於作為複數個Au層中之一層之第3層。除上述以外之點,本實施形態之稜鏡具有與第1實施形態之稜鏡1同樣之構成。
應力緩和層87A之厚度與作為其他Au層之第1層6a及第5層6e之平均厚度不同。更具體而言,應力緩和層87A之厚度厚於第2層部分86A中之其他Au層之平均厚度。
此處,Au層與Sn層具有相互逆向之應力。於第2層部分之Au層及Sn層中之一者之應力大於另一者之應力之情形時,於將稜鏡接合於封裝體時,對封裝體施加應力。第2層部分中之Au層及Sn層之層越多,則應力越大。
與此相對,本實施形態中,第2層部分86A具有應力緩和層87A。藉此,可使複數個Au層之應力之合計與複數個Sn層之應力之合計之大小關係接近於相等關係。因此,可緩和於安裝稜鏡時施加於封裝體之應力。因此,稜鏡不易自封裝體剝離。
藉由密接膜83A具有應力緩和層87A,可將Au層之應力之合計調整至較大,故本實施形態適合於Sn層之應力之合計較大之情形。應力緩和層87A之厚度較佳為其他Au層之平均厚度之1/2以上、5倍以下。藉此,於將稜鏡安裝於封裝體等時,可有效地緩和施加於封裝體等之應力,可有效地抑制稜鏡自封裝體等剝離。
例如,亦可使除應力緩和層87A以外之複數個Au層之厚度均勻,且使複數個Sn層之厚度均勻。於該情形時,於形成密接膜93時,只要僅使應力緩和層87A之厚度與其他Au層之厚度不同即可。因此,可簡化製造步驟。因此,可提高生產性,且稜鏡不易自封裝體等剝離。當然,除應力緩和層87A以外之複數個Au層之厚度及複數個Sn層之厚度亦可不均勻。
進而,即便於本實施形態中,亦可與第1實施形態同樣地,於不會伴隨密接膜83A之熔融之情況下將稜鏡接合於封裝體等。因此,可有效地提高稜鏡之位置精度。
以下,表示有僅應力緩和層之構成與本實施形態不同之第9~第11實施形態。即便於第9~第11實施形態中,亦可與本實施形態同樣地,有效地提高稜鏡之位置精度,且稜鏡不易自封裝體等剝離。
(第9實施形態) 圖11係第9實施形態之稜鏡之剖視圖。如圖11所示,即便於本實施形態中,密接膜83B之第2層部分86B中之應力緩和層87B,亦相當於作為複數個Au層中之一層之第3層。應力緩和層87B之厚度薄於第2層部分86A中之除應力緩和層87B以外之Au層之平均厚度。
藉由密接膜83B具有應力緩和層87B,可將Au層之應力之合計向較小之方調整,故本實施形態適合於Sn層之應力之合計較小之情形。應力緩和層87B之厚度較佳為其他Au層之平均厚度之1/5以上、1/2以下,更佳為1/5以上、1/4以下。藉此,於將稜鏡安裝於封裝體等時,可有效地緩和施加於封裝體等之應力,可有效地抑制稜鏡自封裝體等剝離。
(第10實施形態) 圖12係第10實施形態之稜鏡之剖視圖。如圖12所示,本實施形態之密接膜83C之第2層部分86C中之應力緩和層87C,相當於作為複數個Sn層中之一層之第4層。應力緩和層87C之厚度厚於第2層部分86C中之除應力緩和層87C以外之Sn層之平均厚度。
藉由密接膜83C具有應力緩和層87C,可將Sn層之應力之合計向較大之方調整,故本實施形態適合於Au層之應力之合計較大之情形。應力緩和層87C之厚度較佳為其他Sn層之平均厚度之1/2以上、5倍以下。藉此,於將稜鏡安裝於封裝體等時,可有效地緩和施加於封裝體等之應力,可有效地抑制稜鏡自封裝體等剝離。
(第11實施形態) 圖13係第11實施形態之稜鏡之剖視圖。如圖13所示,即便於本實施形態,密接膜83D之第2層部分86D中之應力緩和層87D,亦相當於作為複數個Sn層中之一層之第4層。應力緩和層87D之厚度薄於第2層部分86D中之除應力緩和層87D以外之Sn層之平均厚度。
藉由密接膜83D具有應力緩和層87D,可將Sn層之應力之合計向較小之方調整,故本實施形態適合於Au層之應力之合計較小之情形。應力緩和層87D之厚度較佳為其他Sn層之平均厚度之1/5以上、1/2以下,更佳為1/5以上、1/3以下。藉此,於將稜鏡安裝於封裝體等時,可有效地緩和施加於封裝體等之應力,可有效地抑制稜鏡自封裝體等剝離。
上述各實施形態中,表示密接膜之第2層部分具有Au層及Sn層中之至少一層之例。再者,密接膜之第2層部分中,Au層及Sn層亦可合金化。以下表示該例。
(第12實施形態) 圖14係第12實施形態之稜鏡之剖視圖。如圖14所示,本實施形態於第2層部分96係包含Au及Sn之合金之Au-Sn層之點及密接膜93具有最外層部分98之點,與第1實施形態不同。最外層部分98積層於第2層部分96上。最外層部分98係Au層。除上述以外之點,本實施形態之稜鏡91具有與第1實施形態之稜鏡1同樣之構成。
於形成密接膜93之第2層部分96時,例如只要將Au層及Sn層交替地積層,其次對積層之Au層及Sn層進行加熱即可。藉此,藉由使Au層及Sn層合金化,可形成第2層部分96。
本實施形態中,最外層部分98係密接膜93之最外層。最外層部分98例如可藉由濺鍍法或真空蒸鍍法等形成。再者,密接膜93亦可不具有最外層部分98。於該情形時,與其他第1實施形態等同樣地,第2層部分之最外層係密接膜之最外層。再者,具體而言,如本實施形態般,於第2層部分96係Au-Sn層,且不具有最外層部分98之情形時,Au-Sn層係最外層。
稜鏡91與其他實施形態之稜鏡同樣地被安裝於封裝體等。即便於本實施形態中,亦可於不會伴隨密接膜93全體之熔融流動之情況下將稜鏡91接合於封裝體等。因此,可有效地提高稜鏡91之位置精度。
密接膜93之第2層部分96之厚度較佳為2.5 μm以上、5.9 μm以下。藉此,於將稜鏡91安裝於封裝體等時,可充分地提高密接膜93之接合力。再者,第1層部分之厚度較佳為0.1以上、0.5 μm以下。密接膜之全體厚度較佳為3 μm以上、6 μm以下。
如本實施形態般密接膜93較佳為具有最外層部分98。本實施形態中,於作為Au-Sn層之第2層部分96上積層有作為Au層之最外層部分98。於該情形時,於安裝時與封裝體等相接之部分係最外層部分98。因此,於安裝時,密接膜93不易發生氧化,可更確實地提高密接膜93之接合力。
即便於本實施形態中,亦可與第5實施形態同樣地於第1層部分5與第2層部分96之間積層有中間層部分。藉此,第2層部分96之金屬不易擴散於第1層部分5。因此,密接膜93不易自稜鏡本體2剝離。
(第13實施形態) 圖15係第13實施形態之稜鏡之剖視圖。如圖15所示,本實施形態於在稜鏡本體2之底面2a與斜面2b之稜線設置有保護膜105之點,與第1實施形態不同。除上述以外之點,本實施形態之稜鏡具有與第1實施形態之稜鏡1同樣之構成。
保護膜105與反射膜4一體地設置。保護膜105連接於密接膜3。再者,保護膜105並非必須連接於密接膜3。保護膜105例如可藉由濺鍍法或真空蒸鍍法等形成。如本實施形態般,於保護膜105與反射膜4一體之情形時,亦可將保護膜105與反射膜4同時形成。
當然,保護膜105亦可作為與反射膜4之不同體設置。或者,保護膜105亦可與密接膜3一體地設置。於該情形時,保護膜105可連接於反射膜4,或亦可不連接於反射膜4。於保護膜105與密接膜3一體之情形時,保護膜105具有與密接膜3同樣之複數層中之至少一層。
藉由稜鏡具有保護膜105,不易於稜鏡本體2產生缺陷。保護膜105較佳為連接於反射膜4及密接膜3之兩者。藉此,更進一步不易於稜鏡本體2產生缺陷。
即便於本實施形態中,亦可與第1實施形態同樣地,於不會伴隨密接膜3熔融之情況下將稜鏡接合於封裝體等。因此,可有效地提高稜鏡之位置精度。
(接合力之評價) 圖1所示之第1實施形態之稜鏡1中,使作為密接膜3之最外層之第2層部分6之最外層之算術平均粗糙度Ra不同,確認與封裝體之接合性。再者,密接膜3之最外層設為Au層。具體而言,於將最外層之算術平均粗糙度Ra設為Ra時,滿足Ra≦0.05、0.05<Ra≦0.09、0.09<Ra≦0.15、0.15<Ra≦0.20。再者,本說明書中之算術平均粗糙度Ra基於JIS(Japanese Industrial Standards,日本工業標準) B 0601:2013。
於接合性之確認中,使用具有經Au鍍覆之部分之氮化鋁基板作為封裝體。藉由加熱至約320℃而將稜鏡1接合於氮化鋁基板之經Au鍍覆之部分。其後,自稜鏡1之側面施加力。具體而言,對稜鏡1施加力直至稜鏡1之密接膜3自氮化鋁基板剝離、或稜鏡本體2自密接膜3剝離、或者不產生剝離而係稜鏡本體2被破壞為止。於使算術平均粗糙度Ra不同之各情形時,分別進行15次接合性之確認。將結果示於表1。
表1中,接合性之評價係◎為最高,○為第二高,△為最低。所謂「未剝離」係指密接膜3未自封裝體剝離,包含稜鏡本體2被破壞之情形或稜鏡本體2自密接膜3剝離之情形。所謂「一部分剝離」係指密接膜3之一部分自封裝體剝離。
[表1]
Ra[μm] 結果 評價
Ra≦0.05 未剝離:100%
0.05<Ra≦0.09 未剝離:50%,一部分剝離:50%
0.09<Ra≦0.15 未剝離:25%,一部分剝離:75%
0.15<Ra≦0.20 未剝離:10%以下,一部分剝離:90%以上
如表1所示,可知於使密接膜3之最外層之算術平均粗糙度Ra不同之任一情形時,均為「未剝離」或「一部分剝離」,密接膜3未完全自封裝體剝離。進而,可知最外層之算術平均粗糙度Ra之值越小,則「未剝離」之比率越大。
密接膜3之最外層之算術平均粗糙度Ra較佳為0.20 μm以下,更佳為0.15 μm以下,進而佳為0.09 μm以下,特佳為0.05 μm以下。藉此,於安裝時,可更進一步有效地提高封裝體等與密接膜93之密接性。因此,可更進一步有效地提高接合力。
同樣地,圖14所示之第12實施形態中,即便於密接膜93未具有最外層部分98之情形時,亦較佳為作為密接膜93最外層之第2層部分96之算術平均粗糙度Ra為上述範圍內。藉此,可更進一步有效地提高接合力。
(應力之評價) 對稜鏡密接膜之應力之大小進行評價。如圖16所示,將於兩側面對向之方向上延伸之稜鏡之母材91A貼附於切割片。其次,沿著單點鏈線I-I,對稜鏡之母材91A進行切割而將之單片化。再者,單片化後之稜鏡具有與圖14所示之第12實施形態之稜鏡同樣之構成。於密接膜93之相對於封裝體之應力較大之情形時,由於單片化時應力被解除時之衝擊較大,故稜鏡易剝離。因此,剝離之比率越大,則密接膜93之應力越大。
應力之評價係使密接膜93之第2層部分96之厚度等不同,於條件1~條件4下進行。具體而言,於條件1中,將第2層部分96之厚度設為3 μm,於條件2~4中,將第2層部分96之厚度設為6 μm。進而,於條件3及條件4中,於將稜鏡之母材91A貼附於切割片之前進行加熱處理。具體而言,條件3中,於氮氣氛圍下以200℃進行2小時加熱處理。條件4中,於氮氣氛圍下以200℃進行5小時加熱處理。將應力之大小之評價結果示於表2。
表2中,於◎之情形時應力最小,○為第二小,△為最大。
[表2]
Au-Sn層之厚度[μm] 加熱處理 剝離率 評價
3 - 10~30%
6 - 30~50%
6 氮氣氛圍下200℃/2 h 20~40%
6 氮氣氛圍下200℃/5 h 0~5%
如表2所示,於條件1~條件4下,稜鏡91自封裝體之剝離均被抑制為50%以下。進而,若比較第2層部分96之厚度不同之條件1及條件2,則第2層部分96較薄之條件1中,應力更進一步小。如此,可知若第2層部分96越薄,則密接膜93之應力越小。密接膜93之第2層部分96之厚度較佳為6 μm以下,更佳為3 μm以下。藉此,可更進一步減小應力。
若比較第2層部分96之厚度相同之條件2及條件3,則於將稜鏡之母材91A貼附於切割片之前進行加熱處理之條件3中,應力更進一步小。進而,若比較第2層部分96之厚度相同,且進行上述加熱處理之條件3及條件4,則上述加熱處理之時間較長之條件4中,應力更進一步小。如此,可知上述加熱處理之時間越長,則越可抑制應力。較佳為於將稜鏡貼附於切割片之前進行加熱處理,上述加熱處理較佳為進行2小時至6小時左右。藉此,可更進一步有效地抑制應力。
1:稜鏡 2:稜鏡本體 2a:底面 2b:斜面 2c:上表面 3:密接膜 4:反射膜 5:第1層部分 6:第2層部分 6a:第1層 6b:第2層 6c:第3層 6d:第4層 6e:第5層 11:稜鏡 13:密接膜 16:第2層部分 16a:第1層 16b:第2層 16c:第3層 16d:第4層 16e:第5層 21:稜鏡 23:密接膜 26:第2層部分 26a:第1層 26b:第2層 26c:第3層 26d:第4層 26e:第5層 31:稜鏡 33:密接膜 36:第2層部分 36a:第1層 36b:第2層 36c:第3層 36d:第4層 36e:第5層 41:稜鏡 43:密接膜 47:中間層部分 51:稜鏡 61:稜鏡 70:光裝置 74:光學元件 75:封裝體 76:底部 76a:安裝面 77:側壁部 77a:內表面 78:金屬膜 79:蓋體 83A:密接膜 83B:密接膜 83C:密接膜 83D:密接膜 86A:第2層部分 86B:第2層部分 86C:第2層部分 86D:第2層部分 87A:應力緩和層 87B:應力緩和層 87C:應力緩和層 87D:應力緩和層 91:稜鏡 91A:稜鏡之母材 93:密接膜 96:第2層部分 98:最外層部分 105:保護膜
圖1係本發明之第1實施形態之稜鏡之剖視圖。 圖2係表示本發明之第1實施形態之稜鏡之密接膜附近之放大剖視圖。 圖3係表示本發明之第2實施形態之稜鏡之密接膜附近之放大剖視圖。 圖4係表示本發明之第3實施形態之稜鏡之密接膜附近之放大剖視圖。 圖5係表示本發明之第4實施形態之稜鏡之密接膜附近之放大剖視圖。 圖6係表示本發明之第5實施形態之稜鏡之密接膜附近之放大剖視圖。 圖7係本發明之第6實施形態之稜鏡之剖視圖。 圖8係本發明之第6實施形態之變化例之稜鏡之剖視圖。 圖9係本發明之第7實施形態之光裝置之剖視圖。 圖10係本發明之第8實施形態之稜鏡之剖視圖。 圖11係本發明之第9實施形態之稜鏡之剖視圖。 圖12係本發明之第10實施形態之稜鏡之剖視圖。 圖13係本發明之第11實施形態之稜鏡之剖視圖。 圖14係本發明之第12實施形態之稜鏡之剖視圖。 圖15係本發明之第13實施形態之稜鏡之剖視圖。 圖16係使用於應力之評價之稜鏡之母材之剖視圖。

Claims (28)

  1. 一種稜鏡,其具備: 稜鏡本體,其具有底面及連接於上述底面之斜面;及 密接膜,其設置於上述底面;且 上述密接膜具有位於上述稜鏡本體側之第1層部分、與直接或間接地積層於上述第1層部分上之第2層部分, 上述第2層部分包含Au層及Sn層中之至少一層。
  2. 如請求項1之稜鏡,其中於上述第2層部分中,上述Au層及上述Sn層交替地積層。
  3. 如請求項1或2之稜鏡,其中上述第2層部分具有上述Au層及上述Sn層之兩者,於上述Au層與上述Sn層之間設置有包含Au及Sn之合金之Au-Sn層。
  4. 如請求項1至3中任一項之稜鏡,其中於上述密接膜之積層方向上,於將遠離上述稜鏡本體之側設為外側時,上述第2層部分之最外層係上述Au層。
  5. 如請求項2至4中任一項之稜鏡,其中上述第2層部分具有複數個上述Au層及複數個上述Sn層之兩者,上述Au層及上述Sn層交替地積層, 上述第2層部分具有應力緩和層, 於上述應力緩和層為上述複數個Au層中之一層之情形時,上述應力緩和層之厚度與其他上述Au層之平均厚度不同, 於上述應力緩和層為上述複數個Sn層中之一層之情形時,上述應力緩和層之厚度與其他上述Sn層之平均厚度不同。
  6. 如請求項5之稜鏡,其中上述應力緩和層之厚度為其他上述Au層或其他上述Sn層之平均厚度之1/2以上、5倍以下。
  7. 如請求項5之稜鏡,其中上述應力緩和層之厚度為其他上述Au層或其他上述Sn層之平均厚度之1/5以上、1/2以下。
  8. 如請求項1至4中任一項之稜鏡,其中於上述密接膜之積層方向上,於將遠離上述稜鏡本體之側設為外側時,上述第2層部分之最外層於上述第2層部分中為最薄之層。
  9. 如請求項8之稜鏡,其中於上述第2層部分中,越位於外側之層則越薄。
  10. 如請求項4之稜鏡,其中上述第2層部分具有複數個上述Au層及複數個上述Sn層之兩者,上述複數個Au層之厚度互為相同,且上述複數個Sn層之厚度為越位於外側則越厚。
  11. 如請求項4之稜鏡,其中上述第2層部分具有複數個上述Au層及複數個上述Sn層之兩者,上述複數個Au層之厚度係越位於外側則越薄,且上述複數個Sn層之厚度互為相同。
  12. 如請求項1至11中任一項之稜鏡,其中上述第2層部分中之上述Au層及上述Sn層之合計層數為3層以上、99層以下。
  13. 如請求項12之稜鏡,其中上述第2層部分中之上述Au層及上述Sn層之合計層數為15層以上、35層以下。
  14. 如請求項1至13中任一項之稜鏡,其中上述密接膜之全體厚度為1 μm以上、10 μm以下。
  15. 如請求項1至14中任一項之稜鏡,其中上述第2層部分具有上述Au層及上述Sn層之兩者, 於將上述第2層部分中之Au之重量之合計設為MA 、將Sn之重量之合計設為MS 、將Au之重量相對於Au及Sn之重量之合計之比率設為MA /(MA +MS )時,比率MA /(MA +MS )為0.60以上、0.78以下。
  16. 一種稜鏡,其係安裝於封裝體者,且具備: 稜鏡本體,其具有底面及連接於上述底面之斜面;及 密接膜,其設置於上述底面;且 上述密接膜具有位於上述稜鏡本體側之第1層部分、與直接或間接地積層於上述第1層部分上之第2層部分, 上述第2層部分係包含Au及Sn之合金之Au-Sn層, 上述密接膜之上述第2層部分之厚度為2.5 μm以上、5.9 μm以下。
  17. 如請求項16之稜鏡,其中於上述密接膜之積層方向上,於將遠離上述稜鏡本體之側設為外側時,上述密接膜具有作為上述密接膜之最外層且積層於上述第2層部分上之最外層部分, 上述最外層部分係Au層。
  18. 如請求項1至17中任一項之稜鏡,其中於上述密接膜之積層方向上,於將遠離上述稜鏡本體之側設為外側時,上述密接膜之最外層之算術平均粗糙度Ra為0.20 μm以下。
  19. 如請求項1至18中任一項之稜鏡,其中上述第1層部分係Cr層或Ti層或Ta層。
  20. 如請求項1至19中任一項之稜鏡,其中上述密接膜進而具有積層於上述第1層部分與上述第2層部分之間之中間層部分。
  21. 如請求項20之稜鏡,其中上述中間層部分係Ni層、Pt層、Pd層、Ni-Cr混合層或將該等組合而成之合金層。
  22. 如請求項1至21中任一項之稜鏡,其中上述稜鏡本體具有上表面, 上述上表面與上述底面對向,且連接於上述斜面。
  23. 如請求項1至22中任一項之稜鏡,其中於上述稜鏡本體之上述斜面設置有反射膜。
  24. 如請求項22之稜鏡,其中於上述稜鏡本體之上述斜面及上述上表面設置有反射膜。
  25. 一種光裝置,其具備: 如請求項1至24中任一項之稜鏡; 光學元件,其將光出射至上述稜鏡或接收來自上述稜鏡之光;及 封裝體,其收容上述稜鏡及上述光學元件;且 上述稜鏡藉由上述密接膜接合於上述封裝體。
  26. 一種稜鏡之製造方法,其係具備於具有底面及連接於上述底面之斜面之稜鏡本體之上述底面設置密接膜的步驟者;且 設置上述密接膜之步驟包含:於上述底面形成包含金屬材料之第1層部分之步驟;及直接或間接地將包含金屬材料之第2層部分積層於上述第1層部分上之步驟;且 上述第1層部分與上述第2層部分包含互不相同之成分之金屬材料, 上述第2層部分包含Au層及Sn層中之至少一層。
  27. 一種封裝裝置之製造方法,其具備: 準備如請求項1至24中任一項之稜鏡之步驟; 準備具有與上述稜鏡之接著面之封裝體之步驟; 以上述密接膜抵接於上述封裝體之上述接著面之方式,使上述稜鏡與上述封裝體抵接之步驟;及 對上述密接膜進行加熱,使上述稜鏡與上述封裝體接合之步驟。
  28. 如請求項27之封裝裝置之製造方法,其中於上述封裝體之上述接著面形成有Au膜, 以上述密接膜全體不會熔融之溫度進行上述加熱,使上述稜鏡與上述封裝體接合。
TW108144674A 2019-01-31 2019-12-06 稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法 TW202030504A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019015821 2019-01-31
JP2019-015821 2019-01-31
JP2019165192A JP7427888B2 (ja) 2019-01-31 2019-09-11 プリズム、光デバイス、プリズムの製造方法及びパッケージデバイスの製造方法
JP2019-165192 2019-09-11

Publications (1)

Publication Number Publication Date
TW202030504A true TW202030504A (zh) 2020-08-16

Family

ID=72084928

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144674A TW202030504A (zh) 2019-01-31 2019-12-06 稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法

Country Status (3)

Country Link
JP (1) JP7427888B2 (zh)
CN (1) CN113383428A (zh)
TW (1) TW202030504A (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841210B2 (ja) * 1989-06-30 1998-12-24 株式会社トーキン 光アイソレータ、及びその製造方法
JPH0553033A (ja) * 1991-08-27 1993-03-05 Mitsubishi Electric Corp 光受信器
JP4605850B2 (ja) 2000-03-30 2011-01-05 京セラ株式会社 光実装基板の製造方法
JP2003014987A (ja) 2001-06-28 2003-01-15 Kyocera Corp 光路変換体及びその実装構造並びに光モジュール
JP2005217095A (ja) 2004-01-29 2005-08-11 Kyocera Corp 光半導体素子用のサブマウント
JP2007133375A (ja) 2005-10-11 2007-05-31 Konica Minolta Opto Inc 無偏光ビームスプリッタ
JP4942107B2 (ja) 2007-08-14 2012-05-30 スタンレー電気株式会社 光触媒素子
JP2013239614A (ja) 2012-05-16 2013-11-28 Seiko Epson Corp 発光装置の製造方法
KR101946914B1 (ko) 2012-06-08 2019-02-12 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
KR20140099399A (ko) 2013-02-01 2014-08-12 삼성전자주식회사 광원 모듈 및 이를 포함하는 조명 장치
EP2950358B1 (en) 2014-05-29 2021-11-17 Suzhou Lekin Semiconductor Co., Ltd. Light emitting device package

Also Published As

Publication number Publication date
JP2020126221A (ja) 2020-08-20
JP7427888B2 (ja) 2024-02-06
CN113383428A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
JP6668608B2 (ja) 発光装置の製造方法
JP6582754B2 (ja) 複合基板、発光装置、及び発光装置の製造方法
KR102644403B1 (ko) 발광 소자
JP6729537B2 (ja) 発光装置及びその製造方法
KR102098594B1 (ko) Led 패키지
JP6492645B2 (ja) 半導体装置および半導体装置の製造方法
TW202121705A (zh) 發光裝置及led封裝體
JP2024052748A (ja) 窓材、光学パッケージ
TW202030504A (zh) 稜鏡、光裝置、稜鏡之製造方法及封裝裝置之製造方法
WO2020158150A1 (ja) プリズム、光デバイス、プリズムの製造方法及びパッケージデバイスの製造方法
JP7103541B2 (ja) 拡散部材、積層体、拡散部材のセット、ledバックライトおよび表示装置
JP6908859B2 (ja) 半導体装置および半導体装置の製造方法
WO2023032967A1 (ja) 膜付き部品及び光学デバイス
JP7508918B2 (ja) はんだ膜及びその製造方法、光学デバイス用部品、並びに光学デバイス
WO2021014925A1 (ja) 発光装置のリッド材およびリッド材の製造方法
KR20210031467A (ko) 광학 패키지
WO2021014904A1 (ja) 発光装置のリッド材、リッド材の製造方法および発光装置
JP7468182B2 (ja) 膜付き基板、サブマウント、及び光学デバイス
JP7011195B2 (ja) 発光装置
JP6866907B2 (ja) 発光装置
KR20140086373A (ko) Led용 웨이퍼 및 그 제조방법
JP2022021506A (ja) はんだ膜、光学デバイス用部品、及び光学デバイス
JP7108179B2 (ja) キャップの製造方法と、発光装置及びその製造方法
JP2017188653A (ja) 発光装置
JP2022021507A (ja) はんだ膜、光学デバイス用部品、及び光学デバイス